
  
 1.0 Objectives: 

1.1 Introduction 

1.2 Over View of System Analysis and Design   

1.3 Business System Concepts 

1.4 Characteristics of a System   

1.5 Elements of a System 

1.6 Types of Systems 

1.7 Systems Models 

1.8 Categories of Information 

1.9 Summary  

 1.10 Questions 

 

 

 

1.0 Objectives 

• Defining a system  

• The role of computer in information systems 

• What are the characteristic and element of information system 

• What are the various types of information system and models  

• What are the different types of specialised  information system 

 

1.1 Introduction 

In business, System Analysis and Design refers to the process of examining a 

business situation with the intent of improving it through better procedures and methods. 

System analysis and design relates to shaping organizations, improving performance and 

achieving objectives for profitability and growth. The emphasis is on systems in action, 

the relationships among subsystems and their contribution to meeting a common goal. 

Lesson No: 1                       Lesson Name :  Overview of System Analysis & Design

 
Author : Dr. Jawahar         Vetter:      Prof. Dharminder Kumar 



Looking at a system and determining how adequately it functions, the changes to be 

made and the quality of the output are parts of system analysis.  

Organizations are complex systems that consist of interrelated and interlocking 

subsystems. Changes in one part of the system have both anticipated and unanticipated 

consequences in other parts of the system. The systems approval is a way of thinking 

about the analysis and design of computer based applications. It provides a framework for 

visualizing the organizational and environmental factors that operate on a system. When 

a computer is introduced into an organization, various functions’ and dysfunction’s 

operate on the user as well as on the organization. Among the positive consequences are 

improved performance and a feeling of achievement with quality information. Among the 

unanticipated consequences might be a possible threat to employees job, a decreased 

morale of personnel due to back of involvement and a feeling of intimidation by users 

due to computer illiteracy. The analyst’s role is to remove such fears and make the 

system a success. 

System analysis and design focus on systems, processes and technology. 

1.2 Over View of System Analysis and Design   

  Systems development can generally be thought of as having two major 

components: Systems analysis and Systems design. System design is the process of 

planning a new business system or one to replace or complement an existing system. 

But before this planning can be done, we must thoroughly understand the old system 

and determine how computers can best be used to make its operation more effective. 

System analysis, then, is the process of gathering and interpreting facts, diagnosing 

problems, and using the information to recommend improvements to the system. 

This is the job of the systems analyst.  

 Consider, for example, the stockroom operation of a clothing store. To better 

control its inventory and gain access to more up – to – date information about stock levels 

and reordering, the store asks a system analyst, to “computerize” its stockroom 

operations. Before one can design a system to capture data, update files, and produce 

reports, one needs to know more about the store operations: what forms are being used to 

store information manually, such as requisitions, purchase orders, and invoices and what 

reports are being produced and how they are being used.  



 To proceed, you then seek out information about lists of reorder notices, 

outstanding purchase orders, records of stock on hand, and other reports. You also need 

to find out where this information originates, whether in the purchasing department, 

stockroom, or accounting department. In other words, you must understand how the 

existing system works and, more specifically, what the flow of information through the 

system looks like. 

 You also must know why the store wants to change its current operations. Does 

the business have problems tracking orders, merchandise, or money? Does it seem to fall 

behind in handling inventory records? Does it need a more efficient system before it can 

expand operations? 

 Only after you have collected these facts can you being to determine how and 

where a computer information system can benefit all the users of the system. This 

accumulation of information, called a systems study, must precede all other analysis 

activities. 

 Systems analysts do more than solve current problems. They are frequently called 

upon to help handle the planned expansion of a business. In the case of the clothing store, 

the systems study is future oriented, since no system currently exists. Analysts assess as 

carefully as possible what the future needs of the business will be and what changes 

should be considered to meet these needs. In this instance and in most others, analysts 

may recommend alternatives for improving the situation. Usually more than one strategy 

is possible.  

 Working with managers and employees in the organization, systems analysts 

recommend which alternative to adopt, based on such concerns as the suitability of the 

solution to the particular organization and setting, as well as the employee support the 

solution is likely to have. Sometimes the time required to develop one alternative, 

compared with others, is the most critical issue. Costs and benefits are also important 

determinants. In the end, management, which will pay for and use the result, actually 

decides which alternative to accept.  

 Once this decision is made, a plan is developed to implement the 

recommendation. The plan includes all systems design features, such as new data capture 

needs, file specifications, operating procedures, equipment and personnel needs. The 



systems design is like the blueprint for a building: it specifies all the features that are to 

be in the finished product. 

 Designs for the stockroom will provide ways to capture data about orders and 

sales to customers and specify the way the data will be stored, whether on paper forms or 

on a computer – readable medium, such as magnetic tape or disk. The designs will also 

designate work to be performed by people and by computers. Designs vary in their 

division of human and computer tasks.  

 The stockroom personnel will also need information about the business. Each 

design describes output to be produced by the system, such as inventory reports, sales 

analyses, purchasing summaries, and invoices. The systems analysts will actually decide 

which outputs to use, as well as how to produce them.  

 Analysis specifies what the system should do. Design states how to accomplish 

the objective. Notice that each of the processes mentioned involves people. Managers and 

employees have good ideas about what works and what does not, about what flows 

smoothly and what causes problems, about where change is needed and where it is not, 

and especially about where change will be accepted and where it will not. Despite 

technology, people are still the keys that make the organizations work. Thus, 

communicating and dealing with people are very important parts of the systems analyst’s 

job. 

 

1.3 Business System Concepts 

 The word system is widely used. It has become fashionable to attach the word 

system to add a contemporary flair when referring to things or processes. People speak of 

exercise system, investment system, delivery system, information system, education 

system, computer system etc.  System may be referred to any set of components, which 

function in interrelated manner for a common cause or objective.  

 

1.3.1Definition: 

 The term system is derived form the Greek word systema, which means an 

organized relationship among functioning units or components. A system exists because 

it is designed to achieve one or more objectives. We come into daily contact with the 



transportation system, the telephone system, the accounting system, the production 

system, and, for over two decades, the computer system. Similarly, we talk of the 

business system and of the organization as a system consisting of interrelated 

departments (subsystems) such as production, sales, personnel, and an information 

system. None of these subsystems is of much use as a single, independent unit. When 

they are properly coordinated, however, the firm can function effectively and profitably. 

 There are more than a hundred definitions of the word system, but most seem to 

have a common thread that suggests that a system is an orderly grouping of 

interdependent components linked together according to a plan to achieve a specific 

objective. The word component may refer to physical parts (engines, wings of aircraft, 

car), managerial steps (planning, organizing and controlling), or a system in a multi level 

structure. The component may be simple or complex, basic or advanced. They may be 

single computer with a keyboard, memory, and printer or a series of intelligent terminals 

linked to a mainframe. In either case, each component is part of the total system and has 

to do its share of work for the system to achieve the intended goal. This orientation 

requires an orderly grouping of the components for the design of a successful system.  

 The study of systems concepts, then, has three basic implications: 

1. A system must be designed to achieve a predetermined objective. 

2. Interrelationships and interdependence must exist among the components. 

3. The objectives of the organization as a whole have a higher priority than the 

objectives of its subsystems. For example, computerizing personnel 

applications must conform to the organization’s policy on privacy, 

confidentiality and security, as will as making selected data (e.g. payroll) 

available to the accounting division on request. 

 

1.4 Characteristics of a System   

 

 Our definition of a system suggests some characteristics that are present in all 

systems: organization (order), interaction, interdependence, integration and a central 

objective.  

 



1.4.1 Organization 

 Organization implies structure and order. It is the arrangement of components that 

helps to achieve objectives. In the design of a business system, for example, the 

hierarchical relationships starting with the president on top and leading downward to the 

blue – collar workers represents the organization structure. Such an arrangement portrays 

a system – subsystem relationship, defines the authority structure, specifies the formal 

flow of communication and formalizes the chain of command. Like – wise, a computer 

system is designed around an input device, a central processing unit, an output device and 

one or more storage units. When linked together they work as a whole system for 

producing information. 

1.4.2 Interaction 

 Interaction refers to the manner in which each component functions with other 

components of the system. In an organization, for example, purchasing must interact with 

production, advertising with sales and payroll with personnel. In a computer system, the 

central processing unit must interact with the input device to solve a problem. In turn, the 

main memory holds programs and data that the arithmetic unit uses for computation. The 

interrelationship between these components enables the computer to perform. 

1.4.3 Interdependence  

 Interdependence means that parts of the organization or computer system depend 

on one another. They are coordinated and linked together according to a plan. One 

subsystem depends on the input of another subsystem for proper functioning: that is, the 

output of one subsystem is the required input for another subsystem. This 

interdependence is crucial in systems work.  

An integrated information system is designed to serve the needs of authorized 

users (department heads, managers, etc.) for quick access and retrieval via remote 

terminals. The interdependence between the personnel subsystem and the organization’s 

users is obvious. 

In summary, no subsystem can function in isolation because it is dependent on the 

data (inputs) it receives from other subsystems to perform its required tasks. 

Interdependence is further illustrated by the activities and support of systems analysts, 

programmers, and the operations staff in a computer centre. A decision to computerize an  



application is initiated by the user, analyzed and designed by the analyst, programmed 

and tested by the programmer, and run by the computer operator. None of these persons 

can perform property without the required input from others in the computer center 

subsystem. 

Figure 1-1: Organization Structure – An Example 

 
 
 
 
 
 
 
 
 
  
 
 
 

 
  
 
 
 
 
  

 

1.4.4 Integration 

 Integration refers to the holism of systems. Synthesis follows analysis to achieve 

the central objective of the organization. Integration is concerned with how a system is 

tied together. It is more than sharing a physical part or location. It means that parts of the 

system work together within the system even though each part performs a unique 

function. Successful integration will typically produce a synergistic effect and greater 

total impact than if each component works separately. 

 1.4.5 Central objective 

 The last characteristic of a system is its central objective. Objectives may be real 

or stated. Although a stated objective may be the real objective, it is not uncommon for 

an organization to state one objective and operate to achieve another. The important point 

is that users must know the central objective of a computer application early in the 

Formal Organizational 
positions President 

Vice- President 
Sales

Vice- President 
Production

Vice- President 
Accounting

Department Head 
Assembly

Departing Head 
Painting

Lines of Authority

WorkersWorkers 



analysis for a successful design and conversion. Political as well as organizational 

considerations often cloud the real objective. This means that the analyst must work 

around such obstacles to identify the real objective of the proposed change.  

 1.5 Elements of a System 

 In most cases, systems analysts operate in a dynamic environment where change 

is a way of life. The environment may be a business firm, a business application, or a 

computer system. To reconstruct a system, the following key elements must be 

considered: 

1. Outputs and inputs. 

2. Processor(s). 

3. Control. 

4. Feedback. 

5. Environment. 

6. Boundaries and interface. 

 1.5.1 Outputs and Inputs 

 A major objective of a system is to produce an output that has value to its user. 

Whatever the nature of the output (goods, services, or information), it must be in line 

with the expectations of the intended user. Inputs are the elements (material, human 

resources, and information) that enter the system for processing. Output is the outcome of 

processing. A system feeds on input to produce output in much the same way that a 

business brings in human, financial, and material resources to produce goods and 

services. It is important to point out here that determining the output is a first step in 

specifying the nature, amount, and regularity of the input needed to operate a system. For 

example, in systems analysis, the first concern is to determine the user’s requirements of 

a proposed computer system – that is, specification of the output that the computer is 

expected to provide for meeting user requirements. 

1.5.2 Processor(s) 

 The processor is the element of a system that involves the actual transformation of 

input into output. It is the operational component of a system. Processors may modify the 

input totally or partially, depending on the specifications of the output. This means that as 



the output specifications change so does the processing. In some cases, input is also 

modified to enable the processor to handle the transformation. 

1.5.3 Control 

 The control element guides the system. It is the decision – making subsystem that 

controls the pattern of activities governing input, processing, and output. In an 

organizational context, management as a decision – making body controls the inflow, 

handling and outflow of activities that affect the welfare of the business. In a computer 

system, the operating system and accompanying software influence the behaviour of the 

system. Output specifications determine what and how much input is needed to keep the 

system in balance. 

 In systems analysis, knowing the attitudes of the individual who controls the area 

for which a computer is being considered can make a difference between the success and 

failure of the installation. Management support is required for securing control and 

supporting the objective of the proposed change. 

 1.5.4 Feedback  

 Control in a dynamic system is achieved by feedback. Feedback measures output 

against a standard in some form of cybernetic procedure that includes communication and 

control. Output information is fed back to the input and / or to management (Controller) 

for deliberation. After the output is compared against performance standards, changes can 

result in the input or processing and consequently, the output.  

 Feedback may be positive or negative, routing or informational. Positive feedback 

reinforces the performance of the system. It is routine in nature. Negative feedback 

generally provides the controller with information for action. In systems analysis, 

feedback is important in different ways. During analysis, the user may be told that the 

problems in a given application verify the initial concerns and justify the need for change. 

Another form of feedback comes after the system is implemented. The user informs the 

analyst about the performance of the new installation. This feedback often results in 

enhancements to meet the user’s requirements.  

1.5.5 Environment 

 The environment is the “suprasystem” within which an organization operates. It is 

the source of external elements that impinge on the system. In fact, it often determines 



how a system must function. For example, the organization’s environment, consisting of 

vendors, competitors, and others, may provide constraints and, consequently, influence 

the actual performance of the business. 

 1.5.6 Boundaries and interface  

 A system should be defined by its boundaries – the limits that identify its 

components, processes and interrelationship when it interfaces with another system. For 

example, a teller system in a commercial bank is restricted to the deposits, withdrawals 

and related activities of customers checking and savings accounts. It may exclude 

mortgage foreclosures, trust activities, and the like.  

 Each system has boundaries that determine its sphere of influence and control. 

For example, in an integrated banking – wide computer system design, a customer who 

has a mortgage and a checking account with the same bank may write a check through 

the “teller system” to pay the premium that is later processed by the “mortgage loan 

system.” Recently, system design has been successful in allowing the automatic transfer 

of funds form a bank account to pay bills and other obligations to creditors, regardless of 

distance or location. This means that in systems analysis, knowledge of the boundaries of 

a given system is crucial in determining the nature of its interface with other systems for 

successful design. 

 1.6 Types of systems 

 The frame of reference within which one views a system is related to the use of 

the systems approach for analysis. Systems have been classified in different ways. 

Common classifications are: (1) physical or abstract, (2) open or closed, and (3) “man – 

made” information systems. 

 1.6.1  Physical or abstract systems 

 Physical systems are tangible entities that may be static or dynamic in operation. 

For example, the physical parts of the computer center are the officers, desks, and chairs 

that facilitate operation of the computer. They can be seen and counted; they are static. In 

contrast, a programmed computer is a dynamic system. Data, programs, output, and 

applications change as the user’s demands or the priority of the information requested 

changes.  



Abstract systems are conceptual or non-physical entities. They may be as 

straightforward as formulas of relationships among sets of variables or models – the 

abstract conceptualization of physical situations. A model is a representation of a real or a 

planned system. The use of models makes it easier for the analyst to visualize 

relationships in the system under study. The objective is to point out the significant 

elements and the key interrelationships of a complex system.  

 1.6.2 Open or Closed Systems 

 Another classification of systems is based on their degree of independence. An 

open system has many interfaces with its environment. It permits interaction across its 

boundary; it receives inputs from and delivers outputs to the outside. An information 

system falls into this category, since it must adapt to the changing demands of the user. In 

contrast, a closed system is isolated from environmental influences. In reality, a 

completely closed system is rare. In systems analysis, organizations, applications and 

computers are invariably open, dynamic systems influenced by their environment. 

  

 Figure: 1.3  Gantt Chart – An Example 

 

Gantt Chart  

Departments Number 

or 

workers 

Capacity 

per week 
May               5 6                   12  

25 28 22 29 
Stamping 75 3,000  

  
 

 
  

 
 

21  25 Sanding 
10 400  

  
 

 
    

19 20 Assembly 
60 2,400 

 
   

 
    

13 1 4 Painting 
8 320 

 
  

  
    

 



 A focus on the characteristics of an open system is particularly timely in the light 

of present – day business concerns with computer fraud, invasion of privacy, security 

controls, and ethics in computing. Whereas the technical aspects of systems analysis deal 

with internal routines within the user’s application area, systems analysis as an open 

system tends to expand the scope of analysis to relationships between the user area and 

other users and to environmental factor that must be considered before a new system is 

finally approved. Furthermore, being open to suggestions implies that the analyst has to 

be flexible and the system being designed has to be responsive to the changing needs of 

the user and the environment. 

 Five important characteristics of open systems can be identified. 

1. Input from outside: Open systems are self – adjusting and self-regulating. 

When functioning properly, an open system reaches a steady state or equilibrium. 

In a retail firm, for example, a steady state exists when goods are purchased and 

sold without being either out of stock or overstocked. An increase in the cost of 

goods forces a comparable increase in prices or decrease in operating costs. This 

response gives the firm its steady state. 

2. Entropy: All dynamic systems tend to run down over time, resulting in 

entropy or loss of energy. Open systems resist entropy by seeking new inputs or 

modifying the processes to return to a steady state. In our example, no reaction to 

increase in cost of merchandise makes the business unprofitable which could 

force it into insolvency – a state of disorganization. 

3. Process, output and cycles: Open systems produce useful output and operate in 

cycles, following a continuous flow path.  

4. Differentiation: Open systems have a tendency toward an increasing 

specialization of functions and a greater differentiation of their components. In 

business, the roles of people and machines tend toward greater specialization and 

greater interaction. This characteristic offers a compelling reason for the 

increasing value of the concept of systems in the systems analyst’s thinking. 

5. Equifinality: The term implies that goals are achieved through differing courses 

of action and a variety of paths. In most systems, there is more of a consensus on 

goals than on paths to reach the goals. 



 Understanding system characteristics helps analysts to identify their role and 

relate their activities to the attainment of the firm’s objectives as they undertake a system 

project. Analysts are themselves part of the organization. They have opportunities to 

adapt the organization to changes through computerized application so that the system 

does not “run down.” A key to this process is information feedback from the prime user 

of the new system as well as from top management.  

The theme of the process of designing information systems borrows heavily from 

a general knowledge of systems theory. The objective is to make a system more efficient 

by modifying its goals or changing the outputs. 

1.6.3 Man – Made Information Systems 

 Ideally, information reduces uncertainty about a state or event. For example, 

information that the wind is calm reduces the uncertainty that the boat trip will be 

pleasant. An information system is the basis for interaction between the user and the 

analyst. It provides instruction, commands and feedback. It determines the nature of the 

relationships among decision-makers. In fact, it may be viewed as a decision center for 

personnel at all levels. From this basis, an information system may be defined as a set of 

devices, procedures and operating systems designed around user based criteria to produce 

information and communicate it to the user for planning, control and performance. In 

systems analysis, it is important to keep in mind that considering an alternative system 

means improving one or more of these criteria.  

 Many practitioners fail to recognize that a business has several information 

systems; each is designed for a purpose and works to accommodate data flow, 

communications, decision making, control and effectiveness. The major information 

systems are formal, informal and computer based. 

Formal Information system 

 A formal information system is based on the organization represented by the 

organization chart. The chart is a map of positions and their authority relationships, 

indicated by boxes and connected by straight lines. It is concerned with the pattern of 

authority, communication and workflow. Information is formally disseminated in 

instructions, memos, or reports from top management to the intended user in the 

organization. This structure also allows feedback up the chain of command for follow – 



up. In Figure 1-1 input form the environment provides impetus for policy decision by top 

management. Policies are generalizations that specify what an organization ought to do. 

Policies are translated into directives, rules and regulations and transmitted to lower-level 

management for implementation. The output represents employee performance. 

 1.7 Systems Models 

 In no field are models used more widely and with greater variety than in systems 

analysis. The analyst beings by creating a model of the reality (facts, relationships, 

procedures, etc.) with which the system is concerned. Every computer system deals with 

the real world, a problem area, or a reality outside itself. For examples, a telephone 

switching system is made up of subscribers, telephone handsets, dialing, conference calls, 

and the like. The analyst beings by modeling this reality before considering the functions 

that the system is to perform. 

 Various business system models are used to show the benefits of abstracting 

complex system to model form. The major models are schematic, flow, static and 

dynamic system models. 

1.7.1 Schematic Models. 

 A schematic model is a two – dimensional chart depicting system elements and 

their linkages. Different arrows are used to depict information flow, material flow and 

information feedback. Various elements of the system are depicted in boxes. 

 

1.7.2 Flow system Models. 

 A flow system model shows the flow of the material, energy and information that 

hold the system together. There is an orderly flow of logic in such models. A widely 

known example is PERT (Program Evaluation and Review Technique). It is used to 

abstract a real world system in model form, manipulate specific values to determine the 

critical path, interpret the relationships and relay them back as a control. The probability 

of completion within a time period is considered in connection with time, resources and 

performance specifications as shown in the figure1.2. 

Figure 1.2 PERT an example 

 

 
B

A

E

D5

4 1



 

 

 

 

 

 

 

 

1.7.3 Static system models. 

 This type of model exhibits one pair of relationships such as activity – time or 

cost – quantity. The Gantt chart, for example, gives a static picture of an activity- time 

relationship. Planned activities (stamping, sanding etc.) are plotted in relation to time are 

shown in figure 1.3. The date column has light lines that indicate the amount of time it 

takes to complete a given activity. The heavy line represents the cumulative time 

schedule for each activity. The stamping department, for example, is scheduled to start 

working on order number 25 Wednesday morning and complete the job by the same 

evening. One day is also scheduled for order number 28, two days for order number 28, 

two days for order number 22 and two days (May 10-11) for order number 29. The heavy 

line opposite the stamping department represents the total of six days. The broken line 

indicates that the department is two days behind schedule. The arrowhead indicates the 

date when the chart is to be in effect. 

1.7.4 Dynamic System Models. 

  Business organizations are dynamic systems. A dynamic model approximates the 

type of organization or application that analysts deal with. It depicts an ongoing, 

constantly changing system. It consists of (1) inputs that enter the system, (2) the 

processor through which transformation takes place, (3) the program(s) required for 

processing and (4) the output(s) that result from processing. 

 
1.8 Categories of Information 

 There are three categories of information related to managerial levels and the 

decision managers make. The first level is strategic information, which relates to long – 



range planning policies that are of direct interest to upper management. Information such 

as population growth, trends in financial investment and human resources changes would 

be of interest to top company officials who are responsible for developing policies and 

determining long-range goals. This type of information is achieved with the aid of 

Decision Support System (DSS). 

 The second level of information is managerial information. It is of direct use to 

middle management and department heads for implementation and control. Examples are 

sales analysis, cash flow projection and annual financial statements. This information is 

of use in short – and intermediate -range planning – that is months rather than years. It is 

maintained with the aid of management information systems (MIS). 

 The third information level is operational information, which is short-term, daily 

information used to operate departments and enforce the day-to-day rules and regulations 

of the business. Examples are daily employee absent sheets, overdue purchase orders and 

current stocks available. Operational information is established by data processing 

systems (DPS). Figure 1.4 shows the same. 

 The nature of the information and managerial levels is also related to the major 

types of decision making: structured and unstructured decision making. An 

organizational process that is closed, stable and mechanistic tends to be more structured, 

computational and relies on routine decision making for planning and control. Such 

decision making is related to lower-level management and is readily supported with 

computer systems. In contrast, open, adaptive, dynamic processes increase the 

uncertainty associated with decision making and are generally evidenced by a lack of 

structure in the decision – making process. Lack of structure as well as extra-

organizational and incomplete information makes it difficult to secure computer support. 

Table 1-2 summarizes the characteristics of decision making and the information required 

at different managerial levels. 

 
 
 
 
 
 
 



 
 
 
 
 
Figure 1-4: Management and Information Levels in a Typical Organization. 
 
 
 
Management   Information Level   System Support 
Level 
 

Upper                                    
       Strategic 

                                                      Planning 
                                                    Information  
 

Middle   Management control 
           information 
 

 

Lower        Operational  
          Information 
 

 
Therefore, in designing an information system, the analyst needs to determine the 

type of information needed, the level of the information, how it is structured and in what 

format it is before deciding on the system needed to produce it. This is another reason for 

having a background in systems theory and organizations.  

 1.8.1 Informal Information Systems 

 The formal information system is a power structure designed to achieve company 

goals. An organization’s emphasis on control to ensure performance tends to restrict the 

communication flow among employees. As a result, an informal information system 

develops. It is an employee based system designed to meet personnel and vocational 

needs and to help solve work – related problems. It also funnels information upward 

through indirect channels. In this respect, it is a useful system because it works within the 

framework of the business and it’s stated policies.  



 In doing a systems study, the analyst should have a knowledge of the chain of 

command, the power-authority-influence network, and how decisions are made to get a 

feel for how much support can be expected for a prospective installation. Furthermore, 

knowledge about the inner workings of the employee- based system is useful during the 

exploratory phase of analysis. Employee cooperation and participation are crucial in 

preventing sabotage and training users. Since computers cannot provide reliable 

information without user staff support, a proper interface with the informal 

communication channels could mean the difference between the success and failure of 

new systems. 

 1.8.2 Computer – Based Information Systems 

 A third class of information system relies on the computer for handling business 

applications. The computer is now a required source of information. Systems analysis 

relies heavily on computers for problem solving. This suggests that the analyst must be 

familiar with computer technology and have experience in handling people in an 

organizational context.  

1.8.2.1 Management Information Systems (MIS) 

 The computer has had a significant impact on the techniques used by management 

to operate a business. The level of the manager in the organization is also a factor in 

determining the kind of information needed to solve a problem.  Lower – level 

management needs detailed internal information to make day – to – day, relatively 

structured control decisions. Higher – level management, for whom long – range 

objectives are the primary concerns, requires summarized information from a variety of 

sources to attain goals. In either case, management action is based on information that is 

accurate, relevant, complete, concise, and timely. MIS has been successful in meeting 

these information criteria quickly and responsively. 

  MIS is a person – machine system and a highly integrated grouping of 

information – processing functions designed to provide management with a 

comprehensive picture of specific operations. It is actually a combination of information 

systems. To do the job, it should operate in real time, handling inquires as quickly as they 

are received. Management information must also be available early enough to affect a 

decision. Operationally, MIS should provide for file definition, file maintenance and 



updating, transaction and inquiry processing and one or more databases linked to an 

organizational database. Within a MIS, a single transaction can simultaneously update all 

related data files in the system. In so doing, data redundancy (duplication) and the time it 

takes to duplicate data are kept to a minimum, thus insuring that data are kept current at 

all times.  

 A key element of MIS is the database – a non-redundant collection of interrelated 

data items that can be processed through application programs and available to many 

users. All records must be related in some way. Sharing common data means that many 

programs can use the same files or records. Information is accessed through a data base 

management system (DBMS). It is a part of the software that handles virtually every 

activity involving the physical database. 

 There are several advantages to a data base system: 

1. Processing time and the number of programs written are substantially reduced. 

2. All applications share centralized files. 

3. Storage space duplication is eliminated. 

4. Data are stored once in the database and are easily accessible when needed. 

 

The two primary drawbacks of a database are the cost of specialized personnel 

and the need to protect sensitive data from unauthorized access.  



The primary users of MIS are middle and top management, operational managers and 

support staff. Middle and top management use MIS for preparing forecasts, special 

requests for analysis, long – range plans and periodic reports. Operational managers use 

MIS primarily for short- range planning, periodic and exception reports. The support staff 

finds MIS useful for the special analysis of information and reports to help management 

in planning and control. Providing data for use in MIS is the function of most levels of 

personnel in the organization. Once entered into the system, the information is no longer 

owned by the initiating user but becomes available to all authorized users.  

 

Today’s typical MIS poses several problems. Most MIS reports are historical and 

tend to be dated. Another problem is that many installations have databases that are not in 

line with user requirements. This means that many MIS environments have not been 

congruent with the real world of the user. Finally, an inadequate or incomplete update of 

the database jeopardizes the reliability for all users.  

 

A major problem encountered in MIS design is obtaining the acceptance and 

support of those who will interface with the system. Personnel who perceive that their 

jobs are threatened may resist the implementation of MIS. In understanding both 

technology and human behavior, the analyst faces the challenge of selling change to the 

right people for a successful installation.  

1.8.2.1 Decision Support Systems (DSS) 

 One reason cited in the literature of management’s frustration with MIS is the 

limited support it provides top management for decision making. DSS advances the 

capabilities of MIS. It assists management in making decisions. It is actually a 

continually evolving model that relies heavily on operations research.  

 Gorry and Morton Coined the term decision support system (DSS). The origin of 

the term is simple: 

¾ Decision – emphasizes decision making in problem situations, not information 

processing, retrieval, or reporting. 

¾ Support – requires computer-aided decision situations with enough “structure” to 

permit computer support. 



¾ System – accentuates the integrated nature of problem solving, suggesting a 

combined “man”, machine, and decision environment. 

Beginning with management decision systems in the early 1970’s the concept of 

interactive computer – based systems supporting unstructured decision making has been 

expanded to include everything but transaction processing systems. A typical early 

definition required an interactive computer – based system to help users use data and 

models to solve unstructured problems. There are authors today who view DSS as an 

extension of MIS, DSS as independent of MIS, or MIS as a subset of DSS. The 

commonly accepted view in the literature views DSS as a second – generation MIS. MIS 

is generated when we add predefined managerial reports that are spun out of the 

transaction processing, report generation and online inquiry capabilities – all integrated 

with a given functional area such as production MIS or personnel MIS. DSS result from 

adding external data sources, accounting and statistical models and interactive query 

capabilities. The outcome is a system designed to serve all levels of management and top 

management in particular, in dealing with “what if” unstructured problem situations. It is 

a system with the intrinsic capability to support ad hoc data analysis as well as decision – 

modeling activities. 

The intelligence phase of decision making involves the awareness of a problem at 

a symptomatic level; it requires a closer look at the problem and a through evaluation of 

the variables and their relationships. The more intelligence management has about the 

cause of a problem, the better is the likelihood of designing a good decision. A DSS can 

provide intelligence through information retrieval and statistical packages. 

The design phase of decision making focuses on the evaluation of decision 

alternatives. During this phase, computer – based deterministic or stochastic models may 

be used for decision design. DSS plays a major role in decision design under uncertainty. 

The output of the model(s) is the basis of the choice phase of decision-making.  

 

 

1.10 Summary: 

A system is orderly grouping of interdependent components linked together according to 

a plan to achieve a specific objective. Its main characteristic are organization, interaction, 



interdependence, integration and a central objective. To construct a system, system 

analyst must consider its elements- input and output, processors, control, feedback, and 

environment. System are classified as physical or abstract, open or closed, and man-made 

information systems. A system may be schematic, static or dynamic. An information 

system is an open system that allows inputs and facilitates interaction with the user. The 

main characteristic of an open system are input from outside, processing, output, 

operation in cycles through feedback, differentiation, and equifinality. Three level of 

information in organization that require a special type of information system. Strategic 

information system for long range planning policies and upper management. Managerial 

information system helps middle management and department heads in policy 

implementation and control. Operational information system helps the daily information 

needed to operate the business. Future emphasises on the decision support system not on 

information processing, it requires a computer aided environment and accentuates a 

combined man and machine and decision environment. 

1.9 Questions: 

1. Define system. Give examples.  

2. What is man made information system. 

3. Explain the features of a system. 

4. Elaborate the different types of systems. 

5. A system leads to a lot of planning and less of implementation. Do you agree, justify 
your answer. 



CHAPTER 2 

System Development Life Cycle 
Author : Dr. Jawahar         Vetter:      Dr. Pradeep K. Bhatia 

Lesson No: 2                       Lesson Name :  System Development Life Cycle 

 
2.0 Objectives: 

2.1 Introduction 

 2.2 Stages of system development Life cycle 

2.2.1 Project Selection 

2.2.2 Feasibility Study 

2.2.3 Analysis 

2.2.4 Design 

2.2.5 Implementation  

2.2.5.1 Post – Implementation and Maintenance 

2.3 Considerations for candidate system 

 2.3.1 Political considerations 

 2.4 Planning and control for system success 

2.5 Summary  

2.6 Questions 

 

 

 

2.0 Objectives  

• How to build the computer based information system 
• What are the different steps in system development life cycle 

• What prompts users to change their request  

• What are the various components of feasibility study 

• What are the factors to consider in a candidate system 



• How to plan and control for the system success  

2.1 Introduction 

 The system analyst gives a system development project meaning & direction. A 

candidate system is approached after the analyst has a through understanding of user 

needs & problems. A viable solution is worked out and then communicates the same. 

Candidate systems often cut across the boundaries of users in the organization. For 

example, a billing system may involve users in the sales order department, the credit 

department, the warehouse and the accounting department. To make sure that all users’ 

needs are met, a project from that represents each user works with the analysis to carry 

out a system development project.  

 2.2 Stages of system development Life cycle 

 The system development life cycle method is classically thought of as the set of 

activities that analysts, designers and users carry out to develop and implement an 

information system. The various stages in the business are closely related to each other, 

even the order of the steps in these activities is difficult to determine.  

2.2.1 Project Selection 

One must know what the problem is before it can be solved. The basis for a 

candidate system is recognition of a need for improving an information system or a 

procedure. For example, a supervisor may want to investigate the system flow in 

purchasing, or a bank president has been getting complaints about the long lines in the 

drive – in. This need leads to a preliminary survey or an initial investigation to determine 

whether an alternative system can solve the problem. It entails looking into the 

duplication of effort, bottlenecks, inefficient existing procedures, or whether parts of the 

existing system would be candidates for computerization.  

If the problem is serious enough, management may want to have an analyst look 

at it. Such an assignment implies a commitment, especially if the analyst is hired from the 

outside. In larger environments, where formal procedures are the norm, the analyst’s first 

task is to prepare a statement specifying the scope and objective of the problem. He/She 

then reviews it with user for accuracy. At this stage, only a rough “ ball park” estimate of 



the development cost of the project may be reached. However, an accurate cost of the 

next phase- the feasibility study – can be produced.  

 Impetus for system Change  

The idea for change originates in the environment or from within the firm (see 

Figure 2-1). Environment-based ideas originate from customers, vendors, government 

sources, and the like. For example, new unemployment compensation regulations may 

make it necessary to change the restructures. Customer complaints about the delivery of 

orders may prompt an investigation of the delivery schedule, the experience of truck 

drivers, or the volume of orders to be delivered. When investigated, each of these ideas 

may lead to a problem definition as a first step in the system life cycle process.  

Ideas for change may also come from within the organization- top management, 

the user, and the analyst. As an organization changes its operations or faces advances in 

computer technology, someone within the organization may feel the need to update 

existing applications or improve procedures. Here are some examples: 

• An organization acquires another organization. 

• A local bank branches into the suburbs. 

• A department spends 80 percent of its budget in one month. 

• Two departments are doing essentially the same work, and each department head 

insists the other department should be eliminated. 

• A request for a new form discloses the use of bootleg (unauthorized) forms. 

Serious problems in operations, a high rate of labor turnover, labor intensive 

activities, and high reject rates of finished goods, also prompt top management to initiate 

an investigation. Other examples are: 

• A report reaches a senior vice president and she suspects the figures.  

• The company comptroller reads an IRS audit report and starts thinking.  

• An executive read about decision support systems for sales forecasting and it 

gives him an idea. 



Many of these ideas lead to further studies by management request, often 

funneled downward and carried out by lower management. 

User- originated ideas also prompt initial investigations. For example, a bank’s 

head teller has been noticing long customer lines in the lobby. She wants to know 

whether they are due to the computers slow response to inquires, the new teller’s limited 

training or just a sudden increase in bank business. To what extent and how quickly a 

user- originated idea is converted to a feasibility study depend on several factors: 

• The risks and potential returns. 

• Management’s bias toward the user. 

• Financial costs, and the funds, available for system work. 

• Priorities of other projects in the firm. 

• The persuasive ability of the user. 

All these factors are crucial for a prompt response to a user request for change. A 

systems analyst is in a unique position to detect and even area of operations make him/ 

her a convenient resource for ideas. The role and status of the analyst as a professional 

add credibility to the suggestions made. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sources of system ideas Organization 

based 

Environment 

based 

Organizatio

Moving 

force 

for 

Govt. 
Top 

Management Consumers 

User 

Union 

System Analyst Competition



 Figure 2.1  Major Sources of Change 

 

 2.2.2 Feasibility Study 

Depending on the results of the initial investigation, the survey is expanded to a 

more detailed feasibility study. A feasibility study is a test  

of a system proposal according to its workability. Impact on the organization, ability to 

meet user needs, and effective use of resources. It focuses on three major questions: 

1. What are the user’s demonstrable needs and how does a candidate system meet 

them? 

