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MAL-522: M. Sc. Mathematics (Measure and Integration Theory) 

Lesson No. 1                                           Written by Dr. Vizender Singh 

Lesson: Measurable Function and Properties 
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1.3 Check Your Progress  
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1.5 Keywords  

1.6 Self-Assessment Test  

1.7 Answers to check your progress  

1.8 References/ Suggested Readings  

 

1.1.  Introduction 

 With the class  of measurable sets in mind, we introduce a rich class of 

functions; namely, the class of measurable functions which includes the class 

of continuous functions as a proper subclass. The class of measurable 

functions plays a role of central importance in Lebesgue theory of integration. 

It will assume a place comparable to that of the class of functions which are 

bounded and continuous almost everywhere in the Riemann theory of 

integration and of functions of bounded variation in the instance of Stieltjes 

integrals. Roughly speaking, a function is integrable if its behaviour is not too 

irregular, and if the values it takes are not too large too often. The second 

requirement is equivalent to the existence of the equality of the upper and 

lower integrals. We now introduce the notion of measurability which gives 

precisely the conditions required for the integrability, given that the function is 

not too large. In many cases, it is easier to examine the measurability of a 

function than to investigate its upper and lower integrals directly. 
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1.2.  Measurable Function 

1.2.1 Definition. Let   be a measurable set and   a function defined on E. 

Then   is said to be measurable (Lebesgue function) if for any realm any one 

of the following four conditions is satisfied. 

 

(a)             is measurable 

(b)             is measurable 

(c)             is measurable 

(d)             is measurable. 

We show first that these four conditions are equivalent. First of all we show 

that (a) and (b) are equivalent. 

Since 

                         

and also we know that complement of a measurable set is measurable, 

therefore         and conversely. 

SimiIarIy since (b) and (c) are complement of each other, (c) is measurable if 

(b) is measurable and conversely. 

Therefore, it is sufficient to prove that         and conversely. Firstly we 

show that         . The set             is given to be measurable. 

Now 

                        
 

 
 

 

   

 

 

But by (b),               is measurable. Also we know that countable 

union of measurable sets is measurable. 

 

Hence             is measurable which implies that         . 

Conversely, let (a) holds. We have 
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The set               is measurable by (a). Moreover, intersection of 

measurable sets is also measurable. Hence             is also measurable. 

Thus         . Hence the four conditions are equivalent. 

Lemma.1.2.2. If   is an extended real number then these four conditions 

imply that             is also measurable. 

Proof. Let   be a real number, then 

 

                                        

 

Since             and             are measurable by conditions (b) and 

(d), the set             is measurable being the intersection of measurable 

sets. Suppose α    . Then 

 

                        

 

   

 

 

which is measurable by the condition (b) and the fact that intersection of 

measurable sets is measurable. 

 

Similarity when     , then 

 

                          

 

   

 

 

which is again measurable by condition (d). Hence the result follows. 

 

Second definition of Measurable functions 
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We see that 

            

 

is inverse image of      ]. Similarly the sets  

                                      are inverse images of         

     ) and        respectively. Hence we can also define a measurable 

function as follows. 

 

A function   defined on a measurable set   is said to be measurable if for any 

real   any one of the four conditions is satisfied : 

 

(a) The inverse image         ] of the half‐ open interval      ] is 

measurable. 

(b) For every real  , the inverse image           of the closed interval 

       is measurable. 

(c) The inverse image         ) of the half open interval      ) is 

measurable. 

(d) The inverse image           of the closed interval        is 

measurable. 

Remark 1.2.3. It is immediate that a necessary and sufficient condition for 

measurability is that               should be measurable for all      

[including the case a           ], for any set of this form can be written 

as the intersection of two sets 

 

                           

 

if   is measurable, each of these is measurable and so is               . 

Conversely any set of the form occurring in the definition can easily be 

expressed in terms of the sets of the form 
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Remark 1.2.4. Since (α,  ) is an open set, we may define a measurable 

function as “A function   defined on a measurable set   is said to be 

measurable if for every open set   in the real number system,        is a 

measurable set. 

Definition.1.2.5.  Characteristic function of a set   is defined by  

 

       
         
         

  

 

This is also known as indicator function. 

Example of a Measurable function 

 

Example.1.2.6. A constant function with a measurable domain is measurable. 

Solution. Let   be a measurable set and let  :      be a constant function 

definition by         constant) . Then for any real m, we have 

 

            
              
             

  

 

Since both   and   are measurable, it follows that the set             and 

hence   is measurable. 

Theorem. 1.2.7. For any real   and two measurable real‐ valued functions    

  the four functions cf,    , fg are measurable. 

Proof. We consider the function cf. In case    , cf is the constant function   

and hence is measurable since every constant function is continuous and so 

measurable. In case     we have 
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{     ( )   }          
 

 
      

 

 
     

 

and so measurable. 

In case    , we have 

{         
 

 
   }           

 

 
   

and so measurable. 

 

 Now if   and   are two measurable real valued functions defined on the 

same domain, we shall show that     is measurable. To show iit, it is 

sufficient to show that the set                  is measurable.          

      , then        ‐  g(x) and by the    . of the axiom of Archimedes 

there is a rational number   such that 

 

              

 

Since the functions   and   are measurable, the sets 

 

            and               

 

are measurable. Therefore, there intersection 

 

                             

is a1so measurab1e. 

It can be shown that 

 

                  {        is a rational} 

 

Since the set of rational is countable and countable union of measurable sets is 

measurable, the set         is a rational} and hence                  is 
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measurable which proves that           is measurable. From this part it 

follows that f ‐            is also measurable, since when   is measurable 

     is also measurable.  

Next we consider fg. 

The measurability of f   follows from the identity 

 

f    
 

 
                

 

if we prove that    is measurable when   is measurable. For this it is 

sufficient to prove that                   is a real number, is measurable. 

Let   be a negative real number. Then it is clear that the set               

  domain of the measurable function    . But   is measurable by the 

definition of   . Hence              is measurable when      

Now let    , then 

 

                                        

 

Since   is measurable, it follows from this equality that 

 

             

 

is measurable for     . 

 

Hence    is also measurable when   is measurable. Therefore, the theorem 

follows from the above identity, since measurability of   and   imply the 

measurability of    . From this we may also conclude that          is 

also measurable. 

Theorem 1.2.8. If   is measurable, then     is also measurable. 

Proof. It suffices to prove the measurability of the set 
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               , where α is any real number. 

 

If    , then 

                 (domain of f) 

 

But   is assumed to be measurable. Hence                is measurable for 

     

If     then 

 

                                       

 

The right hand side of the equality is measurable since   is measurable. Hence 

              is also measurable. Hence the theorem is proved. 

Theorem 1.2.9. Let        
  be a sequence of measurable functions. Then 

 

                               , 

 

        ,     ,       and       are measurable. 

Proof. Define a function 

                        

 

We shall show that             is measurable. 

In fact 

              

 

   

            

 

Since each    is measurable, each of the set              is measurable and 

therefore their union is also measurable. Hence           } and so      is 

measurable. 
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Similarly we define the function 

 

                       

 

Since        iff         for some   we have 

 

              

 

   

            

and since              is measurable on account of the measurability of   , it 

follows that             and so      is measurable. 

Define a function 

                           ,…,    

 

We shall show that the set 

             

 

is measurable for any real m. 

Now 

               

 

   

            

 

is measurable, since each    is measurable. 

Similarly if we define 

 

              , 

 

then 
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and therefore measurability of    implies that of       . Now since 

 

                  inf { sup    } 

 

and                           

 

the upper and lower limits are measurable. 

 

Finally if the sequence is convergent, its limit is the common value of       

and       and hence is measurable. 

Definition.1.2.10. Let   and   be measurable functions. Then we define 

 

              

 

               

 

        
         

 
 i.e.            

and 

        
         

 
 i.e.            

Theorem 1.2.11. Let   be a measurable function. Then   and    are both 

measurable. 

Proof. Let us suppose that    . Then we have 

 

         and               (i) 

So in this case we have 

        

 

Now let us take   to be negative. Then 
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               0 

                                                       

(  ) 

Therefore on subtraction 

 

        

 

In case    , then 

 

                         

(iii) 

 

Thus for all   we have 

 

                       

(iv) 

 

Also adding the components of (i) we have 

 

                         

( ) 

 

Since   is positive. 

And from (ii) when   is negative we have 

 

                            

(vi) 

In case   is zero, then 
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                                   (vii) 

 

That is for all  , we have 

 

                             (viii) 

 

Adding (iv) and (viii) we have 

            

 

        
 

 
            (ix) 

 

Similarly on subtracting we obtain 

 

           
 

 
            ( ) 

 

Since measurability of  implies the measurability of      it is obvious from 

(ix) and (x) that    and    are measurable. 

 

Theorem 1.2.12. If   and   are two measurable functions, then       and 

    are measurable. 

Proof. We know that 

       
         

 
 

 

     
         

 
 

 

Now measurability of f   measurability of    . Also if   and   are 

measurable, then    , f -   are measurable. Hence        and      are 

measurable. 
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We now introduce the terminology “almost everywhere” which will be 

frequently used in the sequel. 

Definition 1.2.13. A statement is said to hold almost everywhere in   if and 

only if it holds everywhere in   except possibly at a subset   of measure zero. 

Examples (a) Two functions   and   defined on   are said to be equal almost 

everywhere in   iff           everywhere except a subset   of   of 

measure zero. 

 

(b) A function defined on   is said to be continuous almost everywhere in   if 

and only if there exists a subset   of   of measure zero such that   is 

continuous at every point of   D. 

Theorem 1.2.14. (a) If   is a measurable function on the set   and      is 

measured set, then   is a measurable function on     

(b) If   is a measurable function on each of the sets in a countable collection 

     of disjoint measurable sets, then   is measurable. 

Proof. (a) For any real m, we have               right‐ hand side is 

measurable.                 . The result follows as the set on the 

right-hand side is measurable. 

(b) Write E     
 
    Clearly,  , being the union of measurable set is 

measurable. The result now follows, since for each real  , we have    

                  
 
            . 

Corollary 1.2.15. Let      be a sequence of measurable functions such that 

           almost everywhere. Then   is a measurable function. 

Proof. We have already proved that if      is a sequence of measurable 

functions then          is measurable. Also it is given that            

a.e. Therefore using the above theorem it follows that   is measurable. 

Theorem 1.2.16. Characteristic function    is measurable if and only if A is 

measurable. 

Proof. Let A be measurable. Then 
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Hence it is clear from the definition that domain of    is A      which is 

measurable due to the measurability of A  Therefore, if we prove that the set 

          is measurable for any real m, we are through. 

Let      . Then 

                          

 

            (   the definition of Ch. fn.) 

 

But A is given to be measurable. Hence for    . The set            is 

measurable. 

Now let us take     . Then 

 

                

 

Hence            is measurable for     also, since A      has been 

proved to be measurable. Hence if A is measurable, then     is also 

measurable. 

Conversely, let us suppose that       is measurable. That is, the set         

   is measurable for any real    

Let m    . Then 

                        

 

Therefore, measurability of            implies that of the set A for      

Now consider    . Then 

                

 

Thus measurability of       implies measurability of the set      which 

imply A is measurable. 
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Remark 1.2.27. With the help of above result, the existence of 

non‐ measurable function can be demonstrated. In fact, if   is 

non‐ measurable set then    cannot be measurable. 

Definition 1.2.18. A function  , defined on a measurable set  , is called 

simple if there is a finite disjoint class               of measurable sets and a 

finite set              of real numbers such that 

 

      
                         
                     

  

 

Thus, a function is simple if it is measurable and takes only a finite number of 

different values. 

The simplest example of a simple function is the characteristic function    of 

a measurable set E. 

Definition 1.2.19. A function   is said to be a step function if 

 

                        

 

for some subdivision of       and some constants   . Clearly, a step function 

is a simple function. 

Theorem 1.2.20. Every simple function   on   is a linear combination of 

characteristic functions of measurable subsets of E. 

Proof. Let   be a simple function and        …,   denote the non‐ zero real 

numbers in its image     . For each          , let 

 

                 

 

Then we have 
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On the other hand, if      contains no non‐ zero real number, then     and 

is the characteristic function    ofthe empty subset of E. 

It follows from Theorem 10 that simple functions, being the sum of 

measurable functions, is measurable. Also, by the definition, if   and   are 

simple functions and   is a constant, then    , cf,     and f   are simple. 

