POST GRADUATE DIPLOMA IN COMPUTER APPLICATIONS
(PGDCA, 1st Year of 3Yrs MCA)
Pass Marks: 40% in each paper

First Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Internal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-01:</td>
<td>Introduction to IT</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-02</td>
<td>Computer Programming and Problem Solving</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-03</td>
<td>Digital Electronics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-04</td>
<td>System Analysis and Design</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-05</td>
<td>Practical (Based on MS-01 & MS-02)</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(In two sittings each of 3 hrs duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>380</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

Second Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Internal*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-06:</td>
<td>Data Structure and Algorithms</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-07</td>
<td>Computer Organisation and Architecture</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-08</td>
<td>Operating System</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-09</td>
<td>Business Data Processing</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-10</td>
<td>Practical (Based on MS-06 & MS-07)</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(In two sittings each of 3 hrs duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>380</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
01. M. Sc. (COMPUTER SCIENCE) / 2 ND YEAR OF MCA (3 YRS.)

Third Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-11:</td>
<td>RDBMS</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-12</td>
<td>Software Engineering</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-13</td>
<td>Computer Graphics</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-14</td>
<td>Management Information System</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-15</td>
<td>Practical (Based on MS-11 & MS-13)</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(In two sittings each of 3 hrs duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>380</td>
<td>120</td>
</tr>
</tbody>
</table>

Fourth Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-16:</td>
<td>Computer Networks</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-17</td>
<td>Object Oriented Programming using ‘C++’</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-18</td>
<td>Internet and Web Programming</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-19</td>
<td>Computer Based Optimisation Methods</td>
<td>70</td>
<td>30</td>
</tr>
<tr>
<td>MS-20</td>
<td>Practical (Based on MS-17 & MS-18)</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>(In two sittings each of 3 hrs duration)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>380</td>
<td>120</td>
</tr>
</tbody>
</table>
Fifth Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-31:</td>
<td>Data Warehousing and Data Mining</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>MS-32:</td>
<td>C Sharp(C#) Programming</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>MS-33:</td>
<td>Advanced Computer Architecture</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>MS-34:</td>
<td>High Speed Networks</td>
<td>70</td>
<td>100</td>
</tr>
<tr>
<td>MS-35:</td>
<td>Practical (Based on MS-32) (In one sittings of 3 hrs duration)</td>
<td>100/-</td>
<td>100</td>
</tr>
</tbody>
</table>

| Total | | | 500 |

Sixth Semester

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Nomenclature of Paper</th>
<th>Max Marks</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-41:</td>
<td>Thesis/Project** Distribution of marks: Thesis/Project Evaluation: 100 Viva-Voce Examination : 100 Including Seminar / Presentation / Demonstration</td>
<td>200</td>
<td>200</td>
</tr>
</tbody>
</table>

| Total | | | 200 |

Note:

1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.

2. 30% of the maximum marks are allocated for internal assessment in each theory paper based on two assignments (handwritten) of 15% marks each.

3. **Marks will be awarded on the basis of Viva-Voce examination conducted in the presence of examiners. If a candidate obtains less than total 80(at least 56 marks out of external) marks out of 200 marks irrespective of marks obtained in Thesis/Project and Viva Voce Examination, he/she will be declared fail and will be directed to work on a fresh topic. This project will be submitted not earlier than on semester duration.**

Thesis/Project Report will be submitted in triplicate (Hard Bound in green colour) along with CD through study centre with proper certification by the supervisor concerned who may be a person with five years working experience and must have Master’s degree in relevant field or a regular teacher working in Govt/Semi-Govt. Institution/University/Engineering College. Students are advised to come prepared for presentation/demonstration of their Thesis/Project at the time of their final viva-voce examination.
DIRECTORATE OF DISTANCE EDUCATION

GURU JAMBHESHWAR UNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR

DETAILED SYLLABUS

FOR

PGDCA - First & Second Semester

[THROUGH DISTANCE EDUCATION PROGRAMME]
Information concept and processing system; Evolution of information processing, data, information language and communication.