2. What resources are available for given candidate systems? Is the problem worth 

solving? 

3. What is the likely impact of the candidate system on the organization? How well 

does it fit within the organization’s master MIS plan? 

Each of these questions must be answered carefully. They revolve around 

investigation and evaluation of the problem, identification and description of candidate 

systems, specification or performance and the cost of each system and final selection of 

the best system. 

The objective of feasibility study is not to solve the problem but to acquire a sense 

of its scope. During the study the problem definition is crystallized and aspects of the 

problem to be included in the system are determined. Consequently, costs and benefits 

are estimated with greater accuracy at this stage. 

The result of the feasibility study is a formal proposal. This is simply a report- a 

formal document detailing the nature and scope of the proposed solution. The proposal 

summarizes what is known and what is going to be done. It consists of the following: 

1. Statement of the problem – a carefully worded statement of the problem 

that led to analysis. 

2. Summary of findings and recommendations- a list of the major findings 

and recommendations of the study. It is ideal for the user who requires 



quick access to the results of the analysis of the system under study. 

Conclusions are stated followed by a list of the recommendations and a 

justification for them. 

3. Details of findings- an outline of the methods and procedures undertaken by 

the existing system followed by coverage of the objectives and procedures 

of the candidate system. Included are also discussions of output reports, 

file structures, and costs and benefits of the candidate system. 

4.Recommendations and conclusions- specific recommendations regarding 

the candidate system including personnel assignments, costs, project 

schedules, and target dates.  

After management reviews the proposal, it becomes a formal agreement that 

paves the way for actual design and implementations. This is a crucial decision point in 

the life cycle. Many project die here, whereas the more promising ones continue through 

implementations. Changes in the proposal are made in writing, depending on the 

complexity size, and cost of the project. It is simply common sense to verify changes 

before committing the project design.  

 2.2.3 Analysis  

Analysis is a detailed study of the various operations performed by a system and 

their relationships within and outside of the system. A key question is, what must be done 

to solve the problem? One aspect of analysis is defining the boundaries of the system and 

determining whether or not a candidate system should consider other related systems. 

During analysis, data are collected on the available files, decision points, and transactions 

handled by the present system. Data flow diagrams interviews, on – site observations, and 

questionnaires are examples of the analysis tools. The interviews is a commonly used tool 

in analysis, it requires special skills and sensitivity to the subjects being interviewed. Bias 

in data collection and interpretation can be a problem. Training, experience, and common 

sense are required for collection of the information needed to do the analysis. 



Once analysis is completed the analyst has a firm understanding of what is to be 

done. The next step is to decide how the problem might be solved. Thus, in systems, 

design we move from the logical to the physical aspects of the life cycle.  

 2.2.4 Design  

The most creative and challenging phase of the system life cycle is system design. 

The term design describes a final system and the process by which it is developed. It 

refers to the technical specifications (analogous to the engineer’s blueprints) that will be 

applied in implementing the candidate system. It also includes the construction of 

programs and program testing. The key questions here is: How should the problem be 

solved? The major steps in design are shown in Figure 2.2. 

The first step is to determine how the output is to be produced and in what format. 

Samples of the output (and input) are also presented. Second, input data and master files 

(database) have to be designed to meet the requirements of the proposed output. The 

operational (processing) phases are handled through program construction and testing 

including a list of the programs needed to meet the system’s objectives and complete 

documentation. Finally, details related to justification of the system and an estimate of 

the impact of the candidate system on the user and the organization are documented and 

evaluated by management as a step toward implementation. 

The final report prior to the implementation phase includes procedural flowcharts, 

record layouts, report layouts, and a workable plan for implementing the candidate 

system. Information on personnel, money, hardware, facilities, and their-estimated cost 

must also be available. At this point, projected costs must be close to actual costs of 

implementation.  

In some firms, separate groups of programmers do the programming, whereas 

other firms employ analyst- programmers who do analysis and design as well as code 

programs. For this discussion, we assume that two separate persons carry out analysis and 

programming. There are certain functions, though, that the analyst must perform while 

programs are being written. Operating procedures must also be developed.  



 2.2.5 Implementation  

The implementation phase is less creative than system design. It is primarily 

concerned with user training site preparation, and file conversion. When the candidate 

system is linked to terminals or remote sites, the telecommunication network and tests of 

the network along with the system are also included under implementation. 

During the final testing, user acceptance is tested, followed by user training. 

Depending on the nature of the system, extensive user training may be required. 

Conversion usually takes place at about the same time the user is being trained or later.  

In the extreme, the programmer is falsely viewed as someone who ought to be 

isolated from other aspects of system development. Programming is itself design work, 

however. The initial parameters of the candidate system should be modified as a result of 

programming efforts. Programming provides a “ reality test” for the assumptions made 

by the analyst. It is therefore a mistake to exclude programmers from the initial system 

design.  

 

 Figure 2.2  Steps in systems design 

  

  

  

  

  

  

  

  

  

 

 

Outpu
t 
Design 

Input 

Design 

File 

Design 

Processing 

Design 

Detailed System

documentation 

Design submit for

approval 

Design 

accepted 

Test 

programs 

Implementatio

n phase 



 

 

 

System testing checks the readiness and accuracy of the system to access, update 

and retrieve data from new files. Once the programs become available, test data are read 

into the computer and processed against the file(s) provided for testing. If successful, the 

program(s) is then run with “ live” data. Otherwise, a diagnostic procedure is used to 

locate and correct errors in the program. In most conversions, parallel run is conducted 

where the new system runs simultaneously with the “old” system. This method, though 

costly, provides added assurance against errors in the candidate system and also gives the 

user staff an opportunity to gain experience through operation. In some cases, however, 

parallel processing in not practical. For example, it is not plausible to run parallel two 

online point-of-sale (POS) systems for a retail chain. In any case, after the candidate 

system proves itself, the old system is phased out. 

 2.2.5.1 Post – Implementation and Maintenance  

After the installation phase is completed and the user staff is adjusted to the 

changes created by the candidate system, evaluation and maintenance begin. Like any 

system there is an aging process that requires periodic maintenance of hardware and 

software. If the new information is inconsistent with the design specifications, then 

changes have to be made. Hardware also requires periodic maintenance to keep in tune 

with design specifications. The importance of maintenance is to continue to bring the new 

system to standards. 

User priorities, changes in organizational requirements, or environmental factors 

also call for system enhancements. To contrast maintenance with enhancement, if a bank 

decided to increase its service charges on checking accounts from Rs 3.00 to Rs 4.50 for 

a minimum balance of Rs 300, it is maintenance. However, if the same bank decided to 

create a personal loan on negative balances when customers overdraw their account, it is 

enhancement. This change requires evaluation program modifications, and further testing.  



 Project Termination 

A system project may be dropped at any time prior to implementation although it 

becomes more difficult (and costly) when it goes past the design phase. Generally, 

projects are dropped if, after a review process, it is learned that: 

• Changing objectives or requirements of the user cannot be met by the 

existing design. 

• Benefits realized from the candidate system do not justify commitment 

to implementation. 

• There is a sudden change in the user’s budget or an increase in design 

costs beyond the estimate made during the feasibility study. 

• The project greatly exceeds the time and cost schedule. 

In each case, a system project may be terminated at the user’s request. In contrast 

project termination is new system failure. There are many reasons a new system does not 

meet user requirements: 

• User requirements were not clearly defined or understood.  

• The user was not directly involved in the crucial phases of system 

development. 

• The analyst, programmer, or both were inexperienced. 

• The systems analyst (or the project team) had to do the work under stringent 

time constraints. Consequently not enough thought went into the feasibility 

study and system design. 



• User training was poor. 

• Existing hardware proved deficient to handle the new application. 

• The new system left users in other departments out of touch with 

information that the old system had provided. 

• The new system was not user-friendly. 

• Users changed their requirements. 

• The user staff was hostile. 

The list can be expanded to include many more causes. The important point is that 

although advances in computer systems and software make life easier for the analyst, the 

success of a system project depends on the experience, creative ability, and knowledge of 

the analyst and the support from the user staff. This suggests that the analyst be skilled in 

the state of the art (hardware and software) as well as in dealing with people. 

 

 2.3 Considerations for candidate system 

 In today’s business, there is more demand for computer services than there 

are resources available to meet the demand. The demand is made up of the following: 

1. Operations of existing system. 

2. Maintenance that focuses on “patching” programs – often representing over 50 

percent of maintenance.  

3. Enhancements that involve major modifications in program structure or 

equipment.  

4. Requests for candidate systems. 

 

All these demands require resource – human, financial, and technological. On the 

human side, the computer department has to provide the following: 

� Computer operators to run equipment.  

� Data entry personnel. 

� Systems analysts to define and design specifications. 

� Application programmers to convert system specifications to computer programs 



� Maintenance programmers to repair errors. 

� Supervisors, project leaders, and managers to coordinate the jobs with the users. 

 

Thus, the basic problem is to match the demands for service with the available 

resources. How much one project is favored over another depends on technical, 

behavioral, and economic factors.  

 

 The technical factor involves the system department’s ability to handle a project. 

Much depends on the availability of qualified analysts, designers, and software specialists 

to do the work. This is especially true in designing databases and implementing complex 

systems for large concerns. The alternative to abandoning a project because of limited 

talent on the inside is free – lancing it to an outside consulting firm. The cost of 

developing the project has to be weighed against the total benefits expected.  

 

 The behavioral factor involves (1) the user’s past experience with an existing 

system (2) the success record of the analyst, and (3) the influence the user can exert on 

upper management to finance a candidate system. Political considerations that 

subjectively favor one project over another, the status of the department, and its 

performance record are additional factors that bear on funding a candidate system.  

 

 Perhaps the most important criterion in selecting a project is the economic factor. 

It focuses on the system’s potential return on investment. What is considered an 

acceptable rate varies with different formulas, the variables chosen, and the like. System 

consultants suggest an annual rate of return of just over 20 percent.  

 

 2.3.1 Political considerations 

 In conjunction with the preceding considerations is the political factor, which is 

partly behavioral. Imagine this setting: managers in a production firm are considering two 

office automation proposals: proposal A – a teleconferencing system designed to reduce 

travels costs, and proposal B- a sales support system. Proposal B (poorly presented and 



justified) was sponsored by an influential executive and had the support of the committee. 

It passed because the right people were convinced it should.  

 

 Politics is the art of using influence and building coalitions when routine 

procedures do not achieve the right results. When system projects are developed, a 

collaborative relationship with the end user is helpful. A user who participated in building 

a system rarely criticizes it. If such a participative relationship comes too late, resistance 

can crop up and politics comes into play. The trick is to anticipate resistance early and 

turn it into support. 

 

 2.4 Planing and control for system success 

 What can the analyst do to ensure the success of a system? First, a plan must be 

devised, detailing the procedure, some methodology, activities, resources, costs, and 

timetable for completing the system. Second, in larger projects, a project team must be 

formed of analysts, programmers, a system consultant, and user representatives. Shared 

knowledge, interaction, and the coordination realized through team effort can be 

extremely effective in contrast with individual analysts doing the same work. Finally, the 

project should be divided into manageable modules to reflect the phases of system 

development – analysis, design, and implementation.  

 

 Most of this work falls under project management and control. The main idea 

behind the system development life cycle is to formalize a means structured at three 

major levels for effective control of the project. At the lowest level, work assignments are 

broken down into small manageable tasks. A task is usually a well – defined, structured 

work unit that can be carried out by one individual. The task can be easily budgeted and 

scheduled and its quality measured. It can be easily completed independent of other tasks 

and other project team members. If rework is necessary, there is minimal loss or impact 

on other tasks, except where time is critical. 

 



 The second level at which work units are structured involves activities that have 

larger scope and are designed to produce substantial results. An activity is a group of 

logically related tasks that serve one phase of the system development life cycle. 

 

 A phase, a third level of control, is a set of activities that bring the project to a 

critical milestone. Milestones are steppingstones that make up the entire project. 

 In planning a project, the following steps should be taken: 

1. Identify the activities in each phase and the tasks within each activity.  

2. Calculate the budget for each phase and obtain agreement to proceed.  

3. Review, record, and summarize progress on activities periodically.  

4. Prepare a project progress report at the end of a reporting month.  

 

In summary, system development should not be regarded merely as some 

procedure that deals with hardware and software. The original assumptions upon which 

system specifications were based should be tested and re-evaluated with the user in mind. 

Managing system projects includes the important responsibility of seeing to it that all 

features of the candidate system – technological, logical, and behavioural – are 

considered before implementation and maintenance. 

2.6 Summary: 

 System analysis and design are keyed to the system development life 

cycle(SDLC). The stages are project selection, feasibility, analysis, Design, 

implementation, and post implementation stages. t he idea for the project is originates in 

the environment or from within the organization. Once the problem is verified an initial 

investigation is conducted to determines whether change is feasible. If the answer is yes, 

a feasibility study is conducted. Analysis is a detailed study of the various operation 

performed by a system. System design refer to the technical specifications that will be 

applied in implementing the candidate system. Implementation is concerned with details  

of the candidate system. After implementation, maintenance begins includes 

enhancements, modifications, or any changes from the original specifications. To ensure 

the success of the system, careful and often extensive planning is required. The overall 

management process is crucial to the successful completion of system. 



2.7 Questions: 

1. Why is a system proposal so crucial for system design. 

2. What is System Development Life Cycle. 

3. What is the difference between analysis and design. Explain. 

4. How would an analysis determine the users’ needs for a system. Explain. 

5. Distinguish between initial investigation and feasibility study. In what way are they 

related.6. How does system design simplify implementation. 

7. What is testing. 

8. How is testing different from evaluation. 

9. There are several considerations in deciding on a candidate system. What are they. 
Why are they important. 



 
 

3.0 Objectives: 

3.1 Introduction 

 3.2 Sources of project requests  

   3.2.1 Department Managers 
3.2.2 Senior Executives 
3.2.3 Systems analysts 
3.2.4 Outside Groups 

 3.3 Determining the user’s Information Requirements 

 3.4 Strategies for Determining Information Requirements 

3.5 Getting Information from the Existing Information System 

3.6 Prototyping 

 3.7 Managing Project Review and Selection 
3.7.1 Steering committee method 
3.7.2 Information System Committee Method. 
3.7.3 User-group committee method 
3.7.4 Other methods 

 3.8 Preliminary investigation 

3.8.1 Scope of study 

 3.9 Conducting the Investigation 

             3.9.1 Reviewing Organization Documents 

            3.9.2 Conducting Interviews 

 3.10 Testing Project Feasibility 

           3.10.1 Operational Feasibility 

           3.10.2 Technical Feasibility 

            3.10.3  Financial and Economic Feasibility 

 3.11  Handling Infeasible Projects 

3.12 Summary  

3.13 Questions 

 

Lesson No: 3                       Lesson Name :  Project Selection 

 
Author : Dr. Jawahar         Vetter:   Dr. Pradeep K. Bhatia    



 

3.0 Objectives: 

• How the project selection will be done initially  

• What are the different sources of the project request within and outside  the 

organizarion 

• How the user information is gathered and what are the various strategies to gather 

that information  

• How the information is gathered from the existing system 

• How the project selection and reviewing will be done by different committee 

• How preliminary investigation and interview will be conducted 

• How the different types of feasibility will be done 

 

3.1 Introduction: 

 The first step in the system development life cycle is the identification of a need. 

This is a user’s request to change, improve or enhance an existing system. Because there 

is likely to be a stream of such requests, standard procedures must be established to deal 

with them. The objective of project selection is to determine whether the request is valid 

and feasible before a recommendation is reached to do nothing, improve or modify the 

existing system or build a new one.  

 

 The user’s request form should specify the following: 

1. User – assigned title of work requested. 

2. Nature of work requested 

3. Problem definition 

4. Date request was submitted  

5. Date job should be completed 

6. Job objectives – purpose of job requested  

7. Expected benefits to be derived from proposed change  

8. Input / output description – quantity and frequency of inputs and outputs of 

proposed change.  

9. Requester’s signature, title, department etc. 



10. Signature, title, department etc, of person approving the request. 

The user request identifies the need for change and authorizes the initial investigation. It 

may undergo several modifications before it becomes final. The success of a system 

depends largely on how accurately a problem is defined. The user’s request must be 

communicated if the organization’s personnel and other resources are to be successfully 

mobilized to build and maintain a viable information system plan.  

 

 3.2 Sources of project requests  

There are four primary sources of project requests. The requesters inside the 

organization are department managers, senior executives, and systems analysts. In 

addition, government agencies outside the organization may request information systems 

projects. Depending on the origin of the request and the reason for it, requesters may seek 

either completely new applications or changes in existing ones. 

 

 3.2.1 Department Managers 

 Frequently, persons who deal with day-to-day business activities, whether 

employees or managers, are looking for assistance within their departments. For example, 

a business manager in a large medical clinic supervises the preparation of patient claim 

forms submitted to insurance companies, which reimburse the clinic for medical care. 

Even though the business manager knows that preparing insurance claims is necessary to 

aid the patient and ensure that the clinic is reimbursed, he or she may be dissatisfied with 

the amount of time the staff devotes to the task, especially when much insurance 

information (such as patient name, address, age, and the name of the attending physician) 

is already available in the patient’s records. Pointing out the duplication of work, the 

bookkeepers express their desire to be free of the clerical tasks involved in processing 

claims.  

 

 After discussing the insurance problem with administrators in other clinics, the 

business manager asks the clinic’s management com-preparing insurance forms and 

maintaining patient records about insurance payments.  

 



This example is typical of cases where managers ask for systems projects. An 

ongoing activity needs improvement, either to solve a problem (for example, too many 

errors, excessive costs, or inconsistent work) or to improve the efficiency of job.  

 

The department manager requesting a systems project many not consider the 

interaction between departments, even though the potential for such interaction can be 

high. For example, the manager who requests an inventory forecasting system for 

ordering materials and supplies may be looking primarily at ways to eliminate out – of – 

stock conditions. The request may not discuss the implications in other areas, such as 

fewer production problems due to material shortages, lower carrying costs for materials 

stored, or better process through quantity purchasing. Yet, on an organization – wide 

basis, these may be even more important reasons to consider the project. The point here is 

that project requests submitted by department managers seeking specific operating 

assistance may actually have wider implications that can affect other departments.  

 

 3.2.2 Senior Executives 

 Senior executives, such as presidents, board chairpersons, and vice presidents, 

usually have information about the organization that is not available to department 

managers. That information, coupled with the broader responsibilities these executives 

assume (they manage entire organizations rather than individual departments), influences 

the systems project requests they make. For example, the vice-president for 

manufacturing who knows that an additional production planning system one that will 

enable management to plan manufacturing at both plants at the same time. This project 

spans several departments (including manufacturing inventory control and purchasing) at 

two locations and involves many other managers. 

 

 The project requests submitted by senior executives are generally broader in 

scope than those prepared by department managers. Consider how many departments and 

divisions of an organization are included within the scope of a system request to design 

and implement a new corporate – wide budget system or a financial planning model. 



Such projects tend to cut across more of the organization than does an inventory control 

system. 

 

 Multi-department projects are also more difficult to manage and control, however, 

departmental projects, in contrast, are more likely to be successful, especially if the actual 

users take an active role early in the project.  

 

 3.2.3 Systems analysts 

 Sometimes systems analysts see areas where projects should be developed and 

either write a systems proposal themselves or encourage a manager to allow the writing 

of a proposal on their behalf. For instance, an analyst who sees that a university’s course 

– registration procedure is slow, error-prone, and generally inefficient may prepare a 

project proposal for a new registration system. The request prescribes the development of 

a system that takes advantage of new easy – to – use data entry terminals to speed 

registration.  

 

 Normally, department managers prepare proposals for operating systems, such as 

those for course registration. However, in this case the analyst has information about new 

equipment and technology that makes a more efficient registration system possible. The 

department manager, who is not responsible for researching computer technology, may 

not take the initiative for developing a systems proposal to facilitate registration 

procedures.  

 

 Do not forget that system analysts and developers can also be users themselves. 

Project management systems, file-monitoring packages, or programming library projects 

are typical of the application projects that systems personnel might request.  

 

 3.2.4 Outside Groups 

 Developments outside the organization also lead to project requests. For example, 

government contractors are required to use special cost accounting systems with 

government – stipulated features. The internal Revenue Service requires organizations to 



keep careful payroll records and to account for employee income tax withheld. The 

internal Revenue Service also specifies the format for many of the tax documents that 

must be prepared; the employer has  no choice in the matter. 

 

 Quite often, new demands from external groups bring about project requests, 

either for new systems or changes in current ones. Projects originating from this source 

are just as important as those from within the organization. Ins some cases, such as when 

there are strict deadlines imposed by the outside agency, these projects take on a higher 

priority than ones from, say, department managers.  

 

 3.3 Determining the user’s Information Requirements 

Shared, complete and accurate information requirements are essential in building 

computer – based information systems. Unfortunately, determining the information each 

user needs is particularly difficult task. In fact, it is recognized as one of the most difficult 

tasks in system development. The Association for Computing Machinery (ACM) 

Curriculum Committee on Computing Education for Management recognized this by 

suggesting two distinct job titles for systems developments: “ information analyst” and “ 

systems designer” rather than the more general term “ systems analyst”. The information 

analyst determines the needs of the user and the information flow that will satisfy those 

needs. The usual approach is to ask the user what information is currently available and 

what other information is required. Interaction between the analyst and the user usually 

leads to an agreement about what information will be provided by the candidate system. 

There are several reasons why it is difficult to determine user requirements: 

1. Systems requirements change and user requirements must be modified to 

account for those these changes. 

2. The articulation of requirements is difficult, except for experienced users. 

Functions and processes are not easily described. 

3. Heavy user involvement and motivation are difficult. Reinforcement for their 

work is usually not realized until the implementation phase – too long to wait. 



4. The pattern of interaction between users and analysts in designing information 

requirements is complex. 

Users and analysts traditionally do not share a common orientation toward 

problem definition. For example, in the analyst’s view the problem definition must be 

translatable into a system design expressed quantitatively in terms of outputs, inputs, 

processes and data structures. This is the best of situations, and within time constraints. In 

contrast, the user seems to be satisfied with a qualitative definition that specifies the 

system in generalities. Flexibility is a key consideration. System specifications must 

change with their needs, as must the system after implementation. 

Based on these contrasting views, users who try to define their information 

requirements with the analyst’s views find themselves in a predicament. According to 

Scharer, they defend themselves by producing strategies that will satisfy the analyst. 

1. In the kitchen sink strategy the user throws everything into the -

requirement definition- overstatement of needs such as an overabundance of reports, 

exception processing and the like. This approach usually reflects the user’s lack of 

experience in the area. 

2. The smoking strategy sets up a smoke screen by requesting several 

system features when only one or two are needed. The extra requests are used as 

bargaining power. This strategy usually reflects the user’s experience in knowing 

what he/ she wants. Requests have to be reduced to one that is realistic, manageable, 

and achievable. 

3. The same thing strategy indicates the user’s laziness, lack of 

knowledge, or both. “Give me the same thing but in a better format through the 

computer” is a typical statement. Here the analyst has little chance of succeeding 

because only the usr can fully discover the real needs and problems. 

 3.4 Strategies for Determining Information Requirements 

There are three key strategies or general approaches for eliciting information 

regarding the user’s requirements: (1) asking, (2) getting information form the existing 

information system, and prototyping. 



Asking: This strategy obtains information from users by simply asking them about the 

requirements. It assumes a stable system where users are well informed and can 

overcome biases in defining their problems. There are three key asking methods: 

1. Questions may be open-ended or closed. An open-ended question 

allows the respondent to formulate a response. It is used when feeling or opinions are 

important. For example, “How do you evaluate the latest addition to your hardware?” 

In contrast, a closed question requests one answer from a specific set or responses. It 

is used when factual responses are known. For example, “How long have you been 

manager of the computer centre?”  

2. Brainstorming is a technique used for generating new ideas and 

obtaining general information requirements. This method is approach to 

brainstorming asks each participant to define ideal solutions and then select the best 

feasible one. It works well for users who have system knowledge but have difficulty 

accepting new ideas. 

3. Group consensus asks participants for their expectations regarding 

specific variables. In a Delphi inquiry, for example, each participant fills out a 

questionnaire. The results are  

summarized and given to participants along with a follow- up questionnaire. Participants 

are invite to change their responses. The results are again summarized and fed back to the 

participants. This debate by questionnaire continues until participants’ responses have 

converged enough. This method is an advantage over brainstorming in that participants 

are not subjected to psychological pressure from others with presumed authority or 

influence. 

 

3.5 Getting Information from the Existing Information System. 

 Determining information from an existing application has been called the data 

analysis approach. It simply asks the user what information is currently received and 

what other information is required. It relies heavily on the user to articulate information 

needs. The analyst examines all reports, discusses with the user each piece of information 



examined, and determines unfulfilled information needs by interviewing the user. The 

analyst is primarily involved in improving the existing flow of data to the user. In 

contrast to this method is decision analysis. This breaks down a problem into parts, which 

allows the user to focus separately on the critical issues. It also determines policy and 

organizational objectives relevant to the decision areas identified and the specific steps 

required to complete each major decision. Then the analyst and the user refine the 

decision process and the information requirements for a final statement of information 

requirements. 

The data analysis method is ideal for making structured decisions, although it 

requires that users articulate their information requirements. A major drawback is a lack 

of established rules for obtaining and validating information needs that are not linked to 

organizational objectives. 

In the decision analysis method, information needs are clearly linked to decision 

and organizational objectives. It is useful for unstructured decisions and information 

tailored to the user’s decision-making style. The major drawback, though, is that 

information requirements may change when the user is promoted or replaced. 

3.6 Prototyping:  

The third strategy for determining user information requirements is used when the 

user cannot establish information needs accurately before the information system is built. 

The reason could be the lack of an existing model n which to base requirements or a 

difficulty in visualizing candidate systems. In this case, the user needs to anchor on real- 

life systems from which adjustments can be made. Therefore, the iterative discovery 

approach captures an initial set of information requirements and builds a system to meet 

these requirements. As user gain experience in its use, they request additional 

requirements or modifications (iterations), in the system in essence, information 

requirements are discovered by using the system. Prototyping is suitable in environments 

where it is difficult to formulate a concrete model for defining information requirements 

and where the information needs of the usr are evolving, such as in DSS. 

Which of the three strategies is selected depends on uncertainties in the process of 

determining information requirements – that is, uncertainly with respect to the stability of 



information requirements, the user’s ability to articulate information requirements, and 

the ability of the analyst to elicit requirements and evaluate their accuracy. Thus, the 

asking strategy is appropriate for low- uncertainty information requirements 

determinations, whereas the prototyping strategy is appropriate for high uncertainty 

information requirements determination 

 

 3.7 Managing Project Review and Selection 

 Many more request for systems development are generated than most firms can 

pursue. Someone must decide which requests to pursue and which to reject (or perhaps 

solve by other means). The decision to accept or reject a request can be made in a number 

of different ways and by various members of the organization. The systems analysts are 

not the final arbiters.  

 

 One of the more common methods or reviewing and selecting projects for 

development is by committee. 

 

 3.7.1 Steering committee method 

 In many organizations, steering (also called operating committees, operating 

councils, or project selection boards) supervise the review of project proposal. The 

steering committee typically consists of key managers from various departments of the 

organization, as well as members of the information systems group. However, systems 

specialists do not dominate the committee. The information systems steering committee 

referred to in “The Good Old Days of Information Systems” at the beginning of this 

chapter included only two information systems specialists among its ten members. A 

typical seven to ten – person committee would consist of the following membership: 

1. Upper – management members: 

Executive Vice president  

Vice President for manufacturing  

2. Departmental management: 

Manager of retail marketing 

Credit manager 



 



3. Technical managers: 

Manager of research and development  

Quality control coordinator 

4. Information system group: 

Data processing manager  

Senior systems analyst 

 

 The committee receives proposals and evaluated them. The major responsibility 

of the committee is to make a decision, which often requires more information than the 

proposal provides, therefore, a preliminary investigation, is often requested to gather 

those details.  

 

 The steering – committee method brings high respectability and visibility to the 

review of project proposals. The committee consists of managers with the responsibility 

and the authority to decide which projects are in the best interest of the entire firm. 

Because several levels of management are included on the committee, members can have 

informed discussions on matters relating to day – to – day operations (treating patients, 

ordering materials, or hiring staff members) and long – range plans (new facilities, new 

programs) that many have a bearing on the project request. The managers provide 

practical information and insight about operations and long – term development. Systems 

specialists on the committee provide technical and developmental information that is 

useful in reaching decisions about project management. 

 

 The steering committee approach is often favored because systems projects are 

business investments. Management, not systems analysts or designers, selects projects for 

development, decisions are made on the basis of the cost of the project, its benefit to the 

organization, and the feasibility of accomplishing the development within the limits of 

information systems technology in the organization.  

 

 This is the method used by Peter Wallington’s employer in “The Good Old Days 

of Information systems”. 



 

3.7.2 Information System Committee Method. 

 In some organizations, the responsibility for reviewing project requests is 

assigned to a committee of managers and analysts in the information systems department. 

Under this method, all request for service and development are submitted directly to a 

review committee within the information systems department. The information system 

committee approved or disapproved projects and sets priorities, indicating which projects 

are most important and should receive immediate attention. 

 

 This method can be used when many requests are for routine service or 

maintenance on existing applications. For these projects, information systems staff 

members can offer good insight into project requirements. In addition, by working with 

other projects (and by coordinating their efforts with the organization’s business planning 

committee) systems developers can have access to information about where the firm is 

moving overall – an important consideration for effective project selection.  

 

 Sometimes, such as when major equipment decision must be made or when long – 

term development commitment are needed to undertake a project, the decision authority 

is shared with senior executives who determine whether a project should proceed. 

However, sharing project decision authority may confuse users who want to know how 

the committee will make the decision about a request. In addition, if top managers and 

systems- committee members disagree about the merit or priority of a request, the 

potential for conflict can disrupt the handling of future project proposals. In still other 

cases, users may attempt to submit a request directly to senior executives after it has been 

disapproved by the information systems committee. If upper management approves the 

request, the authority of the information systems committee is undermined. 

 

 3.7.3 User-group committee method  

 In some organizations, the responsibility for project decisions is delegated to the 

user themselves. Individual department or divisions hire their own analysts and designers, 

who handle project selection and carry out development. In effect, departments form their 



own selection committees – user – group committees – controlling what is developed and 

when it is implemented. 

 

 Although the practice of having user committees both choose and develop 

systems does take some of the burden from the systems development group, it can have 

disadvantages for the users. For example, a number of small departments working 

independently toward the same goal could unknowingly waste resources and miss the 

opportunity to coordinate planning of a shared and integrated information system that 

could benefit the entire firm. A company’s computer facilities can be unduly strained if 

the systems development team is not made aware of the future demands on the facilities 

that are being planned throughout the firm some user groups may find are being planned 

throughout the firm. Some user groups may find themselves with defective or poorly 

designed systems that require additional time and effort to undo any damage caused by 

the misinformation that such systems could generate. Although users groups may find the 

decision of steering committees and information systems committees disappointing at 

times, the success rate for who take on the development job is not very encouraging.  

 

 Membership often rotates under each of these committee formats, with 

individuals serving for, say six – or twelve – month periods. Membership changes are 

staggered to avoid changing the entire membership at one time. The chairperson of each 

committee should have experience in serving as a committee member and in reviewing 

systems proposals and making decisions about project requests. 

 

 3.7.4 Other methods 

 Other approaches are also tried from time to time, although usually with much 

less success than the methods already discussed. Some organization have management 

planning committees that propose new projects, which are in turn evaluated by the 

systems department staff members. This method suffers form lack of user involvement, 

as well as limited insight into technology. 

 



 In still other cases, department managers are able to bypass the organizations 

information systems departments to contract with independent systems companies, which 

handle all analysis and design work for projects. A disadvantage of this approach is the 

possibility that a department can sponsor the development of a system while the 

information system group or upper management is completely unaware that a project is in 

the making.  

 

 3.8 Preliminary investigation 

 Whether a system will be developed by means of the systems development life 

cycle method (SDLC) prototyping strategy, or the structured analysis method, or a 

combination of these methods, a project request should first be reviewed. The choice of 

development strategy is secondary to whether a request merits the investment of 

organization’s resources in an information system project. 

 

 It is advisable for all proposals to be submitted to the selection committee for 

evaluation to identify those projects that are most beneficial to the organization. The 

preliminary investigation is then carried out by systems analysts, working under the 

direction of the selection committee. 

  

 3.8.1 Scope of study 

 The purpose of the preliminary investigation is to evaluate project requests. It is 

not a design study, nor does it include the collection of details to completely describe the 

business system. Rather, it is the collecting of information that permits committee 

members to evaluate the merits of the project request and make an informed judgement 

about the feasibility of the proposed project.  

 

 Analysts working on the preliminary investigation should accomplish the 

following objectives: 

 



1. Clarify and understand the project request. What is being done? What is required? 

Why? Is there an underlying reason different form the one the requester 

identifies? 

Example: The user justifies a request for developing an accounts receivable 

system on the basis of wanting faster processing. However, the preliminary 

investigation may reveal that the need for better control of cash handling 

outweighs the need for sped. Lost checks, not speed of processing, are the real 

problem, but the requester has not described this specific need clearly. 

2. Determine the size of the project. 

Example: Does a request for a course-registration project call for new 

development or for modification of the existing system? The investigation to 

answer this question will also gather the details useful in estimating the project. 

Since many enhancements of existing systems are costly, they are treated in the 

same way as new projects by the project selection committee. 

3. Assess costs and benefits of alternative approaches. 

Example: What are the estimated costs for developing a patient information 

system, as requested by the hospital’s chief of staff? What expenses will be 

incurred to train medical and nursing personnel and install the system? Will the 

proposed system reduce operating costs? Is it likely that the cost of errors will 

decrease? 

4. Determine the technical and operational feasibility of alternative approaches. 

Example: Does the necessary technology to link office word processing systems 

to the main computer exist or can it be acquired? How workable is the request to 

enable administrative assistants to retrieve sales information form the main 

system and insert it directly into typewritten reports prepared on a word 

processor? 

5. Report the findings to management, with recommendations outlining the 

acceptance or rejection of the proposal. 

Example: A proposal for the installation of an order entry system should be 

modified to allow all salespersons to submit their orders through ordinary 

telephone connections directly into the computer. The modification will improve 



the usefulness of the system and increase the financial benefits to the 

organization. 

  

 3.9 Conducting the Investigation 

The data that the analysts collect during preliminary investigations are gathered 

through two primary methods: reviewing documents and interviewing selected company 

personnel. 

  

 3.9.1 Reviewing Organization Documents 

The analysts conducting the investigation first learn about the organization 

involved in, or affected by, the project. For example, to review an inventory systems 

proposal means knowing first how the inventory department operates and who the 

managers and supervisors are Analysts can usually learn these details by examining 

organization charts  and studying written operating procedures. The procedures describe 

how the inventory process should operate and identify the most important steps involved 

in receiving, managing, and dispensing stock. 

  

 3.9.2 Conducting Interviews 

Written documents tell the analysts how the systems should operate, but they may 

not include enough detail to allow a decision to be made about the merits of a systems 

proposal, nor do they present user views about current operations. To learn these details, 

analysts use interviews.  

 

Interviews allow analysts to learn more about the nature of the project request and 

the reason for submitting it. To accomplish the purpose of the interviews, analysts must 

be sure to emphasize the request and the problem it addresses. In other words, interviews 

should  

provide details that further explain the project and show whether assistance is merited 

economically, operationally, and technically. Working out a solution to the situation 

comes later, during the detailed investigation. 

 



Usually, preliminary investigation interviews involve only management and 

supervisory personnel. 

  

 3.10 Testing Project Feasibility 

Preliminary investigations examine project feasibility, the likelihood the system 

will be useful to the organization. Three tests of feasibility-all equally important-are 

studied: operational, technical and financial. 

  

 3.10.1 Operational Feasibility 

Proposed projects are beneficial only if they can be turned into information 

systems that will meet the organization’s operating requirements. Simply stated, this test 

of feasibility asks if the system will work when it is developed and installed. Are there 

major barriers to implementation? Here are questions that will help test the operational 

feasibility of project: 

 

• Is there sufficient support for the project from management? From users? If the 

current system is well liked and used to the extent that persons will not be able to 

see reasons for a change, there may be resistance. 