Approximation Theorem 

Theorem 1.2.21. For every non- negative measurable function  , there exists 

a non-negative non-decreasing sequence      of simple functions such that 

   
   

               

In the general case if we do not assume non-negativeness of  , then we say. For 

every measurable function  , there exists a sequence           of simple 

function which converges (pointwise) to   . 

i.e. “Every measurable function can be approximated by a sequence of simple 

functions.” 

Proof. Let us assume that        and    . Construct a sequence 

 

          

   

  
              

   

  
      

 

  
            

                               

  

 

 

for every    N. If we take    , then 
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That is,         

                   
 

 
 

 
          

 

 
       

                  

  

 

Similarly by taking    , we obtain 

 

          
   

 
           

   

 
      

 

 
          

                      
  

 

That is, 

         

 
 
 

 
                     

 

 
 

 
           

 

 
      

 

 
 

 
           

 

 
       

                    

  

 

Similarly we can write       and so on. Clearly all    are positive whenever   

is positive and also it is clear that        . Moreover    takes only a finite 

number of values. Therefore      is a sequence of non‐ negative, non-

decreasing functions which assume only a finite number of values. 

Let us denote 

 

        
   

  
  

 

  
          

   

  
      

 

  
  

and 

                         

 

Both of them are measurable. Let 
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for every     . 

Now  
    

  
   

       
 is measurable, since    

 has been shown to be measurable 

and characteristic function of a measurable set is measurable. Similarly    
 is 

also measurable since    is measurable. Hence each    is measurable. Now we 

prove the convergence of this sequence. 

Let       . That is   is bounded. Then for some   we have 

 

   

  
      

 

  
 

 

            
    

   
    

        
   

   
 

   
   

    

 

        
   

  
 

 

  
 

 

                                  
 

         (by the def of      ) 

 

                         

 

                             

 

and this convergence is uniform. Let us suppose now that   is not bounded. 

Then since 

                                   for        

 

                               

 

When we do not assume non-negativenss of the function then since we 

know that    and    are both non-negative, we have by what we have proved 
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above 

                
          (i) 

 

               
                      (ii) 

where   
     and   

      are simple functions. Also we have proved already 

that 

        

Now from (i) and (ii) we have 

 

         
   

  
        

   
  

      

 

               
       

       

 

                             

(since the difference of two simple functions is again a simple function). 

Hence the theorem.  

Littlewood’s three principles of measurability 

The following three principles concerning measure are due to Littlewood. 

First Principle:  Every measurable set is a finite union of intervals. 

 

Second Principle: Every measurable function is almost a continuous function. 

Third Principle. If      is a sequence of measurable function defined on a set 

  of finite measure and if            on  , then       converges almost 

uniformly on E. 

First of all we consider third principle. We shall prove Egoroff‟s theorem 

which is a slight modification of third principle of Littlewood’s. 

Egoroff’s Theorem 

Theorem 1.2.22. Let      be a sequence of measurable functions defined on a 

set   of finite measure such that            almost everywhere. Then to 
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each      there corresponds a measurable subset    of   such thatm   
    

and       converges to      uniformly on     

Proof. Since            almost everywhere and      is a sequence of 

measurable functions, therefore      is also a measurable function. Let 

 

                         

Clearly measure of E‐ H is zero. 

For each pair       of positive integers, let us define the set 

 

      

 

   

                 
 

 
  

(Since each      is a measure function, the sets     are measurable). 

Then for each  , if we put 

       

 

   

 

Then it is clear that 

       

 

   

   

In fact, if     then            

We have also 

                          
 

 
 

 

     

 

Clearly  

                             
 

 
  

Hence         cannot be a proper subset of    . That is, 

 

            

Thus for each   the sequence       is an expanding sequence of measurable 
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sets. Therefore 

   
   

             

 

   

  

 

                  

Whence 

 

               
    .      ( ) 

Thus, given     , we have that for each   there is a positive integer    such 

that 

     
     

 

  
      

 

               i.e.      
   

 

                    (ii)  

Let 

      

 

   

    

then    is measurable and 

   
         

 

   

 

 

 

 

                              

  
     

 

   

 

   

    

  

 

                 
 

  
 
        (using (ii)) 
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It follows from the definition of     that for all      , 

 

                 
 

 
                 (iii) 

for every       
. Since        

 for every  , the condition      yields 

(iii) for every     . Hence            uniformly on   . This completes 

the proof of the theorem. 

Now we pass to the second principle of Littlewood. This is nothing but 

approximation of measurable functions by continuous functions. In this 

connection we shall prove the following theorem known as Lusin Theorem 

after the name of a Russian Mathematician Lusin, N.N. 

Lusin’s Theorem 

Theorem 1.2.23.. Let   be a measurable function defined on      . Then to 

each     , there corresponds a measurable subset    of       such that 

   
     and   is continuous on     

Proof. Let   be a measurable function defined on      . We know that every 

measurable function is the limit of a sequence         of simple functions 

whose points of discontinuity form a set of measure zero. Thus we have 

 

   
   

                

 

By Egoroff’s theorem, to each      there exists a subset    of       such that 

   
    and       converges to      uniformly on   . But we know that if 

        is a sequence of continuous function converging uniformly to a 

function     , then      is continuous. Therefore      is continuous on   . 

This completes the proof of the theorem. 

Theorem 1.2.24. Let   be a measurable function defined on       and assume 
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that   takes values    on a set of measure zero. Then given      we can 

find a continuous function   and a step function   such that 

 

                 

 

except on a set of measure less than    

Proof. Let H be a subset of       where               . Then by the 

hypothesis of the theorem           . We know that every measurable 

function can be expressed as a almost everywhere limit of a sequence of step 

functions which are continuous on a set of measure zero. That is, we can find a 

sequence of step functions such that 

                 a.e. on H. 

Let     such that            and is continuous everywhere on F. 

By Egoroff’s theorem for a given      we can find a subset      such that 

           uniformly on    and 

          

But we know that if      is a sequence of continuous function converging 

uniformly to a function     , then      is continuous. Therefore      is 

continuous on     

Define a continuous function      on       such that 

 

      
                         

                     
  

Therefore on    we have 

        

We have already shown that 

               

Also we have shown that            where       is a sequence of step 

function, so      is also a step function. Hence the theorem. 

In order to prove the first principle of Littlewood we prove two theorems on 
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approximations of measurable sets. 

Theorem 1.2.25. A set   in   is measurable if and only if to each     , there 

corresponds a pair of sets      such that          is closed,   is open and 

m(G‐ F)     

Proof. Sufficiency: Taking      , let the corresponding pair of sets be     

   with 

 

             

Let 

     

 

         

 

 

It follows that           and 

 ( ‐  )               

So that 

         . 

Since 

         

so 

        . 

 

Therefore, E—X  is measurable. 

But          . Therefore   is measurable, since X is measurable and 

E‐  X is measurable. 

Necessity: We now assume that   is measurable. We first prove this part under 

the assumption that   is bounded. Since   is measurable and bounded, we can 

choose an open set     such that 

                 
 

 
      ( ) 

Choose a compact (closed and bounded) set    , and then choose an open set 

V such that           
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                (S‐ E)  
 

 
                          

(ii) 

Let      V. Then   is closed (since S‐  V       which is closed being 

the intersection of closed sets) and    . We have 

                 

 

                                  

 

                                             
 

 
  

 (Using (ii)) 

 

                                     
 

 
                  

(iii)  

Then 

m(G‐ F)            

 

                      

 

     
 

 
 

 

 
                (using (i) and (iii)) 

 

This finishes the proof for the case in which   is bounded. 

Now, let   be the measurable but unbounded. Let 

 

                   

 

        

 

                            . 
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Then 

     

 

  

 

where each    is bounded and measurable. 

Using what has already been established, let        be a pair of sets such that 

             is closed,    is open, and          
 

  . 

Let       ,        . Then                and so 

 

 ( ‐  )               

 

            

 

   
 

  

 

 

 

    
 

  

 

 

 

     

 

We see that   is open and that      , so all that remains to prove is that 

  is closed. Suppose      is a convergent sequence (say     ) with      

for each  . Then      is bounded and so is contained in    for certain  . Now 

         if    . 

Therefore,  

          
 
    for each i.  

But then the limit   is in    
 
    , for this last set is closed. Therefore   is 
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closed. This finishes the proof. 

Definition 1.2.26. If A and   are two sets, then 

       (  -  )        . 

Theorem 1.2.27. If   is a measurable set of finite measure in   and if    , 

there is a set G of the form G     
 
    where   ,          are open intervals, 

such that           

Proof. Let us assume at first that   is bounded. Let X be an open interval such 

that    . There exist Lebesgue covering      and      of   and X   

respectively such that 

  

 

         
 

 
  

             
 

 
  

and such that each    and    is contained in X. Choose   so that  

  

   

    
 

 
 

and define sets G,      as follows 

     
 
    ,         ,            

Observe that       and       so that         and therefore 

                        

We know that  

       

   

     

 

                         
 

 
       (by our choice) 

 

Hence it suffices to prove that      
  

 
. 

Since 
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therefore m(K)           . So we seek an estimate of          . 

Now we can see that 

                  [    ]              

whence 

          
 

               
 

  

 

   

 

      

 

       

We also have 

  

 

      

 

                
  

 
 

      
  

 
  

whence 

  

 

      

 

      

 

      

 

       
  

 
 

 

and therefore, since                 , 

       

 

         

 

       

 

       

 

 
  

 
 

Hence when   is bounded 
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For the general case, let 

                

 

           

 

                    

Let         . Then 

         
 

   
 

 

             
 

     
 

Because        , we have 

  (          
              as   ∞. 

But           since E                  and      is 

empty} and so          . Using what has already been proved we can 

find a sequence    which is finite union of open intervals such that        ) 

    . Now the following inequality is true. 

                         , 

Since                    . We see therefore that            

       , we shall have            for a suitable value of  , and then    

will serve our purpose. This completes the proof of the theorem. 

Theorem 1.2.28.       be a set with      . Then   is measurable iff 

given      , there is a finite union   of open intervals such that 

 

          

 

Proof. Suppose   is measurable and         be given. The (as already 



32 

 

shown} there exists an open set     such that    E)  
 

 
. As     is finite, 

so is    . Since the open set   can be written as the union of countable 

{disjoint) open intervals       there exists an     such that 

  

 

     

     
 

 
 

(In fact          
                 

          
 

 
  because m     ) 

Set       
 
    . Then 

                            

Hence 

              
 

   
          

 

 
 

 

 
    

Conversely, assume that for a given      , there exists a finite union   

   
 
    if open intervals with m           Then using “Let  be any set. 

The given     there exists an open set     such that           there 

is an open set     such that 

                  ( ) 

If we can show that         is arbitrary small, then the result will follow 

from “Let   be set. Then the following are equivalent  

(i)   is measurable and  

(ii) (ii) given     there is an open set     such that         

     

Write 

         
 

   
 

Then     and so 

                           . 

However, 

                               (because    ). 

Therefore 
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                   , 

 

and as such       )     However, 

          

and so 

                

                                           (ii) 

Also 

  -                

Therefore 

                  

 

                                (using(i)) 

 

                               (using(ii)) 

 

                             

 

     

Hence   is measurable. 

Convergence in Measure 

Definition 1.2.29. A sequence      of measurable functions is said to converge 

to   in measure if, given     , there is an N such that for all     we have 

 

                        

F. Riesz Theorem 

Theorem 1.2.30 “Let      be a sequence of measurable functions which 

converges in measure to  . Then there is a subsequence       which converges 

to   almost everywhere.” 
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Proof. Since      is a sequence of measurable functions which converges in 

measure to  , for any positive integer   there is an integer    such that for 

     we have 

                   
 

  
  

 

  
 

Let 

              
          

 

  
  

Then if           
 
   ,  

we have 

    
          

 

  
  for      and so    

         

Hence    
         for any         

 
   

 
     

But 

        

 

   

  

 

   

 

   

   
 

    
 

Hence measure of A is zero. 

Example 1.2.31. An example of a sequence      which converges to zero in 

measure on       but such that         does not converge for any   in       

can be constructed as follows : 

 

Let       ,       , and set         if                   and 

        otherwise. Then 

 

                      

 

and so      in measure, although for any          , the sequence         has 

the value for arbitrarily large values of   and so does not converge. 
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Definition 1.2.32. A sequence      of a.e. finite valued measurable functions is 

said to be fundamental in measure, if for every       

 

m   :                     as n and m   . 

