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1.0 LEARNING OBJECTIVES  



 This chapter will be devoted to explaining the main concepts of interpolation.  

 Some theorems concerning the interpolation of the functions will be proved. 

 Various interpolation relations/methods have been discussed.   

 

1.1 INTRODUCTION  

 The calculus of finite differences deals with the changes that take place in the value of a 

function due to finite changes in the independent variable. On the other head, in infinitesimal 

calculus, we study those changes in a function that occurs when the independent variable 

changes continuously in a given interval. 

Suppose that the function 𝑦 = 𝑓(𝑥) is tabulated for equally spaced values (𝑥𝑖 , 𝑦𝑖), i =

1,2,3, ⋯ , 𝑛 such that 𝑥𝑖 = 𝑥0 + 𝑖ℎ. If we are required to recover the values of 𝑓(𝑥) or its 

derivatives for some intermediate values of 𝑥 in the range 𝑥0 ≤ 𝑥 ≤ xn, the following three types 

of differences are found useful. 

FORWARD DIFFERENCES: The forward difference or simply difference operator is 

denoted by ∆ and may be defined as  

                       ∆f(x) = f(x + h) – f(x)  

 or, writing in terms of y, at x = xi, Eq.(i) becomes  

                      ∆f(xi) = f(xi + h) – f(xi)   

or                                        ∆yi = yi+1 – yi,           i = 0, 1, 2, …, n – 1  

The differences between the first-order differences are called the second differences and they are 

denoted by  

                              ∆2y0, ∆2y1, …, ∆2yn.  

Hence                    ∆2y0 = ∆y1 – ∆y0 = (y2 – y1) – (y1 – y0) = y2 – 2y1 + y0  

           ∆2y1 = ∆y2 – ∆y1 = (y3 – y2) – (y2 – y1) = y3 – 2y2 + y1 

            ∆3y0 = ∆2y1 – ∆2y0 = (y3 – 2y2 + y1) – (y2 – 2y1 + y0) = y3 – 3y2 + 3y1 – y0  

        ∆3y1 = y4 – 3y3 + 3y2 – y1, etc.  



Generalizing, we have 

                  ∆n+1f(x) = ∆[∆nf(x)], i.e., ∆n +1yi = ∆[∆nyi],      n = 0, 1, 2, 

Also,          ∆n+1f(x) = ∆n[f(x + h) – f(x)] = ∆nf(x + h) – ∆nf(x) 

And           ∆n +1yi = ∆nyi+1 – ∆nyi, n = 0, 1, 2  

where ∆0 ≡ identity operator i.e., ∆0f(x) = f(x) and ∆1 = ∆. 

Forward difference table: 

                   x           y              ∆y                 ∆2y                 ∆3y             ∆4y               ∆5y 

                   x0          y0    

                                                ∆y0      

                   x1          y1                                  ∆2y0       

                                                ∆y1                                       ∆3y0    

                   x2          y2                                  ∆2y1                                  ∆4y0     

                                                ∆y2                                       ∆3y1                                ∆5y0  

                   x3          y3                                  ∆2y2                                  ∆4y1     

                                                ∆y3                                      ∆3y2    

                   x4          y4                                  ∆2y3              

                                                ∆y4      

                   x5          y5       

 

The forward differences for the arguments x0, x1, …., x5 are shown in the above Table.  

Which is called a diagonal difference table or forward difference table. The first term in Table is 

y0 and is called the leading term. The differences ∆y0, ∆2y0, ∆3y0, …., are called the leading 

differences. Similarly, the differences with fixed subscripts are called forward differences. 

BACKWARD DIFFERENCES: The backward difference operator is denoted by ∇ and it 

is defined as        ∇f(x) = f(x) – f (x – h). 

This can be written as ∇yi = yi – yi –1 ,        i = n, n – 1, …., 1  

or                            ∇y1 = y1 – y0,    ∇y2 = y2 – y1, …., ∇yn = yn – yn –1  

These differences are called first differences. The second differences are denoted by ∇2y2, ∇2y3, 

…., ∇2yn. 

 Hence, ∇2y2 = ∇(∇y2) = ∇(y2 – y1) = ∇y2 – ∇y1 = (y2 – y1) – (y1 – y0) = y2 – 2y1 + y0.  

Similarly, ∇2y3 = y3 – 2y2 + y1, ∇2y4 = y4 – 2y3 + y2, and so on.  



Generalising, we have ∇kyi = ∇k–1yi – ∇k–1yi–1,   i = n, n – 1, …., k  

 where ∇0yi = yi, ∇1yi = ∇yi.  

The backward differences written in a tabular form are shown in the following table as the 

differences ∇ny with a fixed subscript ‘i’ lie along the diagonal upward sloping. 

Backward difference or horizontal table: 

                   x           y              ∇y                 ∇2y                  ∇3y             ∇4y                                  

                   x0          y0    

                                                ∇y1      

                   x1          y1                                  ∇2y2       

                                                ∇y2                                       ∇3y3    

                   x2          y2                                  ∇2y3                                   ∇4y4     

                                                ∇y3                                       ∇3y4                                 

                   x3          y3                                  ∇2y4                                   

                                                ∇y4                                       

                   x4          y4                                  

 

CENTRAL DIFFERENCES:  The central difference operator is denoted by the symbol δ 

and is defined by  

                                                 δf (x) = f (x + h/2) – f (x – h/2)  

where h is the interval of differencing.  

In terms of y, the first central difference is written as  

                             δy1 = yi+1/2 – yi–1/2    

 where                yi+1/2 = f(xi + h/2) and yi – 1/2 = f (xi – h/2).  

Hence               δy1/2 = y1 – y0, δy3/2 = y2 – y1, …., δyn–1/2 = yn – yn–1.  

The second central difference is given by δ2yi = yi+1/2 – yi–1/2    

                                                                             = (yi +1 – yi) – (yi – yi–1)  

                                                                             = yi+1 – 2yi + yi –1  

Generalising,                            δnyi = δn–1yi+1/2 – δn–1yi–1/2  

The central difference table for the seven arguments x0, x1, …., x4 is shown in following table 



Central difference table:  

                   x           y              δy                 δ2y                  δ3y             δ4y               δ5y                  δ6y                              

                   x0          y0    

                                                δy1/2      

                   x1          y1                                  δ2y1       

                                                δy3/2                                     δ3y3/2    

                   x2          y2                                  δ2y2                                 δ4y2        

                                                δy5/2                                     δ3y5/2                            δ5y5/2 

                   x3          y3                                  δ2y3                                 δ4y3                              δ6y3 

                                                δy7/2                                     δ3y7/2                             δ5y7/2 

                   x4          y4                                  δ2y4                                             δ4y4 

                                                δy9/2                                     δ3y9/2    

                   x5          y5                                  δ2y5 

                                                δy11/2                 

                   x6          y6                                                   

  

It is noted in the above table all odd differences have fraction suffices and all the even 

differences are with integral suffices. 

PROPERTIES OF THE OPERATOR (∆): 

1. If c is a constant then ∆c = 0.  

Proof: Let f(x) = c  

Hence f (x + h) = c, where h is the interval of differencing.  

Hence     ∆f (x) = f (x + h) – f (x) = c – c = 0  

        or         ∆c = 0  

2. ∆ is distributive, i.e., ∆[f (x) ± g(x)] = ∆f (x) ± ∆g(x).  

Proof: ∆[f(x) + g(x)] = [f(x + h) + g(x + h)] – [f(x) + g(x)]  

                                   = f(x + h) – f(x) + g(x+ h) – g(x)  

                                   = ∆f(x) + ∆g(x).  

Similarly, we have ∆[f(x) – g(x)] = ∆f(x) – ∆g(x)  

3. If c is a constant then ∆[cf(x)] = c∆f(x).  

         From properties 2 and 3 above, it is observed that ∆ is a linear operator.  

Proof: ∆[cf(x)] = cf(x + h) – cf(x) = c[f(x + h) – f(x)] = c∆f(x)  



Hence    ∆[cf(x)] = c∆f(x).  

4. If m and n are positive integers then ∆m∆nf(x) = ∆m + nf(x).  

Proof: ∆m∆nf (x) = (∆×∆×∆ ... m times) (∆×∆ … n times) f(x)  

                            = (∆∆∆ … (m + n) times) f (x)  

                            = ∆m+ nf(x).  

Similarly, we can prove the following properties:  

5.  ∆[f1(x) + f2(x) + … + fn(x)] = ∆f1(x) + ∆f2(x) + … + ∆fn(x).  

6.  ∆[f (x)g(x)] = f (x) ∆g(x) + g(x) ∆f (x). 

7. 
( )

( )

f x

g x

 
  
 

( ) ( ) ( ) ( )

( ) ( )

g x f x f x g x

g x g x h

  


   

DIFFERENCE OPERATORS  

(a) Shift operator E:  

The shift operator is defined as  

               E f(x) = f(x + h)  

or                 Eyi = yi+1  

Hence, the shift operator shifts the function value yi to the next higher value yi +1. The 

second shift operator                         gives  

         E2f(x) = E[Ef(x)] = E[f(x + h)] = f(x + 2h)  

E is linear and obeys the law of indices.  

Generalizing,  Enf(x) = f(x + nh) or Enyi = yi+nh  

The inverse shift operator E–1 is defined as   

     E–1f(x) = f(x – h)  

Similarly, second and higher inverse operators are given by  

E–2f(x) = f(x – 2h)  and  E–nf(x) = f(x – nh)  



The more general form of E operator is given by  

Erf(x) = f(x + rh)  

where r is positive as well as negative rationals.  

(b) Average operator µ: The average operator µ is defined as 

              f(x) = 
1

2
f[(x+h/2)+f(x-h/2)]  

        i.e.,               µyi = 
1

2
[yi+1/2 + yi-1/2]  

(c) Differential operator D: The differential operator is usually denoted by D, where 

                Df(x) = 
d

dx
f(x) = f′(x) 

               D2f(x) = 
2

2

d

dx
f(x) = f′′(x)  

RELATION BETWEEN THE OPERATORS:  

To develop approximations to differential equations, the following summary of operators is 

useful. 

                Operator Definition 

Forward difference operator           ∆    ∆f(x) = f(x + h) – f(x)  

Backward difference operator         ∇ ∇ f(x) ∇ = f(x) – f(x – h)  

Central difference operator δ            δf(x) = f(x + h/2) –f(x – h/2) 

Shift operator E E f(x) = f(x + h) 

Average operator µ µf(x) = 0.5[f(x+h/2) – f(x– h/2)]  

Differential operator D Df(x) = f ′(x) 

      

        Here h is the difference interval. For linking different operators with differential operator D 

we consider Taylor’s formula: 

In operator notation, we can write it as: 



                                      E f(x) = 21
1 ( ) ..... ( )

2!
hD hD f x

 
   

 
  

This series in brackets is the expression for the exponential and  

f(x + h) = f(x) + hf '(x) + 
1

2!
h2f''(x) + ……………. 

hence we can write  E = ehD  

This relation can be used by symbolic programs such as Maple or Mathematica to analyze the 

accuracy of finite difference schemes. 

From the definition of ∆, we know that  

                                    ∆f(x) = f(x + h) – f(x)  

where h is the interval of differencing. Using the operator E we can write  

                                    ∆f(x) = Ef(x) – f(x)  

          ⇒                      ∆ f(x) = (E – 1) f(x)  

The above relation can be expressed as an identity  

                                         ∆ = E – 1 i.e., E = 1 + ∆  

1.2 INTERPOLATION  

Let f(x) is a single-valued, continuous, and explicit function having the values of f(x) 

corresponding to certain values of x, as x0, x1, x2, ………xn can be obtained easily and tabulated. 

The main problem is to converse the tabular values (x0, y0), (x1, y1), (x2, y2)…………… (xn, yn) 

satisfying the relation y = f(x) where the explicit nature of f(x) is not known, it is required to find 

a simpler function [say, φ(x)], such that f(x) and φ(x) satisfy the set of tabular points. This 

process of finding φ(x)’s known as Interpolation.  

There are different types of interpolation depending on whether φ(x) is finite trigonometric 

series, a series of Bessel functions, etc. In other words “The study of interpolation is based on the 

assumption that there are no sudden jumps in the value of the dependent variable for the period 

under consideration. It is also assumed that the rate of change of figures from one period to 

another is uniform.  



1.2.0 NEWTON'S FORWARD INTERPOLATION FORMULA 

Let (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2, ⋯ 𝑛 be the set of (𝑛 + 1) data values of the function 𝑦 = 𝑓(𝑥), which are 

equispaced so that 𝑥𝑖 = 𝑥0 + 𝑖ℎ, i = 0,1,2,3, ⋯ , 𝑛. Suppose it is required to evaluate 𝑓(𝑥) for 

𝑥 = 𝑥0 + 𝑝ℎ, where 𝑝 is any real number. Then 

𝑦𝑝 = 𝑓(𝑥0 + 𝑝ℎ) = 𝐸𝑝𝑓(𝑥0) = (1 + Δ)𝑝𝑦0, (∵ 𝐸 = 1 + Δ, y0 = 𝑓(𝑥0))

= [1 + 𝑝Δ +
𝑝(𝑝 − 1)

2!
Δ2 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3 + ⋯ ] 𝑦0, by using the binomial theorem. 

= 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3𝑦0 + ⋯

 

If 𝑦 = 𝑓(𝑥) is a polynomial of the nth degree, then Δ𝑛+1𝑦0 and higher-order differences will be 

zero. Hence we have 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3𝑦0 + ⋯

+
𝑝(𝑝 − 1) ⋯ (𝑝 − 𝑛 − 1̅̅ ̅̅ ̅̅ ̅)

𝑛!
Δ𝑛𝑦0 

It is called Newton's forward interpolation formula. This formula is used for interpolating the 

values of 𝑦 near the beginning of a set of tabulated values and extrapolating values of 𝑦 a little 

backward i.e. to the left of 𝑦0. 

1.2.1 NEWTON'S BACKWARD INTERPOLATION FORMULA 

Let (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2,3 ⋯ 𝑛 be the set of tabulated values of the function 𝑦 = 𝑓(𝑥). Suppose it is 

required to evaluate 𝑓(𝑥) for 𝑥 = 𝑥n + 𝑝ℎ, where 𝑝 is a real number. Then we have 

𝑦𝑝  = 𝑓(𝑥𝑛 + 𝑝ℎ) = 𝐸𝑝𝑓(𝑥𝑛) = (1 − ∇)−𝑝𝑦𝑛, (∵ 𝐸−1 = 1 − ∇, yn = 𝑓(𝑥𝑛))

 = [1 + 𝑝∇ +
𝑝(𝑝 + 1)

2!
∇2 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
∇3 + ⋯ ] 𝑦𝑛, using the binomial theorem. 

 = 𝑦𝑛 + 𝑝∇𝑦𝑛 +
𝑝(𝑝 + 1)

2!
∇2𝑦𝑛 +

𝑝(𝑝 + 1)(𝑝 + 2)

3!
∇3𝑦𝑛 + ⋯

 

If 𝑦 = 𝑓(𝑥) is a polynomial of degree 𝑛 then ∇𝑛+1𝑦𝑛 and higher-order differences vanish. Hence 

we have 𝑦𝑝 = 𝑦𝑛 + 𝑝∇𝑦𝑛 +
𝑝(𝑝+1)

2!
∇2𝑦𝑛 + ⋯ +

𝑝(𝑝+1)(𝑝+2)⋯(𝑝+𝑛−1)

𝑛!
∇𝑛𝑦𝑛 



It is called Newton's backward interpolation formula. This formula is used for interpolating the 

values of 𝑦 near the end value of a set of tabulated values and also for extrapolating values of 𝑦 a 

little ahead i.e. to the right of 𝑦𝑛. 

1.2.2 CENTRAL DIFFERENCE INTERPOLATION 

In this section, we shall discuss and develop central difference formulae which are best suited for 

interpolation near the middle of a tabulated set. The most important central difference formulae 

are due to Stirling, Bessel, and Everett. Gauss's formulae are also of interest from a theoretical 

standpoint only. 

GAUSS'S FORWARD AND BACKWARD INTERPOLATION FORMULAE 

Let us assume Gauss forward interpolation formula, which uses differences lie on the solid line 

in the forward difference table, of the form 

𝑦𝑝 = 𝑦0 + 𝐺1Δ𝑦0 + 𝐺2Δ2𝑦−1 + 𝐺3Δ3𝑦−1 + 𝐺4Δ4𝑦−2 + ⋯                                     (1) 

where 𝐺1, 𝐺2, 𝐺3, ⋯ are to be determined. By Newton's forward difference formula, we have 

𝑦𝑝 = 𝐸𝑝𝑦0 = (1 + Δ)𝑝𝑦0

                           = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝−1)

2!
Δ2𝑦0 +

𝑝(𝑝−1)(𝑝−2)

3!
Δ3𝑦0 + ⋯                                                (2)

    

Now 

Δ2𝑦−1 = Δ2𝐸−1𝑦0  = Δ2(1 + Δ)−1𝑦0 = Δ2(1 − Δ + Δ2 − Δ3 + ⋯ )𝑦0

 = Δ2𝑦0 − Δ3𝑦0 + Δ4𝑦0 − Δ5𝑦0 + ⋯
 

Δ3𝑦−1 = Δ3𝑦0 − Δ4𝑦0 + Δ5𝑦0 − Δ6𝑦0 + ⋯

Δ4𝑦−2 = Δ4𝐸−2𝑦0 = Δ4(1 − Δ)−2𝑦0 = Δ4(1 − 2Δ + 3Δ2 − 4Δ3 + ⋯ )𝑦0

= Δ4𝑦0 − 2Δ5𝑦0 + 3Δ6𝑦0 − 4Δ7𝑦0 + ⋯

 

and so on. Thus, we have 

𝑦𝑝 = 𝑦0 + 𝐺1Δ𝑦0 + 𝐺2(Δ2𝑦0 − Δ3𝑦0 + Δ4𝑦0 − Δ5𝑦0 + ⋯ )

 +𝐺3(Δ3𝑦0 − Δ4𝑦0 + Δ5𝑦0 − Δ6𝑦0 + ⋯ )

 +𝐺4(Δ4𝑦0 − 2Δ5𝑦0 + 3Δ6𝑦0 − 4Δ7𝑦0 + ⋯ ) + ⋯

 



Comparing (1) and (2), we obtain 

𝐺1 = 𝑝,  𝐺2 =
𝑝(𝑝 − 1)

2!
, 𝐺3 =

(𝑝 + 1)𝑝(𝑝 − 1)

3!
, 𝐺4 =

(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
. etc.  

Hence the Gauss forward interpolation formula is given by 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦−1 +

(𝑝 − 1)𝑝(𝑝 − 1)

3!
Δ3𝑦−1 +

(𝑝 − 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
Δ4𝑦−2

+ ⋯ 

This formula is used to interpolate the values of 𝑦 for 𝑝(0 < 𝑝 < 1) measured forwardly from 

the origin. 

Gauss's Backward Interpolation formula uses the differences which lie on the dashed line in the 

forward difference Table and can therefore be assumed of the form 

𝑦𝑝 = 𝑦0 + 𝐺1
′Δ𝑦−1 + 𝐺2

′ Δ2𝑦−1 + 𝐺3
′ Δ3𝑦−2 + 𝐺4

′Δ4𝑦−2 + ⋯ 

where 𝐺1
′ , G2

′ , G3
′ , G4

′ ⋯ have to be determined. Following the above procedure and comparing it 

with Newton's backward difference formula, we obtain 

𝐺1
′ = 𝑝, G2

′ =
𝑝(𝑝 + 1)

2!
, G3

′ =
(𝑝 + 1)𝑝(𝑝 − 1)

3!
, G4

′ =
(𝑝 + 2)(𝑝 + 1)𝑝(𝑝 − 1)

4!
 etc.  

Therefore, Gauss backward interpolation formula is given by 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦−1 +
𝑝(𝑝 + 1)

2!
Δ2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!

Δ3𝑦−2 +
(𝑝 + 2)(𝑝 + 1)𝑝(𝑝 − 1)

4!
Δ4𝑦−2 + ⋯

 

This formula is used to interpolate the values of 𝑦 for a negative value of plying between −1 and 

0. Gauss formulas are not of much practical use, however, these have theoretical significance. 

STIRLING'S FORMULA 

If we take the mean of the Gauss forward and backward formulas, we obtain  



𝑦𝑝 = 𝑦0 + 𝑝
Δ𝑦−1 + Δ𝑦0

2
+

𝑝2

2
Δ2𝑦−1 +

𝑝(𝑝2 − 1)

3!

Δ3𝑦−1 + Δ3𝑦−2

2
+

𝑝2(𝑝2 − 1)

4!
Δ4𝑦−2 + ⋯ 

This is known as Stirling's formula. In the central differences notation, the Stirling formula takes 

the form 

𝑦𝑝 = 𝑦0 + 𝑝𝜇𝛿𝑦0 +
𝑝2

2!
𝛿2𝑦0

𝑝(𝑝2 − 12)

3!
𝜇𝛿3𝑦0 +

𝑝2(𝑝2 − 12)

4!
𝛿4𝑦0 + ⋯ 

since 

1

2
(Δ𝑦0 + Δ𝑦−1) =

1

2
(𝛿𝑦1/2 + 𝛿𝑦−1/2) = 𝜇𝛿𝑦0,

1

2
(Δ3𝑦−1 + Δ3𝑦−2) =

1

2
(𝛿3𝑦1

2
+ 𝛿3𝑦

−
1
2

)

= 𝜇𝛿3𝑦0 etc.  

BESSEL'S FORMULA 

This is a very useful formula for practical interpolation, and it uses the differences as shown in 

the following table where brackets mean that the average has to be taken 

𝑥−1 𝑦−1

𝑥0 (
𝑦0

𝑥1
) Δ𝑦0 (

Δ2𝑦−1

Δ2𝑦0
) Δ3𝑦−1 (

Δ4𝑦−2

Δ4𝑦−1
) Δ5𝑦−2 (

Δ6𝑦−3

Δ6𝑦−2
)
 

Therefore, we have assumed Bessel's formula of the form 

𝑦𝑝 =
𝑦0 + 𝑦1

2
+ 𝐵1Δ𝑦0 + 𝐵2

Δ2𝑦−1 + Δ2𝑦0

2
+ 𝐵3Δ3𝑦−1 + 𝐵4

Δ4𝑦−2 + Δ4𝑦−1

2
+ ⋯

 = 𝑦0 + (𝐵1 +
1

2
) Δ𝑦0 + 𝐵2

Δ2𝑦−1 + Δ2𝑦0

2
+ 𝐵3Δ3𝑦−1 + 𝐵4

Δ4𝑦−2 + Δ4𝑦−1

2
+ ⋯

 

Newton's forward differences interpolation formula is given by 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦0

𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)(𝑝 − 3)

4!
Δ4𝑦0 + ⋯ 

Comparing the above results after simplifying the differences, we obtain 



𝐵1 +
1

2
= 𝑝,  B2 =

𝑝(𝑝 − 1)

2!
, B3 =

𝑝(𝑝 − 1) (𝑝 −
1
2

)

3!
, B4 =

(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
 etc.  

Thus the Bessel formula becomes 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!

Δ2𝑦−1 + Δ2𝑦0

2
+

𝑝(𝑝 − 1) (𝑝 −
1
2

)

3!
Δ3𝑦−1

 +
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!

Δ4𝑦−2 + Δ4𝑦7

2
+ ⋯

 

In central differences notation, this can be written as 

𝑦𝑝 = 𝑦0 + 𝑝𝛿𝑦1
2

 +
𝑝(𝑝 − 1)

2!
𝜇𝛿2𝑦1

2
+

(𝑝 −
1
2

) 𝑝(𝑝 − 1)

3!
𝛿3𝑦1

2

 +
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
𝜇𝛿4𝑦1

2
+ ⋯

 

since 

1

2
(Δ2𝑦−1 + Δ2𝑦0) = 𝜇𝛿2𝑦1

2
,
1

2
(Δ4𝑦−2 + Δ4𝑦−1) = 𝜇𝛿4𝑦1

2
 etc.  

EVERETT'S FORMULA 

This formula is extensively used and involves only even differences on and below the central 

line as shown below. 

x0 y0 Δ2𝑦−1 Δ4𝑦−2 Δ6𝑦−3 ⋯  Central line 

− − − −
𝑥1 𝑦1 Δ2𝑦0 Δ4𝑦−1 Δ6𝑦−2

 

Hence this formula has the form 

𝑦𝑝 = 𝐸0𝑦0 + 𝐸2Δ2𝑦−1 + 𝐸4
4𝑦−2 + ⋯ + 𝐹0𝑦1 + 𝐹2Δ2𝑦0 + 𝐹4Δ4𝑦−1 + ⋯ 

where coefficients 𝐸0,  F0, E2,  F2, E4,  F4, ⋯ can be determined by the earlier method as used in 

the proceeding cases, we obtain. 



𝐸0 = 1 − 𝑝 = 𝑞,   F0 = 𝑝

𝐸2 = 𝑞(𝑞2 − 11)  F2 = 𝑝(𝑝2 − 12)

𝐸4 =
𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
,  F4 =

𝑝(𝑝2 − 12)(𝑝2 − 22)

5!
etc.

𝑦𝑝 = 𝑞𝑦0 +
𝑞(𝑞2 − 12)

3!
Δ2𝑦−1 +

𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
Δ4𝑦−2 +⋅

 +𝑝𝑦1 + 𝑝
𝑝2 − 12

3!
Δ2𝑦0 +

𝑝(𝑝2 − 12)(𝑝2 − 22)

5!
Δ4𝑦−1 + ⋯

 

where 𝑞 = 1 − 𝑝. There is a close relationship between Bessel's formula and Everett's formula 

and one can be deduced from the other by suitable rearrangements. It is also interesting to 

observe that Bessel's formula truncated after third differences is Everett's formula truncated after 

second differences. 

CHOICE OF AN INTERPOLATION FORMULA 

As for as practical interpolation is concerned, we have to see which formula yields the most 

accurate results in a particular problem. The coefficients in the central difference formulae are 

smaller and converge faster than those in Newton's formulae. After a few terms, the coefficients 

in String's formula decrease more rapidly than those of Bessel's formula and the coefficients of 

Bessel's formula decrease more rapidly than those of Newton's formula. As such, whenever 

possible, the central difference formula should be used in preference to Newton's formulae. The 

right choice of an interpolation formula, however, depends on the position of the interpolated 

value in the given data. 

(i) To find a tabulated value near the beginning of the table use Newton's forward formula. 

(ii) To find a value near the end of the table, use Newton's backward formula. 

(iii) To find an interpolated value near the center of the table, use either Stiring's or Bessel's, or 

Everett's formula. 

If the interpolation is required for 
−1

2
≤ 𝑝 ≤

1

4
, prefer Stirling's 𝑠 formula. If interpolation is 

required for 
1

4
≤ 𝑝 ≤

3

4
, then use Bessel's or Everette's formula. But in the case where a series of 

calculations have to be performed, it would be inconvenient to use both these formulae, and a 

choice must be made between them. The choice depends on the order of the highest difference 



that could be neglected so that contributions from it and further differences would be less than 

half a unit in the last decimal place. If this highest difference is of even order, Stirling's formula 

is recommended, if it is of even order, Bessel's formula might be preferred. Even the estimation 

of the maximum value of a difference of any order in an interpolation formula is also not 

difficult. 

Example 1.1  Find 𝑓(22) from the Gauss forward formula: 

𝑥: 20 25 30 35 40 45 

𝑓(𝑥): 354 332 291 260 231 204 

 

Solution: Taking 𝑥0 = 25, ℎ = 5, we have to find the value of 𝑓(𝑥) for 𝑥 = 22. 

i.e., for 𝑝 =
𝑥−𝑥0

ℎ
=

22−25

5
= −0.6 The difference table is as follows: 

𝑥 𝑝 𝑦𝑝 Δ𝑦𝑝 Δ2𝑦𝑝 Δ3𝑦𝑝 Δ4𝑦𝑝 Δ5𝑦𝑝 

20 −1 354(= 𝑦−1) −22     

25 0 332(= 𝑦0) −41 −19 29   

30 1 291(= 𝑦1) −31 10 −8 −37 45 

35 2 260(= 𝑦2) −29 2 0 8  

40 3 231(= 𝑦3) −27 2    

45 4 204(= 𝑦4)      

 

Gauss forward formula is 



𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
Δ3𝑦−1

 +
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
Δ4𝑦−2

 +
(𝑝 + 1)(𝑝 − 1)𝑝(𝑝 − 2)(𝑝 + 2)

5!
Δ5𝑦−2 + ⋯

 ∴ 𝑓(22) = 332 + (0.6)(−41) +
(−0.6)(−0.6 − 1)

2!
(−19)

 +
(−0.6 + 1)(−0.6)(−0.6 − 1)

3!
(−8)

 +
(−0.6 + 1)(−0.6)(−0.6 − 1)(−0.6 − 2)

4!
(−37)

 +
(−0.6 + 1)(−0.6)(−0.6 − 1)(−0.6 − 2)(−0.6 + 2)

5!
(45)

 = 332 + 24.6 − 9.12 − 0.512 + 1.5392 − 0.5241

 

Hence 𝑓(22) = 347.983. 

Example 1.2  Use Gauss's forward formula to evaluate 𝑦30, given that 𝑦21 = 18.4708, 𝑦25 =

17.8144, 𝑦29 = 17.1070, 𝑦33 = 16.3432 and 𝑦37 = 15.5154. 

Solution: Taking 𝑥0 = 29, ℎ = 4, we require the value of 𝑦 for 𝑥 = 30 

i.e., for 𝑝 =
𝑥−𝑥0

ℎ
=

30−29

4
= 0.25 The difference table is given below: 

𝑥 𝑝 𝑦𝑝 Δ𝑦𝑝 Δ2𝑦𝑝 Δ3𝑦𝑝 Δ4𝑦𝑝 

21 −2 18.4708     

   −0.6564    

       

25 −1 17.8144  −0.0510   

   −0.7074  −0.7074  

29 0 17.1070  −0.0564  −0.0022 

   −0.7638  −0.0076  

33 1 16.3432  −0.0640   



   −0.8278    

37 2 15.5154     

 

Gauss's forward formula is 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 + 1)

1.2
Δ2𝑦−1  +

(𝑝 + 1)𝑝(𝑝 − 1)

1.2.3
Δ3𝑦−1

 +
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

1.2.3.4
Δ4𝑦−2 + ⋯

𝑦30 = 17.1070  +(0.25)(−0.7638) +
(0.25)(−0.75)

2
(−0.0564)

+
(1.25)(0.25)(−0.75)

6
(−0.0076) +

(1.25)(0.25)(−0.75)(−1.75)

24
 × (−0.0022)

= 17.1070  −0.19095 + 0.00529 + 0.0003 − 0.00004 = 16.9216 approx. 

 

Example 1.3 Using Gauss backward difference formula, find y(8) from the following table. 

𝑥 0 5 10 15 20 25 

𝑦 7 11 14 18 24 32 

 

Solution: Taking 𝑥0 = 10, ℎ = 5, we have to find 𝑦 for 𝑥 = 8, i.e., for 𝑝 =
𝑥−𝑥0

ℎ
=

8−10

5
= −0.4. 

The difference table is as follows: 

𝑥 𝑝 𝑦𝑝 Δ𝑦𝑝 Δ2𝑦𝑝 Δ3𝑦𝑝 Δ4𝑦𝑝 Δ5𝑦𝑝 

0 2 7      

   4     

5 1 11  −1    

   3  2   

10 0 14  1  −1  

   4  1  0 

15 1 18  2  −1  



   6  0   

20 2 24  2    

   8     

25 3 32      

 

Gauss's backward formula is 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦−1 +
(𝑝 + 1)𝑝

2!
Δ2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
Δ3𝑦−2

 +
(𝑝 + 2)𝑝(𝑝 + 1)𝑝(𝑝 − 1)

4!
Δ4𝑦−2 + ⋯

𝑦(8) = 14 + (−0.4)(3) +
(−0.4 + 1)(−0.4)

2!
(1) +

(−0.4 + 1)(−0.4)(−0.4 − 1)

3!
(2)

 +
(−0.4 + 2)(−0.4 + 1)(−0.4)(−0.4 − 1)

4!
(−1)

 = 14 − 1.2 − 0.12 + 0.112 + 0.034

 

Hence 𝑦(8) = 12.826 

Example 1.4 Interpolate using Gauss's backward formula, the population of a town for the year 

1974, given that: 

Year: 1939 1949 1959 1969 1979 1989 

 Population: 

 (in thousands) 
 12 15 20 27 39 52 

 

Solution: Taking 𝑥0 = 1969, ℎ = 10, the population of the town is to be found for 

𝑝 =
1974 − 1969

10
= 0.5 

The Central difference table is 

𝑥 𝑝 𝑦𝑝 Δ𝑦𝑝 Δ2𝑦𝑝 Δ3𝑦𝑝 Δ4𝑦𝑝 Δ5𝑦𝑝 

1939 −3 12 3 2 0 3 −10 



        

1949 −2 15      

   5     

1959 −1 20  2    

   7  3   

1969 0 27  5  −7  

   12  −4   

1979 1 39  1    

   13     

1989 2 52      

 

Gauss's backward formula is 

𝑦𝑝 = 𝑦0  +𝑝Δ𝑦−1 +
(𝑝 + 1)𝑝

2!
Δ2𝑦−1 +

(𝑝 + 1)𝑝(𝑝 − 1)

3!
Δ3𝑦−2

+
(𝑝 + 2)𝑝(𝑝 + 1)𝑝(𝑝 − 1)

4!
Δ4𝑦−2

 +
(𝑝 + 2)(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

5!
Δ5𝑦3 + ⋯

𝑦0.5 = 27 + (0.5)(7) +
(1.5)(0.5)

2
(5) +

(1.5)(0.5)(−0.5)

6

 +
(2.5)(1.5)(−0.5)

24
(−7) +

(2.5)(1.5)(0.5)(−0.5)(1.5)

120
(−10)

= 27 + 3.5 + 1.875 − 0.1875 + 0.2743 − 0.1172
= 32.532 thousand approx. 

 

Example 1.5  Employ Stirling's formula to compute 𝑦12.2 from the following table  

                                             (𝑦𝑥 = 1 + log10 sin 𝑥) : 

𝑥∘: 10 11 12 13 14 

105𝑦𝑥: 23,967 28,060 31,788 35,209 38,368 

Solution: Taking the origin at 𝑥0 = 12∘, ℎ = 1 and 𝑝 = 𝑥 − 12, we have the following central 

difference table: 



𝑝 𝑦𝑥 Δ𝑦x Δ2𝑦x Δ3𝑦x Δ4𝑦x 

−2
= 𝑥−2 

0.23967
= 𝑦−2 

    

  
0.04093

= Δ𝑦−2 
   

−1
= 𝑥−1 

0.28060
= 𝑦−1 

 
−0.00365

= Δ2𝑦−2 
  

  
0.03728

= Δ𝑦−1 
 

0.00058
= Δ3𝑦−2 

 

0 = 𝑥0 
0.31788

= 𝑦0 
 

−0.00307
= Δ2𝑦−1 

 
−0.00013
= Δ4𝑦−2 

  
0.03421

= Δ𝑦0 
 

−0.00045
= Δ2𝑦−1 

 

1 = 𝑥1 
0.35209

= 𝑦1 
 

−0.00062
= Δ2𝑦0 

  

  
0.03159

= Δ𝑦1 
   

2 = 𝑥2 
0.38368

= 𝑦2 
    

 

At 𝑥 = 12.2, 𝑝 = 0.2. (As 𝑝 lies between −
1

4
 and 

1

4
, the use of String's formula will be Quite 

suitable.) 

Stirling's formula is 

𝑦𝑝 = 𝑦0  +
𝑝

1

Δ𝑦−1 + Δ𝑦−0

2
+

𝑝2

2!
Δ2𝑦−1 +

𝑝(𝑝2 − 1)

3!
⋅

Δ3𝑦−2 + Δ3𝑦−1

2

 +
𝑝2(𝑝2 − 1)

4!
Δ4𝑦−2 + ⋯

 

When 𝑝 = 0.2, we have 

𝑦0.2 = 0.3178 + 0.2 (
0.03728 + 0.03421

2
) +

(0.2)2

2
(−0.00307) 



+
(0.2)2[(0.2)2 − 1]

6
(

0.00058 + 0.00054

2
) +

(0.2)2[(0.2)2 − 1]

24
(−0.00013) 

= 0.31788 + 0.00715 − 0.00006 − 0.000002 + 0.0000002 

= 0.32497. 

Example 1.6 Given 

𝜃∘: 0 5 10 15 20 25 30 

tan 𝜃: 0 0.0875 0.1763 0.2679 0.3640 0.4663 0.5774 

 

Using Stirling's formula, estimate the value of tan 16∘. 

Solution: Taking the origin at 𝜃∘ = 15∘, ℎ = 5∘ and 𝑝 =
𝜃−15

5
, we have the following central 

difference table: 

𝑝 𝑦 = tan 𝜃 Δ𝑦 Δ2𝑦 Δ3𝑦 Δ4𝑦 Δ5𝑦 

−3 0.0000      

  0.0875     

−2 0.0875  0.0013    

  0.0888  0.0015   

−1 0.1763  0.0028  0.0002  

  0.0916  0.0017  −0.0002 

0 0.2679  0.0045  0.0000  

  0.0961  0.0017  0.0009 

1 0.3640  0.0062  0.0009  

  0.1023  0.0026   

2 0.4663  0.0088    

  0.1111     

3 0.5774      



 

 At 𝜃 = 16∘, 𝑝 =
16 − 15

5
= 0.2 

Stirling's formula is 

𝑦𝑝 = 𝑦𝑜 +
𝑝

1
⋅

Δ𝑦−1 + Δ𝑦0

2
+

𝑝2

2!
Δ2𝑦−1 +

𝑝2(𝑝2 − 1)

3!
⋅

Δ2𝑦−2 + Δ3𝑦−1

2

 +
𝑝2(𝑝2 − 1)

4!
Δ4𝑦−2 + ⋯

 ∴ 𝑦0.2 = 0.2679 + 0.2 (
0.0916 + 0.0916

2
) +

(0.2)2

2
(0.0045) + ⋯

 = 0.2679 + 0.01877 + 0.00009 + ⋯ = 0.28676

 

Hence, tan 16∘ = 0.28676. 