• Are current business methods acceptable to the users? If they are not, users may 

welcome a change that will bring about a more operational and useful system. 

• Have the users been involved in the planning and development of the project? 

Early involvement reduces the chances of resistance to the system and change in 

general and increases the likelihood of successful projects. 

• Will the proposed system cause harm? Will it produce poorer result in any respect 

or area? Will loss of control result in any    area? Will accessibility of information 

be lost? Will individual performance be poorer after implementation than before? 

Will customers be affected in an undesirable way? Will the system slow 

performance in any areas? 

 



Issues that appear to be relatively minor in the beginning have ways of growing 

into major problems after implementation. Therefore, all operational aspects must be 

considered carefully. 

  

 3.10.2 Technical Feasibility 

The technical issues usually raised during the feasibility stage of the investigation 

include these: 

1. Does the necessary technology exist to do what is suggested (and can it be 

acquired)? 

2. Does the proposed equipment have the technical capacity to hold the data required 

to use the new system? 

3. Will the proposed system provide adequate responses to inquiries, regardless of 

the number or location of users? 

4. Can the system be expanded if developed? 

5. Are there technical guarantees of accuracy, reliability, ease of access, and data 

security? 

For example, if the proposal includes a printer that prints at the rate of 15,000 

lines per minute, a brief search shows that this  



specification is technically feasible. (Whether it should be included in the 

configuration is an economic decision.)On the other hand, if a user is requesting 

voice input to write, read, and change stored data, the proposal may not be 

technically feasible. 

 

 3.10.3 Financial and Economic Feasibility 

 A system that can be developed technically and that will be used installed 

must still be a good investment for the organization. Financial benefits must equal or 

exceed the costs. The financial and economic questions raised by analysts during he 

preliminary investigation are for the purpose of estimating the following: 

1. The cost to conduct a full systems investigation 

2. The cost of hardware and software for the class of application being 

considered. 

3. The cost nothing  changes (i.e., the proposed system is not developed  

 

To be judged feasible, a project proposal must passed all these tests. Otherwise, it 

is not a feasible project. For example, a personnel record feasible if the necessary 

technology does not exit. A medical system that can be developed at reasonable costs but 

that nurses will avoid using cannot be judged operationally feasible. 

 

 3.11 Handling Infeasible Projects 

 Not all projects submitted for evaluation and review are judged acceptable. 

Requests that fail to pass feasibility tests are not pursued further, unless they are 

reworked and resubmitted as new proposals. In some cases, only part of a project is 

actually unworkable, and the selection committee may decide to combine the workable 

part of the project with another feasible proposal. 

 

 In still other cases, preliminary investigations produce enough new information to 

suggest that improvements in management and supervision, not the development of 

information systems, are the actual solutions to reported problems.  

3.12 Summary:  



 The first step in the system development life cycle is the identification of a need. 

This is a user’s request to change, improve or enhance an existing system. Because there 

is likely to be a stream of such requests, standard procedures must be established to deal 

with them. The objective of project selection is to determine whether the request is valid 

and feasible before a recommendation is reached to do nothing, improve or modify the 

existing system or build a new one. There are four primary sources of project requests. 

The requesters inside the organization are department managers, senior executives, and 

systems analysts. Shared, complete and accurate information requirements are essential in 

building computer – based information systems. The Association for Computing 

Machinery (ACM) Curriculum Committee on Computing Education for Management 

recognized this by suggesting two distinct job titles for systems developments: “ 

information analyst” and “ systems designer” rather than the more general term “ systems 

analyst”. There are three key strategies or general approaches for eliciting information 

regarding the user’s requirements: (1) asking, (2) getting information form the existing 

information system, and prototyping. The third strategy for determining user information 

requirements is used when the user cannot establish information needs accurately before 

the information system is built. Managing Project Review and Selection will be done by 

different methods such as Steering committee method, Information System Committee 

Method,  User-group committee method and others method. The data that the analysts 

collect during preliminary investigations are gathered through two primary methods: 

reviewing documents and interviewing selected company personnel. Preliminary 

investigations examine project feasibility, the likelihood the system will be useful to the 

organization. Three tests of feasibility-all equally important-are studied: operational, 

technical and financial. Not all projects submitted for evaluation and review are judged 

acceptable. 

 

 

 

 

3.13 Questions: 

1. Explain closed questions and open-ended questions with examples. 



2.What planning dimensions determine information system development? Elaborate. 

3. Why is it difficult to determine user requirements. 

4. What is the purpose of preliminary investigation. 

5. What is an infeasible project and how are they handled. 

 



CHAPTER 4 

 

 

4.0 Objectives: 

4.1 Introduction 

 4.2 System Performance Definition 

 4.2.1 Statement of constraints  

 4.2.2 Identification of specific System Objectives  

 4.2.3 Description of output 

4.3 Feasibility Study 

  4.3.1 Feasibility Considerations 

4.3.2 Economic Feasibility 

4.3.3 Technical Feasibility 

4.3.4 Behavioral Feasibility 

4.4 Steps in Feasibility Analysis 

4.5 Summary  

4.6 Questions 

 

4.0 Objectives: 

• How the project selection will be conducted 

• What are the various steps involves in defining system performance 

• What are the key considerations are involved in feasibility analysis 

• How to conduct the feasibility study  

 

Lesson No: 4                       Lesson Name :  Feasibility Study 

 
Author : Dr. Jawahar         Vetter:      Prof. Dharminder Kumar 



 

 

4.1 Introduction: - 

The project selection phase is over resulting in completion of various activities: 

� Recognition of need.  

� Determination of user requirements. 

� An initial investigation. 

� Verification of objectives, constraints, required outputs & 

required inputs.  

The next step is to determine exactly what the candidate system is to do by 

defining its expected performance. Thus, a feasibility study is carried out to select the 

best system that meets performance requirements. It comprises of identification, 

description & evaluation of candidate system and finally selection of the best system for 

the job. The feasibility study recommends to the management either the most effective 

system or concludes that the system may not be evolved. 

 4.2 System Performance Definition 

A system’s required performance be defined by describing its output in a user-

acceptable format and at a higher level of detail than what was described in the initial 

investigation. This involves three steps: 

1. Statement of constraints.  

2. Identification of specific system objectives. 

3. Description of outputs. 

This phase builds on the previous phase in that much of the work may already 

have been done. 

 4.2.1 Statement of constraints  

Constraints are factors that limit the solution of the problem. Some constraints are 

identified during the initial investigation and are discussed with the user. There are 



general constraints that might have a bearing on the required performance of a candidate 

system. Let’s consider safe deposit billing system to illustrate these points. The current 

billing system and the department handling billing and customer payments face problems. 

The result of the fact-finding phase of the initial investigation revealed the following 

general constraints: 

1. The president views safe deposit billing as a low priority. He has a false 

impression that computers are not needed as long as customers can have access to their 

boxes. 

2. The senior vice president is worried that a billing system might require the 

transfer of safe deposit staff to other departments. Considering Florida’s level of 

unemployment and the cost of retraining, a candidate system has to do more than produce 

reports. 

3. The accounting department has been pushing for installing a computer-based 

general ledger application for months. The vice president of operations, bogged down 

with auditing and operations problems, continued to shelve the request. 

4. Management has a limited knowledge of computers, although it has several 

applications on the computer: checking and savings, installment loans, commercial loans 

and trusts. The president, in his early sixties and interested in “the bottom line” of the 

financial statement, is traditionally reluctant to spend money on computers.  

5. Safe deposit, while doing better than breaking even, is not projected to grow as 

fast as it did in the early 1980s. The community’s recent success in controlling burglaries 

had an adverse impact on the demand for box rentals in general. 

6. If an online system is to be installed, it must interface with the existing 

checking/savings application to allow for the automatic payment of box rentals.  

7. A proposed design must be compatible with the bank’s Burroughs computer 

system. 

 4.2.2 Identification of specific System Objectives  

 Once the constraints are spelled out, the analyst proceeds to identify the system’s 

specific performance objectives. They are derived from the general objectives specified 



in the project directive at the end of the initial investigation. The steps are to state the 

system’s benefits and then translate them into measurable objectives. In our scenario, the 

candidate system’s anticipated benefits are as follows: 

1. Improved collection schedule. 

2. Cost reduction.  

3. Physical space reduction. 

4. Improved customer service. 

Each benefit is analyzed and translated into measurable objectives.  

1. Collection is improved by billing 30 days in advance of the box renewal data, and 

one more notice is sent within two weeks. It also improves the account receivables 

payment “float.” 

2. Cost reduction is realized by reducing the payroll by two employees. The new 

online billing system requires less than two hours of labor per day, compared with six 

hours under the current system. 

3. Placing the microcomputer in the place of one of the four existing desks reduces 

physical space requirements. The remaining desks are removed, allowing an extra cubicle 

for customer use.  

4. Placing master cards and rental information online improve customer service, thus 

reducing the waiting time of entry from 3 minutes to 30 seconds. 

These objectives are effective in comparing the performance of the candidate 

system with that of the current system. The information – oriented flowchart, input/output 

analysis sheet and data flow diagram produced in the initial investigation lead to the 

conclusions that (1) the current system is inefficient and (2) a new online, terminal –

oriented system would be the solution. This conclusion was reflected in the general 

project directive submitted to the user for approval. This information is used as a basis for 

preparing specific objectives for the candidate system: 

1. To establish a billing system with six five-day cycles per month.  



2. To mail customers no later than the close of the billing cycle and no later than 25 

days prior to the box renewal date. 

3. To mail customers a reminder two weeks after the initial statement for box 

renewal. 

4. To speed collections and reduce the “float” by 40 percent. 

5. To examine the availability of boxes by size, rental fees and location.  

6. To evaluate the ratio of rented to available boxes at all times.  

7. To produce periodic reports to management on the performance of the safe 

deposit department. 



 4.2.3 Description of output  

A final step in system performance definition is describing the output required by 

the user. An actual sketch of the format and contents of the reports (layout) as well as a 

specification of the media used, their frequency and the size and number of copies 

required are prepared at this point. Specifying exactly what the output will look like leads 

to an estimate of the computer storage requirements that form the basis for the file design 

to be undertaken in the design phase of the life cycle. The analyst is now ready to 

evaluate the feasibility of candidate systems to produce these outputs. 

 4.3 Feasibility Study  

Many feasibility studies are disillusioning for both users and analysts. First, the 

study often presupposes that when the feasibility document is being prepared, the analyst 

is in a position to evaluate solutions. Second most studies tend to overlook the confusion 

inherent in system development-the constraints and the assumed attitudes. If the 

feasibility study is to serve as decision document it must answer three key questions: 

1. Is there a new and better way to do the job that will benefit the user? 

2. What are the costs and savings of the alternative (s)? 

3. What is recommended? 

The most successful system projects are not necessarily the biggest or most 

visible in a business but rather those that truly meets user expectations. More projects fail 

because of inflated expectations than for any other reason. 

4.3.1 Feasibility Considerations 

Three key considerations are involved in the feasibility analysis: economic, 

technical and behavioral. Let’s briefly review each consideration and how it relates to the 

systems effort. 

 4.3.2 Economic Feasibility  

Economic analysis is the most frequently used method for evaluating the 

effectiveness of a candidate system. More commonly known as cost/benefit analysis, the 

procedure is to determine the benefits and savings that are expected from a candidate 



system and compare them with costs. If benefits outweigh costs, then the decision is 

made to design and implement the system. Otherwise, further justification or alterations 

in the proposed system will have to be made if it is to have a chance of being approved. 

This is an ongoing effort that improves in accuracy at each phase of the system life cycle.  

4.3.3 Technical Feasibility  

Technical feasibility centers around the existing computer system (hardware, 

software, etc.) and to what extent it can support the proposed addition. For example, if 

the current computer is operating at 80 percent capacity-an arbitrary ceiling- then running 

another application could overload the system or require additional hardware. This 

involves financial considerations to accommodate technical enhancements. If the budget 

is a serious constraint, then the project is judged not feasible. 

4.3.4 Behavioral Feasibility  

People are inherently resistant to change, and computers have been known to 

facilitate change. An estimate should be made of how strong a reaction the user staff is 

likely to have toward the development of a computerized system. It is common 

knowledge that computer installations have something to do with turnover, transfers, 

retraining and changes in employee job status. Therefore, it is understandable that the 

introduction of a candidate system requires special effort to educate, sell and train the 

staff on new ways of conducting business. 

In safe deposit example, three employees are more than 50 years old and have 

been with the bank over 14 years, four of which have been in safe deposit. The remaining 

two employees are in their early thirties. They joined safe deposit about two years before 

the study. Based on data gathered from extensive interviews, the younger employees 

want the programmable aspects of safe deposit (essentially billing) put on a computer. 

Two of the three older employees have voiced resistance to the idea. Their view is that 

billing is no problem. The main emphasis is customer service – personal contact with 

customers. The decision in this case was to go ahead and pursue the project. 

4.4 Steps in Feasibility Analysis  

Feasibility analysis involves eight steps: 



1. From a project team and appoint a project leader. 

2. Prepare system flowcharts. 

3. Enumerate potential candidate systems. 

4. Describe and identify characteristics of candidate systems. 

5. Determine and evaluate performance and cost effectiveness of each candidate 

system. 

6. Weight system performance and cost data.  

7. Select the best candidate system. 

8. Prepare and report final project directive to management. 

1. Form a project Team and Appoint a Project Leader 

The concept behind a project team is that future system users should be involved 

in its design and implementation. Their knowledge and experience in the operations area 

are essential to the success of the system. For small projects, the analyst and an assistant 

usually suffice; however, more complex studies require a project team. The team consists 

of analysts and user staff - enough collective expertise to devise a solution to the 

problem. In many cases, an outside consultant and an information specialist join the team 

until the job is completed. 

Projects are planned to occupy a specific time period, ranging from several weeks 

to months. The senior systems analyst is generally appointed as project leader. He/she is 

usually the most experienced analyst in the team. The appointment is temporary, lasting 

as long as the project. Regular meetings take place to keep up the momentum and 

accomplish the mission – selection of the best candidate system. A record is kept of the 

progress made in each meeting.  

Regarding the safe deposit case, since the whole user area consists of five 

employees, the analyst handled most of the work. 

2. Prepare System Flowcharts 



The next step in the feasibility study is to prepare generalized system flowcharts 

for the system. Information – oriented charts and data flow diagrams prepared in the 

initial investigation are also reviewed at this time. The charts bring up the importance of 

inputs, outputs and data flow among key points in the existing system. All other 

flowcharts needed for detailed evaluation are completed at this point. 

3. Enumerate Potential Candidate Systems 

This step identifies the candidate systems that are capable of producing the 

outputs included in the generalized flowcharts. This requires a transformation from 

logical to physical system models. Another aspect of this step is consideration of the 

hardware that can handle the total system requirements. In the safe deposit case, it was 

found that virtually any microcomputer system with more than 128k –byte memory an 

dual disk drive will do the job. It was also learned that a microcomputer can be designed 

to interface with the bank’s mainframe. In this design, actual processing is handled by the 

microcomputer, whereas information such as payments and credits are transmitted to the 

main computer files for proper adjustment through the customer’s checking account. The 

question here is: which microcomputer (IBM, Apple, Digital etc.) should be selected? 

This is taken up in step 6 of the study. 

An important aspect of hardware is processing and main memory. There are a 

large number of computers with differing processing sizes, main memory capabilities and 

software support. The project team may contact vendors for information on the 

processing capabilities of the system available.  



4. Describe and Identify Characteristics of Candidate System  

 From the candidate systems considered, the team begins a preliminary evaluation 

in an attempt to reduce them to a manageable number. Technical knowledge and 

expertise in the hardware / software area are critical for determining what each candidate 

system can and cannot do. In the safe deposit example, a search for the available 

microcomputers and safe deposit billing packages revealed the information summarized 

in Table 4-1.  

These packages were the result of a preliminary evaluation of more than 15 other 

packages – all purporting to meet the requirements, of the safe deposit billing system. 

When the number is reduced to three key packages, the next step is to describe in some 

detail the characteristics of each package. For example, the first candidate system runs on 

an IBM PC with a minimum of 128K-bytes of memory. The software is written in 

Oracle, a relatively new language. In case of enhancements, change has to be made 

through the software house, since the source code is not available to the user. 



Table-4-1 Safe Deposit Billing package and Selected Characteristics  

Characteristic

s  

IBM PC HP 100 Apple III 

Memory 

required (K bytes) 

128  64 264 

Source 

language 

Oracle VB VB 

Source Code 

Available 

No Yes No 

Purchase terms Purchase 

(License) 

Purchase 

(License) 

Purchase 

(License) 

Purchase price Rs.99500 Rs.80000 Rs.1,09500 

Number 

installed to date 

200 30  50 

Date of first 

installation 

2002 2001 2000 

 

The first package was installed in January 2002. More than 200 packages have 

been installed to date.  

The next two candidate systems are similarly described. The information along 

with additional data available through the vendor highlights the positive and negative 

features of each system. The constraints unique to each system are also specified. For 

example, in the IBM PC package, the lack of an available source code means that the user 

has to secure a maintenance contract that costs 18 percent of the price of the package per 

year. In contrast the HP 100 package is less expensive and offers a source code to the 



user. A maintenance contract (optional) is available at 18 percent of the price of the 

package. 

5. Determine and Evaluate Performance and Cost Effectiveness of Each 

Candidate System 

Each candidate system’s performance is evaluated against the system 

performance requirements set prior to the feasibility study. Whatever the criteria, there 

has to be as close a match as practicable, although trade-offs are often necessary to select 

the best system. In the safe deposit case, the criteria chosen in advance were accuracy, 

growth potential, response time less than five seconds, expandable main and auxiliary 

storage, and user-friendly software. Often these characteristics do not lend themselves to 

quantitative measures. They are usually evaluated in qualitative terms (excellent, good, 

etc.) based on the subjective judgement of the project team. 

The cost encompasses both designing and installing the system. It includes user 

training, updating the physical facilities and documenting. System performance criteria 

are evaluated against the cost of each system to determine which system is likely to be 

the most cost effective and also meets the performance requirements. The safe deposit 

problem is easy. The analyst can plot performance criteria and costs for each system to 

determine how each fares.  

Costs are more easily determined when the benefits of the system are tangible and 

measurable. An additional factor to consider is the cost of the study design and 

development. The cost estimate of each phase of the safe deposit project was determined 

for the candidate system (IBM PC). In many respects, the cost of the study phase is a 

“sunk cost” (fixed cost). Including it in the project cost estimate is optional. 

6. Weight System Performance and Cost Data 

In some cases, the performance and cost data for each candidate system show 

which system is the best choice? This outcome terminates the feasibility study. Many 

times, however, the situation is not so clear – cut. The performance / cost evaluation 

matrix at times does not clearly identify the best system, so the next step is to weight the 



importance of each criterion by applying a rating figure. Then the candidate system with 

the highest total score is selected. 

 The procedure for weighting candidate systems is simple: - 

1. Assign a weighting after factor to each evaluation criterion based on the criterion’ 

effect on the success of the system. For example, if the usability criterion is twice 

as important as the accuracy factor, usability is assigned weight 4 and accuracy is 

assigned weight 2. 

2. Assign a quantitative rating to each criterion’s qualitative rating. For example, 

ratings (poor, fair, good, very good, excellent) may be assigned respective values 

(1,2,3,4,5). 

3. Multiply the weight assigned to each category by the relative rating to determine 

the score. 

4. Sum the score column for each candidate system. 

Thus, the weighted candidate evaluation matrix is prepared using these steps, 

which in it self helps in the next step.  

 7. Select the Best Candidate System 

 The system with highest total score is judged the best system. This assumes the 

weighting factors are fair and the rating of each evaluation criterion is accurate. The 

criterion of growth potential is generally given the maximum weight, thus the greatest 

effect on the total score. Additionally, system development and user training are also 

given high weights. 

Most feasibility studies select from more candidate systems than we have 

mentioned in our example. The criteria chosen and the constraints are also more complex. 

In any case, management should not make the selection without having the experience to 

do so. Management cooperation and comments, however, are encouraged. 

 8. Feasibility Report 

 The culmination of the feasibility study is a feasibility report directed to 

management; it evaluates the impact of the proposed changes on the area(s) in question. 

The report is a formal document for management use, brief enough and sufficiently non-



technical to be understandable, yet detailed enough to provide the basis for system 

design. 

There is no standard format for preparing feasibility reports. Analysts usually 

decide on a format that suits the particular user and system. Most reports, however, begin 

with a summary of findings and recommendations, followed by document details. 

Starting with summary information highlights the essence of the report, giving 

management the option of reviewing the details later. The report contains the following 

sections: 

1. Cover letter formally presents the report and briefly indicates to management the 

nature, general findings and recommendations to be considered. 

2. Table of content specifies the location of the various parts of the report. 

Management quickly refers to the sections that concern them. 

3. Overview is a narrative explanation of the purpose scope of the project, the reason 

for undertaking the feasibility study and the department(s) involved or affected by 

the candidate system. Also included are the names of the persons who conducted 

the study, when it began, and other information that explains the circumstance 

surrounding the study. 

4. Detailed findings outline the methods used in the present system. The system’s 

effectiveness and efficiency as well as operating costs are emphasized. The 

section also provides a description of the objectives and general procedures of the 

candidate system. A discussion of output reports, costs and benefits gives 

management a feel for the pros and cons of the candidate system. 

5. Economic justification details point-by-point cost comparisons and preliminary 

cost estimates for the development and operation of the candidate system. A 

return on investment (ROI) analysis of the project is also included. 

6. Recommendations and conclusions suggest to management the most beneficial 

and cost-effective system. They are written only as a recommendation, not a 

command. Following the recommendations, any conclusions from the study may 

be included. 



7. Appendixes document all memos and data compiled during the investigation. 

They are placed at the end of the report for reference. 

Disapproval of the feasibility report is rare if it has been conducted properly. 

When a feasibility team has maintained good rapport with the user and his/ her staff it 

makes the recommendations easier to approve. Technically, the report is only a 

recommendation, but it is an authoritative one. Management has the final say. Its 

approval is required before system design is initiated.  

Oral Presentation 

The feasibility report is a good written presentation documenting the activities 

involving the candidate system. The pivotal step, however, is selling the proposed 

change. Invariably the project leader or analyst is expected to give an oral presentation to 

the end user. Although it is not as polished as the written report, the oral presentation has 

several important objectives. The most critical requirements for the analyst who gives the 

oral presentation are: (1) communication skills and knowledge about the candidate 

system that can be translated into language understandable to the user and (2) the ability 

to answer questions, clarify issues, maintain credibility and pick up on any new ideas or 

suggestions. 

The substance and form of the presentation depend largely on the purposes 

sought. Table 4.2 suggests a general outline. The presentation may aim at informing, 

confirming, or persuading. 

1. Informing. This simply means communicating the decisions already reached on 

system recommendations and the resulting action plans to those who will 

participate in the implementation. No detailed findings or conclusions are 

included. 

2. Confirming. A presentation with this purpose verifies facts and recommendations 

already discussed and agreed upon. Unlike the persuading approach, no 

supportive evidence is presented to sell the proposed change, nor is there 

elaborate reasoning behind recommendations and conclusions. Although the 

presentation is not detailed, it should be complete. Confirming is itself part of the 



process of securing approval. It should reaffirm the benefits of the candidate 

system and provide a clear statement of results to be achieved. 

TABLE 4.2 Oral Presentation – Suggested Outline 

1. Introduction  

a. Introduce self 

b. Introduce topic. 

c. Briefly describe current system. 

i. Explain why it is not solving the problem  

ii. Highlight user dissatisfaction with it. 

iii. Briefly describe scope, objectives and recommendation of the 

proposed system. 

2. Body of presentation. 

a. Highlight weaknesses of current system. 

b. Describe proposed system. How is it going to solve the problem? 

c. Sell proposed system. 

i. Specify savings and benefits, costs and expenses. 

ii. Use visual aids to justify project and explain system. 

d. Summarize implementation plan and schedule.  

e. Review human resources requirements to install system. 

3. Conclusion. 



a. Summarize proposal  

b. Restate recommendations and objectives of proposal. 

c. Summarize benefits and savings. 

d. Ask for top-level management support. Solicit go-ahead for project. 

4. Discussion period- Answer questions convincingly. 

 

3. Persuading. This is a presentation pitched toward selling ideas- attempts to 

convince executives to take action on recommendations for implementing a 

candidate system. 

Regardless of the purpose sought, the effectiveness of the oral presentation 

depends on how successful the project team has been in gaining the confidence of 

frontline personnel during the initial investigation. How the recommendations are 

presented also has an impact. Here are some pointers on how to give an oral presentation: 

1. Rehearse and test your ideas before the presentation. Show that you are in 

command. Appear relaxed.  

2. Final recommendations are more easily accepted if they are presented as ideas for 

discussion, even though they seem to be settled and final.  

3. The presentation should be brief, factual and interesting Clarity and 

persuasiveness are critical. Skill is needed to generate enthusiasm and interest 

throughout the presentation. 

4. Use good organization. Distribute relevant material to the user and other parties in 

advance. 

5. Visual aids (graphs, charts) are effective if they are simple, meaningful and 

imaginative. An effective graph should teach or tell what is to be communicated. 



6.  Most important, present the report in an appropriate physical environment where 

the acoustics, seating pattern, visual aid technology and refreshments are 

available. 

The most important element to consider is the length of the presentation.  The 

duration often depends on the complexity of the project, the interest of the user group and 

the competence of the project team. A study that has company wide applications and took 

months to complete would require hours or longer to present. The user group that was 

involved at the outset would likely permit a lengthy presentation, although familiarity 

with the project often dictates a brief presentation. Unfortunately, many oral 

presentations tend to be a rehash of the written document with little flare or excitement. 

Also, when the analyst or the project leader has a good reputation and success record 

from previous projects, the end user may request only a brief presentation. 

4.5 Summary: 

 A feasibility study is conducted to select the best system that meets performance 

requirements. A system required performance is defined by statement of constraints, the 

identification of specific system objectives, and a description of outputs. The analyst is 

ready to evaluate the feasibility of the candidate systems to produce these outputs. Three 

key considerations are involved in feasibility analysis are economic, technical, and 

behavioural feasibility. Feasibility analysis involves eight steps: 

1. From a project team and appoint a project leader. 

2. Prepare system flowcharts. 

3. Enumerate potential candidate systems. 

4. Describe and identify characteristics of candidate systems. 

5. Determine and evaluate performance and cost effectiveness of each candidate 

system. 

6. Weight system performance and cost data.  

7. Select the best candidate system. 

8. Prepare and report final project directive to management. 



 

4.6 Questions: 

1. Elaborate System performance. 

2. Explain economic, technical & behavioral feasibility. 

3. Explain the importance of oral presentation. 

4. Briefly discus the various steps in Feasibility Analysis. 

5. What is the importance of feasibility study. 

 



  1  

  

 
 5.0 Objectives: 

5.1 Introduction 

5.2 Data Analysis  

5.3 Cost and Benefit Categories  

 5.4 Procedure for Cost/ Benefit Determination  

 5.5 Classifications of Costs and Benefits 

5.5.1 Tangible or Intangible Costs and Benefits 

5.5.2 Direct or Indirect Costs and Benefits 

5.5.3 Fixed or Variable- Costs and Benefits 

 5.6 Savings versus Cost Advantages 

 5.7 Select Evaluation Method 

 5.8 Interpret Results of the Analysis and Final Action 

 5.9 The System Proposal  

 5.10 Summary  

 5.11 Questions 

 

5.0 Objectives: 

• What is involved in data analysis 

• What are cost and benefit categories 

• How to identify and classify cost and benefits 

• What are various evaluation methods for cost/benefit analysis 

Lesson No: 5                       Lesson Name :  Cost/Benefit Analysis 

 
Author : Dr. Jawahar         Vetter:      Prof. Dharminder Kumar 



  2  

 

5.1 Introduction 

Each problem has generally more than one solution. Each such approach has costs 

& benefits that are compared with those of other approaches before a final 

recommendation is made. The result is a project proposal. The findings of the analysis are 

summarized and the design is recommended. 

5.2 Data Analysis  

Data analysis is a prerequisite to cost/ benefit analysis. System investigation and 

data gathering lead to an assessment of current findings. From the analysis, the system 

deign requirements are identified, which could be: 

 

1. Better customer 

service. 

2. Faster information 

retrieval  

3. Quicker reports. 

4. Less time 

consuming. 

5. Accuracy. 

6. Reduce data 

redundancy. 

7. Improved staff 

efficiency. 

8. Lower processing 

& operating costs.

 

To achieve these design objectives, several alternatives, must be evaluated, there 

is seldom just one alternative. The analyst selects those that are feasible economically, 

technically and operationally. Each approach has its benefits and drawbacks. An analysis 

of the costs & benefits of each alternative guides the selection process. 

5.3 Cost and Benefit Categories  

In developing cost estimates for a system, we need to consider several cost 

elements. Among them are hardware, personnel, facility, operating and supply costs. 



 

1. Hardware costs relate to the actual purchase or lease of the 

computer and peripherals (for example, printer, disk drive, tape unit). Determining the 

actual cost of hardware is generally more difficult when the system is shared by various 

users than for a dedicated stand- alone system. In some cases, the best way to control for 

this cost is to treat it as an operating cost. 

2. Personnel costs include EDP staff salaries and benefits (health 

insurance, vacation time, sick pay, etc.) as well as pay for those involved in developing 

the system Costs incurred during development of a system are one – time costs and are 

labeled developmental costs. Once the system is installed, the costs of operating and 

maintaining the system become recurring costs. 

3. Facility costs are expenses incurred in the preparation of the 

physical site where the application or the computer will be in operation. This includes 

wiring, flooring, acoustics, lighting and air conditioning. These costs are treated as one- 

time costs and are incorporated into the overall cost estimate of the candidate system. 

4. Operating costs include all costs associated with the day-to-day 

operation of the system; the amount depends on the number of shifts, the nature of the 

applications, and the caliber of the operating staff. There are various ways of covering 

operating costs. One approach is to treat operating costs as overhead. Another approach is 

to charge each authorized user for the amount of processing they request from the system. 

The amount charged is based on computer time, staff time and volume of the output 

produced. In any case, some accounting is necessary to determine how operating costs 

should be handled. 

5. Supply costs are variable costs that increase with increased use of 

paper, ribbons, disks, and the like. They should be estimated and included in the overall 

cost of the system. 

A system is also expected to provide benefits. The first task is to identify each 

benefit and then assign a monetary value to it for cost/ benefit analysis. Benefits may be 

tangible and intangible, direct or indirect. 

The two major benefits are improving performance and minimizing the cost of 

processing. The performance category emphasizes improvement in the accuracy of or 



 

access to information and easier access to the system by authorized users. Minimizing 

costs through an efficient system – error control or reduction of staff- is a benefit that 

should be measured and included in cost/benefit analysis. 

 5.4 Procedure for Cost/ Benefit Determination  

There is a difference between expenditure and investment. We spend to get what 

we need, but we invest to realize a return on the investment. Building a computer – based 

system is an investment. Costs are incurred throughout its life cycle. Benefits are realized 

in the form of reduced operating costs, improved corporate image, staff efficiency, or 

revenues. To what extent benefits outweigh costs is the function of cost  /benefit analysis. 

Cost/ benefit analysis is a procedure that gives a picture of the various costs, 

benefits and rules associated with a system. The determination of costs and benefits 

entails the following steps: 

1. Identify the costs and benefits pertaining to given project. 

2. Categorize the various costs and benefits for analysis. 

3. Select a method of evaluation. 

4. Interpret the results of the analysis. 

5. Take action. 

Costs and Benefits Identification  

Certain costs and benefits are more easily identifiable than others. For example, 

direct costs, such as the price of a hard disk, are easily identified form company invoice 

payments or canceled checks. Direct benefits often relate one-to-one to direct costs, 

especially savings from reducing costs in the activity in question. Other direct costs and 

benefits, however, may not be well defined, since they represent estimated costs or 

benefits that have some uncertainty. An example of such costs is reserve for bad debt. It 

is a discerned real cost, although its exact amount is not so immediate. 

A category of costs or benefits that is not easily discernible is opportunity costs 

and opportunity benefits. These are the costs or benefits forgone by selecting one 

alternative over another. They do not show in the organization’s accounts and therefore 

are not easy to identify. 



 

 5.5 Classifications of Costs and Benefits  

The next step in cost and benefit determination is to categorize costs and benefits. 

They may be tangible or intangible, direct or indirect, fixed or variable. Each category is 

reviewed as follows: 

 5.5.1 Tangible or Intangible Costs and Benefits 

Tangibility refers to the ease with which costs or benefits can be measured. An 

outlay of cash for a specific item or activity is referred to as a tangible cost. They are 

usually shown as disbursements on the books. The purchase of hardware or software, 

personnel training and employee salaries are examples of tangible costs. They are readily 

identified and measured. 

Costs that are known to exist but whose financial value cannot be accurately 

measured are referred to as intangible costs. For example, employee morale problems 

caused by a new system or lowered company image is an intangible cost. In some cases, 

intangible costs may be easy to identify but difficult to measure. For example, the cost of 

the breakdown of an online system during banking hours will cause the bank to lose 

deposits and waste human resources. The problem is by how much? In other cases, 

intangible costs may be difficult even to identify, such as an improvement in customer 

satisfaction stemming from a real-time order entry system. 

Benefits are also classified as tangible or intangible. Like costs, they are often 

difficult to specify accurately. Tangible benefits, such as completing jobs in fewer hours 

or producing reports with no errors, are quantifiable. Intangible benefits, such as more 

satisfied customers or an improved corporate image, are not easily quantified. Both 

tangible and intangible costs and benefits, however, should be considered in the 

evaluation process.  

Management often tends to deal irrationally with intangibles by ignoring them. 

According to Oxenfeldt, placing a zero value on intangible benefits is wrong. Axelrod 

reinforces this point by suggesting that if intangible costs and benefits are ignored, the 

outcome of the evaluation may be quite different from when they are included. Figure 5.1 

is a hypothetical representation of the probability distribution of tangible and intangible 

costs and benefits. It indicates the degree of uncertainty surrounding the estimation of 



 

costs and benefits. If the project is evaluated on a purely tangible basis, benefits exceed 

costs by a substantial margin; therefore, such a project is considered cost effective.  

On the other hand, if intangible costs and benefits are included, the total tangible and 

intangible costs exceed the benefits, which make the project an undesirable investment. 

Furthermore, including all costs increases the spread of the distribution (compared with 

the tangible – only distribution) with respect to the eventual outcome of the project. 

 

 

 

 

 

 

 

 

  

 5.5.2 Direct or Indirect Costs and Benefits 

From a cost accounting point of view, costs are handled differently depending on 

whether they are direct or indirect. Direct costs are those with which an exact figure can 

be directly associated in a project. They are applied directly to the operation. For 

example, the purchase of a box of diskettes is a direct cost because we can associate the 

diskettes with the money spent. Direct benefits also can be specifically attributable to a 

given project. For example, a new system that can handle 25 percent more transactions 

per day is a direct benefit. 

Indirect costs are the results of operations that are not directly associated with a 

given system or activity. They are often referred to as overhead. A system that reduces 

overhead realizes a saving. If it increases overhead, it incurs an additional cost. 

Insurance, maintenance, protection of the computer center, heat, light and air 

conditioning are all tangible costs, but it is difficult to determine the proportion of each 

Figure 5.1 Tangible /Intangible 
costs/benefitets

Pr
of
ita

bi
lty

Tangib
le Cost 

Tangibl
e 

Intangibl
e cost 

Intangib
le 



 

attributable to a specific activity such as a report. They are overhead and are allocated 

among users, according to a formula. 

Indirect benefits are realized as by-product of another activity or system. For 

example, our proposed safe deposit billing system that provides profiles showing vacant 

boxes by size, location and price, will help management decide on how much advertising 

to do for box rental. Information about vacant boxes becomes an indirect benefit of the 

billing even though it is difficult to specify its value. Direct and indirect costs and 

benefits are readily identified for tangible costs and benefits, respectively. 

5.5.3 Fixed or Variable- Costs and Benefits 

Some costs and benefits are constant, regardless of how well a system is used. 