 

Definition 1.2.33. A sequence      of real valued functions is said to be 

fundamental a.e. if there exists a set    of measure zero such that, if   

         , then an integer          can be found with the property that 

                , whenever      and     . 

Definition 1.2.34. A sequence      of a.e. finite valued measurable functions 

will be said to converge to the measurable function   almost uniformly if, for 

every      , there exists a measurable set   such that         and such 

that the sequence      converges to   uniformly on     

In this Language, Egoroff‟s Theorem asserts that on a set of finite measure 

convergence a.e. implies almost uniform convergence. 

The following result goes in the converse direction. 

Theorem 1.2.35. If      is a sequence of measurable functions which 

converges to   almost uniformly, then      converges to   a.e. 

Proof. Let    beameasurable set such that           and such that the 

sequence      converges to   uniformly on   
            

 

If                        
 
   , 

then 

                

 

so that        , and it is clear that, for                converges to      . 

Theorem 1.2.36. Almost uniform convergence implies convergence in 

measure. 

Proof. If      converges to   almost uniformly, then for any two positive 
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numbers   and δ  there exists a measurable set   such that        and such 

that               , whenever   belongs to    and   is sufficiently large. 

Theorem 1.2.37. If      converges in measure to  , then      is fundamental   

 in measure. If also      converges in measure to  , then     .a.e. 

Proof. The first assertion of the theorem follows from the relation 

                   

                 
 

 
                  

 

 
  

 

To prove the second assertion, we have 

                                 
 

 
                  

 

 
  

Since by proper choice of  , the measure of both sets on the right can be made 

arbitrarily small, we have 

                       

for every      which implies that     a.e. 

Theorem 1.2.38. If      is a sequence of measurable functions which is 

fundamental in measure, then some subsequence     
  is almost uniformly 

fundamental. 

Proof. For any positive integer   we may find an integer      such that if 

       and       , then 

 

                   
 

  
   

 

  
  

We write 

                                           then       

    …., 

So that the sequence     
  is indeed on subsequence of     . If 

          
              

 

  
  

And k     , then, or every   which does not belong to              
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  , we have 

    
       

       

 

   

   
         

      
 

  

 

   

 
 

    
  

so that, in other words, the sequence     
  is uniformly fundamental on 

              . 

Since 

                

 

   

     
 

    
 

This completes the proof of the theorem. 

Theorem 1.2.39. If      is a sequence of measurable functions which is 

fundamental in measure, then there exists a measurable function   such that 

     converges in measure to    

Proof. By the above theorem we can find a subsequence     
  which is almost 

uniformly fundamental and therefore fundamental a.e. We write      

         
    for every   for which the limit exists. We observe that, for 

every       

                                 
     

 

 
         

          

 

 
  . 

The measure of the first term on the right is by hypothesis arbitrarily small if   

and    are sufficiently large, and the measure of the second term also 

approaches   (as    ), since almost uniform convergence implies 

convergence in measure. Hence the theorem follows. 

Remark. Convergence in measure does not necessarily imply convergence 

pointwise at any point. Let 

      
   

   
 

                        , 

 

and arrange these intervals as a single sequence of sets      by taking first 

those for which    , then those with      etc. If   denotes Lebesgue 
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measure on [0,1], and       is the indicator function of   , then for        

                 

so that, for                                . This means that 

     in measure in      . However, at no point         does        ; in 

fact, since every   is in infinitely many of the sets    and infinitely many of 

the sets        we have 

                ,                 for all          

1.3    Check Your Progress  

Q.1. Let   be a set of rationals in      . Then the characteristic function         

        is measurable. 

Q.2. A continuous function is measurable function. 

Q.3. For any real   and two measurable real‐ valued functions    , the   

        function     is measurable. 

Q.4.Fill in the blanks. 

       Let   and   be any two functions which are --------------- in E. If   is   

       measurable so is    

Proof. Since   is measurable, for any real m the set             is 

measurable. We shall show that the set             is measurable. To do so 

we put 

 

               

and 

               

Consider the sets 

      and       

 

Since     almost everywhere, measures of these sets are zero. That is, both 

of these sets are measurable. Now 
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         ------------------------------------ 

Since           and        
  are measurable therefore it follows that    

is measurable. Hence the theorem is proved. 

Q.5. If a function   is continuous almost everywhere in  , then   is 

measurable. 

Proof. Since   is continuous almost everywhere in  , there exists a subset   

of   with       such that   is continuous at every point of the set   

  D. To prove that   is measurable, let   denote any given real number. It 

suffices to prove that the inverse image 

       ----------------------- 

of the interval       is measurable. 

 For this purpose, let   denote an arbitrary point in    . Then 

       and   is continuous at  . Hence there exists an open interval    

containing   such that        hold for every point   of     . Let 

                 ------------------------ 

Since x   E       holds for every       , we have 

           

This implies 

              

As an open subset of      is measurable. Hence     is measurable. On the 

other hand, since 

              

    is also measurable. This implies that   is measurable. This completes 

the proof of the theorem. 

1.4    Summary 

This chapter presents the definition and the theorem related to measurable 

functions. Various properties of measurable functions are also reviewed. The 

principal results of these properties are summarized. The Lusin's theorem is 

also reviewed in the chapter. This theorem asserts that a measurable function 
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is almost continuous. It has been used as a basis for the definition of 

measurable functions. 

1.5   Keywords  

Measurable Functions, Continuous Function, Sequence of Function and 

Convergence Behavior of Measurable Functions, Almost Everywhere, 

Characteristics Function, Simple Function, Step Function. 

1.6   Self-Assessment Test  

Q.1. Show that the function           where     is the greatest integer   

        function, is measurable? 

Q.2. Show that the cardinality of the class of measurable function is   . 

Q.3. Let  f : R→ R such that 

    =  
 

      
    

              

  

Is measurable? 

Q.4. Show that        =  
          

            
  

    where A is a non-measureble subset of a measurable set E is not measurable     

    while               is measurable. 

Q.5. Show that the function f defined on E = [0,1] is measurable where 

        

                     
 

 
             

                      

  

1.7    Answers to check your progress  

A.1 For the set of rationals in the given interval, we have 

       
          
           

  

It is sufficient to prove that the set 

             

is measurable for any real    
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Let us suppose first that    . Then 

                            

Hence the set               is empty in this very case. But outer measure of 

any empty set is zero. Hence for      the set               and so       

is measurable. 

Further let      . Then 

                

But   is countable and therefore measurable. Hence       is measurable. 

Lastly, let    . Then 

                    

and therefore measurable. Hence the result. 

A.2. If the function   is continuous, then    ( , m) is also open. But every 

open set is measurable. Hence every continuous function is measurable. We 

may also argue as follows: 

If   is continuous then 

                    

is closed and hence 

                          

is open and so measurable. 

All the ordinary functions of analysis may be obtained by limiting process 

from continuous function and so are measurable. 

A.3. We are given that   is a measurable function and   is any real number. 

Then for any real number   

                             

But               is measurable by the condition (a) of the definition. 

Hence               and so        is measurable. 

A.4. (i) equal almost everywhere 

        (ii)                       
  

A.5. (i)                             

        (ii)  
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2.4 Summary  
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2.7 Answers to check your progress  

2.8 References/ Suggested Readings  

2.1    Introduction 

          The theory of Riemann integration though very useful and adequate for 

solving many mathematical problems, both pure and applied, is not free from 

defects. It does not meet the needs of a number of important branches of 

mathematics and physics of comparatively recent development. First of all, the 

Riemann integral of a function is defined on a closed interval and cannot be 

defined on an arbitrary set. Investigations in probability theory, partial 

differential equations, hydromechanics and quantum mechanics often pose 

problems which require integration over sets. Second and more important is 

the fact that the Riemann integrability depends upon the continuity of the 

function. Of course, there are functions which are discontinuous and yet 

Riemann-integrable, but these functions are continuous almost everywhere. 

Again, given a sequence of Riemann integrable functions converging to some 

function in a domain, the limit of the sequence of integrated functions may not 

be the Riemann integral of the limit function. ·In fact, the Riemann integral of 

the limit function may not even exist. This is a major drawback of the 

Riemann theory of integration, apart from the fact that even relatively simple 

functions are not integrable in the sense ot Riemann integration. H. Lebesgue 

in his classical work, introduced the concept of an integral, known after his 

name the Lebesgue integral, based on the measure theory that generalizes the 
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Riemann integral. It has the advantage that it takes care of both bounded and 

unbounded functions and simultaneously allows their domains to be more 

general sets and thereby enlarges the class of functions for which the Lebesgue 

integral is defined. Also, it gives more powerful and useful convergence 

theorems relating to the interchange of the limit and integral valid under Jess 

restrictive conditions required for the Riemann integral. 

The shortcomings of the Riemann integral suggested the further 

investigations in the theory of integration. We give a resume of the Riemann 

Integral first. 

Let   be a bounded real‐ valued function defined on the interval [a,b] and let 

               

be a partition of [a,b]. Then for each partition we define the sums 

            

 

   

   

and 

            

 

   

    

where 

                    

   
                          

    

We then define the upper Riemann integral of   by 

               
 

 
       

With the infimum taken over all possible subdivisions of [a,b]. 

Similarly, we define the lower integral 

   
 

 
 (x)dx         . 

The upper integral is always at least as large as the lower integral, and if the 

two are equal we say that   is Riemann integrable and call this common value 

the Riemann integral of  . We shall denote it by 
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To distinguish it from the Lebesgue integral, which we shall consider later. 

By a step function we mean a function   which has the form 

                   

for some subdivision of       and some set of constants    . 

The integral of      is defined by 

  
 

 
          

 
            . 

With this in mind we see that 

          
 

 
        

 

 
       

for all step function           . 

Similarly, 

   
 

 

             
 

 

       

for all step functions           . 

Example 2.2.1. If 

      
                       
                          

  

Then 

          
 

 
    a 

And                
 

 
         

Thus we see that      is not integrable in the Riemann sense. 

The Lebesgue Integral of a bounded function over a set of finite measure: 

The example we have cited just now shows some of the shortcomings of the 

Riemann integral. In particular, we would like a function which is 1 on a 

measurable set and zero elsewhere to be integrable and have its integral the χ 

measure of the set. 

The function      defined by 

          
       
       

  

is called the characteristic function on E. A linear combination 
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is called a simple function if the sets    are measurable. This representation for 

  is not unique. However, we note that a function    is simple if and only if it 

is measurable and assumes only a finite number of values. If    is a simple 

function and         the set of non‐ zero values of , then 

         
  

where                  . This representation for   is called the 

canonical representation and it is characterised by the fact that the    are 

disjoint and the    distinct and nonzero. 

If vanishes outside a set of finite measure, we define the integral of   by 

           

 

   

    

when φ has the canonical representation      
 
      

. We sometimes 

abbreviate the expression for this integral to   . If   is any measurable set, 

we define 

       
 

       . 

It is often convenient to use representations which are not canonical, and the 

following lemma is useful. 

Lemma 2.2.2. If       ,..,    are disjoint measurable subset of   then every 

linear combination 

     

 

   

   
 

with real coefficients             is a simple function and 

       

 

   

     

Proof. It is clear that   is a simple function. Let       …   denote the 
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non‐ zero real number in     . For each            . 

Let 

      

     

 

Then we have 

                         

and the canonical representation 

        

 

   

 

Consequently, we obtain 

      

 

   

    

    

 

   

      

     

  

                
 
      

     
    

(Since    are disjoint, additivity of measures applies) 

    

 

   

    

This completes the proof of the theorem. 

Theorem 2.2.3. Let   and   be simple functions which vanish outside a set of 

finite measure. Then 

                  

and,        a.e, then 

       

Proof. Let      and      be the sets which occur in the canonical 

representations of   and  . Let    and    be the sets where   and   are zero. 
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Then the sets    obtained by taking all the intersections       form a finite 

disjoint collection of measurable sets, and we may write 

     

 

   

   
 

     

 

   

   
  

and so 

          

 

   

   
     

 

   

   
 

   

 

   

     
   

 

   

     
 

           

 

   

   
 

Therefore 

                  

 

   

    

       

 

   

   
       

 

   

    

     

 

   

        

 

   

    

                                      

To prove the second statement, we note that S 

                

since the integral of a simple function which is greater than or equal to zero 

almost everywhere is non‐ negative by the definition of the integral. 