Elements of computer processing system; Hardware-CPU, storage devices and media, VDU, input-output devices, data communication equipment, Software-system software, application software.

Programming Language: Classification, machine code, assembly language, higher level languages and fourth generation languages.

Operating systems: Concept as a resource manager processor, devices and memory. Concept of Priorities, projection and parallelism. Command interpreter Typical commands of DOS/UNIX/Net Ware, GUI-Windows.

Computer and Communications: Single user, multi-user, work station, client server systems, Computer networks, network protocols, LAN, WAN, Internet facilities through WWW, Mosaic, Gopher, HTML, elements of java.

Information integrity definite: Ensuring integrity, computer security, Perverse software, concepts and components of security. Preventive measures and treatment.

Range of application: Scientific, business, educational, industrial, national level weather forecasting, remote sensing, planning, multilingual applications.

Introduction to OOPS: Need of object oriented programming. Classes an objects, Data hiding, Data encapsulation, operators overloading, function overloading, inheritance and polymorphism.

References:
2. V.K. Jain “O-Level Module”

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Introduction to algorithms, Flow-Charts, Tracing flow charts, Problem solving methods: Need for computer languages. Reading programs written in C language. C character set, Identifiers and keywords. Data types, Declarations, Expressions, statements and symbolic constants, Input-Output: getchar, putchar, scanf, printf, gets, puts, functions, Pre-processor commands, # include, ifdef, preparing and running a complete C program.

Operators and expressions: Arithmetic, Unary, Logical, bit-wise, assignments and conditional Operator, Library functions. Control statements while, do-while, for statement, nested loops, if-else, switch, break, continue and goto statements, comma operator.

Functions: Defining and accessing: Passing arguments, Functions prototypes, Recursion.

Use of library functions, Storage classes: Automatic, external and static variables, Arrays: Defining and processing, passing to a function, Multi dimensional arrays. Strings, operations on strings.

Pointers: Declaration, Passing to a function. Operations on pointers, Pointer and arrays, Arrays of pointers.

Structure: Defining and processing. Passing to a function, Union.

Data Files: Open, close, create, process, Unformatted data files.

References:
1. E. Balaguruswamy, “Introduction to C”.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.

Reference:
1. R.P. Jain., “Modern Digital Electronics”.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Introduction:

Project Selection:
Sources of project’s requests, Managing Project Review and Selection, Preliminary investigation.

Feasibility Study:
Technical and Economical Feasibility, Cost/Benefit Analysis.

System Requirements, Specification and Analysis:

System Design:

System Engineering and Quality Assurance:

Merging System Implementation:
Training, Conversion and Post Implementation Review.

Reference:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7x5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2x12)+(1x11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
a) **IT Lab.**
Familiarising with PC, MS DOS and MS WINDOWS commands, File creation, editing and directory creation. Mastery of MS DOS commands. Learning to use of database and spread sheet, Slide creation with Power Point. Use of a visual programming language such as Visual Basic.

b) **Programming Lab.**
Programming exercises and project using C programming language. Exercises to study various features of the language. Stress to be laid on writing well-structured modular and readable programs accompanies by good documentation. Case studies of use of various data structures in applications such as sorting, searching, string manipulation and list manipulation.
PGDCA - Second Semester

MS-06 : Data Structures and Algorithms.

Max. Marks – 100

External -70; Internal -30

Duration – 3 hrs.

Introduction to Data Structures, linear list structures (Stack, Queue, Dequeue), Circulars-linked lists, Doubly-linked lists, Multilinked lists, Trees, Binary Tree, Threaded Binary Tree, Balanced Trees, Different tree traversal Algorithms, Representation of Graphs and Applications.

Various searching and sorting algorithms and their Analysis, Internal and external sorting Techniques, Various Hashing Techniques, Dynamic Storage.

References :

Note:

1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.