Fixed costs are sunk costs. They are constant and do not change. Once encountered, they 

will not recur. Examples are straight – line depreciation of hardware, and insurance. In 

contrast, variable costs are incurred on a regular (weekly, monthly) basis. They are 

usually proportional to work volume and continue as long as the system is in operation. 

For example, the costs of computer forms vary in proportion to the amount of processing 

or the length of the reports required. 

Fixed benefits are also constant and do not change. An example is a decrease in 

the number of personnel by 20 percent resulting from the use of a new computer. The 

benefit of personnel savings may recur every month. Variable benefits, on the other hand, 

are realized on a regular basis. For example, consider a safe deposit tracking system that 

saves 20 minutes preparing customer notices compared with the manual system. The 

amount of time saved varies with the number of notices produced. 

5.6  Savings versus Cost Advantages 

Savings are realized when there is some kind of cost advantage. A cost advantage 

reduces or eliminates expenditures. So we can say that a true savings reduces or 

eliminates various costs being incurred.  

There are savings, however, those do not directly reduce existing costs. To 

illustrate, examine the following case: 



 

A systems analyst designed an online teller system that requires 14 new terminals. No 

reduction in personnel is immediately planned. Renovation of the bank lobby and the 

teller cages will be required. The primary benefits are: 

1.  Savings in teller’s time to update account and post transaction. 

2. Faster access and retrieval of customer account balances. 

3. Available of additional data for tellers when needed. 

4. Reduction of transaction processing errors. 

5. Higher employee morale. 

6. Capability to absorb 34 percent of additional transactions. 

This is a case where no money can be realized as a result of the costs incurred for 

the new installation. There might be potential savings if additional transactions help 

another department reduce its personnel. Similarly, management might set a value (in 

terms of savings) on the improved accuracy of teller activity, on quicker customer 

service, or on the psychological benefits form installing an online teller system. Given the 

profit motive, savings (or benefits) would ultimately be tied to cost reductions. 

Management has the final say on how well the benefits can be cost-justified. 

5.7 Select Evaluation Method 

When all financial data have been identified and broken down into cost 

categories, the analyst must select a method of evaluation. Several evaluation methods 

are available, each with pros and cons. The common methods are:

1. Net benefit 

analysis. 

2. Present value 

analysis. 

3. Net Present value. 

4. Payback analysis. 

5. Break- even 

analysis. 

6. Cash-flow 

analysis

1. Net Benefit Analysis:- Net benefit analysis simply involves subtracting total costs 

from total benefits. It is easy to calculate easy to interpret, and easy to present. The main 



 

drawback is that it does not account for the time value of money and does not discount 

future cash flow. Period 0 is used to represent the present period. The negative numbers 

represent cash outlays. The time value of money is extremely important in evaluation 

processes. What is suggested here is that money has a time value. Today’s dollar and 

tomorrow’s dollar are not the same. The time lag accounts for the time value of money. 

The time value of money is usually expressed in the form of interest on the funds 

invested to realize the future value. Assuming compounded interest, the formula is:     F = 

P (1 + i) n 

Where  

F= Future value of an investment   

P= Present value of the investment. 

I= Interest rate per compounding period. 

N= Number of years. 

2. Present Value Analysis:-  In developing long-term projects, it is often difficult to 

compare today’s costs with the full value of tomorrow’s benefits. As we have seen, the 

time value of money allows for interest rates, inflation and other factors that alter the 

value of the investment. Furthermore certain investments offer benefit periods that varies 

with different projects. Presents value analysis controls for these problems by calculating 

the costs and benefits of the system in terms of today’s value of the investment and then 

comparing across alternatives. 

A critical factor to consider in computing present value is a discount rate 

equivalent to the forgone amount that the money could earn if it were invested in a 

different project. It is similar to the opportunity cost of the funds being considered for the 

project. 

Suppose that Rs. 3,000 is to be invested in a microcomputer for our safe deposit 

tracking system and the average annual benefit is Rs. 1,500 for the four-year life of the 

system. The investment has to be made today, whereas the benefits are in the future. We 

compare present values to future values by considering the time value of money to be 

invested. The amount that we are willing to invest today is determined by the value of the 



 

benefits at the end of a given period (year). The amount is called the present value of the 

benefit. 

To compute the present value, we take the formula for future value (F = P * (1 + 

i) n and solve for the present value (P) as follows: 

P =  F / (1 + i) n 

So the present value of Rs. 1,500 invested at 10 percent interest at the end of the fourth 

year is: 

P= 1,500/(1+0.10)4  =  Rs. 1,027.39 

That is, if we invest Rs. 1,027.39 today at 10 percent interest, we can expect to have Rs. 

1,500 in four years. This calculation can be represented for each year where a benefit is 

expected. 

3. Net Present Value:-  The net present value is equal to discounted benefits minus 

discounted costs. Our Rs. 3,000 microcomputer investment yields a cumulative benefit of 

Rs. 4,758.51 or a net present gain of Rs.1,758.51. This value is relatively easy to 

calculate and accounts for the time value of money. The net present value is expressed as 

a percentage of the investment- in our example: 

1,758.51/3,000 = 0.55 percent 

4. Payback Analysis:- The payback method is a common measure of the relative time 

value of a project. It determines the time it takes for the accumulated benefits to equal the 

initial investment. Obviously the shorter the payback period, the sooner a profit is 

realized and the more attractive is the investment. The payback method is easy to 

calculate and allows two or more activities to be ranked. Like the net profit, though, it 

does not allow for the time value of money. 

The payback period may be computed by the following formula: 

Overall cost outlay/ Annual cash return = (A*B)+ (C*D)/ (5+2)=  

Years + Installation time (G) / Years to recover  

5. Break –even Analysis:- Break –even is the point where the cost of the candidate 

system and that of the current one are equal. Unlike the payback method that compares 



 

costs and benefits of the candidate system, break-even compares the costs of the current 

and candidate systems. When a candidate system is developed, initial costs usually 

exceed those of the current system. This is an investment period. When both costs are 

equal, it is break-even. Beyond that point, the candidate system provides greater benefit 

(profit) than the old one--a return period. 

A break–even chart compares the costs of the current and candidate systems. The 

attributes are processing cost and processing volume. Straight lines are used to show the 

model’s relationships in terms of the variable, fixed and total costs of the two processing 

methods and their economic benefits. Intersection indicates the point where the total cost 

of processing transactions by the current system is equal to the total cost of using the 

candidate system. Beyond that point is the return period. Before the intersection is the 

investment period. According to the chart, then, it would be more economical to process 

manually when volume is below the number of break even point transactions. Higher 

processing volume favors the candidate system. 

6. Cash – Flow Analysis:- Some projects, such as those carried out by computer and 

word processing services, produce revenues from an investment in computer systems. 

Cash–flow analysis keeps track of accumulated costs and revenues on a regular basis. 

The “spread sheet” format also provides break – even and payback information. It is 

revenue minus expense on a period by period basis. 

 Drawbacks of the Cash flow analysis are: It ignores time value of money. For a 

limited period, it does not take into account the profitability of the project. It ignores 

behavioral implications of the numbers in the financial statement. However the major 

advantage of the cash flow analysis is that it combines benefits of break even and 

payback methods. 

5.8 Interpret Results of the Analysis and Final Action 

When the evaluation of the project is complete, the results have to be interpreted. 

This entails comparing actual results against a standard or the result of an alternative 

investment. The interpretation phase as well as the subsequent decision phase is 

subjective, requiring judgment and intuition. Depending on the level of uncertainty, the 

analyst may be confronted with a single known value or a range of values. In either case, 



 

simpler measures such as net benefit analysis are easier to calculate and present than 

other measures, although they do not discount future cash flows. If it can be modified to 

include the time value of money, the net benefit method would be comparable to the net 

present value method. More complex measures such as net present value account for the 

time value of money but are more difficult to evaluate and present.  

The decision to adopt an alternative candidate system can be highly subjective, 

depending on the analyst’s or end user’s confidence in the estimated costs and benefits 

and the magnitude of the investment. 

In summary, cost/ benefit analysis is a tool for evaluating projects rather than a 

replacement of the decision-maker. In real-life business situations, whenever a choice 

among alternatives is considered, cost / benefit analysis is an important tool. Like any 

tool, however, it has problems: 

1. Valuation problems:- Intangible costs and benefits are 

difficult to quantify and tangible costs are generally more pronounced than tangible 

benefits. In most cases, then, a project must have substantial intangible benefits to be 

accepted. 

2. Distortion problems:- There are two ways of distorting the 

results of cost/benefit analysis. One is the intentional favoritism of an alternative for 

political reasons. The second is when data are incomplete or missing from the analysis. 

3. Completeness problems:- Occasionally an alternative is 

overlooked that compromises the quality of the final choice. Furthermore, the costs 

related to cost/ benefit analysis may be on the high side or not enough costs may be 

considered to do a complete analysis. In either case, the reliability of the final choice is in 

doubt. 

5.9 The System Proposal  

The final decision following cost/benefit analysis is to select the most cost-effective and 

beneficial system for the user. At this time, the analyst prepares a feasibility report on the 

major findings and recommendations. It outlines the options and recommendations. It is 

presented to management for determining whether a candidate system should be 

designed. Effective reports follow carefully planned formats that management can 



 

understand and evaluate without having to read the entire document. The content and 

format of the feasibility report are summarized in Figure 5.2. 



 

 Figure 5.2 Feasibility Report- An Outline 

A written feasibility report should include the following: 

 TITLE PAGE Defines the name of the project and who it is for  

I. TABLE OF CONTENTS List various parts, features and 
exhibits, showing page numbers 

II. SCOPE Present a brief explanation of the system boundaries  

III. STATEMENT OF PROBLEM Describe current system, 
Describe proposed system, Indicate how proposed system will solve the problem(s) 

IV. SUMMARY/ ABSTRACT(optional) Give executive a 
summary of project, high-lighting benefits 

V. COST/BENEFIT STATEMENT List benefits and savings in 
quantitative terms Present figures of savings versus costs, Summarize cost of new 
equipment, one – time charges, etc. Quantify net savings and expected returns. 

VI. IMPLEMENTATION SCHEDULE Submit implementation 
plan, Specify human resources requirements, systems and procedures, etc. Include 
PERT-CPM or Gantt Chart 

VII. HARDWARE CONFIGURATION (optional) Lay out 
computer configuration. Describe terminal network and equipment (CRTs, printers, 
etc.). List communication equipment (data sets, lines, etc.) 

VIII. CREDITS Give credit to those who contributed to the project 
study. 

 APPENDIX Include exhibits, correspondence on project, and other 
miscellaneous documentation.   

  

 5.10 Summary 

Data analysis is a prerequisite to cost/ benefit analysis. System investigation and 

data gathering lead to an assessment of current findings. From the analysis, the system 

deign requirements are identified, and alternative system evaluated. In developing cost 

estimates for a system, we need to consider several cost elements. Among them are 



 

hardware, personnel, facility, operating and supply costs. Cost/ benefit analysis is a 

procedure that gives a picture of the various costs, benefits and rules associated with a 

system. The determination of costs and benefits entails the following steps: 

• Identify the costs and benefits pertaining to given project. 

• Categorize the various costs and benefits for analysis. 

• Select a method of evaluation. 

• Interpret the results of the analysis. 

• Take action. 

Cost and benefit determination is to categorize costs and benefits. They may be 

tangible or intangible, direct or indirect, fixed or variable. When all financial data have 

been identified and broken down into cost categories, the analyst must select a method of 

evaluation. Several evaluation methods are available, each with pros and cons. The 

common methods are:  

• Net benefit analysis 

• Present value analysis 

• Net present value 

• Payback analysis 

• Break-even analysis 

• Cash-flow analysis 

When the evaluation of the project is complete, the results have to be interpreted. In 

summary, cost/ benefit analysis is a tool for evaluating projects rather than a replacement 

of the decision-maker. In real-life business situations, whenever a choice among 

alternatives is considered, cost / benefit analysis is an important tool. The final decision 

following cost/benefit analysis is to select the most cost-effective and beneficial system 

for the user. 



 

 5.11 Questions 

1. Compare the various evaluation methods. 

2. How are tangible costs different from direct costs. 

3. What are the various cost benefit categories. 

4. Why is it necssary to conduct cost/benefit analysis 

5. What do you understand by system proposal. 

 



 
 

 6.0 Objectives :  

6.1 Introduction 

6.2 What is Requirements Determination? 

6.3 Fact – Finding Techniques 

 6.3.1 Interview  

 6.3.2 Questionnaire 

 6.3.3 Record Review  

 6.3.4 Observation 

 6.4 WHAT IS STRUCTURED ANALYSIS? 

 6.4.1 Data Flow Diagram (DFD) 

 6.4.2 Data Dictionary 

 6.4.3 Decision Trees 

 6.4.4 Identifying Data Requirements 

 6.4.5 Decision Tables 

 6.5 Pros and Cons of Each Tool 

 6.6 Summary:  

 6.7 Questions 

 
6.0 Objectives 

• What is the importance of system requirement specification 

• How the facts are find and what are the methods 

• What tools are used in structured analysis’s 

Lesson No: 6            Lesson Name :  System Requirement Specifications

&Analysis  

            Author : Dr. Jawahar         Vetter:      Dr. Pradeep K. Bhatia 



• How to construct a data flow diagram 

• What are the advantages and uses of a data dictionary and structured English 

• The elements and construction of decision trees and decision tables 

 

 6.1 Introduction  

Analysis is the heart of the process. It is the key component of the first two phases 

of the cycle. In analysis the present system, the analyst collects a great deal of relatively 

unstructured data through interviews, questionnaires, on–site observations, procedures 

manuals, and the like. The traditional approach is to organize and convert the data though 

system flowcharts, which support future developments of the system and simplify 

communication with the user. But the system flowchart represents a physical rather than a 

logical system. It makes it difficult to distinguish between what happens and how it 

happens in the system. 

There are other problems with the traditional approach. 

1. The system life cycle provides very little quality control to ensure accurate 

communication from user to analyst. They have no language in common. 

2. The analyst is quickly overwhelmed with the business and technical details of the 

system. Much of the time is spent gathering information. The details are needed 

and must be available, but the analyst does not have the tools to structure and 

control the details. 

3. Present analytical tools have limitations. 

a. English narrative descriptions of a system are often too vague and make it 

difficult for the user to grasp how the parts fit together. Furthermore, 

English is inherently difficult to use where precision is needed. 

b. System and program flowcharts commit to a physical implementation of 

the system before on has complete understanding of its logical 

requirements. 

4. Problems also relate to system specifications:- 



a. System specifications are difficult to maintain or modify. A simple change 

in the user’s requirements necessitates changes in several parts of the 

document. 

b. They describe user requirements inn terms of physical hardware that will 

implement the system rather than what the user wants the system to do. 

c. They are monolithic and redundant; that is, to find out information about a 

particular part of the system, the user has to search the entire document. 

Furthermore, the same information is found in numerous locations with no 

cross-reference. 

Because of these drawbacks, the analyst needs something analogous to the 

architect’s blueprint as a starting point for system design. It is a way to focus on functions 

rather than physical implementation. One such tool is the data flow diagram (DFD). 

There are other tools as well. The use of several tools in structured analysis, including the 

following: 

1. Data flow diagram (DFD). 

2. Data dictionary. 

3. Structured English. 

4. Decision trees. 

5. Decision tables. 

System analysis is about understanding situations, not solving problems. Effective 

analysts therefore emphasize investigation and questioning to learn how a system 

currently operates and to identify the requirements users have for a new or modified one. 

Only after analysts fully understand the systems are they able to analyze it and assemble 

recommendations for systems design.  

 

 The manner in which a systems investigation is conducted will determine whether 

the appropriate information is gathered. In turn, having the right information influences 

the quality of the application that follows. In other words, good system design, whether 



developed through the SDLC method, prototyping, or structured methods, begins by 

documenting the current system and properly diagnosing systems requirements.  

 

6.2 What is Requirements Determination? 

 Requirements determination involves studying the current business system to find 

out how it works and where improvements should be made. Systems studies result in an 

evaluation of how current methods are working and whether adjustments are necessary or 

possible. These studies consider both manual and computer methods, they are not merely 

computer studies. 

 

 A requirement is a feature that must be included in a new system. It may include a 

way of capturing or processing data, producing information, controlling a business 

activity, or supporting management. The determination of requirements thus entails 

studying the existing system and collecting details about it to find out what these 

requirements are. 

 

 Since systems analysts do not work as managers or employees in user 

departments (such as marketing, purchasing, manufacturing, or accounting), they do not 

have the same base of acts and details as the managers and users in those areas. 

Therefore, an early step in analysts, investigation is to understand the situation. Certain 

types of requirements are so fundamental as to be common in most all situations. 

Developing answers to a specific group of questions (to be discussed in this section) will 

help you understand these basic depending on whether the system is transaction – or 

decision – oriented and whether the system cuts across several departments. For example, 

the need to inform the inventory manager of an unusually large order that is forthcoming 

under scores the importance of linking the sales, purchasing, and warehouse departments. 

 6.2.1 Activities in requirement Determination 

 It is helpful to view requirements determination through the three major activities 

of requirements anticipation, requirements investigation, and requirements specification. 

 



 6.2.1.1 Requirements Anticipation  

 Having had experience in a particular business area or having encountered 

systems in an environment similar to the one currently under investigation will influence 

systems analysts study. They may foresee the likelihood of certain problems or features 

and requirements for a new system. As a result, the features they investigate for the 

current system, questions they raise, or methods employed may be based on this 

familiarity. 

 

 Requirements anticipation can be a mixed blessing. On the one hand, experience 

form previous studies can lead to investigation of areas that would otherwise go 

unnoticed by an inexperienced analyst. Having the background to know what to ask or 

which aspect to investigate can be a substantial benefit to the organization.  

 

 On the other hand, if a bias is introduced or shortcuts are taken in conducting the 

investigation, requirements anticipation is a problem. We will point out guidelines for 

structuring an investigation around basic questions to avoid the undesirable consequences 

of requirements anticipation. 

 

 6.2.1.2 Requirements Investigation 

 This activity is at the heart of systems analysis. Using a variety of tools and skills, 

analysts study the current system and document its features for further analysis.  

 

 Requirements investigation relies on the fact-finding techniques and includes 

methods for documenting and describing system features.  

 6.2.1.3 Requirements Specifications 

 The data produced during the fact-finding investigation are analyzed to determine 

requirements specifications, the description of features for a new system. This activity 

has three interrelated parts: 

 

� Analysis of Factual Data 



The data collected during the fact – finding study and included in data flow and 

decision analysis documentation are examined to determine how well the system 

is performing and whether it will meet the organization’s demands. 

 

� Identification of Essential Requirements  

Features that must be included in a new system, ranging from operational details 

to performance criteria, are specified. 

� Selection of Requirements Fulfillment Strategies 

The methods that will be used to achieve the stated requirements are selected. 

These from the basis for system design, which follows requirements specification. 

 

All three activities are important and must be performed correctly.  

  

 6.2.2 Basic Requirements 

 Analysts structure their investigation by seeking answers to these four major 

questions: 

 What is the basic business process? 

 What data are used or produced during that process? 

 What are the limits imposed by time and the volume of work? 

 What performance controls are used? 

 

 6.2.3 Understand the Process  

 Begin with the basics. Analysts must raise questions that, when answered, will 

provide a background of fundamental details about the system and describe it. Asking the 

following questions will help acquire the necessary understanding.  

 

 What is the purpose of this business activity? 

 What steps are performed? 

 Where are they performed? 

 Who performs them? 

 How long does this take? 



 How often is it done? 

 Who uses the resulting information? 

 

 Suppose you are reinvestigating an inventory reordering system, something about 

which you know very little. Where should you begin? Listed below are brief answers to 

basic questions about the inventory reordering system. These are the kinds of answers 

you would need to seek for any system you were studying. 

 

What is the purpose of inventory reordering? 

To ensure that adequate quantities of stock and materials are on hand and 

available for use without carrying an excessive and therefore costly quantity.  

 

What steps are performed? 

Verifying stock on hand. Determining future requirements and optimum times to 

place orders. Determining quantities to order. 

 

Where are they performed? 

The purchasing department, using information provided by manufacturing, sales, 

and inventory staff members, as well as by its own records, handles ordering and 

lead – time. Projection. 

 

Who perform them? 

Purchasing manages approve all orders. Stock managers assemble buying 

instructions and write orders. 

 

How long does this take? 

The process may take a few minutes for simple and routine high – prices item or 

other special circumstance. 

 

How often is it done? 

This is a continuous process. Different items are always being ordered. 



 

Who uses the resulting information?  

Information produced as a by – product of this process is used to manage 

inventory, schedule service and manufacturing monitor purchasing, and pay 

suppliers, as well as meet unexpected requirements for purchasing and inventory 

reorder information. 

 

 Notice how quickly answers to these questions provide a broad understanding of 

what inventory reordering is all about and show that the objective of inventory reordering 

is more than just buying stock. But analysts cannot stop here. There is not yet enough 

information to fully understand inventory reordering. Instead, the background acquired 

enables to raise more detailed questions. 

 

 6.2.4 Identify data used and information produced 

 Analysts next need to find out what data are used to perform each activity for 

example, to reorder inventory, the buyer might require data describing the quantity of an 

item of hand, expected demand for the item, supplier name, and item cost. To know when 

to place an order, the buyer would also consider the necessary lead-time (how for in 

advance the item should be ordered to be on hand when needed). 

 

 Most business transactions also produce information that is useful to managers 

when they evaluate employee, business, and systems performance and that may be useful 

in another context to both manager and analyst. Inquiring analysts will find out, for 

example that data about inventory reordering and stocking also provide information about 

warehouse demands, purchasing practices, sales, and cash flow. 

 

 6.2.5 Determine process timing and volume 

 The frequency of business activities varies greatly. For example, some activities, 

such as paying taxes, occur only a few times a year, whereas paying employees is a 

weekly activity. Therefore, analysts should learn how often the activity is repeated. 

Knowing whether an activity occurs frequently may lead the analyst to raise many 



additional and important questions to determine the reason for the frequency and its 

effect on business activities. 

 

 Many times the easiest way to get this information is to identify the reason for the 

activity: what causes the activity to be performed? Analysts sometimes refer to the direct 

cause as the trigger function. (it triggers the activity.) Activities can be triggered by 

customers of an application to open a new bank, charge, or credit account), and by the 

passage of time (the ending of the day, week, or month). Unless analysts know what 

triggers an activity, they may misunderstand the reason for the activity and give it more 

or less importance in the system than it merits. 

 

 Some activities, such as completing a purchase requisition, take only a few 

seconds. Others, such as deciding whether to accept a merger offer, occur infrequently 

but require a great deal of time when they do take place. Timing alone does not determine 

the importance of an activity, but it does affect the way analysts evaluate certain steps in 

carrying out the performance. For example, making a telephone call to obtain stock price 

information during a merger decision is quite acceptable, since a merge is an infrequent 

occurrence. But making a telephone call to obtain information every time a purchase 

requisition is processed is another matter. 

 

 The volume of items to be handled may increase the amount of time needed to 

complete the activity. Savings banks prepare consumer account statements  (summaries 

of deposits, withdrawals, interest accumulations, and balances) only four times a year. 

Although the frequency of this activity is very low, when the calendar triggers this 

activity at the end of each quarter, the volume of work is very high, sometimes running 

into tens of thousands of statements to be prepared. The sheer quantity of item making up 

an activity can produce special problems for the analyst to study, even though the activity 

occurs infrequently. 

 



 6.2.6 Identity controls 

 In business situations that are well controlled either by management or process 

monitoring, determining whether an activity has been performed properly may be no 

problem. But during the analysis stage, the analysts must examine control methods: are 

there specific performance standards? Who compares performance against standards? 

How are mistakes caught? How are error handled? Are the errors excessive? Weak or 

missing controls area an important discovery in any system investigation. In the vignette 

the beginning of this chapter, the failure of the two junior systems analyst to give proper 

attention to weak or mission controls when they studied receiving room activities had 

serious consequences. 

 

 6.2.7 User transaction Requirements 

 Transaction – level systems captures, process, and store data for a reason. In an 

order system, for example, sale order form customers are processed so that specified item 

can be shipped. This simple procedure applies to every order that is received. 

 

  

 

Analysis’s assigned to work on an order entry system would want to know more 

about how these transactions are processed. To under – stand these transaction 

requirements they would undoubtedly ask questions such as the following: 

 

What makes up the transaction being processed? 

  What initiates the transaction? 

 Who actually initiates the order? For what purpose? 

 How often do order occur? 

 What volume is associated  with each? 

Are there different conditions that can affect how orders are processed? 

 What details are needed to process the transaction? 

 What information is generated? What data is stored? 



 6.2.8 User decision Requirements  

 Decision, unlike transaction activities, may not follow a specific procedure. 

Routines are not as clear – cut, and controls may be very vague. Decisions are made by 

integrating information in such a way that managers can know what actions to take. 

Decision systems may focus on the past, the present, or the future. Some may support 

recurring decisions (such as merchandise pricing, while other are unique and do not recur 

(such as the merger example used earlier). They may used data that originate inside the 

firm, such as through transaction processing, or outside, for example form trade 

associations or commercial sources (such as marketing research firms who sell 

information to organizations). In some cases, transaction data are processed to provide 

new information for decision making. For instance, summarized sales transaction data tell 

managers which products sell and which do not.  

Analysts investigating decision support systems should raise the same questions about 

timing and frequency discussed previously. But other questions should also be posed to 

determine decision requirements: 

1. What information is used to make the Decision? 

2. What is the source of the information? Which transaction system produce the 

data used in the decision process? Which data are required but do not result 

from processing transactions? Which data originate from sources outside the 

organization? 

3. How would data be processed to produce the necessary information? 

4. How should the information be presented? 

 

These questions also point out the relationship between transaction and decision 

systems. If transaction systems do not capture and store the data needed for decision, 

important information will be unavailable. Inventory systems capture details about 

ongoing ordering, receipt, sale, and shipment of items, the data they store are further 

processed to produce information periodically to analyze sales, determine pricing policy, 

or decide on marketing plan for product lines.  

 



 This means (1) that analysts investigating decision systems must be aware of 

supporting transaction systems and (2) that effective decision systems require suitable 

transaction processing procedures to be place first. 

 

6.3 Fact – Finding Techniques 
 The specific methods analysts use for collecting data about requirements are 

called fact – finding techniques. These include the interview, questionnaire, record 

inspections (on – site review) and observation. Analysts usually employ more that one of 

these techniques to help ensure an accurate and comprehensive investigation.  

 

6.3.1 Interview  

 Analysts use interviews to collect information from individuals or from groups. 

The respondents are generally current users of the existing system or potential users of 

the proposed system. In some instances, the respondents may be managers or employees 

who provide data for the proposed system or who will be affected by it. Although some 

analysts prefer the interview to other fact – finding techniques, it is not always the best 

source of application data. Because of the time required for interviewing, other methods 

must also be used to gather the information needed to conduct an investigation.  

 

 It is important to remember that respondents and analysts converse during an 

interview – the respondents are not being interrogated. Interviews provide analysts with 

opportunities for gathering information form respondents who have been chosen for their 

knowledge of the system under study. This method is frequently the best source of 

qualitative information (opinions, policies, and subjective descriptions of activities and 

problems). Other fact finding methods are likely to be more useful for collecting 

quantitative data (numbers, frequencies, and quantities). 

 

 This method of fact – finding can be especially helpful for gathering information 

from individuals who do not communicate effectively in writing or who may not have the 

time to complete questionnaires. Interviews allow analysts to discover areas of 



misunderstanding, unrealistic expectations, and even indications of resistance to the 

proposed system. 

 

 Interviews can be either structured or unstructured. Unstructured interviews, using 

a question – and – answer format, are appropriate when analysts want to acquire general 

information about a system. This format encourages respondents to share their feelings, 

ideas, and beliefs. Structured interviews use standardized questions in either an open – 

response or closed – response format. The former allows respondents to answer in their 

own words; the latter uses a set of prescribed answers. Each approach has advantages and 

disadvantages. 

 

 The success of an interview depends on the skill or the interviewer and on his or 

her preparation for the interview. Analysts also need to be sensitive to the kinds of 

difficulties that some respondents create during interviews and know how to deal with 

potential problems. They need to consider not only the information that is acquired 

during an interview, but also its significance. It is important to have adequate verification 

of data through other data collection methods. 

 

6.3.2 Questionnaire 

 The use of questionnaires allows analysts to collect information about various 

aspects of a system from a large number of persons. The use of standardized question 

formats can yield more reliable data than other fact – finding techniques, and the wide 

distribution ensures greater anonymity for respondents, which can lead to more honest 

responses. However, this method does not allow analysts to observe the expressions or 

reactions or respondents. In addition, response may be limited, since completing 

questionnaires may not have high priority among the respondents.  

 

 Analysts often use open – ended questionnaires to learn about feeling, opinions, 

and general experiences or to explore a process or problem. Closed questionnaires control 

the frame of reference by presenting respondents with specific responses form which to 

choose. This format is appropriate for electing factual information.  



 

 The high cost of developing and distributing questionnaires demands that analysts 

carefully consider the objective of the questionnaire and determine what structure will be 

most useful to the study and most easily understood by the respondents. Questionnaires 

should also be tested and, if necessary, modified before being printed and distributed. 

 

 As with interviewees, recipients, of questionnaires would be selected for the 

information they can provide. The analysts should ensure that the respondents, 

background and experiences qualify them to answer the questions. 

 



6.3.3 Record Review  

 Many kinds of records and reports can provide analysts with valuable information 

about organizations and operations. In record reviews, analysts examine information that 

has been recorded about the system and user. Record inspection can be performed at the 

beginning of the study, as an introduction, or later in the study, as a basis for comparing, 

actual operations with the records indicate should be happening. 

  

 Records include written policy manuals, regulations and standard operating 

procedures used by most organizations and a guide for managers and employees. They do 

not show what activities are actually occurring, where the decision – making power lies, 

or how tasks are performed. However, they can help analysts understand the system by 

familiarizing them with what operations must be supported and with formal relations 

within the organization.  

 

6.3.4 Observation 

  Observation allows analysts to gain information they cannot obtain by any 

other fact – finding method. Through observation, analysts can obtain firsthand 

information about how activities are carried out. This method is most useful when 

analysts need to actually observe how documents are handled, how processes are 

carried out, observers know what to look for and how to assess the significance of 

what they observe. 



 6.4 WHAT IS STRUCTURED ANALYSIS? 

Structured analysis is a set of techniques and graphical tools that allow the analyst 

to develop a new kind of system specifications that are easily understandable to the user. 

Analysts work primarily with their wits, pencil, and paper. Most of them have no tools. 

The traditional approach focuses on cost/benefit and feasibility analysis, project 

management, hardware and software selection and personnel considerations. In contrast, 

structured analysis considers new goals and structured tools for analysis. The new goals 

specify the following: 

1. Use graphics wherever possible to help communicate better with the user.  

2. Differentiate between logical and physical systems. 

3. Build a logical system model to familiarize the user with system characteristics 

and interrelationships before implementation. 

The structured tools focus on the listed earlier- essentially the date flow diagram data 

dictionary, structured English, decision trees, and decision tables. The objective is to 

build a new document, called system specifications. This document provides the basis 

for design and implementation. The system development life cycle with structured 

analysis. The primary steps are: 

Process 2.1: Study affected user areas, resulting in a physical DFD. The logical 

equivalent of the present system results in a logical DFD. 

Process 2.2: Remove the physical checkpoints and replace them with a logical 

equivalent, resulting in the logical DFD.  

Process 2.3: Model new logical system. So far no consideration is given to modifying 

methods called for in the feasibility report. This step incorporates the changes the 

begins to describe the candidate system. It is essentially a paper model system to be 

installed. 

Process 2.4: Establish man/ machine interface. This process modifies the logical DFD 

for the candidate system and considers the hardware needed to implement the system. 

The combination results in the physical DFD of the candidate system. 



Process 2.5 and 2.6: Quantify costs and benefits and select hardware. The purpose of 

this step is to cost- justify the system, leading to the selection of hardware for the 

candidate system. All that is left after this step is writing the structured specification. 

The structured specification consists of the DFDs that show the major 

decomposition of system functions and their interfaces, the data dictionary documenting 

all interface flows and data stores on the DFDs  and documentation of the intervals of 

DFDs in a rigorous manner through structured English, decision trees, and decision 

tables. 

In summary, structured analysis has the following attributes: 

1. It is graphic. The DFD for example, presents a picture of what is being specified 

and is a conceptually easy-to – understand presentation of the application.  

2. The process is partitioned so that we have a clear picture of the progression from 

general to specific in the system flow. 

3. It is logical rather than physical. The elements of system do not depend on vendor 

or hardware. They specify in a precise, concise, and highly readable manner the 

working of the system and how it hangs together. 

4. It calls for a rigorous study of the user area, a commitment that is often taken 

lightly in the traditional approach to systems analysis. 

5. Certain tasks that are normally carried out late in the system development life 

cycle are moved to the analysis phase. For example, user procedures are 

documented during rather than later in implementation. 

 

 

6.4.1 The Data Flow Diagram (DFD) 

The first step is to draw a data flow diagram (DFD). The DFD was first developed 

by Larry Constantine as a way of expressing system requirements in a graphical from; 

this led to a modular design. 



A DFD also known as a “bubble chart,” has the purpose of clarifying system 

requirements and identifying major transformations that will be come programs in system 

design. So it is the starting point of the design phase that functionally decompose the 

requirements specifications down to the lowest level of detail. A DFD consists of a series 

of bubbles joined by lines. The bubbles represent data transformations and the lines 

represent data flows in the system. The system takes orders from the customer 

(bookstore, library, etc.), checks them against an index (file) listing the books available, 

verifies customer credit through a credit information file, and authorizes, shipment with 

an invoice.  

 6.4.1.1 DFD Symbols 

In the DFD, there are four symbols 

A square defines a source (originator) or destination of system data. 

1. An arrow identifies data flow- data in motion. It is a pipeline through which 

information flows. 

2. A circle or a “bubble” (some people use an oval bubble) represents a process that 

transforms incoming data flow(s) into outgoing data flow(s). 

3. An open rectangle is a data store- data at rest, or a temporary repository of data. 

 

 

 

 

 

 

 

 

 

 

Source 
Process 

Data Store 



Note that a DFD describes what data flow (logical) rather than how they are 

processed so it does not depend on hardware, software, data structure, or the 

organization. The key question that we are trying to answer is: What major 

transformations must occur for input to be correctly transformed into output? 

Elaborate on the logical functions of the system. first, incoming orders are 

checked for correct book titles, author’s names and other information and 

their batched with other book orders from the same bookstore to determine 

how many copies can be shipped through the warehouse. Also, the credit 

status of each bookstore is checked before shipment is authorized. Each 

shipment has a shipping notice detailing the kind and number of books 

shipped. This is compared to the original order received (by mail or 

phone) to ascertain its accuracy. The details of the order are normally 

available in a special file or a data store, called “bookstore orders.” 

Following order verification and credit check, a clerk batches the order by 

assembling all the book titles ordered by the bookstore. The batched order is sent to the 

warehouse with authorization to pack and ship the books to the customer.  

Further expansion of the DFD focuses on the steps taken in billing the bookstore. 

As you can tell by now, each process summarizes a lot of information and can be 

exploded into  several lower-level detailed DFDs. This is often necessary to make sure 

that a complete documentation of the data flow is available for further reference. 

 

 6.4.1.2 Constructing a DFD 

Several rules of thumb are used in drawing DFDs. 

1. Process should be named and numbered for easy reference. Each name should be 

representative of the process. 

2. The direction of flow is from top to bottom and from left to right. Data 

traditionally flow from the source (upper left corner) to the destination (lower 

right corner), although they may flow back to a source. One way to indicate this is 

to draw a long flow line back  to the source. An alternative way is to repeat the 



source symbol as a destination. Since it is used more than one in the DFD, it is 

marked with a short diagonal in the lower right corner. 

3. When a process is exploded into lower- level details, they are numbered.  

4.  The names of data stores, sources and destinations are written in capital letters. 

Process and data flow names have the first letter of each word capitalized. 

How detailed should a DFD be? As mentioned earlier, the DFD is designed to aid 

communication. If it contains dozens of processes and data stores, it gets too unwieldy. 

The rule of thumb is to explode the DFD to a functional level, so that the next sublevel 

does not exceeded 10 processes. Beyond that, it is best to take each function separately 

and expand it to show the explosion of the single process. If a user wants to know what 

happens within a given process, then the detailed explosion of that process may be 

shown. 