Remark 2.2.4  We know that for any simple function   we have 
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Suppose that this representation is neither canonical nor the sets   ’s are 

disjoint. Then using the fact that characteristic functions are always simple 

functions we observe that 

         
       

         
 

       
       

         
 

                       

    

 

   

    

Hence for any representation of  , we have 

      

 

   

    

 

Let   be a bounded real‐ valued function and   a measurable set of finite 

measure. By analogy with the Riemann integral we consider for simple 

functions   and   the numbers 

          
 

 

and 

          
 

  

and ask when these two numbers are equal.  

The answer is given by the following proposition : 

Theorem 2.2.5. Let   be defined and bounded on a measurable set   with    

finite. In order that 

          
 

                      
 

 



50 

 

for all simple functions   and  , it is necessary and sufficient that   be 

measurable. 

Proof. Let   be bounded by   and suppose that   is measurable. Then the sets 

           
  

 
      

      

 
        , 

are measurable, disjoint and have union E. Thus 

  

    

      

 

The simple function defined by 

      
 

 
  

 

    

   
    

and 

      
 

 
      

 

    

   
    

Satisfy 

            f(x)        

Thus 

      
 

           
 (x)dx  

 

 
   

        

and 

      
 

          
      

 

 
       

        , 

whence 

           
 

                    
 

 
   

       
 

 
    

Since   is arbitrary we have 

     
 

                
 

      

and the condition is sufficient. 

Suppose now that 

      
 

 (x)dx          
 

(x)dx. 
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Then given   there are simple functions    and    such that 

                 

and 

                           
 

 
      (i) 

Then the functions 

           

and                     

are measurable and 

                              . 

Now the set 

                   

is the union of the sets 

                   
 

 
   

But each    is contained in the set                
 

 
  , and this latter set 

by (i) has measure less than 
 

 
. Since   is arbitrary,       and so    . 

Thus       except on a set of measure zero, and      except on a set of 

measure zero. Thus   is measurable and the condition is also necessary. 

Definition 2.2.6. If   is a bounded measurable function defined on a 

measurable set   with    finite, we define the Lebesgue integral of   over   

by 

  
 

             
 

      

for all simple functions      

By the previous theorem, this may also be defined as 

  
 

             
 

      

for all simple functions     . 

We sometimes write the integral as   
 

. If         we write   
 

 
   instead 
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of   
     

 

Definition and existence of the Lebesgue integral for bounded functions. 

Definition 2.2.7. Let   be a bounded function on   and let    be a subset of 

E. Then we define                     as 

                        
     

                       
     

Definition 2.2.8. By a measurable partition of   we mean a finite collection 

               of measurable subsets of   such that 

   

 

   

   

and such that m                              . The sets       ,…,   

are called the components of P. 

If   and   are measurable partitions, then   is called a refinement of   if every 

component of   is wholly contained in some component of P. 

Thus a measurable partition   is a finite collection of subsets whose union is 

all of   and whose intersections with one another have measure zero. 

Definition 2.2.9. Let   be a bounded function on   and let             be 

any measurable partition E. We define the upper sum        as 

         

 

   

           

Similarly, we define the lower sum        as 

         

 

   

           

As in the case of Riemann integral, we can see that every upper sum for   is 

greater than or equal to every lower sum for    We then define the Lebesgue 

upper and lower integrals of a bounded function   on   by 

           and             

respectively taken over all measurable position of E. We denote them 
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respectively by 

  
 

 
   and    

  
 

Definition 2.2.10. We say that a bounded function   on   is Lebesgue 

integrable on   if 

  
 

 
   =    

  
 

Also we know that if   is a simple function, then 

  
 

    

 

   

    

Keeping this in mind, we see that 

  
 

 
                

 

 
 

for all simple functions    )     ). Similarly 

  
  

             
  

 

for all simple functions    )     ). 

Now we use the theorem: 

“Let   be defined and bounded on a measurable set   with    finite. In order 

that 

           
 

                      
 

  

for all simple functions   and  , it is necessary and sufficient that   is 

measurable.” And our definition of Lebesgue integration takes the form : 

“If   is a bounded measurable function defined on a measurable set   with    

finite, we define the (Lebesgue) integral of   over   by 

  
 

             
 

      

for all simple functions    f.” 

The following theorem shows that the Lebesgue integral is in fact a 

generalization of the Riemann integral. 

Theorem 2.2.11. Let   be a bounded function defined on      . If   is Riemann 
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integrable on      , then it is measurable and 

   
 

 

        
 

 

      

Proof. Since   is a bounded function defined on       and is Riemann 

integrable, therefore, 

        
  

 
                 

 

 
 

And  

                                
 

 
                  

 

 
 

for all step functions   and   and then 

            
 

 
     

 

 
       

                 
 

 
                

 

 
                  ( ) 

 

Since every step function is a simple function, we have 

 

         
 

 
                 

 

 
                

 

 
    

 

 
      

 

Then (i) implies that 

               
 

 

               
 

 

 

 

and this implies that   is measurable also. 

Comparison of Lebesgue and Riemann integration 

(1) The most obvious difference is that in Lebesgue’s definition we divide up 

the interval into subsets while in the case of Riemann we divide it into 

subintervals. 

 

(2) In both Riemann’s and Lebesgue’s definitions we have upper and lower 

sums which tend to limits. In the Riemann case the two integrals are not 
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necessarily the same and the function is integrable only if they are the same. In 

the Lebesgue case the two integrals are necessarily the same, their equality 

being consequence of the assumption that the function is measurable. 

 

(3) Lebesgues’s definition is more general than Riemann. We know that if 

function is the  ‐ integrable then it is Lebesgue integrable also, but the 

converse need not be true. For example the characteristic function of the set of 

irrational points have Lebesgue integral but is not  ‐ integrable. 

 

Let χ be the characteristic function of the irrational numbers in [0,1]. Let    be 

the set of irrational numbers in [0,1], and let    be the set of rational numbers 

in [0,1]. Then           is a measurable partition of     ]. Moreover, χ is 

identically 1 on    and χ is identically   on   . 

Hence  

                 , 

 

While 

                 . 

 

Hence  

                      

 

Similarly 

      ]                  . 

 

Therefore,  

                 

 

Therefore, it is Lebesgue integrable. 

For Riemann integration 
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for any interval         

 

                        . 

The function is not Riemann‐ integrable. 

Theorem 2.2.12. If   and   are bounded measurable functions defined on a 

set   of finite measure, then 

 

      
 

     
 

 

 

(ii)       
 

   
 

   
 

 

 

(iii) If      a.e., then 

  
 

   
 

 

 

(iv) If     a.e., then 

  
 

   
 

 

 

(   If         , then 

      
 

      

 

(vi) If A and   are disjoint measurable sets of finite measure, then 
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Proof. We know that if   is a simple function then so is a . Hence 

 

  
 

            
 

                  
 

 

 

which proves (i). 

To prove (ii) 

let ε denote any positive real number. There are simple functions      

         and     satisfying 

 

        
 

   
 

     
 

        
 

    

 

  
 

        
 

     
 

        
 

    

Since            , we have 

      
 

     
 

   
 

   
 

   
 

       

 

 

      
 

       
 

   
 

   
 

   
 

   
 

    

Since these hold for every      , we have 

      
 

   
 

   
 

 

To prove (iii) it suffices to establish 

      
 

   

For every simple function      , we have     almost everywhere in 
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E. This means that 

  
 

   

Hence we obtain 

 

      
 

               
 

                       (1  

which establishes (iii). 

Similarly we can show that 

      
 

               
 

                 (2) 

Therefore, from (1) and (2) the result (iv) follows. 

To prove (v) we are given that 

         

Applying (iv) we get 

  
 

        
 

      
 

      

That is, 

  
 

     

Similarly we can prove that   
 

      

Now we prove (vi). 

We know that 

           

Therefore, 
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which proves the theorem. 

Lebesgue Bounded Convergence Theorem 

Theorem 2.2.13. Let      be a sequence of measurable functions defined on a 

set   of finite measure and suppose that      is uniformly bounded, that is, 

there exists a real number   such that      )    for all     and all    

E. If 

              )       for each   in  ,  

then 

                     
 

           
. 

Proof. We shall apply Egoroff’s theorem to prove this theorem. Accordingly 

for a given     , there is an N and a measurable set      such that 

   
  

 

  
 and for     and      we have 

             
 

     
 

Then we have 

    
 

   
 

          
 

    
 

      

 

    
   

        
  

 
       

 

 
 

     
       

 

  
    

 

  
 

 
 

 

 
    

Hence 

         
   

 
. 
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The integral of a non‐ negative function 

Definition 2.2.14. If   is a non‐ negative measurable function defined on a 

measurable set  , we define 

  
 

             
 

 

 

where   is a bounded measurable function such that               is finite. 

 

Theorem 2.2.15. If   and   are non‐ negative measurable functions, then 

(i)     
 

     
 

      

 

(ii)       
 

   
 

   
 

 

 

(iii) If     a.e., then and   
 

   
 

 . 

Proof. The proof of ( ) and (iii) follow directly from the theorem concerning 

properties of the integrals of bdd functions. 

We prove (ii) in detail. 

If  

           and            , 

we have  

                     , 

and so 

      
 

       
 

 

 

    i.e.   
 

   
 

       
 

 

Taking suprema, we have 
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On the other hand, let l be a bounded measurable function which vanishes 

outside a set of finite measure and which is not greater than     ). Then we 

define the functions   and   by setting 

                      

and 

               

We have 

         , 

          , 

while   and   are bounded by the bound l and vanish where l vanishes. Hence 

 

  
 

   
 

   
 

   
 

   
 

 

and so taking supremum, we have 

       
 

   
 

 

that is, 

(v)   
 

   
 

       
 

 

 

From (iv) and (v), we have 

 

      
 

   
 

   
 

  

Fatou’s Lemma 2.2.16. If      is a sequence of non‐ negative measurable 

functions and            almost everywhere on aset E, then 
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Proof. Let   be a bounded measurable function which is not greater than   and 

which vanishes outside a set     of finite measure. Define a function    by 

setting 

                             

Then    is bounded by the bounds for   and vanishes outside   . Now 

           for each   in     

Therefore by “Bounded Convergence Theorem” we have 

 

  
 

   
  

       
  

       
 

 

Taking the supremum over  , we get 

 

  
 

       
 

  

 

Lebesgue Monotone Convergence Theorem 

Theorem 2.2.16.. Let      be an increasing sequence of non‐ negative 

measurable functions and let        . Then 

       
  

    

Proof. By Fatou’s Lemma we have 

         

But for each   we have     , and so          . But this implies 

         

Hence 

          

Definition 2.2.17. A non‐ negative measurable function   is called integrable 

over the measurable set   if 
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Theorem 2.2.18. Let   and   be two non‐ negative measurable functions. If   

is integrable over   and            on  , then   is also integrable on  , and 

 

      
 

   
 

   
 

 

Proof. Since 

  
 

       
 

   
 

 

and the left hand side is finite, the term on the right must also be finite and so 

  is integrable. 

Theorem 2.2.19. Let   be a non‐ negative function which is integrable over a 

set E. Then given     there is a     such that for every set     with 

     we have 

  
 

    

Proof. If      , then 

  
 

   
 

     

Set    
 

 
 . Then 

      
 

   . 
 

 
    

Set            if        and         otherwise. Then each    is 

bounded and    converges to   at each point.  By the monotone  convergence 

theorem there is an   such that  

 

       
   

 
 

 

 
,  and        

 
 

 

 
.  

Choose   
 

  
 . If     , we have 
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                                                                  (since     
 

  
 

    )       

 
 

 
 

 

 
    

The General Lebesgue Integral 

We have already defined the positive part    and negative part f of a function 

as 

             

 

             

Also it was shown that 

       

 

                   

With these notions in mind, we make the following definition. 

 

Definition 2.2.20. A measurable function   is said to be integrable over   if    

and   are both integrable over E. In this case we define 

  
 

    

 

   
 

 

Theorem 2.2.21. Let   and   be integrable over E. Then 

    The function     is integrable over   and 

      
 

   
 

   
 

 

(ii) If     a.e., then 
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(iii) If A and   are disjoint measurable sets contained in  , then 

 

  
    

   
 

   
 

 

Proof. By definition, the functions                are all integrable. If 

     ,  

then  

              ) 

and hence  

                  . 

Since       and     are integrable therefore their difference is also 

integrable. Thus   is integrable. 

We then have 

  
 

   
 

               

 

         
 

       
 

 

    

 

    

 

   
 

   
 

 

 

     

 

   
 

      

 

   
 

  

 

That is, 

      
 

   
 

   
 

 

Proof of (ii) follows from part (i) and the fact that the integral of a 

non‐ negative integrable function is non‐ negative. 