Example 1.7  Apply Bessel's formula to obtain 𝑦25, given 𝑦20 = 2854, 𝑦24 = 3162, 𝑦28 =

3544, 𝑦32 = 3992. 

Solution: Taking the origin at 𝑥0 = 24, ℎ = 4, we have 𝑝 = (𝑥 − 24). 

∴ The central difference table is 

𝑝 𝑦 Δ𝑦 Δ2𝑦 Δ3𝑦 

−1 2854    

  308   

0 3162  74  

  382  −8 

1 3544  66  

  448   

2 3992    

 

At 𝑥 = 25, 𝑝 =
(25−24)

4
=

1

4
. (As p lies between 

1

4
 and 

3

4
, the use of Bessel's formula will yield 

accurate results) 



Bessel's formula is 

𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!

Δ2𝑦−1 + Δ2𝑦0

2
+

(𝑝 −
1
2

) 𝑝(𝑝 − 1)

2!
Δ3𝑦−1 + ⋯ 

When 𝑝 = 0.25, we have 

𝑦𝑝  = 3162 + 0.25 × 382 +
0.25(−0.75)

2!
(

74 + 66

2
) +

(0.25)0.25(−0.75)

2!
− 8

 = 3162 + 95.5 − 6.5625 − 0.0625
 = 3250.875 approx. 

 

Example 1.8  Apply Bessel's formula to find the value of 𝑓(27.5) from the table: 

𝑥: 25 26 27 28 29 30 

𝑓(𝑥): 4.000 3.846 3.704 3.571 3.448 3.333 

 

Solution: Taking the origin at 𝑥0 = 27, ℎ = 1, we have 𝑝 = 𝑥 − 27 The central difference table 

is 

𝑥 𝑝 𝑦 Δ𝑦 Δ2𝑦 Δ3𝑦 Δ4𝑦 

25 −2 4.000     

   −0.154    

26 −1 3.846  0.012   

   −0.142  −0.003  

27 0 3.704  0.009  0.004 

   −0.133  −0.001  

28 1 3.571  0.010  −0.001 

   −0.123  −0.002  

29 2 3.448  0.008   

   −0.115    

30 3 3.333     



 

At 𝑥 = 27.5, 𝑝 = 0.5 (As 𝑝 lies between 1/4 and 3/4, the use of Bessel's formula will yield an 

accurate result), 

Bessel's formula is 

𝑦𝑝 = 𝑦0  +𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!

Δ2𝑦−1 + Δ2𝑦0

2
+

(𝑝 −
1
2

) 𝑝(𝑝 − 1)

3!
Δ3𝑦−1

 +
(𝑝 + 1)𝑝(𝑝 − 1)(𝑝 − 2)

4!
(

Δ4𝑦−2 + Δ4𝑦−1

2
) + ⋯

 

When 𝑝 = 0.5, we have 

𝑦𝑝 = 3.704 −
(0.5)(0.5 − 1)

2
(

0.009 + 0.010

2
) + 0

 +
(0.5 + 1)(0.5)(0.5 − 1)(0.5 − 2)

2

(−0.001 − 0.004)

2
= 3.704 − 0.11875 − 0.00006 = 3.585

 

Hence 𝑓(27.5) = 3.585. 

Example 1.9  Using Everett's formula, evaluate 𝑓(30) if 𝑓(20) = 2854, 𝑓(28) = 3162, 

𝑓(36) = 7088, 𝑓(44) = 7984 

Solution: Taking the origin at 𝑥0 = 28, ℎ = 8, we have 𝑝 =
𝑥−28

8
. The central table 

𝑥 𝑝 𝑦 Δ𝑦 Δ2𝑦 Δ3𝑦 

20 −1 2854    

   308   

28 0 3162  3618  

   3926  −6648 

36 1 7088  −3030  

   896   

44 2 7984    

 



At  𝑥 = 30, 𝑝 =
30−28

8
= 0.25 and 𝑞 = 1 − 𝑝 = 0.75 

Everett's formula is 

𝑦𝑝 = 𝑞𝑦0 +
𝑞(𝑞2 − 12)

3!
Δ2𝑦−1 +

𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
Δ4𝑦−2 + ⋯

 +𝑝𝑦1 +
𝑝(𝑝2 − 12)

3!
Δ2𝑦0 +

𝑝(𝑝2 − 12)(𝑝2 − 22)

5!
Δ4𝑦−2 + ⋯

 = (0.75) + (3162) +
0.75(0.752 − 1)

6
(3618) + ⋯

 +0.25 + (7080) +
0.25(0.252 − 1)

6
(−3030) + ⋯

 = 2371.5 − 351.75 + 1770 + 94.69 = 3884.4

 

Hence 𝑓(30) = 3884.4 

Example 1.10 Given the table 

𝑥: 310 320 330 340 350 360 

log 𝑥: 2.49136 2.50515 2.51851 2.53148 2.54407 2.55630 

 

find the value of log 337.5 by Everett's formula. 

Solution: Taking the origin at 𝑥0 = 330 and ℎ = 10, we have 𝑝 =
𝑥−330

10
 . The central difference 

table is 

𝑝 𝑦 Δ𝑦 Δ2𝑦 Δ3𝑦 Δ4𝑦 Δ5𝑦 

−2 2.49136      

  0.01379     

−1 2.50515  −0.00043    

  0.01336  0.00004   

0 2.51881  −0.00039  −0.00003  

  0.01297  0.00001  0.00004 

1 2.53148  −0.00038  0.00001  



  0.01259  0.00002   

2 2.54407  −0.00036    

  0.01223     

3 2.55630      

 

To evaluate log 337.5, i.e., for 𝑥 = 337.5, 𝑝 =
337.5−330

10
= 0.75 

(As 𝑝 > 0.5 and = 0.75, Everett's formula will be quite suitable) 

Everett's formula is 

𝑦𝑝 = 𝑞𝑦0  +
𝑞(𝑞2 − 12)

3!
Δ2𝑦−1 +

𝑞(𝑞2 − 12)(𝑞2 − 22)

5!
Δ4𝑦−2 + ⋯

 +𝑝𝑦1 +
𝑝(𝑝2 − 12)

3!
Δ2𝑦0 +

𝑝(𝑝2 − 12)(𝑝2 − 22)

5!
Δ4𝑦−1 + ⋯

= 0.25 × 2.51851 +
0.25(0.0625 − 1)

6
× (−0.00039)

 +
0.25(0.0625 − 1)(0.0625 − 4)

120
× (−0.00003)

+ 0.75 × 2.53148 +
0.75(0.5625 − 1)

6
× (−0.00038)

+
0.75(0.5625 − 1)(0.5625 − 4)

6
× (−0.00001)

= 0.62963  +0.00002 − 0.0000002 + 1.89861 + 0.00002 + 0.0000001
= 2.52828  nearly. 

 

1.3 INTERPOLATION WITH UNEQUAL INTERVALS 

Newton’s forward and backward interpolation formulae are applicable only when the values of n 

are given at equal intervals but in case of unequal intervals, we use Lagrange’s formula for 

interpolation. 

1.3.0 LAGRANGE’S INTERPOLATION FORMULA 

Let y = f(x) be a real-valued continuous function defined in an interval [a, b]. Let x0, x1, x2,..., xn 

be (n+1) distinct points that are not necessarily equally spaced and the corresponding values of 

the function are y0, y1,……., yn. Since (n + 1) values of the function are given corresponding to 



the (n+1) values of the independent variable x, we can represent the function y = f(x) as a 

polynomial in x of degree n.  

   Let the polynomial is represented by  

f(x) = a0(x–x1)(x – x2)……(x – xn) + a1(x – x0)(x – x2)…….(x – xn)  + a2(x – x0)(x – x1)(x – 

x3)…….(x – xn) + …..… + an(x – x0)(x – x1)….…(x – xn–1)         …(3) 

   Each term in (3) being a product of n factors in x of degree n, putting x = x0 in (3) we obtain  

                                      f(x0) = a0(x0 – x1)(x0 – x2)………………(x0 – xn) 

or                                    0
0

0 1 0 2 0

( )

( )( )........( )n

f x
a

x x x x x x


  
  

Putting x = x2 in (3) we obtain  

                                        f(x1) = a1(x1- x0)(x1 – x2)………………(x1 – xn) 

or                                         1
1

1 0 1 2 1

( )

( )( )........( )n

f x
a

x x x x x x


  
 

  Similarly putting    x = x2, x = x3, x = xn in (3) we obtain 

                                            2
2

2 0 2 1 2 3 2

( )

( )( )( )........( )n

f x
a

x x x x x x x x


   
 

                                                      ……        …….         …….. 

and                                    
0 1 2 1

( )

( )( )( )........( )

n
n

n n n n n

f x
a

x x x x x x x x 


   

 

Substituting the values of a0, a1, ..., an in (3) we get 

y = f(x) = 1 2
0

0 1 0 2 0 3 0

( )( ).......( )
( )

( )( )( )........( )

n

n

x x x x x x
f x

x x x x x x x x

  

   
 +  

0 2
1

1 0 1 2 1 3 1

( )( ).......( )
( )

( )( )( )........( )

n

n

x x x x x x
f x

x x x x x x x x

  

   
 + ……………+

0 1 1

0 1 2 1

( )( ).......( )
( )

( )( )( )........( )

n
n

n n n n n

x x x x x x
f x

x x x x x x x x





  

   
                        …(4) 

The formula given by (4) is known as Lagrange’s interpolation formula. 



Example 1.11 Given the values 

𝑥: 5 7 11 13 17 

𝑓(𝑥): 150 392 1452 2366 5202 

 

evaluate 𝑓(9), using Lagrange's formula 

Solution:  Here 𝑥0 = 5, 𝑥1 = 7, 𝑥2 = 11, 𝑥3 = 13, 𝑥4 = 17 

and 𝑦0 = 150, 𝑦1 = 392, 𝑦2 = 1452, 𝑦3 = 2366, 𝑦4 = 5202. 

Putting 𝑥 = 9 and substituting the above values in Lagrange's formula, we get 

𝑓(9) =
(9 − 7)(9 − 11)(9 − 13)(9 − 17)

(5 − 7)(5 − 11)(5 − 13)(5 − 17)
× 150 +

(9 − 5)(9 − 11)(9 − 13)(9 − 17)

(7 − 5)(7 − 11)(7 − 13)(7 − 17)
× 392

 +
(9 − 5)(9 − 7)(9 − 13)(9 − 17)

(11 − 5)(11 − 7)(11 − 13)(11 − 17)
× 1452

 +
(9 − 5)(9 − 7)(9 − 11)(9 − 17)

(13 − 5)(13 − 7)(13 − 11)(13 − 17)
× 2366

 +
(9 − 5)(9 − 7)(9 − 11)(9 − 13)

(17 − 5)(17 − 7)(17 − 11)(17 − 13)
× 5202

 = −
50

3
+

3136

15
+

3872

3
+

2366

3
+

578

5
= 810

 

Example 1.12  Find the polynomial 𝑓(𝑥) by using Lagrange's formula and hence find 𝑓(3) for 

𝑥: 0 1 2 5 

𝑓(𝑥): 2 3 12 147 

 

Solution:  Here 𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 5 

and 𝑦0 = 2, y1 = 3, y2 = 12, y3 = 147. 

Lagrange's formula is 



𝑦 =
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)(𝑥0 − 𝑥3)
𝑦0 +

(𝑥 − 𝑥0)(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
𝑦1

 +
(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥3)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
𝑦2 +

(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥3 − 𝑥0)(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
𝑦3

=
(𝑥 − 1)(𝑥 − 2)(𝑥 − 5)

(0 − 1)(0 − 2)(0 − 5)
(2) +

(𝑥 − 0)(𝑥 − 2)(𝑥 − 5)

(1 − 0)(1 − 2)(1 − 5)
(3)

 +
(𝑥 − 0)(𝑥 − 1)(𝑥 − 5)

(2 − 0)(2 − 1)(2 − 5)
(12) +

(𝑥 − 0)(𝑥 − 1)(𝑥 − 2)

(5 − 0)(5 − 1)(5 − 2)
(147)

 

Hence 𝑓(𝑥) = 𝑥3 + 𝑥2 − 𝑥 + 2 

∴  𝑓(3) = 27 + 9 − 3 + 2 = 35 

1.3.1 HERMITE'S INTERPOLATION FORMULA 

This formula is similar to Lagrange's interpolation formula. In Lagrange's method, the 

interpolating polynomial 𝑃(𝑥) agrees with 𝑦(𝑥) at the points 𝑥0, 𝑥1, … … , 𝑥𝑛, whereas in 

Hermite's method 𝑃(𝑥) and 𝑦(𝑥) as well as 𝑃′(𝑥) and 𝑦′(𝑥) coincide at the (𝑛 + 1) points, i.e., 

            𝑃(𝑥𝑖) = 𝑦(𝑥𝑖) and 𝑃′(𝑥𝑖) = 𝑦′(𝑥𝑖); 𝑖 = 0,1, … , 𝑛                      … (5) 

As there are 2(𝑛 + 1) conditions in (1), (2𝑛 + 2) coefficients are to be determined. 

Therefore 𝑃(𝑥) is a polynomial of degree (2𝑛 + 1). 

We assume that 𝑃(𝑥) is expressible in the form 

                         𝑝(𝑥) = ∑  𝑛
𝑖=0 𝑈𝑖(𝑥)𝑦(𝑥𝑖) + ∑  𝑛

𝑖=0 𝑉𝑖(𝑥)𝑦′(𝑥𝑖)                 … (6) 

where 𝑈𝑖(𝑥) and 𝑉𝑖(𝑥) are polynomials in 𝑥 of degree (2𝑛 + 1). These are to be determined. 

Using conditions (5), we get 

             𝑈𝑖(𝑥𝑗) = {
0 when 𝑖 ≠ 𝑗; 𝑉𝑖(𝑥𝑗) = 0 for all 𝑖

1 when 𝑖 = 𝑗

              𝑈𝑖
′(𝑥𝑗) = 0 for all 𝑖; V𝑖(𝑥𝑗) = {

0 when 𝑖 ≠ 𝑗
1 when 𝑖 = 𝑗

}

                        … (7) 

We now write 



𝑈𝑖(𝑥)  = 𝐴𝑖(𝑥)[𝐿𝑖(𝑥)]2; 𝑉𝑖(𝑥) = 𝐵𝑖(𝑥)[𝐿𝑖(𝑥)]2

 where  𝐿𝑖(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋯ (𝑥 − 𝑥𝑖−1)(𝑥 − 𝑥𝑖+1) ⋯ (𝑥 − 𝑥𝑛)

(𝑥𝑖 − 𝑥0)(𝑥𝑖 − 𝑥1) ⋯ (𝑥𝑖 − 𝑥𝑖−1)(𝑥𝑖 − 𝑥𝑖+1) ⋯ (𝑥𝑖 − 𝑥𝑛)

 

Since [𝐿𝑖(𝑥)]2 is of degree 2𝑛 and 𝑈𝑖(𝑥), 𝑉𝑖(𝑥) are of degree (2𝑛 + 1), therefore 𝐴𝑖(𝑥) and 

𝐵𝑖(𝑥) are both linear functions 

∴ We can write 

       
                                         𝑈𝑖(𝑥) = (𝑎𝑖 + 𝑏𝑖𝑥)[𝐿𝑖(𝑥)]2

                                          𝑉𝑖(𝑥) = (𝑐𝑖 + 𝑑𝑖𝑥)[𝐿𝑖(𝑥)]2}                                 … (8) 

Using conditions (7) in (8), we get 𝑎𝑖 + 𝑏𝑖𝑥 = 1, 𝑐𝑖 + 𝑑𝑖𝑥 = 0 and 

𝑏𝑖 + 2𝐿𝑖
′ (𝑥𝑖) = 0, 𝑑𝑖 = 1} 

Solving these equations, we obtain 

𝑏𝑖 = −2𝐿𝑖
′ (𝑥𝑖), 𝑎𝑖 = 1 + 2𝑥𝑖𝐿𝑖

′ (𝑥𝑖)

𝑑𝑖 = 1 and 𝑐𝑖 = −𝑥𝑖
} 

Now putting the above values in (8), we get 

𝑈𝑖(𝑥)  = [1 + 2𝑥𝑖𝐿𝑖
′ (𝑥𝑖) − 2𝑥𝐿𝑖

′ (𝑥𝑖)][𝐿𝑖(𝑥)]2

 = [1 − 2(𝑥 − 𝑥𝑖)𝐿𝑖
′ (𝑥𝑖)][𝐿𝑖(𝑥)]2  

and 𝑉𝑖(𝑥) = (𝑥 − 𝑥𝑖)[𝐿𝑖(𝑥)]2 

Finally substituting 𝑈𝑖(𝑥) and 𝑉𝑖(𝑥) in (6), we obtain 

𝑝(𝑥) = ∑  

𝑛

𝑖=0

[1 − 2(𝑥 − 𝑥𝑖)Li (𝑥𝑖)][𝐿𝑖(𝑥)]2𝑦(𝑥𝑖) + ∑  

𝑛

𝑖=0

(𝑥 − 𝑥𝑖)[Li (𝑥)]2𝑦′(𝑥𝑖) 

This is the required Hermite's interpolation formula which is sometimes known as the osculating 

interpolation formula. 

Example 1.13  For the following data: 



𝑥: 𝑓(𝑥) 𝑓′(𝑥) 

0.5 4 −16 

1 1 −2 

 

Find Hermite’s interpolating polynomial. 

Solution:  We have 𝑥0 = 0.5, 𝑥1 = 1, 𝑦(𝑥0) = 4, 𝑦(𝑥1) = 1; 𝑦′(𝑥0) = −16, 𝑦′(𝑥1) = −2 

Also  𝐿𝑖(𝑥0) =
(𝑥−𝑥0)

(𝑥𝑖−𝑥0)
=

𝑥−1

−0.5
= −2(𝑥 − 1); 𝐿𝑖

′ (𝑥0) = −2 

𝐿𝑖(𝑥1) =
(𝑥 − 𝑥0)

(𝑥𝑖 − 𝑥0)
=

𝑥 − 0.5

1 − 0.5
= 2𝑥 − 1; 𝐿𝑖

′ (𝑥1) = 2 

Hermite's interpolation formula, in this case, is 

𝑃(𝑥) = [1 − 2(𝑥 − 𝑥0)𝐿′(𝑥0)][𝐿(𝑥0)]2𝑦(𝑥0) + (𝑥 − 𝑥0)[𝐿(𝑥0)]2𝑦′(𝑥0)

 +[1 − 2(𝑥 − 𝑥1)𝐿′(𝑥1)][𝐿(𝑥1)]2𝑦(𝑥1) + (𝑥 − 𝑥1)[𝐿(𝑥1)]2𝑦′(𝑥1)

 = [1 − 2(𝑥 − 0.5)(−2)][−2(𝑥 − 1)]2(4) + (𝑥 − 0.5)[−2(𝑥 − 1)]2(−16)

 +[1 − 2(𝑥 − 1)(2)](2𝑥 − 1)2(1) + (𝑥 − 1)(2𝑥 − 1)2(−2)

 = 16[1 + 4(𝑥 − 0.5](𝑥2 − 2𝑥 + 1) − 164(𝑥 − 0.5)(𝑥2 − 2𝑥 + 1)

 +[1 − 4(𝑥 − 1)](4𝑥2 − 4𝑥 + 1) − 2(𝑥 − 1)(4𝑥2 − 4𝑥 + 1)

 

Hence 𝑃(𝑥) = −24𝑥3 + 324𝑥2 − 130𝑥 + 23 

Example 1.14 Determine the Hermite polynomial of degree 4 which fits the following data: 

𝑥: 0 1 2 

𝑦(𝑥): 0 1 0 

𝑦′(𝑥): 0 0 0 

 

Solution: Here 𝑥0 = 0, 𝑥1 = 1, 𝑥2 = 2, 𝑦(𝑥0) = 0, 𝑦(𝑥1) = 1, 𝑦(𝑥2) = 0 and 𝑦′(𝑥0) = 0, 

𝑦′(𝑥1) = 0, 𝑦′(𝑥2) = 0. Hermite's formula in this case is 



𝑃(𝑥)  = [1 − 2𝐿0
′ (𝑥0)(𝑥 − 𝑥0)][𝐿0(𝑥)]2𝑦(𝑥0) + (𝑥 − 𝑥0)[𝐿0(𝑥)]2𝑦′(𝑥0)

 +[1 − 2𝐿1
′ (𝑥1)(𝑥 − 𝑥1)][𝐿1(𝑥)]2 × 𝑦(𝑥1) + (𝑥 − 𝑥1)[𝐿1(𝑥)]2𝑦′(𝑥1)

 +[1 − 2𝐿2
′ (𝑥2)(𝑥 − 𝑥2)] × [𝐿2(𝑥)]2𝑦(𝑥2) + (𝑥 − 𝑥2)[𝐿2(𝑥)]2𝑦′(𝑥2)

 

Substituting the above values in 𝑃(𝑥), we get 

𝑃(𝑥) = [1 − 2𝐿1
′ (𝑥1)(𝑥 − 1)][𝐿1(𝑥)]2 

Where 𝐿1(𝑥) =
(𝑥−𝑥0)(𝑥−𝑥2)

(𝑥1−𝑥2)(𝑥1−𝑥2)
= 2𝑥 − 𝑥2 and 𝐿1 ′(𝑥1) = (2 − 2𝑥)𝑥−1 = 0 Hence 𝑝(𝑥) =

[𝐿1(𝑥)]2 = (2𝑥 − 𝑥2)2. 

Example 1.15 Using Hermite's interpolation, find the value of 𝑓(−0.5) from the following 

𝑥: −1 0 1 

𝑓(𝑥): 1 1 3 

𝑓′(𝑥): −5 1 7 

 

Solution:  Here 𝑥0 = −1, 𝑥1 = 0, 𝑥2 = 1; 𝑓(𝑥0) = 1, 𝑓(𝑥1) = 1, 𝑓(𝑥2) = 3 and 𝑓′(𝑥0) = −5, 

𝑓′(𝑥1) = 1, 𝑓′(𝑥2) = 7. 

Hermite's formula in this case is 

𝑃(𝑥) = 𝑈0𝑓(𝑥0) + 𝑉0𝑓′(𝑥0) + 𝑈1𝑓(𝑥1) + 𝑉1𝑓′(𝑥1) + 𝑈2𝑓(𝑥2) + 𝑉2𝑓′(𝑥2) 

where 𝑈0 = [1 − 2𝐿0
′ (𝑥0)(𝑥 − 𝑥0)][𝐿0(𝑥)]2, 𝑉0 = (𝑥 − 𝑥0)[𝐿0(𝑥)]2 

𝑈1 = [1 − 2𝐿1
′ (𝑥1)(𝑥 − 𝑥1)][𝐿1(𝑥)]2, 𝑉1 = (𝑥 − 𝑥1)[𝐿1(𝑥)]2 

𝑈2 = [1 − 2𝐿2
′ (𝑥2)(𝑥 − 𝑥2)][𝐿2(𝑥2)]2, 𝑉2 = (𝑥 − 𝑥2)[𝐿2(𝑥)]2 

and 𝐿0(𝑥) =
(𝑥−𝑥1)(𝑥−𝑥2)

(𝑥0−𝑥1)(𝑥0−𝑥2)
=

𝑥(𝑥−1)

2
, 𝐿0

′ (𝑥) = 𝑥 −
1

2
 



𝐿1(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥2)

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
= 1 − 𝑥2 = 𝐿1

′ (𝑥) = −2𝑥

𝐿2(𝑥) =
(𝑥 − 𝑥0)(𝑥 − 𝑥1)

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)
=

𝑥(𝑥 + 1)

2
= 𝐿2

′ (𝑥) = 𝑥 +
1

2

 

Substituting the values of 𝐿0, 𝐿0
′ ; 𝐿1, 𝐿1

′  and 𝐿2, 𝐿2
′ , we get 

𝑈0 = [1 + 3(𝑥 + 1)]
𝑥2(𝑥 − 1)2

4
=

1

4
(3𝑥5 − 2𝑥4 − 5𝑥3 + 4𝑥2)

𝑉0 = (𝑥 + 1)
𝑥2(𝑥 − 1)2

4
=

1

4
(𝑥5 − 𝑥4 − 𝑥3 + 𝑥2)

𝑈1 = 𝑥4 − 2𝑥2 + 1, 𝑉1 = 𝑥5 − 2𝑥3 + 𝑥

𝑈2 =
1

4
(3𝑥5 − 2𝑥4 − 5𝑥3 + 4𝑥2), 𝑉2 =

1

4
(𝑥5 − 𝑥4 − 𝑥3 + 𝑥2)

 

Substituting the values of 𝑈0,, 𝑉0, 𝑈1, 𝑉1; 𝑈2, 𝑉2 in (𝑖), we get 

𝑃(𝑥) =
1

4
(3𝑥5 − 2𝑥4 − 5𝑥3 + 4𝑥2)(1) +

1

4
(𝑥5 − 𝑥4 − 𝑥3 + 𝑥2)

 +(𝑥4 − 2𝑥2 + 1)(1) + (𝑥5 − 2𝑥3 + 𝑥)(1)

 −
1

4
(3𝑥5 − 2𝑥4 − 5𝑥3 + 4𝑥2)(3) +

1

4
(𝑥5 − 𝑥4 − 𝑥3 + 𝑥2)(7)

= 2𝑥4 − 𝑥2 + 𝑥 + 1

 

Hence 𝑓(−0.5) = 2(−0.5)4 − (−0.5)2 + (−0.5) + 1 = 0.375 

1.4. DIVIDED DIFFERENCES 

Lagrange's formula has the drawback that if another interpolation value were inserted, then the 

interpolation coefficients are required to be recalculated. This labor of recomputing the 

interpolation coefficients is saved by using Newton's general interpolation formula which 

employs what is called "divided differences." Before deriving this formula, we shall first define 

these differences. 

If (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯ be given points, then the first divided difference for the 

arguments 𝑥0, 𝑥1 is defined by the relation [𝑥0, 𝑥1] =
𝑦1−𝑦0

𝑥1−𝑥0
 

Similarly [𝑥1, 𝑥2] or Δ𝑦𝑥2
=

𝑦2−𝑦1

𝑥2−𝑥1
 and [𝑥2, 𝑥3] =

𝑦3−𝑦2

𝑥3−𝑥2
 



The second divided difference for 𝑥0, 𝑥1, 𝑥2 is defined as [𝑥0, 𝑥1, 𝑥2] =
[𝑥1,𝑥2]−[𝑥0,𝑥1]

𝑥2−𝑥0
 

The third divided difference for 𝑥0, 𝑥1, 𝑥2, 𝑥3 is defined as [𝑥0, 𝑥1, 𝑥2, 𝑥3] =
[𝑥1,𝑥2,𝑥3]−[𝑥0,𝑥1,𝑥2]

𝑥2−𝑥0
 

PROPERTIES OF DIVIDED DIFFERENCES 

I. The divided differences are symmetrical in their arguments, i.e, independent of the order of the 

arguments. For it is easy to write 

[𝑥0, 𝑥1]  =
𝑦0

𝑥0 − 𝑥1
+

𝑦1

𝑥1 − 𝑥0
= [𝑥1, 𝑥0], [𝑥0, 𝑥1, 𝑥2]

 =
𝑦0

(𝑥0 − 𝑥1)(𝑥0 − 𝑥2)
+

𝑦1

(𝑥1 − 𝑥0)(𝑥1 − 𝑥2)
+

𝑦2

(𝑥2 − 𝑥0)(𝑥2 − 𝑥1)

 = [𝑥1, 𝑥2, 𝑥0] or [𝑥2,𝑥0, 𝑥1] and so on 

 

II. The nth divided differences of a polynomial of the nth degree are constant. 

Let the arguments be equally spaced so that 

𝑥1 − 𝑥0 = 𝑥2 − 𝑥1 = ⋯ = 𝑥𝑛 − 𝑥𝑛−1 = ℎ. Then  

[𝑥0, 𝑥1]  =
𝑦1 − 𝑦0

𝑥1 − 𝑥0
=

Δ𝑦0

ℎ

[𝑥0, 𝑥1, 𝑥2]  =
[𝑥1, 𝑥2] − [𝑥0 − 𝑥1]

𝑥2 − 𝑥0
=

1

2ℎ
{
Δ𝑦1

ℎ
−

Δ𝑦0

ℎ
}

 =
1

2! ℎ2
Δ2𝑦0 and in general, [𝑥0, 𝑥1, 𝑥2, … … , 𝑥𝑛] =

1

𝑛! ℎ𝑛
Δ𝑛𝑦0

 

If the tabulated function is a 𝑛th degree polynomial, then Δ𝑛𝑦0 will be constant. Hence the 𝑛th 

divided differences will also be constant. 

1.4.0 NEWTON'S DIVIDED DIFFERENCE FORMULA 

Let 𝑦0, 𝑦1, ⋯ , 𝑦𝑛 be the values of 𝑦 = 𝑓(𝑥) corresponding to the arguments 𝑥0, 𝑥1, ⋯ , 𝑥𝑛. Then 

from the definition of divided differences, we have 

[𝑥, 𝑥0] =
𝑦 − 𝑦0

𝑥 − 𝑥0
 



So that 

                                                     𝑦 = 𝑦0 + (𝑥 − 𝑥0)[𝑥, 𝑥0]                  … (9) 

Again [𝑥, 𝑥0, 𝑥1] =
[𝑥,𝑥0]−[𝑥0,𝑥1]

𝑥−𝑥1
 

which gives [𝑥, 𝑥0] = [𝑥0, 𝑥1] + (𝑥 − 𝑥1)[𝑥, 𝑥0, 𝑥1] Substituting this value of [𝑥, 𝑥0] in (9), we 

get 

                       𝑦 = 𝑦0 + (𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥, 𝑥0, 𝑥1]                              … (10) 

Also  [𝑥, 𝑥0, 𝑥1, 𝑥2] =
[𝑥⋅𝑥0,𝑥1]−[𝑥⋅𝑥0,𝑥2]

𝑥−𝑥2
 

which gives [𝑥, 𝑥0, 𝑥1] = [𝑥0, 𝑥1, 𝑥2] + (𝑥 − 𝑥2)[𝑥, 𝑥0, 𝑥1, 𝑥2] 

Substituting this value of [𝑥, 𝑥0, 𝑥1] in (10), we obtain 

𝑦 = 𝑦0  +(𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2]

 +(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥, 𝑥0, 𝑥1, 𝑥2]
 

Proceeding in this manner, we get 

𝑦 = 𝑦0  +(𝑥 − 𝑥0)[𝑥0, 𝑥1] + (𝑥 − 𝑥0)(𝑥 − 𝑥1)[𝑥0, 𝑥1, 𝑥2]

 +(𝑥 − 𝑥0)(𝑥 − 𝑥1) ⋯ (𝑥 − 𝑥𝑛)[𝑥, 𝑥0, 𝑥1, ⋯ 𝑥𝑛]

 +(𝑥 − 𝑥0)(𝑥 − 𝑥1)(𝑥 − 𝑥2)[𝑥, 𝑥0, 𝑥1, 𝑥2] + ⋯

 

which is called Newton's general interpolation formula with divided differences. 

RELATION BETWEEN DIVIDED AND FORWARD DIFFERENCES 

 If (𝑥0, 𝑦0), (𝑥1, 𝑦1), (𝑥2, 𝑦2), ⋯  be the given points, then 

 

 [𝑥0, 𝑥1] =
𝑦1 − 𝑦0

𝑥1 − 𝑥0

 

Also  Δ𝑦0 = 𝑦1 − 𝑦0 

If 𝑥0, 𝑥1, 𝑥2, ⋯ are equispaced, then 𝑥1 − 𝑥0 = ℎ, so that 



[𝑥0, 𝑥1] =
Δ𝑦0

ℎ
 

Similarly  [𝑥1, 𝑥2] =
Δ𝑦1

ℎ
 

Now  [𝑥0, 𝑥1, 𝑥2] =
[𝑥1,𝑥2]−[𝑥0,𝑥1]

𝑥2−𝑥0
 

 =
Δ𝑦1/ℎ − Δ𝑦0/ℎ

2ℎ

 =
Δ𝑦1 − Δ𝑦0

2ℎ2

 

[∵ 𝑥2 − 𝑥0 = 2ℎ] 

Thus  [𝑥0, 𝑥1, 𝑥2] =
Δ2𝑦0

2!ℎ2  

Similarly 

Thus

 [𝑥0, 𝑥1, 𝑥2] =
Δ2𝑦1

2! ℎ2

 ∴ [𝑥0, 𝑥1, 𝑥2, 𝑥3] =
Δ2𝑦1/2ℎ2 − Δ2𝑦0/2ℎ2

𝑥3 − 𝑥0
=

Δ2𝑦1 − Δ2𝑦0

2ℎ2(3)
 [∵ 𝑥3 − 𝑥0 = 3ℎ]

  [𝑥0, 𝑥1, 𝑥2, 𝑥3] =
Δ3𝑦0

3! ℎ3

 In general, [𝑥0, 𝑥1, ⋯ 𝑥𝑛] =
Δ𝑛𝑦0

𝑛! ℎ𝑛

This is the relation between divided and forward differences. 

 

Example 1.16 Given the values 

𝑥: 5 7 11 13 17 

𝑓(𝑥): 150 392 1452 2366 5202 

 

evaluate 𝑓(9), using Newton's divided difference formula 

Solution:  The divided differences table is 



𝑥 𝑦 First Diff Second Diff Third Diff 

5 150 
392 − 150

7 − 5
= 121   

7 392  
265 − 121

11 − 5
= 24  

11 1452 
1452 − 392

11 − 7
= 265  

32 − 24

13 − 5
= 1 

13 2366 
2366 − 1452

13 − 11
= 457 

457 − 265

13 − 7
= 32  

   
709 − 457

17 − 11
= 42  

17 5202    

 

Taking 𝑥 = 9 in Newton's divided difference formula, we obtain 

𝑓(9)  = 150 + (9 − 5) × 121 + (9 − 5)(9 − 7) × 24 + (9 − 5)(9 − 7)(9 − 11) × 1

 = 150 + 484 + 192 − 16 = 810.
 

Example 1.17  Using Newton's divided differences formula, evaluate 𝑓(8) and 𝑓(15) given: 

𝑥: 4 5 7 10 11 13 

𝑦 = 𝑓(𝑥): 48 100 294 900 1210 2028 

 

Solution:  The divided differences table is 

𝑥 𝑓(𝑥) First Diff Second Diff Third Diff Fourth Diff 

4 48    0 

  52    

5 100  15   



  97  1  

7 294  21  0 

  202  1  

10 900  27  0 

  310  1  

11 1210  33   

  409    

13 2028     

 

Taking 𝑥 = 8 in Newton's divided difference formula, we obtain 

𝑓(8)  = 48 + (8 − 4)52 + (8 − 4)(8 − 5)15 + (8 − 4)(8 − 5)(8 − 7)1

 = 448.
 

Similarly 𝑓(15) = 3150. 

1.4.1 INTERPOLATION BY ITERATION 

We now describe the method due to Aitken, which has the advantage of being very easily 

programmed for a digital computer. Suppose we are given a set of (𝑛 + 1) data points 

(𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2,3, ⋯ 𝑛 of 𝑦 = 𝑓(𝑥), where the value of 𝑥 need not necessarily be equally 

spaced. Then to find the value of 𝑦 corresponding to any given value of 𝑥, we proceed iteratively 

as follows: We obtain a first approximation to 𝑦 by considering the first two points only. Then 

obtain its second approximation by considering the first there points and so on, The different 

interpolations are polynomials denoted by Δ(𝑥) with suitable subscripts then at the first stage of 

approximation we have 

Δ01(𝑥) = 𝑦0 + (𝑥 − 𝑥0)[x0, 𝑥1] =
1

𝑥1 − 𝑥0
|
y0 x0 − 𝑥
𝑦1 x1 − 𝑥| 

Similarly, we can form Δ02(𝑥), Δ03(𝑥), ⋯ 

Next Δ012 is formed by considering the first three points as 



Δ012(𝑥) =
1

x2 − 𝑥1
|
Δ01 x1 − 𝑥
Δ02 x2 − 𝑥

| 

and similarly Δ013(𝑥), Δ014(𝑥), etc are formed. At the nth stage of approximation, we obtain 

Δ012 … 𝑛(𝑥) =
1

𝑥𝑛 − 𝑥𝑛−1
|
Δ0123⋯𝑛−1

(𝑥)
𝑥𝑛 − 𝑥

Δ0123⋯𝑛−2𝑛
(𝑥)

𝑥𝑛 − 𝑥
| 

the computation can be conveniently arranged in the table below 

Table 1: Aitken's scheme 

𝑥     y    

𝑥0 𝑦0    

  Δ01(𝑥)   

𝑥1 𝑦1              Δ012(𝑥)   Δ01(𝑥)  

  Δ02(𝑥)       Δ0123(𝑥)  

𝑥2 𝑦2 
                  

                    Δ013(𝑥) 
 

      Δ01234(𝑥) 

  Δ03(𝑥)       Δ0124(𝑥)  

𝑥3 𝑦3                     Δ014(𝑥)   

  Δ04(𝑥)   

𝑥4 𝑦4    

 

A modification of this scheme suggested by Neville is given in Table 2 which is particularly 

suited for iterated inverse interpolation 

Table 2: Neville's scheme 

𝑥 𝑦     

𝑥0 𝑦0     

  Δ01(𝑥)    

𝑥1 𝑦1  Δ012(𝑥)   

  Δ12(𝑥)  Δ0123(𝑥)  



𝑥2 𝑦2  Δ123(𝑥)  Δ1234(𝑥) 

  Δ23(𝑥)  Δ1234(𝑥)  

𝑥3 𝑦3  Δ124(𝑥)   

  Δ24(𝑥)    

𝑥4 𝑦4     

 

An obvious advance of Aitken's method is that it gives a good idea of the accuracy of the result 

at any stage. 

Example 1.18 Use Aitken's method to complete log10 301 from the data 

𝑥 300 304 305 307 

log10 𝑥 2.4771 2.4829 2.4843 2.4871 

 

Also compare the result with those of Lagrange's and Newton's divided difference formulae. 