A DFD typically shows the minimum contents of data stores. Each data store 

should contain all the data elements that flow in and out. Questionnaires can be used to 

provide information for a first cut. All discrepancies, missing interfaces, redundancies, 

and the like are then accounted for- often through interviews. 

The DFD methodology is quite effective, especially when the required design is 

unclear and the user and the analyst need a notational language for communication. The 

DFD is easy to understand after a brief orientation.  

The main problem however is the large number of iterations that often are 

required to arrive at the most accurate and complete solution. 

 6.4.2 Data Dictionary  

In our data flow diagrams, we give names to data flows, processes and data stores. 

Although the names are descriptive of the data, they do not give details. So following the 

DFD our interest is to build some structured pace to keep details of the contents of data 

flows, processes and data store. A data dictionary is a structured repository of data. It is a 

set of rigorous definitions of all DFD data elements and data structure. 

A data dictionary has many advantages. The most obvious is documentation: it is 

a valuable reference in any organization. Another advantage is improving analyst/ user 



communication by establishing consistent definitions of various elements, terms and 

procedures. During implementation, it serves as a common base against which 

programmers who are working on the system compare their data descriptions. Also 

control information maintained for each data element is cross- referenced in the data 

dictionary. For example, programs that use a given data element are cross- referenced in a 

data dictionary, which makes it easy to identify them and make any necessary changes. 

Finally a data dictionary is an important step in building a database. Most data base 

management systems have a data dictionary as a standard feature. 

Data have been described in different ways. For example, in tape and disk 

processing, IBM called a file data set. In data base technology, the term file took on a 

different meaning IBM’s information Management  

FIGURE  Project Data Element Form – A Sample  

PROJECT DATA ELEMENT SHEET  

PROJECT NAME __________________________ DATE_______________ 

DAT

A 

ELE

ME

NT 

DES

CRI

PTI

ON 

DATA 

ELEMENT 

ABBREVATION 

ELEMENT 

PICTURE  

ELEMENT 

LOCATION 

ELEMENT 

SOURCE  

     

 

System’s (IMS) manual defines data as fields divided into segments, which, in 

turn, are combined into databases. The Conference on Data System Languages 

(CODASYL) defines data as data items combined into aggregates, which, in turn are 



combined into records. A group of related records is referred to as a set. If we choose 

words that represent the general thinking of common vocabulary. There are three classes 

of items to be defined: 

1. Data element: The smallest unit of data that provides for no further 

decomposition. For example, “ data” consists of day, months and year. They hand 

together for all practical purposes. 

2. Data structure: a group of data elements handled as a unit. For example, “ phone” 

is a data structure consisting of four data elements: Area code- exchange – 

number –extension- for example, 804-924-3423-236. “BOOK DETAILS” is a 

data structure consisting of the data elements author name, title, ISBN 

(International Standard Book Number), LOCN (Library of Congress Number ), 

publisher’s name and quantity. 

3. Data flows and data stores. As defined earlier, data flows are data structures in 

motion, whereas data stores are data structures at rest. A data store is a location 

where data structures are temporarily located.  

 6.4.2.1 Describing Data Elements  

The description of a data element should include the name, description and an 

alias (synonym). For example: 

AUTHOR NAME –first   WHISKEY – name  

   - middle          - distiller  

   - last          - vintage 

- alias 

The description should be a summary of the data element. It may include an 

example. We may also want to include whether or not the data elements(s) has: 

1. A different name. For example a PURCHASE ORDER may exist as 

PUR.ORDER, PUCHASE ORD., or P.O. We want to record all these in the data 

dictionary and include them under the PUCHASE ORDER definition and 

separately with entires of their own. One example is “P.O. alias of (or see also) 



PUCHASE ORDER.” Then we look up PUCHASE ORDER to find the details. It 

is an index.  

2. Usage characteristics, such as a range of values or the frequency of use or both. A 

value is a code that represents a meaning. Here we have two types of data 

elements: 

a. Those that take a value within a range: for example, a payroll check 

amount between $ 1and $10,000 is called continuous value. 

b. Those that have a specific value: for example. Departments in a firm may 

be coded 100 (accounting), 110 (personnel), etc. In a data dictionary, it is 

described as follows: 

100 means “Accounting Department” 

101 means “ Accounts Receivable Section” 

102 means “ Accounts Payable Section” 

108 means “ General Ledger Section” 

3. Control information such as the source, date of origin, users, or access 

authorizations. 

4. Physical location in terms of a record, file or data base. 

 6.4.2.2 Describing Data Structures 

We describe any data structure by specifying the name of each data structure and 

the elements it represents, provided they are defined else- where in the data dictionary. 

Some elements are mandatory, whereas others are optional. To illustrate, let us take 

“BOOK- DETAILS”. The data elements of this data structure are as follows: 



 6.4.2.3 Describing Data Flows and Data Stores 

 The contents of a data flow may be described by the name (s) of the data 

structures(s) that passes along it. In our earlier example, BOOK-DETAILS express the 

content of the data flow that lead to process 4. Additionally, we may specify the source of 

the date flow, the destination, and the volume (if any). Using the BOOK- ORDER 

example, data flows may be described as follows: 

Data Flow    Comments  

 

BOOK-DETAILS  From Newcomb Hall Bookstore (source) 

AUTHOR –NAME 

TITLE OF BOOK 

EDITION    Recent edition required 

QUANTITY   Minimum 40 copies  

A data store is described by the data structures found in it and the data flows that 

feed it or are extracted from it. For example, the date store BOOK STORE- ORDER is 

described by the following contents: 

   Comments  

 

ORDER   Data flow/data structure feeding date store  

ORDER-NUMBER   

CUSTOMER –DETAILS Content of data store  

BOOK- DETAIL   Data flow/data structure extracted from data store 

 

 

6.4.2.4 Describing Processes. 



This step is the logical description. We want to specify the inputs and outputs for 

the process and summarize the logic of the system. In constructing a data dictionary, the 

analyst should consider the following points: 

1. Each unique data flow in the DFD must have one data dictionary entry. There is 

also a data dictionary entry for each data store and process.  

2. Definitions must be readily accessible by name. 

3. There should be no redundancy or unnecessary definitions in the data definition. 

It must also be simple to make updates. 

4. The procedure for writing definitions should be straightforward but specific. 

There should be only one way of defining words. 

In summary a data dictionary is an integral component of the structured 

specification. Without a data dictionary, the DFD lacks rigor, and without the 

DFD, the data dictionary is of no use. Therefore, the correlation   between the two 

is important.  

6.4.3 DECISION TREES 

 As you know well, people often have different ways of saying the same thing. For 

example, the discount conditions discussed in the last example can also be stated in the 

following ways: 

 

1. Greater than $10,000, grater than or equal $ 5,000 but less than or equal to $ 

10,000, and below $5,000 

2. Not less than $10,000, not more than $ 10,000 but at least $ 5,000, and not 

$5,000 or more  

 

Having different ways of saying the same thing can create difficulties in communication 

during systems studies (analyst and manager may misunderstand each other’s comments 

or forget to discuss all the details). Thus, analysts seek to prevent misunderstandings. 

They also need to organize information collected about decision making.  

 



 Decision trees are one of the methods for describing decisions, while avoiding 

difficulties in communication.  

 

CONDITION ACTION 

Order is signed  Begin order verification process. 

Order is unsigned Begin merchandise acceptance 

processing.  

 

 

CONDITION ACTION 

Size of order : Over $ 10,000 Take 3 % discount form invoice total. 

                       $5,000 to $10,000 Take 2 % discount form invoice  

                       Less than $5,000 Pay full invoice amount.  

 

 

 condition 

 condition  condition 

 condition 

       condition condition 

 

 condition 

6.4.3.1 Decision – Tree Characteristics 

 A decision tree is a diagram that presents conditions and actions sequentially and 

thus shows which conditions to consider first, which second, and so on. It is also a 

method of showing the relationship of each condition and its permissible actions. The 

diagram resembles branches on a tree, hence the name. 

 

 The root of the tree, on the left of the diagram, is the starting point of the decision 

sequence. The particular branch to be followed depends on the conditions that exist and 

the decision to be made. Progression from left to right along a particular branch is the 

result of making a series of decisions. Following each decision points is the next set of 

Action 
 
 
Action 
Action  
 
 
Action  
Action  
 
Action  
Action  
 



decision to be considered. The nodes of the tree thus represent conditions and indicate 

that a determination must be made about which condition exists before the next path can 

be chosen. The right side of the tree lists the actions to be taken depending on the 

sequence of conditions that is followed.  

 

 

 

 

 

 

 

 

 

 

 

6.4.3.2 Using Decision Trees  

 Developing decision trees is beneficial to analysts in two ways. First of all, the 

need to describe conditions and actions forces analysts to formally identify the actual 

decision that must be made. It becomes difficult for them to overlook and integral step in 

the decision process, whether it depends on quantitative or nonquantitative variables.  

 

 It is possible, for instance, to show what discount action to take, depending on the 

number of dollar spent by customers. When an organization opens accounts with dealers 

and suppliers, it formalizes an agreements for taking discounts from the full invoice 

price. Two conditions are specified in this agreement: first, the invoice must always be 

paid within ten days of its receipt, and, second, the size of the discount will depend on the 

value of the invoice. It is agreed that under some conditions the organization can take the 

action of deducting a 3 percent discount; under other conditions, a 2 percent discount; 

and under all other conditions, no discount is allowed. 

 

Within 10 
days

Longer than 10 days

Over $ 
10,000 

$ 5,000 to $ 
10,000

Below $ 
5,000

Take 3% discount 
from invoice  

 
 
 
Take 2% discount 
from invoice total
 
 
Pay full invoice 
amount 
 
 
 
 
 



 Decision trees also force analysts to consider the sequence of decisions. Consider 

the sequence of decision in the example. you can quickly determine that one condition is 

amount of the invoice-does not matter unless another condition is met and the invoice is 

paid within the time established by the supplier – ten days. The other conditions are 

relevant only if that condition is true. Therefore, the decision tree identifies the time 

condition first and shows two values (within ten days and longer than ten days). The 

discount condition is described next, but only for the branch of the tree for WITHIN TEN 

DAYS. The LONGER THAN TEN DAYS branch has no other relevant conditions and 

so show the resulting action (unconditionally). This tree shows that the action PAY 

FULL INVOICE AMOUNT  applies under two different conditions. It also shows 

implicitly that there is no reason to pay invoice of less than $5,000 within ten days, since 

there is no discount available for these amounts.  

 

 The decision tree shows the nonquantitative conditions for processing accounts 

payable: signed invoice, authorized purchase, and correct pricing. Depending on the set 

of conditions that exist, one of two actions can be taken: payment can be authorized or 

the submitted invoice can be rejected. Notice how clearly each alternative is shown in the 

decision tree. Sometimes in more complex business situations, the specific action most 

appropriate under several conditions is not readily apparent without formal analysis of 

this nature. 

 

 Analysts find that in accounts payable processing, it is necessary to determine 

whether a purchase order is available and valid and whether the invoice is processed 

properly before it is actually paid. In turn, they must learn of the conditions for proper 

invoice processing. Full development and examination of the decision tree also shows 

clearly that there are only two ways an invoice can be authorized for payment but many 

conditions under which payment can be rejected.  

 

 The sequence of decision is easy to see in this example. The condition of having a 

valid purchase order does not matter unless the invoice has been signed. The signature is 



important, since the condition of having a signed invoice must be met before processing 

can continue. Then analysts can consider the authorization condition.  

 

6.4.4 Identifying Data Requirements 
 We have already pointed out the use of decision trees to formally highlight the 

sequential nature of many business decision, and we have shown that decision trees are 

effective when describing business problems of more than one dimension or condition. 

However, they also identify critical data requirements surrounding the decision process; 

that is, they indicate the sets of data the manager requires to  formulate decision or select 

action. The explicit data in the payment example are payment data, amount of invoice, 

and discount allowance percentage. There are other important data elements such as 

invoice details (number, supplier name and address), new invoice amount payable, and 

adjustments to “discount taken” that are indict (not directly expressed in the decision 

tree). The analyst must identify and list all the data used in the decision process, even 

must identify and list all the data used in the decision process, even though the decision 

tree does not show all the individual data items. 

 

 It decision trees are assembled after the completion of data flow analysis (which 

tracks the flow of data through busbies processes), critical data may already be defined in 

the data dictionary (which describes system data and where they are used). If decision 

trees are identify each data element needed to make a decision trees are identify each data 

element needed to make a decision. The data dictionary format, is useful for listing and 

describing data elements as they are identified and understood. 

 

 The date requirements discussed for decision trees also apply to the other decision 

– analysis methods that will be discussed. Analysis’s need to describe and define all data 

used in decision making, so that the system can be designed to produce data properly. 

 

6.4.4.1  Avoiding problems with Decision Trees 

 Decision trees may not always be the best tolls for decision analysis. A decision 

tree for a complex system with many sequences of steps and combinations of conditions 



will be unwieldy. A large number of branches with many paths through them will could 

rather than aid analysis. The analyst may not be able to determine which business policies 

or practices guide the formulation of specific decisions. Where these problems arise, 

decision tables should be considered.  

 

 6.4.5 DECISION TABLES 

A major drawback of a decision tree is the lack of information in its format to tell 

us what other combinations of conditions to test. This is where the decision table is 

useful. A decision table is a table of contingencies for defining a problem and the actions 

to be taken. It is single representation of the relationships between conditions and actions. 



A decision table consists of two part: stub and entry. 

  

FIGURE  Structured English- Using Data  Dictionary Values. 

COMPUTE-DISCOUNT  

Add up the number of copies per book title  

IF order is from bookstore  

And – IF  ORDER –SIZE is SMALL 

THEN: Discount is 25%  

ELSE (ORDER –SIZE is MINIMUM) 

 So: no discount is allowed 

ELSE (order is from libraries or individual  customers) 

So-IF  ORDER –SIZE is LARGE  

  Discount is 15% 

ELSE IF OREDR SIZE is EMDIUM  

  Discount is 10% 

ELSE IF ORDER-SIZE is SMALL  

  Discount is 5% 

ELSE (ORDER –SIZE is MINIMUM) 

 So: no discount is allowed  

The stub part is divided into an upper quadrant called the condition stub and a lower 
quadrant called the action stub. The entry part is also divided into an upper quadrant, 
called the condition entry and a lower quadrant called the action entry. The four elements 

and their definitions are summarized in Figure . 

FIGURE Decision Table- Discount Policy 

Condition Stub     Condition Entry 



      ---------------------------------------------- 

      1 2 3 4 5 6  



C

u

s

t

o

m

e

r 

i

s 

b

o

o

k

s

t

o

r

e

?  

O

r

d

e

r 

–

s

i

z

e 

6

 

c

o

Y 

Y 

Y 

N 

N 

N 

Y 

Y 

N 

N 

Y 

N 

Y 

N 

N 

Y 

N 

N 

Y 

N 

N 

Y 

N 

N 

N 



A

l

l

o

w

 

2

5

%

 

d

i

s

c

o

u

n

t  

A

l

l

o

w

 

1

5

%

 

d

i

s

c

o

u

X  

X 

 

 

X 

 

 

 

X 

 

 

 

 

X 

 

 

 

 

 

 

X 



Action Stub   Action Entry  

 

FIGURE  Elements and Definitions in a Decision Table 

 

Elements   Location  Definition 

Conditions Stub Upper left quadrant  Sets forth in question form the condition 

 that may exist 

Action Stub  Lower left quadrant Outlines  in narrative form the action to  

      Be taken to meet such conditon 



Condition entry Upper right quadrant Provides answers to questions asked in  

      The condition  stub quadrant 

Action entry  Lower right quadrant Indicates the appropriate action resulting  

      Form the answers to the conditions in the  

      Condition entry quadrant  

The answers are represented by a Y to signify yes, an N to signify no, or a blank to show 

that the condition involved has not been tested. In the action entry quadrant an X(or a 

check mark will do) indicates the response to the answer(s) entered in the condition entry 

quadrant. Furthermore, each column represents a decision or a rule. For example, rule 1 

states: 

IF customer is a bookstore and order size is 6 copies or more.  

THEN allow 25% discount  

So, according to the decision table, we have six decisions and therefore six  rules. A look 

at the table provides each decision (answer) immediately the following rules should be 

followed in constructing decision tables: 

1. A decision should be given a name, shown in the top left of the table.  

2. The logic of the decision table is independent of the sequence in which the 

condition rules are written, but the action takes place in the order in which the 

events occur. 

3. Standardized language must be used consistently. 

4. Duplication of terms or meanings should be eliminated, where possible. 

 6.5 Pros and Cons of Each Tool 

Which tool is the best depends on a number of factors: the nature and complexity 

of the problem the number of actions resulting from the decision, and the ease of use. In 

reviewing the benefits and limitations of each tool, we come to the following conclusion: 

1. The primary strength of the DFD is its ability to represent data flows. It may be 

used at high or low level of analysis and provides good system documentation. 



However, the tool only weakly shows input and output detail.7 The user often 

finds it confusing initially. 

2. The data dictionary helps the analyst simplify the structure for meeting the data 

requirements of the system. It may be used at  high or low levels of analysis, but it 

does not provide functional details, and it is not acceptable to many nontechnical 

users. 

3. Structured English is best used when the problem requires sequences of actions 

with decisions. 

4. Decision trees are sued to verify logic and in problems that involve a few complex 

decisions resulting in limited number of actions. 

5. Decision trees and decision tables are best suited for dealing with complex 

branching routines such as calculating discounts or sales commissions or 

inventory control procedures. 

Given the pros and cons of structured tools, the analyst should be trained in the sue of 

various tools for analysis and design He/She should use decision table and structured 

English to get to the heart of complex problems. A decision table is perhaps the most 

useful tool for communicating problem details to the user. 

The major contribution of structured analysis to the system development life cycle is 

producing a definable and measurable document – the structured specification. Other 

benefits include increased user involvement, improved communication between user 

and designer, reduction of total personnel time, and fewer “ kinks” during detailed 

design and implementation. The only drawback is increased analyst and user time in 

the process. Overall the benefits outweigh the drawbacks, which make-structured 

analysis tools viable alternatives in system development. 

 6.6 Summary  

Analysis is the heart of the process. It is the key component of the first two phases 

of the cycle. In analysis the present system, the analyst collects a great deal of relatively 

unstructured data through interviews, questionnaires, on–site observations, procedures 

manuals, and the like. Requirements determination involves studying the current business 



system to find out how it works and where improvements should be made. Systems 

studies result in an evaluation of how current methods are working and whether 

adjustments are necessary or possible. These studies consider both manual and computer 

methods, they are not merely computer studies.  

The specific methods analysts use for collecting data about requirements are 

called fact – finding techniques. These include the interview, questionnaire, record 

inspections (on – site review) and observation. Analysts usually employ more that one of 

these techniques to help ensure an accurate and comprehensive investigation. Structured 

analysis is a set of techniques and graphical tools that allow the analyst to develop a new 

kind of system specifications that are easily understandable to the user. Analysts work 

primarily with their wits, pencil, and paper. Most of them have no tools. The traditional 

approach focuses on cost/benefit and feasibility analysis, project management, hardware 

and software selection and personnel considerations. In contrast, structured analysis 

considers new goals and structured tools for analysis.  

The first step is to draw a data flow diagram (DFD). The DFD was first developed 

by Larry Constantine as a way of expressing system requirements in a graphical from; 

this led to a modular design. A data dictionary is a structured repository of data about 

data. It offers primary advantages of documentation and improving analyst/user 

communication by establishing consistent definitions of various elements, terms and 

procedures. 

A decision tree sketches the logical structure based on some criteria. It is easy to 

construct, read, and update. A decision tree is a diagram that presents conditions and 

actions sequentially and thus shows which conditions to consider first, which second, and 

so on. It is also a method of showing the relationship of each condition and its 

permissible actions. A decision table is a table of contingencies for defining a problem 

and the actions to be taken. It is single representation of the relationships between 

conditions and actions. The pros and cons of the tools are; 

• The primary strength of the DFD is its ability to represent data flows. It may be 

used at high or low level of analysis and provides good system documentation. 



6. The data dictionary helps the analyst simplify the structure for meeting the data 

requirements of the system. It may be used at  high or low levels of analysis, but it 

does not provide functional details, and it is not acceptable to many nontechnical 

users. 

7. Structured English is best used when the problem requires sequences of actions 

with decisions. 

8. Decision trees and decision tables are best suited for dealing with complex 

branching routines such as calculating discounts or sales commissions or 

inventory control procedures. 

  

  

 6.7 Questions 

1. What type of information is best obtained through interview. 

2. What is systems requirement. 

3. What advantages do decision trees present. from analysts. 

4. Discuss the pros and cons of the various tools of doing analysis. 

5. What is structured analysis. 

 



 

 

 

7.0 Objectives: 

7.1 Introduction 

7.2 Modularization 

7.3 File Design 

 7.3.1 Sequential Organization  

7.3.2 Indexed- Sequential Organization 

7.3.3 Inverted List Organization 

7.3.4 Direct- Access organization 

 7.4 Data Base Design  

 7.4.1 Objectives of Data Base 

             7.4.2 Logical and Physical Views of Data 

 7.4.3 Schemas and Subschemas 

7.5 Data Structure 

 7.6 Types of Relationships  

7.7 Types of Data Structure 

7.7.1 Hierarchical Structuring 

7.7.2 Network Structuring 

 7.7.3 Relational Structuring 

7.8 Normalization 

7.9 Summary  

7.10 Questions 

 

7.0 Objectives: 

• What is the process of system deign 

• What are the alternative methods of file organizations 

Lesson No: 7                       Lesson Name :  Detailed Design 

Author : Dr. Jawahar         Vetter:      Dr. Pradeep K. Bhatia 



• Objectives of data base 

• Types of data structure  

• The difference between schema and subschema 

• How to normalise files 

 

7.1 Introduction:  

The design translates the system requirements into ways of operationalizing them. 

The design is a solution, a “ how to “ approach, compared to analysis, a “what is” 

orientation. The design phase focuses on the detailed implementation of the system 

recommended in the feasibility study. Emphasis is on translating performance 

specifications into design specifications. The design phase is a transition from a user-

oriented document to a programmer-oriented document. 

7.2 Modularization:  

One way to plan a new system is to focus on each functional subsystem as a 

separate entity or application area. Using such an approach, each application area is 

treated as if it were totally independent. There is minimal sharing of information and 

systems processes between areas. For example, it two major systems efforts were being 

simultaneously undertaken. One in the order department & the other in the accounts 

section. The orders affect the amount of receivables, amount of receivables affect 

customer’s credit, validate the order and much more. From an applications point of view, 

the order processing subsystem should be designed to meet accounts receivable 

functional requirements and vice versa. However, there would be no need to review each 

application area for common internal processes. Both the systems would be performing 

certain same steps in each of their systems individually. 

The modular systems approach divides each application area into a number of 

smaller units called modules. These modules may apply to a particular application, or 

they may be common to two or more application areas. Modules may be used only once, 

or they may be used several times during the processing of an application. Breaking up of 

a problem into smaller manageable parts is certainly beneficial. 

The advantages of modularization are:- 



1. It can speed up the systems process in general & the computer programming 

function in particular. 

2. It eliminates unnecessary duplications. 

3. It can result in higher quality because of the concentrated effort devoted to the 

development of common modules. 

4. It provides better control over the total system project, since work can be 

segmented and assigned in smaller, more controllable units. 

5. It more efficiently maintains the system as a correction at one place rectifies the 

entire problem. 

6. It allows flexibility as additional features may be added later. 

7. Small parts of the system can be tested separately. 

Certainly these factors present a strong argument in favor of the modularization. 

However there are certain limitations to it as follows:- 

1. Numerous unique application requirements which must be incorporated in 

common modules. If a single module is to accommodate all situations, it will 

become very large & complex. 

2. Many systems, changes for particular application areas. Many times a high rate of 

change means a high rate of potential error. When these changes and errors affect 

common modules, the negative consequences can be widespread.  

Modular systems design is best viewed as one aspect of a broader planning issue, 

but it is not a required step in the design process. The analyst, based upon the in-depth 

understanding of problem, specifies the level of modularization.  

Files: The data is stored in files according to user requirements. Some records are 

processed daily whereas other are updated at random. Depending upon the way the data 

will be used, the file is organized.  

 

7.2.1 Basic file Related Keywords: 



Byte:- It is the smallest addressable unit in computer. A byte is a set of 8 bits and 

represents a character. 

Element:- It is a combination of one or more bytes. It is referred to as a field. A field is 

actually a physical space on tape or disk. A roll number, age, name of employee etc. are 

examples of it. 

Record: - The elements related to are combined into a record. An employee has a record 

with his name, designation, basic pay, allowances, deductions etc. as its fields. A record 

may have a unique key to identify a record e.g. employee number. Records are 

represented as logical & physical records. A logical record maintains a logical 

relationship among all the data items in the record. It is the way the program or user sees 

the data. In contrast a physical record is the way data are recorded on a storage medium. 

File: - It is a collection of similar records. The records will have the same fields but 

different values in each record. The size of a file is limited by the size of memory 

available. 

Database: - It is a set of interrelated files. The files in combination tend to link to a 

common solution. For example, a student attendance file, a student result file, a student 

admission file, etc. are related to academic software pertaining to students. 

 7.3 File Design  

A file is organized to ensure that records are available for processing. It should be 

designed in the line with the activity and volatility of the information and the nature of 

the storage media and devices. Other considerations are (1) cost of file media (highest for 

disk, lowest for tape) (2) inquiry requirements (real – time versus batch processing) and 

(3) file privacy, integrity, security, and confidentiality. 

There are four methods of organizing files: sequential, indexed – sequential, 

inverted list and direct access. Each method is explained. 



 7.3.1  Sequential Organization  

Sequential organization simply means storing and sorting in physical, contiguous 

blocks within files on tape or disk. Records are also in sequence within each block. To 

access a record, previous records within the block are scanned. Thus sequential record 

design is best suited for “get next” activities, reading one record after another without a 

search delay. 

In a sequential organization, records can be added only at the end of the file. It is 

not possible to insert a record in the middle of the file, without rewriting the file. In a data 

base system, however, a record may be inserted anywhere in the file, which would 

automatically resequence the records following the inserted record. Another approach is 

to add all new records at the end of the file and later sort the file on a key (name, number, 

etc.). Obviously, in a 60,000- record file it is less time-consuming to insert the few 

records directly than to sort the entire file.  

In a sequential file update, transaction records are in the same sequence as in the 

master file. Records from both files are matched, one record at a time, resulting in an 

updated master file. For example, the system changes the customer’s city of residence as 

specified in the transaction file (on floppy disk) and corrects it in the master file. A “C” in 

the record number specifies “replace”; an “A,” “add”; and a “D,” “delete.” 

In a personal computer with two disk drives, the master file is loaded on a diskette 

into drive A, while the transaction file is loaded on another diskette into drive B. 

Updating the master file transfers data from drive B to A, controlled by the software in 

memory. 



 7.3.2  Indexed- Sequential Organization  

Like sequential organization, keyed sequential organization stores data in 

physically contiguous blocks. The difference is in the use of indexes to locate records. To 

understand this method, we need to distinguish among three areas in disk storage: prime 

area, overflow area and index area. The prime area contains file records stored by key or 

ID numbers. All records are initially stored in the prime area. The overflow area contains 

records added to the file that cannot be placed in logical sequence in the prime area. The 

index area is more like a data dictionary. It contains keys of records and their locations on 

the disk. A pointer associated with each key is an address that tells the system where to 

find a record. 

In an airline reservation file, the index area might contain pointers to the Chicago 

and Delhi flights. The Chicago flight points to the Chicago flight information stored in 

the prime area. The Delhi flight points to the Delhi flight information in the prime area. 

Lack of space to store the Brisbane flight in sequential order make it necessary to load it 

in the overflow area. The overflow pointer places it logically in sequential order in the 

prime area. The same arrangement applies to the other flights. 

Indexed-sequential organization reduces the magnitude of the sequential search 

and provides quick access for sequential and direct processing. The primary drawback is 

the extra storage space required for the index. It also takes longer to search the index for 

data access or retrieval. 

 Chaining  

File organization requires that relationships be established among data items. It 

must show how characters form fields, fields form files, and files relate to one another. 

Establishing relationships is done through chaining or the use of pointers. The example 

on airline reservation file showed how pointers, link one record to another. Part number 

retrieves a record. A better way is to chain the records by linking a pointer to each. The 

pointer gives the address of the next part type of the same class. The search method 

applies similarly to other parts in the file. 



 7.3.3 Inverted List Organization  

Like the indexed-sequential storage method, the inverted list organization 

maintains an index. The two methods differ, however, in the index level and record 

storage. The indexed- sequential method has a multiple index for a given key, whereas 

the inverted list method has a single index for each key type. In an inverted list, records 

are not necessarily stored necessarily stored in particular sequence. They are placed in the 

data storage area, but indexes are updated for the record keys and location. 

Data for our flight reservation system has a separate Index area and a data 

location area. The index area may contain flight number and a pointer to the record 

present in the data location area. The data location area may have record numbers along 

with all the details of the flight such as the flight number, flight description, and flight 

departure time. These are all defined as keys, and a separate index is maintained for each. 

In the data location area, flight information is in no particular sequence. Assume that a 

passenger needs information about the Delhi flight. The agent requests the record with 

the flight description “Delhi flight”. The Data Base Management System (DBMS) then 

reads the single-level index sequentially until it finds the key value for the Delhi flight. 

This value may have two records associated with it. The DBMS essentially tells the agent 

the departing time of the flight. Looking at inverted-list organization differently, suppose 

the passenger requests information’s on a Delhi flight that departs at 8:15. The DBMS 

first searches the flight description index for the value of the “Delhi flight.” It finds both 

the records. Next it searches the flight departure index for these values. It finds that one 

of them departs at 10:10, but the other departs at 8:15. The later record in the data 

location area is displayed for follow-up. 

It can be seen that inverted lists are best for applications that request specific data 

on multiple keys. They are ideal for static files because additions and deletions cause 

expensive pointer updating. 

 7.3.4 Direct- Access organization  

In direct – access file organization, records are placed randomly throughout the 

file. Records need not be in sequence because they are updated directly and rewritten 



back in the same location. New records are added at the end of the file or inserted in 

specific locations based on software commands.  

Records are accessed by addresses that specify their disk locations. An address is 

required for location a record, for linking records, or for establishing relationships. 

Addresses are of two types: absolute and relative. An absolute address represents the 

physical location of the record. It is usually stated in the format of sector/track/record 

number. For example, 3/14/6 means go to sector 3, track 14 of that sector, and the sixth 

record of the track. One problem with absolute addresses is that they become invalid 

when the file that contains the records is relocated on the disk. One way around this is to 

use pointers for the updated records. 

A relative address gives a record location relative to the beginning of the file. 

There must be fixed-length records for reference. Another way of locating a record is by 

the number of bytes it is from the beginning of the file (see Figure 7.1). Unlike relative 

addressing, if the file is move, pointers need not be updated, because the relative location 

of the record remains the same regardless of the file location. 



 FIGURE 7.1 Absolute and Relative Addressing – An Example 

  

 

 

 

 

 

Thus each file organization method has advantages and limitations. Many 

applications by their nature are best done sequentially. Payroll is a good example. The 

system goes through the employee list, extracts the information and prepares pay slips. 

There are no lengthy random-access seeks. In contrast, real-time applications where 

response requirements are measured in seconds are candidates for random-access design. 

Systems for answering inquires, booking airlines or stadium seats, updating checking or 

savings accounts in a bank, or interacting with a terminal are examples for random- 

access design. 

 FIGURE 7.2 File Organization Methods – A Summary  

 Method   Advantages    Disadvantages  

Sequential   Simple to design.    Records cannot be  
 Easy to program.   added to middle of file. 

Variable length & 
blocked records available 
Best use of software space  
 

Indexed sequential Records can be inserted or Unique keys required   
 Updated in middle of file. Processing  

Processing may be carried  occasionally slow.  out 
Sequentially or randomly Periodic  

reorganization of file 
required. 

     
Inverted list  Used in applications request- 
   ing specific data on multiple  
   keys. 
 

My address is 38, Sector 2 

Relative Address 

My relative address is the 4th 
house on left from community 
center. 

Absolute Address 



Random  Records can be inserted or  Calculating address updated in 
middle of file  required for  
Better control over record processing.  
Allocation.     Variable- length  

records nearly impossible to 
process.  

  

 7.4 Data Base Design  

A decade ago, database was unique to large corporations with mainframes. Today 

it is recognized as standard of MIS and is available for virtually every size of computer. 

Before the data base concept became operational, users had programs the handled their 

own data independent of other users. It was a conventional file environment with no data 

integration or sharing of common data across applications. In a database environment, 

common data are available and used by several users. Instead of each program (or user) 

managing its own data, data across applications are shared by authorized users with the 

data base software managing the data as an entity. A program now requests data through 

the data base management system (DBMS), which determines data sharing. 

 7.4.1 Objectives of Data Base  

The general theme behind a database is to handle information as an integrated 

whole. There is none of the artificiality that is normally embedded in separate file or 

applications. A database is a collection of interrelated data stored with minimum 

redundancy to serve many users quickly and efficiently. The general objective is to make 

information access easy, quick, inexpensive and flexible for the user. In data base design, 

several specific objectives are considered: 

1. Controlled redundancy: - Redundant data occupies space and, therefore, 

is wasteful. If versions of the same data are in different phases of updating, the system 

often gives conflicting information. A unique aspect of data base design is storing data 

only once, which controls redundancy and improves system performance. 

2. Ease of learning and use: - A major feature of a user- friendly database 

package is how easy it is to learn and use. Related to this point is that a database can be 

modified without interfering with established ways of using the data. 



3. Data independence: - An important database objective is changing 

hardware and storage procedures or adding new data without having to rewrite 

application programs. The database should be “ tunable” to improve performance without 

rewriting programs. 

4. More information at low cost: - Using, storing and modifying data at 

low cost are important. Although hardware prices are falling, software and programming 

costs are on the rise. This means that programming and software enhancements should be 

kept simple and easy to update. 

5. Accuracy and integrity: - The accuracy of a database ensures that data 

quality and content remain constant. Integrity controls detect data inaccuracies where 

they occur. 

6. Recovery from failure: - With multi-user access to a database, the system 

must recover quickly after it is down with no loss of transactions. This objective also 

helps maintain data accuracy and integrity. 

7. Privacy and security: - For data to remain private, security measures 

must be taken to prevent unauthorized access. Database security means that data are 

protected from various forms of destruction; users must be positively identified and their 

actions monitored.  

8. Performance: - This objective emphasizes response time to inquiries 

suitable to the use of the data. How satisfactory the response time is depends on the 

nature of the user-data base dialogue. For example, inquiries regarding airline seat 

availability should be handled in a few seconds. On the other extreme, inquiries regarding 

the total sale of a product over the past two weeks may be handled satisfactorily in 50 

seconds. 

In a data base environment, the DBMS is the software that provides the interface 

between the data file on disk and the program that requests processing. The DBMS stores 

and manages data. The procedure is as follows: 



1. The user requests a sales report through the application program. The 

application program uses a data manipulation language (DML) to tell the DBMS what is 

required. 

2. The DBMS refers to the data model, which describes the view in a 

language called the data definition language (DDL). The DBMS uses DDL to determine 

how data must be structured to produce the user’s view. 

3. The DBMS requests the input/output control system (IOCS) to retrieve the 

information from physical storage as specified by the application program. The output is 

the sales report. 

To summarize, 

1. DML manipulates data; it specifies what is required. 

2. DDL describes how data are structured. 

3. DBMS manages data according to DML requests and DDL descriptions.  

DBMS performs several important functions: 

1. Storing, retrieving, and updating data. 

2. Creating program and data independence. Either one can be altered 

independently of the other.  

3. Enforcing procedures for data integrity. Data are immune from deliberate 

alteration because the programmer has no direct method of altering physical databases. 

4. Reducing data redundancy. Data are stored and maintained only once. 

5. Providing security facilities for defining users and enforcing authorization. Access 

is limited to authorized users by passwords or similar schemes. 

6. Reducing physical storage requirements by separating the logical and physical 

aspects of the database. 

 7.4.2 Logical and Physical Views of Data 

In data base design, several views of data must be considered along with the 

persons who use them. In addition to data structuring, where relationships are reflected 



between and within entities, we need to identify the application program’s logical views 

of data within an overall logical data structure. The logical view is what the data look 

like, regardless of how they are stored. The physical view is the way data exist in 

physical storage. It deals with how data are stored, accessed, or related to other data in 

storage. Four views of data exist: three logical and one physical. The logical views are 

the user’s view, the programmer’s view and the overall logical view, called a schema. 