2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Principles of Computer design: Software, hardware, interaction layers in computer architecture, Central processing unit, machine language instructions, Addressing modes, instruction types, Instruction set selection, Instruction cycle and execution cycle. Control unit, Data Path and Control Path Design, Microprogramming Vs hardwired control, RISE Vs CISE, Pipelining in CPU design, Superscalar processors. Memory subsystem, Storage technologies, Memory array organization, Memory hierarchy, Interleaving, cache and virtual memories and architectural aids to implement these.

Input-output devices and characteristics
Input-output processing, bus interface, data transfer techniques. I/O interrupts channels, Performance evaluation-SPEC-MARKS, Transaction Processing benchmarks.

References

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Introduction:
Evolution of operating systems, operating system concepts and structure, types of operating systems.

File Systems:

CPU Scheduling:
Scheduling concepts, CPU scheduling algorithms, Algorithm evaluation, Multiple Processor Scheduling.

Memory Management:
Memory management without swapping or paging, swapping, overlapped swapping, paging, Segmentation, Virtual memory concepts, Demand paging, Page replacement algorithms, Allocation algorithms and thrashing.

Disk scheduling:
Disk scheduling algorithms, selecting a disk scheduling algorithm, sector queuing.

System Dead Locks:
The dead lock problem, Dead lock characterization, Dead lock Prevention, Dead lock avoidance, Dead lock detection, Recovery from deadlock.

Concurrent Processes:
Mutual Exclusion, shared data, critical section, busy form of waiting, lock and unlock primitives and non-primitives, synchronization, block and wakeup.

Case Studies:
MS-DOS, MS-WINDOWS and Linux / Unix Operating Systems.

References:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Introduction to data processing: records & files; data collection, preparations, verification, editing and checking.

Business files: Master and transaction file, file generations, back-ups and file recovery procedures.

COBOL Programming: language constructs and structured program development.

File sorting, searching, merging, matching.

Reference:
1. Sten & Sten, “Cobol Programming”
2. Dastidar Ghosh, “Cobol Programming”

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
a) **Data structure lab.**
1. Implementation of stack, queues as an array and linked list.
2. Implementation of linked lists with all the operations that can be performed on it.
4. Graph & its sequential & linked representations.
5. Main sorting & Searching techniques.
 At least eight exercises to be given on above-mentioned concepts.

b) **BDP Lab.**
A system for journal acquisition in a library.
A bus passenger reservation system.
An electricity billing system.
A fixed deposit accounting system for a Finance Company.
Hotel room booking.
Book issues and receipts in library.
Insurance premium calculation an issuing reminders.
A hospital management system.
DIRECTORATE OF
DISTANCE EDUCATION

GURU JAMBHESHWAR UNIVERSITY OF
SCIENCE & TECHNOLOGY , HISAR

DETAILED SYLLABUS
FOR
M.Sc. (Computer Science)
Third & Fourth Semester w.e.f. SESSION : 2012-13
[THROUGH DISTANCE EDUCATION PROGRAMME]
M.Sc. (Computer Science) - Third Semester

MS-11 : Relational Data Base Management System (RDBMS)

Max. Marks – 100

External -70; Internal -30

Duration – 3 hrs.

Basic Concepts: Introduction, Database users, Data models, Schema and Instances. DBMS Architecture and Data Independence, Database languages, Data modeling using E-R Model.

Relational Model: Relational Model concepts, Relational model constrains, Update operations on relations. The relational Algebra, SQL-A Relational Database Language.

Recovery Techniques: Recovery concepts, Recovery Based on deferred Update, Recovery Technique Based on Immediate update, Shadow Paging.

Distributed Database: Concepts, Overview of Client-server Architecture, Data Fragmentation, Replication and Allocation Techniques for Design Query, Processing in Distributed Database.

References:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Concept of Software Engineering, Software characteristics, components, applications, Software Metrics and Models: Process and Product Metrics, size metric, Complexity metric (McCabe’s Cyclometric Complexity), Halstead’s Theory, Function Point Analysis.