For (iii) we have 
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It should be noted that     is not defined at points where     and 

     and where      and   ∞. However, the set of such points must 

have measure zero, since   and   are integrable. Hence the integrability and the 

value of        is independent of the choice of values in these ambiguous 

cases. 

Theorem 2.2.22. Let   be a measurable function over E. Then   in integrable 

over   iff     is integrable over E. Moreover, if   is integrable, then 

 

   
 

    
 

   

Proof. If   is integrable then both    and    are integrable. But        

    Hence integrability of    and    implies the integrability of      

Moreover, if   is integrable, then since 

                       , 

 

the property which states that if     a.e. , then       implies that 

                                         (i) 

On ther other hand since               , we have 

 

                   (ii  

From   ) and (ii) we have 
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                             . 

Conversely, suppose   is measurable and suppose     is integrable. Since 

               

It follows that    is integrable. Similarly    is also integrable and hence   is 

integrable. 

Lemma 2.2.23. Let   be integrable. Then given     there exists     such 

that 

   
 

    

whenever A is a measurable subset of   with       

Proof. When   is non‐ negative, the lemma has been proved already. Now for 

arbitrary measurable function   we have        . So by that we have 

proved already, given      , there exists      such that 

   

 

 
 

 
  

when      . Similarly there exists      such that 

   

 

 
 

 
  

when     . Thus if                 , we have 

 

   
 

   
 

      

 

   
 

 
 

 
 

 

 
   

This completes the proof. 

Lebesgue Dominated Convergence Theorem 

Theorem 2.2.24. Let a sequence             of measurable functions be 

dominated by an integrable function  , that is, 

 

             

 

holds for every       and every       and let      converges pointwise to a 
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function  , that is,                  for almost all   in E. Then 

 

  
 

    
   

   
 

 

Proof. Since        for every       and              , we have 

      . Hence    and   are integrable. The function      is non‐ negative, 

therefore by Fatou’s Lemma we have 

  
 

   
 

       
 

           
 

 

   
 

       
 

 

whence 

  
 

       
 

 

Similarly considering      we get 

 

  
 

       
 

 

Consequently, we have 

  
 

        
. 

2.3 Check Your Progress  

Q.1. If          and if        a.e. in       then     
 

 
. 

Q.2. If    is a bounded function in        then            and 

           
 

 
      

 

 
. 

Q.3. Show that the function defined on E=[0,∞) is follows: 

             
    

 
  for     and       , is not lebesgue integrable in    

Q.4. Give an example to show that the integral of a no where zero function   

        can be zero. 
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Q.5. If E is a measurable subset of       and   is a bounded measurable    

        function of          such that        a.e. on E then   
 

≥ 0. 

2.4 Summary 

In this section, we will give a brief overview of measure theory, which leads to 

a general notion of an integral called the Lebesgue integral. Integrals, as we 

saw before, are important in probability theory since the notion of expectation 

or average value is an integral. 

2.5 Keywords  

Lower Lebesgue Sum, Upper Legesgue Sum, Upper Lebegue Integral, Lower 

Lebegue Integral Sum, Lebesgue Integral, L-Integral of Non-Negative 

Function. 

2.6 Self-Assessment Test  

  

1.  If        f(x)= 

                                                  

                             

                             

   

 

    Show that          
 

 
. 

2. Let f : R→ R be a function defined by 

 

    = 

                                         

                             
                                

   

 

      Show that f is L-integrable. 

3. Show that the function f defined on interval [a,b] by 
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is L – integrable but not R- integrable. 

4. If  f  is L- integral, show that  

                

5. Show that f : [0,1] → R is R- integrable if and only if the discontinuities of  

f  form a set of  lebesgue measure zero. 

2.7 Answers to check your progress 

A.1. Let   be a  -integrable function on        

        We know that if        for all         then          for every      

         partition  P. Therefore, 

         L  
  

 
          

         Now, since         (given) then 

      
  

 

  
 

 

 

          Hence,   
 

 
  . 

A.2. Let f  is a bounded function in L[a,b] 

           is measurable 

                       is also measurable 

                               

Now, it remains to prove that           a.e. on      
 

   
 

 

We know that 

                         for all         

                  
 

 

 

 
                                                    (1) 

Further, we know that 

                    

                               
 

 

 

 
                                                    

(2) 
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From (1) and (2) we conclude that 

        
 

 
      

 

 
. 

 

A.3. Consider   
    

 
      

      

 

  

      
 
   

  

 
   

         =   
               

          

  

 
 
      

≥   
               

    

  

 
 
      

= 
 

 
 

 

 
         

 

 
 
    

= 
 

 
 

 

 
       

 

 
 
    

= 
 

 
 

 

 

 
   . 

Which implies that         
    

 
    

  

 

 

 
 

 

 

 
   . 

But we know that  
 

 

 
    is a divergent series, therefore  

 

 

 
      

So,             
 

 
           

 

 
 

     is not L-integrable. 

Hence,      is not  -integrable. 

A.4. Let us define a function       such that        for all      . 

Clearly, the function   defined above is no where zero. 

But we know that       .  (because Q is a countable set and measure of a 

countable set is zero) 

Then, by first mean value theorem 

 1        
 

        

            0≤  
 

≤0 

              
 

=0. 

A.5. We know that   
 

     
 

 
,    is the characterstic function of E. 

Is is given that     a.e. on E. 
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Also by definition of characterstic function      on [a,b]. 

        a.e. on [a,b]. 
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3.5 Keywords  

3.6 Self-Assessment Test  

3.7 Answers to check your progress  

3.8 References/ Suggested Readings  

3.1 Introduction 

The “fundamental theorem of the integral calculus” is that 

differentiation and integration are inverse processes. This general principle 

may be interpreted in two different ways. 

If      is integrable, the function 

                 
 

 
    (i) 

 

is called the indefinite integral of      ; and the principle asserts that 

                          (ii) 

On the other hand, if      is a given function, and      is defined by (ii), the 

principle asserts that 

      
 

 
                  (iii) 

The main object of this chapter is to consider in what sense these theorems are 

true. 

From the theory of Riemann integration (ii) follows from (i) if   is a point of 

continuity of  . For we can choose    so small that                for 

        ; and then 

 

    
           

 
        

 

 
            

   

 
              , 

by the mean‐ value theorem. This proves (ii). 

We shall show that more generally this relation holds almost everywhere. Thus 

differentiation is the inverse of Lebesgue integration. 

The problem of deducing (iii) from (ii) is more difficult and even using 

Lebesgue integral it is true only for a certain class of functions. We require in 

the first place that       should exist at any rate almost everywhere and as we 
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shall see this is not necessarily so. Secondly, if       exists we require that it 

should be integrable. 

Differentiation of Monotone Functions 

Definition 3.2.1. Let   be a collection of intervals. Then we say that   covers 

a set   in the sense of Vitali, if for each      and   in   there is an interval I 

ϵ   such that     I and          

Now we prove the following lemma which will be utilized in proving a result 

concerning the differentiation of monotone functions. 

Vitali Lemma 

Lemma 3.2.2. Let   be a set of finite outer measure and   a collection of 

intervals which cover   in the sense of Vitali. Then given      there is a 

finite disjoint collection           of intervals in   such that 

        

 

   

     

Proof. It suffices to prove the lemma in the case that each interval in   is 

closed, for otherwise we replace each interval by its closure and observe that 

the set of endpoints of       ,…,   has measure zero. 

Let   be an open set of finite measure containing E. Since   is a Vitali 

covering of  , we may suppose without loss of generality that each I of   is 

contained in O. We choose a sequence      of disjoint intervals of   by 

induction as follows : 

Let    be any interval in   and suppose   ,…,   have already been chosen. Let 

   be the supremum of the lengths of the intervals of   which do not meet any 

of the intervals         . Since each I is contained in  , we have       

 . Unless  

E     
 
   , 

 

we can find      in   with         
 

 
   and      disjoint from              . 

Thus we have a sequence      of disjoint intervals of  , and since      , 
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we have           . Hence we can find an integer   such that 

 

  

 

   

     
 

 
 

Let 

       

 

   

 

It remains to prove that         

Let x be an arbitrary point of R. Since    
 
    is a closed set not containing  , 

we can find an interval I in   which contains   and whose length is so small 

that I does not meet any of the intervals       ,…,   . If now        for 

   , we must have                  . Since            , the 

interval I must meet at least one of the intervals   . Let   be the smallest 

integer such that I meets   . We have    , and                  . Since 

  is in I, and I has a point in common with   , it follows that the distance from 

  to the midpoint of    is at most  

     
 

 
      

 

 
     . 

Let    denote the interval which has the same midpoint as    and five times 

the length of   . Then we have x    . This proves 

     

 

   

 

Hence 

      

 

   

         

 

   

         

 

The Four Derivatives of a Function 

Whether the differential coefficients 
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exists or not, the four expressions 

          
    

           

 
 

 

          
    

           

 
 

 

          
    

           

 
 

 

          
    

           

 
 

always exist. These derivatives are known as Dini Derivatives of the function 

          and        are called upper and lower derivatives on the right and 

       and   f(x) are called upper and lower derivatives on the left. 

Clearly we have               and              . 

If 

             , 

the function   is said to have a right hand derivative.  

If  

          f(x), 

the function is said to have a left hand derivative. 

If 

                              , 

we say that   is differentiable at   and define       to be the common value of 

the derivatives at    

Theorem 3.2.3. Every non‐ decreasing function   defined on the interval       

is differentiable almost everywhere in      . The derivative     is measurable 

and 
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                . 

 

Proof. We shall show first that the points   of the open interval       at which 

not all of the four Dini‐ derivatives of   are equal form a subset of measure 

zero. It suffices to show that the following four subsets of       are of 

measure zero: 

                                   

 

                                  

 

                                   

 

                                  

To prove       , consider the subsets 

                 D_ f (x)              

of A for all rational numbers   and   satisfying    . Since A is the union of 

this countable family       , it is sufficient to prove            for all pairs 

     with    . 

For this purpose, denote α           and        any positive real number. 

Choose an open set        with          Set   be any point of      . 

Since D_ f(x)   , there are arbitrary small closed intervals of the form 

        contained in   such that 

             uh. 

Do this for all          and obtain a Vitali cover   of     . Then by Vitali 

covering theorem there is a finite sub collection               of disjoint 

intervals in   such that 

           

 

   

    

Summing over these   intervals, we obtain 
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                                . 

Suppose that the interiors of the intervals       ,…,   cover a subset   of     . 

Now since         , there are arbitrarily small closed intervals of the form 

        contained in some of the intervals    (   , 2,…,n)  such that 

 

             vk 

Do this for all       and obtain a Vitali cover   of F. Then again by Vitali 

covering lemma we can select a finite subcollection              of disjoint 

intervals in   such that 

        

 

   

    

Since m       , it follows that the measure of the subset   of   which is 

covered by the intervals is greater than     . Summing over these intervals 

and keeping in mind that each    is contained in a   , we have 

                 

 

   

                  

 

   

 

 

     

 

   

 

 

         

so that 

               

Since this is true for every     , we must havev      . Since    , this 

implies that      . Hence       . Similarly, we can prove that        
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      and        

This shows that 

        
   

           

 
 

is defined almost everywhere and that   is differentiable whenever   is finite. If 

we put 

            
 

 
        for     [a,b], 

where we re‐ define           for    . Then            for almost 

all   and so   is measurable since every    is measurable. Since   is 

non‐ decreasing, we have      . Hence, by Fatou’s lemma 

 

  
 

 

       

 

 

           
 

 
 ‐        

 

 

 

         n [  
  

 

 

  
 

 

             
 

 
 ] 

      n [  
 

 
        

  
 

 
 

        
  

 

 
 

             
 

 
] 

          n [  
  

 

 
 

        
  

 

 
 

       

                

(Use of f         for     for first interval and   non‐ decreasing in the 

    integral). 

This shows that   is integrable and hence finite almost everywhere. Thus   is 

differentiable almost everywhere and            almost everywhere. This 

proves the theorem. 

Functions of Bounded Variation 

Let   be a real‐ valued function defined on the interval [a,b] and let a     

              be any partition of [a,b]. 

By the variation of   over the partition                of [a,b], we mean 

the real number 
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and then 

    
                   for all possible partitions   of      } 

         

 

   

                

is called the total variation of   over the interval [a,b]. If   
      , then we 

say that   isafunction of bounded variation and we write     BV. 