 7.4.3 Schemas and Subschemas  

The schema is the view the helps the DBMS decide what data in storage it should 

act upon as requested by the application program. An example of a schema is the arrival 

and departure display at an airport. Scheduled flights and flight numbers (schema) remain 

the same, but the actual departure and arrival times may vary. The user’s view might be a 

particular flight arriving or departing at a scheduled time. How the flight actually takes 

off or lands is of little concern to the user. The latter view is of subschema. It is a 

programmer’s (pilot’s) view. Many subschemas can be derived from one schema, just as 

different pilots visualize different views of a landing approach, although all (it is hoped) 

arrive at the scheduled time indicating on the CRT screen display (schema). 

Different application programmers visualize different subschemas. The software 

provides the relationships among the schema, subschema and physical structure. 

 7.5 Data Structure 

Data are structured according to the data model. In any sales example, sales items 

are linked to the salesperson that sold them. The salesperson is called an entity and the 

item sold is also an entity. An entity is a conceptual representation of an object. 

Relationships between entities make up a data structure. A data model represents a data 

structure that is described to the DBMS in DDL. 

 7.6 Types of Relationships  

Three types of relationships exist among entities: one-to-one, one-to-many, and 

many-to-many relationships.  



A one-to-one (1:1) relationship is an association between two entities. For 

example, in our culture, a husband is allowed on wife (at a time) and vice versa, and an 

employee has one social security number. 

A one–to-many (1:M) relationships describes an entity that may have two or more 

entities related to it. For example, a father may have many children, and an employee 

may have many skills. 

A many-to-many (M:M) relationship describes entities that may have many 

relationship in both directions. For example, children may have many toys, and students 

may have many courses. 

 7.7 Types of Data Structure  

Data structuring determines whether the system can create 1:1, 1:M, or M:M 

relationships among entities. Although all DBMSs have a common approach to data 

management, they differ in the way they structure data. There are three types of data 

structure: hierarchical, network and relational. 

 7.7.1 Hierarchical Structuring  

Hierarchical (also called tree) structuring specifies that an entity can have no more 

than one owning entity, that is we can establish a 1:1 or 1:M relationship. The owning 

entity is called the parent; the owned entity, the child. A parent with no owners is called 

the root. There is only one root in a hierarchical model.  

For example, a parent can have many children (1:M), whereas a child can have 

only one parent. Elements at the ends of the branches with no children are called leaves. 

Trees are normally drawn upside down, with the root at the top and the leaves at the 

bottom. 

The hierarchical model is easy to design and understand. Some applications, 

however, do not conform to such a scheme, such as for a firm dealing in sale of spare 

parts being manufactured by more than one company. Thus, we would have a non-

hierarchical structure, which complicates programming or the DBMS description. The 

problem is resolved by using a network structure. 



 7.7.2 Network Structuring  

A network structure allows 1:1, 1:M, or M:M relationships among entities. For 

example, an auto parts shop may have dealings with more than one manufacturer 

(parent). Spare parts may come from two companies, so they are owned by both entities-a 

structure that can best be supported by a network. Now consider the manufacturer and the 

auto parts shops it deals with. If the manufacturer sold spare parts to only one shop (say, 

a new car dealer), then there is a 1:1 relationship. If it supplied to many other dealers, 

then there is a 1:M relationship. The 1:1 and 1:M relationships can be supplied by a 

hierarchy. When auto parts dealers are supplied by many manufacturers, however, there 

is an M:M relationship, which is a network structure.  

A network structure reflects the real world, although a program structure can 

become complex. The solution is to separate the network into several hierarchies with 

duplicates. This simplifies the relationship to no more complex than 1:M. A hierarchy, 

then becomes a subview of the network structure.  

7.7.3 Relational Structuring  

In relational structuring, all data and relationships are represented in a flat, two-

dimensional table called a relation. A relation is equivalent to a file, where each line 

represents a record. For example, a relation that describes the entity EMPLOYEE by 

social security number, name and years with the firm. All the entries in each field are of 

the same kind. Furthermore, each field has a unique name. Finally, no two rows in the 

table are identical. A row is referred to as a tuple.  

A relational DBMS has several features: 

1. It allows the user to update (add, modify, or delete) the table’s contents. 

Any position can be changed. 

2. It provides inquiry capabilities against a label. Using our example, an 

inquiry might be: “How many years has Boynton been with the firm?” The response is 

“6.” 



3. Two or more tables can be merged to form one relation. Unlike 

hierarchical or network structuring where all relationships are predefined, a relational 

DBMS develops new relations on user commands. 

4. A relational structure is simpler to construct than a hierarchical or a 

network structure. It may be inefficient, though, since a relational DBMS responds to 

queries by an exhaustive review of the relations involved. 

7.8 Entities and Attributes 

An entity is something of interest to the user about which to collect or store data. 

It is also called a data aggregate because it represents a number of data elements. In our 

sales status system, the “sales” entity contains data elements such as the salesperson’s 

number, name and date of employment, and the sales period covered by the report. The 

“item” entity has data elements such as item number, item description, and the sale price 

of each item. 

Data entities are explained by the use of several terms: attribute, value key and 

instance of an entity. For example, a salesperson (entity) is described by attributes such a 

number, name, sex, age and height. So attributes describe an entity. They are physically 

stored in fields or data elements. 

Each attribute takes on a unique value. For example, “11306801” is a unique 

value of the attribute “ salesperson number.” An attribute, then, takes on a value for a 

specific occurrence (or instance) of an entity.  

A key is a unique identifier of the entity. In our example, the key 11306801 is a 

unique identifier of Jim Arnold. Sex, age and height are not identifiers, since they are not 

unique. They are non-key identifiers. 

7.9  Normalization 

Data structuring is refined through a process called normalization. Data are 

grouped in the simplest way possible so that later changes can be made with a minimum 

of impact on the data structure. When too many attributes are grouped together to form 

entities, some attributes are found to be entities themselves. Further normalization of 



these entities into attributes linked by common data elements to form relationships 

improves the effectiveness of the DBMS. 

7.10  Summary  

The design translates the system requirements into ways of operationalizing them. 

The design is a solution, a “ how to “ approach, compared to analysis, a “what is” 

orientation. The design phase focuses on the detailed implementation of the system 

recommended in the feasibility study.  

A file is organized to ensure that records are available for processing. It should be 

designed in the line with the activity and volatility of the information and the nature of 

the storage media and devices. There are four methods of organizing files: 

• Sequential organization simply means storing and sorting in physical, contiguous 

blocks within files on tape or disk according to key. 

• Indexed sequential organization stores records sequentially but uses an index to 

locate record. Records are related through chaining using pointers. 

• Inverted list organizatiion uses an index for each key type. Records are not 

necessarily in a particular sequences. 

• Direct access organization has records placed randomly through out the file. 

Records are updated directly and independently of the other records. 

A database is a collection of interrelated data stored with minimum redundancy to 

serve many users quickly and efficiently. The general objective is to make information 

access easy, quick, inexpensive and flexible for the user. Data base design minimizes the 

artificially embedded in using separate files. The primary objectives are fast response 

time to inquiries, more information at low cost, control of redundancy, clarity and ease of 

use, data and program independence, accuracy and integrity of the system, fast recovery, 

privacy and security of information, and availability of powerful end user languages. 

The heart of the data base is DBMS. It manages and controls the data base file 

and handle request from the application program. A data structure defines relationships 

among ententes. There are three types of relationships one-to-one, one-to-many and 



many-to-many. Although all DBMS have a common approach to data management, they 

are differ in the way they structure data. The three types of data structure are hierarchical 

, network and relational.  

Three are four views of data. The first three views are logical: users view 

application program (called Subschema), and overall logical view (called Schema). The 

data structure can be refined through a normalization process that group the data in the 

simplest way possible so that later changes can be made with ease. Normalization is 

designed to simplify relationships and establish logical links between files without losing 

information.   

7.11 Questions 

1 How is modularization a better approach than the traditional approach. 

2 Give examples of various types of relationships. 

3 Explain all the file organizations. 

4 What is normalization. 

5 Briefly explain the need of detailed design. 

 



  

 
 

 

 

8.0 Objective: 

8.1 Introduction 

 8.2 Design Objectives 

8.2.1 Reliable Systems 

8.2.2 Error Avoidance 

8.2.3 Error Detection and Correction 

8.2.4 Error Tolerance 

8.2.5 Causes of Errors 

 8.3    Maintenance of Systems 

8.4 Software Design 

              8.4.1 Top-Down Structure of Modules 

8.4.2 Coupling 

8.4.3 Cohesion 

    8.4.4 Span of Control 

 8.4.5 Module Size 

 8.4.6 Shared Modules 

8.5 Software Design and Documentation Tools 

8.5.1 Structured Flowcharts 

8.5.2 HIPO 

8.5.3 Visual Table of contents 

8.5.4 Warinier/Orr Diagrams 

8.6 Managing Quality Assurance 

8.6.1 Levels of Assurance 

8.6.1.1 Testing 

8.6.1.2 Verification and validation 

8.6.1.3 Certification 

Lesson No: 8                       Lesson Name :  System Control and Quality Assurance

Author : Dr. Jawahar         Vetter:      Dr. Pradeep K. Bhatia 



8.7 Testing Plans 

8.7.1 Code Testing 

 8.7.2 Specification Testing  

 8.7.3 Managing Testing Practices  

 8.7.4 Levels of Test 

8.7.5 Unit Testing 

8.7.6 Integration testing 

8.7.7 Special Systems Tests 

8.8 Designing Test Data 

8.9 Testing Libraries 

8.10 System controls 

8.11 Audit Trails 

8.12 Summary 

8.13 Questions 

 

 8.0 Objectives: 

• The goals of quality assurance in system development process 

• What are the system design objectives  

• What are the various software design and documentation tools 

• Why system are tested 

• The activity network of system testing  

• What steps are taken to test systems  

• What is a audit trails 

 

 
 8.1 Introduction 

No program or system design is perfect. Communication between the user and the 

designer is not always complete or clear and time is usually short. The result is errors. 

The number and nature of errors in a new design depend on several factors.  

1. Communication between the user and the designer.  



2. The programmer’s ability to generate a code that reflects exactly the system 

specifications.  

These factors put an increasing burden on systems analysts to ensure the success 

of the system developed. The quality of a system depends on its design, development, 

testing and implementation.  

 8.2 Design Objectives 

 The two operational design objectives continually sought by developers are 

systems reliability and maintainability.  

 8.2.1 Reliable Systems 

 A system is said to have reliability if it does not produce dangerous or costly 

failures when it is used in a reasonable manner, that is, in a manner that a typical user 

expects is normal. This definition recognizes that systems may not always be used in the 

ways that designers expect. There are changes in the ways users use a system and also in 

business operations. However, there are steps analysts can take to ensure that the system 

is reliable when it is installed and that the reliability can be maintained after 

implementation.  

 8.2.1.1 Approaches to Reliability  

 There are two levels of reliability. The first is that the system is meeting the right 

requirements. For instance, a system might be expected to have specific security features 

or controls built into it by the users. But if the design fails to specify them and permits the 

loss of funds or merchandise for a lengthy time before someone detects the problem, the 

system is not reliable. Reliability at the design level is possible only if the analyst 

performed a thorough and effective determination of systems requirements. A careful and 

thorough systems study is needed to satisfy this aspect of reliability.  

 The second level of systems reliability involves the actual workings of the system 

delivered to the user. At this level, systems reliability is interwoven with software 

engineering and development.  

 An error occurs whenever the system does not produce the expected output. 

While it is true that no program is ever fully debugged or fully tested, nor proven correct 

– a fact that startles many users and aspiring programmers – errors are not limited to the 

correct use of programming syntax alone.  



 The computing industry, largely through the work of Glenford Myers, has come 

to distinguish between error and failures. A failure is the occurrence of a software error, 

weighted by its seriousness. For example, if an inventory program is developed to 

truncate rather than round half – rupees when calculating the value of materials on 

handed, it is an error if specifications call for rounding. But it may be of no consequence 

to the user, who in fact does not consider this a failure. However, if the program regularly 

skips certain items or indicates they are out of stock when in fact the records show they 

are in stock, there is a serious failure.  

8.2.2 Error Avoidance 

 There are three approaches to reliability namely, error avoidance, error detection 

and error tolerance. Under error avoidance, developers and programmers make every 

attempt to prevent errors from occurring at all. The emphasis on early and careful 

identification of user requirements in another way this objective is pursued.  

 Analysts must assume that it is impossible to fully achieve this objective. Errors 

will occur despite the best efforts of very competent people. 

 8.2.3Error Detection and Correction 

 This method uses design features that detect errors and make necessary changes to 

correct either the error while the program is in use or the effect on the user, so that a 

failure does not occur. Correcting user errors, such as misspelling keywords or entering 

invalid commands, is one remedy. Error detection in programs is handled in a similar 

manner. For example, a program that calculates the productivity of a waiter or waitress in 

a restaurant by dividing the total revenue from meals served into the hours worked should 

not fail when employees do not serve anything. When a blinding snowstorm prevents 

customers from coming to a restaurant, employees will accumulate working time but will 

not have sales. The program should detect the divide – by – zero error and correct for it in 

order to keep the system running properly. Unfortunately, many programs fail when a 

situation like this one occurs. Even though it may not happen for several years after the 

system is installed, the error is there from the day of development. The failure occurs 

later. 

8.2.4 Error Tolerance  



Error tolerance strategies keep the system running even in the presence of errors. 

The United States National Aeronautics and Space Administration (NASA), for example, 

designs its systems to be error – tolerant through the use of redundant hardware. In one 

space program, redundant on – board computers and computer voting are used to process 

data in parallel, so results can be compared. Two computers process the data on location, 

course correction and compare the results with those produced by two other computers 

processing the same data. A fifth computer is available to break a tie should one occur. If 

needed, a sixth computer stored away in an accessible storage compartment can quickly 

replace one of the other computers that has been damaged or failed.  

 Another manner of error tolerance is the use of degraded processing. With this 

strategy, the user receives less service than the system was designed to provide, but that 

is considered a better alternative in some cases than having no service at all. For example, 

many electric power generation and distribution facilities in North America are computer 

– controlled. Suppose that on a record – breaking hot day the system becomes overloaded 

and the computer control center is unable to correctly process allocation data and keep up 

with the power demands. Rather than risk damaging the power distribution network, the 

computer automatically shuts down part of the network. By providing degraded service, 

the computer tolerates a software error without failing.  

 8.2.5 Causes of Errors 

 The software aspects of systems design are different from concerns about 

hardware reliability. In hardware, for example, any design errors are reproduced in every 

copy of the item manufactured. However, application systems are often unique and 

design errors are not widely distributed. Of course, if you are working on a system that 

will be sold commercially, there is considerable concern over development and marketing 

of software packages that is rampant with design errors. 

 Manufacturing errors are introduced during the actual production process. They 

are not a property of the design and, in fact, may not be in every item produced. 

Manufacturing errors may exist only in items made during a specific time period, either 

because of unknown problems with material quality or mistakes made by people newly 

assigned to a step in the process. In software systems, the equivalent of manufacturing 

errors is the small chance that, when disk or tape copies of programs are made for 



distribution, errors will be introduced. This problem seldom occurs, however, and should 

not be a major concern to the analyst. 

 Hardware failures occur as equipment is used and begins to wear out. There is no 

equivalent in software; that is, we do not find software unusable because it is worn out. 

The medium on which it is carried (such as magnetic tape or disk) may become worn or 

damaged, but the software will not. 

 Therefore, the primary software problem is designing and developing software 

that will not fail. It is impossible to prove that there are no errors in a particular system.  

 The causes of errors that interest the analyst are (1) not obtaining the right 

requirements, (2) not getting the requirements right, and (3) not translating the 

requirements in a clear and understandable manner so that programmers implement them 

properly. 

 The transition from systems design to software development is an additional 

opportunity for introducing translation errors. These are the result of the programmer’s 

not properly understanding or interpreting the design specifications produced by analysts. 

Conversely, they also occur when analysts force programmers to translate specifications 

that are incomplete. In the latter case, the programmer is forced to make design decision 

while coding the software. 

 When such misunderstanding exist and implementation occurs before they are 

detected, the result is a need for maintenance.  

 8.3 Maintenance of Systems 
 When systems are installed, they generally are used for long periods. The average 

life of a system is 4 to 6 years, with the oldest application often in use for over 10 years. 

However, this period of use brings with it the need to continually maintain the system. 

Because of the use a system receives after it is fully implemented, analysts must take 

precautions to ensure that the need for maintenance is controlled through design and 

testing and the ability to perform it is provided through proper design practices. 

 8.3.1 Maintenance Issues 

 Many private, university and government studies have been conducted to learn 

about maintenance requirements for information systems. The studies have generally 

concluded the following: 



1. From 60 to 90 percent of the overall cost of software during the life of a 

system is spent on maintenance. 

2. Often maintenance is not done very efficiently. In documented cases, the cost 

of maintenance, when measured on the basis of the cost of writing each 

instruction in code form, is more than 50 times the cost of developing a 

system in the first place. 

3. Software demand is growing at a faster rate than supply. Many programmers 

are spending more time on systems maintenance than on new development. 

Studies have documented that in some sites, two – thirds of the programmes 

are spending their time on the maintenance of software. There is a backlog of 

new development work. Moreover, there is a hidden backlog, requests for 

development work that users do not bother even to submit because they know 

it will be years before development can being. 

Several studies of maintenance have examined the type of tasks performed under 

maintenance. The broad classes maintenance found in information systems environments 

are corrective, adaptive and perfective. Once systems are installed, the need for 

debugging and correcting errors or failures on an emergency basis is comparatively low: 

less than 20 percent of the tasks are for correction.  

 Information systems and the organizations they serve are in a constant state flux. 

Therefore, the maintenance of systems also involves adaptations of earlier versions of the 

software. Approximately 20 percent of all maintenance is performed to accommodate 

changes in reports, files and data. This also includes adaptations required when new 

hardware or software is installed in a particular processing center. 

 The greatest amount of maintenance work is for user enhancement, improved 

documentation, or recoding systems components for greater efficiency. Sixty percent of 

all maintenance is for this purpose. Yet, many of the tasks in this category can be avoided 

if systems engineering is carried out properly.  

 8.3.2 Maintainable Designs 

 The keys to reducing the need for maintenance, while making it possible to do 

essential tasks more efficiently, are these: 



1. More accurately defining the user’s requirements during systems 

development. 

2. Assembling better system documentation. 

3. Using more effective methods for designing processing logic and 

communicating it to project team members. 

4. Making better use of existing tools and techniques. 

5. Managing the systems engineering process effectively. 

As indicated by the preceding comments, design is both a process and a product. 

The design practices followed for software dramatically affect the maintainability of a 

system: good design practices produce a product that can be maintained.  

 8.4 Software Design 
 These principles should guide software design: 

� Modularity and Partitioning. 

Each system should consist of a hierarchy of modules. Lower level modules are 

generally smaller in scope and size compared to higher – level modules and serve to 

partition processes into separate functions.  

� Coupling 

Modules should have little dependence on other modules in a system. 

� Cohesion 

Modules should carry out a single processing function. 

� Span of Control 

Modules should interact with and manage the functions of a limited number of 

lower-level modules. 

� Size 

The number of instructions contained in a module should be limited to that 

module size is generally small. 

� Shared Use 

Functions should not be duplicated in separate modules, but established in a 

single module that can be invoked by any other module when needed. 



 8.4.1 Top-Down Structure of Modules 
 Top – down methods are used throughout the analysis and design process. The 

value of using a top-down approach, starts at the general levels to gain an understanding 

of the system and gradually moves down to levels of greater detail. In the process of 

moving from top downward, each component is “exploded” into greater detail. One data 

flow diagram became several at the next lower level. 

 During the discussion of input and menu design, a top-down approach was 

emphasized. The main menu contains several choices. Making one choice produces 

another menu in, which more detailed options are presented to the user. This capability 

provides users with an easy – to – understand method for using the system and selecting 

option. They do not have to make all decision together but instead can make one at a 

time.  

 The top – down method is also widely used in systems engineering and software 

design. Each function, the system will perform is first identified, and then developed in 

greater detail. Program designers term this as stepwise refinement: the procedures and 

processes are developed a step at a time, from general to specific. 

 For example, an accounting system consists of many separate modules that are 

invoked one at a time as users indicate the particular function they wish to perform. Each 

upper – level module in turn leads to using one or several lower-level modules until the 

desired function is performed. 



 8.4.2 Coupling 

Coupling refers to the strength of the relationship between modules in a system. 

In general, good designers seek to develop the structure of a system so that one module 

has little dependence on any other module.  

 Loose coupling minimizes the interdependence between modules. We can achieve 

this in the following ways. 

� Control the number of parameters passed between modules 

� Avoid passing unnecessary data to called modules 

� Pass data (whether upward or downward) only when needed  

� Maintain superior/subordinate relationship between calling and called 

modules. 

� Pass data, not control information 

Consider the manner in which data are passed in an accounting system. In editing 

a vendor record (for the accounts payable portion), two alternative designs for editing a 

vendor record (for the accounts payable portion) are available. In the first, typified by 

tight coupling, which is undesirable, the calling module passes the vendor name, vendor 

identification number, address, tax status and date. The called module returns the 

customer record, along with an end – of – file flag.  

 Figure: 8.1 Coupling & Cohesion in software design 

 

 

 

 

 

 

 

 

 

 

 

 

Couplin

Coupling 

Couplin

Coupling: Strength of 
relations Between 

Modules 
Strength  

Cohesion: Strength of  relation Within  
modules 



 Figure 8.2  Coupling and strength of relations between modules 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Compare this with the preferred loosely coupled version in which only the vendor ID is 

passed to retrieve the same record of information. Not only does this design move less 

data (only non-superfluous data), but also there is far less dependence between modules. 

Only the vendor identification is needed to distinguish one vendor’s record from another. 

Since it is likely to be the record key, it is also unlikely to change. Other items in the 

record may change. Hence, the loosely coupled alternative is better suited to achieving 

the stated design and maintenance objectives. 

Edit vendor record Edit vendor 
record 

Retrieve vendor 
record 

Retrieve 
vendor record 

Vendor name 
vendor ID 
vendor address 
Tax status date 

Vendor 
record 
EOF 

Vendor 
record 
EOF 

Vendor 
ID 

 Poor: Tight Coupling  Good: Loose 

Coupling



 Several poor design features should be avoided. Passing too little data can make it 

impossible to perform the task. For example, if the calling module does not pass the 

vendor ID, how does the subordinate module know which record to locate?  

Designs that create floating data should also be avoided. This occurs when one 

module produces data that are not needed by the calling module but by another elsewhere 

in the system. The details are passed through the system (hence the term “floating”), until 

they finally reach the function that requires them. Redesigning, to establish loose 

coupling, along with the creation of more cohesive modules, will avoid this difficulty. 

8.4.3 Cohesion 

Using the top- down approach to planning the software for a system is no guarantee that 

errors will be avoided or that the system will be maintainable. In properly modularized, 

cohesive systems, the contents of the modules are so designed that they perform a 

specific function and are more easily understood by people than systems designed by 

other methods. There are four general types of modules contents:  

1. Module contents determined by function performed, 

2. Module contents determined by data used,  

3. Module contents determined by logic of processing and 

4. Module contents not closely related.  

 The least desirable type of grouping of module contents consists of steps that do 

not perform any complete function or that do not logically go together. This extreme case 

can arise if programmers work according to strict rules and divide modules into section of 

50 statements each (or some other imposed limit). Input, output, calculation and file – 

handling activities are thus performed in a single module. If this case occurs, it is usually 

created as result of the programmer’s working without explicit design specifications or a 

clear understanding of how to handle a task. 

 Module contents may also be grouped together because they logically go together. 

A module that handles all input or all output operations or one that handles all order – 

processing activities, regardless of type of customer or data – handling needs for each 

customer, uses logical grouping.  

 The elements may also be related by the time at which they are performed; that is, 

they logically seem to go together and are performed at the same time. A module that 



initializes all variables and opens files is logically bound. This level of modularity is 

preferable to the first type because all the elements are executable at one time.  

 Modules that are logically bound are difficult to modify because the cost will be 

shared for each type of activity. Even the simplest change can affect all types of 

transactions. A better solution is to separate each type of transaction into its own module. 

 Module contents may also be determined by the data used. A module in which the 

contents refer to the same data is preferable to one that is developed only on the basis of 

processing logic. For example, a module can be designed so that all operations on a set of 

data are performed at one time: a file is prepared to be printed on paper, spooled to disk, 

and also duplicated for backup purposes. A module that reads the next transaction and 

updates the master file by adding, deleting, or changing records, including the errors 

checking required for each type of function, shares a common set of data. This type of 

binding is better than the other types discussed, but it is not as good functional grouping. 

 Functional grouping permits more thorough testing of the module. If changes are 

needed at a later time, analysts and programmers can quickly determine how the module 

is constructed and how it processes data and interacts with other modules in the system. 

 The emphasis on reliability and maintainability is constant throughout systems 

development.  

 8.4.4 Span of Control 

 Span of control refers to the number of subordinate modules controlled by a 

calling module. In general, we should seek to have no more than five to seven 

subordinate modules. 

 On the one hand, excessive span of control, meaning a high number of 

subordinate modules, creates considerable overhead in determining which module to 

invoke under certain conditions and in establishing calling sequences to pass data and 

receive results. On the other hand, it typically results from not adhering to the coupling 

and cohesion objectives discussed previously. 

 8.4.5  Module Size 

 How large should a program module be? While it is impossible to fix a specific 

number of instructions, there are useful guidelines to manage module size. 



 Some organizations have established rules to manage module size. A common 

one is that no module should contain more than 50 instructions. Another is that the listing 

of source code for a module should fit on a single printer page. In some situations, these 

rules are appropriate, but in others they result in arbitrary decision (for example, “If the 

module cannot be coded in 50 instructions, create a second module that is called by the 

first”) that miss the point of managing module size. 

 In general, we should seek designs in which the modules focus on a single 

purpose, are highly cohesive, and are loosely coupled. Yet the modules should not be too 

small (when that occurs, modules should be combined). The size of the module depends 

on the language used as well. Approximately 50 statements in COBOL may be an 

acceptable upper limit (programmers should not have to redesign if, say 51 or 55 

statements are needed, providing other design objectives are met). On the other hand, 50 

instructions in a powerful fourth – generation language (where one instruction replaces 

from 10 to 50 equivalent COBOL statements) will probably be unacceptable. 

8.4.6  Shared Modules 

 Shared use results from the desire to have a certain function, calculation, or type 

of processing performed in one place in a system. We want to design the system so that a 

certain calculation (such as determination of sales tax in an order processing system) is 

performed once. Then the module can be shared throughout the system by invoking it 

from various calling modules.  

 Why share modules? There are several reasons. First, sharing modules minimizes 

the amount of software that must be designed and written. Second, it minimizes the 

number of changes that must be made during system maintenance For instance, if tax 

calculation procedures change, only one module must be modified under the shared 

module principle.  And third, having a single shared module reduces the chance of error: 

there is a greater likelihood that redundant modules will follow different calculation 

procedures, if not initially, after the introduction of maintenance changes (one module 

may not be changed because it is overlooked).  

 Many systems establish library modules – predefined procedures – which are 

included in the system’s program library. A single command or call quickly invokes the 

routine. 



 Shared library modules are one of the best ways in which good designers can 

design solutions. 

8.5 Software Design and Documentation Tools 
 Well – designed, modular software is more likely to meet the maintenance, 

reliability, and testing requirements. Three specific tools are discussed: Structured flow-

charts, HIPO diagrams, and Warnier / Orr diagrams.  

8.5.1 Structured Flowcharts 

 Structured flowcharts, also called Nassi-Schneiderman Charts, are graphic tools 

that force the designer to structure software that is both modular and top- down. They 

provide a structure that can be retained by programmers who develop the application 

software. Organization responsibilities vary. In some organizations, analysts are 

responsible for developing module logic, while in others that responsibility is delegated 

to the programmer. In either case, the programmer should be well versed in the use of 

structured flowcharts.  

8.5.1.1 Basic Elements 

 There are three basic elements used in developing structured flowcharts: process, 

decision, and iteration. (There are many similarities between these elements and the 

components used in structured English.) 

Process: A rectangular box, the process symbol, represents Simple processes or steps in a 

program. This symbol represents initialization of values, input and output activities, and 

calls to execute other procedures.  

 A name of brief description written in the box states the purpose of the process. 

The succession of steps is shown using several process boxes.  

8.5.1.2 Decision 

 The decision symbol represents alternative conditions that can occur and that the 

program must have a manner of handling. They show the equivalent of the IF-THEN-

ELSE structures common in many programming languages. As examples will show, the 

decision symbol may show actions for more than two alternatives at the same time. 

8.5.1.3 Iteration  

 The iteration symbol represents looping and repetition of operations while a 

certain condition exists or until a condition exists. The form of the iteration symbol 



clearly shows the scope of the iteration, including all processes and decisions that are 

contained within the loop. The left – hand portion of the symbol shows the path of 

repetition to follow until the conditions controlling the iteration are satisfied.  

8.5.1.4 Using Structured Flowcharts 

 Structured flowcharts use no arrows or continuations on separate pages. Each 

structured flowchart is shown on a single sheet of paper (or single display screen, if 

developed online). 

 When designing a structured flowchart the systems analyst specifies the logic in a 

top – down fashion. The first consideration in a process or decision is the top element. 

The second in sequence is the next one shown, and so forth. Similarly, there is a single 

exit from the process. 

 The analyst beings with a major process and introduces other symbols to 

subdivide the process. Each process is named, but, if the name is not underlined, it is a 

reference to some other diagram or description. This simple convention makes it possible 

to link together easily different procedures that are performed to complete an entire 

activity. 

 The structure chart reads from top to bottom and left to right. Each activity is 

nested within the iteration and alternative processes of which it is part. In addition, each 

condition is clearly shown. 

 Individual parts of processes are often further described in lower-level diagrams. 

Individual modules are referenced to handle the processing for each type of transaction. 

 An important use of structured flowcharts for the designer concerned about 

verifying systems specifications against planned software logic is to identify conditions 

and procedures followed when the conditions exist.  The fact that the structure chart is 

easy to read will enable the analyst to determine whether the debit adjustment transaction, 

for example, has been added by the programmer or is a part of the original systems 

specifications. 

8.5.2 HIPO 

 HIPO is another commonly used method for developing systems software. IBM 

developed this method of Hierarchical Input Process Output (HIPO), for large, complex 

operating systems. 



8.5.2.1 Purpose 

 The assumption on which HIPO is based is that is easy to lose track of the 

intended function of a system or component in a large system. This is one reason why it 

is difficult to compare existing systems against their original specifications (and therefore 

why failures can occur even in systems that are technically well formulated). From the 

user’s view, single functions can often extend across several modules. The concern of the 

analyst then is understanding, describing, and documenting the modules and their 

interaction in a way that provides sufficient detail but that does not lose sight of the larger 

picture. 

 HIPO diagrams are graphic, rather than prose or narrative, descriptions of the 

system. They assist the analyst in answering three guiding questions: 

1. What does the system or module do? (Asked when designing the system). 

2. How does it do it? (Asked when reviewing the code for testing or 

maintenance). 

3. What are the inputs and outputs? (Asked when reviewing the code for testing 

or maintenance.) 

A HIPO description for a system consists of the visual table of contents and the 

functional diagrams. 

8.5.3 Visual Table of contents 

 The visual table of contents (VTOC) shows the relation between each of the 

documents making up a HIPO package. It consists of a hierarchy chart that identifies the 

modules in a system by number and in relation to each other and gives a brief description 

of each module. The numbers in the contents section correspond to those in the 

organization section. 

 The modules are in increasing detail. Depending on the complexity of the system, 

three to five levels of modules are typical. 

8.5.3.1 Functional Diagrams 

 There is one diagram for each box in the VTOC. Each diagram shows input and 

output (right to left or top to bottom), major processes, movement of data, and control 

points. Traditional flowchart symbols represent media, such a magnetic tape, magnetic 



disk, and printed output. A solid arrow shows control paths, and open arrow identifies 

data flow. 

 Some functional diagrams contain other intermediate diagrams. But they also 

show external data, as well as internally developed data (such as tables in the invoice 

example) and the step in the procedure where the data are used. A data dictionary 

description can be attached to further explain the data elements used in a process. 

 HIPO diagrams are effective for documenting a system. They also aid designers 

and force them to think about how specifications will be met and where activities and 

components must be linked together. However, they rely on a set of specialized symbols 

that require explanation, an extra concern when compared to the simplicity of, for 

example, data flow diagrams. HIPO diagrams are not as easy to use for communication 

purposes as many people would like. And, of course, they do not guarantee error-free 

systems. Hence, their, greatest strength is the documentation of a system. 

8.5.4 Warinier/Orr Diagrams 

 Warnier/Orr diagrams (also known as logic construction of programs/logical 

construction of system) were initially developed in France by Jean – Dominique Warnier 

and in the United States by Kenneth Orr. This method aids the design of program 

structures by identifying the output and processing results and then working backwards to 

determine the steps and combinations of input needed to produce them. The simple 

graphic methods used in Warnier/Orr diagrams make the levels in the system evident and 

the movement of the data between them vivid.  

8.6 Managing Quality Assurance 

 Quality assurance is the review of software products and related documentation 

for completeness, correctness, reliability, and maintainability. And, of course, it includes 

assurance that the system meets the specifications and the requirements for its intended 

use and performance. 

8.6.1 Levels of Assurance 

 Analysts use four levels of quality assurance: testing, verification, validation, and 

certification. 

8.6.1.1 Testing 



 Systems testing is an expensive but critical process that can take as much as 50 

percent of the budget for program development. The common view of testing held by 

users is that it is performed to prove that there are no errors in a program. However, this 

is virtually impossible, since analysts cannot prove that software is free and clear of 

errors. 

 Therefore, the most useful and practical approach is with the understanding that 

testing is the process of executing a program with explicit intention of finding errors that 

is, making the program fail. The tester, who may be an analyst, programmer, or specialist 

trained in software testing, is actually trying to make the program fail. A successful test, 

then, is one that finds an error. 

 Analysts know that an effective testing program does not guarantee systems 

reliability. Reliability is a design issue. Therefore, reliability must be designed into the 

system. Developers cannot test for it.  

8.6.1.2 Verification and validation 

 Like testing, verification is also intended to find errors. Executing a program in a 

simulated environment performs it. Validation refers to the process of using software in a 

live environment on order to find errors.  

 When commercial systems are developed with the explicit intention of 

distributing them to dealers for sale or marketing them through company – owned field 

offices, they first go through verification, some-times called alpha testing. The feedback 

from the validation phase generally produces changes in the software to deal with errors 

and failures that are uncovered. Then a set of user sites is selected that puts the system 

into use on a live basis. These beta test sites use the system in day- to - day activities; 

they process live transactions and produce normal system output. The system in live in 

very sense of the word, except that the users are aware they are using a system that can 

fail. But the transactions that are entered and the persons using the system are real.  

 Validation many continue for several months. During the course of validating the 

system, failure may occur and the software will be changed. Continued use may produce 

additional failures and the need for still more change. 

8.6.1.3 Certification 



 Software certification is an endorsement of the correctness of the program, an 

issue that is rising in importance for information systems applications. There is an 

increasing dependence on the purchase or lease of commercial software rather than on its 

in-house development. However, before analysts are willing to approve the acquisition of 

a package, they often require certification of the software by the developer or an unbiased 

third party. 

 For example, selected accounting firms are now certifying that a software package 

in fact does what the vendor claims it does and in a proper manner. To so certify the 

software, the agency appoints a team of specialists who of specialists who carefully 

examine the documentation for the system to determine what the vendor claims the 

system does and how it is accomplished. Then they test the software against those claims. 

If no serious discrepancies or failures are encountered, they will certify that the software 

does what the documentation claims. They do not, however, certify that the software is 

the right package for a certain organization. That responsibility remains with the 

organization and its team of analysts. 

8.7 Testing Plans 

 The philosophy behind testing is to find errors. Test cases are devised with this 

purpose in mind. A test case is a set of data that the system will process as normal input. 