Solution:  Aitken's scheme is given by 

𝑥 log10 𝑥    

300 2.4771    

  2.47855   

304 2.4829  2.47858  

  2.47854  2.47860 

2305 2.4843  2..47857  

  2.47854   

307 2.4871    

 

Hence log10 301 = 2.4786 

Using Lagrange's interpolation formula, we get 



log10 301 =
−3(−4)(−6)

−4(−5)(−7)
(2.4771) +

1(−4)(−6)

4(−1)(−3)
(2.4829) +

1(−3)(−6)

5.1(−2)
(2.4843)

+
−(−3)(−4)

7(3)(2)
(2.4871) = 1.2739 + 4.9658 − 4.471 + 0.7106 = 2.4786

 

which is same as above. The divided difference table is 

𝑥 log10 𝑥 1st 2nd 

300 2.4771   

  0.00145  

304 2.4829  0.00001 

  0.00140  

305 2.4843  0.00000 

  0.00140  

307 2.4871   

 

Using Netwon's divided formula, we get log10 301 = 2.4771 + 0.00145 + (−3)(− 

0.00001) = 2.4786, which is again the same as obtain above. It is clear that the arithmetic 

method is simpler than Lagrange's method. The Aitken's scheme has the advantage to given 

better estimate at each stage in addition the simplest arithmetic. 

1.5 DOUBLE INTERPOLATION 

So far, we have derived interpolation formulae to approximate a function of a single variable. In 

the case of functions, of two variables, we interpolate with respect to the first variable keeping 

the other variable constant. Then interpolate with respect to the second variable. Similarly, we 

can extend the said procedure for functions of three variables. 

1.6 INVERSE INTERPOLATION 

So far, given a set of values of 𝑥 and 𝑦, we have been finding the value of 𝑦 corresponding to a 

certain value of 𝑥. On the other hand, the process of estimating the value of 𝑥 for a value of 𝑦 

(which is not in the table) is called inverse interpolation. When the values of 𝑥 are unequally 



spaced Lagrange's method is used and when the values of 𝑥 are equally spaced, the Iterative 

method should be employed. 

1.6.0 LAGRANGE'S METHOD 

This procedure is similar to Lagrange's interpolation formula (4), the only difference being that 𝑥 

is assumed to be expressible as a polynomial in 𝑦. 

Lagrange's formula is merely a relation between two variables either of which may be taken as 

the independent variable. Therefore, by interchanging 𝑥 and 𝑦 in Lagrange's formula, we obtain 

                                            𝑥 =
(𝑦−𝑦1)(𝑦−𝑦2)⋯(𝑦−𝑦𝑛)

(𝑦−𝑦1)(𝑦−𝑦2)⋯(𝑦−𝑦𝑛)
𝑥0  +

(𝑦−𝑦0)(𝑦−𝑦2)⋯(𝑦−𝑦𝑛)

(𝑦1−𝑦0)(𝑦1−𝑦2)⋯(𝑦1−𝑦𝑛)
𝑥1

 +
(𝑦−𝑦0)(𝑦−𝑦1)⋯(𝑦−𝑦𝑛−1)

(𝑦𝑛−𝑦0)(𝑦𝑛−𝑦1)⋯(𝑦𝑛−𝑦𝑛−1)
𝑥n

       … (11) 

Example 1.19  The following table gives the values of 𝑥 and 𝑦 

𝑥: 1.2 2.1 2.8 4.1 4.9 6.2 

𝑦: 4.2 6.8 9.8 13.4 15.5 19.6 

 

Find the value of 𝑥 corresponding to 𝑦 = 12, using Lagrange's technique. 

Solution:  Here 𝑥0 = 1.2, 𝑥1 = 2.1, 𝑥2 = 2.8, 𝑥3 = 4.1, 𝑥4 = 4.9, 𝑥5 = 6.2 and 𝑦0 = 4.2, 𝑦1 =

6.8, 𝑦2 = 9.8, 𝑦3 = 13.4, 𝑦4 = 15.5, 𝑦5 = 19.6. 

Taking 𝑦 = 12, the above formula (11) gives 



𝑥 =
(12 − 6.8)(12 − 9.8)(12 − 13.4)(12 − 15.5)(12 − 19.6)

(4.2 − 6.8)(4.2 − 9.8)(4.2 − 13.4)(4.2 − 15.5)(4.2 − 19.6)
× 1.2

 +
(12 − 4.2)(12 − 9.8)(12 − 13.4)(12 − 15.5)(12 − 19.6)

(6.8 − 4.2)(6.8 − 9.8)(6.8 − 13.4)(6.8 − 15.5)(6.8 − 19.6)
× 2.1

 +
(12 − 4.2)(12 − 6.8)(12 − 13.4)(12 − 15.5)(12 − 19.6)

(9.8 − 4.2)(9.8 − 6.8)(9.8 − 13.4)(9.8 − 15.5)(9.8 − 19.6)
× 2.8

 +
(12 − 4.2)(12 − 6.8)(12 − 9.8)(12 − 15.5)(12 − 19.6)

(13.4 − 4.2)(13.4 − 6.8)(13.4 − 9.8)(13.4 − 15.5)(13.4 − 19.6)
× 4.1

 +
(12 − 4.2)(12 − 6.8)(12 − 9.8)(12 − 13.4)(12 − 19.6)

(15.5 − 4.2)(15.5 − 6.8)(15.5 − 9.8)(15.5 − 13.4)(15.5 − 19.6)
× 4.9

 +
(12 − 4.2)(12 − 6.8)(12 − 9.8)(12 − 13.4)(12 − 15.5)

(19.6 − 4.2)(19.6 − 6.8)(19.6 − 9.8)(19.6 − 13.4)(19.6 − 15.5)
× 6.2

= 0.022 − 0.234 + 1.252 + 3.419 − 0.964 + 0.055 = 3.55

 

Example 1.20  Apply Lagrange's formula inversely to obtain a root of the equation 𝑓(𝑥) = 0, 

given that 𝑓(30) = −30, 𝑓(34) = −13, 𝑓(38) = 3, and 𝑓′(42) = 18. 

Solution:
 Here 𝑥0 = 30, 𝑥1 = 34, 𝑥2 = 38, 𝑥3 = 42

 and 𝑦0 = −30, 𝑦1 = −13, 𝑦2 = 3, 𝑦3 = 18
 

It is required to find 𝑥 corresponding to 𝑦 = 𝑓(𝑥) = 0. 

Taking 𝑦 = 0, Lagrange's formula gives 

𝑥 =
(𝑦 − 𝑦1)(𝑦 − 𝑦2)(𝑦 − 𝑦3)

(𝑦0 − 𝑦1)(𝑦0 − 𝑦2)(𝑦0 − 𝑦3)
𝑥0 +

(𝑦 − 𝑦0)(𝑦 − 𝑦2)(𝑦 − 𝑦3)

(𝑦1 − 𝑦0)(𝑦1 − 𝑦2) ⋅ (𝑦1 − 𝑦3)
𝑥1

 +
(𝑦 − 𝑦0)(𝑦 − 𝑦1) ⋅ (𝑦 − 𝑦3)

(𝑦2 − 𝑦0)(𝑦2 − 𝑦1)(𝑦2 − 𝑦3)
𝑥2 +

(𝑦 − 𝑦0)(𝑦 − 𝑦1)(𝑦 − 𝑦2)

(𝑦3 − 𝑦0)(𝑦3 − 𝑦1)(𝑦3 − 𝑦2)
𝑥3

=
13(−3)(−18)

(−17)(−33)(−48)
× 30 +

30(−3)(−18)

17(−16)(−31)
× 34

 +
30(13)(−18)

33(16)(−15)
× 38 +

30(13)(−3)

48(31)(15)
× 42

=  −0.782 + 6.532 + 33.682 − 2.202 = 37.23.

 

Hence the desired root of 𝑓(𝑥) = 0 is 37.23. 

1.6.1 ITERATIVE METHOD 

Newton's forward interpolation formula is 



𝑦𝑝 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2!
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3𝑦0 + ⋯ 

From this, we get 

                         𝑝 =
1

Δ𝑦0
[𝑦𝑝 − 𝑦0 +

𝑝(𝑝−1)

2!
Δ2𝑦0 +

𝑝(𝑝−1)(𝑝−2)

3!
Δ3𝑦0 + ⋯ ]           … (12) 

Neglecting the second and higher differences, we obtain the first approximation to 𝑝 as 

𝑝1 = (𝑦𝑝 − 𝑦0)/Δ𝑦0 

To find the second approximation, retaining the term with second differences in (12) and 

replacing 𝑝 by 𝑝1, we get 

𝑝2 =
1

Δ𝑦0
[𝑦𝑝 − 𝑦0 +

𝑝1(𝑝1 − 1)

2!
Δ2𝑦0] 

To find the third approximation, retaining the term with third differences in (12) and replacing 

every 𝑝 by 𝑝2, we have 

𝑝3 =
1

Δ𝑦0
[𝑦𝑝 − 𝑦0 +

𝑝2(𝑝2 − 1)

2!
Δ2𝑦0 +

𝑝2(𝑝2 − 1)(𝑝2 − 2)

3!
Δ3𝑦0] 

and so on. This process is continued till two successive approximations of 𝑝 agree with each 

other 

This method is a powerful iterative procedure for finding the roots of an equation to a good 

degree of accuracy. 

Example 1.21  The following values of 𝑦 = 𝑓(𝑥) are given 

𝑥: 10 15 20 

𝑦: 1754 2648 3564 

 

Find the value of 𝑥 for 𝑦 = 3000 by an iterative method. 



Solution: Taking 𝑥0 = 10 and ℎ = 5, the difference table is 

𝑥 𝑦 Δ𝑦 Δ2𝑦 

10 1754   

15 2648 894  

20 3564  22 

 

Here 𝑦𝑝 = 3000, 𝑦0 = 1754, Δ𝑦0 = 894 and Δ2𝑦0 = 22. 

∴   The successive approximations to 𝑝 are 

𝑝1 =
1

894
(3000 − 1754) = 1.39

𝑝2 =
1

894
[3000 − 1754 −

1.39(1.39 − 1)

2
× 22] = 1.387

𝑝3 =
1

894
[3000 − 1754 −

1.387(1.387 − 1)

2
× 22] = 1.3871

 

We, therefore, take 𝑝 = 1.387 correct to three decimal places. Hence the value of 𝑥 

(corresponding to = 3000) = 𝑥0 + 𝑝ℎ = 10 + 1.387 × 5 = 16.935. 

1.7 CHECK YOUR PROGRESS  

1. Use Stirling's formula to interpolate the value of 𝑦 = 𝑒𝑥 at 𝑥 = 1.91 from the data 

𝑥: 1.7 1.8 1.9 2.0 2.1 2.2 

𝑦 = 𝑒𝑥 5.4739 6.0496 6.6859 7.3891 8.1662 9.0250 

2. Use Stirling's formula to find 𝑢32 form the data 

            𝑢20 = 14.035, 𝑢25 = 13.674, 𝑢30 = 13.257, 𝑢35 = 12.734, 𝑢40 = 12.089, 𝑢45

= 11.309.  

3. Using Gauss's forward formula, find the value of 𝑓(32) given that 

𝑓(25) = 0.2707, 𝑓(30) = 0.3027, 𝑓(35) = 0.3386, 𝑓(40) = 0.3794 

4. Using Gauss's backward formula, find the value of √12.516 given that 



       √12500 = 111.803399, √12510 = 111.848111, √12520 = 111.892806, √1230

= 111.937483 

5. Evaluate sin (0.197) form the following table : 

𝑥: 0.15 0.17 0.19 0.21 0.23 

sin 𝑥: 0.14944 0.16918 0.18886 0.20846 0.22798 

 

6. If 𝑦(1) = −3, 𝑦(3) = 9, 𝑦(4) = 30 and 𝑦(6) = 132, find the four point Lagrange's 

interpolation polynomial that takes the same values as 𝑦 at the given points. 

7. Evaluate √155 using Lagrange's interpolation formula from the data: 

𝑥: 150 152 154 156 

𝑦 = √𝑥: 12.247 12.329 12.410 12.490 

8. Using Hermit's interpolation formula estimate the value of log (3.2) from the following 

table:  

         𝑥 : 3 3.5 4.0 

𝑦 = log𝑥 : 1.09861 1.25276 1.38629 

𝑦′ =
1

𝑥
 ? 0.33333 0.28571 0.25000 

 

.     

1.8    SUMMARY 

 The students are made familiar with some preliminary definitions and fundamental 

results of interpolation. 

  Different types of interpolations with Lagrange, Hermite, Bessel, and Stirling formulae 

etc. have been developed to get the solution in various conditions. 

 

 



1.9 KEYWORDS   

Lagrange’s interpolation, Lagrange’s inverse interpolation, Bessel’s interpolation, Stirling’s 

interpolation, Gauss’s backward interpolation, Newton’s forward and backward interpolation.  

1.10    ANSWERS TO CHECK YOUR PROGRESS   

1.  6.7531  

2.  13.062 

3.  0.3165  

4.  111.8749   

5.  0.19573 

6. 𝑥3 − 3𝑥2 + 5𝑥 − 6 

7. 12.45 

8. 1.16314 

 

1.11 SELF-ASSESSMENT TEST: 

1. Find the unique polynomial P(x) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) = 

64 using each of the following methods : 

(i) Lagrange interpolation formula,  

(ii) Newton divided the difference formula and evaluate P(1.5). 

2. Calculate the nth divided difference of f (x) = 1 / x. 

3. Use Everett’s interpolation formula to find the value of y when x = 3.5 from the 

following table: 

X 1 2 3 4 5 6 

Y = f(x) 1.2567 1.4356 1.5678 1.6547 1.7658 1.8345 

4. Find the zero of the function y(x) from the following data:    

X 1.0   0.8  0.6 0.4 0.2 

Y = f(x) -1.049 -0.0266 0.377 0.855 1.15 
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2.0 LEARNING OBJECTIVES 

• This chapter will be devoted to explaining the approximation of a function.  

• It also briefs spline interpolation. 

• Various ways of approximation of function have been discussed with their suitable 

examples.   

 

 



2.1 INTRODUCTION 

Often engineers, scientists, organizers, and sociologists have to take some decisions concerning 

the phenomena of which they know only the behavior from experimentally measured values. In 

certain cases, for example in physics, the fundamental knowledge of the phenomena in question 

allows us in proposing a precise, deterministic mathematical model which we call the model of 

knowledge. In many branches of applied mathematics, it is required to express a given data, 

obtained from observations in form of the law connecting the two variables involved. Such a law 

inferred by some scheme is known as an empirical law. Several equations of different types can 

be obtained to express the given data approximately. But the problem is to find the equation of 

the curve of 'best fit' which may be most suitable for predicting the unknown values. The process 

of finding such an equation of 'best fit' is known as curve fitting. The method of least squares is 

probably the best to fit a unique curve to a given data. It is widely used in applications and can 

be easily implemented on a computer. There are several cases when we have information or data 

' 𝑦 ' available at several discrete locations '𝑥' for example tabulated values of the steam, 

trigonometric, logarithmic, and other functions, etc. Till the use of online measurement devices 

and recorders became popular, experimental results taken in a laboratory were available in a 

similar form. We may be required to interpolate or extrapolate these data or may at times, be 

interested in computing slopes or integrals of functions described by them. This chapter is 

devoted to the discussion of several techniques for doing this. 

2.2 APPROXIMATION  OF THE FUNCTIONS 
The graphical method and the method of group averages have the obvious drawback of being 

unable to give a unique curve fit. The principle of least squares, however, provides an elegant 

procedure for fitting a unique curve to a given data. A French mathematician Adrian Marie 

Legendre in 1806 suggested the "Principle of least squares," which states that the curve of best fit 

is that for which the errors (or residuals) are as small as possible i.e., the sum of the squares of 

the errors is a minimum. The principle of least squares does not help us to determine the form of 

the appropriate curve which can fit a given data. It only determines the least possible values of 

the constants in the equation when the form of the curve is known beforehand. The selection of 

the curve is a matter of experience and practical consideration. Here we shall discuss the fitting 

of various types of curves by the method of least squares. 



2.2.0 STRAIGHT LINE FITTING 
Suppose it is required to fit a straight line 

                                                                𝑦 = 𝑎 + 𝑏𝑥                                    …(2.1) 

to a given set of observations (𝑥1,𝑦1), (x2,𝑦2) … (x𝑛,𝑦𝑛). Since (2.1) passes through the data 

points (𝑥𝑖 , 𝑦𝑖), we have 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 

The error 𝑒𝑖 between the observed and expected values of 𝑦 = 𝑦𝑖 is defined as 

𝑒𝑖 = 𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)i = 1,2,3, … n 

Therefore the sum of the squares of these errors is 

E = � 
𝑛

𝑖=1

𝑒𝑖2 = � 
𝑛

𝑖=1

[𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖)]2 

Now for 𝐸 to be minimum, we must have 

∂E
∂𝑎

= 0,
∂E
∂b

= 0 

There provide us 

and 

� 
𝑛

𝑖=1

𝑦𝑖 = 𝑛𝑎 + 𝑏�  
𝑛

𝑖=1

𝑥𝑖 

� 
𝑛

𝑖=1

𝑥𝑖𝑦𝑖 = 𝑎�  
𝑛

𝑖=1

𝑥𝑖 + 𝑏�  
𝑛

𝑖=1

𝑥𝑖2 

These equations are called normal equations. Solving these equations for 𝑎 and 𝑏, we obtain 



𝑎 =
1
𝑛 �
𝑏�  

𝑛

𝑖=1

 𝑥𝑖 −�  
𝑛

𝑖=1

 𝑦𝑖�

𝑏 =
𝑛∑  𝑛

𝑖=1  𝑥𝑖𝑦𝑖 − (∑  𝑛
𝑖=1  𝑥𝑖)(∑  𝑛

𝑖=1  𝑦𝑖)
𝑛∑  𝑛

𝑖=1  𝑥𝑖2 − (∑  𝑛
𝑖=1  𝑥𝑖)2

 

Upon substitution of the values of 𝑎 and 𝑏 in (2.1) we obtain the required line of "best fit". 

2.2.1 PARABOLIC CURVE FITTING 
Suppose the equation of the parabola to fit is given by 

               𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2        …(2.2) 

Let the data points be (𝑥𝑖 ,𝑦𝑖), 𝑖 = 1,2,3, …𝑛. Since (2.2) passes through these data points, we 

have 

𝑦𝑖 = 𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥𝑖2 

The error 𝑒𝑖 between the observed and expected values of 𝑦 = 𝑦𝑖 is defined as 

𝑒𝑖 = 𝑦𝑖 − (𝑎 + 𝑏𝑥𝑖 + 𝑐𝑥𝑖2), 𝑖 = 1,2,3, …𝑛 

Therefore, the sum of the squares of these errors is 

E = � 
𝑛

𝑖=1

𝑒𝑖2 = � 
𝑛

𝑖=1

(𝑦𝑖 − 𝑎 − 𝑏𝑥𝑖 − 𝑐𝑥𝑖2)2 

For 𝐸 to be minimum, we have 

∂E
∂𝑎

= 0,
∂E
∂𝑏

= 0,
∂E
∂𝑐

= 0 

which leads to the normal equations 



 �  𝑦𝑖 = 𝑛𝑎 + 𝑏�  𝑥𝑖 + 𝑐�  𝑥𝑖 2

 �  𝑥𝑖𝑦𝑖 = 𝑎�  𝑥𝑖 + 𝑏�  𝑥𝑖  2 + 𝑐�  𝑥𝑖 3

 �  𝑥𝑖 2𝑦𝑖 = 𝑎�  𝑥𝑖 2 + 𝑏�  𝑥𝑖 3 + 𝑐�  𝑥𝑖 4

 

Solving these equations for a, b, and c, and using these values in equation (2.2), we obtain the 

desired curve of best fit. 

2.2.2 FITTING OF OTHER CURVES 
1. Power curve: Let the curve be given by 

𝑦 = 𝑎𝑥𝑏 

Taking logarithms, we get 

                                       log10 𝑦 = log10𝑎 + 𝑏log10𝑥
        𝑌 = 𝐴 + 𝑏𝑋

     …(2.3) 

where 

𝑋 = log10𝑥 ,𝑌 = log10 𝑦 

Therefore normal equations for (2.3) are 

�  𝑌𝑖  = 𝑛𝐴 + 𝑏�  𝑋𝑖

�  𝑋𝑖𝑌  = 𝐴�  𝑋𝑖 + 𝑏�  𝑋𝑖2
 

From these 𝐴 and 𝑏 can be determined. Then 𝑎 can be calculated from 𝐴 = log10𝑎. The values 

of 𝑎 and 𝑏 so obtained are used in (2.3) to get the required curve of best fit.  

2. Exponential curve: Let the curve given by, 

𝑦 = 𝑎𝑒𝑏𝑥 

Taking logarithms, we get 



i.e. 

                                  log10 𝑦 = log10𝑎 + 𝑏𝑥log10𝑒
𝑌 = 𝐴 + 𝐵𝑥      …(2.4) 

where 

𝑌 = log10 𝑦, A = log10𝑎, and B = 𝑏log10𝑒 

Here the normal equations are 

�  𝑌𝑖  = 𝑛𝐴 + 𝐵�  𝑥𝑖

�  𝑥𝑖𝑌𝑖  = 𝐴�  𝑥𝑖 + 𝐵�  𝑥𝑖 2
 

From these 𝐴 and 𝐵 can be found and consequently 𝑎, 𝑏 can be calculated and used in (2.4) to 

obtain the desired curve of 'best fit'. 

Example 2.1 Fit a second-degree curve to the following data 

𝑥: 1.0 1.5 2.0 2.5 3.0 3.5 4.0
𝑦: 1.1 1.3 1.6 2.0 2.7 3.4 4.1 

Solution: Let the required curve be 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

We put 𝑋 = 2𝑥 − 5 so that this equation becomes 

𝑦 = 𝑎 + 𝑏𝑋 + 𝑐𝑋2 

𝑥 𝑦 𝑌 𝑋𝑦 𝑋2 𝑋2𝑦 𝑋3 𝑋4 

1.0 −3 1.1 −3.3 9 9.9 −27 81 

1.5 −2 1.3 −2.6 4 5.2 −8 16 

2.0 −1 1.6 −1.6 1 1.6 −1 1 

2.5 0 2.0 0.0 0 0.0 0 0 



3.0 1 2.7 2.7 1 2.7 1 1 

3.5 2 6.8 6.8 4 13.6 8 16 

4.0 3 12.3 12.3 9 36.9 27 81 

Tota1 0 16.2 14.3 28 69.9 0 196 

 

The normal equations are 

7𝑎 + 28𝑐 = 16.2,28𝑏 = 14.3,28𝑎 + 196𝑐 = 69.9 

Solving these equations leads to 𝑎 = 2.07, b = 0.511, c = 0.061 

Therefore, 

𝑦 = 2.07 + 0.511𝑋 + 0.061𝑋2 = 2.07 + 0.511(2𝑥 − 5) + 0.061(2𝑥 − 5)2

 = 1.04 − 0.198𝑥 + 0.244𝑥2
 

Thus the required second-degree curve (parabola) is 

𝑦 = 1.04 − 0.198𝑥 + 0.244𝑥2 

Example 2.2 Fit a straight line to the following data: 

Year (𝑥): 1951 1961 1971 1981 1991 

 Production (𝑦):
 in thousand tons 

 8 10 12 10 16 

 

Also, find the expected production in 1996. 

Solution: Suppose the equation of the required straight line be 𝑦 = 𝑎 + 𝑏𝑥 

𝑥 𝑦 𝑥𝑦 𝑥2 

1951 8 15608 3806401 



1961 10 19610 3845521 

1971 12 23652 3884841 

1981 10 19810 3924361 

1991 16 31856 3964081 

∑𝑥 = 9855 ∑𝑦 = 56 ∑𝑥𝑦 = 110536 19425205 

 

The normal equations are 

�  𝑦 = 𝑛𝑎 + 𝑏�  𝑥

�  𝑥𝑦 = 𝑎�  𝑥 + 𝑏�  𝑥2
 

imply that 

5𝑎 + 9855𝑏 = 56
9855a + 19425205 b = 110536 

Solving these equations, we get 𝑎 = 304.16,𝑏 = .16 

∴ The required straight line is 𝑦 = .16𝑥 − 304.16 

2.2.3 GENERAL LEAST SQUARE METHOD 
Here we propose the following model in terms of the unknown coefficients 𝑐𝑗 , 𝑗 = 1,2,3, …𝑚 as 

               𝑦𝑖 = 𝑐1𝑓1(𝑥𝑖) + 𝑐2𝑓2(𝑥𝑖) + ⋯+ 𝑐𝑚𝑓𝑚(𝑥𝑖), 𝑖 = 1,2,3,⋯𝑛    …(2.5) 

where 𝑥𝑖 ∈ 𝑅1 or Rn. The error committed at the 𝑖 th point in approximating the observed value 

𝑦𝑖 for the expected value 𝑦𝑖∗ is 

𝑒𝑖 = 𝑦𝑖 − 𝑦𝑖∗, for i = 1,2,3, …𝑛

= 𝑦𝑖 −�  
𝑚

𝑗=1

 𝑐𝑗𝑓𝑗(𝑥𝑖), 𝑖 = 1,2,3, …𝑛 



This is a system of 𝑛 equations in (𝑛 + 𝑚) unknowns cj, 𝑗 = 1,2,3, …𝑚 and ei, i = 1,2,3, … n, 

and hence it has an infinite number of solutions. Among all these solutions, we define the best 

solution as the one that minimizes the scalar quantity 

𝐸 = � 
𝑛

𝑖=1

𝑤𝑖𝑒𝑖2 

where 𝑤𝑖 ≥ 0 are the weights so that 

∥∥𝑦 − 𝑦∗∥∥2 = � 
𝑛

𝑖=1

(𝑦𝑖 − 𝑦𝑖)2𝑤𝑖 

defines the weighted least squares norm. We look for minimizing 𝐸 with respect to the 

parameters {𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚}. The necessary condition in which 𝐸 is minimum in the space of 

{𝑐1, 𝑐2, … 𝑐𝑚} is that 

∂𝐸
∂𝑐𝑘

= 0, k = 1,2,3 …𝑛 

Permuting the summation and partial derivative operation and taking the derivative, we obtain 

                 2∑  𝑛
𝑖=1 𝑤𝑖𝑒𝑖

∂𝑒𝑖
∂𝑐𝑘

= 0, 𝑘 = 1,2, … ,𝑚       …(2.6) 

Using equation (2.5) in (2.6), we obtain 

� 
𝑛

𝑖=1

𝑤𝑖 �𝑦𝑖 −�  
𝑚

𝑗=1

 𝑐𝑗𝑓𝑗(𝑥𝑖)� 𝑓𝑘(𝑥𝑖) = 0,𝑘 = 1,2, …𝑚 

This implies that 

� 
𝑚

𝑗=1

 𝑐𝑗�  
𝑛

𝑖=1

 𝑤𝑖𝑓𝑗(𝑥𝑖)𝑓𝑘(𝑥𝑖) = � 
𝑛

𝑖=1

 𝑤𝑖𝑦𝑖𝑓𝑘(𝑥𝑖),  𝑘 = 1,2,3 …𝑚

� 
𝑚

𝑗=1

 𝑎𝑘𝑗𝑐𝑗 = 𝑏𝑘,𝑘 = 1,2 …𝑚

 



where 

                          
𝑎𝑘𝑗  = ∑  𝑛

𝑖=1  𝑓𝑗(𝑥𝑖)𝑓𝑘(𝑥𝑖)𝑤𝑖,𝑘 = 1,2, …𝑚, 𝑗 = 1,2,3 …𝑚
𝑏𝑘  = ∑  𝑛

𝑖=1  𝑤𝑖𝑦𝑖𝑓𝑘(𝑥𝑖),𝑘 = 1,2 …𝑚
   …(2.7) 

In matrix form we have 

                              �
𝑎11 ⋯ 𝑎1𝑛
⋮ ⋱ ⋮

𝑎𝑚1 ⋯ 𝑎𝑚𝑛

� �
𝐶1
⋮
𝐶𝑚

� = �
𝑏1
⋮
𝑏𝑚
�      …(2.8) 

The quantities 𝑎𝑘𝑗 and 𝑏𝑘 defined in (2.7) are completely determined because the pairs (𝑥𝑖 ,𝑦𝑖) 

and the function 𝑓𝑗(𝑥) are known in the linear system (2.8), it remains only to determine these 𝑚 

unknowns {𝑐1, 𝑐2, … , 𝑐𝑚}. 

Algorithm for Least squares method: Linear model 

The 𝑛 pairs (𝑥𝑖 , 𝑦𝑖) of data points are given along with their weights 𝑤𝑖 

1. Define the function 𝑓𝑗(𝑥) composing the model so that 𝑦𝑖∗ = ∑𝑗=1
𝑚  𝑐𝑗𝑓𝑗(𝑥𝑖) 

2. For 𝑘 = 1,2,3,⋯𝑚, calculate the terms 

𝑎𝑘𝑗 = � 
𝑛

𝑖=1

𝑓𝑗�𝑥𝑗�𝑓𝑘(𝑥𝑖)𝑤𝑖,𝑗𝑗 = 1,2,3, …𝑚 

and 

𝑏𝑘 = � 
𝑛

𝑖=1

𝑤𝑖𝑦i𝑓𝑘(𝑥𝑖) 

3. Solve the linear system of the symmetric matrix equation 

� 
𝑚

𝑗=1

𝑎𝑘𝑗𝑐𝑗=𝑏𝑘 ,𝑘 = 1,2,3, …𝑚 

2.3 SPLINE INTERPOLATION 



In the interpolation methods so far explained, a single polynomial has been fitted to the tabulated 

points. If the given set of points belongs to the polynomial, then this method works well, 

otherwise, the results are rough approximations only. If we draw lines through every two closest 

points, the resulting graph will not be smooth. Similarly, we may draw a quadratic curve through 

points 𝐴𝑖 ,𝐴𝑖+1 and another quadratic curve through 𝐴𝑖+1,𝐴𝑖+2, such that the slopes of the two 

quadratic curves match at 𝐴𝑖+1 (Fig. 2.1). The resulting curve looks better but is not quite 

smooth. We can ensure this by drawing a cubic curve through 𝐴𝑖 ,𝐴𝑖+1 and another cubic through 

𝐴𝑖+1, 𝐴𝑖+2 such that the slopes and curvatures of the two curves match at 𝐴𝑖+1. Such a curve is 

called a cubic spline. We may use polynomials of higher order but the resulting graph is not 

better. As such, cubic splines are commonly used. This technique of "spline-fitting" is of recent 

origin and has important applications. 

 
                                                           FIGURE 2.1 

CUBIC SPLINE 
Consider the problem of interpolating between the data points (𝑥0,𝑦0), (𝑥1,𝑦1),⋯ (𝑥𝑛,𝑦𝑛) using 

spline fitting. 

Then the cubic spline 𝑓(𝑥) is such that 

(i) 𝑓(𝑥) is a linear polynomial outside the interval (𝑥0, 𝑥𝑛), 

(ii) 𝑓(𝑥) is a cubic polynomial in each of the subintervals, 

(iii) 𝑓′(𝑥) and 𝑓′′(𝑥) are continuous at each point. 



Since 𝑓(𝑥) is cubic in each of the subintervals 𝑓′′(𝑥) shall be linear. ∴ Taking equally-spaced 

values of 𝑥 so that 𝑥𝑖+1 − 𝑥𝑖 = ℎ, we can write 

𝑓′′(𝑥) =
1
ℎ

[(𝑥𝑖+1 − 𝑥)𝑓′′(𝑥𝑖) + (𝑥 − 𝑥𝑖)𝑓′′(𝑥𝑖+1)] 

Integrating twice, we have 

          𝑓(𝑥) = 1
ℎ
�(𝑥𝑖+1−𝑥)

3!
𝑓′′(𝑥𝑖) + (𝑥−𝑥𝑖)

3!
𝑓′′(𝑥𝑖+1)� 𝑎𝑖(𝑥𝑖+1 − 𝑥) + 𝑏𝑖(𝑥 − 𝑥𝑖)   …(2.9) 

The constants of integration 𝑎𝑖 , 𝑏𝑖 are determined by substituting the values of 𝑦 = 𝑓(𝑥) at 𝑥𝑖 

and 𝑥𝑖+1. Thus, 

𝑎𝑖 =
1
ℎ �
𝑦𝑖 −

ℎ2

3!
𝑓′′(𝑥𝑖)�  and 𝑏𝑖 =

1
ℎ �
𝑦𝑖+1 −

ℎ2

3!
𝑓′′(𝑥𝑖+1)� 

Substituting the values of 𝑎𝑖, 𝑏𝑖, and writing 𝑓′′(𝑥𝑖) = 𝑀𝑖, (2.9) takes the form 𝑓(𝑥) =

       (𝑥𝑖+1−𝑥)3

6ℎ
𝑀𝑖 + (𝑥−𝑥𝑖)3

6ℎ
𝑀𝑖+1 

       + 𝑥𝑖+1−𝑥
ℎ

�𝑦𝑖 −
ℎ2

6
𝑀𝑖� + 𝑥−𝑥𝑖

ℎ
�𝑦𝑖+1 −

ℎ2

6
𝑀𝑖+1�               …(2.10) 

∴ 𝑓′(𝑥) = −
(𝑥𝑖+1 − 𝑥)2

2ℎ
𝑀𝑖 +

(𝑥 − 𝑥𝑖)2

6ℎ
𝑀𝑖+1 −

ℎ
6

(𝑀𝑖+1 − 𝑀𝑖) +
1
ℎ

(𝑦𝑖+1 − 𝑦𝑖) 

To impose the condition of continuity of 𝑓′(𝑥), we get 𝑓′(𝑥 − 𝜀) = 𝑓′(𝑥 + 𝜀) as 𝜀 → 0 

∴ ℎ
6

(2𝑀𝑖 + 𝑀𝑖−1) + 1
ℎ

(𝑦𝑖 − 𝑦𝑖−1) = −ℎ
6

(2𝑀𝑖 + 𝑀𝑖+1) + 1
ℎ

(𝑦𝑖+1 − 𝑦𝑖)

𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1 = 6
ℎ2

(𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1), 𝑖 = 1 to 𝑛 − 1 
            …(2.11) 

Now since the graph is linear for 𝑥 < 𝑥0 and 𝑥 > 𝑥𝑛, we have 

                                  𝑀0 = 0,𝑀𝑛 = 0                 …(2.12) 

(2.11) and (2.12) give (𝑛 + 1) equations in (𝑛 + 1) unknowns 𝑀𝑖(𝑖 = 0,1,⋯𝑛) which can be 

solved. Substituting the value of 𝑀𝑖 in (2) gives the concerned cubic spline. 



Example 2.3 Obtain the cubic spline for the following data 

𝑥: 0 1 2 3 

𝑦: 2 −6 −8 2 

 

Solution:  Since the points are equispaced with ℎ = 1 and 𝑛 = 3, the cubic spline can be 

determined from 𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1 = 6(𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1), 𝑖 = 1,2. 

∴  𝑀0 + 4𝑀1 + 𝑀2 = 6(𝑦0 − 2𝑦1 + 𝑦2) 

𝑀1 + 4𝑀2 + 𝑀3 = 6(𝑦1 − 2𝑦2 + 𝑦3) 

i.e., 4𝑀1 + 𝑀2 = 36;𝑀1 + 4𝑀2 = 72 [∵ 𝑀0 = 0,𝑀3 = 0] 

Solving these, we get 𝑀1 = 4.8,𝑀2 = 16.8. 

Now the cubic spline in (𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖 + 1) is 

𝑓(𝑥) =
1
6

(𝑥𝑖+1 − 𝑥)3𝑀𝑖 +
1
6

(𝑥 − 𝑥𝑖)3𝑀𝑖+1  +(𝑥𝑖+1 − 𝑥) �𝑦𝑖 −
1
6
𝑀𝑖�

+ (𝑥 − 𝑥𝑖) �𝑦𝑖+1 −
1
6
𝑀𝑖+1�

 

Taking 𝑖 = 0, the cubic spline in (0 ≤ 𝑥 ≤ 1) is 

𝑓(𝑥)  =
1
6

(1 − 𝑥)3(0) +
1
6

(𝑥 − 0)3(4.8) + (1 − 𝑥)(𝑥 − 0) + 𝑥 �−6 −
1
6

(4.8)�

 = 0.8𝑥3 − 8.8𝑥 + 2 (0 ≤ 𝑥 ≤ 1)
 

Taking 𝑖 = 1, the cubic spline in (1 ≤ 𝑥 ≤ 2) is 

𝑓(𝑥) =
1
6

(2 − 𝑥)3(4.8) +
1
6

(𝑥 − 1)3(16.8) + (2 − 𝑥) �−6 −
1
6

(4.8)�

 +(𝑥 − 1)[−8 − 1(16.8)]
= 2𝑥3 − 5.84𝑥2 − 1.68𝑥 + 0.8

 

Taking 𝑖 = 2, the cubic spline in (2 ≤ 𝑥 ≤ 3) is 



𝑓(𝑥) =
1
6

(3 − 𝑥)3(4.8) +
1
6

(𝑥 − 2)3(0) + (3 − 𝑥)[−8 − 1(16.8)]

+  +(𝑥 − 2)[2 − 1(2)]
= −0.8𝑥3 + 2.64𝑥2 + 9.68𝑥 − 14.8

 

Example 2.4 The following values of 𝑥 and 𝑦 are given: 

𝑥: 1 2 3 4 

𝑦: 1 2 5 11 

 

Find the cubic splines and evaluate 𝑦(1.5) and 𝑦′(3). 

Solution:  Since the points are equispaced with ℎ = 1 and 𝑛 = 3, the cubic splines can be 

obtained from 

𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1  = 6(𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1), 𝑖 = 1,2.
𝑀0 + 4𝑀1 + 𝑀2  = 6(𝑦0 − 2𝑦1 + 𝑦2)
𝑀1 + 4𝑀2 + 𝑀3  = 6(𝑦1 − 2𝑦2 + 𝑦3)

 

i.e., 

4𝑀1 + 𝑀2 = 12,𝑀1 + 4𝑀2 = 18 

[∵ 𝑀0 = 0,𝑀3 = 0] 

which give, 

𝑀1 = 2,𝑀2 = 4.  