Lemma 3.2.4. Every non‐ decreasing function   defined on the interval [a,b] 

is of bounded variation with total variation 

  
              . 

Proof. For every partition       …      of [a,b] we have 

 ( , )     
                  

 

   

 

   

              

           

This implies the lemma. 

Jordan Decomposition Theorem 

Theorem 3.2.5. A function           is of bounded variation if and only if 

it is the difference of two non‐ decreasing functions. 

Proof. Let       on [a,b] with   and   increasing. Then for any, 

subdivision we have 

  

 

   

                               

 

   

                 

 

   

 

                     

Hence 

     
                        , 

which proves that   is of bounded variations. 
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On the other hand, let   be of bounded variation. Define two functions  

     :         by taking 

       
            

          

for every          . Then               . 

The function   is clearly non‐ decreasing. On the other hand, for any two real 

numbers   and   in       with    , we have 

             
              

           

 

   
                 

 

   
       

       

Hence   is also non‐ decreasing. This completes the proof of the theorem. 

Examples 3.2.6. (1) If   is monotonic on [a,b], then   is of bounded variation 

on       and 

                , 

where     is the total variation. 

 

(2) If    exists and is bounded on      , then   is of bounded variation. 

For if  

          

we have 

  

 

   

                 

 

   

                 

no matter which partition we choose. 

(3)   may be continuous without being of bounded variation. Consider 
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Let us choose the partition which consists of the points    
 

     
 

       
 

 
 
 

 
   

Then the sum in the total variation is 

 

   
 

 
   

 

 
 

 

 
     

 

    
 

 

    
  

 

    
 

 
 

 
 

 

 
   

 

 
  

and this can be made arbitrarily large by taking   large enough, since  
 

 
 

diverges. Since  

                 

for every   on [a,b] it is clear that every function of bounded variation is 

bounded. 

The Differentiation of an Integral 

Let   be integrable over [a,b] and let 

            
 

 

 

If   is positive,     , then we see that 

              
   

 

        

Hence, integral of a positive function is non-decreasing. 

 

We shall show first that   is a function of bounded variation. Then, being 

function of bounded variation, it will have a finite differential coefficient    

almost everywhere. Our object is to prove that            almost 

everywhere in [a,b]. We prove the following lemma: 

Lemma 3.2.7. If   is integrable on [a,b], then the function   defined by 

            
 

 
  is a continuous function of bounded variation on [a,b]. 

Proof. We first prove continuity of F. Let    be an arbitrary point of [a,b]. 

Then 
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Now the integrability of   implies integrability of     over [a,b]. Therefore, 

given      there is a     such that for every measurable set         

with measure less than δ, we have  

  
 

      

Hence 

                       whenever           

and so   is continuous. 

To show that   is of bounded variation, let a                be any 

partition of [a,b]. Then 

   
                     

     
  

 
        

    

 
        

 

   

 

   

  
  

    

        

 

   

 

   

  
  

    

        

 

    
 

 

        

Thus 

  
     

 

 

          

Hence   is of bounded variation. 

Lemma 3.2.8. If   is integrable on       and 
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for all     [a,b], then     almost everywhere in [a,b]. 

Proof. Suppose     on a set   of positive measure. Then there is a closed 

set     with      . Let   be the open set such that 

          

Then either   
 

 
   orelse 

    
 

 

   
 

   
 

 

 

                                          
 

    
  

  

 
      dt      (1) 

Because   is the union of a countable collection           of open intervals. 

But, for each    

  
  

  

        
  

 

        
  

 

      

                     (by hypothesis) 

Therfore, from (1), we have 

  
 

   

But since     on   and    , we have   
 

    

We thus arrive at a contradiction. Hence     almost everywhere. 

Lemma 3.2.9. If   is bounded and measurable on       and 

       
 

 
(t)dt      , 

then            for almost all   in [a,b]. 

Proof. We know that an integral is of bounded variation over [a,b] and so 

      exists for almost all   in [a,b]. Let      . We set 

      
           

 
 

With h  
 

 
. Then we have 
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[  

   

 
             

 

 
] 

 

 
 

 
  

   

 

      

 

          
 

 
  

   

 

       

 

 
 

 
  

   

 

        
 

 
  

   

 

   

 

 
 

 
     

Moreover, 

            a.e. 

Hence by the theorem of bounded convergence, we have 

                
 

 
        

 

 
(x)dx        

 

 
         

 

 

        

 

                
 

 
       

   

   
 ‐  

 

 
       

 

 
  

 

              
 

 
       

   

 
 ‐  

 

 
       

   

 
  

 

                    (since   is 

continuous) 

              
 

 
  

Hence 

       ‐         
 

 
    

for all     [a,b], and so 
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           a.e. 

by using the previous lemma.  

Now we extend the above lemma to unbounded functions. 

Theorem 3.2.10. Let   be an integrable function on [a,b] and suppose that 

                 
 

 

 

Then            for almost all   in        

Proof. Without loss of generality we may assume that     (or we may write 

“From the definition of integral it is sufficient to prove the theorem when 

   ). 

Let    be defined by            if        and         if       . 

Then        and so 

             
 

 

 

is an increasing function of  , which must have a derivative almost 

everywhere and this derivative will be non- negative. Also by the above 

lemma, since    is bounded (by n), we have 

   
 

  
    

 

 
        a.e.       (i) 

Therefore, 

      
 

  
   

 

 

  
 

  
       

 

 

  

 

 
 

  
   

 

  
   

 

 

 

 

                a.e.      (using (i)) 

Since   is arbitrary, making     we see that            a.e. 

Consequently, 
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                                                   (using the hypothesis of the theorem) 

 

Also since      is an increasing real valued function on the interval [a,b], we 

have 

        
 

 
                    

 

 
 

Hence 

         
 

 
                   

 

 
 

 

    
 

 
      ‐  f(x)dx    

 

Since              , this implies that              a.e. and so 

           a.e. 

Definition 3.2.11 A real‐ valued function   defined on [a,b] is said to be 

absolutely continuous on [a,b] if, given     there is a     such that 

Absolute Continuity 

  

 

   

                

 

for every finite collection            of non‐ overlapping intervals with 

 

  

 

   

          

 

An absolutely continuous function is continuous, since we can take the above 

sum to consist of one term only. Moreover, if 

 

       
 

 
     , 

then 
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where   is the set of intervals         

 

       as    
              

The last step being the consequence of the result. 

“Let      . Then there is a     such that for every measurable set   

      with     , we have 

  
 

     ”. 

Hence every indefinite integral is absolutely continuous. 

Lemma 3.2.11. If   is absolutely continuous on [a,b], then it is of bounded 

variation on [a,b]. 

Proof. Let δ be a positive real number which satisfies the condition in the 

definition        . Select a natural number 

 

  
   

 
 

 

Consider the partition                of [a,b] defined by 

 

      
      

 
 

 

for every       ,…, . Since            , it follows that 
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This implies 

  
           

     

 

   

   

Hence   is of bounded variation. 

Corollary 3.2.12. If   is absolutely continuous, then   has a derivative almost 

everywhere. 

Lemma 3.2.13. If   is absolutely continuous on [a,b] and        a.e., then 

  is constant. 

Proof. We wish to show that           for any   ϵ [a,b]. Let         be 

the set of measure    a in which         , and      and   be arbitrary 

positive numbers. To each   in   there is an arbitrarily small interval         

contained in [a,c] such that 

                 

By Vitali Lemma we can find a finite collection           of non‐ overlapping 

intervals of this sort which cover all of   except for a set of measure less than 

δ, where δ is the positive number corresponding to   in the definition of the 

absolute continuity of   . If we label the    so that        , we have (or if 

we order these intervals so that) 

                           

and 

  

 

   

           

Now 

  

 

   

                      

 

   

 

        

by the way to intervals           were constructed, and 
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by the absolute continuity of   . Thus 

                             

 

   

               

 

   

  

              

Since   and   are arbitrary positive numbers,             and so 

         . Hence   is constant. 

Theorem 3.2.14. A function   is an indefinite integral if and only if it is 

absolutely continuous. 

Proof. We know that if   is an indefinite integral then   is absolutely 

continuous. Suppose on the other hand that   is absolutely continuous on 

[a,b]. Then   is of bounded variation and we may write 

 

                , 

 

where the functions    are monotone increasing. Hence       exists almost 

everywhere and 

          
       

     

Thus 

                                   

and       is integrable. Let 

       
 

 

       

Then   is absolutely continuous and so is the function      G. But by the 

above lemma since 

                    a.e., 

we have   to be a constant function. That is, 
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            (constant) 

or 

       
 

 

         

or 

       
 

 

         

Taking    , we have        and so 

 

       
 

 
     dt F(a) 

Thus      is indefinite integra1 of       . 

Corollary 3.2.15. Every absolutely continuous function is the indefinite 

integral of its derivative.  

3.3 Check Your Progress  

Q.1. Let f be a function defined by       
     

 

 
           

                          
 . Find 

       (0), (0), (0) (0)D f D f D f and D f 

   

 

Q.2. If  the function      assumes its maximum at c, show that      

       ( ) 0, (0) 0.D f c D f

 
 

Fill in the blanks in following question. 

Q.3. Let           be a fuction which satisfies Lipschitz condition then 

show   

        that it is absolutely continuous. 

Sol. Let           be the given function which satisfies Lipschitz   

        Condition,  i.e., for any constant M. 

                        | ( ) ( ) | | |, , [ , ]f x f y M x y x y a b                            …(1) 
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        Now for given 0,  take 
M


   

                                               ---------------------------- 

        Where,  ( , ) :i ia b i N is a finite non-overlapping collection of pairwise         

         disjoint intervals. Then from (1) 

                                               ---------------------------- 

                      
1

| ( ) ( ) | | |r

n

r r

r

rb a bM Maf f
M






        

                      
1

| ( ) ( ) |r r

n

r

b af f 


    

Q.4. Show that if       exists and is ------------------ on       then   is of    

        bounded variation on      . 

        Sol.  It is given that       exists and bounded so that there exist       

        such that          on        

        1

1

( ) ( )i i

i i

f x f x
m

x x






 


 

        1( ) ( ) .................i if x f x     

         1........................ ( )i im x x m b a     , for any patition   of        

         Hence,              

Q.5. Show that the function 
1sin , 0 1

( ) , 2
0, 0

p

x
x x

f x p
x

  
 


 is of bounded  

         variation on        

3.4 Summary 

In this chapter we discuss functions of bounded variation and three 

related topics. Begin by defining the variation of a function and what it means 

for a function to be of bounded variation, then develop some properties of 

functions of bounded variation. Consider algebraic properties as well as more 

abstract properties such as realizing that every function of bounded variation 

can be written as the difference of two increasing functions. Examine the 
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definition of the Riemann-Stieltjes integral and see when functions of 

bounded variation are Riemann-Stieltjes integrable. 

3.5 Keywords  

Absolute Continuous Function, Function of Bounded  Variation, Lebesgue 

Point, Vittali’s Cover of a Set, Indefinite Integral, Convex Function. 

3.6 Self-Assessment Test 

1. Show that the function f defined on [0,1] by 

      
     

  

 
             

                          

  

is continuous but not of bounded variation on [0,1]. 

2. Let f  be a function of bounded variation, then show that f(x) exists a.e. 

3. Show that if                  
 

 
                 a.e. 

4. If   is integrable on [a,b] and          
 

 
 for all x ϵ [a,b]. Show that 

    = 0 a.e. in [a,b]. 

5. Show that every increasing function on [a,b] is of bounded variation and 

every function of bounded variation on [a,b] is almost everywhere 

differentiable on [a,b] 

3.7 Answers to check your progress 

A.1. By the definition of Dini’s derivatives, we have  

_____ _____

0 0

1
sin 0

(0 ) (0)
(0) lim lim

h h

h
f h f hD f

h h 



 

 
  

   
 
 

_____

0

1
lim sin 1
h h

   

______ ______

00

(0 ) (0) 1
(0) lim limsin 1

hh

f h f
D f

h h





 
     

_____ _____

0 0

1
sin( ) 0

(0 ) (0)
(0) lim lim

h h

h
f h f hD f

h h 



 

 
    

   
  

 

=
_____

0

1
lim sin( ) 1
h h

   



94 

 

______ ______

00

(0 ) (0) 1
(0) lim lim( sin ) 1

hh

f h f
D f

h h





 
    


. 