However, the data are created with the express intent of determining whether the system 

will process them correctly. For example, test cases for inventory handling should include 

situations in which the quantities to be withdrawn form inventory exceed, equal, and are 

less than the actual quantities on hand. Each test case is designed with the intent of 

finding errors in the way the system will process it.  

 There are two general plans for testing software: The strategies of code testing ad 

specification testing. 

8.7.1 Code Testing  

 The code-testing strategy examines the logic of the program. To follow this 

testing method, the analyst develops test cases that result in executing every instruction in 

the program or module; that is, every path through the program is tested. A path is a 

specific combination of conditions that is handled by the program. For example, in the 

accounting systems example, one path through the system is to change the account 



balances. The correct request is submitted, then the proper passwords, data, and 

command entries. 

 On the surface, code testing seems to be an ideal method for testing software. 

However, the rationale that all software errors can be uncovered by checking every path 

in a program is faulty. First of all, in even moderately large programs of the size used in 

typical business situations, it is virtually impossible to do exhaustive testing of this 

nature. Financial considerations and time limitations alone will usually preclude 

executing every path through a program, since there may be several thousand. 

 However, even if code testing can be performed in its entirety, it does not 

guarantee against software failures. This testing strategy does not indicate whether the 

code meets its specifications nor does it determine whether all aspects are even 

implemented. Code testing also does not check the range of data that the program will 

accept, even though, when software failures occur in actual use, it is frequently because 

users submitted data outside of expected ranges. 

8.7.2  Specification Testing  

 To perform specification testing, the analyst examines the specifications stating 

what the program should do and how it should perform under various conditions. Then 

test cases are developed for each condition or combination of conditions and submitted 

for processing. By examining the results, the analyst can determine whether the program 

performs according to its specified requirements. 

 This strategy treats the program as if it were a black box: the analyst does not look 

into the program to study the code and is not concerned about whether every instruction 

or path through the program is tested. In that sense, specification testing is not complete 

testing. However, the assumption is that, if the program meets the specifications, it will 

not fail. 

 Neither code nor specification testing strategy is ideal. However, specification 

testing is a more efficient strategy, since it focuses on the way software is expected to be 

used. It also shows once again how important the specifications developed by the analysts 

are throughout the entire systems development process. 

8.7.3  Managing Testing Practices  



 Regardless of which strategy the analyst follows, there are preferred practices to 

ensure that the testing is useful. The levels of tests and types of test data, combined with 

testing libraries, are important aspects of the actual test process. 

8.7.4 Levels of Test  

 Systems are not designed as entire systems nor are they tested as single systems. 

The analyst must perform both unit and integration testing.  



8.7.5  Unit Testing 

 In unit testing the analyst tests the programs making up a system. (For this reason 

unit testing is sometimes called program testing.) The software units in a system are the 

modules and routines that are assembled and integrated to perform a specific function. In 

a large system, many modules at different levels are needed.  

 Unit testing focuses first on the modules, independently of one another, to locate 

errors. This enables the tester to detect errors in coding and logic that are contained 

within that module alone. Those resulting form the interaction between modules are 

initially avoided.  

 For example, a hotel information system consists of modules to handle 

reservations; guest check-in and checkout; restaurant, room service, and miscellaneous 

charges; convention activities; and accounts receivable billing. For each, it provides the 

ability to enter, change, or retrieve data and respond to inquiries or print reports. 

 The test cases needed for unit testing should exercise each condition and option. 

For example, test cases are needed to determine how the system handles attempts to 

check-in guests who do and do not have reservations, as well as those instances involving 

changing the name on the reservation when a person other than the one listed arrives. 

Also needed are test cases for the checkout situations of paying the exact amount of the 

bill, only part of the bill, and more than the amount shown. Even checking out without 

making any payment at all must be included in a test case. 

 If the module receives input or generates output, test cases are also needed to test 

the range of values expected, including both valid and invalid data. What will happen in 

the hotel checkout example if a guest wishes to make a payment of Rs. 1,00,000 for an 

upcoming convention? Are the payments and printing modules designed to handle this 

amount? Testing for this question quickly detects existing errors. 

 If the module is designed to perform iterations, with specific processes contained 

within a loop, it is advisable to execute each boundary condition: 0 iteration, 1iteration 

though the loop, and the maximum number of iterations through the loop. Of course, it is 

always important to examine the result of testing, but special attention should be given to 

these conditions. Analysts too often make the mistake of assuming that a case of 0 

iteration will automatically be handled properly. 



 Unit testing can be performed from the bottom up, starting with the smallest and 

lowest – level modules and proceeding one at a time. For each module in bottom-up 

testing, a short program (called a driver program because it drives or runs the module) 

executes the module and provides the needed data, so that the module is asked to perform 

the way it will when embedded within the larger system. When bottom-level modules are 

tested, attention turns to those on the next level that use the lower – level ones. They are 

tested individually and then linked with the previously examined lower – level modules. 

 Top-down testing, as the name implies, begins with the upper – level modules. 

However, since the detailed activities usually performed in lower-level routines are not 

provided (because those routines are not being tested), stubs are written. A stub is a 

module shell that can be called by the upper – level module and that, when reached 

properly, will return a message to the calling module, indicating that proper interaction 

occurred. No attempt is made to verify the correctness of the lower-level module. 

8.7.6  Integration testing 

 Integration testing does not test the software per se but rather the integration of 

each module in the system. It also tests to find discrepancies between the system and its 

original objective, current specifications, and systems documentation. The primary 

concern is the compatibility of individual modules. Analysts are trying to find areas 

where modules have been designed with different specifications for data length, type, and 

data element name. For example, one module may expect the data item for customer 

identification number to be a numeric field, while other modules expect it to be a 

character data item. The system itself may not report this as an error, but the output may 

show unexpected results. If a record created and stored in one module, using the 

identification number as a numeric field, is later sought on retrieval with the expectation 

that it will be a character field, the field will not be recognized and the message 

“REQUESTED RECORD NOT FOUND” will be displayed.  

 Integration testing must also verify that file sizes are adequate and that indices 

have been built properly. Sorting and reindexing procedures assumed to be present in 

lower-level modules must be tested at the systems level to see that they in fact exist and 

achieve the results modules expect. 

8.7.7  Special Systems Tests 



 There are other tests that are in special category, since they do not focus on the 

normal running of the system. Six tests are essential. 

1. Peak Load Testing 

 There are critical times in many systems, particularly online systems. For 

example, in a banking system, analysts want to know what will happen if all teller sign on 

at their terminals at the same time before the start of the business day. Will the system 

handle them one at a time without incident, will it attempt to handle all of the at once and 

be so confused that it “locks up” and must be restarted, or will terminal addresses be lost? 

The only sure way to find out is to test for it. The same situations can arise when tellers’ 

sign out during lunch periods and at the end of the day, so testing is looking at real 

situations. 

2. Storage Testing  

 Analysts specify a capacity for the system when it is designed and constructed. 

Capacities are measured in terms of the number of records that a disk will handle or a file 

can contain. These capacities are linked to disk space and the size of indices, record keys, 

and so on. But they too must be tested. If the documentation for a new system to be run 

on a microcomputer claims that a disk file can store up to 10,000 records, each 393 bytes 

long, the claim must be verified before implementation. 

 Storage testing often requires entering data until the capacity is reached. 

Comparing the actual and claimed capacities will verify the accuracy of the 

documentation on the one hand and allow a judgement about actual capacity at the same 

time. Many, many systems are never tested in this way. Users find out too late that claims 

made during installation are not true: there is not enough storage capacity for transactions 

and master file records. 

3. Performance Time Testing 

 When analysts are developing a design, their concerns are more on reports, inputs, 

files, and processing sequences than on performance time, although this changes with 

experience. During simple unit and integration testing, relatively small sets of data are 

used to find errors or cause failures. Therefore, users frequently find out how slow or fast 

the response time of the system is only after it has been installed and loaded up with data. 

That may be too late. Systems are rarely too fast for users. 



 Performance time testing is conducted prior to implementation to determine how 

long it takes to receive a response to an inquiry, make a backup copy of a file, or send a 

transmission and receive a response. It also includes test runs to time indexing or 

resorting of large files of the size the system will have during a typical run or to prepare a 

report. 

 A system that runs well with only a handful of test transactions may be 

unacceptably slow when full loaded. And the time to know about this is prior to 

implementation, when adjustments can be more easily made. Once files are fully loaded 

and the user is relying on the system for daily activities, it is difficult to pull it back and 

being large- scale changes. The user needs the system and the analyst will not want to 

risk the loss of live data. 

4. Recovery Testing 

 Analysts must always assume that the system will fail and data will be damaged 

or lost. Even though plans and procedures are written to cover these situations, they also 

must be tested. By creating a failure or data loss event where the users are forced to 

reload and recover form a backup copy, analysts can readily determine whether recovery 

procedures are adequate. The best – designed plans usually are adjusted or augmented 

after this test.  

5. Procedure Testing  

 Documentation and run manuals tell the user how to perform certain functions are 

tested quite easily by asking the user to follow them exactly through a series of events. It 

is surprising how not including instructions about when to depress the enter key, about 

removing diskettes before powering down, or what to do when the paper – out light on 

the printer lights up can raise questions. 

 There is, of course, no substitute for a well – designed set of procedure manuals. 

Analysts concentrate on the major and critical details of a systems design and include 

them in the documentation. They also pay attention to the little details, when designing 

the system. But often descriptions of the details do not get into the documentation. This 

type of testing not only shows where they are needed but also where they are wrong, that 

is, where actions suggested in the documentation do not match those that must actually be 

taken to make the system. 



6. Human factors Testing 

 What do users do if, after submitting a transaction through a terminal, the screen 

goes blank while the data are being processed? They may not take the actions the analyst 

wants or expects, instead responding in unusual ways: they may depress the send key 

several times, turn the power switch on the terminal off and back on, unplug it and replug 

it, or beat on the terminal. Obliviously, they will do just about anything if the analyst has 

not given them some message on the screen to indicate that their request has been 

received, that it is being processed, and that there will be a short delay. This is what 

human factors testing is all about – finding answers to questions about how people will 

react to the system in ways not anticipated. And as a general rule, as strange as the above 

actions may sound, the people are right; they are taking actions that are normal under the 

circumstances. 

 It is the responsibility of the analyst to anticipate questions that will arise in the 

minds of the users as they interact with the system. If a screen will go blank during 

transaction processing, the analyst should make sure that it displays a message informing 

the user that processing is occurring. Even that is not enough if the delay will be more 

than a second or two. For processing that will take long periods, the analyst should have 

the screen give the user a message telling approximately how long it will take and 

providing an option to cancel the request. The user may decide to have that one – hour 

job run some other time when the system is not so busy. 

 If the system is going into a long sorting step, the analyst should keep the user 

informed about how much of the sort is completed. Users appreciate systems that display 

the numbers of records sorted or the percentages completed. 

 Also the analyst should be sure to watch how people enter data. Do they use 

different keystroke form those anticipated (such as the top row of numbers on the 

typewriter pad rather than those on the numeric keypad)? Are any keystrokes awkward 

and therefore error prone (for example, having to hold down the shift key with the little 

finger while depressing the + key with the index finger)? 

 How will the user of a system feel after working with the system for a lengthy 

period of time? Glare on the screen or simply too much detail on one display is physically 

and mentally irritating. Slight modifications in the display contents or the location of the 



equipment are important human factor concerns that dramatically affect the user and, 

therefore, the system over time. 

 These simple testing questions are of monumental importance and extremely 

helpful in finding flaws that can cause the system to fail. Some analysts will find these 

flaws the hard way – through bad experiences. It is difficult to forget the system that was 

damaged because a user banged on the terminal when data were submitted and accepted 

by the system without displaying a response. But, following the guidelines above, the 

analyst can avoid those situations. 

8.8 Designing Test Data 

 There are two very different sources of test data, live and artificial. Both have 

distinct advantages and disadvantages for the tester. 

8.8.1 Using Live Test Data  

 Live test data are those that are actually extracted from organization files. After a 

system partially constructed, programmers or analysts often ask users to key in a set of 

data from their normal activities. For example, in a general ledger accounting system, 

they may ask someone from the accounting staff to enter the chart of account numbers 

and a set of account balances, along with transactions affecting those accounts. Then the 

systems person uses this data as a way to partially test the system. In other instances, 

programmers or analysts extract a set of live data from the files and have them entered 

themselves. 

 It is difficult to obtain live data in sufficient amounts to conduct extensive testing. 

And, although it is realistic data that will show how the system will perform for the 

typical processing requirements, assuming that the live data entered are in fact typical, 

such data generally will not test all the combinations or formats that can enter the system. 

The bias toward typical values then does not provide a true systems test and in fact 

ignores the cases most likely to cause systems failure. 

8.8.2 Using Artificial Test Data 

 Artificial test data are created solely for test purposes, since they can be generated 

to test all combinations of formats and values. In other words, the artificial data, which 

can quickly be prepared by a data – generating utility program in the information systems 

department, make possible the testing of all logic and control paths through the program. 



 The most effective test programs use artificial test data generated by persons other 

than those who wrote the programs. Often, an independent team of tester formulates a 

testing plan, using the systems specifications. 

8.9  Testing Libraries  

 To assure that all systems are properly tested, many organizations establish test 

libraries. A testing library is a set of data developed to thoroughly test a system of 

programs. It is stored in machine – readable form, usually on magnetic disk, and is used 

by all persons who are involved with a particular system. 

 For example, a large inventory system consists, of hundreds of computer 

programs. All share common data and file formats. Each will also process similar 

transactions and will sometimes update records and other times retrieve data to respond 

to inquiries or prepare reports and documents. Because these programs are interdependent 

and process – related transactions, it makes sense to use a common set of data to test each 

program. 

 Test libraries are not just for initial testing. As the system evolves and programs 

are modified and maintained, they must be re-tested. The testing library should be 

maintained throughout the life of the system so that, as each change is made, reliable data 

are again available to test the system. 

 8.10  System controls 

 A well-designed system should have controls to ensure proper operation and 

routine auditing. A candidate systems failure often results from lack of emphasis on data 

control. Therefore, standards of accuracy, consistency and maintainability must be 

specified to eliminate errors and control for fraud.  

 A system design introduces new control elements and changes the control 

procedures. New controls in the form of relational comparisons are designed to detect and 

check errors that rise form the use of the system. In a manual system, internal control 

depends on human judgement, personal care and division of labor. In a computer based 

system the number of persons involved is considerably reduced. In designing a new 

system the designer should specify the location of error control points and evaluate them 

on the basis of error frequency, cost and timing of error detection. By identifying points 



where potential errors may occur, designers can create control procedures for handling 

errors immediately. 

 8.10.1 Processing controls 

 Several methods have been devised to control processing activities: 

1. Data record may be combined into small groups to control totals. If in batch 

processing, error is encountered, the batch may be held and reviewed to 

correct the error. 

2. Completeness check ensures that all fields in a record are present and are read 

in the proper sequence. In a multiple record check, the program verifies the 

self-checking number of the records that make up the transaction. If an error is 

detected, the entire group of records is rejected. 

3. Consistency check refers to the relevance of one type of data to another. Data 

being accepted through various means need to be checked for its uniformity. 

All critical paths need to be checked for its proper path selection. 

4. Reasonableness check evaluates a transaction against a standard or maximum 

/ minimum value to determine its validity. For example an employee may not 

have age less than 21 and not more than 60 years. 

5. Sequence check verifies that data records are in sequence prior to processing. 

Duplicate records need to be checked. 

 8.11  Audit Trails 

 An important function of system controls is providing for an audit trail. An audit 

trail is a routine designed to allow the analyst, user or auditor to verify a process or an 

area in the new system.  

 8.11.1 Definition of Audit trail 

 A feature of data processing systems that allows for the study of data as processed 

from step to step, an auditor may then trace all transactions that affect an account. 

 In a manual system, the audit trail includes journals, ledgers and other documents 

used by auditor to trace transactions. In a computerized system, record content and 

format frequently make it difficult to trace a transaction completely. Some reasons are the 

following: 



1. Files stored on the tape or disk can be read only by a computer, which limits 

the auditing function. A data dump is possible, though, to compare the data 

against a data map. 

2. Direct data entry eliminates the physical documentation for an audit program. 

3. Data processing activities are difficult to observe, since they take place within 

the computer system.  

For the audit trail to show its impact a detailed file of the transactions need to be 

maintained. During evaluation of a system following steps should be considered. 

1. Define the control objectives as separate design and test requirements. Input 

preparation and transmission by the user are important control areas that are 

viewed with an emphasis on audit trails and adequate documentation during 

testing.  

2. Examine budget costs to see whether system testing is within the limits. 

3. Review specifications. The auditor should evaluate program acceptance test 

specifications and assist the programmer in developing test standards, levels 

of testing and actual test conditions. 

It is the auditor’s responsibility to build controls into candidate systems to ensure 

reliability, integrity and confidence of the users at all levels. The auditor should be called 

in during design as well as testing so that suggestion can be considered before 

implementation. Including the auditor in the system development team makes it easy for 

monitoring testing procedures and considers the acceptance of new controls to replace 

those changed by the new design. 

8.12  Summary: 

No program or system design is perfect. Communication between the user and the 

designer is not always complete or clear and time is usually short. The result is errors. 

The number and nature of errors in a new design depend on several factors. The two 

operational design objectives continually sought by developers are systems reliability and 

maintainability. There are three approaches to reliability namely, error avoidance, error 

detection and error tolerance. Under error avoidance, developers and programmers make 

every attempt to prevent errors from occurring at all. The emphasis on early and careful 

identification of user requirements in another way this objective is pursued. Correcting 



user errors, such as misspelling keywords or entering invalid commands, is one remedy. 

Error detection in programs is handled in a similar manner. Error tolerance strategies 

keep the system running even in the presence of errors. When systems are installed, they 

generally are used for long periods. The average life of a system is 4 to 6 years, with the 

oldest application often in use for over 10 years. Several studies of maintenance have 

examined the type of tasks performed under maintenance. The broad classes maintenance 

found in information systems environments are corrective, adaptive and perfective. Once 

systems are installed, the need for debugging and correcting errors or failures on an 

emergency basis is comparatively low: less than 20 percent of the tasks are for correction.  

Software design should be guided by modularity and partitioning , coupling, cohesion, 

span of control , size and shared use. Well – designed, modular software is more likely to 

meet the maintenance, reliability, and testing requirements. Three specific tools are 

discussed: Structured flow-charts, HIPO diagrams, and Warnier / Orr diagrams. Quality 

assurance is the review of software products and related documentation for completeness, 

correctness, reliability, and maintainability. And, of course, it includes assurance that the 

system meets the specifications and the requirements for its intended use and 

performance. Four levels of quality assurance: testing, verification, validation, and 

certification. The philosophy behind testing is to find errors. There are two general plans 

for testing software: The strategies of code testing ad specification testing. Systems are 

not designed as entire systems nor are they tested as single systems. The analyst must 

perform both unit and integration testing. There are other tests that are in special 

category, since they do not focus on the normal running of the system. Six tests are 

essential. Peak load testing, storage testing, performance time testing, recovery testing, 

procedure testing, and human factor testing. A well-designed system should have controls 

to ensure proper operation and routine auditing. A candidate systems failure often results 

from lack of emphasis on data control. Therefore, standards of accuracy, consistency and 

maintainability must be specified to eliminate errors and control for fraud. An important 

function of system controls is providing for an audit trail. An audit trail is a routine 

designed to allow the analyst, user or auditor to verify a process or an area in the new 

system.  

 



 

8.13  Questions 

1. Differentiate between error tolerance & Error avoidance. 

2. What are the causes of errors. 

3. Explain Coupling & Cohesion. 

4. Conduct a comparative study between the various 

documentation tools. 

5. What are the levels of assurance. 

 



 

 

 

 
9.0 Objectives: 

 9.1 Introduction 

9.2   Training 

      9.2.1 Training systems operators 

     9.2.2   User Training 

      9.2.3 Training methods 

    9.2.3.1    Vendor and In-Service Training 

       9.2.3.2 In – house Training 

9.3 Conversion 

   9.3.1 Conversion Methods 

9.4 Conversion Plan 

   9.4.1 Operating Plan 

 9.5 Summary  

 9.6 Questions 
 

9.0 Objectives 

• What is the objectives of system administration 

• What is the purpose of giving training to the user of system  

• The different types of training  

• How conversion will takes place from existing system to new system  

• What is the conversion plan 

• What are the phases of conversion  

• What is the operating plan  

 

 9.1 Introduction 
 

Lesson No: 9                     Lesson Name :  System Administration and Training  

Author : Dr. Jawahar         Vetter:     Prof. Dharminder Kumar  



 Putting a new system into operation is usually complicated by the fact that there is an older 

system already in operation. The analyst has to deal with changing from something familiar to 

something new and different, while also attending to the mechanics of implementation. Since the 

concern for simultaneous conversion and implementation is usual. New system brings in new 

equipment. It may represent a change from manual to automated operation or a change in the level 

of available machine capacity. During implementation, planning plays a decisive factor in 

determining the ultimate success or failure of system. Due attention should be paid to: 

 

1. Assigning system personnel. 

2. Structuring user relationship.  

3. Preparing for new equipment.  

4. Training user personnel.  

 

1. Assignment of Systems Personnel: 

Assign people to the implementation who demonstrate the ability in dealing with the unique 

problem situations associated with the process. 

2. Structuring user Relationships: 

Plan for periodic meeting between user and system personnel for the duration of the 

implementation, to discuss problems being faced. Also there should be provisions to meet when the 

need arises. Certainly waiting for the meeting in critical problems is not a reasonable approach. 

Also if people meet only during crisis, they cannot expect a very positive encounter.  

3. Preparing for New Equipment: 

New equipment means more complexity. For new equipment additional areas of concern are 

to be taken care of: - 

1. Structuring a relationship with the equipment vendor. 

2. Preparing a physical site for installation and use of new equipment. 

3. Installation of new equipment and removing old equipment. 

4. Training personnel to use the new equipment. 

4. Training of user Personnel: 

Planning for the formal training of user personnel in the operation of the new system is 

important. A new method may drastically affect people’s lives by changing their work methods, 

work style and relationships with other employees. One of the most effective ways of dealing with 

the potential impact of these changes is to provide a well-designed program of training. The training 

program should: 

a) Inform the user about the system in general  



b) Inform the user about specific operation of the system 

c) Give the user some practice in operating the system 

d) Provide opportunity for user feed back. 

e) Provide ample opportunity to adjust to the new system. 

f) Provide answers to the queries raised by the employees. 

g) Generate a feeling among employees that the new system is “their” 

system. 

 9.2 Training 
 Even well designed and technically elegant systems can succeed or fail because of the way 

they are operated and used. Therefore, the quality of training received by the personnel involved 

with the system in various capacities helps or hinders, and may even prevent, the successful 

implementation of an information system. Those whose will be associated with or affected by the 

system must know in detail what their roles will be, how they can use the system, and what the 

system will or will not do. Both systems operators and users need training. 

 

 9.2.1 Training systems operators 
 Many systems depend on the computer – center personnel, who are responsible for keeping 

the equipment running as well as for providing the necessary support service. Their training must 

ensure that they are able to handle all possible operations, both routine and extraordinary. Operator 

training must also involve the data entry personnel.  

 If the system calls for the installation of new equipment, such as a new computer system, 

special terminals, or different data entry equipment, the operators training should include such 

fundamentals as how to turn the equipment on and use it, how to power it down, and a knowledge 

of what constitutes normal operation and use. The operators should also be instructed in what 

common malfunctions may occur, how to recognize them, and what steps to take when they arise. 

As part of their training, operators should be given both a troubleshooting lists that identifies 

possible problems and remedies for them, as well as the names and telephone numbers of 

individuals to contact when unexpected or unusual problems arise. 

 

 Training also involves familiarization with run procedures, which involves working through 

the sequence of activities needed to use a new system on an ongoing basis. These procedures allow 

the computer operators to become familiar with the actions they need to take (such as mounting 

magnetic disks or tapes, copying files, changing printer forms, or turning on communication 

systems), and when these actions must occur. In addition, they find out how long applications will 



run under normal conditions. This information is important both to enable users to plan work 

activities and to identify systems that run longer or shorter than expected – a sign that typically 

indicates problems with the run.  

 

 9.2.2 User Training 

 User training may involve equipment use, particularly in the case where, say, a 

microcomputer is in use and the individual involved is both operator and user. In these cases, user 

must be instructed first in how to operate the equipment. Questions that seem trivial to the analyst, 

such as how to turn on a terminal, how to insert a diskette into a microcomputer, or when it is safe 

to turn off equipment without danger of data loss, are significant problems to new users who are not 

familiar with computers. 

 

 User training must also instruct individuals in troubleshooting the system, determining 

whether a problem that arise is caused by the equipment or software or by something they have 

done in using the system. Including a troubleshooting guide in systems documentation will provide 

a useful reference long after the training period is over. There is nothing more frustrating than 

working with a system, encountering a problem, and not being able to determine whether it is the 

user’s fault or a problem with the system itself. The place to prevent this frustration is during 

training. 

 

 Most user training deals with the operation of the system itself. Training in data coding 

emphasizes the methods to be followed in capturing data form transactions or preparing data needed 

for decision support activities. For example, in an accounting system, it may be important to 

translate customer names into customer account numbers that are input as part of the accounting 

transaction. Users must be trained so that they know how to determine the customer account 

number, that it is four digits in length, and that there are no alphabetic characters in it. 

 

 Data – handling activities receiving the most attention in user training are adding data (how 

to store new transactions), editing data (how to change previously stored data), formulating 

inquiries (finding specific records or getting responses to questions) and deleting records of data. 

The bulk of systems use involves this set of activities, so it follows that most training time will be 

devoted to this area. 

 

 From time to time, users will have to prepare disks, load paper into printers, or change 

ribbons on printers. No training program is complete without some time devoted to systems 



maintenance activities. If a microcomputer or data entry system will use disks, users should be 

instructed in formatting and testing disks. They should also actually perform ribbon changes, 

equipment cleaning and other routine maintenance. It is not enough to simply include this 

information in a manual, even though that is essential for later reference.  

 

 As the above discussion demonstrates, there are two aspects to user training: familiarization 

with the processing system itself (that is, the equipment used for data entry or processing) and 

training in using the application (that is, the software that accepts the data, processes it, and 

produces the results). Weaknesses in either aspect of training are likely to lead to awkward situation 

that produce user frustration, errors, or both. Good documentation, although essential, does not 

replace training. There is no substitute for hands – on – operation of the system while learning its 

use. 

 

 9.2.3 Training methods 

 The training of operators and users can be achieved in several different ways. Training 

activities may take place at vendor locations; at rented facilities, for example, in hotels or on 

university campuses; or in house at the employee’s organizations. The methods and content of the 

training often vary, depending on the source and location of the training. 

 

 9.2.3.1 Vendor and In-Service Training 

 Often the best source of training on equipment is the vendor supplying the equipment. Most 

vendors offer extensive educational programs as part of their services, in some cases, there is a 

charge, but in many instances training is free. For example, IBM offers complimentary two and 

three – day courses to purchasers of many of their minicomputers and mainframe computers. The 

courses, offered by experienced trainers and sales personnel, cover all aspects of using the 

equipment, from how to turn it on and off, to the storage and removal of data, to handling 

malfunctions. This training is hands-on, so the participants actually use the system in the presence 

of the trainers. If questions arise, they can quickly be answered. Since the system is intended for 

training, there is generally no rush to get training out of the way so that the productive use of the 

system can start. Training conducted at the organization’s location might be rushed, a danger that 

installation personnel must guard against. 

 

 If special software such as a teleprocessing package or database management system is 

being installed, sending personnel to off – site short courses providing in – depth training is 

preferable to in – service training. These courses, which are generally provided for a fee, are 



presented to personnel from many organizations that are acquiring or using the same system. The 

benefit of sharing questions, problems, and experiences with persons from other companies is 

substantial. The personal contacts made during the sessions frequently last for years, with the 

continual sharing of information benefiting both parties. Short courses often involve additional time 

and costs for travel to other cities. 

 

 9.2.3.2 In – house Training 

 The advantage of offering training for the system on site is that the instruction can be 

tailored to the organization where it is being offered and focused on special procedures used in that 

setting, the organization’s plans for growth, and any problems that have arisen. Often, the vendors 

or training companies negotiate fees and charges that are more economical and that enable the 

organization to involve more personnel in the training program than is possible when travel is 

required. 

 

 There are also disadvantages. The mere fact that employees are in their own surroundings is 

a distraction, since telephone calls and emergencies can disrupt training sessions. Moreover, when 

outside firms’ come on – site, they many present courses that emphasize general concepts but that 

lack sufficient hands – on training. The training coordinator must recognize this possibility and deal 

with it an advance to ensure that the course content will meet operating needs.  

 

 In – house training can also be offered through special purchased instructional materials. A 

variety of professional training programs on special topics can be rented or purchased from 

computer training firms such as Edutronics  (McGraw – Hill, Inc.); Deltak, Inc.; Professional 

Development, Inc.; and Learning Corporation of America. Other vendors offer printed and 

audiovisual programmed instruction materials that are either self - instructional or that supplement 

other training activities. 

 

 However, there is no substitute for hands –on experience. Training manuals are acceptable 

for familiarization, but the experiences of actually using the equipment, making and correcting 

mistakes, and encountering unexpected situations are the best and most lasting way of learning. 

 

 Training manuals generally take one of two approaches. Some have the user work through 

different activities step by step. For example, the checklist is provided to list the steps necessary to 

implement a system. Each individual step is listed in the proper order. 

 



 The other common approach is to create a case – study example that include all frequently 

encountered situations that the system is able to handle and that the users should be able to handle. 

Then the users must use the system to handle the actual situations; that is enter data as required, 

process the data, and prepare reports. If the system is inquiry – oriented, the case study should 

require the user to pose and receive responses to inquiries. If the results produced do not match 

those provided in the training guide, the users will know that mistakes were made. 

 

 During training, systems personnel should be alert to comments made by users or to 

problems that users may encounter. Although human factors testing, performed earlier, is intended 

to detect difficulties, some problems may not occur until inexperienced users are directly interacting 

with the system. Despite testing, awkward keying requirements to enter data, unexpected 

transactions, or unusual ways of preparing transactions may still arise during training. The trainer 

must be certain to involve systems personnel when problems in the design are found, while 

assisting users who are reluctant to change from their old ways to the new methods required to use 

the system. Of course, the trainer must first be certain that the new methods are necessary and do 

represent an improvement over current methods. 



 

 9.3 Conversion  
 Conversion is the process of changing form the old system to the new one.  

 

 9.3.1 Conversion Methods 
 There are four methods of handling a systems conversion (Table 9.1). Each method should 

be considered in light of the opportunities that it offers and problems that it may cause. However, 

some situations dictate the use of one method over others, even though other methods may be more 

beneficial. In general, systems conversion should be accomplished as quickly as possible. Long 

conversion periods increase the possible frustration and difficulty of the task for all persons 

involved, including both analysts and users. 

 

 9.3.1.1 Parallel systems 

 The most secure method of converting from an old to new system is to run both systems in 

parallel. Under this approach, users continue to operate the old system in the accustomed manner 

but they also begin using the new system. This method is the safest conversion approach, since it 

guarantees that, should problems such as errors in processing or inability to handle certain types of 

transactions arise in using the new system, the organization can still fall back to the old system 

without loss of time, revenue, or service. 

 

 The disadvantages of the parallel systems approach are significant. First of all, the system 

costs double, since there are two sets of systems costs. In some instances it is necessary to hire 

temporary personnel to assist in operating both systems in parallel. Second, the fact that users know 

they can fall back to the old ways may be a disadvantage if there is potential resistance to the 

change or if users prefer the old system. In other words, the new system may not get a fair trail.  

 

 All in all, the parallel method of systems conversion offers the most secure implementation 

plan if things go wrong, but the costs and risks to a fair trail cannot be overlooked.  

 



 Table 9.1 Methods of Systems Conversion 

 Method  Description  Advantages  Disadvantages  

Parallel system The old system is 

operated along with 

the new system 

Offers greatest security. 

The old system can take 

over if errors are found 

in the new system or if 

usage problems occur. 

Doubles operating costs. 

The new system may not 

get fair trail. 

Direct conversation  The old system 

replaced by the new 

one. The organization 

relies fully on the 

new system. 

Forces users to make the 

new system work. There 

are immediate benefits 

from new methods and 

controls.  

There is no other system to 

fall back on if difficulties 

arise with new system. 

Requires the most careful 

planning.  

Pilot system  Working version of 

system implemented 

in one part of the 

organization. Based 

on feedback, changes 

are made and the 

system is installed in 

rest of the 

organization by one 

of the other methods. 

Provides experience and 

live test before 

implementation.  

May give the impression 

that the old system is 

unreliable and not error-

free. 

Phase – in  Gradually implement 

system across all 

users. 

Allows some users to 

take advantage of the 

system early. 

Allows training and 

installation without 

unnecessary use of 

resources. 

A long phase – in causes 

user problems whether the 

project goes well (over 

enthusiasm) or not 

(resistance and lack of fair 

trial). 

 

 9.3.1.2 Direct Cutover 

 The direct cutover method converts from the old to the new system abruptly, sometimes over 

a weekend or even overnight. The old system is used until a planned conversion day, when it is 

replaced by the new system. There are no parallel activities. If the analyst must make the change 

and wants to ensure that the new system fully replaces the old one so that users do not rely on the 



previous methods, direct cutover will accomplish this goal. Psychologically, it forces all users to 

make the new system work; they do not have any other method to fall back on.  

 

 The advantage of not having a fallback system can turn into a disadvantage if serious 

problems arise with the new system. In some instances, organizations even stop operations when 

problems arise so that difficulties can be corrected.  

 

 One organization allocated its entire accounting staff to entering data to start a new 

automated system. The task took approximately three weeks, during which time none of the regular 

accounting operations that were to be converted to the new system were performed. Consequently, a 

three – week backlog of work developed. However, such backlog was expected and management 

had planned to authorize overtime work and the hiring of temporary assistance to catch up after 

conversion. Approximately two days before the direct cutover was to take place, a senior manager 

realized that the accounting department was not planning to preserve the data for accounts 

receivable aging. The manager stopped the conversion. As a result, the accounting staff had to catch 

up on three weeks work and reschedule the conversion to a date one-month later, when many of the 

previous steps had to be restarted. The system was finally implemented three months later, after 

much extra work, overtime, and staff frustration because of the way the cutover was handled.  

 

 Stopping conversion was a particularly drastic measure. It would have been doubly bad had 

the steps been taken because of technical problems needing correction. If users know that a system 

was once halted because of difficulties, they may not be fully confident that the system will be 

reliable, even if analysts tell them that the problems have been corrected. The time it takes to redo 

work that was stopped because of the conversion can be both lengthy and costly, and time lost can 

never be recaptured. 

  

 Direct cutover require careful planning. Training sessions must be scheduled and 

maintained. The installation of all equipment must be on time, with ample days allowed in the 

schedule to correct any difficulties that occur. Any site preparation must be complete before the 

conversion can be done. 

  

Direct conversions are quite common, particularly with purchased or turnkey systems. For 

example, a hotel operation decided to install an automated reservation system. The  entire 

system was implemented during a one – week period, when the computer system was set up, the 



software loaded, and the system tested. During that week, a separate training crew worked with all 

the accounting and front desk personnel to familiarize them with the operation and use of the 

system. These activities occurred Monday through Saturdays. On Sunday, all personnel were 

brought in to enter reservations, guest charges, and accounting information into the new system so 

that it coincided with the current system. On Sunday, evening, after the close of business for the 

day, the new system was started and used permanently. The old paper reservation file was removed, 

and the cash registers and bookkeeping machines were replaced with the terminals. The new system 

became live at midnight on Sunday. There was no old system to fall back on. 

 

 9.3.1.3 Pilot Approach 

 When new systems also involve new techniques or drastic changes in organization 

performance, the pilot approach is often preferred. In this method, a working version of the system 

is implemented in one part of the organization, such as a single work area or department. The users 

in this area typically know that they are piloting a new system and that changes can be made to 

improve the system.  

 

 When the system is deemed complete, it is installed throughout the organization, either all at 

once (direct cutover method) or gradually (phase – in method). 

 

 This approach has the advantage of providing a sound proving ground before full 

implementation. However, if the implementation is not properly handled, users may develop the 

impression that the system continues to have problems and that it cannot be relied on. For example, 

they may feel that the difficulties they experienced for two or three weeks may in fact not be gone 

just because the analysts claim they are. 