Now the cubic spline in (𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖+1) is 

𝑓(𝑥) =
1
6

(𝑥𝑖+1 − 𝑥)3𝑀𝑖  +
1
6

(𝑥 − 𝑥𝑖)3𝑀𝑖+1 + (𝑥𝑖+1 − 𝑥) �𝑦𝑖 −
1
6
𝑀𝑖�

 +(𝑥 − 𝑥𝑖) �𝑦𝑖+1 −
1
6
𝑀𝑖+1�

 

Thus, taking 𝑖 = 0, 𝑖 = 1, 𝑖 = 2, the cubic splines are 



𝑓(𝑥)  =

⎩
⎪
⎨

⎪
⎧

1
3

(𝑥3 − 3𝑥2 + 5𝑥)1 ≤ 𝑥 ≤ 2

1
3

(𝑥3 − 3𝑥2 + 5𝑥)2 ≤ 𝑥 ≤ 3

1
3

(−2𝑥3 − 24𝑥2 − 76𝑥 + 81)3 ≤ 𝑥 ≤ 4

∴ 𝑦(1.5) = 𝑓(1.5) = 11/8

 

Example 2.5 Find the cubic spline interpolation for the data: 

𝑥: 1 2 3 4 5 

𝑓(𝑥): 1 0 1 0 1 

 

Solution:  Since the points are equispaced with ℎ = 1,𝑛 = 4, the cubic spline can be found using 

𝑀𝑖−1 + 4𝑀𝑖 + 𝑀𝑖+1 = 6(𝑦𝑖−1 − 2𝑦𝑖 + 𝑦𝑖+1), 𝑖 = 1,2,3
𝑀0 + 4𝑀1 + 𝑀2 = 6(𝑦0 − 2𝑦1 + 𝑦2) = 12
𝑀1 + 4𝑀2 + 𝑀3 = 6(𝑦1 − 2𝑦2 + 𝑦3) = −12
𝑀2 + 4𝑀3 + 𝑀4 = 6(𝑦2 − 2𝑦3 + 𝑦4) = 12

 

Since 𝑀0 = 𝑦0′′ = 0 and 𝑀4 = 𝑦4′′ = 0 

∴  4𝑀1 + 𝑀2 = 12;𝑀1 + 4𝑀2 + 𝑀3 = −12;𝑀1 + 4𝑀3 = 12 

Solving these equations, we get 𝑀1 = 30/7,𝑀2 = −36/7,𝑀3 = 30/7 

Now the cubic spline in (𝑥𝑖 ≤ 𝑥 ≤ 𝑥𝑖 + 1) is 

𝑓(𝑥) =
1
6

(𝑥𝑖+1 − 𝑥)3𝑀𝑖 +
1
6

(𝑥 − 𝑥𝑖)3𝑀𝑖+1 + (𝑥𝑖+1 − 𝑥)

�𝑦𝑖 −
1
6
𝑀𝑖� + (𝑥 − 𝑥𝑖) �𝑦𝑖+1 −

1
6
𝑀𝑖+1�

 

Taking 𝑖 = 0, the cubic spline in (1 ≤ 𝑥 ≤ 2) is 



𝑦 =
1
6

[(𝑥1 − 𝑥)3𝑀0 + (𝑥 − 𝑥0)3𝑀1] + (𝑥1 − 𝑥) �𝑦0 −
1
6
𝑀0�

 +(𝑥 − 𝑥0) �𝑦1 −
1
6
𝑀1�

 =
1
6

[(2 − 𝑥)3(0) + (𝑥 − 𝑥0)3(30/7)] + (2 − 𝑥) �1 −
1
6

(0)�

 +(𝑥 − 1)�0 −
1
6 �

30
7 ��

 

i.e.,  𝑦 = 0.71𝑥3 − 2.14𝑥2 + 0.42𝑥 + 2 (1 < 𝑥 ≤ 2) 

Taking 𝑖 = 1, the cubic spline in (2 ≤ 𝑥 ≤ 3) is 

𝑦 =
1
6
�(3 − 𝑥)3

30
7

+ (𝑥 − 2)3 �−
36
7 �� + (3 − 𝑥)�0 −

1
6 �

30
7 ��

 +(𝑥 − 2)�1 −
1
6 �
−

36
7 ��

 

 i.e.,  𝑦 = −1.57𝑥3 + 11.57𝑥2 − 27𝑥 + 20.28.  (2 ≤ 𝑥 ≤ 3)
Taking 𝑖 = 2, the cubic spline in (3 ≤ 𝑥 ≤ 4) is 

𝑦 =
1
6

(4 − 𝑥)3 �−
36
7 � +

1
6

(𝑥 − 3)3
30
7

+ (4 − 𝑥)�1 −
1
6 �
−

36
7 �� + (𝑥 − 3) �0 −

5
7�

 i.e., 𝑦 = 1.57𝑥3 − 16.71𝑥2 + 57.86𝑥 − 64.57 (3 ≤ 𝑥 ≤ 4)
 Taking 𝑖 = 3, the cubic spline in (4 ≤ 𝑥 ≤ 5) is 

 𝑦 =
1
6

(1 − 𝑥)3 �
30
7 � + (5 − 𝑥)3 �−

5
7�

+ (𝑥 − 4)(1)

 i.e.,  𝑦 = −0.71𝑥3 + 2.14𝑥2 − 0.43𝑥 − 6.86.   (4 ≤ 𝑥 ≤ 5)

 

 

2.4 CHEBYSHEV POLYNOMIALS 
The Chebyshev polynomials of the first kind, 𝑇𝑛(𝑥) are defined by 

                                     𝑇𝑛(𝑥) = cos (𝑛cos−1 𝑥) 

where 𝑛 is a non-negative integer. 

Remark. Chebyshev polynomials are also known as Tchebicheff, Tchebieheff, or Tschebysheff. 



RECURRENCE RELATIONS (FORMULAE) 
I. 𝑇𝑛+1(𝑥) − 2𝑥𝑇𝑛(𝑥) + 𝑇𝑛−1(𝑥) = 0. 

II. (1 − 𝑥2)𝑇𝑛 ′(𝑥) = −𝑛𝑥𝑇𝑛(𝑥) + 𝑛𝑇𝑛−1(𝑥). 

Proof  I.  We have, by definition  𝑇𝑛(𝑥) = cos (𝑛cos−1 𝑥) 

∴  𝑇𝑛(cos 𝜃) = cos (𝑛cos−1 cos 𝜃) = cos 𝑛𝜃               …(2.13) 

so that  𝑇𝑛+1(cos 𝜃) = cos (𝑛 + 1)𝜃  and  𝑇𝑛−1(cos 𝜃) = cos (𝑛 − 1)𝜃               …(2.14) 

We are to show that  𝑇𝑛+1(𝑥) − 2𝑥𝑇𝑛(𝑥) + 𝑇𝑛−1(𝑥) = 0.              …(2.15) 

Replacing 𝑥 by cos 𝜃 in (2.15), we must now prove that 

𝑇𝑛+1(cos 𝜃) − 2cos 𝜃𝑇𝑛(cos 𝜃) + 𝑇𝑛−1(cos 𝜃) = 0 

i.e. 

cos (𝑛 + 1)𝜃 − 2cos 𝜃cos 𝑛𝜃 + cos (𝑛 − 1)𝜃 = 0, by (2.13) and (2.14)  

i.e., 

    cos (𝑛 + 1)𝜃 + cos (𝑛 − 1)𝜃 − 2cos 𝜃cos 𝑛𝜃 = 0.              …(2.16) 

Now, L.H.S. (2.16) = 2cos 𝑛𝜃cos 𝜃 − 2cos 𝜃cos 𝑛𝜃 = 0, 

which proves (2.16) and hence (2.14) is true. 

II.  We have 𝑇𝑛′(𝑥) = −sin (𝑛cos−1 𝑥) ⋅ −𝑛
�(1−𝑥2)

   

        or  𝑇𝑛′(cos 𝜃) = sin (𝑛cos−1 cos 𝜃) ⋅ 𝑛
�(1−cos2 𝜃)

 

Thus, 

           𝑇𝑛′(cos 𝜃) = (𝑛sin 𝑛𝜃)/sin 𝜃                 …(2.17) 

We are to show that 



     (1 − 𝑥2)𝑇𝑛′(𝑥) = −𝑛𝑥𝑇𝑛(𝑥) + 𝑛𝑇𝑛−1(𝑥).                …(2.18) 

Putting 𝑥 = cos 𝜃 and using (2.14) and (2.17), (2.18) may be re-written as 

                sin2 𝜃 𝑛sin 𝑛𝜃
sin 𝜃

= −𝑛cos 𝜃cos 𝑛𝜃 + 𝑛cos (𝑛 − 1)𝜃   

or      sin 𝜃sin 𝑛𝜃 = cos (𝑛 − 1)𝜃 − cos 𝜃cos 𝑛𝜃.                 …(2.19) 

R.H.S. of (2.19) = cos(𝑛𝜃 − 𝜃) − cos 𝜃 cos𝑛𝜃 

                              = cos 𝑛𝜃cos 𝜃 + sin 𝑛𝜃sin 𝜃 − cos 𝜃cos 𝑛𝜃 

= sin 𝑛𝜃sin 𝜃 = L.H.S. of (2.19), 

which proves (2.19) and hence (2.18) is true. 

Example 2.6 Show that 𝑇𝑛(𝑥) is the solution to Chebyshev's equation 

           (1 − 𝑥2)(𝑑2𝑦/𝑑𝑥2) − 𝑥(𝑑𝑦/𝑑𝑥) + 𝑛2𝑦 = 0.               …(2.20) 

Solution: Chebyshev's equation is  (1 − 𝑥2)(𝑑2𝑦/𝑑𝑥2) − 𝑥(𝑑𝑦/𝑑𝑥) + 𝑛2𝑦 = 0 

To show that 𝑇𝑛(𝑥) is a solution of (2.20), by definition we have 

𝑇𝑛(𝑥) = cos(𝑛 𝑐𝑜𝑠−1 𝑥)                                                                                                     … (2.21)

∴  
𝑑
𝑑𝑥

𝑇𝑛(𝑥) =
𝑑
𝑑𝑥

cos (𝑛cos−1 𝑥) = −sin (𝑛cos−1 𝑥) ⋅ 𝑛 ⋅
−1

(1 − 𝑥2)1/2
 

or 

  𝑑
𝑑𝑥
𝑇𝑛(𝑥) = 𝑛

(1−𝑥2)1/2 sin (𝑛cos−1 𝑥)                 …(2.22) 

and 



𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) =

𝑑
𝑑𝑥 �

𝑑
𝑑𝑥

𝑇𝑛(𝑥)� = 𝑛
𝑑
𝑑𝑥

�(1 − 𝑥2)−1/2sin (𝑛cos−1 𝑥)�

                    = 𝑛

⎣
⎢
⎢
⎡ −

1
2

(1 − 𝑥2)−
3
2(−2𝑥) ⋅ sin(𝑛 cos−1 𝑥)

+(1 − 𝑥2)−1/2cos (𝑛cos−1 ⋅ 𝑥) ⋅ 𝑛 ⋅
1

(1 − 𝑥2)1/2⎦
⎥
⎥
⎤  

Thus,  𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) = 𝑛𝑥

(1−𝑥2)3/2 sin (𝑛cos−1 𝑥) − 𝑛2

1−𝑥2
cos (𝑛cos−1 𝑥).            …(2.23) 

Using (2.21), (2.22), and (2.23), we have 

    
(1 − 𝑥2)

𝑑2

𝑑𝑥2
𝑇𝑛(𝑥) − 𝑥

𝑑
𝑑𝑥

𝑇𝑛(𝑥) + 𝑛2𝑇𝑛(𝑥)                

     =
𝑛𝑥

(1 − 𝑥2)
1
2

sin(𝑛 cos−1 𝑥) − 𝑛2 cos(𝑛 cos−1 𝑥)
 

           −
𝑛𝑥

(1 − 𝑥2)1/2 sin (𝑛cos−1 𝑥) + 𝑛cos (𝑛cos−1 𝑥) 

                              = 0 

showing that 𝑇𝑛(𝑥) is a solution of (2.20). 

ORTHOGONAL PROPERTY OF CHEBYSHEV POLYNOMIALS 

Show that 

                        ∫−1
1  𝑇𝑚(𝑥)𝑇𝑛(𝑥)

�(1−𝑥2)
𝑑𝑥 = �

0,𝑚 ≠ 𝑛
𝜋/2,𝑚 = 𝑛 ≠ 0
𝜋,𝑚 = 𝑛 = 0

 

Proof. We have, by definition 
𝑇𝑚(𝑥) = cos (𝑚cos−1 𝑥)  and  𝑇𝑛(𝑥) = cos (𝑛cos−1 𝑥).

∴ 𝑇𝑚(cos 𝜃) = cos (𝑚cos−1 cos 𝜃) = cos 𝑚𝜃

 Let  𝐼 = �  
1

−1
 
𝑇𝑚(𝑥)𝑇𝑛(𝑥)
�(1 − 𝑥2)

𝑑𝑥.                                                                                      … (2.24)                       
 

Putting 𝑥 = cos 𝜃 so that 𝑑𝑥 = −sin 𝜃𝑑𝜃 and (2.24), reduces to 



𝐼 = �  
0

𝜋

cos 𝑚𝜃cos 𝑛𝜃
sin 𝜃

(−sin 𝜃)𝑑𝜃  or  𝐼 = �  
0

𝜋
cos 𝑚𝜃cos 𝑛𝜃𝑑𝜃 

Case 1.  Let 𝑚 ≠ 𝑛 so that (𝑚 − 𝑛) ≠ 0. then, (2.24) gives 

𝐼 =
1
2
∫0
𝜋 2cos 𝑚𝜃cos 𝑛𝜃𝑑𝜃 =

1
2
∫0
𝜋 [cos (𝑚 + 𝑛)𝜃 + cos (𝑚 − 𝑛)𝜃]𝑑𝜃

=
1
2
�
sin (𝑚 + 𝑛)𝜃

𝑚 + 𝑛
+

sin (𝑚− 𝑛)𝜃
𝑚 − 𝑛

�
0

𝜋

= 0 

Case 2. Let 𝑚 = 𝑛 ≠ 0. Then (2.24) gives 

𝐼 = �  
𝜋

0
cos2 𝑚𝜃𝑑𝜃 = �  

𝜋

0

1 + cos 2𝑚𝜃
2

𝑑𝜃 =
1
2
�𝜃 +

sin 2𝑚𝜃
2𝑚

�
0

𝜋

=
𝜋
2

. 

Case 3. Let 𝑚 = 𝑛 = 0. Then cos 𝑚𝜃 = cos 𝑛𝜃 = 1. Then (2.24) gives 

𝐼 = �  
𝜋

0
(1)(1)𝑑𝑥 = [𝜃]0𝜋 = 𝜋 

From cases 1, 2, and 3, the required result follows. 

Example 2.7 Show that  𝑇𝑛(𝑥) = (1/2) × ��𝑥 + 𝑖(1 − 𝑥2)1/2�𝑛 + �𝑥 − 𝑖(1 − 𝑥2)1/2�𝑛�. 

Solution: Putting 𝑥 = cos 𝜃, and using the definition, we have 

𝑇𝑛(𝑥) = cos (𝑛cos−1 𝑥), = cos (𝑛cos−1 cos 𝜃) = cos 𝑛𝜃 = �𝑒𝑖𝑛𝜃 + 𝑒−𝑖𝑛𝜃�/2
 = (1/2) × ��𝑒𝑖𝜃�𝑛 + �𝑒−𝑖𝜃�𝑛� = (1/2) × {(cos 𝜃 + 𝑖sin 𝜃)𝑛 + (cos 𝜃 − 𝑖sin 𝜃)𝑛}

 = (1/2) × ��cos 𝜃 + 𝑖(1 − cos2 𝜃)1/2�𝑛 + �cos 𝜃 − 𝑖(1 − cos2 𝜃)1/2�𝑛�
 = (1/2) × ��𝑥 + 𝑖(1 − 𝑥2)1/2�𝑛 + �𝑥 − 𝑖(1 − 𝑥2)1/2�𝑛�, as 𝑥 = cos 𝜃

 

Example 2.8 Show that 𝑇𝑚{𝑇𝑛(𝑥)} = 𝑇𝑛{𝑇𝑚(𝑥)} = 𝑇𝑛𝑚(𝑥). 

Solution:  We have, by definition 

𝑇𝑚{𝑇𝑛(𝑥)}  = 𝑇𝑚[cos (𝑛cos−1 𝑥)]
 = cos [𝑚cos−1 {cos (𝑛cos−1 𝑥)}], by definition again 
 = cos(𝑛𝑚 cos−1 𝑥).                                                                                      … (2.25)

 



Again, 𝑇𝑛{𝑇𝑚(𝑥)} = 𝑇𝑛[cos (𝑚cos−1 𝑥)], by definition 

= cos [𝑛cos−1 {cos (𝑚cos−1 𝑥)}], by definition again 

= cos (𝑛𝑚cos−1 𝑥),                   …(2.26) 

Finally, 

  𝑇𝑚𝑛(𝑥) = cos (𝑚𝑛cos−1 𝑥), by definition                 …(2.27) 

From (2.25), (2.26), and (2.27), we get the required result. 

2.5   CHECK YOUR PROGRESS 
 

1. Fit a straight line by the method of least squares to the data: 

𝑥: 1 2 3 4 5 

𝑦: 14 27 40 55 68 
2. Fit a least square geometric curve 𝑦 = 𝑎𝑥6 to the data: 

𝑥: 1 2 3 4 5 

𝑦: 0.5 2 4.5 8 12.5 
 

3. Use the method of least squares to fit a relation of the form 𝑦 = 𝑎𝑏𝑥 to the data : 

𝑥: 2 3 4 5 6 

𝑦: 144 172.8 207.4 248.8 298.5 
4. Find the parabola of the form 𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 which fits most closely with the 

observations: 

𝑥: -3 2 -1 0 1 2 3 

𝑦: 4.63 2.11 0.67 0.09 0.63 2.15 4.58 
5. Obtain the natural cubic spline which agrees with 𝑦(𝑥) at the set of data points: 

𝑥: 2 3 4 



𝑦: 11 49 12 
 

      Hence compute 𝑦(2.5) and 𝑦′(2) 

6. Determine the cubic spline valid in the interval ⌊𝑥𝑖−1, 𝑥1⌋ for the following data: 

𝑥 6.2 6.5 

𝑦 = 𝑥log 𝑥 11.3119 14.1014 
 

2.6 SUMMARY  

• The students are made familiar with the approximation of functions. 

• Different types of approximation have been developed for the functions. 

 

2.7 KEYWORDS 

Approximation, Least Square method, Spline interpolation, Chebyshev’s approximation   

2.8 SELF-ASSESSMENT TEST  

1. Show that 

                            𝑇𝑚+𝑛(𝑥) + 𝑇𝑚−𝑛(𝑥) = 2𝑇𝑚(𝑥)𝑇𝑛(𝑥). 

2. and  

2{𝑇𝑛(𝑥)}2 = 1 + 𝑇2𝑛(𝑥).  

3. Show that the set of Chebyshev polynomials 𝑇𝑛(𝑥) = cos (𝑛 cos−1 𝑥), (n =

     0,1,2 ….)𝑖𝑠 orthogonal on the interval (−1,1) with respect to the weight function 

   𝑝(𝑥) = 1/(1 − 𝑥2)1/2. 

4.  Show that Chebyshev's polynomials 𝑇𝑛(𝑥) = cos (𝑛cos−1 𝑥) are solutions of 

5. (1 − 𝑥2)(𝑑2𝑦/𝑑𝑥2) − 𝑥(𝑑𝑦/𝑑𝑥) + 𝑛2𝑦 = 0. 

6. Prove that 𝑇𝑛(𝑥) − 2𝑥𝑇𝑛−1(𝑥) + 𝑇𝑛−2(𝑥) = 0 

  

2.9 ANSWERS TO CHECK YOUR PROGRESS   

1. y = 13.6x  



2. a = 0.5012, b = 1.9977 

3. a = 99.86, b = 1.2 

4. y = 1.243 − 0.004x + 0.22x2 

5. y(x) = � 3x2 − 9x2 + 11x − 11           2 ≤ x ≤ 3 
−3x2 + 27x2 − 61x + 37         3 ≤ x ≤ 4      

 

y(2.5) = −4.625, y′(2) = 11 
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3.0 LEARNING OBJECTIVES  
• This chapter will be devoted to explaining the main concepts of the numerical 

differentiation of functions.  

• Some methods concerning the numerical differentiation of the functions will be 

established.  

 

3.1 INTRODUCTION   
The process, by which we can find the derivative of a function at some assigned value of the 

independent variable when we are given a set of values of that function, is called "numerical 

differentiation". The problems of numerical differentiation are solved by first approximating 

the function by an interpolating formula and then differentiating this formula as many times 

as desired. In case the values of the argument are equally spaced, and we desire to find the 



derivatives of the function at a point near the beginning (end) of a set of tabular values, we 

use Newton Gregory's forward (backward) formula. To find the derivative at a point near 

the middle of the table, we should use a central different formula. For calculating the 

derivatives of a function whose argument values are unequally spaced, we should use 

Newton's divided difference formula to represent the function. While using these formulae, 

it must be observed that the table of values defines the function at these points only and does 

not completely define the function hence the function may not be differentiable at all. As 

such the process of numerical differentiation should be used only if the tabulated values are 

such that the differences of the same order are constants. Otherwise, errors are bound to 

creep in which go on to increase as derivatives of higher order are found. This is because the 

difference between the actual function 𝑓(𝑥) and the approximating polynomial 𝜙(𝑥) may be 

small at the data points but 𝑓′(𝑥) − 𝜙′(𝑥) maybe large. 

3.2 NUMERICAL DIFFERENTIATION 
The general method for deriving the numerical differentiation formula is to differentiate the 

interpolating polynomial. We illustrate the derivation with Newton's forward formula only 

because the method of derivation about other formulae is the same. Consider the function 

𝑦 = 𝑓(𝑥) which is tabulated for the values 𝑥𝑖(= 𝑥0 + 𝑖ℎ), i = 0,1,2,3, … n. Then Newton's 

forward difference formula is given by 

𝑦 = 𝑦0 + 𝑢Δ𝑦0 +
𝑢(𝑢 − 1)

2!
Δ2𝑦0 +

𝑢(𝑢 − 1)(𝑢 − 2)
3!

Δ3𝑦0 + ⋯ 

where 𝑥 = 𝑥0 + 𝑢ℎ. 

Then 

𝑑𝑦
𝑑𝑥

=
𝑑𝑦
𝑑𝑢

𝑑𝑢
𝑑𝑥

 =
1
ℎ
𝑑
𝑑𝑢 �

𝑦0 + 𝑢Δ𝑦0 +
𝑢2 − 𝑢

2!
Δ2𝑦0 +

𝑢3 − 3𝑢2 + 2𝑢
3!

Δ3𝑦0 + ⋯

 =
1
ℎ �
Δ𝑦0 +

2𝑢 − 1
2!

Δ2𝑦0 +
3𝑢2 − 6𝑢 + 2

3!
Δ3𝑦0 + ⋯                    … (3.1)         

𝑑2𝑦
𝑑𝑥2

=
1
ℎ
𝑑
𝑑𝑢 �

𝑑𝑦
𝑑𝑥�

 =
1
ℎ
𝑑
𝑑𝑢 �

1
ℎ
�Δ𝑦0 +

2𝑢 − 1
2!

Δ2𝑦0 +
3𝑢2 − 6𝑢 + 2

3!
Δ3𝑦0 + ⋯��

 =
1
ℎ2 �

Δ2𝑦0 +
6𝑢 − 6

3!
Δ3𝑦0 +

12𝑢2 − 36𝑢 + 22
4!

Δ4𝑦0 + ⋯        … (3.2)

 



The formulae (3.1) and (3.2) are used for computing the values of 𝑑𝑦
𝑑𝑥

 and 𝑑
2𝑦

𝑑𝑥2
 for 

nontabulated values of 𝑥 respectively. For tabular values of 𝑥, these formulae take simple 

forms, for by setting 𝑥 = 𝑥0, we obtain 𝑢 = 0 and hence expressions (3.1) and (3.2) give us 

�
𝑑𝑦
𝑑𝑥
�
𝑥=𝑥0

=
1
ℎ
�Δ𝑦0 −

1
2
Δ2𝑦0 +

1
3
Δ3𝑦0 −

1
4
Δ4𝑦0 + ⋯� 

and 

�
𝑑2𝑦
𝑑𝑥2�𝑥=𝑥0

=
1
ℎ2
�Δ2𝑦0 − Δ3𝑦0 +

11
12

Δ4𝑦0 −
5
6
Δ5𝑦0 + ⋯� 

The higher derivates may be computed from the formulae, which can be obtained by 

successive differentiation. Alternatively, we know that 1 + Δ = 𝐸 = 𝑒ℎ𝐷 which implies that 

𝐷 =
1
ℎ

log (1 + Δ) =
1
ℎ
�Δ −

1
2
Δ2 +

1
3
Δ3 −

1
4
Δ4 + ⋯� 

and 

𝐷2 =
1
ℎ2
�Δ −

1
2
Δ2 +

1
3
Δ3 −

1
4
Δ4 + ⋯�

2

=
1
ℎ2
�Δ2 − Δ3 +

11
12

Δ4 + ⋯� 

and so on higher order derivatives formulae can be obtained by applying these identities to 

𝑦0. Similarly, different formulae can be derived by interpolation formulae 

(a) Newton's backward difference formula 

𝑑𝑦
𝑑𝑥

=
1
ℎ �
∇𝑦𝑛 +

2𝑢 + 1
2!

∇2𝑦𝑛 +
3𝑢2 + 6𝑢 + 2

3!
∇3𝑦𝑛 + ⋯� 

and 

𝑑2𝑦
𝑑𝑥2

=
1
ℎ2

= �∇2𝑦𝑛 +
6𝑢 + 6

3!
∇3𝑦𝑛 +

12𝑢2 + 36𝑢 + 22
4!

∇4𝑦𝑛 + ⋯� 

for non-tabular values of 𝑥, where 𝑥 = 𝑥𝑛 + 𝑢ℎ. For tabular values, we obtain. 

�
𝑑𝑦
𝑑𝑥
�
𝑥=𝑥𝑛

=
1
ℎ
�∇𝑦𝑛 +

1
2
∇2𝑦𝑛 +

1
3
∇3𝑦𝑛 + ⋯�

�
𝑑2𝑦
𝑑𝑥2�𝑥=𝑥𝑛

=
1
ℎ2
�∇2𝑦𝑛 + ∇3𝑦𝑛 +

11
12

∇4𝑦𝑛 +
5
6
∇5𝑦𝑛 + ⋯�                                       … (3.3)

 

Alternatively, we also know that 1 − ∇= 𝐸−1 = 𝑒−ℎ𝐷 which implies that 

⇒  𝐷 = −
1
ℎ

log (1 − ∇) =
1
ℎ
�∇ +

1
2
∇2 +

1
3
∇3 +

1
4
∇4 + ⋯� 



and 

𝐷2 =
1
ℎ2
�∇ +

1
2
∇2 +

1
3
∇3 +

1
4
∇4 + ⋯�

2

=
1
ℎ2
�∇2 + ∇3 +

11
12

∇4 + ⋯� 

and so on. Applying these identities to 𝑦𝑛, we get a formula similar to (3.3) 

(b) Stirling's formula 

𝑦 = 𝑦0 +
𝑢
1! �

Δ𝑦0 + Δ𝑦 − 1
2 � +

𝑢2

2!
Δ2𝑦−1 +

𝑢(𝑢2 − 12)
3!

�
Δ3𝑦−1 + Δ3𝑦−2

2
�

+
𝑢2(𝑢2 − 12)

4!
Δ4𝑦−2 + ⋯ 

where 𝑥 = 𝑥0 + 𝑢ℎ. 

Differentiating, we get 

𝑑𝑦
𝑑𝑥

=
1
ℎ ��

Δ𝑦0 + Δ𝑦−1
2 � + 𝑢Δ2𝑦−1 +

3𝑢2 − 1
3!

�
Δ3𝑦−1 + Δ3𝑦−2

2
� +

4𝑢3 − 2𝑢
4!

Δ4𝑦−2 + ⋯� 

At 𝑥 = 𝑥0,𝑢 = 0, we get 

    �𝑑𝑦
𝑑𝑥
� = 1

ℎ
��Δ𝑦0+Δ𝑦−1

2
� − 1

6
�Δ

3𝑦−1+Δ3𝑦−2
2

� + 1
30
�Δ

5𝑦−2+Δ5𝑦−3
2

� + ⋯�                        …(3.4) 

Similarly, 

      �𝑑
2𝑦

𝑑𝑥2
�
𝑥=𝑥0

= 1
ℎ2
�Δ2𝑦−1 −

1
12
Δ4𝑦−2 + 1

90
Δ6𝑦−3 + ⋯�                                 …(3.5) 

We can similarly also use other interpolation formulae for computing the derivatives. 

Example 3.1  Given that 

𝑥: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

𝑦: 7.989 8.403 8.781 9.129 9.451 9.750 10.031 
 

Find 𝑑𝑦
𝑑𝑥

 and 𝑑
2𝑦

𝑑𝑥2
 at 𝑥 = 1.1  

Solution: The difference table is 

     𝑥        𝑦 ∆       ∆2 
 

  ∆3   ∆4   ∆5   ∆6 

1.0 7.989       
  0.414      
1.1 8.403  -0.036     
  0.378  0.006    
1.2 8.781  -0.030  -0.002   
  0.348  0.004  0.002  



1.3 9.129  -0.026  0.000  -0.001 
  0.322  0.004  0.001  
1.4 9.451  -0.023  0.001   
  0.299  0.005    
1.5 9.750  -0.018     
  0.281      
1.6 10.031       
 

Here ℎ = 0.1 and 𝑥0 = 1.1. Therefore at 𝑥 = 1.1 we get. 

�
𝑑𝑦
𝑑𝑥
�
𝑥=1.1

=
1

0.1
�0.378 −

1
2

(−0.03) +
1
3

(0.004) −
1
4

(0) +
1
5

(0.001)� = 3.946

�
𝑑2𝑦
𝑑𝑥2�𝑥=1.1

=
1

(0.1)2
�−0.03 − (0.004) +

11
12

(0) −
5
6

(0.001)� = 3.545
 

3.3 ERRORS IN NUMERICAL DIFFERENTIATION 
There are two types of errors, viz. Truncation errors and round-off errors, which generally 

occur in the numerical computation of derivatives. The truncation error is caused by 

replacing the tabulated function with an interpolation polynomial. This error can usually be 

estimated by a formula of error estimation in polynomial interpolation. However, the 

truncation error in any numerical differentiation formula can easily be estimated as below. 

Suppose that the tabulated function is such that its differences of a certain order are small 

and that the tabulated function is well approximated by the polynomial. We consider, for 

example, Stirling's formula (3.4), which can be written in the form 

        �𝑑𝑦
𝑑𝑥
�
𝑥=𝑥0

= Δ𝑦−1+Δ𝑦0
2ℎ

+ 𝑇1 = 𝑦1−𝑦−1
2ℎ

+ 𝑇1          

…(3.6) 

where 𝑇1 the truncation error is given by 

        𝑇1 = 1
6ℎ
�Δ

3𝑦−2+Δ3𝑦−1
2

�            …(3.7) 

Similarly, formula (3.5) leads to 

�
𝑑2𝑦
𝑑𝑥2�𝑥=𝑥0

=
1
ℎ2
Δ2𝑦−1 + 𝑇2 

where 

            𝑇2 = 1
12ℎ2

|Δ4𝑦−2|            …(3.8) 



The round-off error, on the other hand, is inversely proportional to ℎ in the case of first-

order derivatives and inversely proportional to ℎ2 in the case of second-order derivatives 

and so on. Thus the round-off error increases as ℎ decreases. In the case of Stirling's formula 

(3.6), the roundoff error does not exceed 2 ∈/2ℎ = 𝜖/ℎ, where ∈ the maximum error in the 

value is 𝑦𝑖. On the other hand the formula (3.4) viz. 

      �𝑑𝑦
𝑑𝑥
�
𝑥=0.𝑥0

= Δ𝑦−1+Δ𝑦0
2ℎ

− Δ3𝑦−2+Δ3𝑦−1
12ℎ

+ ⋯ = 𝑦−2−8𝑦−1+8𝑦1−𝑦2
12ℎ

+ ⋯      …(3.9) 

has the maximum rounding error 18𝜖
12ℎ

= 3𝜖
2ℎ

, whereas the formula (3.5) 

         �𝑑
2𝑦

𝑑𝑥2
�
𝑥=𝑥0

= Δ2𝑦−1
ℎ2

+ ⋯ = 𝑦−1−2𝑦0+𝑦1
ℎ2

+ ⋯       …(3.10) 

has the maximum rounding error 4𝜖
ℎ2

. This shows that in the case of higher derivatives, the 

round-off error in cases is rather rapid. 

Example 3.2 Estimate the errors in the values of 𝑑𝑦
𝑑𝑥

 and 𝑑
2𝑦

𝑑𝑥2
 at 𝑥 = 1.6 for the data given  

𝑥: 1.0 1.2 1.4 1.6 1.8 2.0 2.2 

𝑦: 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250 
 

Solution: Form equation (3.7), we have 

Truncation error = 1
6ℎ
�Δ

3𝑦−1−Δ3𝑦0
2

� = 1
6(0.2)

00361+0.0441
2

= 0.03342. 

Also from equation (3.9), we have 

Round-off error = 3𝜖
2ℎ

= 3(0.5)10−4

2(0.2)
= 0.00038, 

Here ∈< 0.00005 = 0.5 × 10−4. 

∴ Total error = 0.03342 + 0.00038 = 0.0338 

From Stirling's formula (3.6) with first-order differences, we get 

�
𝑑𝑦
𝑑𝑥�𝑥=1.6

=
Δ𝑦−1 + Δ𝑦𝑜

2ℎ
=

0.8978 + 1.0966
0.4

=
1.9944

0.4
= 4.9860 

The exact value is 4.9530 as the tabulated function is 𝑒𝑥 so that the error in the above 

solution is (4.9.860 − 4.9530) = 0.0330, which agrees with the total error obtained above. 

Using (3.10), we obtain 



�
𝑑2𝑦
𝑑𝑥2

�
𝑥=1.6

=
Δ2𝑦 − 1
ℎ2

=
0.1988

0.04
= 4.9700 

so that error = 4.9700 − 4.9530 = 0.0170. 

Also, the truncation error = 1
12ℎ2

|Δ4𝑦−2| = 1
12(0.04)

0.0080 = 0.01667 

and the round-off error = 4𝜖
ℎ2

= 4×0.5×10−4

0.04
= 0.0050. 

Hence, total error in �𝑑
2𝑦

𝑑𝑥2
�
𝑥=1.6

= 0.0167 + 0.0050 = 0.0217 

3.4 Maximum and minimum values of a tabulated function 
Consider Newton's forward difference formula 

𝑦 = 𝑦0 + 𝑝Δ𝑦0 +
𝑝(𝑝 − 1)

2
Δ2𝑦0 +

𝑝(𝑝 − 1)(𝑝 − 2)
6

Δ3𝑦0 + ⋯ 

Differentiating with respect to 𝑝 we get 

𝑑𝑦
𝑑𝑝

= Δ𝑦0 +
2𝑝 − 1

2
Δ2𝑦0 +

3𝑝2 − 6𝑝 + 2
6

Δ3𝑦0 + ⋯ 

We know that for maxima or minima 𝑑𝑦
𝑑𝑝

= 0. Hence, terminating the right-hand side for 

simplicity, after the third-order differences and equating it to zero, we obtain 

where 

𝑐0 + 𝑐1𝑝 + 𝑐2𝑝2 = 0                                                                                                     … (3.11)

𝑐0 = Δ𝑦0 −
1
2
Δ2𝑦0 +

1
3
Δ3𝑦0

𝑐1 = Δ2𝑦0 − Δ3𝑦0

𝑐2 =
1
2
Δ3𝑦0

 

The equation (3.11) being a quadratic, can be solved for 𝑝 and the corresponding values of 𝑥 

are then found from 𝑥 = 𝑥0 + 𝑝ℎ, at which 𝑦 is maximum or minimum. 

 

Example 3.3 Find the minimum values of y from the table 
x: 3 4 5 6⋅ 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224 

Solution: The difference table is 

 



𝑥 𝑦  ∆ Δ2 Δ3 Δ4 Δ5 

3 0.205              

   0.035     

4 0.240   -0.016    

   0.019  0.000   

5 0.259   -0.016  0.001  

    0.003  0.001  -0.001 

6 0.262   -0.015  0.000  

   -0.012  0.001   

7 0.250   -0.014    

   -0.026     

8 0.224       
 

Taking 𝑥0 = 3 and ℎ = 1, Newton's forward difference formula gives us 

       𝑦 = 0.205 + 𝑝(0.035) + 𝑝(𝑝−1)
2

(−0.016)     …(3.12) 

Differentiating this with respect to 𝑝, we get 
𝑑𝑦
𝑑𝑝

= 0.035 +
2𝑝 − 1

2
(−0.016) 

For 𝑦 to be minimum, 𝑑𝑦
𝑑𝑝

= 0, which implies that 𝑝 = 2.6875 

∴  𝑥 = 𝑥0 + 𝑝ℎ = 3 + 2.6875(1) = 5.6875 

Using the values in equation (3.12) we get 

𝑦min = 0.205 + 2.6875(0.035) +
1
2

(2.6875)(1.6875)(−0.016) = 0.2628 

Example 3.4 Find the maximum value of 𝑓(𝑥) in the range of 𝑥 from the following table 

of values 

𝑥: 60 75 90 105 120 

𝑓(𝑥): 28.2 38.2 43.2 40.9 37.7 
 

Solution: The difference table is 



𝑥 𝑦 = 𝑓(𝑥) Δ Δ2 Δ3 Δ4 

60 28.2     

  10.0    

75 38.2  -5.0   

  5.0  -2.3  

90 43.2  −7.3  8.7 

  -2.3  6.4  

105 40.9  -0.9   

  -3.2    

120 37.7     
 

From Stirling's formula, we have 

𝑦 = 𝑓(𝑥) = 𝑦0 + 𝑝
1!
�Δ𝑦0+Δ𝑦−1

2
� + 𝑝2

2!
Δ2𝑦−1 + 𝑝�𝑝2−1�

3!
�Δ

3𝑦−1+Δ3𝑦−2
2

� + 𝑝2�𝑝2−1�
4!