Planning and Software Project: Cost Estimation, COCOMO, Putnam, Project Scheduling, Quality Assurance Plans, Project Monitoring Plans.

Coding: Programming Practices, Verification, Monitoring and Control.

Reliability: Concept of Software Reliability, Software Repair and Availability Software Errors and Faults, Reliability Models (JM, GO, MUSA, Markov.) Limitations of Reliability Models.

Reference:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.

Display Devices: Refresh CRT, Random-Scan and Raster-Scan Monitor, Color CRT Monitors, DVST, Plasma-Panel Displays, LED and LCD Monitors, Hard copy devices.

Scan conversion: Scan converting a point, line, circle, ellipse and arcs.

2-D graphics transformations (Rotations, Scaling, Translations, Reflecting, Shearing) Composition of 2-D transformation, 2-D viewing and clipping, Windowing concepts, clipping algorithms (Line, Area and Text) Sutherland-Cohen, Mid-point subdivision Window-to-view port transformation, Primitive and attributes, Exterior and Interior clipping.

Interactive graphics: Concept of Positioning and Pointing, Interactive Graphic Devices (Key Boards, Touch Panels, Light Pens, Graphics tablets, Joysticks, Mouse, Voice Systems) Interactive Graphical Techniques: Basic Positioning Methods, Constraints, Grid, Gravity field, Rubber-Band Methods, Sketching, Dragging, Inking and Painting.

Computer Graphic Software: Introduction, GKS (Primitive, attributes and Viewport, Display subroutines)

3-D Graphics: 3-D Graphics transformations (Rotation, Rotation about an arbitrary line Scaling, Translation), Parallel and Perspective Projections, Concepts of Hidden Line, Hidden Line and Surface elimination methods (Z-Buffers, Scan-line, Painter’s, Subdivision). 3-D viewing and clipping. 3-D Object Representation: Wireframe model, Bezier Curves and Surfaces.

Multimedia: Introduction, Hardware and Software for multimedia, Applications Area for Multimedia, Components of Multimedia, Authoring Tools.

References:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Background Meaning, Nature, Need, Role, Importance, Evolution of management through information system; Relation of MIS with management activities. Management functions and decision making.

Concept of balance, MIS Effectiveness and efficiency criteria.

Development of MIS: Methodology and Tools/Techniques for systematic identification, evaluation, modification of MIS.

Reference:
3. Banerji & Sachdeva (Vikas Publication)

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
MS-15 : Practical (Based on MS-11 & MS-13)
Practical : 100 Marks

a) **Computer Graphics Lab**
1. Draw circle using Bresenhem’s Method.
2. Draw a line using Bresenhem’s Method.
3. Translate and Rotate a Wheel.
4. Plot a dashed line.
5. Generate Bat Chart.
6. Rotate a circle around the circumference of an another circle.
7. Rotate a line around the circumference of a circle.
8. Generate a synchronized clock with system time.
9. Generate a fan and rotate it with proper switches.
10. Display a moving slide on screen.
11. Implement Cohn-Sutherland algorithm for line segment clipping.
12. Obtained mirror image of word “COMPUTER”
13. Perform various shearing transformations on a rectangle.
14. Write a program that applies any specified sequence of transformations to a displayed object. The program is to be designed so that a user selects the transformation sequence from displayed menu, and the composite transformation is then calculated and used to transform the object. Display the original object and transformed object.
15. Any minor project (Each student will do different problem).

b) **RDBMS Lab**
Study features of a commercial RDBMS packages such as oracle, FoxPro. Ms Access and Structures query language (SQL, use with the RDBMS Laboratory exercises will include defining scheme for applications, creation of a database, writing SQL, queries to retrieve information from the database. Use of host language interface with embedded SQL. Use of forms and report writer packages available with the chosen RDBMS product. Some sample application which may be programmed are given below:

1. Accounting for a shop
2. Database manager for magazine agency or newspaper agency
3. Ticket booking for performances
4. Preparing greeting and birth day cards
5. Personal accounts-insurance, loans, mortgage payments etc.
6. Doctor’s diary, billing
7. Personal bank account
8. Class marks management
9. Hostel accounting
10. Video tape library
11. History of cricket scores
12. Cable transmission program manager
13. Personal library
M.Sc. (Comp.Sc) Fourth Semester

MS-16 : Computer Networks
Max. Marks – 100
External -70; Internal -30
Duration – 3 hrs.