 

 9.3.1.4 Phase – In Method 

 The phase- in method is used when it is not possible to install a new system throughout an 

organization all at once. The conversion of files, training of personnel, or arrival of equipment may 

force the staging of the implementation over a period of time. Ranging form weeks to months. 

Some users will begin to take advantage of the new system before others. 

 

 For example, a medical system aimed at linking 10 or 15 different clinics to hospital may 

phase in over a year. The work required to convert patient and insurance records on paper to files 

stored on magnetic disks requires 2 to 3 weeks for each clinic. A week of user training is also 



required for each clinic. Therefore, the analysts may phase this system in one clinic at a time, 

allowing 3 to 4 weeks for each conversion. It is conceivable in this system that the full conversion 

will be phased over one year.  

 

 Long phase – in periods create difficulties for analysts, whether the conversions go well or 

not. If the system is working well, early users will communicate their enthusiasm to other personnel 

who are waiting for implementation. In fact, enthusiasm may reach such a high level that when a 

group of users does finally receive the system, there is a letdown. In the clinic example, for 

instance, the medical staff may exaggerate the time savings that accrue from not having to search 

for medical records or manually prepare insurance claims, activities that will be handled by the new 

system. Later, when conversion occurs, the staff finds out that the system does not do the processing 

instantly. The disappointment is understandable. 

 

 On the other hand, if there are problems in the early phases of implementation, word of 

difficulties will spread also. Then the users may expect difficulties at the time of conversion and 

react negatively to the smallest mistakes. When systems are phased in, they must work well on the 

first conversion and all that follow. 

 

 9.4 Conversion Plan 
 The conversion plan includes a description of all the activities that must occur to implement 

the new system and put it into operation. It identifies the persons responsible for each activity and 

includes a timetable indicating when each activity will occur.  

 

 During the pre-implementation stages, when the conversion is being planned, analysts 

should assemble a lit of all tasks, including the following: 

1. List all files for conversion. 

2. Identify all data required to build new files during conversion.  

3. List all new documents and procedures that go into use during conversion. 

4. Identify all controls to be used during conversion. Establish procedures for cross-

checking the old and new systems. Determine how team members will know if 

something has not been completed properly. 

5. Assign responsibility for each activity. 

6. Verify conversion schedules. 

 



The conversion plan should anticipate possible problems and ways to deal with them. 

Among the most frequently occurring problems are missing documents, mixed data formats 

between current and new files, errors in data translation, missing data or lost files, and situations 

that were overlooked during systems development. The conversion manager must guard against the 

omission of steps in the conversion. A checklist will prevent missed steps. Personnel absences must 

also be expected and adequate fallback plans specified. 

 

 Conversion timing is challenging, since there are so many aspects of the conversion, ranging 

from the installation of equipment to the ordering of forms and supplies. 

 

9.5 Operating Plan: 

 The operating plan is checking of all arrangements. It includes reviewing conversion plans, 

verifying the delivery of equipment, software, forms, preparing the site and preparing the data and 

files. 

1. Site Preparation:  Analysts often work with vendor personnel to outline site – 

preparation guidelines. Due importance should be paid to electrical using, air conditioning 

needs, humidity controls, space requirements, etc. 

2. Data and File Preparation: For a new system to begin master files and system files need to 

be entered into the system before the normal functioning of the system. Master files are 

generally created manually. The number of records in older system master file should tally 

with the number of records in new master file. 

 

In case of financial software the balance brought forward should be checked for validation 

before implementation of the new system.  

 9.6 Summary  
For administration putting a new system into operation is usually complicated by the fact that there 

is an older system already in operation. The analyst has to deal with changing from something 

familiar to something new and different, while also attending to the mechanics of implementation. 

Since the concern for simultaneous conversion and implementation is usual. Planning for the formal 

training of user personnel in the operation of the new system is important. A new method may 

drastically affect people’s lives by changing their work methods, work style and relationships with 

other employees. One of the most effective ways of dealing with the potential impact of these 

changes is to provide a well-designed program of training. The training program should: 

h) Inform the user about the system in general  



i) Inform the user about specific operation of the system 

j) Give the user some practice in operating the system 

k) Provide opportunity for user feed back. 

l) Provide ample opportunity to adjust to the new system. 

m) Provide answers to the queries raised by the employees. 

Generate a feeling among employees that the new system is “their” system. the quality of training 

received by the personnel involved with the system in various capacities helps or hinders, and may 

even prevent, the successful implementation of an information system. Conversion is the process of 

changing form the old system to the new one. The conversion plan includes a description of all the 

activities that must occur to implement the new system and put it into operation. It identifies the 

persons responsible for each activity and includes a timetable indicating when each activity will 

occur. The operating plan is checking of all arrangements. It includes reviewing conversion plans, 

verifying the delivery of equipment, software, forms, preparing the site and preparing the data and 

files. 

 Questions 
1. Compare the different conversion methods with each other. 

2. Explain the operating plan. 

3. To what extent training is important. 

4. “Conversion is simple”. Do you agree. Justify. 

 5. What is training system operators. 



 

 
 

 
 

10.0 Objective: 

10.1 Introduction 

10.2 Hardware Selection 

10.3 Determining size and capacity requirements 

10.4 Computer evaluation and measurement 

10.4.1 Benchmarking 

10.4.2 Design of Synthetic Programs 

10.4.3 Comparison of benchmarks 

10.4.4 Plug – Compatible Equipment 

10.4.5 Financial Factors 

 10.4.5.1 Rental 

 10.4.5.2 Lease 

 10.4.5.3 Purchase 

10.5 Maintenance and Support 

 10.5.1 Service and Response 

  10.5.2 Options to In-House Systems 

10.6 Vendor Selection 

10.7 Software Selection 

10.8 Criteria for Software Selection 

10.9 Performance Evaluation 

10.10 Summary  

10.11 Questions 

 
 
10.0  Objectives 

• What kind of hardware and peripherals are required 

• How the hardware is selected 

Lesson No: 10                      Lesson Name :  Hardware and Software Selection 

Author : Dr. Jawahar         Vetter:      Dr. Pradeep K. Bhatia 



• How the computer evaluation and measurement will be conducted 

• What is benchmarking  

• What are the various financial factors 

• How the maintenance and support will be provided to the system  

• How the vendor selection is done  

• what are the different criteria for software selection  

• How the system performance evaluation will be done  

 

10.1 Introduction 

 A major element in building systems is selecting compatible Hardware & 

software. The kind of hardware & peripherals required is to be determined. The suitable 

software has to be selected. The experienced analysts will explore various options 

regarding it. Hardware/software selection begins with requirements analysis, followed by 

a request for proposal and vendor evaluation. The final system selection initiates contract 

negotiations, price, maintenance agreements, vendor selection, acceptance criteria and 

similar issues. 

 

10.2 Hardware Selection  

 Gone are the days when a user calls IBM to order a 360 system, which in itself 

included hardware, software & support. Today, selecting a system is a serious and time 

concurring activity. Unfortunately, many systems are still selected based on vendor 

reputation only or other subjective factors. Instead the factors, which are to be 

considered, should be determining equipment size, capacity needs, financial 

considerations and acquisition method.  

 

10.3 Determining size and capacity requirements 

 With computers ranging in size from small microcomputers to large mainframe 

systems, the number of options to choose from when selecting a system is obviously very 

large. Even within the lines of a single manufacturer, there are many different models and 

configurations from which to select. How then does the analyst determine which system 

to use when a new computer is to be acquired? 



 The starting point in an equipment decision process is the size and capacity 

requirements. One particular computer system may be appropriate for one workload and 

inappropriate for another. Systems capacity is frequently the determining factor. Relevant 

features to consider include the following: 

1. Internal memory size 

2. Cycle speed of system for processing 

3. Characteristics of display and communication components 

4. Types and numbers of auxiliary storage units that can be attached  

5. Systems support and utility software provided or available 

 

Frequently, software needs dictate the minimum configuration required. For 

instance, if a particular program to be run on a microcomputer requires, say, 4 megabytes 

of storage, the list of feasible candidates will exclude all systems, regardless of their 

attractiveness, that do not have or that cannot be easily configured to have a memory of at 

least 4 megabytes. 

 

All systems have limits, depending on what they are designed for. The limits may 

or may not be a factor in a particular selection decision. For example, some systems 

communicate data only in a synchronous fashion. If the system has other attractive 

features and will not be used for data communications or teleprocessing, the synchronous 

feature may be of little concern. However, if the primary application for the computer 

requires synchronous transmission of ASCII data, the bisynchronous limitation is 

important. Likewise, the fact that a particular minicomputer is limited to five ports for 

connecting terminals and printers may be too restrictive in a teleprocessing system 

designed to link 23 sites together through terminals and communications lines. 

 

 Software needs often dictate hardware requirements such as internal 

memory sizes, communication ports, disk capacity, and the ability to use magnetic tape. 

Vendors are reliable sources of configuration requirements. They can provide 

information on the minimum configuration requirements needed to use their software 

properly. Trade newspapers and magazines provide regular distribution of information 



about hardware and software requirements. In addition, subscription services offer 

information on operating specifications. These services, which cost several hundred 

dollars yearly, provide monthly updates (generally using a loose-leaf binder format) and 

telephone assistance for computer operation, as well as user comments. 

 

Auxiliary storage capacity is generally determined by file storage and processing 

needs. To estimate the disk storage needed for a system, the analyst must consider the 

space needed for each master file, the space for programs and software, including 

systems software, and the method by which backup copies will be made. When using 

flexible diskettes on a small business system, the analyst must determine whether master 

and transaction files will be maintained on the same diskette and on which diskette, 

programs will be stored. Backup considerations, as well as file size, guide the decision 

about how many disk drives are needed. The configuration should keep scope for backup 

copies of all disks.  

 

10.4 Computer evaluation and measurement 

 Comparisons are often made among different computer systems on the basis of 

actual performance data. Using benchmark data, generated by using synthetic programs, 

is more effective than simply comparing technical specifications. 

 

10.4.1 Benchmarking 

A benchmark is the application of synthetic programs to emulate the actual 

processing work handled by a computer system. Benchmark programs permit the 

submission of a mix of jobs that are representative of the users projected workload. They 

also demonstrate data storage equipment techniques and provide the opportunity to test 

specific functions performed by the system. Through this technique, the limitations of the 

equipment become apparent early in the acquisition process. Sometimes user 

organizations will insist that the results be attached to the sales contract, formally stating 

that a specific number of transactions can be processed in a given period of time, the 

response to an inquiry will be given within a stated amount of time, and so forth. 

 



 Benchmarks can be run in virtually any type of system environment, including 

batch and online job streams, and with the users linked to the system directly or through 

telecommunications method.  

 

 Common benchmarks are the speed of the central processor, with typical 

instruction executed in a set of programs, as well as multiple streams of jobs in a 

multiprogramming environment. The same benchmark run on several different computers 

will make apparent any speed and performance differences attributable to the central 

processor.  

 

 Benchmarks also can be centered around an expected language mix for the 

programs that will be run, a mix of different types of programs, and applications having 

widely varying input and output volumes and requirements. Their response time for 

sending and receiving data from terminals is an additional benchmark for the comparison 

of systems.  

 

 Sometimes, rather than running actual benchmark jobs on computer systems, 

systems simulators are used to determine performance differences. In commercial 

systems simulators, the workload of a system is defined in terms of, say, how many input 

and output operations there are, how many instructions are utilized in a computation, and 

the order in which work is processed. The specifications are fed into a simulator that 

stores data about the characteristics of particular equipment (such as instruction speed, 

channel capacity, and read – write times). The simulator in turn processes the data against 

the operating characteristics and prepares a report of the expected results as if the actual 

computer were used. Then the system characteristics can be changed to mimic another 

model of computer and a new set of performance data produced for comparison. The time 

and expense of running actual benchmark programs on a computer are of concern to 

analyst and vendor alike. Thus, the use of commercial simulators is an attractive 

alternative. 

 



10.4.2 Design of Synthetic Programs 

 A synthetic job is a program written to exercise a computer’s resources in a way 

that allows the analyst to imitate the expected job steam and determine the results. Then 

the artificial job stream can be can be adjusted and rerun to determine the impact. The 

process can be repeated, as many times as necessary to see which tasks a comparison set 

of computer handles well and which they do not handle as well.  

 

 The synthetic jobs can be adjusted to produce the same type of activity as actual 

programs, including perhaps random access of files, sequential searching of files with 

varying size records, input and output activities, and file accessing in varying random 

patterns. The types of hardware and software features that are often simulated are listed 

in Table 10.1. 

 

HARDWARE SOFTWARE 

CPU processing speed.  
Memory access speed.  
Interrupt handling abilities. 
Peripheral channel speed. 
Printer speeds. 
Seek time for magnetic disk. 
Rotational delay for magnetic disk. 
Communication speeds.  

Scheduling algorithm. 
Compilation algorithm. 
Code efficiency. 
 Virtual storage management algorithm 
File handling efficiency. 
Interrupt handling. 
Indexing methods. 
Multiple buffer handling. 
Communication processing procedure 

 

Table 10.1 Representative benchmarks for hardware & software. 
 

10.4.3 Comparison of Benchmarks 

 Although some comparison on the basis of equipment performance is better than 

no comparison at all, there are drawbacks to the use of benchmarks, first of all, the 

comparisons are made on purely quantitative grounds. They do not relate the learning 

time needed to become accustomed to the system or the quality of the systems software 

(such as the quality of the diagnostics prod`uced during compilation or the efficiency of 

the object code produced). 

 



 In addition, benchmarks do not provide reasonable assurances that programs 

currently being used on an existing system can be converted to the new system or that the 

new machine will run them efficiently even if they are converted. Vendors may also 

make sales claims that a specific system can handle additional tasks that another system 

cannot. Since benchmarks cannot directly verify these claims, the purchaser may insist 

that statements of certain sales claims be attached in writing to the sale contract.  

 

10.4.4 Plug – Compatible Equipment 

 For reasons of cost, analysts frequently consider using equipment for a particular 

make of computer that is not manufactured by the computer vendor. Such components 

are called plug-compatible equipment. Some companies specialize in manufacturing 

systems components, such as printers, disk drives, or memory units that can be connected 

to a vendor’s system in place of the same equipment manufactured by the vendor. The 

central processing unit does not care or know that the equipment is not the same make.  

 

 The benefit of plug – compatible equipment is the lower cost of an item compared 

with one produced by a major computer vendor. Because firms specializing in specific 

components can develop manufacturing expertise or are likely to have a smaller 

investment in research and development – they are duplicating components developed by 

another firm – they are able to offer the same product at a lower cost. 

 

 Although there is a large market for plug-compatible equipment because of price 

differences, the analyst must ensure that the equipment will meet necessary quality levels, 

that it will perform as well as (or possibly better than) the original equipment, and the 

computer vendor will not disallow warranties and service agreements on the rest of the 

system. There is a danger that some service people employed by the vendor will blame 

malfunctions on the “foreign” agreements on maintenance responsibilities and methods 

for resolving possible disputes about malfunction.  

 



10.4.5 Financial Factors 

 The acquisition of and payment for a computer system are usually handled 

through one of three common methods: rental, lease, or purchase. Determining which 

option is appropriate depends on the characteristics and plans of the organization at the 

time the acquisition is made. No one option is always better than the other. (Table 10.2 

summarizes the features of each method of acquisition.) 

 

10.4.5.1 Rental 

 Computer rental is for the short – term use of a system, generally form 1 to 12 

months. Each month a payment is made for the use of the equipment. Both the user and 

supplier have the option of canceling the rental with advance notice, usually 30 or 60 

days ahead of the termination date. 

 

 Because the commitment is short-term, the renter has a great deal of flexibility. 

The decision to purchase a system can be delayed until financing is adequate, until a new 

generation of equipment is available, or until such time as the organization wishes, for 

whatever reason. Flexibility can be particularly important when an organization is 

experiencing planned rapid growth and will outgrow a specific system in a brief period, 

when important reorganizations of divisions and departments that will affect computing 

resources are in progress, or when the enterprise is in a period of dynamic change.  

 

 Compared with other acquisition methods, rental is the most expensive. Monthly 

payments are higher, and the organization does not receive any tax or ownership benefits, 

other than deduction of the monthly rental as a business expense. The equipment received 

is often used, although the rental agreement should be written in such a way that the 

renter is assured of having a system that runs properly and the will be maintained 

adequately. The short – notice cancellation provision may not provide enough security 

for the renter to plan on the continued availability of the system. For this reason, rental is 

typically a short-term solution that is appropriate perhaps while awaiting the official 

announcement and delivery of a new system. Many firms refuse to tie up capital or 



equipment for short-term rentals. The analyst must ensure that rental systems are even 

available before making such a decision, since not all suppliers offer short – term rentals.   

 

10.4.5.2 Lease 

As lease is a commitment to use a system for a specific time, generally from three 

to seven years. Payments are predetermined and do not change throughout the course of 

the lease. Depending on the terms of the lease, payments are monthly, quarterly, semi-

annual, or annual and include the cost of equipment service and maintenance. At the end 

of the lease period the lessor generally does not own the equipment. (If that is not the 

case, and the equipment becomes the property of the lessor, the Internal Revenue Service 

considers the agreement a conditional sale and the entire transaction must then be treated 

as a purchase.) 

 

 Compared with rental, leasing is less expensive. Because there is a longer 

commitment, the supplier will generally provide better service and the user can count of 

having the system available for use. Leasing protects against technical obsolescence, 

always a concern when purchasing computer equipment. If the lease term is short, the 

lessor can upgrade to a more powerful system even though the lease has not expired, 

providing the system is acquired form the same manufacturer.  

 

 No capital investment is required to lease a computer system. Leasing offers 

specific tax advantages. In addition to deducting the cost of the lease as a business 

expense, tax credits are sometimes business pays. In some case, the title for the 

equipment can even be passed to the lessor. Legal assistance is needed to investigate the 

current terms and conditions allowed by the Internal Revenue Service at the time such a 

transaction is considered. 

 

10.4.5.3 Purchase 

 The ownership of computers through outright purchase is he most common 

method of computer acquisition and is increasing in popularity as lease costs rise. Over 



time, the purchase option frequently costs the least, especially in light of the tax 

advantages that can some – times be gained. 

 

 Under purchase, the organization takes title to the equipment. Of course, the 

money for the purchase must be taken from operating funds or borrowed. And, in a sense 

the organization is locked in to the system it purchases, since changing to a different 

computer system is more difficult; either the system must be sold or arrangements must 

be negotiated to trade it in on a different computer.  

 

 The organization must acquire its own maintenance services (for parts and labor), 

usually from the manufacturer, and pay the monthly charges, which fluctuate from year 

to year. In addition, if the equipment was financed, payment on the loan must be made 

periodically. The cash outflow still may be lower than with renting or leasing, depending 

on the terms arranged by the purchaser. In return for the outgoing cash, purchase offers 

specific tax advantages: 

 

1. The monthly maintenance charges are deductible as a business expense. 

2. Interest on any loan to finance the purchase is deductible as a business 

expense. 

3. The cost of the equipment can be depreciated over time; this also lowers the 

taxable income and therefore the income taxes paid.  

4. Local, state, and federal taxes paid on the purchase may be deductible from 

income taxes. 

 

The purchase option indicates the use of depreciation to reduce taxes. In a sense then, 

depreciation deductions on income tax reduce the cost of the computer to the 

organization. Normally, this benefit is not possible under lease agreements and it is never 

feasible for short – term rentals. Of course, the tax benefits described apply only to firms 

that operate for profit. Non profit firms that do not pay income taxes thus do not receive 

tax benefits form computer purchase.  

Table 10.2 Comparison of Computer Systems Financing Options 



Method of 
acquisition  

Advantages Disadvantages 

Rental  Short – term commitment. High level 
of flexibility. Does not require cash 
up front. 

Most expensive option. Little 
control of equipment change. Not 
all vendors will rent.  

Lease  Predetermined payments for fixed 
period. Does not require cash up 
front. Usually better service from 
vendor than under rental. Little risk of 
obsolescence. Less expensive than 
rental  

More expensive than purchase. 
May have limitations on hours of 
equipment use. 

Purchase  Least cost in long run. Distinct tax 
advantages if a profit – making firm. 
A business investment. Full control 
over equipment use. 

Risk of obsolescence. Permanent 
commitment. Full responsibility 
for all problems. Greater early 
cash requirements than other 
options.  

 
1.  



10.5 Maintenance and Support 

 An additional factor in hardware decision concerns the maintenance and support 

of the system after it is installed. Primary concerns are the source of maintenance, terms, 

and response times. 

 

a. Maintenance Source  

 Once the system is delivered and installed, there is a brief warranty period during 

which time the sales unit is responsible for maintenance. This is typically a 90-day 

period, although the specific terms fare subject to contract negotiation. After that time, 

the purchaser has the option acquiring maintenance from various sources. 

 

 The most common source of maintenance for new equipment is the firm from 

which it was purchased. If a mainframe or minicomputer system is purchased through the 

manufacturer’s sales force, there is also generally a maintenance support group that 

provides service for a standard price. Large companies set national maintenance costs 

that are adjusted on an annual or semi-annual basis. If the system is a microcomputer or 

personal computer, the dealer generally provides maintenance as a chargeable service. 

The buyer may pay a lower purchase price for personal computer purchased form mail-

order houses, but may lose the convenience of local service. Lower service costs are one 

reason some mail-order firms are able to offer lower purchase prices. 

 

 Service is also available from companies specializing in providing maintenance 

service. Third party maintenance companies as these firms are called, frequently provide 

service in smaller communities, where manufacturers do not find it cost-effective to 

maintain offices. In addition, sellers of turnkey systems, who deliver and install working 

hardware and software combinations but do not manufacture the equipment themselves, 

suggest the use of specific third – party maintenance firms with whom they work directly 

and inform of changes in hardware, software, and suggested maintenance procedures. 

Sales organization, the purchaser may have no choice but to use a third-party 

maintenance firm. Many manufacturers do not service equipment they did not sell. 

 



Terms 

 In formulating a maintenance agreement, the terms of the agreement are as 

important as the cost. The contract may be written to cover both labor and parts (all parts, 

regardless of the number needed or their cost), labor and an allowance for parts, or labor 

only, with parts charges added on as needed. The type of contract desired depends on the 

expenditures the organization is willing to make in comparison with how frequently it 

estimates service will be required. The labor and parts form is the most common type of 

contract for large systems. 

 

  The analyst should also consider how maintenance costs would change. Large 

manufactures have established policies of adjusting their maintenance charges on an 

annual or semiannual basis and frequently will not change these policies for any 

customer. Other suppliers and service companies offer open – ended contracts that allow 

the adjustment of charges at any time with 30 days notice. Frequently, analysts 

negotiating service with these companies will seek a cap on maintenance; that is, they 

will seek agreement, in writing, that the maintenance costs will not increase by any more 

than a stated maximum amount during a specific period, such as a calendar year. This 

type of protection ensures that the supplier cannot take advantage of the user who is 

totally dependent on the service agency. Most service companies are very reputable, but 

good business practice dictates that adequate protection always is sought in contracting 

for services. 

 



10.5.1 Service and Response 

 Maintenance support is useful only if it is available when needed. Two concerns 

in maintenance are the response time when service is requested and the hours of support. 

  

When a telephone call is placed for emergency maintenance, will a technician or 

engineer be dispatched immediately? That may be unlikely. However, the user has right 

to expect a reasonable response time after making an emergency call. Organizations often 

specify in the contract that the response to a telephone call must be made within 2 hours. 

Others specify same-day response, and still others accept response no later than the next 

morning. The degree of dependency the user organization has on the computer system 

will dictate how these terms are negotiated. An online system that is in use 24 hours a day 

will need a much quicker response that one that is used intermittently for batch 

processing.  

When desktop computers are in use, an alternative to on-site support is available 

in the form of carry-in service: The user delivers the computer to the dealer or 

maintenance agency for repair. Often, service while-you-wait or same-day service is 

possible. For problems requiring longer repair times, a rental system may be available.  

 

 Repair service is often provided only during normal working hours. If an 

organization wishes evening service or around – the-clock coverage, it is usually 

available for an extra charge, say, from 10 percent to 50 percent additional cost. 

 

 However, equally important is the need for performing preventive maintenance, 

the routine service of cleaning and adjusting the equipment to prevent breakdowns. 

Whenever contracting for maintenance, a schedule of preventive maintenance must be 

agreed on in advance. Information about manufacturers suggested preventive 

maintenance cycles and procedures should be filed in the systems department and 

included in service agreements. 

 



 In all instances, the stocking of sufficient spare parts is important, since good 

service is impossible if spare parts are not available. User organizations should obtain 

sufficient assurances about adequate parts inventories in advance of need. 

 

10.5.2 Options to In-House Systems 

 Less common options for computer support include the use of service bureaus or 

facilities management companies. A service bureau is a company that owns computer 

facilities and makes them available to users for a charge. The user submits data for 

processing, which is performed at the service bureau on the bureau’s computer systems. 

In some cases, organizations interact directly with the computer though terminals located 

in users offices. There is usually a monthly cost plus a charge that varies according to the 

amount of time the user is in communication with the system. Additional fees may be 

charged for storing data, mounting magnetic disks and tapes, or printing pages. 

 

 Some service bureaus provide data processing service. The bureau prepares the 

data for input, handles all processing, and may even provide pickup and delivery service. 

Custom programming is available for charge.  

 

 The use of service bureaus is very common in accounting and payroll 

applications. Often, firms that want automatic data processing services in these areas but 

that do not want to purchase equipment or hire systems personnel will contract with a 

service bureau. However, as computer costs continue to drop and high – quality 

commercial software is available the reliance of some firms on service bureaus may 

change.  

 

 Facilities management companies provide a service to companies that wish to 

develop information systems capabilities but that prefer not to maintain a staff of 

operators, analysts, and programmers. Under this option, the user organization may 

purchase a computer system and then contract with a facilities management firm to 

operate the computer and provide service on the organization’s premises. The facilities 

management company provides the information systems expertise and personnel for a 



fee. It also develops software or acquires commercial software to meet the organization 

needs.  

 

 Through facilities management, an organization can obtain professional 

information processing and service without investing time and resources in managing a 

systems staff, while still receiving the benefits of owning a computer system. 

 

10.6 Vendor Selection 

 This step determines the “winner” among the list of vendors available. The 

vendor with the best combination of reputation, reliability, service record, training 

delivery time, lease / finance terms & conversion schedule is selected. Initially a decision 

is made as to which vendor to contact. The sources available to check on vendors include: 

  

1. Users 6.  Vendor software list  

2. Software houses 7.  Vendor referral directories  

3. Trade Associations  8.  Published Directories 

4. Universities 9.  Consultants  

5. Publications 10. Industry Contacts  

 11.Vendor’s annual financial statement. 

 

After this data is gathered about a vendor, it is matched with the selection criteria. Few of 

the selected vendors are invited to give presentation of their system. The system chosen 

goes though contract negotiations before implementation.  

10.7 Software Selection 

 Software selection is a critical aspect of system development. The search starts 

with the software, followed by the hardware. There are two ways of acquiring software: 

custom – made or “off – the –shelf” packages. Today’s trend is toward purchasing 

packages, which represent roughly 10 percent of what it costs to develop the same in 

house. In addition to reduced cost, there are other advantages: 

 



1. A good package can get the system running in a matter of days rather than the 

weeks or months required for “home-grown” packages.  

2. MIS personnel are released for other projects. 

3. Packages are generally reliable and perform according to stated 

documentation. 

4. Minimum risks are usually associated with large – scale systems and 

programming efforts. 

5. Delays in completing software projects in house often occur because 

programmers quit in midstream. 

6. It is difficult to predict the cost of “home-grown” software. 

7. The user has a change of seeing how well the package performs before 

purchasing it. 

 

There are drawbacks, however, to software packages: 

1. The package may not meet user requirements adequately. 

2. Extensive modification of a package usually results in loss of the vendor’s 

support. 

3. The methodology for package evaluation and selection is often poorly 

defined. The result is a haphazard review based on a faulty process or 

questionable selection criteria. 

4. For first – time software package users, the overall expectation from a 

package is often unclear and ill defined. 

 

It can be seen, then, that the quality of a software package cannot be determined 

by price alone. A systematic review is crucial. 

 

10.8 Criteria for Software Selection 

 Prior to selecting the software the project team must set up criteria for selection. 

Selection criteria fall into the categories described here.  

 

Reliability. 



 It is the probability that the software will execute for a specified time period 

without a failure, weighted by the cost to the user of each failure encountered. It relates to 

the ease of recovery and ability to give consistent results. Reliability is particularly 

important to the professional user. For example, a pharmacist relies on past files on 

patients when filling prescriptions. Information accuracy is crucial. 

 

 Hardware may become inoperative because of design errors, manufacturing 

errors, or deterioration caused by heat, humidity, friction, and the like. In contrast, 

software does not fail or wear out. Any reliability problems are attributable to errors 

introduced during the production process. Furthermore, whereas hardware failure is based 

largely on random failures, software reliability is based on predestined errors. 

 

 Although reliable software is a desirable goal, limited progress has been made 

toward improving it in the last decade. The fact of unreliable software had led to the 

practice of securing maintenance agreements after the package is in operation. In a sense, 

unreliability is rewarded.  

 

 Software reliability brings up the concept of modularity, or the ease with which a 

package can be modified. This depends on whether the package was originally designed 

as a package or was retrofitted after its original development for single installation use. A 

package with a high degree of modularity has the capacity to operate in many machine 

configurations and perhaps across manufacturers’ product lines. 

 With modularity come expandability, which emphasizes the sensitivity of a 

software package to handle an increased volume of transaction or to integrate with other 

programs. The following questions should be considered: 

1. Is there room for expanding the master file?  

2. How easily can additional fields and files be added? 

3. Are there errors a user can make that will ring down the system? 

4. How much of the system becomes unusable when a part of it fails? 

5. What are the recovery capabilities? 

 



b. Functionality 

 It is a definition of the facilities, performance, and other factors that the user 

requires in the finished product. All such information comes from the user. The following 

are key questions to consider: 

1. Do the input transactions, files, and reports contain the necessary data 

elements? 

2. Are all the necessary computations and processing performed according to 

specifications? 

 

1. Capacity  

ii.Capacity refers to the capability of the software package to handle the user’s 

requirements for size of files, number of data elements, volume of transactions and 

reports and number of occurrences of data elements. All limitations should be checked. 

 
Flexibility 

 It is a measure of the effort required to modify an operational program. One 

feature of flexibility is adaptability, which is a measure of the ease of extending the 

product. 

 

Usability 

 This criterion refers to the effort required to operate, prepare the input, and 

interpret the output of a program. Additional points to be considered are portability and 

understandability. Portability refers to the ability of the software to be used on different 

hardware and operating systems. Understandability means that the purpose of the product 

is clear to the evaluator and that the package is clearly and simply written, is free of 

jargon, and contains sufficient references to readily available documents so that the 

reader can comprehend advance contents. 

 

Security. 



 It is a measure of the likelihood that a system’s user can accidentally or 

intentionally access or destroy unauthorized data. A key question is how well can one 

control access of software or data file? Control provides system integrity.  

 

Performance. 

 It is a measure of the capacity of the software package to do what it is expected to 

do. This criterion focuses on throughput, or how effectively a package performs under 

peak loads. Each package should be evaluated for acceptance on the user’s system. 

 

 The language in which a package is written and the operating system are 

additional performance considerations.  If we plan to modify or extend a package, it is 

easier if it is written in a language that is commonly known to programmers. Likewise, if 

the package run only under a disk operating system and the installation is under a full 

operating system, then either the package will have to be upgraded to the larger operating 

system or the system downgraded to handle the package as is. In either case, the change 

could be costly and counterproductive.  

 

 

 



Serviceability. 

 This criterion focuses on documentation and vendor support. Complete 

documentation is critical for software enhancement. It includes a narrative description of 

the system, system logic and logic instructions. Vendor support assures the user adequate 

technical support for software installation, enhancements, and maintenance, the user 

should determine how much on – site technical assistance is provided by the vendor, 

especially during the first few weeks after the installation.  

 

 The user expects on – site training and support as part of most commercial 

packages. It is vital to inquire about the amount of training provided. The user may 

require training at several levels--clerical, operations, programming, and management. 

 

Ownership 

 Who owns the software once it is “sold” to the user? Most of the standard license 

agreement forms essentially lease the software to the user for an indefinite time. The user 

does not “own” it, which means that the source code is inaccessible for modification, 

except by the vendor. Many users enter into an escrow arrangement whereby the vendor 

deposits code to the user if the vendor goes out of business or is unable to perform the 

services specified in the license.  

 

 In acquiring software, several questions should be asked: 

1. What rights to the software is the user buying? 

2. Can the user sell or modify the software? 

3. If the vendor is modifying the package especially for the user, can the vendor 

sell it to other within the same industry the user is in? 

4. What restrictions are there to copying the software or documentation? 

 



Minimal costs. 

 Cost is a major consideration in deciding between in – house and vendor software. 

Cost – conscious users consider the following points: 

1. Development and conversion costs. 

2. Delivery schedule. 

3. Cost and frequency of software modifications. 

4. Usable life span of the package. 

 

10.9 Performance Evaluation 

 Evaluating a system includes the hardware and software as a unit. Hardware 

selection requires an analysis of several performance categories.  

1. System availability. When will the system be available? 

2. Compatibility. How compatible is the system with existing programs? 

3. Cost. What is the lease or purchase price of the system? What about 

maintenance and operation costs? 

4. Performance. What are the capacity and throughput of the system? 

5. Uptime. What is the ‘uptime’ record of the system? What maintenance 

schedule is required? 

6. Support. How competent and available is the vendor’s staff to support the 

system? 

7. Usability. How easy is it to program, modify, and operate the system? 

 

For the software evaluation, the following factors are considered: 

1. The programming language and its suitability to the application(s). 

2. Ease of installation and training. 

3. Extent of enhancements to be made prior to installation. 

 

In addition to hardware/software evaluation, the quality of the vendor’s services 

should be examined. Vendor support service include the following: 

1. Backup.  Emergency computer backup available from vendor. 



2. Conversion.  Programming and installation service provided during 

conversion.  

3. Maintenance. Adequacy and cost of hardware maintenance. 

4. System development. Availability of competent analysts and programmers for 

system development.  

 

 

10.10 Summary  

 A major element in building systems is selecting compatible Hardware & 

software. The kind of hardware & peripherals required is to be determined. The suitable 

software has to be selected. Comparisons are often made among different computer 

systems on the basis of actual performance data. Using benchmark data, generated by 

using synthetic programs, is more effective than simply comparing technical 

specifications. Software is classified as system software for controlling computer 

operations and application software for solving user oriented problems. There are several 

thing to do before selection :  

• Define system capabilities that makes sense for the business  

• Specify the magnitude of the the problem 

• Access the competence of in-house staff 

• Consider the hardware and software as a package 

• Develop the time farm for selection  

• Provide user indoctrination 

the selection process consists of several steps 

• Prepare the requirement analysis 

• Specify system specifications 

• Prepare a request for proposal  

• Rank vendor proposal  

• Decide best proposals or vendor 

The criteria for software selection are: 

• Reliability gives consist result 

• Functionality functions to standard  



• Capacity satisfy volume requirement  

• flexibility adapts to changing needs  

• Usability is user friendly  

• Security  

• Performance  

• Serviceability   

• Ownership  

• Minimal cost  

vendor proposals are evaluated and finalised ad hoc by scoring the characteristics of each 

system. There are three method of acquisition : Rental , lease , and purchase. 

 

10.11 Questions: 

1. What is benchmarking. 

2. What factors play a role in hardware selection. 

3. Discuss the various methods of acquiring hardware. 

4. What parameters are applied to select a vendor. 

5. Both hardware and software are equally important in selection. Do you agree.  

 

 

 


	CHAPTER2.pdf
	2.2 Stages of system development Life cycle
	2.2.5 Implementation 
	2.2.5.1 Post – Implementation and Maintenance
	2.3 Considerations for candidate system

	2.3.1 Political considerations
	2.4 Planning and control for system success

	2.2 Stages of system development Life cycle
	Impetus for system Change 
	Figure 2.1  Major Sources of Change
	2.2.2 Feasibility Study
	2.2.3 Analysis 
	2.2.4 Design 
	2.2.5 Implementation 



	Figure 2.2  Steps in systems design
	2.2.5.1 Post – Implementation and Maintenance 
	Project Termination
	2.3 Considerations for candidate system

	2.3.1 Political considerations
	2.4 Planing and control for system success