Δ4𝑦−2 + ⋯

           …(3.13) 

where 𝑥 = 𝑥0 + 𝑝ℎ and 𝑦0 = 𝑓(𝑥0), 𝑥0 = 90 and ℎ = 15. 

Therefore, we have 
𝑑𝑦
𝑑𝑥

=
𝑑𝑦
𝑑𝑝

⋅
𝑑𝑝
𝑑𝑥

=
1
ℎ
𝑑𝑦
𝑑𝑝

 

To have 𝑦 = 𝑓(𝑥) maximum, we solve the equation 

𝑑𝑦
𝑑𝑥

= 𝑓′(𝑥) = 0 ⇒
𝑑𝑦
𝑑𝑝

= 0 ⇒ 𝑓′(𝑝) = 0.  

i.e. 

Δ𝑦0 + Δ𝑦−1
2

+
2𝑝
2!
Δ2𝑦−1 +

3𝑝2 − 1
3!

Δ3𝑦−1 + Δ3𝑦 − 2
2

+
4𝑝3 − 24

4!
Δ4𝑦−2 = 0

17.4𝑝3 + 12.3𝑝2 − 96.3𝑝 + 12.10 = 0
 

Solving this equation by the Newton-Raphson method, we have 𝑝 = 0.128126 

∴  𝑥 = 90 + 15𝑝 = 90 + 15(0.128126) = 91.92189 

Using these values of 𝑥 and 𝑝 in (3.13), we get 

𝑦max = 𝑓(91.92189) = 43.2641 

which is the required maximum value of 𝑓(𝑥). 



Example 3.5 From the following table find the maximum value of 𝑦 correct to two 

decimal places 

𝑥: 1,2 1.3 1.4 1.5 1.6 

𝑦: 0.9320 0.9636 0.9855 0.9975 0.9996 
 

Solution: The difference table is 

𝑥 𝑦 Δ Δ2 Δ3 Δ4 

1.2 0.9320     

  0.0316    

1.3 0.9636  −0.0097   

  0.0219  −0.0002  

1.4 0.9855  −0.0099  0.0002 

  0.0120  0.0000  

1.5 0.9975  −0.0099   

  0.0021    

1.6 0.9996     
 

Let 𝑥0 = 1.2. Thus from Newton's forward difference formula, we have 

0 = 0.0316 +
2𝑝 − 1

2
(−0.0097) 

⇒  𝑝 = 3.8 

∴  𝑥 = 𝑥0 + 𝑝ℎ = 1.2 + (3.8)(0.1) = 1.58 

For this values of 𝑥, Newton's backward difference formula at 𝑥𝑛 = 1.6, gives us 

𝑦(1.58)  = 0.9996 − 0.2(0.0021) +
−0.2(−0.2 + 1)

2
(−0.0099)

 = 0.9996 − 0.0004 + 0.0008 = 1.0
 

which is the required maximum value. 

 

 
3.5 CHECK YOUR PROGRESS  



1. Given that  

 x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6 

 y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031 

find 𝑑𝑦
𝑑𝑥

 dx and 𝑑
2𝑦

𝑑𝑥2
  at (a) x = 1.1 (b) x = 1.6. 

2. Find the value of cos (1.74) from the following table:  

     X 1.7 1.74 1.78 1.82 1.86 

Sin x 0.9916 0.9857 0.9781 0.9691 0.9584 

  

3. A slider in a machine moves along a fixed straight rod. Its distance x cm. along the 

rod is given below for various values of the time t seconds. Find the velocity of the 

slider and its acceleration when t = 0.3 seconds. 

 t:                           0 0.1 0.2 0.3 0.4 0.5 0.6 

 x: 30.13 31.62 32.87 3364 33.95 33.81 33.24 

 

4. The elevation above a datum line of seven points of a road is given below:  

x:                           0 300 600 900 1200 1500 1800 

y: 135      149 157 183 201 205 193 

Find the gradient of the road at the middle point. 

 

5. From the table below, for what value of x, y is minimum? Also, find this value of y. 

x:                           3 4 5 6 7 8 

y: 0.205      0.240     0.259      0.262     0.250       0.224 

 

3.6 SUMMARY  
 The students are made familiar with some preliminary definitions and fundamental 

results of numerical differentiation of various functions. 

 Application of the numerical differentiation of the functions has been developed. 



 Lastly, maxima-minima and partial differentiation of the function have been 

explained in detail.  

 

3.7 KEYWORDS 
Numerical Differentiation, maxima-minima of tabulated function, Optimum choice of step 

Length, partial differentiation, Methods Based on Undetermined Coefficients. 

3.8 SELF-ASSESSMENT TEST   
1. Find the first, second, and third derivatives of f(x) at x = 1.5 if  

X 1.5 2.0 2.5 3.0 3.5 4.0 
f(x) 3.375 7.000 13.625 24.000 38.875 59.000 
 

2. Find the first and second derivatives of the function tabulated below, at the point x = 

1.1: 

 

X 1.0 1.2 1.4 1.6 1.8 2.0 
f(x) 0.000 0.128 0.544 1.296 2.432 4.000 
   

3. Given the following table of values of x and y  

X 1.00 1.05 1.10 1.15 1.20 1.25 1.30 
Y 1.000 1.025 1.049 1.072 1.095 1.118 1.140 

            find dy/dx and d2y/dx2 at (a) x = 1.05. (b) x = 1.25 (c) x = 1.15.  

4. For the following values of x and y, find the first derivative at x = 4.  

 X 1 2 4 8 10 
Y 0 1 5 21 27 
 

5. Find the derivative of f(x) at x = 0.4 from the following table:  

X 0.1 0.2 0.3 0.4 
f(x) 1.10517 1.22140 1.34986 1.49182 
 

6. From the following table, find the values of dy/dx and d2y/dx2 at x = 2.03.  

X 1.96 1.98 2.00 2.02 2.04 
Y 0.7825 0.7739 0.7651 0.7563 0.7473 

7. Using the following data, find x for which y is the minimum and find this value of y.  

 



x:  0.60         0.65         0.70        0.75  
y: 0.6221     0.6155     0.6138    0.6170  

8. Find the value of x for which f (x) is maximum, using the table 

    x:      9           10        11        12          13          14  
f (x):      1330    1340    1320     1250     1120      930    

      Also, find the maximum value of f (x). 

3.9 ANSWERS TO CHECK YOUR PROGRESS  
1. 3.952, -3.74 (ii) 2.75, -0.715  

2. 0.175 

3. The required velocity is 5.33 cm/sec and acceleration is – 45.6 cm/sec2. 

4. The gradient of the road at the middle point is 0.085. 

5. y is minimum when x = 5.6875, y = 0.2628 
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4.0 LEARNING OBJECTIVES  

• This chapter will be devoted to explaining the main concepts of the numerical integration 

of functions.  

• Some methods concerning the numerical integration of the functions will be established.  

 

4.1 INTRODUCTION 
Numerical integration is primary tool used by engineers and scientists to obtain approximate 

answers for definite integrals that cannot be solved analytically. The process of evaluating a 

definite integral from a set of tabulated values of the integrand 𝑦 = 𝑓(𝑥) is called numerical 

integration. The general problem of numerical integration may be stated as follows: 

Given a set of data points (𝑥𝑖 ,𝑦𝑖), 𝑖 = 0,1,2,3, … n of a function 𝑦 = 𝑓(𝑥), where 𝑓(𝑥) is not 

known explicitly, it is required to compute the value of the definite integral 

                                                  𝐼 = ∫  𝑏𝑎 𝑦𝑑𝑥       …(4.1) 

As in the case of numerical differentiation, we here again replace 𝑦 = 𝑓(𝑥), by an interpolating 

polynomial 𝜙(𝑥) in order to obtain an approximate value of the definite integral. Thus different 

integration formulae can be obtained depending upon the type of the interpolation formula used. 

Here we derive a general formula for numerical integration by using Newton's forward 

difference formula. Let the interval [𝑎, 𝑏] be divided into 𝑛 - equal subintervals such that 

𝑎 = 𝑥0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 = 𝑏, with 𝑥𝑛 = 𝑥0 + 𝑛ℎ,ℎ =
𝑏 − 𝑎
𝑛

 

Hence, the integral (4.1) becomes 

𝐼 = �  
𝑥𝑛

𝑥0
𝑦𝑑𝑥 

Using Newton's forward difference formula, we get 



𝐼  = �  
𝑥𝑛

𝑥0
 �𝑦0 + 𝑝Δ𝑦0 +

𝑝(𝑝 − 1)
2!

Δ2𝑦0 +
𝑝(𝑝 − 1)(𝑝 − 2)

3!
Δ3𝑦0 + ⋯�𝑑𝑥, where 𝑥 = 𝑥0 + 𝑝ℎ.

 = ℎ�  
𝑛

0
 �𝑦0 + 𝑝Δ𝑦0 +

𝑝2 − 𝑝
2

Δ2𝑦0 +
𝑝3 − 3𝑝2 + 2𝑝

6
Δ3𝑦0 + ⋯�𝑑𝑝

 

Therefore, on simplification, we have 

             𝐼 = ∫  𝑥𝑛
𝑥0

𝑦𝑑𝑥 = 𝑛ℎ �𝑦0 + 𝑛
2
Δ𝑦0 + 𝑛(2𝑛−3)

12
Δ2𝑦𝑜 + 𝑛(𝑛−2)2

24
Δ3𝑦𝑜 + ⋯�  …(4.2) 

From the general formula (4.2), we can find different integration formulae by putting 𝑛 = 1,2, 

3... etc. This formula is also knows as Newton's -cotes closed quadrature formula. 

4.2.0 TRAPEZOIDAL RULE 

Putting 𝑛 = 1 in (4.2) and taking the curve 𝑦 = 𝑓(𝑥) through the points (𝑥0,𝑦0) and (𝑥1, 𝑦1) as 

a straight line i.e. a polynomial of first degree so that differences of order higher than first 

become zero, we get 

11 = �  
𝑥1

𝑥0
𝑦𝑑𝑥 = ℎ �𝑦0 +

1
2
Δ𝑦0� = ℎ �𝑦0 +

1
2

(𝑦1 − 𝑦0)� =
ℎ
2

(𝑦0 + 𝑦1) 

Similarly,  𝐼2 = ∫𝑥1
𝑥2  𝑦𝑑𝑥 = ℎ

2
(𝑦1 + 𝑦2) 

𝐼3 = �  
𝑥3

𝑥2
𝑦𝑑𝑥 =

ℎ
2

(𝑦2 + 𝑦3) 

and so on. In general, we get 

𝐼𝑛 = �  
𝑥𝑛

𝑥𝑛−1
𝑦𝑑𝑥 =

ℎ
2

(𝑦𝑛−1 + 𝑦𝑛) 

Adding all these expressions and using interval additive property of the definite integrals, we 

obtain. 

𝐼 = � 
𝑛

𝑖=1

𝐼𝑖 = �  
𝑥𝑛

𝑥0
𝑦𝑑𝑥 =

ℎ
2

[𝑦0 + 2(𝑦1 + 𝑦2 + 𝑦3 + ⋯+ 𝑦𝑛−1) + 𝑦𝑛] =
ℎ
2

(𝑋 + 2𝐼) 



where 𝑋 = sum of end ordinates, 𝐼 = sum of intermediate ordinates. This expression is known as 

the trapezoidal rule. Geometrically this rule signifies that the curve 𝑦 = 𝑓(𝑥) is replaced by 𝑛 

straight lines joining the points (𝑥𝑖 ,𝑦𝑖), 𝑖 = 0,1,2,3, …𝑛. The area bounded by the curve 𝑦 =

𝑓(𝑥) the ordinates 𝑥 = 𝑥0, 𝑥 = 𝑥𝑛, and the 𝑥-axis is then approximately equivalent to the sum of 

the areas of the 𝑛-trapeziums so obtained. 

4.2.1 SIMPSON'S 𝟏/𝟑 RULE 
Putting 𝑛 = 2 in (4.2) and taking the curve through the points (𝑥0,𝑦0), (𝑥1,𝑦1) and (𝑥2, 𝑦2) as a 

parabola i.e. a polynomial of second degree so that differences of order higher than second 

vanish, we get 

𝐼1 = �  
𝑥2

𝑥0
𝑦𝑑𝑥 = 2ℎ �𝑦0 + Δ𝑦0 +

1
6
Δ2𝑦0� =

ℎ
3

(𝑦0 + 4𝑦1 + 𝑦2) 

Similarly, 𝐼2 = ∫𝑥2
𝑥4 𝑦𝑑𝑥 = ℎ

3
(𝑦2 + 4𝑦3 + 𝑦4) 

𝐼3 = �  
𝑥6

𝑥4
𝑦𝑑𝑥 =

ℎ
3

(𝑦4 + 4𝑦5 + 𝑦6) 

and so on. In general, we have 

𝐼𝑛 = �  
𝑥2𝑛

𝑥2𝑛−2
𝑦𝑑𝑥 =

ℎ
3

(𝑦2𝑛−2 + 4𝑦2𝑛−1 + 𝑦2𝑛) 

Summing up these integrals, we get 

𝐼 = �  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥  =

ℎ
3

[𝑦0 + 4(𝑦1 + 𝑦3 + 𝑦5 + ⋯𝑦2𝑛−1) + 2(𝑦2 + 𝑦4 + 𝑦6 + ⋯𝑦2𝑛−2) + 𝑦2𝑛]

 =
ℎ
3

(𝑋 + 4𝑂 + 2𝐸)
 

where X = sum of end ordinates, O = sum of odd ordinates and 𝐸 = sum of even ordinates. 

This expression is known as Simpson's 1/3-rule, or simply Simpson's rule and is most 

commonly used. It is observed that this rule requires the whole range i.e. the given interval must 

be divided into even number of equal sub-intervals, since we find the area of two strips at a time. 



4.2.2 SIMPSON'S 𝟑/𝟖 RULE 
Setting 𝑛 = 3 in (4.2) above and taking the curve through (𝑥𝑖 ,𝑦𝑖), 𝑖 = 0,1,2,3 as a polynomial of 

degree three so that the differences higher than the third order vanish, we get 

𝐼1 = �  
𝑥3

𝑥0
𝑦𝑑𝑥 = 3ℎ �𝑦0 +

3
2
Δ𝑦0 +

3
2
Δ2𝑦0 +

1
8
Δ3𝑦0� =

3
8
ℎ(𝑦0 + 3𝑦1 + 3𝑦2 + 𝑦3) 

Similarly, 

𝐼2 = �  
𝑥6

𝑥3
 𝑦𝑑𝑥 =

3
8
ℎ(𝑦3 + 3𝑦4 + 3𝑦5 + 𝑦6)

𝐼3 = �  
𝑥9

𝑥6
 𝑦𝑑𝑥 =

3
8
ℎ(𝑦6 + 3𝑦7 + 3𝑦8 + 𝑦9)

 

and so on. In general, we have 

𝐼𝑛 = �  
𝑥3𝑛

𝑥3𝑛−3
𝑦𝑑𝑥 =

3
8
ℎ(𝑦3𝑛−3 + 3𝑦3𝑛−2 + 3𝑦3𝑛−1 + 𝑦3𝑛) 

Summing up all these expressions, we get 

𝐼 = �  
𝑥3𝑛

𝑥0
 𝑦𝑑𝑥 =

3
8
ℎ [𝑦0 + 3(𝑦1 + 𝑦2 + 𝑦4 + 𝑦5 + 𝑦7 + 𝑦8 + ⋯+ 𝑦3𝑛−2 + 𝑦3𝑛−1)

+2(𝑦3 + 𝑦6 + 𝑦9 + ⋯+ 𝑦3𝑛−3) + 𝑦3𝑛]
 

This expression is known as Simpson's 3/8 rule. It is noticed that in order to apply this formula 

the number of sub-intervals should be taken as multiples of 3. This rule is not as accurate as 

Simpson 1/3 rule, the dominant term in the error of this formula being −3
80
ℎ5𝑦𝑖𝑣(𝑥‾) 

4.2.3 BOOLE'S RULE 

Putting 𝑛 = 4 in (4.2) above and taking the curve through (𝑥𝑖 , 𝑦𝑖), 𝑖 = 0,1,2,3,4 as a polynomial 

of degree 4 , so that the difference of order higher than four are neglected, we get 



�  
𝑥4

𝑥0
 𝑦𝑑𝑥  = 4ℎ �𝑦0 + 2Δ𝑦0 +

5
3
Δ2𝑦0 +

2
3
Δ3𝑦0 +

7
90

Δ4𝑦0�

 =
2ℎ
45

(7𝑦0 + 32𝑦1 + 12𝑦2 + 32𝑦3 + 7𝑦4)
 

Similarly, ∫𝑥4
𝑥8  𝑦𝑑𝑥 = 2ℎ

45
(7𝑦4 + 32𝑦5 + 12𝑦6 + 32𝑦7 + 7𝑦8) and so on. 

Adding all these integrals from 𝑥0 to 𝑥𝑛, where 𝑛 is a multiple of 4 , we get 

𝐼 = �  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 =

2ℎ
45

[7𝑦0  +32(𝑦1 + 𝑦3 + 𝑦5 + 𝑦7 + ⋯ ) + 12(𝑦2 + 𝑦6 + 𝑦10 + ⋯ )

+14(𝑦4 + 𝑦8 + 𝑦12 + ⋯ ) + 7𝑦𝑛]
 

This expression is known as Boole's rule. While applying this result the number of subintervals 

should be taken as a multiple of 4. The leading term in the error of formula can be shown as 
−8ℎ7

945
𝑦(𝑥‾). 

4.2.4 WEDDLE'S RULE 

Putting 𝑛 = 6 in (4.2) above and taking the curve 𝑦 = 𝑓(𝑥) through the points (𝑥𝑖 ,𝑦𝑖), 𝑖 = 0,1, 

2,3,4,5,6 as a polynomial of degree six so that the differences of order higher than six are 

neglected, we obtain. 

�  
𝑥6

𝑥0
𝑦𝑑𝑥 = 6ℎ �𝑦0 + 3Δ𝑦0 +

9
2
Δ2𝑦0 + 4Δ3𝑦0 +

123
60

Δ4𝑦0 +
11
20

Δ5𝑦0 +
41

840
Δ6𝑦0� 

=
3ℎ
10

[𝑦0 + 5𝑦1 + 𝑦2 + 6𝑦3 + 𝑦4 + 5𝑦5 + 𝑦6],  

since if we replace 41
140

Δ6𝑦0 by 3
10
Δ6𝑦0, the error made will be negligible. 

Similarly, 

�  
𝑥12

𝑥6
𝑦𝑑𝑥 =

3ℎ
10

(𝑦6 + 5𝑦7 + 𝑦8 + 6𝑦9 + 𝑦10 + 5𝑦11 + 𝑦12) and so on.  

Adding these integrals from 𝑥0 to 𝑥𝑛, where 𝑥 is a multiple of 6 , we get 



�  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 =

3ℎ
10

[𝑦0 + 5(𝑦1 + 𝑦5 + 𝑦7 + 𝑦11 + ⋯ ) + (𝑦2 + 𝑦4 + 𝑦8 + 𝑦10 + ⋯ )

+6(𝑦3 + 𝑦9 + 𝑦15 + ⋯ ) + 2(𝑦6 + 𝑦12 + 𝑦18 + ⋯ ) + 𝑦𝑛]
 

This expression is known as Weddle's rule. It is generally, more accurate than any of the other 

rules and the error in this is given by −ℎ
7

140
𝑦𝑣𝑖(𝑥‾). While applying this result the number of 

subintervals should be taken as multiply of 6. 

Example 4.1 Evaluate ∫0
6   𝑑𝑥
1+𝑥2

 by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule, (iii) 

Simpson's rule and (iv) Weddle's rule and command the result the results 

Solution: We divide the interval (0,6) into six parts with ℎ = 1. The values of 𝑥 and 𝑦 =

1
1+𝑥2

 are given by  x: 0 1 2 3 4 5 6
y: 1 0.5 0.2 0.1 0.0588 0.0385 0.027

 

(i) Trapezoidal rule 

𝐼 = �  
6

0

𝑑𝑥
1 + 𝑥2

=
1
2

[(1 + 0.027) + 2(.5 + .2 + .1 + 0588 + .0385)] = 1.4108 

(ii) Simpson's 1/3 rule 

                             𝐼 = ∫  60
𝑑𝑥
1+𝑥2

= 1
3

[(1 + .027) + 4(0.5 + 0.1 + 0.0385) + 2(0.2 + 0.0588)] =

                                       1.3662 

(iii) Simpson's 3/8 rule 

                  𝐼 = ∫0
6   𝑑𝑥
1+𝑥2

= 3
8

[(1 + 0.027) + 3(0.5 + 0.2 + .0.0588 + 0.0385) + 2(0.1)] =

                            1.3571  

(iv) Weddle's rule 

                 𝐼 = ∫  60
𝑑𝑥
1+𝑥2

= 3
10

[1 + 5(0.5) + 0.2 + 6(0.1) + 0.0588 + 5(0.0385) + 0.027] =

                           1.3735 



                  Also  𝐼 = ∫0
6   𝑑𝑥
1+𝑥2

= |tan−1 𝑥|06 = tan−1 6 = 1.4056 

This shows that the values of the integral found by Weddle's rule is the nearest to the actual 

value followed by Simpson's 1/3 rule. 

Example 4.2 A solid of revolution is formed by rotating about the 𝑥-axis, the area between the 

lines 𝑥 = 0 and 𝑥 = 1 and a curve through the points with following coordinates. 

x: 0.00 0.25 0.50 0.75 1.00
y: 1.0000 0.9896 0.9589 0.9089 0.8415 

Estimate the volume of the solid formed by using Simpson's 1
3
 rule. 

Solution: Here ℎ = 0.25,  𝑦0 = 1,  𝑦1 = 0.9896𝑦2 = .09589,  𝑦3 = 0.9089  and  𝑦4 = 0.8415. 

Therefore, the required volume of the solid generated, by Simpson's rule is given by 

𝑉  = �  
1

0
 𝜋𝑦2𝑑𝑥 =

𝜋ℎ
3

[(𝑦02 + 𝑦42) + 4(𝑦12 + 𝑦32) + 2𝑦22]

 =
0.25𝜋

3
[{1 + (0.8415)2} + 4{(0.9896)2 + (0.9089)2} + 2(0.9589)2]

 =
0.25(3.1416)

3
[1.7081 + 7.2216 + 1.839] = 2.8192

 

which is the required volume. 

4.3 ROMBERG INTEGRATION 

Romberg's method provides a simple modification to the approximate quadrature formula 

derived with the help if finite differences method in order to find their better approximations. As 

an illustration, we improve upon the value of the integral 

                       𝐼 = ∫  𝑏𝑎 𝑦𝑑𝑥 = ∫  𝑏𝑎 𝑓(𝑥)𝑑𝑥       …(4.3) 

by trapezoidal rule. We evaluate (4.3) by trapezoidal rule with two different widths ℎ1 and ℎ2 to 

obtain the approximate values 𝐼1 and 𝐼2 respectively. The corresponding errors 𝐸1 and 𝐸2 are 

then given by 



𝐸1 = −
(𝑏 − 𝑎)ℎ12

12
𝑦′′(𝑥‾),𝐸2 = −

(𝑏 − 𝑎)ℎ22

12
𝑦′′(𝑥‾̅) 

Since 𝑦′′(𝑥‾̅) is also the largest value of 𝑦′′(𝑥), so it is reasonable to assume that the quantities 

𝑦′′(𝑥‾) and 𝑦′′(𝑥‾̅) are very nearly equal. Therefore we have 

𝐸1
𝐸2

= ℎ12

ℎ22
⇒ 𝐸2

𝐸2−𝐸1
= ℎ2 2

ℎ22−ℎ12
        …(4.4) 

Now since 𝐼 = 𝐼1 − 𝐸1 = 𝐼2 − 𝐸2, therefore 

𝐸2 − 𝐸1 = 𝐼2 − 𝐼1                 …(4.5) 

From (4.4) and (4.5), we have 

𝐸2 =
ℎ22

ℎ22 − ℎ12
(𝐸2 − 𝐸1) =

ℎ22̇

ℎ22 − ℎ1 2
(𝐼2 − 𝐼1)

𝐼3 = 𝐼2 − 𝐸2 =
𝐼1ℎ2 2 − 𝐼2ℎ1 2

ℎ2 2 − ℎ1 2
                                                                                                 … (4.6)

 

which is a better approximation of I. In order to evaluate I systematically, we take ℎ1 = ℎ and 

h2 = 1
2
ℎ so that (4.6) gives 

𝐼 =
𝐼1
ℎ2
4 − 𝐼2ℎ2

ℎ2
4 − ℎ2

=
4𝐼2 − 𝐼1

3

 i.e. 𝐼 �ℎ,
ℎ
2�

=
4I �ℎ2� − I(ℎ)

3
                                                                                                     … (4.7)

 

Now we use the trapezoidal rule several times successively halving h and apply (4.7) to each pair 

of values as per the following scheme. 



𝐼(ℎ)

𝐼 �
ℎ
2�

 𝐼 �ℎ,
ℎ
2

,
ℎ
4�

𝐼 �
ℎ
4�

 𝐼 �
ℎ
2

,
ℎ
4�

 𝐼 �ℎ,
ℎ
2

,
ℎ
4

,
ℎ
8�

𝐼 �
ℎ
8�

 𝐼 �
ℎ
4

,
ℎ
8�

𝐼 �
ℎ
8�

 

The computation is continued till successive values are close to each other. This method, due to 

L.F. Richardson, is called the deferred approach to the limit and the systematic tabulation of this 

is called Romberg integration. 

Example 4.3 Use Romberg's method to compute ∫0
1   𝑑𝑥
1+𝑥2

, correct to 4 decimal places, by taking 

ℎ = 0.5,0.25 and 0.125. 

Solution: We evaluate the given integral by using trapezoidal rule 

(i) When h = 0.5, we have 

𝑥: 0 0.5 1.0

𝑦 =
1

1 + 𝑥2
:  1 0.8 0.5

𝐼 = �  
1

0
 
𝑑𝑥

1 + 𝑥2
=

. 5
2

[1 + 2(.8) + 0.5] = 0.775 by Trapezoidal rule 

 

(ii)  When h = 0.25, the values of 𝑥 and 𝑦 are 

(iii)  

𝑥: 0 0.25 0.5 0.75 1.0

𝑦 =
1

1 + 𝑥2
: 1 0.9412 0.8 0.64 0.5 

                  Therefore by trapezoidal rule, we have 

𝐼 = �  
1

0

𝑑𝑥
1 + 𝑥2

=
. 25

2
[1 + 2(0.9412 + 0.8 + 0.64) + 0.5] = 0.7828 



(iv) When h = 0.125, we find that 𝐼 = 0.7848. Now using formula (4.7) we obtain the 

table of values as 

                                                       

0.5 0.775
0.7854

0.25 0.7828 0.7855
0.7855

0.125 0.7848

 

     Hence the value of the integral is 0.7855. 

Example 4.4 Use Romberg's method to compute 𝐼 = ∫0
1   𝑑𝑥
1+𝑥

, correct to three decimal places. 

Solution: We take ℎ = 0.5,0.25 and 0.125 and use trapezoidal rule successively to obtain. 

𝐼(ℎ) = 𝐼(0.5) = 0.7084, 𝐼 �
ℎ
2�

= 𝐼(0.25) = 0.6970 

and 

𝐼 �
ℎ
4�

= 𝐼(0.125) = 0.6941 

Now using formula (4.7) we obtain 

𝐼 �ℎ,
ℎ
2�

 =
4(0.6970) − 0.7084

3
= 0.6932

𝐼 �ℎ,
ℎ
2

,
ℎ
4�

 =
4(0.6941) − 0.6970

3
= 0.6931

𝐼 �
ℎ
2

,
ℎ
4�

 =
4(0.6931) − 0.6932

3
= 0.6931

 

The table of values is therefore 

0.5 0.7084
0.6932

0.25 0.6970 0.6931
0.125 0.6941
06931

 

Hence the value of the given integral is 0.6931 



4.4 GAUSSIAN INTEGRATION 
Consider the integral 

            𝐼 = ∫  𝑏𝑎 𝑦𝑑𝑥 = ∫  𝑏𝑎 𝑓(𝑥)𝑑𝑥                  … (4.8) 

Setting 𝑥 = 1
2
𝑢(𝑏 − 𝑎) + 1

2
(𝑎 + 𝑏) the integral (4.8) takes the form 

𝐼 =
𝑏 − 𝑎

2
�  
1

−1
𝑓(𝑢)𝑑𝑢 

Gauss derived a formula, which uses the same number of function values, but with different 

spacing in contrast to other integration formulae, which require values of the function at equally 

spaced points of the interval and it gives better accuracy. This formula is expressed in the form 

      ∫  1
−1 𝐹(𝑢)𝑑𝑢 = 𝑊1𝐹(𝑢1) + 𝑊2𝐹(𝑢2)𝑊3𝐹(𝑢3) + ⋯+ 𝑊𝑛𝐹(𝑢𝑛) = ∑  𝑛

𝑖=1 𝑊𝑖𝐹(𝑢𝑖)        … 

(4.9) 

where 𝑊𝑖 and 𝑢𝑖 are called the weights and abscissas respectively, which are symmetrical with 

respect to the middle points of the interval. The weights and abscissa can be determined such that 

the formula is exact when 𝐹(𝑢) is a polynomial of degree not exceeding 2𝑛 − 1 as there are total 

2𝑛 arbitrary constants. Hence we have 

𝐹(𝑢) = 𝑐0 + 𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3 + ⋯+ 𝑐2𝑛−1𝑢2𝑛−1            … (4.10) 

Then from (4.9) we have 

�  
1

−1
𝐹(𝑢)𝑑𝑢 = �  

1

−1
[𝑐0 + 𝑐1𝑢 + 𝑐2𝑢2 + 𝑐3𝑢3 + ⋯+ 𝑐2𝑛−1𝑢2𝑛−1]𝑑𝑢 = 2𝑐0 +

2
3
𝑐2 +

2
5
𝑐4 + ⋯ 

                    … (4.11) 

Now (4.10) implies that 𝐹(𝑢𝑖) = 𝑐0 + 𝑐1𝑢𝑖 + 𝑐2𝑢𝑖3 + ⋯+ 𝑐2𝑛−1𝑢𝑖2𝑛−1 so that from (5.7.3) we 

have 



  �  
1

−1
 𝐹(𝑢)𝑑𝑢 = �  

1

−1
 𝐹(𝑢)𝑑𝑢 = 𝑤1(𝑐0 + 𝑐1𝑢1 + 𝑐2𝑢12 + ⋯+ 𝑐2𝑛−1𝑢12𝑛−1)

 +𝑤2(𝑐0 + 𝑐1𝑢2 + 𝑐2𝑢22 + ⋯+ 𝑐2𝑛−1𝑢12𝑛−1)
  +𝑤3(𝑐0 + 𝑐1𝑢3 + 𝑐2𝑢32 + ⋯+ 𝑐2𝑛−1𝑢32𝑛−1)
 +⋯+ 𝑤𝑛(𝑐0 + 𝑐1𝑢𝑛 + 𝑐2 + ⋯+ 𝑐2𝑛−1𝑢𝑛2𝑛−1)                         … (4.12)

 

Therefore, we get 

�  
1

−1
 𝐹(𝑢)𝑑𝑢 = 𝑐0(𝑤1 + 𝑤2 + ⋯+ 𝑤𝑛) + 𝑐1(𝑤1𝑢1 + 𝑤2𝑢2 + ⋯𝑤𝑛𝑢𝑛)

                      +𝑐2(𝑤1𝑢12 + 𝑤2𝑢22 + ⋯+ 𝑤𝑛𝑢𝑛2)
                      +⋯+ 𝑐2𝑛−1(𝑤1𝑢12𝑛−1 + 𝑤2𝑢12𝑛−1 + ⋯+ 𝑤𝑛𝑢𝑛2𝑛−1)                                         … (4.13)

 

Now comparing expressions (4.11) and (4.13) we get 

𝑤1 + 𝑤2 + 𝑤3 + ⋯+ 𝑤𝑛 = 2
𝑤1𝑢1 + 𝑤2𝑢2 + 𝑤3𝑢3 + ⋯+ 𝑤𝑛𝑢𝑛 = 0
𝑤1𝑢12 + 𝑤2𝑢22 + 𝑤32 + ⋯+ 𝑤𝑛𝑢𝑛2 = 2/3
… … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … … …
𝑤1𝑢12𝑛−1 + 𝑤2𝑢22𝑛−1 + 𝑤3𝑢32𝑛−1 + ⋯+ 𝑤𝑛𝑢𝑛2𝑛−1 = 0 ⎭

⎪
⎬

⎪
⎫

          … (4.14) 

a system of 2𝑛 equations in 2𝑛 unknowns 𝑤𝑖 and 𝑢𝑖 , (𝑖 = 1,2,3, … ,𝑛). 

In order to illustrate, we take 𝑛 = 2. Then the formula is 

                   ∫  1
−1 𝐹(𝑢)𝑑𝑢 = 𝑤1𝐹(𝑢1) + 𝑤2𝐹(𝑢2)               … (4.15) 

This formula is exact when 𝐹(𝑢) a polynomial of degree not exceeding 3 is, we put successively 

𝐹(𝑢) = 1,𝑢,𝑢2 and u3 Then (4.15)  provides us 
𝑤1 + 𝑤2 = 2
𝑤1𝑢1 + 𝑤2𝑢2 = 0
𝑤1𝑢12 + 𝑤2𝑢22 = 2/3
𝑤1𝑢13 + 𝑤2𝑢23 = 0 ⎭

⎪
⎬

⎪
⎫

            … (4.16) 

This system of equations gives us 

𝑤1 = 𝑤2 = 1, u2 = −𝑢1 = 1/√3 



This method when applied to the general system (4.14) above will be extremely complicated 

difficult and an alternative method must be chosen to solve the non-linear system (4.14). It can 

be shown that 𝑢𝑖 are the zeros of the (𝑛 + 1) Legendre polynomial 𝑃𝑛+1(𝑢), which can be 

generated by using the recurrence relation 

(𝑛 + 1)𝑃𝑛+1(𝑢) = (2𝑛 + 1)𝑢𝑃𝑛(𝑢) − 𝑛𝑃𝑛−1(𝑢) 

where 𝑃0(𝑢) = 1 and 𝑃1(𝑢) = 𝑢. The first five Legendre polynomials are given by 

𝑃0(𝑢) = 1,𝑃1(𝑢) = 𝑢,𝑃2(𝑢) =
1
2

(3𝑢2 − 1) 

𝑃0(𝑢) = 1,𝑃1(𝑢) = 𝑢,𝑃2(𝑢) =
1
2

(3𝑢2 − 1),𝑃3(𝑢) =
1
2

(5𝑢3 − 3𝑢),

𝑃4(𝑢) =
1
8

(35𝑢4 − 30𝑢2 + 3)
 

It can also be shown that the corresponding weights 𝑤𝑖 are given by 

                  𝑤i = ∫  1
−1 ∏  𝑛

𝑗=0
𝑗≠𝑖

�𝑢−𝑢𝑗
𝑢𝑖−𝑢𝑗

� 𝑑𝑢               … (4.17) 

where 𝑢𝑖 ′𝑠 are the abscissas. For example when 𝑛 = 1 we solved 𝑃2(𝑢) = 0 i.e., 1
2

(3𝑢2 − 1) =

0 which implies that 𝑢0 = − 1
√3

= −√3/3 and 𝑢1
1
√3

= √3/3 

The corresponding weights are given by 

𝑤0 = �  
1

−1
 
𝑢 − 𝑢1
𝑢0 − 𝑢1

𝑑𝑢 =
1

𝑢0 − 𝑢1′
�
𝑢2

2
− 𝑢1𝑢�

−1

1

= 1

𝑤1 = �  
1

−1
 
𝑢 − 𝑢0
𝑢1 − 𝑢0

𝑑𝑢 =
1

𝑢1 − 𝑢0
�
𝑢2

2
− 𝑢0𝑢�

−1

1

= 1
 

Similarly, for 𝑛 = 3 we solve 𝑃4(𝑢) = 0 i.e. 1
8

(35𝑢4 − 30𝑢2 + 3) = 0 

which implies that 𝑢𝑖 = ± �15±2√30
35

�
1/2

 The weights 𝑤𝑖 can then be found from (4.17). 



Example 4.5 Evaluate 𝐼 = ∫0
1 𝑥𝑑𝑥, by Gauss's formula 

Solution: Put 𝑥 = 1
2

(𝑢 + 1), we get 𝐼 = 1
4
∫−1
1  (𝑢 + 1)𝑑𝑢 = 1

4
∑𝑖=1
𝑛  𝑊𝑖𝐹(𝑢𝑖) where 𝐹(𝑢𝑖) = 𝑢𝑖 +

1. For simplicity, we take 𝑛 = 4, we obtain 

𝐼 =
1
4

[(−0.86114 + 1)(0.34785) + (−0.33998 + 1)(0.65214) + (0.33998 + 1)(0.65214)

+(0.86114 + 1)(0.34785)] = 0.49999 …
 

where the abscissae and weights have been rounded to five decimal places. 

4.5 EULER-MACLAURINS FORMULA 
We consider Δ𝑓(𝑥) = 𝑔(𝑥) and define inverse operator Δ−1 as 

𝑓(𝑥) = Δ−1𝑔(𝑥) 

Now 

𝑓(𝑥1) − 𝑓(𝑥0) = Δ𝑓(𝑥0) = 𝑔(𝑥0)
𝑓(𝑥2) − 𝑓(𝑥1) = 𝑔(𝑥1)
𝑓(𝑥3) − 𝑓(𝑥2) = 𝑔(𝑥2)
 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
𝑓(𝑥𝑛) − 𝑓(𝑥𝑛−1) = 𝑔(𝑥𝑛−1)

 

On addition these lead to 

             𝑓(𝑥𝑛) − 𝑓(𝑥0) = ∑  𝑛−1
𝑖=0 𝑔(𝑥𝑖)                … (4.18) 

where 𝑥𝑖 = 𝑖 = 0,1,2, …𝑛 are (𝑛 + 1) equally spaced values such that 𝑥𝑖 = 𝑥0 + 𝑖ℎ. 