Concepts of data transmission, Analog data and Analog carrier, Digital data and digital carrier etc., Half Duplex and Full Duplex Transmission Methods, Fundamental of communication theory, Shannon Hartlay Theorem, Source Encoding, Channel speed and bit rate. Bandwidth and frequency spectrum, Time Division multiple access system.
Network components, Network topology : Bus, Star, Ring, Mesh, Hybrid, Layers of OSI References Model, Character and bit protocols, Binary synchronous control (BSC), HDLC, SDLC, LANs, IEEE LAN standards, IEEE 802.5 (token ring), IEEE 802.4 (token bus) and IEEE 802.3 (Ethernet), MANs DQDB, Message, Switching, Packets switching, X.25 protocols, Routing and Flow Control, TCP/IP Reference Model, Introduction to ATM and ISDN.

Reference:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
i) Definition: Object Oriented Programming, Paradigms and metaphors; Active Data; Message Passing; Classes; Instantiation and inheritance; Types of Object Oriented Systems.

ii) Object - Oriented Programming Tools: Development of Programming Language, Class Declarations and creating objects, Expressions and Statements; Functions; Classes; Operator Over loading; Derived Classes; File and streams, string Manipulation; Buffering.

iii) Concurrent Object-Oriented Systems.

References:

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
MS-18 : Internet and WEB programming.
Max. Marks – 100
External -70; Internal -30
Duration – 3 hrs.

Internet-Beginning and Current State. Hardware and Software requirement, ISP and Internet accounts. Web-Home page, URL, Browser, Security on Web, Plug-ins and Helpers. Searching tools and Search engine. FTP, Gopher, Telnet and E-mail.
Web Authoring using HTML; Creating a Web page, Methods of Lindking, Publishing HTML, Text formatting and Alignment, Font Control, Arranging text in lists, Images on a Web page, Backgrounds and Color Control, Interactive Layout with Frames.
Programming through JAVA : JAVA History, Java features, Java and Internet, Java and World Wide Web, Hardware and software requirements. Java environment, Java Program Structure. Java Tokens, Java Virtual Machine, Constants, Variables and Data Types, Operators and Expressions, Decision Making and Branching, Decision Making and looping, Classes, Objects and Methods, Interfaces Packages, Managing Errors and Exceptions.

References :

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
MS-19 : Computer Based Optimisation Methods
Max. Marks – 100
Duration – 3 hrs.

Operation Research : An Introduction, Linear programming, Formulation of Linear Programming Problems, Simplex methods, Duality, Software for linear programming.
Network problems and shortest path in network, Discrete and continuous Markov Chains, Queuing Theory (M/M/1 and M/M/C), Integer programming.

References:
1. V.K. Kapoor, “Operational Research”.
2. S.D. Sharma, “Operational Research”.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7x5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2x12)+(1x11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.

MS- 20 : Practical (Based on MS-17 & MS-18)
Practical : 100 Marks

a) OOP lab
 Practical based on C++

b) Internet and Web programming Lab
 Practical based on HTML and JAVA programming.
DIRECTORATE OF DISTANCE EDUCATION

GURU JAMBHESHWAR UNIVERSITY OF SCIENCE & TECHNOLOGY, HISAR

DETAILED SYLLABUS FOR M.C.A. - Fifth and Sixth Semester

w.e.f. SESSION : 2006-07 [THROUGH DISTANCE EDUCATION PROGRAMME]
Syllabus of MCA - Vth Semester

MS-31 : Data Warehousing and Data Mining

Max. Marks – 100

Duration – 3 hrs.