A.2. It is given that the function      assumes its maximum value at      

Therefore, 

              ( ) ( ) ( ) ( ) 0f c h f c f c h f c       

And 

             ( ) ( ) ( ) ( ) 0f c h f c f c h f c       

which implies that 

            
( ) ( ) ( ) ( )

0 0
f c h f c f c h f c

and
h h

   
   

Hence 

            
_____

0

( ) ( )
( ) lim 0

h

f c h f c
D f c

h





 
   

Similarly ( ) 0D f c 
 

A.3. (i) 
1

( )
n

r r

r

b a
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         (ii) | ( ) ( ) | ( ),r r r rf f M rb a b a    

A.4. (i) Bounded 

        (ii)   1i im x x   

        (iii) ( )abV f  

A.5. We know that the finction       exists and bounded then   is of bounded   

        variation. 

        Now,        
0 0

1
(0 ) sin 0

(0 ) (0)
lim lim

p

n n

h
f h f h

h h 

 
 

   

                              1

0

1
lim sin 0p

n
h

h




   



95 

 

        And   
0 0

1
( ) sin( ) 0

(0 ) (0)
'(0) lim lim 0

p

n n

h
f h f hLf

h h 

  
 

  
 

. 

        So     '(0) '(0) 0.Rf Lf   

              '(0) 0 '( )f f x    exists. 

        And 1

2

1 1 1
'( ) cos sinp pf x x px

x x x

 
   

 
 

                       2 1 1
sin cos , 0 1px px x

x x

  
    

 
 

                       '( )f x is bounded for      . 

       Here      is of bounded variation on        
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4.6 Self-Assessment Test  

4.7 Answers to check your progress  

4.8 References/ Suggested Reading 

4.1 Introduction 

Many of the classical spaces in analysis consist of measurable 

functions and most of the important norms on such spaces have been defined 

by integrals. The Lebesgue    -spaces arc among such important classes. A 

complete understanding of these spaces needs a thorough understanding of the 

Lebesgue theory of measure and integration which we have developed in the 

preceding chapters. We are now fully prepared to introduce the     spaces. 

These spaces have remarkable properties and are of enormous importance in 

analysis as well as its applications. 

  - space 

If   is a measurable function on  , then       is so for each        ∞. 

Designate by      , the class of all  ‐ integrable functions over  , i.e., 

     ={          
 

 } 

Examples 1. Let          and       be a function defined by      

       . Then         but          

2. Let      
 

 
   and the function       be         by  

        log2 (
 

 
     

 Then        . 

3.  Let   ( , ∞) and the function       be defined by  

              . 

Then      ,  for each p,       . 

It is easy to verify that       is a linear space over R. Indeed, we observe that: 

1.                   , since 
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                                   . 

2.         and             . 

Furthermore,           , then the inequalities 

 
        
        

  

imply that       and     also in        

In order to define      ,  let   be a real‐ valued and measurable function on a 

set   with       . A real number      said to be an essential bound for the 

function  if 

            . on    

A function is said to be essentially bounded if it has an essential bound. In 

other words, a function defined on   is essentially bounded if it is bounded 

except possibly on a set of measure zero. The essential supremum off on   is 

defined by 

                     {  :          a.e. on  }, 

or equivalently 

                             {  : m({x ϵ E :         }) = 0}. 

 

If    does not have any essential bound, then its essential supremum is defined 

to be  . 

Let us designate by       the class of all those measurable functions defined 

on   which are essentially bounded on  , i.e. 

                          

It is not difficult again to verify that       is a linear space over R. 

 

Examples 1. Every bounded function on   in      . 

 

2. The function  : [    ]    given by  
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is in          

 

 

Let us now define a function         :               , as follows: 

 

               
 

 
   

        

 

                    

 

Lemma. 4.2.1. Let        . Then: 

(a)                 . on    

(b)                                      

Proof. (a) Let       . Note that 

                 

 

   

               
 

 
   

 

Since the union of a countable collection of sets of measure zero has measure 

zero, we have 

                       

                 a.e. on    

(b) It is obvious from the definition          on E. 

Theorem 4.2.2 Let E be a measurable set with m(E) < ∞. Then       

       For each p with       Furthermore, if         

        =          . 

Proof. Let         and       . Then 

               a.e. on    

        
 

                .  
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Therefore,         and consequently             . Furthermore, we 

note that 

                 

Since                   ∞, we obtain 

   
   

             

On the other hand, let          on a set   with       . Then 

                

 

                           . 

This verifies that (cf. Lemma 2.3) 

   {α :   (     :             }                   

Henoe. the result fonows from 

     
   

             
   

          

Corollary 4.2.3.          
       , and the norm on   (E) is equal to the 

limit of      as     ∞ provided         

 

 

The Holder and Minkowski Inequalities 

Lemma 4.2.4. Let      . Then 

                 

holds good for every pair of nonnegative real numbers α and   with equality 

only if      

Proof. The inequality is trivial if either     or    0. Hence, assume that   

   and    0. Consider the function   defined for a nonnegative real 

number   by 

                   

Then,  
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 and so t    is the only possible point for the extrema of  . It is verified that 

  attains its maximum at    . Thus 

            

            

Setting        , the inequality follows. The equality holds good only for 

    which is obtained only if    . 

Riesz-Hölder Inequality 

Theorem 4.2.5 Let   and   be nonnegative extended real numbers such that 

 

 
 

 

 
            and     , then        and 

                    

Equality holds iff, for some non zero constant A and B, we have A    = B     

a.e. 

Proof. When p   , then    , and the inequality is available trivially in this 

case. Indeed, if         , then       a.e., and so 

          a.e. 

Thus f g ϵ   , and by integrating, we get  

 

                          

Now, assume that       and consequently      . The inequality is 

trivial if either       a.e. or     a.e. So assume f    a.e.               

so assume that   ≠   and       This gives that          and         . 

Now, applying lemma 3.1 with 
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we obtain 

 

   
     

      

     

      
 

 

 

       

      
 

 

 

       

      
      (2) 

 

This gives that fg ϵ   , and by integrating, we find that 

     

            
 

 

 
 

 

 
    

      

              ≤             .        (3) 

Equality in (2) would occur if    , and, consequently, in (3) if     holds 

a.e. In other words, if 

      
               

         

Note. The inequality (3) is homogeneous, i.e., it holds for af and bg with    

    whenever it is so for   and    

Riesz-Minkowski Inequality 

Theorem 4.2.6 Let      . Then for every pair f,     , the following 

inequality holds: 

 

                            

Proof. The case for     is straight forward. If    ∞, we note that  

 
          
          

  

                     

and hence the result follows in this case also. Thus, we now assume that 
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1      

               near space,       . Also, we have 

                                   .  

Let       be such that 
 

 
 

 

 
    Then, since           observe that 

                      

and therefore          ϵ   . As such, by Theorem 3.2, both 

               and             

belong to   , and the Riesz‐ Holder Inequality leads to 

                                     

and 

                                     

But 

                               

   

           
 

   

Since         . Hence 

                                 
 

   

            is nonzero finite, the result follows by dividing both sides by 

       
   

. In case           , there is nothing to prove while in case 

          ∞, we either have         ∞ or         ∞ in view of the 

relation              , and the result is obviously true again. 

Remark. Equality holds in Theorem 3.3 if and only if one of the functions f 

and   is a multiple of the other. 

Note. For the special case      , the inequality in Theorem 3.2 is known 

as the Cauchy Schwarz Inequality. Cauchy (1821) first proved the inequality 

(Cauchy’s      uality) for square summable sequences. Indeed, if      and 
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     are sequences of numbers (real or complex) such that        
     ∞ 

and        
     ∞ , then 

  

 

   

         

 

   

     

 
  

       
 

   

 

 
  

 

This inequality was generalized to integrals by A. Schwarz (1885). However, 

the same generalization had already been obtained by a Russian 

mathematician Victor Bunyakovsky (1859) which remained unnoticed by 

Western mathematicians. O.    lder (1989) extended Cauchy’s inequality for 

the general values ofp and   by establishing, for sequences      and    ) with 

       
     ∞  and        

        that 

  

 

   

         

 

   

     

 
  

       
 

   

 

 
  

 

where              . The latter inequality is then generalized to the case 

of integrals by F. Riesz (1910). 

Completeness of   -spaces 

We are now prepared to show that      defines a norm on       fact, for 

     ∞, the function           satisfies the following conditions: 

1.          

2.          if and only if     a.e. 

3.                   a real number 

4.                      

 

Conditions (1) and (3) are immediate from the definition of      ; condition 

while condition (4) is available from the Riesz-Minkowski Inequality. 

Unfortunately the definition of      on    fails to satisfy the norm 

requirement that           . As such,      is not a norm on     

However, to avoid this difficulty, we do not distinguish between equivalent 

functions, i.e. the functions that are equal almost everywhere. In that situation, 
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we regard the space    consisting of equivalence classes of functions; for 

example,   will represent the class of           each of which is equivalent to 

zero. Thus      now defines a norm on, regarded as the space of equivalence 

classes, and therefore,    becomes a normed space. If one refers to    as a 

normed space, it is in reality the space of equivalence classes    of functions. 

But this should not pose any problem since, for any      , the norm is given 

by 

             

where   is any function in the equivalence class     and this definition does not 

depend on the choice of the function   in the class     In actual practice, the 

equivalence classes are relegated to the background, and the elements of    

are thought of as functions, where any two functions are regarded identical if 

they are equivalent. 

The norm      on    induces in a natural way a metric don it given by 

             . 

Riesz-Fischer Theorem 

Theorem 4.2.7. The normed spaces         , are complete. 

Proof. To prove the result for the case    ∞, let      be a Cauchy sequence in 

  . Then 

                       

except on a set            with          . If           , then 

       and 

 

                       

 for all   and  , and for all     , b]   . Therefore, it follows that      

converges uniformly to a bounded limit   outside   and the result is proved by 

observing the fact that the convergence in    is equivalent to uniform 

convergence outside a set of measure     . Now, assume      ∞. It is 

enough to show that each absolutely summable sequence in    is summable in 
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   to some element in   . 

Let      be a sequence in    with 

       

 

   

      

Define a sequence      of functions, where 

        

 

   

        

Observe, for each   that         is an increasing sequence of (extended) real 

numbers and as such must converge to an extended real number      (say), 

i.e.,            , for each        . Since the functions    are 

measurable, the function   is so. Also, in view of Riesz‐ Minkowski 

Inequality, we note that 

 

      ≤           
       

 

        

 

   

   

 

                         . 

Therefore, since     , by Fatou’   Lemma, we have 

 

           . 

This verifies that    is integrable, and hence      is finite a.e. on      ] Thus, 

we find that, for each   for which      is finite, the sequence therefore must 

be summable t    real number (                                     bsolutely 

summable sequence o        numbers,    

        

     hose x where g           of t    artial s   . Then the function   so 
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defined is the limit 

         
 
      . 

i.e.,            a.e. Hences is a measurable function. Further 

          

 

   

       

       

                  , 

which implies             . Therefore,      since     , and 

                      
 
  

But      is an integrable function and                 a.e. So, by the 

Lebesgue Dominated Convergence Theorem, we have 

           

             

Hence the sequence      is summable in    and has the sum   in     This 

proves the theorem completely. 

Remark 4.2.8. It is worthwhile to point out that the space         is a normed 

space under the norm       but not a Banach space. However, it can be noted 

that the completion of        under        is          for each   with 1    

∞. 

Theorem 4.2.7(A) If      , then    is a complete metric space with 

metric   defined by 

               
   

  f,       

Convergence of   -spaces  

Definition 4.2.9. A sequence      of functions in          , is said to 

converge to      in the norm of    iff for each    , there exists a positive 

integer   such that                   type of convergence is usually 

referred to as convergence in the mean of order   when     ∞ and nearly 
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uniform convergence when      

As usual, one may define a  ‐ mean Cauchy sequences of functions in     

Theorem 4.2.10. Let       be a sequence in    which converges in the mean 

of order   to f  in   . Then:  

a. If the sequence      converges In the mean oforder   to  , then 

         

b. The sequence      is p‐ mean Cauchy sequence. 

c.                    , in particular the sequence      is bounded with 

respect to the              

Remark 4.2.11. The converse of ( )  is true, since    is a complete normed 

space, while that of (c) need not be true. 