Now, we have 



𝑓(𝑥) = Δ−1𝑔(𝑥) = (𝐸 + 1)−1𝑔(𝑥) = (𝑒ℎ𝐷 − 1)−1𝑔(𝑥),∀:𝐸 = 𝑒ℎ𝐷]

 = ��1 + ℎ𝐷 +
ℎ2𝐷2

2!
+
ℎ3𝐷3

3!
+ ⋯� − 1�

−1

𝑔(𝑥)

=
1
ℎ
𝐷−1 �1 −

ℎ𝐷
2

+
ℎ2𝐷2

12
−
ℎ4𝐷4

720
+ ⋯�𝑔(𝑥)

 =
1
ℎ
�  𝑔(𝑥)𝑑𝑥 −

1
2
𝑔(𝑥)𝑑𝑥 +

ℎ
12

𝑔′(𝑥) −
ℎ3

720
𝑔′′(𝑥) + ⋯                                                    … (4.19)

 

Upon putting 𝑥 = 𝑥𝑛 and x = 𝑥0 in (4.19) and then subtracting, we get 

𝑓(𝑥𝑛) − 𝑓(𝑥0) =
1
ℎ
�  
𝑥𝑛

𝑥0
 𝑔(𝑥)𝑑𝑥 −

1
2

[𝑔(𝑥𝑛) − 𝑔(𝑥0)] +
ℎ

12
[𝑔′(𝑥𝑛) − 𝑔′(𝑥0)]

 −
ℎ3

720
[𝑔′′(𝑥𝑛) − 𝑔′′(𝑥0)] + ⋯                                                                  … (4.20)

 

Now (4.18) and (4.20) provide us 

� 
𝑛−1

𝑖=0

𝑔(𝑥𝑖) =
1
ℎ
�  
𝑥𝑛

𝑥0
𝑔(𝑥)𝑑𝑥 −

1
2

[𝑔(𝑥𝑛) − 𝑔(𝑥)] +
ℎ

12
[𝑔′(𝑥𝑛)𝑔′(𝑥0)]

−
ℎ3

720
[𝑔𝑚(𝑥𝑛) − 𝑔𝑚(𝑥0)] + ⋯ 

which implies that 

1
ℎ
�  
𝑥𝑛

𝑥0
𝑔(𝑥)𝑑𝑥 = � 

𝑛−1

𝑖=0

𝑔(𝑥𝑖) +
1
2

[𝑔(𝑥𝑛) − 𝑔(𝑥0)] −
ℎ
2

[𝑔′(𝑥𝑛) − 𝑔′(𝑥0)]

+
ℎ3

720
[𝑔′′(𝑥𝑛) − 𝑔𝑚(𝑥0)] + ⋯ 

=
1
2

{𝑔(𝑥0) + 2[𝑔(𝑥1) + 𝑔(𝑥2) + ⋯𝑔(𝑥𝑛−1)] + 𝑔(𝑥𝑛)} −
ℎ

12
[𝑔′(𝑥𝑛) − 𝑔′(𝑥0)]

+
ℎ3

720
[𝑔𝑚′(𝑥𝑛) − 𝑔𝑚(𝑥0)] 

Hence 



�  
𝑥𝑛

𝑥0
𝑦𝑑𝑥 =

ℎ
2

[𝑦0 + 2(𝑦1 + 𝑦2 + 𝑦3 + ⋯+ 𝑦𝑛−1) + 𝑦𝑛] −
ℎ2

12
(𝑦𝑛′ − 𝑦0′)

+
ℎ4

720
(𝑦𝑛′′ − 𝑦0𝑚)                                                                                                   … (4.21) 

where 𝑦 = 𝑔(𝑥) and 𝑥𝑛 = 𝑥0𝑛ℎ. 

This is called Euler-Maclaurins formula. The first term on the right hand side of (4.21) represents 

the approximate value of the integral obtained from trapezoidal rule and other terms denote the 

successive corrections to this value. This formula is often used to find the sum of series of the 

form 

𝑦(𝑥0) + 𝑦(𝑥1) + 𝑦(𝑥2) + 𝑦(𝑥3) + ⋯+ 𝑦(𝑥𝑛)+. .   where 𝑥𝑖 = 𝑥0 + 𝑖ℎ. 

Example 4.6 Use Euler-Maclaurins formula to find the value of log𝑒2 from ∫0
1   𝑑𝑥
1+𝑥

. 

Solution: Here we take 𝑦 = 1
1+𝑥

, 𝑥0 = 0, n = 10, h = 0.1 so that 

𝑦′ =
−1

(1 + 𝑥)2
, and 𝑦′′ =

−6
(1 + 𝑥)4

. 

Then Euler-Maclaurin's formula gives us 

�  
1

0
 
𝑑𝑥

1 + 𝑥
=

0.1
2
�

1
1 + 0

+ 2 �
1

1 + 0.1
+

1
1 + 0.2

+
1

1 + 0.3
+ ⋯+

1
1 + 0.9�

+
1

1 + 1
�

=
(0.1)2

2
�

−1
(1 + 1)2

−
−1

(1 + 0)2
� +

(0.1)4

720
�

−6
(1 + 1)4

−
6

(1 + 0)4
�

= 0.693773 − 0.000625 + 0.000001 = 0.693149

 

Also ∫0
1   𝑑𝑥
1+𝑥

= |log (1 + 𝑥)|01 = log𝑒 2. 

Hence log𝑒 2 = 0.693149, approximately. 

Example 4.7 Use Euler-Maclaurins formula to prove that ∑1𝑛 𝑥3 = 𝑛2(𝑛+1)2

4
 

Solution: Here 𝑦 = 𝑥3,𝑦′ = 3𝑥2, 𝑦′′′ = 6 and ℎ = 1.From Euler-Maclaurins formula we have 



1
2

[𝑦0 + 2(𝑦1 + 𝑦2 + 𝑦3 + ⋯+ 𝑦𝑛−1) + 𝑦𝑛]

=
1
ℎ
�  
𝑥𝑛

𝑥0
 𝑦𝑑𝑥 +

ℎ
12

(𝑦𝑛′ − 𝑦0′) −
ℎ3

720
(𝑦𝑛𝑚 − 𝑦0𝑚) +

ℎ5

30240
�𝑦𝑛

(𝑣) − 𝑦𝑒
(𝑣)� − ⋯

 

This leads to 

� 
𝑛

1

 𝑥3 =  �  
𝑛

1
 𝑥3𝑑𝑥 +

1
2

(𝑛3 + 1) +
1

12
(3𝑛2 − 3) −

1
720

(6 − 6) =
𝑛4 − 1

4
+
𝑛3 + 1

2
+
𝑛2 − 1

4

= 
𝑛4 − 1

4
+
𝑛3 + 1

2
+
𝑛2 − 1

4

= �
𝑛 + 1

4 � [(𝑛2 + 1)(𝑛 − 1) + 2(𝑛2 − 𝑛 + 1) + (𝑛 − 1)]

=
1
4

(𝑛 + 1)[𝑛3 − 𝑛2 + 𝑛 − 1 + 2𝑛2 − 2𝑛 + 2 + 𝑛 − 1]

=
1
4

(𝑛 + 1)[𝑛3 + 𝑛2] =
𝑛2(𝑛 + 1)2

4
.

 

Example 4.8 Evaluate 𝐼 = ∫0
𝜋
2  sin 𝑥dx by using Euler-Maclaurins formula. 

Solution: Here 𝑦 = sin 𝑥, 𝑥0 = 0 and xn = 𝜋
2
. 

Then Euler-Maclaurins formula for ℎ = 𝜋/4 provides us 

 �  
𝜋/2

0
 sin 𝑥dx =

h
2

[y0 + 2(𝑦1 + 𝑦2 + ⋯+ 𝑦𝑛−1) + 𝑦𝑛]
h2

12
+

ℎ4

720
+

ℎ6

3240
+ ⋯

 =
𝜋
8

(0 + 2 + 0) +
𝜋2

192
+

𝜋4

184320
+ ⋯ =

𝜋
4

+
𝜋2

192
+

𝜋4

184320
, approximately 

 = 0.785398 + 0.051404 + 0.000528 = 0.83733

 

For ℎ = 𝜋
8
, we obtain 

�  
𝜋
2

0
 sin 𝑥dx  =

𝜋
16

[0 + 2(0.382683 + 0.707117 + 0.923879) + 1.000000]

 = 0.987119 + 0.012851 + 0.000033 = 1.000003.

 

4.6 EVALUATION OF SINGULAR INTEGRALS 



We have so for considered the integration of the function 𝑦 = 𝑓(𝑥), which can be represented 

either by a polynomial or can be expanded in a Taylor's series in the interval of integration [𝑎, 𝑏]. 

A function 𝑓(𝑥) is said to be singular at a point if 𝑓(𝑥) or any of its derivatives is infinite at that 

point. In such cases the formulae discussed earlier cannot be applied, and some special methods 

will have to be adopted. The approach depends, in general, on the type of the problem under 

consideration. We describe below some methods which can be applied in certain situations. 

4.6.0 PRINCIPAL VALUE INTEGRALS 
Consider the integral 

                                  𝐼 = ∫  𝑏𝑎
𝑓(𝑥)𝑑𝑥
𝑥−𝑡

                … (4.22) 

which is singular at 𝑡 = 𝑥. The principal value 𝑃(𝐼) of integral (4.22) is defined as 

𝑃(𝐼) = Lim𝜖→0 ��  
𝑡−𝜖

𝑎
 
𝑓(𝑥)
𝑥 − 𝑡

𝑑𝑥 + �  
𝑏

𝑡+𝜖
 
𝑓(𝑥)
𝑥 − 𝑡

𝑑𝑥� ,𝑎 < 𝑡 < 𝑏

= 𝐼, for 𝑡 < 𝑎 or 𝑡 > 𝑏  

We take 𝑥 = 𝑎 + 𝑢ℎ and 𝑡 = 𝑎 + kℎ in (4.22) so that 

𝑃(𝐼) = 𝑃�  
𝑝

0

𝑓(𝑎 + 𝑢ℎ)
𝑢 − 𝑘

𝑑𝑢,𝑝 =
𝑏 − 𝑎
ℎ

 

Upon replacing 𝑓(𝑎 + 𝑢ℎ) by Newton's forward difference formula at 𝑥 = 𝑎 and simplifying, 

we have 

𝐼 = � 
∞

𝑗=0

 
Δ𝑗𝑓(𝑎)
𝑗!

𝑐𝑗                                                                                                                      … (4.23)

𝑐𝑗 = 𝑃�  
𝑝

0
 
(𝑢)𝑗
𝑢 − 𝑘

𝑑𝑢

 

Here (𝑢)0 = 1, (𝑢)1 = 𝑢, (𝑢)2 = 𝑢(𝑢 − 1), etc. Various approximate formulae can be obtained 

by truncating the series on the right hand side of (4.23). Hence we can write (4.23) as 



𝐼𝑛 = � 
𝑛

𝑗=0

Δ𝑗𝑓(𝑎)
𝑗!

𝑐𝑗 

to obtain rule of orders 1,2,3, … by setting 𝑛 = 1,2,3, … respectively. 

(a) Two point rule (𝑛 = 1) 

𝐼1 = � 
1

𝑗=0

Δ𝑗𝑓(𝑎)
𝑗𝑗!

𝑐𝑗 = 𝑐0𝑓(𝑎) + 𝑐1Δ𝑓(𝑎) = (𝑐0 − 𝑐1)𝑓(𝑎) + 𝑐1𝑓(𝑎 + ℎ) 

(b) Three point rule (𝑛 = 2) 

𝐼2 = � 
2

𝑗=0

 
Δ𝑗𝑓(𝑎)
𝑗!

𝑐𝑗 = 𝑐0𝑓(𝑎) + 𝑐1Δ𝑓(𝑎) + 𝑐2Δ2𝑓(𝑎)

= �𝑐0 − 𝑐1 +
1
2
𝑐2� 𝑓(𝑎) + (𝑐1 − 𝑐2)𝑓(𝑎 + ℎ) +

1
2
𝑐2𝑓(𝑎 + 2ℎ)

 

In the above relations, we have 

𝑐0 = log𝑒 �
𝑝 − 𝑘
𝑘

� , 𝑐1 = 𝑝 + 𝑐0𝑘, 𝑐2 =
𝑝2

2
+ 𝑝(𝑘 − 1) + 𝑐0𝑘(𝑘 − 1) 

4.6.1 GENERALIZED QUADRATURE 
Consider the integral 

              𝐼(𝑠) = ∫  𝑏𝑎 𝑓(𝑡)𝜙(𝑡 − 𝑠)𝑑𝑡                … (4.24) 

where 𝑓(𝑡) is continuous but 𝜙(𝑢) may have an integrable singularity by adopting the forms of 

the type |𝑠 − 𝑡|𝛼 ,𝛼 > −1 or log |𝑠 − 𝑡| etc. For the numerical evaluation, we divide the range 

(𝑎, 𝑏) such that 𝑡𝑗 = 𝑎 + 𝑗ℎ, 𝑗 = 0,1,2, …𝑛 with 𝑛ℎ = 𝑏 − 𝑎. 

Then (4.24) becomes 

                           𝐼(𝑠) = ∑  𝑛−1
𝑗=0 ∫  𝑡𝑗+1

𝑡𝑗
𝑓(𝑡)𝜙(𝑡 − 𝑠)𝑑𝑡             … (4.25) 



Now we approximate 𝑓(𝑡) by a linear interpolating function 𝑓𝑛(𝑡) as 

𝑓𝑛(𝑡) =
1
ℎ
��𝑡𝑗+1 − 𝑡�𝑓�𝑡𝑗� + �𝑡 − 𝑡𝑗�𝑓�𝑡𝑗+1�� 

so that (4.25) takes the form 

𝐼(𝑠)  =
1
ℎ
�  
𝑛−1

𝑗=0

 �  
𝑡𝑗+1

𝑡𝑗
 ��𝑡𝑗+1 − 𝑡�𝑓�𝑡𝑗� + �𝑡 − 𝑡𝑗�𝑓�𝑡𝑗+1��𝜙(𝑡 − 𝑠)𝑑𝑡

 = ℎ�  
𝑛−1

𝑗=0

 �  
1

0
 �(1 − 𝑝)𝑓�𝑡𝑗� + 𝑝𝑓�𝑡𝑗+1��𝜙�𝑡𝑗 + 𝑝ℎ − 𝑠�𝑑𝑝

 

where 𝑡 = 𝑡𝑗 + 𝑝ℎ. This can be rewritten as 

 𝐼(𝑠)  = � 
𝑛−1

𝑗=0

 �𝛼𝑗𝑓�𝑡𝑗� + 𝛽𝑗𝑓�𝑡𝑗+1��                                                                             … (4.26)

𝑤ℎ𝑒𝑟𝑒 𝛼𝑗  = ℎ�  
1

0
 (1 − 𝑝)𝜙�𝑡𝑗 + 𝑝ℎ − 𝑠�𝑑𝑝

𝑎𝑛𝑑 𝛽𝑗  = ℎ�  
1

0
 𝑝𝜙�𝑡𝑗 + 𝑝ℎ − 𝑠�𝑑𝑝                                                                               … (4.27)

 

Clearly if 𝜙(𝑢) = 1, then 𝛼𝑗 = 𝛽𝑗 = ℎ
2
 and hence (4.26) gives us 

𝐼(𝑠) =
ℎ
2

[𝑓(𝑡0) + 2{𝑓(𝑡1) + 𝑓(𝑡2) + ⋯+ 𝑓(𝑡𝑛−1)} + 𝑓(𝑡𝑛)] 

which is the trapezoidal rule. Therefore the rule defined by (4.26) and (4.27) is called generalized 

trapezoidal rule due to K. E. Atkinson. For 𝜙(𝑢) = log |𝑢|, this rule finds important applications 

in the numerical solution of certain singular integral equations. In general, the computation of the 

weights 𝛼𝑗 and 𝛽j may be difficult but they can be evaluated once and for all, for a given 𝜙(𝑢). 

In a similar fashion we can also deduce the generalized Simpson's rule, analogous to the ordinary 

Simpson's rule, by approximating 𝑓(𝑡) by means of a quadratic interpolating function in the 

interval �𝑡𝑗 , 𝑡𝑗+1�. The error in generalized quadrature can also be estimated by the method used 



in case of ordinary quadrature formulae. For example it can be shown that the error in the 

generalized trapezoidal rule is of order ℎ2, assuming that 𝑓′′ is continuous in [𝑎, 𝑏]. 

4.7 DOUBLE INTEGRATION 
The double integral of the type 

𝐼 = �  
𝑑

𝑐
�  
𝑏

𝑎
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 

is evaluated numerically by two successive integration in 𝑥 and 𝑦 direction considering one 

variable at a time by repeated applications of trapezoidal or Simpson's rule. 

4.7.0 TRAPEZOIDAL RULE 
We divide intervals (𝑎, 𝑏) and (𝑐,𝑑) into 𝑛 and 𝑚 equal subintervals each of length ℎ and 𝑘 

respectively, so that we have 

𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑥0 = 𝑎, 𝑥𝑛 = 𝑏, 𝑖 = 0,1,2, …𝑛
𝑦𝑗 = 𝑦0 + 𝑗𝑘,𝑦0 = 𝑐,𝑦𝑚 = 𝑑, 𝑗 = 0,1,2, …𝑚 

Using trapezoidal rule in both direction, we get 

𝐼  = �  
𝑦𝑚

𝑦0
 �  

𝑥𝑛

𝑥0
 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

 =
ℎ
2
�  
𝑦𝑚

𝑦0
 {𝑓(𝑥0,𝑦) + 𝑓(𝑥𝑛,𝑦) + 2[𝑓(𝑥1,𝑦) + 𝑓(𝑥2, 𝑦) + ⋯+ 𝑓(𝑥𝑛−1,𝑦)]}𝑑𝑦

  =
ℎ𝑘
4
�(𝑓00 + 𝑓𝑜𝑚) + 2�𝑓01 + 𝑓02 + ⋯+ 𝑓0,𝑚−1� + (𝑓𝑛0 + 𝑓𝑛𝑚) + 2�𝑓𝑛1 + 𝑓𝑛2 + ⋯+ 𝑓𝑛,𝑚−1�

 +2� 
𝑛−1

𝑖=1

 �(𝑓𝑖0 + 𝑓𝑖𝑚) + 2�𝑓𝑖1 + 𝑓𝑖2 + ⋯+ 𝑓𝑖,𝑚−1��� ,  𝑓𝑖𝑗 = 𝑓�𝑥𝑖 ,𝑦𝑗�

 

4.7.1 SIMPSON'S RULE 
In this case we divide the interval (𝑎, 𝑏) in 2𝑛 equal subintervals each of width ℎ and the interval 

(𝑐,𝑑) into 2𝑚 equal subintervals each of width 𝑘 so that we have 

𝑥𝑖 = 𝑥0 + 𝑖ℎ,  𝑦𝑗 = 𝑦0 + 𝑗𝑘, 𝑥0 = 𝑎, 𝑥2𝑛 = 𝑏, 𝑦0 = 𝑐,𝑦2𝑚 = 𝑑 



Then by Simpson's rule in both directions, we have 

�  
𝑦𝑗+1

𝑦𝑗−1
 �  

𝑥𝑖+1

𝑥𝑖−1
 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 =

ℎ
3
�  
𝑦𝑗+1

𝑦𝑗−1
 [𝑓(𝑥𝑖−1,𝑦) + 4𝑓(𝑥𝑖 ,𝑦) + 𝑓(𝑥𝑖+1,𝑦)]𝑑𝑦

=
ℎ𝑘
9
��𝑓𝑖−1,𝑗−1 + 4𝑓𝑖−1,𝑗 + 𝑓𝑖−1,𝑗+1� + 4�𝑓𝑖,𝑗−1 + 𝑓𝑖,𝑗 + 𝑓𝑖,𝑗+1� + �𝑓𝑖+1,𝑗−1 + 4𝑓𝑖+1,𝑗 + 𝑓𝑖=1,𝑗+1��

=
ℎ𝑘
9
�𝑓𝑖−1,𝑗−1 + 𝑓𝑖−1,𝑗+1 + 𝑓𝑖+1,𝑗−1 + 𝑓𝑖+1,𝑗+1 + 4�𝑓𝑖−1,𝑗 + 𝑓𝑖,𝑗−1 + +𝑓𝑖,𝑗+1 + 𝑓𝑖+1,𝑗� + 16𝑓𝑖,𝑗�

 

Adding all such intervals, we obtain the value of 

𝐼 = �  
𝑦2𝑚

𝑦0
�  
𝑥2𝑛

𝑥0
𝑓(𝑥,𝑦)𝑑𝑥𝑑𝑦 

 

Example 4.9 Evaluate the integral  𝐼 = ∫0
1 ∫0

1 𝑒𝑥+𝑦𝑑𝑥𝑑𝑦 

by using (i) trapezoidal rule and (ii) Simpson's rule 

Solution: We take ℎ = 𝑘 = 0.5 and 𝑓(x, y) = ex+y.  

(i) Trapezoidal rule 

            𝐼 = 0.25
4

[1.0 + 4(1.6487) + 6(2.7183) + 4(4.4817) + 7.3891] = 12.3050
4

= 3.07625 

(ii) Simpson's rule 

𝐼 =
0.25

9
[1.0 + 2.7183 + 7.3891 + 2.7183

                                         +4(1.6487 + 4.4817 + 4.4817 + 1.6487) + 16(2.7183)]

=
26.59042

9
= 2.9545                          

 

The exact value of the double integral is 2.9525 and thus the result obtained by Simpson's rule is 

sixty time more accurate than that given by trapezoidal rule. 

 



4.8 CHECK YOUR PROGRESS  

1 Find the sum of the series 1
512

+ 1
532

+ 1
552

+ ⋯+ 1
992

 by using Euler-Maclaurins 

summation formula. 

2 Drive Gauss Ian integration formula when 𝑛 = 2 and apply this to evaluate the integral 

∫−1
1   𝑑𝑥

1+𝑥2
 

3 Use there point Gauss-Legendre formula to evaluate the integral ∫0
𝜋
2  sin 𝑥𝑑𝑥 Compare this 

result with that obtained by Simpson's rule using seven points. 

4 Use Romberg's method to compute ∫0
1   𝑑𝑥
1+𝑥

 with h = 0.5,0.25 and 0.125. Hence evaluate 

log𝑒2 correct to four decimal places. 

5 Apply Romberg's method to evaluate given that 
             𝑥: 4.0 4.2 4.4 4.6 4.8 5.0 5.2
             log𝑒 2: 1.3863 1.4351 1.4816 1.526 1.5686 1.6094 1.6486 

6 Use Euler-Maclaurins formulae to prove that ∑𝑥2 = 𝑛(𝑛+1)(2𝑛+1)
6

. 

7 Evaluate ∫0
1 ∫0

1 𝑥𝑒𝑦𝑑𝑥𝑑𝑦 using Trapezoidal rule (ℎ = 𝑘 = 0.5). 

8 Apply Trapezoidal rule to evaluate ∫1
5 ∫1

5   𝑑𝑥𝑑𝑦
�𝑥2+𝑦2

, taking two subintervals. 

9 Evaluate ∫1
2.6 ∫2

3.2  𝑑𝑥𝑑𝑦
𝑥+𝑦

, using Simpson's rule. 

 

4.9 SUMMARY  
The students are made familiar with various methods for numerical integration. 

 

4.10 KEYWORDS  
Numerical Integration, Romberg Integration, Gaussian Integration, Singular Integral, Double 

Integration. 

 

4.11 SELF-ASSESSMENT TEST  

 



 

1. Evaluate ∫0
1   𝑑𝑥
1+𝑥2

 by using (i) Trapezoidal rule taking ℎ = 0.25, (ii) Simpson's 1
3
 rule 

taking ℎ = 0.25, (iii) Simpson's 3
8
 rule taking ℎ = 1

6
, (iv) Weddle's rule taking ℎ = 1

6
. 

2. Evaluate ∫0
1 𝑒𝑥𝑑𝑥 by Simpson's rule given that 𝑒 = 2.72, 𝑒2 = 7.39, 𝑒3 = 20.09, 𝑒4 =

54.6 and compare it with the actual value 

3. Calculate the value of ∫0
𝜋
2  sin 𝑥dx, by Simpson's 1

3
 rule using 11 ordinates. 

4. Integrate numerically ∫0
𝜋
2  √cos 𝜃𝑑𝜃. 

4.12 ANSWERS TO CHECK YOUR PROGRESS  
1 0.004999  

2 1.5 

3 1.00002 

4 0.6931 

5 1.8278 

7 0.876 

8 4.134 

9 0.49 
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5.0 LEARNING OBJECTIVES  

Students are able to 

• Solve linear simultaneous equations using various iterative methods : Jacobi’s method, 

Gauss-Seidel method, SOR,  Relaxation method.  

• Solve Ill-conditioned equations.  

5.1 INTRODUCTION 
Most problems arising from engineering and applied sciences require the solution of systems of 

linear algebraic equations and computation of eigenvalues and eigenvectors of a matrix. We 

assume that the readers are familiar with the theory of determinants and elements of matrix 

algebra since these provide a convenient way to represent linear algebraic equations. Consider 

the system of equations. 



𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

 

This may be represented as the matrix equation, where 

𝐴𝑋 = 𝑏

𝐴 = �
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

� ,𝑋 = �
𝑥1
𝑥2
𝑥3
�  and 𝑏 = �

𝑏1
𝑏2
𝑏3
� 

To solve this system, we discuss some iterative method such as Jacobi and Gauss-Seidel, SOR, 

etc. Before proceeding further, we need to define norms on matrices. 

VECTOR AND MATRIX NORMS 
The distance between a vector and the null vector is a measure of the size or length of the vector. 

This is called a norm of the vector. The norm of the vector 𝑥, written as ∥ 𝑥 ∥, is a real number 

which satisfies the following conditions or axioms: 

 ∥ x ∥≥ 0  and  ∥ x ∥= 0  if and only if x = 0                                                                       … (5.1)
 ∥ 𝛼x ∥= |𝛼| ∥ x ∥   for any real 𝛼                                                                                            … (5.2)
 ∥ x + y ∥≤∥ x ∥ +∥ y ∥   (triangle inequality).                                                              …(5.3) 

 

For the vector 

𝑥 = �

𝑥1
𝑥2
⋮
𝑥𝑛

�                                                                                                                                                  … (5.4) 

some useful norms are 

∥ 𝑥 ∥1= |𝑥1| + |𝑥2| + ⋯+ |𝑥𝑛| = � 
𝑚

𝑖=1

 |𝑥𝑖|                                                                                   … (5.5)

∥ 𝑥 ∥2= �|𝑥1|2 + |𝑥2|2 + ⋯+ |𝑥𝑛|2 = ��  
𝑛

𝑖=1

 |𝑥𝑖|2�
1/2

=∥ 𝑥 ∥𝑒

∥ 𝑥 ∥∞= max
𝑖
 |𝑥𝑖|                                                                                                                                 … (5.6)

 



The norm ∥⋅∥2 is called the Euclidean norm since it is just the formula for distance in the three-

dimensional Euclidean space. The norm ∥⋅∥∞ is called the maximum norm or the uniform norm. 

It is easy to show that the three norms ∥ 𝑥 ∥1, ∥ 𝑥 ∥2 and ∥ 𝑥 ∥∞ satisfy the conditions (5.1) to 

(5.3), given above. Conditions (5.1) and (5.2) are trivially satisfied. Only condition (5.3), the 

triangle inequality, needs to be shown to be true. For the norm ∥ x ∥1 we observe that 

∥ 𝑥 + 𝑦 ∥  = � 
𝑛

𝑖=1

 |𝑥𝑖 + 𝑦𝑖|

 ≤�  
𝑛

𝑖=1

 (|𝑥𝑖| + |𝑦𝑖|)

 = � 
𝑛

𝑖=1

 |𝑥𝑖| + � 
𝑛

𝑖=1

 |𝑦𝑖|

 =∥ 𝑥 ∥1 +∥ 𝑦 ∥1                                                                                                            … (5.7)

 

Similarly, for ∥ 𝑥 ∥∞, we have 

∥ 𝑥 + 𝑦 ∥∞  = max
𝑖
 |𝑥𝑖 + 𝑦𝑖|

 ≤ max
𝑖
 (|𝑥𝑖| + |𝑦𝑖|)

 =∥ 𝑥 ∥∞ +∥ 𝑦 ∥∞ .                                                                                                     … (5.8)

 

The proof for the Euclidean norm is left as an exercise to the reader. 

To define matrix norms, we consider two matrices 𝐴 and 𝐵 for which the operations A + B and 

𝐴𝐵 are defined. Then, 

|𝐴 + 𝐵|  ≤ |𝐴| + |𝐵|                                                                                                                          … (5.9)
|𝐴𝐵|  ≤ |𝐴||𝐵|                                                                                                                             … (5.10)
|𝛼𝐴|  = |𝛼||𝐴| (𝛼 a scalar).                                                                                          …(5.11)

 

From Eq. (3.10) it follows that 

|𝐴𝑝| ≤ |𝐴|𝑝,                                    

where 𝑝 is a natural number. In the above equations, |𝐴| denotes the matrix 𝐴 with absolute 

values of the elements. 



By the norm of a matrix 𝐴 = �𝑎𝑖𝑗�, we mean a nonnegative number, denoted by ∥ A ∥, which 

satisfies the following conditions 

∥ 𝐴 ∥  ≥ 0  and  ∥ 𝐴 ∥= 0  if and only if 𝐴 = 0
∥ 𝛼𝐴 ∥  = |𝛼| ∥ 𝐴 ∥   ( 𝛼 a scalar) 

∥ 𝐴 + 𝐵 ∥  ≤∥ 𝐴 ∥ +∥ 𝐵 ∥
∥ 𝐴𝐵 ∥  ≤∥ 𝐴 ∥∥ 𝐵 ∥.

 

From above Eq., it easily follows that 

∥𝐴𝑝∥ ≤∥ 𝐴 ∥𝑝 ,  

where 𝑝 is a natural number. Corresponding to the vector norms given in Eqs. (5.5)-(5.6), we 

have the three matrix norms 

 ∥ 𝐴 ∥1= max
𝑗
 �  
𝑖

  �𝑎𝑖𝑗�  (the column norm) 

 ∥ 𝐴 ∥𝑒= ��  
𝑖,𝑗

  �𝑎𝑖𝑗�
2�

1/2

  (the Euclidean norm) 
 

∥ 𝐴 ∥∞= max
𝑖
 �  
𝑗

�𝑎𝑖𝑗�  (the row norm).  

In addition to the above, we have ∥ A ∥2 defined by 

∥ 𝐴 ∥2= (𝑀 aximum eigenvalue of 𝐴⊤𝐴)1/2.  

The choice of a particular norm is dependent mostly on practical considerations. The row-norm 

is, however, most widely used because it is easy to compute and, at the same time, provides a 

fairly adequate measure of the size of the matrix. 

The following example demonstrates the computation of some of these norms. 

Example 5.1 Given the matrix 



𝐴 = �
1 2 3
4 5 6
7 8 9

� 

find ∥ 𝐴 ∥1, ∥ 𝐴 ∥𝑒 and ∥ 𝐴 ∥∞. 

Solution: We have 

∥ A ∥1  = m  [1 + 4 + 7,2 + 5 + 8,3 + 6 + 9] = m  [12,15,18] = 18
∥  A ∥l  = (12 + 22 + 32 + 42 + 52 + 62 + 72 + 82 + 92)1/2

 = (1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81)1/2

 = (285)1/2

 = 16.88.
∥ A ∥∞  = m  [1 + 2 + 3,4 + 5 + 6,7 + 8 + 9]

 = m  [6,15,24]
 = 24.

 

The concept of the norm of a matrix will be useful in the study of the convergence of iterative 

methods of solving linear systems. It is also used in defining the 'stability' of a system of 

equations. 

5.2 SOLUTION OF TRIDIAGONAL SYSTEMS 

Consider the system of equations defined by 

𝑏1𝑢1 + 𝑐1𝑢2 = 𝑑1
𝑎2𝑢1 + 𝑏2𝑢2 + 𝑐2𝑢3 = 𝑑2
𝑎3𝑢2 + 𝑏3𝑢3 + 𝑐3𝑢4 = 𝑑3

⋮
𝑎𝑛𝑢𝑛−1 + 𝑏𝑛𝑢𝑛 = 𝑑𝑛.⎭

⎪
⎬

⎪
⎫

                                                                                                       … (5.12) 

The matrix of coefficients is 

𝐴 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑏1 𝑐1 0 0 ⋯ ⋯ ⋯ 0
𝑎2 𝑏2 𝑐2 0 ⋯ ⋯ ⋯ 0
0 𝑎3 𝑏3 𝑐3 ⋯ ⋯ ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
0 0 0 ⋯ 0 𝑎𝑛−1 𝑏𝑛−1 𝑐𝑛−1
0 0 0 ⋯ 0 0 𝑎𝑛 𝑏𝑛 ⎦

⎥
⎥
⎥
⎥
⎤

                                                                    … (5.13) 



Matrices of the type, given in Eq. (5.13), called the tridiagonal matrices, occur frequently in the 

solution of ordinary and partial differential equations by finite difference methods. The method 

of factorization described earlier can be conveniently applied to solve the system (5.12). For 

example, for a (3 × 3) matrix we have 

�
𝑏1 𝑐1 0
𝑎2 𝑏2 𝑐2
0 𝑎3 𝑏3

� = �
1 0 0
𝑙21 1 0
0 𝑙32 1

� �
𝑏1 𝑐1 0
0 𝑢22 𝑐2
0 0 𝑢33

� 

This matrix equation gives 

𝑙21𝑏1 = 𝑎2, 𝑙21𝑐1 + 𝑢22 = 𝑏2
𝑙32𝑢22 = 𝑎3, 𝑙32𝑐2 + 𝑢33 = 𝑏3

� 

From these four equations, we can compute 𝑙21,𝑢22, 𝑙32 and 𝑢33 and these values are stored in 

the locations occupied by 𝑎2, 𝑏2,𝑎3 and 𝑏3, respectively. These computations can be achieved by 

the following statements: 

 Do 𝑖 = 2(1)𝑁
𝑎(𝑖) = 𝑎(𝑖)/𝑏(𝑖 − 1)
𝑏(𝑖) = 𝑏(𝑖) − 𝑎(𝑖)𝑐(𝑖 − 1)

 

                                                               Next 𝑖 

When the decomposition is complete, forward and back substitutions give the required solution. 

This algorithm is due to Thomas and possesses all the advantages of the 𝐿𝑈 decomposition. 

5.3 ILL-CONDITIONED LINEAR SYSTEMS 
In practical applications, one usually encounters systems of equations in which small changes in 

the coefficients of the system produce large changes in the solution. Such systems are said to be 

ill-conditioned. On the other hand, if the corresponding changes in the solution are also small, 

then the system is well-conditioned. 

Ill-conditioning can usually be expected when |𝐴|, in the system 𝐴𝑋 = 𝑏, is small. The quantity 

𝑐(𝐴) defined by 

𝑐(𝐴) =∥ 𝐴 ∥ ∥∥𝐴−1∥∥, 



where ∥ 𝐴 ∥ is any matrix norm, gives a measure of the condition of the matrix. It is, therefore, 

called the condition number of the matrix. Large condition numbers indicate that the matrix is ill-

conditioned. Again, let 𝐴 = �𝑎𝑖𝑗� and 

𝑠𝑖 = [𝑎𝑖12 + 𝑎𝑖22 + ⋯+ 𝑎𝑖𝑛2 ]1/2 

If we define 

𝑘 =
|𝐴|

𝑠1𝑠2 ⋯𝑠𝑛
, 

then the system is ill-conditioned if 𝑘 is very small compared to unity. Otherwise, it is well-

conditioned. 

Example 5.2 The system 

2𝑥 + 𝑦 = 2
2𝑥 + 1.01𝑦 = 2.01� 

has the solution    𝑥 = 0.5  and   𝑦 = 1.   

But the system 

2𝑥 + 𝑦 = 2
2.01𝑥 + 𝑦 = 2.05� 

has the solution 𝑥 = 5 and 𝑦 = −8. 

Also, 

∥ 𝐴 ∥𝑒= 3.165 and ∥∥𝐴−1∥∥𝑒 = 158.273 

Therefore, condition number 𝑐(𝐴) =∥ 𝐴 ∥ ∥∥𝐴−1∥∥ = 500.974. 

Hence the system is ill-conditioned. 

Also 



|𝐴| = 0.02
𝑠1 = √5 and 𝑠2 = 2.24

 

So, 

𝑘 = 4.468 × 10−3 

Hence the system is ill-conditioned. 

Example 5.3 Let 

A =

⎣
⎢
⎢
⎢
⎢
⎡
1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

1
10⎦
⎥
⎥
⎥
⎥
⎤

 

which is called Hilbert's matrix. 

Solution: Now 

|𝐴| = 0.0000297, which is small compared to 1. 

Hence 𝐴 is ill-conditioned. 

Example 5.4 Let 

𝐴 = �
25 24 10
66 78 37
92 −73 −80

� 

Solution: Now 

|𝐴| = 1.0.  

Also, 

𝑠1 = 36.0694,  𝑠2 = 108.6692 and 𝑠3 = 142.1021. 



Therefore, 

𝑘 = 1.7954 × 10−6. 

which shows that 𝐴 is ill-conditioned. 

METHOD FOR III-CONDITIONED SYSTEMS 

In general, the accuracy of an approximate solution can be improved upon by an iterative 

procedure. This is described below. Let the system be 

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥2 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 = 𝑏3

�                                                                                                         … (5.14) 

Let 𝑥1
(1), 𝑥2

(1) and 𝑥3
(1) be an approximate solution. Substituting these values in the left side of Eq. 