External -70; Internal -30

Detailed Contents

Introduction : The Evolution of Data Warehousing (The Historical Context), The Data Warehouse-A Brief History, Today’s Development Environment.

Creating the data Asset : Business Data Warehouse Design, Populating the data Warehouse.

Unlocking the Data Asset for end users (The Use of Business Information) :
Designing Business Information Warehouse, Populating Business Information, Warehouses, User Access to Information, Information-Data in context.

Implementing the Warehouse (Managing the Project and Environment) : Obstacles to Implementation, Planning your implementation, Justifying the Warehouse, Organizational Implications of Data Warehousing, The Data Warehouse in your organization, Data Warehouse Management, looking to the future.

Data Mining

Introduction : Motivation, importance, data mining, kind of data, functionalities, interesting patterns, classifications of data minining system, major issues.

Data Warehouse of OLAP Technology for Data Mining : Data warehouse, operational database systems and data warehouses, Architecture, Implementation, development of data cube technology, Data Warehousing to data mining, Data warehousing usage.

Data Preparation : Preprocess, Data cleaning, Data integration and transformation, Data reduction, Discretization and concept hierarchy generation.

Data Mining Primitives, Languages and system architectures, graphical user interfaces.

Concept Description : Characterization and comparison, Data generalization and summarization-based characterization, Analytical characterization: analysis of attribute relevance, Mining class comparisons, Mining descriptive statistical measures in large database,

Mining Association Rules in large database, mining single-dimensional Boolean association rules from transactional databases, mining multilevel association rules from transaction databases, Mining multidimensional association rules from relational databases
and data warehouses, from association mining to correlation analysis, Constraint-based
association mining.
Classification and Prediction, Issues, Classifications by decision tree induction, Bayesian
classification, classification by back propagation, Classification based concepts from
association rule mining, other classification methods.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer
type questions out of which the candidate will be required to attempt any seven questions
(7×5=35). In section B there will be three questions with internal choice and the candidate
will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments
(handwritten) of 15% marks each.

C# Types: Value types: Simple type, struct type, Enumeration type, Reference type-object type, class type, interfaces, delegates, string type, arrays. Boxing and unboxing conversions, Implicit, explicit, standard and user-defined conversions.

Classes & Methods: Constructors & destructors, Methods - Parameters, overriding, hiding, class properties, Indexes, Modifiers class, Member, Access, Multicast Delegates.

Control Statements: Selection statements - if, switch. Iteration statement-for, foreach, while, do statement.

Exception Handling: Checked & unchecked statement, compiler setting for overflow checking, programmatic overflow checking. Exception handling statement - try & catch. try and finally, try-catch-finally. Throwing exception, re-throwing exception.

Inheritance & Polymorphism: Inheritance - base class and derived class. Polymorphism, base class with a virtual method, derived class with override methods.

Interfaces: Base interface, interface body, interface members, interface methods, interface properties, interface events, interface indexers, interface mapping, interface reimplementation.

Configuration & Deployment: Conditional compilation - Preprocessor usage, the conditional attribute. Documentation comments in XML - Describing an element, adding remarks and lists, examples, describing parameters, describing properties, documentation compiling NGWS components.

Reference

i) Christoph Wille, Presenting C# -- SAMS Techmedia.
ii) C# Made Simple - BPB Publicatiob
iii) Vijay Mukhi, C# The Basics, --BPB Publications
iv) Vijay Mukhi, C#, Nuts & Bolts -- BPB.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.

2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Introduction: Evolution, performance attributes, Flynn’s classification, multiprocessor, multicomputer, scalable, superscalar, multithreading, pipelining, superpipelining dataflow architecture.

System Network & Scalable Properties: Data & Resource dependencies, program partitioning and scheduling, System interconnect architecture - crossbar, multiport, multistage networks, Scalability analysis and approaches.