In general, convergence in the mean implies nor is implied by the pointwise 

convergence or convergence almost everywhere 

Examples 

1. For each      , consider the            :  ( , 1)    given by  

        

                  

                   

  

It can easily be     fied that               for each    (       ile 

        ∞ as    ∞ for      

2. For each    , consider the function        given by 

 

             

 

Note that        0 as    ∞ for each x   . On the other h    

          ,        

                

                          as    ∞ for any           

Towards the relationship between pointwise convergence and convergence in 

the mean of order  , we prove that the following results 
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Theorem 4.2.12. Let        be a sequence in          , such that      

a.e. and that                               then                     

Proof. We assume, without any loss of generality, that each      a.e. so that 

f  is also so since the result in the general case follows by consi       

         

For any pair of nonnegative real numbers   and  , we have 

                     ,         

Taking      and     , we get 

   (                
   

 
        

Thus, using Fatou’s Lemma and tho hypothesis, we get  

            
   

                      
   

 
  

    
   

                            
   

 
  

                     
   

                    
   

     (      
   

 
) 

            
   

         
   

 
   

Since        , it follows that 

   
   

          
   

 
    

Therefore 

   
   

          
   

 
    

   
          

   
 

    

so that 

   
   

     
   

 
   

Hence 

       
   

     
        

Bounded Linear Functional on    Spaces 
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Let   and   be two conjugate exponents. If           , it follows from 

the Riesz‐ Hölder Inequality that        for each     . As such, for a 

fixed     , one can define a function         by 

           

Clearly,    is a linear functional on the Banach space   . In fact, we now 

prove that it is bounded also. 

Theorem 4.2.13. Let   and             ∞) be two conjugate exponents and 

    . Then the linear            defined by 

           

is a bounded linear            on    such that                

Proof. First consider the case when    ∞ and    . Observe, by the Riesz-

Hölder Inequality that 

           =             ,        

 

Thus, it follows that    is a bounded linear functional on    and that 

               

To prove the reverse inequality, let 

         

 

     rly f     and satisfies        . Therefore 

                      

 

                  . 

Let us now consider the case when      . Again, by the Riesz‐ Hölder 

Inequality, 
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Therefore,    is a linear functional on    and satisfies               Further, 

to obtain the reverse inequality, let 

         sgn    

Clearly, f is a measurable function and                   . This verifies 

that     . Also, since 

     (        sgn           

 

 

          
               

              
  

we note that 

                

 

                             

 

                             

           
 
     

 
 

                    

 

Hence the proof is complete 

Riesz Representation Theorem 

Theorem 4.2.14 Let   be a bounded linear functional on          . Then 

there is a          g in    such that 

              

and that               

The proof of Theorem 7.2 needs the following lemma. 
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Lemma 4.2.15. Let   be an integrable function on  , b and   be a constant 

such that 

                

for all bounded                       . Then                      

Proof. First we consider the case when     and    . Let     be given, 

and let 

   {x   [    ] :    (x)|   K  } 

Set f ‐  (sgn g )  . Then is a bounded measurable function such that  

       =  (E). 

Therefore 

Km(E)                 

               

         
 

  K    (E) 

   ( )   , since     is arbitrary. 

Hence           

Let u       ssume that 1    . Define a sequence      of bounded 

measurable functions, where 

       
                         

                        
  

 

If we get           sgn   , then each    is a bounded measurable function 

such that 

               
   

 and                   

Therefore 
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But                Thus by Fatou’s lemma  

                          ’ 

we have Hence,      and           

Proof of th             . We shall obtain the proof of this theorem in four 

stages 

Stage 1. Suppose f    , t ϵ [a,b] where    denotes the characterstic function 

of the interval [a, t]. 

Set  ( )      Clearly,   defines a real‐ valued function on [a,  ]. We first 

show that   is an absolutely continuous fimction. Let {   ,  
  } be any finite 

collection of non-overlapping subintervals of [a,b] such that     
      <δ. 

 

       
               

         , 

 

Then 

 

            

 

and so 
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Thus        
           , for any finite collection of intervals of total 

length less than δ ( = 
  

      
 ) and as such   is absolutely continuous on [a,  ]. 

Then by Theorem 4.7.2, there is an integrable function   on [a, b] such that 

         
 

 
,   t   [a, b] 

Therefore 

F(  ) =     . 

Stage 2. Suppose   is a step fuction. Since every step function on [a, b] can be 

expressed as a linear combination of the form        with the exception of a 

finite number of points and   is a linear functional, we have 

          

Stage 3. Suppose is a bounded measurable function on [a, b] then there is a 

sequence        of step functions such that      a.e. Since the sequence  

           is uniformly bounded and        a.e., the Bounded 

Convergence Theorem gives             as    , and therefore 

                       

                 

         
   

      

    
   

      

 

But, since           , where   is the un form bound of       by Lebesgue 

Dominated Convergence Theorem, we have 

       
   

      

Hence      (f), for each bounded              nction f. Furthermore, 

since 
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       ≤             , 

we have      and               

in view of Lemma. 

Stage 4. Finally, suppose      is any arbitrary function. Let     be given. 

Then, there is a step function   such that             Since   is bounded, 

we have 

          

Therefore 

 

             (f) –F( )          

 

                    

 

              
 

      
 
        

 
 

 

            <             
 
   

 

Since     is arbitrary, letting      

          

 

The equality            
 
 follows from Theorem 4.1.13 

Convex Functions 

Definition 4.2.16. A function   defined an open interval       is said to be 

convex if for each              and      such that        and      , we 

have 
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The end points      can take the values   ∞,∞) respectively. Ifwe take 

           , then       and so   will be convex if 

                           )                   (i) 

If we take a          and 

  
   

   
   

   

   
          

then 

    
       

   
 

   

   
   

and so (i) reduces to 

  
   

   
  

   

   
   

   

   
     

   

   
     

Or 

           
   

   
     

   

   
        (ii) 

Thus the segment joining          and          is never below the graph of 

   A function   is sometimes said to be convex on (a,b) it for all             , 

  
   

 
  

 

 
     

 

 
     

(Clearly this definition is consequence of major definition taking     
 

 
. ) 

If for all positive numbers      satisfying      , we have 

                           , 

then   is said to be Strictly Convex. 

Theorem 4.2.17. A differentiable function   is convex on (a,b) if and only if 

   is a monotonically increasing function. If     exists on (a,b), then l  is 

convex if and only if       on       and strictly convex if       on (a,b). 

Proof. Suppose first that   is differentiable and convex and let a      

     . Then applying Theorem 5 to a       , we get 

         

   
 

         

   
 

         

   
 

and a       , we get 
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Hence 

    
         

   
 ≤ 

         

   
 

         
         

   
 decreases to       and         

         

   
  increases to 

      . Hence             for all      and so    is monotonically 

increasing function. Further,        exists, it can never be negative due to 

monotonicity of     

Conversely, let       . Our aim is to show that   is convex. Suppose, on the 

contrary, that   is not convex on       . Therefore, there are points a    

      such that 

         

   
 

         

   
 

that is, slope of chord over (s,t) is larger than the slope of the chord over (t,u). 

But slope of the chord over (s,t) is equal to       , for some           and 

slope of the chord over (t,u) is      ,     (t,u). But             implies    

is not monotone increasing and so     cannot be greater than zero. We thus 

arrive at a contradiction. Hence   is convex. 

If      , then   is strictly convex, for otherwise there would exist collinear 

points of the graph of   and we would have    (α)    (  )  for appropriate α 

and   with    . But then       at some point between α and   which is a 

contradiction to      . This completes the proof. 

Theorem 4.2.18.       is convex on (a,b), then   is absolutely continuous on 

each closed subinterval of (a,b). 

Proof. Let             . If             , then we have a          

  and we have 

         

   
 

         

   
 

         

   
 

Thus 
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and so   is absolutely continuous there. 

Definition 4.2.19. Let   be a convex function on (a,b) and    ϵ (a,b). The line 

                      (i) 

through            is called a Supporting Line at    if it always lie below 

the graph of  , that is, if 

                         (ii) 

The line (i) is a supporting line if and only if its slope   lies between the left 

and right hand derivatives at     Thus, in particular, there is at least one 

supporting line at each point. 

Theorem 4.2.20. (Jensen Inequality). Let   be a convex function on 

       and let   be an integrable function on [0,1]. The 

                      

Proof. Put 

                
 

 
  

Let               be the equation of supporting line at  . Then 

                           

Integrating both sides with respect to   over      , we have 

          
 

 

                           
 

 

 

 

         
 

 

  

 

           [        
 

 
]. 

4.3 Check Your Progress 

Q.1 Prove that 1 1 1|| || || || || ||f g f g   . 

Q.2. If 2[0,1]f L , show that 

1
1 1 2 2

0 0
| ( ) | ( )f x dx f x dx 

    . 
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Q.3. Let f(x) be a real valued function defined on [a,b] such that 

                             
1,

( ) [ , ]
,

x Q
f x x a b

x Q


  

 
. 

        Show that [ , ]f L a b . 

Fill in the blanks 

Q.4 Every convex function on an open interval is continuous. 

Sol. If a           , the convexity of a function   implies 

 

        
    

     
           

    

     
    (i) 

 

       If we make      in (i), we obtain-----------------------------;and if we take      

            we obtain            . Hence             for all   

       values of   in (a,b). Similarly             for all values of  . Hence 

 

        --------------------------------------,  and so   is continuous. 

Q.5. Let   be convex on (a,b) and a         , then 

 

         

   
 

         

   
 

         

   
 

       If   is strictly convex, equality will not occur. 

Solution. Let a          and suppose   is convex on (a,b). Since 

 

   ---------------------------------------- 

 

       therefore, convexity of   yields 

  
   

   
  

   

   
   

   

   
     

   

   
     

       or 

         
   

   
     

   

   
       (ii) 
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       or 

  ------------------------------------------- 

       or 

                                                      

     or 

                                  ----------------------------------------------- 

     or 

   
         

   
 ≤  

         

   
       (iii) 

This proves the first inequality. The second inequality can be proved     

similarly. If   is strictly converse, equality shall not be there in (ii) and so it   

cannot be in (iii). This completes the proof of the theorem. 

4.4 Summary  

This chapter presents the study of L
p
-spaces for 1 ≤ p ≤ ∞. These 

spaces, known as “Lebesgue spaces,” often occur in several branches of 

mathematical physics. A characterization of measurable transformations 

inducing composition operators is provided in the chapter, along with the 

characterization of the operators on L
p
 that are composition operators; several 

examples are also presented to illustrate the theory.  

4.5 Keywords  
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Conjugate Number, Cauchy Sequence. 

4.6 Self-Assessment Test 

1. Let   : R→R be a function such that 

 

    
                   
                      

     for all n 

 

     If f(x)= lim     , show that          . 
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2. If f,g ϵ   , then show that f g ϵ     . 

 

3. Illustrate that    consists precisely of the lebesgue integrable function on   

    [0,1]. 

 

4. Prove the inequality    
  

        
 

 
      . 

 

5. Let f,g ϵ L(-∞,∞). define 

 

h(x)=             
 

  
, -∞<x<∞, 

    Prove that  h ϵ   (-∞,∞). 

4.7 Answers to Check Your Progress 

A.1 We know that | | | | | |f g f g   . 

On integrating both the sides we get 

                       | | | | | |f g dx f dx g dx      

Which shows that 

                            1 1 1|| || || || || ||f g f g    

A.2. Using Schwarz’s inequality for 2, [0,1]f g L , we can write 

                             2 2|| || || || || ||fg f g   

                        

1 1
1 1 12 2

2 2

0 0 0

| | | | | |fg dx f dx g dx
   

     
   

    

       If we take ( ) 1,g x x  , then we get 

                              

1
1 1 2

2

0 0

| | | |f dx f dx
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1
1 1 1 2

2

0 0 0

| | | | | |fdx f dx f dx
 

    
 

    

       Hence,                   

1
1 1 2

2

0 0

| | | |fdx f dx
 

  
 

  . 

A.3 Since, we know that { [ , ]:| ( ) , 1|}m x a b f x M M m    { Set of all   

       rational in [a,b]}=0 

       Therefore, for all 1, | ( ) |M f x M  a.e. on [a,b] 

                          . sup | ( ) | inf{ :| ( ) | . . }ess f x M f x M a e on E    

                                                        inf{ , 1} 1M M    

                                      .sup | ( ) |ess f x  . 

        Hence [ , ]f L a b . 

A.4 (i)               

      (ii)                    

 

A.5 (i) 
   

   
 

   

   
 

       

   
 

   

   
   

      (ii)   ‐                             

     (iii)                                   . 
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