(5.14), we get new values of 𝑏1, 𝑏2 and 𝑏3. Let these new values be 𝑏1
(1), 𝑏2

(1) and 𝑏3
(1). The new 

system of equations is given by 

𝑎11𝑥1
(1) + 𝑎12𝑥2

(1) + 𝑎13𝑥3
(1) = 𝑏1

(1)

𝑎21𝑥1
(1) + 𝑎22𝑥2

(1) + 𝑎23𝑥3
(1) = 𝑏2

(1)

𝑎31𝑥1
(1) + 𝑎32𝑥2

(1) + 𝑎33𝑥3
(1) = 𝑏3

(1)

�                                                                                            … (5.15) 

Subtracting each equation given in (5.15) from the corresponding equation given in (5.14), we 

obtain 

𝑎11𝑒1 + 𝑎12𝑒2 + 𝑎13𝑒3 = 𝑑1
𝑎21𝑒1 + 𝑎22𝑒2 + 𝑎23𝑒3 = 𝑑2
𝑎31𝑒1 + 𝑎32𝑒2 + 𝑎33𝑒3 = 𝑑3

�                                                                                                         … (5.16) 

where 𝑒𝑖 = 𝑥𝑖 − x𝑖
(1) and 𝑑𝑖 = 𝑏𝑖 − b𝑖

(1). We now solve the system (5.16) for 𝑒1, 𝑒2 and 𝑒3. Since 

𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖
(1), we obtain 

𝑥𝑖 = 𝑥𝑖
(1) + 𝑒𝑖 ,  

which is a letter approximation for 𝑥𝑖. The procedure can be repeated to improve upon the 

accuracy. 



Example 5.5 Solve the system 

2𝑥 + 𝑦  = 2
2𝑥 + 1.01𝑦  = 2.01 

Solution: Let an approximate solution of the given system be given by 

𝑥(1) = 1  and  𝑦(1) = 1. 

Substituting these values in the given system, we obtain 

2𝑥(1) + 𝑦(1) = 3
2𝑥(1) + 1.01𝑦(1) = 3.01

�           … (𝑖) 

Subtracting each equation of (i) from the corresponding equation of the given system, we get 

2�𝑥 − 𝑥(1)� + �𝑦 − 𝑦(1)� = −1 

2�𝑥 − 𝑥(1)� + 1.01�𝑦 − 𝑦(1)� = −1. 

Solving the above system of equations, we obtain 

𝑥 − 𝑥(1) = −
1
2

 and 𝑦 − 𝑦(1) = 0.  

Hence 

𝑥 =
1
2

 and 𝑦 = 1,  

which is the exact solution of the given system. 

5.4 SOLUTION OF LINEAR SYSTEMS-ITERATIVE METHODS 
We shall now describe the iterative or indirect methods, which start from an approximation to the 

true solution and, if convergent, derive a sequence of closer approximations - the cycle of 

computations being repeated till the required accuracy is obtained. This means that in a direct 

method the amount of computation is fixed, while in an iterative method the amount of 

computation depends on the accuracy required. 



In general, one should prefer a direct method for the solution of a linear system, but in the case 

of matrices with a large number of zero elements, it will be advantageous to use iterative 

methods which preserve these elements. 

Let the system be given by 

𝑎11𝑥1 + 𝑎12𝑥2 + 𝑎13𝑥3 + ⋯+ 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + 𝑎23𝑥3 + ⋯+ 𝑎2𝑛𝑥𝑛 = 𝑏2
𝑎31𝑥1 + 𝑎32𝑥2 + 𝑎33𝑥3 + ⋯+ 𝑎3𝑛𝑥𝑛 = 𝑏3

⋮
𝑎𝑛1𝑥1 + 𝑎𝑛2𝑥2 + 𝑎𝑛3𝑥3 + ⋯+ 𝑎𝑛𝑛𝑥𝑛 = 𝑏𝑛⎭

⎪
⎬

⎪
⎫

                                                                            … (5.17) 

in which the diagonal elements 𝑎𝑖𝑖 do not vanish. If this is not the case, then the equations should 

be rearranged so that this condition is satisfied. Now, we rewrite the system (5.17) as 

𝑥1 =
𝑏1
𝑎11

−
𝑎12
𝑎11

𝑥2 −
𝑎13
𝑎11

𝑥3 − ⋯−
𝑎1𝑛
𝑎11

𝑥𝑛

𝑥2 =
𝑏2
𝑎22

−
𝑎21
𝑎22

𝑥1 −
𝑎23
𝑎22

𝑥2 − ⋯−
𝑎2𝑛
𝑎22

𝑥𝑛

𝑥3 =
𝑏3
𝑎33

−
𝑎31
𝑎33

𝑥1 −
𝑎32
𝑎33

𝑥2 − ⋯−
𝑎3𝑛
𝑎33

𝑥𝑛
⋮

𝑥𝑛 =
𝑏𝑛
𝑎𝑛𝑛

−
𝑎𝑛1
𝑎𝑛𝑛

𝑥1 −
𝑎𝑛2
𝑎𝑛𝑛

𝑥2 − ⋯−
𝑎𝑛,𝑛−1

𝑎𝑛𝑛
𝑥𝑛−1 ⋅⎭

⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                                                  … (5.18) 

Suppose 𝑥1
(1), 𝑥2

(1), … , 𝑥𝑛
(1) are any first approximations to the unknowns 𝑥1, 𝑥2, … , 𝑥𝑛. 

Substituting in the right side of Eq. (3.18), we find a system of second approximations 

𝑥1
(2) =

𝑏1
𝑎11

−
𝑎12
𝑎11

𝑥2
(1) −⋯−

𝑎1𝑛
𝑎11

𝑥𝑛
(1),

𝑥2
(2) =

𝑏2
𝑎22

−
𝑎21
𝑎22

𝑥1
(1) −⋯−

𝑎2𝑛
𝑎22

𝑥𝑛
(1),

𝑥3
(2) =

𝑏3
𝑎33

−
𝑎31
𝑎33

𝑥1
(1) −⋯−

𝑎3𝑛
𝑎33

𝑥𝑛
(1),

⋮

𝑥𝑛
(2) =

𝑏𝑛
𝑎𝑛𝑛

−
𝑎𝑛1
𝑎𝑛𝑛

𝑥1
(1) −⋯−

𝑎𝑛,𝑛−1

𝑎𝑛𝑛
𝑥𝑛−1

(1) .
⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

                                                                               … (5.19) 



Similarly, if 𝑥1
(𝑛), 𝑥2

(𝑛), … , 𝑥𝑛
(𝑛) are a system of 𝑛th approximations, then the next approximation 

is given by the formula 

𝑥1
(𝑛+1) =

𝑏1
𝑎11

−
𝑎12
𝑎11

𝑥2
(𝑛) −⋯−

𝑎1𝑛
𝑎11

𝑥𝑛
(𝑛),

𝑥2
(𝑛+1) =

𝑏2
𝑎22

−
𝑎21
𝑎22

𝑥1
(𝑛) −⋯−

𝑎2𝑛
𝑎22

𝑥𝑛
(𝑛),

⋮

𝑥𝑛
(𝑛+1) =

𝑏𝑛
𝑎𝑛𝑛

−
𝑎𝑛1
𝑎𝑛𝑛

𝑥1
(𝑛) −⋯−

𝑎𝑛,𝑛−1

𝑎𝑛𝑛
𝑥𝑛−1

(𝑛) .
⎭
⎪
⎪
⎬

⎪
⎪
⎫

                                                                          … (5.20) 

If we write Eq. (5.18) in the matrix form 

𝑋 = 𝐻𝑋 + 𝐶 

then the iteration formula (5.20) may be written as 

𝑋(𝑛+1) = 𝐻𝑋(𝑛) + 𝐶.  

This method is due to Jacobi and is called the method of simultaneous displacements. It can be 

shown that a sufficient condition for the convergence of this method is that 

∥ 𝐻 ∥< 1.  

A simple modification in this method sometimes yields faster convergence and is described 

below: 

In the first equation of Eq. (5.18), we substitute the first approximation �𝑥1
(1), 𝑥2

(1), 𝑥3
(1), … , 𝑥𝑛

(1)� 

into the right-hand side and denote the result as 𝑥1
(2). In the second equation, we substitute 

�𝑥1
(2), 𝑥2

(1), 𝑥3
(1), … , 𝑥𝑛

(1)� and denote the result as 𝑥2
(2). In the third, we substitute 

�𝑥1
(2), 𝑥2

(2), 𝑥3
(1), … , 𝑥𝑛

(1)� and call the result as 𝑥3
(2). In this manner, we complete the first stage of 

iteration and the entire process is repeated till the values of 𝑥1, 𝑥2, … , 𝑥𝑛 are obtained to the 

accuracy required. It is clear, therefore, that this method uses an improved component as soon as 

it is available and it is called the method of successive displacements, or the Gauss-Seidel 

method. 



The Jacobi and Gauss-Seidel methods converge, for any choice of the first approximation 

𝑥𝑗
(1)(𝑗 = 1,2, … ,𝑛), if every equation of the system (5.18) satisfies the condition that the sum of 

the absolute values of the coefficients 𝑎𝑖𝑗/𝑎𝑖𝑖 is almost equal to, or in at least one equation less 

than unity, i.e. provided that 

�  
𝑛

𝑗=1,𝑗≠𝑖

�
𝑎𝑖𝑗
𝑎𝑖𝑖
� ≤ 1,  (𝑖 = 1,2, … ,𝑛),                                                                                                 … (5.21) 

where the ' < ' sign should be valid in the case of 'at least' one equation. It can be shown that the 

Gauss-Seidel method converges twice as fast as the Jacobi method. 

Let the coefficient matrix 𝐀 be written as 

𝐀 = 𝐋 + 𝐃 + 𝐔 

where 𝐋,𝐃,𝐔 are the strictly lower triangular, diagonal and strictly upper triangular parts of A 

respectively. Write the system Ax=b as 

(𝐋 + 𝐃 + 𝐔)𝐱 = 𝐛         ….(a)  

Jacobi Iteration Method 

We rewrite (a) as 

𝐃𝐱 = −(𝐋 + 𝐔)𝐱 + 𝐛 

and define an iterative procedure as 

𝐱(𝑘+1) = −𝐃−1(𝐋 + 𝐔)𝐱(𝒌) + 𝐃−𝟏𝐛.  

The iteration matrix is given by 

𝐇 = −𝐃−1(𝐋 + 𝐔).  

This method is called the Jacobi Iteration method. 



Gauss-Seidel Iteration Method 
In this case, we define the iterative procedure as 

(𝐃 + 𝐋)𝐱(𝑘+1) = −𝐔𝐱(𝑘) + 𝐛 

or 

𝐱(𝑘+1) = −(𝐃 + 𝐋)−1𝐔𝐱(𝑘) + (𝐃 + 𝐋)−1𝐛 

where 𝐇 = −(𝐃 + 𝐋)−1𝐔 is the iteration matrix. 

Successive Over Relaxation (SOR) Method 
The iterative procedure is given by 

𝐱(𝑘+1) = (𝐃 + 𝑤𝐋)−1[(1 − 𝑤)𝐃 − 𝑤𝐔]𝐱(𝑘) + 𝑤(𝐃 + 𝑤𝐋)−1𝐛 

where 𝑤 is the relaxation parameter.  

When 𝑤 = 1, it reduces to the Gauss-Seidel method. The relaxation parameter 𝑤 satisfies the 

condition 0 < 𝑤 < 2. If 𝑤 > 1 then the method is called an over relaxation method and if 𝑤 <

1, it is called an under relaxation method. Maximum convergence of SOR is obtained when 

𝑤 = 𝑤opt ≈
2
𝜇2
�1 −�1 − 𝜇2� =

2
1 + �1 − 𝜇2

 

where 𝜇 = 𝜌�𝐇Jacobi � and 𝑤opt  is rounded to the next digit. 

The rate of convergence of an iterative method is defined as 

𝑣 = −ln (𝜌(𝐇)),   or also as  𝑣 = −log10 (𝜌(𝐇)).  

where 𝐇 is the iteration matrix. 

The spectral radius of the SOR method is Wopt − 1 and its rate of convergence is 

𝑣 = −ln �Wopt − 1� or V = −log10 � Wopt − 1�.  



 The working of the methods is illustrated in the following examples: 

Example 5.6 We consider the equations: 

10𝑥1 − 2𝑥2 − 𝑥3 − 𝑥4  = 3
−2𝑥1 + 10𝑥2 − 𝑥3 − 𝑥4  = 15
−𝑥1 − 𝑥2 + 10𝑥3 − 2𝑥4  = 27
−𝑥1 − 𝑥2 − 2𝑥3 + 10𝑥4  = −9.

 

Solution: To solve these equations by the iterative methods, we re-write them as follows: 

𝑥1 = 0.3 + 0.2𝑥2 + 0.1𝑥3 + 0.1𝑥4
𝑥2 = 1.5 + 0.2𝑥1 + 0.1𝑥3 + 0.1𝑥4
𝑥3 = 2.7 + 0.1𝑥1 + 0.1𝑥2 + 0.2𝑥4
𝑥4 = −0.9 + 0.1𝑥1 + 0.1𝑥2 + 0.2𝑥3.

 

It can be verified that these equations satisfy the condition (5.21). The results are given in Tables 

5.1 and 5.2: 

Table 5.1 Gauss-Seidel Method 

𝑛 𝑥1 𝑥2 𝑥3 𝑥4 

1 0.3 1.56 2.886 −0.1368 

2 0.8869 1.9523 2.9566 −0.0248 

3 0.9836 1.9899 2.9924 −0.0042 

4 0.9968 1.9982 2.9987 −0.0008 

5 0.9994 1.9997 2.9998 −0.0001 

6 0.9999 1.9999 3.0 0.0 

7 1.0 2.0 3.0 0.0 
 

 

 

 



Table 5.2 J acobi's Method 

𝑛 𝑥1 𝑥2 𝑥3 𝑥4 

1 0.3 1.5 2.7 −0.9 

2 0.78 1.74 2.7 −0.18 

3 0.9 1.908 2.916 −0.108 

4 0.9624 1.9608 2.9592 −0.036 

5 0.9845 1.9848 2.9851 −0.0158 

6 0.9939 1.9938 2.9938 −0.006 

7 0.9975 1.9975 2.9976 −0.0025 

8 0.9990 1.9990 2.9990 −0.0010 

9 0.9996 1.9996 2.9996 −0.0004 

10 0.9998 1.9998 2.9998 −0.0002 

11 0.9999 1.9999 2.9999 −0.0001 

12 1.0 2.0 3.0 0.0 
 

From Tables 5.1 and 5.2, it is clear that twelve iterations are required by Jacobi's method to 

achieve the same accuracy as seven Gauss-Seidel iterations. 

Example 5.7 Solve the system 

6𝑥 + 𝑦 + 𝑧 = 20
𝑥 + 4𝑦 − 𝑧 = 6
𝑥 − 𝑦 + 5𝑧 = 7

 

using both Jacobi and Gauss-Seidel methods. 

Solution: (a) Jacobi's method 

We rewrite the given system as 



𝑥 =
20
6
−

1
6
𝑦 −

1
6
𝑧 = 3.3333 − 0.1667𝑦 − 0.1667𝑧

𝑦 = 1.5 − 0.25𝑥 + 0.25𝑧
𝑧 = 1.4 − 0.2𝑥 + 0.2𝑦

 

In matrix form, the above system may be written as 

𝑋 = 𝐶 + 𝐵𝑋 

where 

𝐶 = �
3.3333

1.5
1.4

� ,𝐵 = �
0 −0.1667 −0.1667

−0.25 0 0.25
−0.2 0.2 0

�  and 𝑋 = �
𝑥
𝑦
𝑧
� 

Assuming 

𝑥0 = �
3.3333

1.5
1.4

� , we obtain  

𝑋(1) = �
3.3333

1.5
1.4

� + �
0 −0.1667 −0.1667

−0.25 0 0.25
−0.2 0.2 0

� �
3.3333

1.5
1.4

� = �
2.8499
1.0167
1.0333

�

𝑋(2) = �
3.3333

1.5
1.4

� + �
0 −0.1667 −0.1667

−0.25 0 0.25
−0.2 0.2 0

� �
2.8499
1.0167
1.0333

� = �
2.9647
1.0458
1.0656

�

 

Proceeding in this way, we obtain 

𝑋(8) = �
2.9991
1.0012
1.0010

�  and 𝑋(9) = �
2.9995
1.0005
1.0004

� .  

We, therefore, conclude that 

𝑥 = �
3
1
1
�  i. e. , 𝑥 = 3,  𝑦 = 1 and 𝑧 = 1 

(b) Gauss-Seidel method 

As before, we obtain the first approximation as 



𝑋(1) = �
2.8499
1.0167
1.0333

� 

Then 

𝑥(2) = 3.3333 − 0.1667 × 1.0167 − 0.1667 × 1.0333 = 2.9916
𝑦(2) = 1.5 − 0.25 × 2.9916 + 0.25 × 1.0333 = 1.0104
𝑧(2) = 1.4 − 0.2 × 2.9916 + 0.2 × 1.0104 = 1.0038

 

Similarly, we find 

𝑥(3) = 2.9975,  𝑦(3) = 1.0016,  𝑧(3) = 1.0008, 
𝑥(4) = 2.9995,  𝑦(4) = 1.0003,  𝑧(4) = 1.0002, 
𝑥(5) = 2.9998,  𝑦(5) = 1.0001,  𝑧(5) = 1.0001. 

 

At this stage, we can conclude that 

𝑥 = 3,  𝑦 = 1,  𝑧 = 1. 

Example 5.8 Solve by Jacobi's iteration method, the equations 

20𝑥 + 𝑦 − 2𝑧 = 17; 3𝑥 + 20𝑦 − 𝑧 = −18; 2𝑥 − 3𝑦 + 20𝑧 = 25. 

Solution: We write the given equations in the form 

𝑥 =
1

20
(17 − 𝑦 + 2𝑧)

𝑦 =
1

20
(−18 − 3𝑥 + 𝑧)

𝑧 =
1

20
(25 − 2𝑥 + 3𝑦)⎭

⎪
⎬

⎪
⎫

      … (𝑖) 

We start from an approximation 𝑥0 = 𝑦0 = 𝑧0 = 0. 

Substituting these on the right sides of the equations (𝑖), we get 

𝑥1 =
17
20

= 0.85,  𝑦1 =
18
20

= −0.9,  𝑧1 =
25
20

= 1.25 

Putting these values on the right sides of the equations (i), we obtain 



𝑥2 =
1

20
(17 − 𝑦1 + 2𝑧1) = 1.02

𝑦2 =
1

20
(−18 − 3𝑥 + 𝑧1) = −0.965

𝑧2 =
1

20
(25 − 2𝑥1 + 3𝑦1) = 1.03

 

Substituting these values on the right sides of the equations (i), we have 

𝑥3 =
1

20
(17 − 𝑦2 + 2𝑧2) = 1.00125

𝑦3 =
1

20
(−18 − 3𝑥2 + 𝑧2) = 1.0015

𝑧3 =
1

20
(25 − 2𝑥2 + 3𝑦2) = 1.00325

 

Substituting these values, we get 

𝑥4 =
1

20
(17 − 𝑦3 + 2𝑧3) = 1.0004

𝑦4 =
1

20
(−18 − 3𝑥3 + 𝑧3) = −1.000025

𝑧4 =
1

20
(25 − 2𝑥3 + 3𝑦3) = 0.9965

 

Putting these values, we have 

𝑥5 =
1

20
(−17 − 𝑦4 + 2𝑧4) = 0.999966

𝑦5 =
1

20
(−18 − 3𝑥4 + 𝑧4) = −1.000078

𝑧5 =
1

20
(25 − 2𝑥4 + 3𝑦4) = 0.999956

 

Again substituting these values, we get 

𝑥6  =
1

20
(−17 − 𝑦5 + 2𝑧5) = 1.0000

𝑦6  =
1

20
(−18 − 3𝑥5 + 𝑧5) = 0.999997

𝑧6  =
1

20
(25 − 2𝑥5 + 3𝑦5) = 0.999992

 



The values in the fifth and sixth iterations being practically the same, we can stop. Hence the 

solution is 𝑥 = 1,𝑦 = −1, 𝑧 = 1. 

Example 5.9 Solve by Jacobi's iteration method, the equations 10𝑥 + 𝑦 − 𝑧 = 11.19, 𝑥 +

10𝑦 + 𝑧 = 28.08,−𝑥 + 𝑦 + 10𝑧 = 35.61, correct to two decimal places. 

Solution: Rewriting the given equations as 𝑥 = 1
10

(11.19 − 𝑦 + 𝑧),𝑦 = 1
10

(28.08 − 𝑥 − 𝑧), 𝑧 =

1
10

(35.61 + 𝑥 − 𝑦) 

We start from an approximation, 𝑥0 = 𝑦0 = 𝑧0 = 0. First iteration 

𝑥1 =
11.19

10
= 1.119,𝑦1 =

28.08
10

= 2.808, 𝑧1 =
35.61

10
= 3.561 

Second iteration 

𝑥2 =
1

10
(11.19 − 𝑦1 + 𝑧1) = 1.19

𝑦2 =
1

10
(28.08 − 𝑥1 − 𝑧1) = 2.34

𝑧2 =
1

10
(35.61 + 𝑥1 − 𝑦1) = 3.39

 

Third iteration 

𝑥3 =
1

10
(11.19 − 𝑦2 + 𝑧2) = 1.22

𝑦3 =
1

10
(28.08 − 𝑥2 − 𝑧2) = 2.35

𝑧3 =
1

10
(35.61 + 𝑥2 − 𝑦2) = 3.45

 

Fourth iteration 

𝑥4 =
1

10
(11.19 − 𝑦3 + 𝑧3) = 1.23

𝑦4 =
1

10
(28.08 − 𝑥3 − 𝑧3) = 2.34

𝑧4 =
1

10
(35.61 + 𝑥3 − 𝑦3) = 3.45

 



Fifth iteration 

𝑥5 =
1

10
(11.19 − 𝑦4 + 𝑧4) = 1.23

𝑦5 =
1

10
(28.08 − 𝑥4 − 𝑧4) = 2.34

𝑧5 =
1

10
(35.61 + 𝑥4 − 𝑦4) = 3.45

 

Hence 𝑥 = 1.23,𝑦 = 2.34, 𝑧 = 3.45 

Example 5.10 Apply the Gauss-Seidel iteration method to solve the equations 20𝑥 + 𝑦 − 2𝑧 =

17; 3𝑥 + 20𝑦 − 𝑧 = −18; 2𝑥 − 3𝑦 + 20𝑧 = 25.    

Solution: We write the given equations in the form 

𝑥 =
1

20
(17 − 𝑦 + 2𝑧)              … (𝑖)

𝑦 =
1

20
(−18 − 3𝑥 + 𝑧)         … (𝑖𝑖)

𝑧 =
1

20
(25 − 2𝑥 + 3𝑦)          … (𝑖𝑖𝑖)

 

First iteration 

Putting 𝑦 = 𝑦0, 𝑧 = 𝑧0 in first equation, we get  𝑥1 = 1
2

(17 − 𝑦0 + 2𝑧0) = 0.8500 

Putting 𝑥 = 𝑥1, 𝑧 = 𝑧0 in second equation, we have  𝑦1 = 1
20

(−18 − 3𝑥1 + 𝑧0) = −1.0275 

Putting 𝑥 = 𝑥1, 𝑦 = 𝑦1 in third equation, we obtain 𝑧1 = 1
20

(25 − 2𝑥1 + 3𝑦1) = 1.0109 

Second iteration 

Putting 𝑦 = 𝑦1, 𝑧 = 𝑧1 in (𝑖), we get  𝑥2 = 1
20

(17 − 𝑦1 + 2𝑧1) = 1.0025 

Putting 𝑥 = 𝑥2, 𝑧 = 𝑧1 in (ii), we obtain  𝑦2 = 1
20

(−18 − 3𝑥2 + 𝑧1) = −0.9998 



Putting 𝑥 = 𝑥2,𝑦 = 𝑦2 in (𝑖𝑖𝑖), we get  𝑧2 = 1
20

(25 − 2𝑥2 + 3𝑦2) = 0.9998 Third iteration, we 

get 

𝑥3 =
1

20
(17 − 𝑦2 + 2𝑧2) = 1.0000

𝑦3 =
1

20
(−18 − 3𝑥3 + 𝑧2) = −1.0000

𝑧3 =
1

20
(25 − 2𝑥3 + 3𝑦3) = 1.0000

 

The values in the second and third iterations being practically the same, we can stop. 

Hence the solution is 𝑥 = 1,𝑦 = −1, 𝑧 = 1. 

Example 5.11 Solve the system of equations 

4𝑥1 + 𝑥2 + 𝑥3 = 2
𝑥1 + 5𝑥2 + 2𝑥3 = −6
𝑥1 + 2𝑥2 + 3𝑥3 = −4

 

using the Jacobi iteration method. Take the initial approximation as 𝑥(0) = [0.5,−0.5,−0.5]𝑇 

and perform three iterations in each case. The exact solution is 𝑥1 = 1, 𝑥2 = −1, 𝑥, = −1. 

 Solution: We have 

𝐋  = �
0 0 0
1 0 0
1 2 0

� ,𝐃 = �
4 0 0
0 5 0
0 0 3

� ,𝐔 = �
0 1 1
0 0 2
0 0 0

�

𝐇  = −𝐃−1(𝐋 + 𝐔) = −�
4 0 0
0 5 0
0 0 3

�
−1

�
0 1 1
1 0 2
1 2 0

�

 = −�
1/4 0 0

0 1/5 0
0 0 1/3

� �
0 1 1
1 0 2
1 2 0

� = �
0 −1/4 −1/4

−1/5 0 −2/5
−1/3 −2/3 0

�

𝐜  = 𝐃−1𝐛 = �
1/4 0 0

0 1/5 0
0 0 1/3

� �
2

−6
−4

� = �
1/2
−6/5
−4/3

�

 

Therefore, Jacobi iteration method becomes 



𝐱(𝑘+1) = �
0 −1/4 −1/4

−1/5 0 −2/5
−1/3 −2/3 0

� 𝐱(𝑘) + �
1/2

−6/5
−4/3

� , 𝑘 = 0,1, … 

Starting with 𝐱(0) = [0.5,−0.5,−0.5]𝑇, we obtain 

𝐱(1) = �
0.75
−1.1

−1.1667
� , 𝐱(2) = �

1.0667
−0.8833
−0.8500

� , 𝐱(3) = �
0.9333

−1.0733
−1.1000

� 

Alternately, we may write directly 

𝑥1
(𝑘+1)  =

1
4
�2 − 𝑥2

(𝑘) − 𝑥3
(𝑘)�, 𝑥2

(𝑘+1) =
1
5
�−6 − 𝑥1

(𝑘) − 2𝑥3
(𝑘)�

𝑥3
(𝑘+1) =

1
3
�−4 − 𝑥1

(𝑘) − 2𝑥2
(𝑘)�

 

Starting with 𝑥1
(0) = 0.5, 𝑥2

(0) = −0.5, 𝑥3
(0) = −0.5, we get 

𝐱(1) = [0.75,−1.1,−1.1667]𝑇, 𝐱(2) = [1.0667,−0.8833,−0.8500]𝑇

𝐱(3) = [0.9333,−1.0733,−1.1000]𝑇.
 

Example 5.12  Solve the system of equations 

2𝑥1 − 𝑥2 + 0𝑥3 = 7
 −𝑥1 + 2𝑥2 − 𝑥3 = 1
0𝑥1 − 𝑥2 + 2𝑥3 = 1

 

using the Gauss-Seidel method. Take the initial approximation as 𝐱(0) = 𝟎 and perform three 

iterations. 

Solution: We have 

𝐃 + 𝐋 = �
2 0 0

−1 2 0
0 −1 2

� ,𝐔 = �
0 −1 0
0 0 −1
0 0 0

� 

The Gauss-Seidel method gives 

𝐱(𝑘+1) = −(𝐃 + 𝐋)−1𝐔𝐱(𝑘) + (𝐃 + 𝐋)−1𝐛. 



We get 

(𝐃 + 𝐋)−1 = �
2 0 0

−1 2 0
0 −1 2

�
−1

= �
1/2 0 0
1/4 1/2 0
1/8 1/4 1/2

�

(𝐃 + 𝐋)−1𝐔 = �
1/2 0 0
1/4 1/2 0
1/8 1/4 1/2

� �
0 −1 0
0 0 −1
0 0 0

� = �
0 −1/2 0
0 −1/4 −1/2
0 −1/8 −1/4

�

(𝐃 + 𝐋)−1𝐛 = �
1/2 0 0
1/4 1/2 0
1/8 1/4 1/2

� �
7
1
1
� = �

7/2
9/4

13/8
�

 

Therefore, we obtain the iteration scheme 

𝐱(𝑘+1) = �
0 1/2 0
0 1/4 1/2
0 1/8 1/4

� 𝐱(𝑘) + �
7/2
9/4

13/8
� 

Starting with zero initial vector, we get 

𝐱(1) = �
3.5

2.25
1.625

� , 𝐱(2) = �
4.625
3.625

2.3125
� , and 𝐱(3) = �

5.3125
4.3125
2.6563

� 

The exact solution is 𝐱 = [6,5,3]𝑇. 

POWER METHOD 

In many engineering problems, it is required to compute the numerically largest eigenvalue and 

the corresponding eigenvector. In such cases, the following iterative method is quite convenient 

which is also well-suited for machine computations. 

If 𝑋1,𝑋2⋯𝑋𝑛 are the eigenvectors corresponding to the eigenvalues 𝜆1, 𝜆2,⋯𝜆𝑛, then an 

arbitrary column vector can be written as 

𝑋 = 𝑘1𝑋1 + 𝑘2𝑋2 + ⋯+ 𝑘𝑛𝑋𝑛 

Then 



𝐴𝑋  = 𝑘1𝐴𝑋1 + 𝑘2𝐴𝑋2 + ⋯+ 𝑘𝑛𝐴𝑋𝑛
 = 𝑘1𝜆1𝑋1 + 𝑘2𝜆2𝑋2 + ⋯+ 𝑘𝑛𝜆𝑛𝑋𝑛

 

Similarly  𝐴2𝑋 = 𝑘1𝜆1 2𝑋1 + 𝑘2𝜆2 2𝑋2 + ⋯+ 𝑘𝑛𝜆𝑛 2𝑋𝑛 

and 

𝐴𝑟𝑋 = 𝑘1𝜆1𝑟𝑋1 + 𝑘2𝜆2𝑟𝑋2 + ⋯+ 𝑘𝑛𝜆𝑛 𝑟𝑋𝑛 

If |𝜆1| > |𝜆2| > ⋯ > |𝜆𝑛|, then 𝜆1 is the largest root and the contribution of the term 𝑘1𝜆1𝑟𝑋1 to 

the sum on the right increases with 𝑟 and, therefore, every time we multiply a column vector by 

𝐴, it becomes nearer to the eigenvector 𝑋1. Then we make the largest component of the resulting 

column vector unity to avoid the factor 𝑘1. 

Thus we start with a column vector 𝑋 which is as near the solution as possible and evaluate 𝐴𝑋 

which is written as 𝜆(1)𝑋(1) after normalization. This gives the first approximation 𝜆(1) to the 

eigenvalue and 𝑋(1) to the eigenvector. Similarly we evaluate 𝐴𝑋(1) = 𝜆(2)𝑋(2) which gives the 

second approximation. We repeat this process until �𝑋(𝑟) − 𝑋(𝑟−1)� becomes negligible. Then 

𝜆(𝑟) will be the largest eigenvalue and 𝑋(𝑟), the corresponding eigenvector. 

This iterative procedure for finding the dominant eigenvalue of a matrix is known as Rayleigh's 

power method. 

NOTE:  Rewriting 𝐴𝑋 = 𝜆𝑋 as 𝐴−1𝐴𝑋 = 𝜆𝐴−1𝑋 or 𝑋 = 𝜆𝐴−1𝑋. 

We have 𝐴−1𝑋 = 1
𝜆
𝑋 

If we use this equation, then the above method yields the smallest eigenvalue. 

Example 5.13 Determine the largest eigenvalue and the corresponding eigenvector of the matrix 

�5 4
1 2�. 

Solution: Let the initial approximation to the eigenvector corresponding to the largest eigenvalue 

of 𝐴 be 𝑋 = �10� 



Then 𝐴𝑋 = �5 4
1 2� �

1
0� = �51� = 5 � 1

0.2� = 𝜆(1)𝑋(1) 

So the first approximation to the eigenvalue is 𝜆(1) = 5 and the corresponding eigenvector is 

X(1) = � 1
0.2� 

Now  𝐴𝑋(1) = �5 4
1 2� �

1
0.2� = �5.8

14� = 5.8 � 1
0.241� = 𝜆(2)𝑋(2) 

Thus the second approximation to the eigenvalue is 𝜆(2) = 5.8 and the corresponding 

eigenvector is 𝑋(2) = � 1
0.241�, repeating the above process, we get 

𝐴𝑋(2)  = �5 4
1 2� �

1
0.241� = 5.966 � 1

0.248� = 𝜆(3)𝑋(3)

𝐴𝑋(3)  = �5 4
1 2� �

1
0.249� = 5.966 � 1

0.250� = 𝜆(4)𝑋(4)

𝐴𝑋(4)  = �5 4
1 2� �

1
0.250� = 5.999 � 1

0.25� = 𝜆(5)𝑋(5)

𝐴𝑋(5)  = �5 4
1 2� �

1
0.25� = 6 � 1

0.25� = 𝜆(6)𝑋(6)

 

Clearly 𝜆(5) = 𝜆(6) and 𝑋(5) = 𝑋(6) upto 3 decimal places. Hence the largest eigenvalue is 6 and 

the corresponding eigenvector is � 1
0.25� 

Example 5.14 Find the largest eigenvalue and the corresponding eigenvector of the Matrix 

�
2 −1 0
−1 2 −1
0 −1 2

� using the power method. Take [1,0,0]𝑇 as the initial eigenvector. 

Solution: Let the initial approximation to the required eigenvector be 𝑋 = [1,0,0]′. 

Then  𝐴𝑋 = �
2 −1 0
−1 2 −1
0 −1 2

� �
1
0
0
� = �

2
−1

0
� = 2 �

1
−0.5

0
� = 𝜆(1)𝑋(1) 

So the first approximation to the eigenvalue is 2 and the corresponding eigenvector 



𝑋(1) = [1,−0.5,0]′.

 Hence 𝐴𝑋(1) = �
2 −1 0
−1 2 −1
0 −1 2

� �
1

−0.5
0
� = �

2.5
−2
0.5

� = �
1

−0.8
0.2

� = 𝜆(2)𝑋(2) 

Repeating the above process, we get 

𝐴𝑋(2) = 2.8 �
1

−1
0.43

� = 𝜆(3)𝑋(3);  𝐴𝑋(3) = 3.43 �
0.87
−1

0.54
� = 𝜆(4)𝑋(4)

𝐴𝑋(4) = 3.41 �
0.80
−1

0.61
� = 𝜆(5)𝑋(5);  𝐴𝑋(5) = 3.41 �

0.76
−1

0.65
� = 𝜆(6)𝑋(6)

𝐴𝑋(6) = 3.41 �
0.74
−1

0.67
� = 𝜆(7)𝑋(7)

 

Clearly 𝜆(6) = 𝜆(7) and 𝑋(6) = 𝑋(7) approximately. Hence the largest eigenvalue is 3.41 and the 

corresponding eigenvector is [0.74,−1,0.67]′ 

Example 5.15 Obtain by the power method, the numerically dominant eigenvalue and 

eigenvector of the matrix 

𝐴 = �
15 −4 −3
−10 12 −6
−20 4 −2

�. 

Solution: Let the initial approximation to the eigenvector be 𝑋 = [1,1,1]′. Then 

𝐴𝑋 = �
15 −4 −3
−10 12 −6
−20 4 −2

� �
1
1
1
� = �

8
−4
−18

� = −18 �
−0.444

0.222
1
� = 𝜆(1)𝑋(1) 

So the first approximation to eigenvalue is −18 and the corresponding eigenvector is 

[−0.444,0.222,1]′. 

 Now 𝐴𝑋(1) = �
15 −4 −3

−10 12 −6
−20 4 −2

� �
−0.444

0.222
1
� = −10.548 �

1
−0.105
−0.736

� = 𝜆(1)𝑋(2) 

∴ The second approximation to the eigenvalue is −10.548 and the eigenvector is 

[1,−0.105,−0.736]′. 



Repeating the above process 

𝐴𝑋(2) = −18.948 �
−0.930

0.361
1
� = 𝜆3𝑋(3);𝐴𝑋(3) = −18.394 �

1
−0.415
−0.981

� = 𝜆4𝑋(4)

𝐴𝑋(4) = −19.698 �
−0.995

0.462
1
� = 𝜆(5)𝑋(5);𝐴𝑋(5) = −19.773 �

1
−480

−0.999
� = 𝜆(6)𝑋(6)

𝐴𝑋(6) = −19.922 �
−0.997

0.490
1
� = 𝜆(7)𝑋(7);𝐴𝑋(7) = −19.956 �

1
−495

−0.999
� = 𝜆(8)𝑋(8)

 

Since 𝜆(7) = 𝜆(8) and 𝑋(7) = 𝑋(8) approximately, therefore the dominant eigenvalue and the 

corresponding eigenvector are given by 

𝜆(8)𝑋(8) = 19.956 �
−1

0.495
0.999

�  i.e., 20 �
−1
0.5
1
� 

Hence the dominant eigenvalue is 20 and eigenvector is [−1,0.5,1]′. 

RELAXATION METHOD  

Consider the equations 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

We define the residuals 𝑅𝑥,𝑅𝑦,𝑅𝑧 by the relations 

𝑅𝑥 = 𝑑1 − 𝑎1𝑥 − 𝑏1𝑦 − 𝑐1𝑧
𝑅𝑦 = 𝑑2 − 𝑎2𝑥 − 𝑏2𝑦 − 𝑐2𝑧
𝑅𝑧 = 𝑑3 − 𝑎3𝑥 − 𝑏3𝑦 − 𝑐3𝑧

�                                                                                                         … (5.22) 

To start with we assume 𝑥 = 𝑦 = 𝑧 = 0 and calculate the initial residuals. Then the residuals are 

reduced step by step, by giving increments to the variables. For this purpose, we construct the 

following operation table: 

 



 𝛿𝑅𝑥 𝛿𝑅𝑦 𝛿R𝑧 

𝛿𝑥 = 1 −𝑎1 −𝑎2 −𝑎3 

𝛿𝑦 = 1 −𝑏1 −𝑏2 −𝑏3 

𝛿𝑧 = 1 −𝑐1 −𝑐2 −𝑐3 

 

We note from the equations (5.22) that if 𝑥 is increased by 1 (keeping 𝑦 and 𝑧 constant), 

𝑅𝑥2 ,𝑅𝑦′, and 𝑅𝑧 decrease by 𝑎1,𝑎2,𝑎3, respectively. This is shown in the above table along with 

the effects on the residuals when 𝑦 and 𝑧 are given unit increments. (The table is the transpose of 

the coefficient matrix). 