Pipelining: Pipelining - Linear, non-linear pipelining, design of instruction and arithmetic pipeline Superscalar and Superpipeline design. Pipelining is RISC, CISC, CRISC & VLIW architecture.

Multithreaded & Dataflow Architecture: Multithreading, multiple context processors, multidimensional architecture, dataflow architecture - dataflow graph, static & dynamic dataflow computers.

Concurrent Processors: Vector Processors - functional units, vector instruction, processor implementation, speedup.

Vector memory - modeling vector memory performance, Gamma

(1) Binomial model.

Multiple issue processors, Multivector multiprocessors.

References:

i) Kai Hwang - Advanced Computer Architecture, Parallelism, Scalablility, Programmability - MGH

iii) J.P. Haycs - Computer Architecture & Organization - MGM.

Note:

1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.

2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
Need of a high speed network, performance attributes, network backbone, cost of high speed networks, Fiber Distributed Data Interface (FDDI), Fast Ethernet-IEEE 802.3u, Gigabit Ethernet - RSVP, Virtual LANs, Video Compression, Fiber Channel - layer 0, Layer 1, Layer 2, Layer 3, Layer 4, Protocol mapping. ISO Ethernet 802.9a.

Integrated Services Digital Network (ISDN), Switched Multimegabit Data Services (SMDS), Frame Relay Networks. Asynchronous Transmission Mode (ATM) - Reference model, ATM Switches, ATM in datalink Network and Transport Layer.

Digital Subscriber Line Services & Cable Modems - DSL (Digital Subscriber Line), ADSL (Asymmetric Digital Subscriber Line), HDSL (High bit rate digital subscriber line), VDSL (Very High bit rate Digital Subscriber Line), SDSL (Symmetrical Digital Subscriber Line), RADSL (Rate Adaptive Digital Subscriber Line).

Reference:
1. Tere Parnell - Building High Speed Networks, -- TMH
2. Cooper E. - Broadband Network Technology -- Prentice Hall
3. Tanenbaum - Computer Networks -- PHL
5. Goralski W.J. -- Introduction to ATM Networking -- MGH.

Note:
1. There will be two sections A & B. (35+35=70). In section A there will be ten short answer type questions out of which the candidate will be required to attempt any seven questions (7×5=35). In section B there will be three questions with internal choice and the candidate will be required to attempt all questions (2×12)+(1×11)=35.
2. 30% of the maximum marks are allocated for internal assessment based on two assignments (handwritten) of 15% marks each.
MS- 35 : Practical (Based on MS- 32)

Practical : 100 Marks

Practical based on C SHARP (C#) PROGRAMMING

Syllabus of MCA - Vth Semester

MS-41: Thesis/Project**

<table>
<thead>
<tr>
<th>Distribution of Marks</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thesis/Project Evaluation</td>
<td>100</td>
</tr>
<tr>
<td>Viva-Voce Examination</td>
<td>100</td>
</tr>
<tr>
<td>including Seminar/Presentation/Demonstration</td>
<td></td>
</tr>
</tbody>
</table>

Marks will be awarded on the basis of Viva-Voce examination conducted in the presence of examiners. If a candidate obtains less than total 80 marks out of 200 marks irrespective of marks obtained in Thesis/Project and Viva Voce Examination, he/she will be declared fail and will be directed to work on a fresh topic. This project will be submitted not earlier than on semester duration.

Thesis/Project Report will be submitted in triplicate (Hard Bound in green colour) alongwith CD through study centre with proper certification by the supervisor concerned who may be a person with five years working experience and must have Master’s degree in relevant field or a regular teacher working in Govt/Semi-Govt. Institution/University/Engineering College. Students are advised to come prepared for presentation/ demonstration of their Thesis/Project at the time of their final viva-voce examination.

All Rights Reserved by:
Directorate of Distance Education
Guru Jambheshwar University of Science and Technology, Hisar-125001