At each step, the numerically largest residual is reduced to almost zero. To reduce a particular 

residual, the value of the corresponding variable is changed; 𝑒.g., to reduce 𝑅𝑥 by 𝑝, 𝑥 should be 

increased by 𝑝/𝑎1. When all the residuals have been reduced to almost zero, the increments in 

𝑥,𝑦, 𝑧 are added separately to give the desired solution. 

Relaxation method can be applied successfully only if the diagonal elements of the coefficient 

matrix dominate the other coefficients in the corresponding row, i.e., if in the equations (5.22) 

|𝑎1| ≥ |𝑏1| + |𝑐1|
|𝑏2| ≥ |𝑎2| + |𝑐2|
|𝑐3| ≥ |𝑎3| + |𝑏3|

 

where > sign should be valid for at least one row. 

Example 5.16 Solve the equations: 

10𝑥 − 2𝑦 − 3𝑧 = 205;−2𝑥 + 10𝑦 − 2𝑧 = 154;−2𝑥 − 𝑦 + 10𝑧 = 120 by Relaxation method. 

The residuals are given by 

𝑅𝑥 = 205 − 10𝑥 + 2𝑦 + 3𝑧
𝑅𝑦 = 154 + 2𝑥 − 10𝑦 + 2𝑧
𝑅𝑧 = 120 + 2𝑥 + 𝑦 − 10𝑧

 



The operations table is 

 𝛿𝑅𝑥 𝛿𝑅𝑦 𝛿𝑅𝑧 

𝛿𝑥 = 1 −10 2 2 

𝛿𝑦 = 1 2 −10 1 

𝛿𝑧 = 1 3 2 −10 

 

The relaxation table is 

 𝑅𝑥 𝑅𝑦 𝑅𝑧 

𝑥 = 𝑦 = 𝑧 = 0 205 154 120 

𝛿𝑥 = 20 5 194 160 

𝛿𝑦 = 19 43 4 179 

𝛿𝑧 = 18 97 40 −1 

𝛿𝑥 = 10 −3 60 19 

𝛿𝑦 = 6 9 0 25 

𝛿𝑧 = 2 15 4 5 

𝛿𝑥 = 2 −5 8 9 

𝛿𝑧 = 1 −2 10 −1 

𝛿𝑦 = 1 0 0 0 

Σ𝛿𝑥 = 32, Σ𝛿𝑦 = 26, Σ𝛿𝑧 = 21    
 

Hence 𝑥 = 32,𝑦 = 26, 𝑧 = 21. 

5.5 CHECK YOUR PROGRESS  
1. Use Jacobi and Gauss-Seidal methods to solve the following equations correct up to three 

decimal places. 

(i) 10𝑥 + 2𝑦 + 𝑧 = 9,2x + 20y − 2z = −44,−2x + 3y + 10z = 22 

(ii) 83𝑥 + 11𝑦 − 4𝑧 = 95,7x + 52y + 13z = 104,3x + 8y + 29z = 71 



2. Use relaxation method to solve 

(i) 3𝑥 + 9𝑦 − 2𝑧 = 11,4𝑥 + 2𝑦 + 13𝑧 = 24,4𝑥 − 4𝑦 + 3𝑧 = −8 

(ii) 10𝑥 − 2𝑦 − 2𝑧 = 6,−𝑥 + 10𝑦 − 2𝑧 = 7,−𝑥 − 𝑦 + 10𝑧 = 8. 

3. Find the largest eigenvalue and corresponding eigenvectors of the matrix by power 

method 

                 �
10 −2 1
−2 10 −2
1 −2 10

�. 

 

5.6 SUMMARY 

The students are made familiar with some preliminary definitions and fundamental 

results of various iterative solution of system of linear equation. 

 

5.7 KEYWORDS  
Linear Systems, Jacobi’s method, Gauss-Seidel method, SOR, Relaxation method, Power 

method, Ill-conditioned Systems.  

 

5.8 SELF-ASSESSMENT TEST  
1. Solve by Jacobi's method, the equations: 5𝑥 − 𝑦 + 𝑧 = 10; 2𝑥 + 4𝑦 = 12; 𝑥 + 𝑦 + 5𝑧 =

−1; starting with the solution (2,3,0). 

2. Solve by Jacobi's method the equations: 

13𝑥 + 5𝑦 − 3𝑧 + 𝑢 = 18; 2𝑥 + 12𝑦 + 𝑧 − 4𝑢 = 13; 𝑥 − 4𝑦 + 10𝑧 + 𝑢 = 29;  

2𝑥 + 𝑦 − 3𝑧 + 9𝑢 = 31. 

3. Solve the equations 27𝑥 + 6𝑦 − 𝑧 = 85; 𝑥 + 𝑦 + 54𝑧 = 40; 6𝑥 + 15𝑦 + 2𝑧 = 72 by 

(i) Jacobi's method (ii) Gauss-Seidal method. 

4. Solve, by the Relaxation method, the following equations: 

    3𝑥 + 9𝑦 − 2𝑧 = 11; 4𝑥 + 2𝑦 + 13𝑧 = 24; 4𝑥 − 4𝑦 + 3𝑧 = −8. 

5.9 ANSWERS TO CHECK YOUR PROGRESS 

1.    (i) x=1.013, y= -1.996, z= 3.001 



         (ii) x=1.052, y= -1.369, z= 1.962 

2.    (i) x=1.35, y= 2.103, z= 2.845 

        (ii) x= y= z= 1 

3.    9, [1  0  -1]T 
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6.0 LEARNING OBJECTIVES  

Students are able to 

• Solve nonlinear equations using various iterative methods : Newton Raphson method, General 

iterative method.  
• Find complex roots.  

6.1 INTRODUCTION 
In this chapter we shall consider some numerical methods for the solution of nonlinear systems 

which can well be manipulated and managed on digital computers and microprocessors. We 

consider a system of two nonlinear equations in two unknowns as 

𝑓(𝑥, 𝑦) = 0
                       𝑔(𝑥, 𝑦) = 0                                                                                                                 … (6.1) 



6.2 SOLUTION OF NONLINEAR EQUATIONS 
Let (𝑥𝑘, 𝑦𝑘) be a suitable approximation to the root (𝜉, 𝜂) of the system (6.1). Let Δ𝑥 be an 

increment in 𝑥𝑘 and Δ𝑦 be an increment in 𝑦𝑘 such that (𝑥𝑘 + Δ𝑥,𝑦𝑘 + Δ𝑦) is the exact solution, 

that is 

𝑓(𝑥𝑘 + Δ𝑥, 𝑦𝑘 + Δ𝑦) ≡ 0
𝑔(𝑥𝑘 + Δ𝑥, 𝑦𝑘 + Δ𝑦) ≡ 0. 

Expanding in Taylor series about the point (𝑥𝑘 ,𝑦𝑘), we get 

𝑓(𝑥𝑘, 𝑦𝑘) + �Δ𝑥
∂
∂𝑥

+ Δ𝑦
∂
∂𝑦
� 𝑓(𝑥𝑘, 𝑦𝑘) +

1
2!
�Δ𝑥

∂
∂𝑥

+ Δ𝑦
∂
∂𝑦
�
2

𝑓(𝑥𝑘 ,𝑦𝑘) + ⋯ = 0

𝑔(𝑥𝑘, 𝑦𝑘) + �Δ𝑥
∂
∂𝑥

+ Δ𝑦
∂
∂𝑦
� 𝑔(𝑥𝑘, 𝑦𝑘) +

1
2!
�Δ𝑥

∂
∂𝑥

+ Δ𝑦
∂
∂𝑦
�
2

𝑔(𝑥𝑘 ,𝑦𝑘) + ⋯ = 0.
 

Neglecting second and higher powers of Δ𝑥 and Δ𝑦, we obtain 

              𝑓(𝑥𝑘,𝑦𝑘) + Δ𝑥𝑓𝑥(𝑥𝑘 ,𝑦𝑘) + Δ𝑦𝑓𝑦(𝑥𝑘 ,𝑦𝑘) = 0
              𝑔(𝑥𝑘 ,𝑦𝑘) + Δ𝑥𝑔𝑥(𝑥𝑘, 𝑦𝑘) + Δ𝑦𝑔𝑦(𝑥𝑘, 𝑦𝑘) = 0                                                     … (6.2) 

where suffixes with respect to 𝑥 and 𝑦 represent partial differentiation. 

Solving above equations for Δ𝑥 and Δ𝑦, we get 

Δ𝑥 = −
1
𝐷𝑘

�𝑓(𝑥𝑘, 𝑦𝑘)𝑔𝑦(𝑥𝑘, 𝑦𝑘) − 𝑔(𝑥𝑘, 𝑦𝑘)𝑓𝑦(𝑥𝑘 ,𝑦𝑘)�

Δ𝑦 = −
1
𝐷𝑘

[𝑔(𝑥𝑘 ,𝑦𝑘)𝑓𝑥(𝑥𝑘 ,𝑦𝑘) − 𝑓(𝑥𝑘 ,𝑦𝑘)𝑔𝑥(𝑥𝑘 ,𝑦𝑘)]
 

where 

𝐷𝑘 = 𝑓𝑥(𝑥𝑘, 𝑦𝑘)𝑔𝑦 (𝑥𝑘 ,𝑦𝑘) − 𝑔𝑥(𝑥𝑘 ,𝑦𝑘)𝑓𝑦(𝑥𝑘 ,𝑦𝑘).  

We obtain 

𝑥𝑘+1 = 𝑥𝑘 + Δ𝑥, and 𝑦𝑘+1 = 𝑦𝑘 + Δ𝑦. 

Writing the equations (6.2) in matrix form, we get 



�
𝑓𝑥(𝑥𝑘 ,𝑦𝑘) 𝑓𝑦(𝑥𝑘 ,𝑦𝑘)
𝑔𝑥(𝑥𝑘, 𝑦𝑘) 𝑔𝑦(𝑥𝑘, 𝑦𝑘)� �

Δ𝑥
Δ𝑦� = −�𝑓

(𝑥𝑘, 𝑦𝑥)
𝑔(𝑥𝑘, 𝑦𝑘)� 

or 

                          𝑱𝑘Δ𝒙 = −𝑭(𝑥𝑘, 𝑦𝑘)                             … (6.3) 

where 

𝑱𝑘 = �
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

�
(𝑥𝑘,𝑦𝑘)

,𝑭 = �𝑓𝑔�(𝑥𝑘,𝑦𝑘)
,Δ𝑥 = �Δ𝑥Δ𝑦� 

The solution of the system (6.3) is 

Δ𝒙  = −𝑱𝑘−1𝑭(𝑥𝑘, 𝑦𝑘)

𝑱𝑘−1  = �
𝑓𝑥 𝑓𝑦
𝑔𝑥 𝑔𝑦

�
(𝑥𝑘,𝑦𝑘)

−1
=

1
𝐷𝑘

�
𝑔𝑦 −𝑓𝑦
−𝑔𝑥 𝑓𝑥

�
(𝑥𝑘,𝑦𝑘)

 

Therefore, we can write 

�Δ𝑥Δ𝑦� = −𝐽𝑘−1 �
𝑓(𝑥𝑘 ,𝑦𝑘)
𝑔(𝑥𝑘, 𝑦𝑘)� 

and �
𝑥𝑘+1
𝑦𝑘+1� = �

𝑥𝑘
𝑦𝑘� + �Δ𝑥Δ𝑦� = �

𝑥𝑘
𝑦𝑘� − 𝐽𝑘−1 �

𝑓(𝑥𝑘 ,𝑦𝑘)
𝑔(𝑥𝑘 ,𝑦𝑘)� , 𝑘 = 0,1,⋯ 

or 

𝒙(𝑘+1) = 𝒙(𝑘) − 𝑱𝑘−1𝑭�𝑥(𝑘)� 

where 

𝒙(𝑘) = �𝑥(𝑘),𝑦(𝑘)�𝑇 ,𝐹�𝒙(𝑘)� = [𝑓(𝑥𝑘, 𝑦𝑘),𝑔(𝑥𝑘, 𝑦𝑘)]𝑇. 

This is known as Newton-Raphson’s method. This method can be easily generalized for solving 

a system of 𝑛 equations in 𝑛 unknowns 

         𝑓1(𝑥1, 𝑥2,⋯ , 𝑥𝑛) = 0 



𝑓2(𝑥1, 𝑥2,⋯ , 𝑥𝑛) = 0
 ⋯  ⋯
𝑓𝑛(𝑥1, 𝑥2,⋯ , 𝑥𝑛) = 0

 

or 

𝑭(𝒙) = 𝟎 

where 𝒙 = [𝑥1, 𝑥2,⋯ , 𝑥𝑛]𝑇 ,𝑭 = [𝑓1,𝑓2,⋯ , 𝑓𝑛]𝑇. 

If 𝒙(0) = �𝑥1
(0), 𝑥2

(0),⋯ , 𝑥𝑛 (0)�
𝑇
 is an initial approximation to the solution vector 𝒙, then we can 

write , the method as 

𝒙(𝑘+1) = 𝒙(𝑘) − 𝑱𝑘−1𝑭�𝒙(𝑘)�,𝑘 = 0,1,⋯ 

where 

𝑱𝑘 = �

∂𝑓1/ ∂𝑥1 ∂𝑓1/ ∂𝑥2 ⋯ ∂𝑓1/ ∂𝑥𝑛
∂𝑓2/ ∂𝑥1 ∂𝑓2/ ∂𝑥2 ⋯ ∂𝑓2/ ∂𝑥𝑛
⋮ ⋯
∂𝑓𝑛/ ∂𝑥1 ∂𝑓𝑛/ ∂𝑥2 ⋯ ∂𝑓𝑛/ ∂𝑥𝑛

�

�𝑥(𝑘)�

 

is the Jacobian matrix of the functions 𝑓1, 𝑓2,⋯ ,𝑓𝑛 evaluated at 𝒙(𝑘). 

Note that the matrix 𝐽𝑘−1 is to be evaluated for each iteration. We can also write the method as 

𝐽𝑘�𝒙(𝑘+1) − 𝒙(𝑘)� = −𝑭�𝒙(𝑘)� 

or 

𝐽𝑘𝜺(𝑘) = −𝑭�𝒙(𝑘)� 

where 

𝜺(𝑘) = 𝒙(𝑘+1) − 𝒙(𝑘) is the error vector.  

We solve it as a linear system of equations (by a direct method if the system is small and by an 

iterative method if the system is large) for each iteration. 



The convergence of the method depends on the initial approximate vector 𝒙(0). A sufficient 

condition for convergence is that for each 𝑘 

∥∥𝑱𝑘−1∥∥ < 1 

whereas a necessary and sufficient condition for convergence is 

𝜌(𝐽𝑘−1) < 1. 

where ∥⋅∥ is a suitable norm and 𝜌(𝑱𝑘−1) is the spectral radius (largest eigen value in magnitude) 

of the matrix 𝐽𝑘−1. 

If the method converges, then its rate of convergence is two. The iterations are stopped when 

∥∥𝑥(𝑘+1) − 𝑥(𝑘)∥∥ < 𝜀 

where 𝜀 is the given error tolerance. We may use either the 𝐿2 norm or the maximum norm. 

Example 6.1 Perform three iterations of the Newton-Raphson method to solve the system of 

equations 

𝑥2 + 𝑥𝑦 + 𝑦2 = 7
𝑥3 + 𝑦3 = 9.

 

Solution: Take the initial approximation as 𝑥0 = 1.5,𝑦0 = 0.5. The exact solution is 𝑥 = 2,𝑦 =

1.  We have 

𝑓(𝑥,𝑦)  = 𝑥2 + 𝑥𝑦 + 𝑦2 − 7
𝑔(𝑥,𝑦)  = 𝑥3 + 𝑦3 − 9

𝐽𝑘  = �
𝑓𝑥(𝑥𝑘,𝑦𝑘) 𝑓𝑦(𝑥𝑘 ,𝑦𝑘)
𝑔𝑥(𝑥𝑘 ,𝑦𝑘) 𝑔𝑦(𝑥𝑘 ,𝑦𝑘)� = �

2𝑥𝑘 + 𝑦𝑘 𝑥𝑘 + 2𝑦𝑘
3𝑥𝑘2 3𝑦𝑘2

�

𝐽𝑘−1  =
1
𝐷𝑘

�
3𝑦𝑘2 −(𝑥𝑘 + 2𝑦𝑘)
−3𝑥𝑘2 2𝑥𝑘 + 𝑦𝑘

�

 

where 

𝐷𝑘 = |𝐽𝑘| = 3𝑦𝑘2(2𝑥𝑘 + 𝑦𝑘) − 3𝑥𝑘2(𝑥𝑘 + 2𝑦𝑘).  



We can now write the method as 

�
𝑥𝑘+1
𝑦𝑘+1� = �

𝑥𝑘
𝑦𝑘� −

1
𝐷𝑘

�
3𝑦𝑘2 −(𝑥𝑘 + 2𝑦𝑘)
−3𝑥𝑘2 2𝑥𝑘 + 𝑦𝑘

� �
𝑥𝑘2 + 𝑥𝑘𝑦𝑘 + 𝑦𝑘2 − 7

𝑥𝑘3 + 𝑦𝑘3 − 9
�

𝑘 = 0,1,⋯
 

Using (𝑥0,𝑦0) = (1.5,0.5), we get 

�
𝑥1
𝑦1� = �1.5

0.5� −
1

−14.25
� 0.75 −2.5
−6.75 3.5 � �−3.75

−5.50� = �2.2675
0.9254�

�
𝑥2
𝑦2� = �2.2675

0.9254� −
1

−49.4951
� 2.5691 −4.1183
−15.4247 5.4604� �

1.0963
3.4510� = �2.0373

0.9645�

�
𝑥3
𝑦3� = �2.0373

2.9645� −
1

−35.3244
� 2.7908 −3.9663
−12.4518 5.0391� �

0.0458
0.3532� = �2.0013

0.9987�

 

GENERAL ITERATION METHOD 
Consider the solution of the following system of equations 

𝑓(𝑥,𝑦) = 0
𝑔(𝑥,𝑦) = 0. 

We may write this system in an equivalent form as 

                                 𝑥 = 𝐹(𝑥,𝑦)                
                        𝑦 = 𝐺(𝑥, 𝑦)                                                                                                    … (6.4) 

Let (𝜉, 𝜂) be a solution of this system. Therefore, (𝜉, 𝜂) satisfies the equations 

𝜉 = 𝐹(𝜉, 𝜂)         

                                                                          𝜂 = 𝐺(𝜉, 𝜂)                           … (6.5) 

Let (𝑥0, 𝑦0) be a suitable approximation to (𝜉, 𝜂). Then, we write a general iteration method for 

the solution of (6.4) as 

                                       𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑦𝑘)                                     
                                      𝑦𝑘+1 = 𝐺(𝑥𝑘 ,𝑦𝑘),𝑘 = 0,1,2,⋯                                                           … (6.6) 

If the method converges, then 



lim
𝑥→∞

 𝑥𝑘 = 𝜉 and lim
𝑥→∞

 𝑦𝑘 = 𝜂. 

The functions 𝐹 and 𝐺 are called the iteration functions. Not all forms of 𝐹 and 𝐺 can lead to 

convergence. Subtracting (6.6) from (6.5),  we get 

𝜉 − 𝑥𝑘+1 = 𝐹(𝜉, 𝜂) − 𝐹(𝑥𝑘 ,𝑦𝑘)
𝜂 − 𝑦𝑘+1 = 𝐺(𝜉, 𝜂) − 𝐺(𝑥𝑘, 𝑦𝑘). 

Let 𝜀𝑘 = 𝜉 − 𝑥𝑘 and 𝛿𝑘 = 𝜂 − 𝑦𝑘 be the errors in the 𝑘 th iterate. Then, we obtain 

𝜀𝑘+1 = 𝐹(𝑥𝑘 + 𝜀𝑘 ,𝑦𝑘 + 𝛿𝑘) − 𝐹(𝑥𝑘 ,𝑦𝑘)
𝛿𝑘+1 = 𝐺(𝑥𝑘 + 𝜀𝑘, 𝑦𝑘 + 𝛿𝑘) − 𝐺(𝑥𝑘 ,𝑦𝑘). 

Expanding in Taylor series about (𝑥𝑘 ,𝑦𝑘) and neglecting the second and higher powers of 𝜀𝑘 , 𝛿𝑘, 

we obtain 

𝜀𝑘+1  = 𝜀𝑘𝐹𝑥(𝑥𝑘 ,𝑦𝑘) + 𝛿𝑘𝐹𝑦(𝑥𝑘 ,𝑦𝑘)
𝛿𝑘+1  = 𝜀𝑘𝐺𝑥(𝑥𝑘 ,𝑦𝑘) + 𝛿𝑘𝐺𝑦(𝑥𝑘 ,𝑦𝑘)

�
𝜀𝑘+1
𝛿𝑘+1�  = �

𝐹𝑥(𝑥𝑘 ,𝑦𝑘) 𝐹𝑦(𝑥𝑘 ,𝑦𝑘)
𝐺𝑥(𝑥𝑘,𝑦𝑘) 𝐺𝑦(𝑥𝑘 ,𝑦𝑘)� �

𝜀𝑘
𝛿𝑘�

𝜺(𝑘+1)  = 𝑨𝑘𝜺(𝑘)

 

where 𝜺(𝑘) = [𝜀𝑘 , 𝛿𝑘]𝑇 and 𝑨𝑘 = �
𝐹𝑥(𝑥𝑘, 𝑦𝑘) 𝐹𝑦(𝑥𝑘, 𝑦𝑘)
𝐺𝑥(𝑥𝑘 ,𝑦𝑘) 𝐺𝑦(𝑥𝑘, 𝑦𝑥)� 

is the Jacobian matrix of the iteration functions 𝐹 and 𝐺 evaluated at (𝑥𝑘 ,𝑦𝑘). 

A sufficient condition for convergence is that for each 𝑘, ∥∥𝐴𝑘∥∥ < 1, where ∥ .  ∥ is a suitable 

norm. 

If we use the maximum absolute row sum norm, we get the conditions 

                                                         |𝐹𝑥(𝑥𝑘, 𝑦𝑘)| + �𝐹𝑦(𝑥𝑘 ,𝑦𝑘)� < 1
|𝐺𝑥(𝑥𝑘 ,𝑦𝑘)| + �𝐺𝑦(𝑥𝑘, 𝑦𝑘)� < 1.

                                         … (6.7) 

The necessary and sufficient condition for convergence is that for each 𝑘 



𝜌(𝐀𝑘) < 1 

where 𝜌(𝐀𝑘) is the spectral radius of the matrix 𝐀𝑘. 

If (𝑥0,𝑦0) is a close approximation to the root (𝜉, 𝜂), then we usually test the conditions (6.7) at 

the initial approximation (𝑥0,𝑦0). 

The method can be easily generalized to a system of 𝑛 equations in 𝑛 unknowns. 

Example 6.2 The system of equations 

𝑓(𝑥, 𝑦) = 𝑥2 + 3𝑥 + 𝑦 − 5 = 0
𝑔(𝑥, 𝑦) = 𝑥2 + 3𝑦2 − 4 = 0

 

has a solution (1,1). Determine the iteration functions 𝐹(𝑥,𝑦) and 𝐺(𝑥,𝑦) so that the sequence 

of iterates obtained from 

𝑥𝑘+1  = 𝐹(𝑥𝑘, 𝑦𝑘)
𝑦𝑘+1  = 𝐺(𝑥𝑘 ,𝑦𝑘), 𝑘 = 0,1,⋯ 

(𝑥0,𝑦0) = (0.5,0.5) converges to the root. Perform five iterations. 

Solution: We write the given system of equations in an equivalent form as 

𝑥 = 𝑥 + 𝛼(𝑥2 + 3𝑥 + 𝑦 − 5) = 𝐹(𝑥, 𝑦)
𝑦 = 𝑦 + 𝛽(𝑥2 + 3𝑦2 − 4) = 𝐺(𝑥,𝑦)

 

where 𝛼 and 𝛽 are arbitrary parameters, which are to be determined. If we use the maximum 

absolute row sum norm, we require that 

and 

|𝐹𝑥(𝑥0,𝑦0)| + �𝐹𝑦(𝑥0, 𝑦0)� < 1
|𝐺𝑥(𝑥0,𝑦0)| + �𝐺𝑦(𝑥0,𝑦0)� < 1.

 

Differentiating 𝐹 and 𝐺 partially with respect to 𝑥 and 𝑦 and evaluating at (𝑥0, 𝑦0) = (0.5,0.5), 

we get 



𝐹𝑥(𝑥, 𝑦) = 1 + (2𝑥 + 3)𝛼, 𝐹𝑥(0.5,0.5) = 1 + 4𝛼
𝐹𝑦(𝑥,𝑦) = 𝛼, 𝐹𝑦(0.5,0.5) = 𝛼
𝐺𝑥(𝑥, 𝑦) = 2𝛽𝑥, 𝐺𝑥(0.5,0.5) = 𝛽
𝐺𝑦(𝑥,𝑦) = 1 + 6𝛽𝑦, 𝐺𝑦(0.5,0.5) = 1 + 3𝛽.

 

Therefore, the conditions of convergence become 

                                                                      |1 + 4𝛼| + |𝛼| < 1
 |𝛽| + |1 + 3𝛽| < 1                                              … (6.8) 

Any values of 𝛼,𝛽 which satisfy (6.8) can be used. Obviously, both 𝛼 and 𝛽 are negative. 

Taking 𝛼 = −1/4 and 𝛽 = −1/6, we obtain the iteration method 

𝑥𝑘+1 = 𝑥𝑘 −
1
4

(𝑥𝑘2 + 3𝑥𝑘 + 𝑦𝑘 − 5) = −
1
4

(𝑥𝑘2 − 𝑥𝑘 + 𝑦𝑘 − 5) = 𝐹(𝑥𝑘 ,𝑦𝑘)

𝑦𝑘+1 = 𝑦𝑘 −
1
6

(𝑥𝑘2 + 3𝑦𝑘2 − 4) = −
1
6

(𝑥𝑘2 + 3𝑦𝑘2 − 6𝑦𝑘 − 4) = 𝐺(𝑥𝑘, 𝑦𝑘).
 

Starting with (𝑥0,𝑦0) = (0.5,0.5), we get 

(𝑥1, 𝑦1) = (1.1875,1.0),  (𝑥2, 𝑦2) = (0.944336,0.931641),
(𝑥3,𝑦3) = (1.030231,1.015702), (𝑥4, 𝑦4) = (0.988288,0.989647),
(𝑥5,𝑦5) = (1.005482,1.003828).

 

Example 6.3 Take one step from a suitable starting point with Newton-Raphson's method 

applied to the system 

10𝑥 + sin (𝑥 + 𝑦)  = 1
8𝑦 − cos2 (𝑧 − 𝑦)  = 1

12𝑧 + sin 𝑧  = 1.
 

Suggest some explicit method of the form 𝐱(𝑘+1) = 𝐅�𝐱(𝑘)� where no inversion is needed for 𝐅, 

and estimate how many iterations are required to obtain a solution correct to six decimal points 

from the starting point. 

 Solution: We have the system of equations 



𝑓1(𝑥,𝑦, 𝑧) = 10𝑥 + sin (𝑥 + 𝑦) − 1 = 0
𝑓2(𝑥,𝑦, 𝑧) = 8𝑦 − cos2 (𝑧 − 𝑦) − 1 = 0
𝑓3(𝑥,𝑦, 𝑧) = 12𝑧 + sin 𝑧 − 1 = 0.

 

To obtain a suitable starting point, we use the approximations 

sin (𝑥 + 𝑦)  ≈ 0
cos (𝑧 − 𝑦)  ≈ 1

sin (𝑧)  ≈ 0
 

and obtain from the given equations 

𝑥0 = 1/10,𝑦 = 1/4, 𝑧0 = 1/12. 

We have 

𝑱𝑘  = �
(𝑓1)𝑥 (𝑓1)𝑦 (𝑓1)𝑧
(𝑓2)𝑥 (𝑓2)𝑦 (𝑓2)𝑧
(𝑓3)𝑥 (𝑓3)𝑦 (𝑓3)𝑧

�

𝑘

 = �
10 + cos (𝑥 + 𝑦) cos (𝑥 + 𝑦) 0

0 8 − sin (2(𝑧 − 𝑦)) sin (2(𝑧 − 𝑦))
0 0 12 + cos 𝑧

�
𝑘

 

𝐽0 = 𝐽 �
1

10
,
1
4

,
1

12�
 = �

10.939373 0.939373 0
0 8.327195 −0.327195
0 0 12.996530

�

𝐽0−1  = �
0.091413 −0.010312 −0.000260

0 0.120089 0.003023
0 0 0.076944

�

𝑭0  = �
𝑓1(1/10,1/4,1/12)
𝑓2(1/10,1/4,1/12)
𝑓3(1/10,1/4,1/12)

� = �
0.342898
0.027522
0.083237

�

 

Using the Newton-Raphson method 

𝐱(𝑘+1) = 𝐱(𝑘) − 𝐉𝑘−1𝐅𝑘 

we obtain, for 𝑘 = 0 

𝐱(1)  = 𝐱(0) − 𝐉0−1𝐅0.
𝑥1  = 0.0689,𝑦1 = 0.246443, 𝑧1 = 0.076929. 



 We can write an explicit method in the form 

𝑥𝑘+1 =
1

10
[1 − sin (𝑥𝑘 + 𝑦𝑘)] = 𝑓1(𝑥𝑘, 𝑦𝑘, 𝑧𝑘)

𝑦𝑘+1 =
1
8

[1 + cos2 (𝑧𝑘 − 𝑦𝑘)] = 𝑓2(𝑥𝑘 ,𝑦𝑘, 𝑧𝑘)

𝑧𝑘+1 =
1

12
[1 − sin (𝑧𝑘)] = 𝑓3(𝑥𝑘, 𝑦𝑘, 𝑧𝑘).

 

We note that the conditions (6.7) are satisfied at the initial approximation (𝑥0,𝑦0, 𝑧0). Starting 

with the initial approximation 𝐱(0) = [1/10,1/4,1/12]𝑇, we obtain the sequence of iterates 

𝐱(1) = [0.065710,0.246560,0.076397]𝑇

𝐱(2) = [0.069278,0.246415,0.076973]𝑇

𝐱(3) = [0.068952,0.246445,0.076925]𝑇

𝐱(4) = [0.068978,0.246442,0.076929]𝑇

𝐱(5) = [0.068978,0.246442,0.076929]𝑇

 

Hence, the solution correct to six decimal places is obtained after five iterations. 

6.3 METHODS FOR COMPLEX ROOTS 
The root of an equation 𝑓(𝑧) = 0, in which 𝑧 is a complex variable can be obtained by using the 

methods discussed earlier provided we use complex arithmetic and complex initial 

approximation. 

We can also obtain a root of the equation 

                                                        𝑓(𝑧) = 0                                                                                         … (6.9) 

by using real arithmetic. Substituting 𝑧 = 𝑥 + 𝑖𝑦 in equation (6.9), we get 

𝑓(𝑧) = 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥,𝑦) + 𝑖𝑣(𝑥,𝑦) = 0 

where 𝑢(𝑥,𝑦) and 𝑣(𝑥,𝑦) are the real and the imaginary parts of 𝑓(𝑧) respectively. Comparing 

the real and the imaginary parts, we get 

                                                           𝑢(𝑥, 𝑦) = 0, 𝑣(𝑥,𝑦) = 0                                                       … (6.10) 



Thus, the problem of finding a complex root of (6.9) reduces to solving a system of two 

nonlinear equations (6.10). 

The system of equations (6.10) can be solved using the methods discussed earlier. 

Example 6.4 Obtain the complex roots of the equation 

𝑓(𝑧) = 𝑧3 + 1 = 0 

correct to eight decimal places. Use the initial approximation to a root as (𝑥0;𝑦0) = (0.25,0.25). 

Compare with the exact values of the roots (1 ± 𝑖√3)/2. 

Solution: Substituting 𝑧 = 𝑥 + 𝑖𝑦 in the given equation, we get 

𝑓(𝑥 + 𝑖𝑦)  = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥,𝑦) = (𝑥 + 𝑖𝑦)3 + 1
 = (𝑥3 − 3𝑥𝑦2 + 1) + 𝑖(3𝑥2𝑦 − 𝑦3) = 0.

 

Therefore, 

𝑢(𝑥,𝑦)  = 𝑥3 − 3𝑥𝑦2 + 1 = 0,  𝑣(𝑥, 𝑦) = 3𝑥2𝑦 − 𝑦3 = 0

𝐉  = �
𝑢𝑥 𝑢𝑦
𝑣𝑥 𝑣𝑦 � = �3𝑥

2 − 3𝑦2 −6𝑥𝑦
6𝑥𝑦 3𝑥2 − 3𝑦2

�

𝐷  = |𝐉| = 9(𝑥2 − 𝑦2)2 + 36𝑥2𝑦2 = 9(𝑥2 + 𝑦2)2

𝐉−1  =
1
𝐷
�3

(𝑥2 − 𝑦2) 6𝑥𝑦
−6𝑥𝑦 3(𝑥2 − 𝑦2)�

 

Using the Newton method, we obtain 

�
𝑥𝑘+1
𝑦𝑘+1� = �

𝑥𝑘
𝑦𝑘� −

1
𝐷𝑘

�
3(𝑥𝑘2 − 𝑦𝑘2) 6𝑥𝑘𝑦𝑘
−6𝑥𝑘𝑦𝑘 3(𝑥𝑘2 − 𝑦𝑘2)� �

𝑥𝑘3 − 3𝑥𝑘𝑦𝑘2 + 1
3𝑥𝑘2𝑦𝑘 − 𝑦𝑘3

� 

Using (𝑥0,𝑦0) = (0.25,0.25), we get 

�
𝑥1
𝑦1�  = �0.25

0.25� = −
1

0.140625
� 0 0.375
−0.375 0 � �0.96875

0.03125�

 = �0.1666667
2.8333333�

 

The successive iterates are given in Table 6.1. 



Table 6.1 Approximations to the Complex Root by the Newton-Raphson Method 

𝑘 𝑧𝑘 𝑓(𝑧𝑘) 𝑧𝑘+1 

0 (0.25,0.25) (0.9687,0.3125(−1)) (0.16666667,2.83333333) 

1 (0.16666667,2.83333333) (−0.3009(1),−0.2251(2)) (0.15220505,1.89374026) 

2 (0.15220505,1.89374026) (−0.6340,−0.6660(1)) (0.19263553,1.27724322) 

3 (0.19263553,1.27724322) (0.6438(−1),−0.1941(1)) (0.31932197,0.91041889) 

4 (0.31932197,0.91041889) (0.2385,−0.4761) (0.49252896,0.83063199) 

5 (0.49252896,0.83063199) (0.1000,03140(−1)) (0.49983161,0.86738607) 

6 (0.49983161,0.86738607) (−0.3284(−2),−0.2484(−2)) (0.49999870,0.86602675) 

7 (0.49999870,0.86602675) (−0.1548(−5),0.5414(−5)) (0.50000000,0.86602540) 

 

Obviously, the approximation to the second root is (0.5,−0.8660254). 

6.4 CHECK YOUR PROGRESS  
1. Find a root of the equations 𝑥2 = 3xy − 7, y = 2(𝑥 + 1).. 

2. Solve the non-linear equations 𝑥2 − 𝑦2 = 4, 𝑥2 + 𝑦2 = 16 numerically with 𝑥0 = 𝑦0 =

       2.828 using the Newton-Raphson method. Carry out two iterations. 

6.5 SUMMARY  
The students are made familiar with fundamental results of various iterative solution of 

system of nonlinear equation. 

 

6.6 KEYWORDS  
Nonlinear systems, Complex roots, Newton Raphson method. 

 

6.7 SELF-ASSESSMENT TEST  



1. Find a root of the equations 𝑥𝑦 = 𝑥 + 9,𝑦2 = 𝑥2 + 7. 

2. Use the Newton-Raphson method to solve the equations 𝑥 = 𝑥2 + 𝑦2,𝑦 = 𝑥2 − 𝑦2 correct   

to two decimals, starting with the approximation (0.8,0.4). 

3.  Solve the non-linear equations 𝑥3 = y + 100, 𝑦3 = 𝑥 + 100 numerically using the 

Newton-Raphson method. Carry out two iterations. 

6.8 ANSWERS TO CHECK YOUR PROGRESS 

1. -1.9266, -1.8533    

2. 3.162, 2.45 
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7.0 LEARNING OBJECTIVES  

 In this chapter we will be able to explaining the Runge-Kutta methods of order four, 

Multistep methods. 

 It also brief about the Milan’s methods, simultaneous and higher order equations. 

 

7.1 INTRODUCTION 

An ordinary differential equation is a relation between a function, its derivatives and the variable 

upon which they depend. The general form of an ordinary differential equation is given by 



 (                )    

where   and its derivatives                are functions of  .  

Its general solution contains   arbitrary constants and is of the form  (                )   . 

For finding the particular solution,   conditions must be given and the values of constants 

            are to be determined. If these   conditions are prescribed at one point only, then 

the differential equation together with the conditions is called initial value problem of the  th 

order. In other cases, when the   conditions are prescribed at two or more points, then the 

problem is boundary value problem. In case of ordinary differential equations of first order, one 

arbitrary constant comes in the solution and this will be determined by the condition given to us. 

The ordinary differential equations can be solved using various methods which are categorized 

under single step method and multiple step methods. 

 

7.2 SINGLE STEP METHODS 

The method of solving an ordinary differential equation is called a single step method if it uses 

information available at one previous point only. The most common single step methods are 

Taylor series method, Runge-Kutta method, Picard's method and Euler's method. 

 

7.3 MULTIPLE STEP METHODS 

The method of solving an ordinary differentiable equation is called a multiple step method if it 

uses information available at more than one previous points. The most common multiple step 

methods are Euler's modified method, Predictor-Corrector method, Milne-Simpson's method and 

Adams-Bashforth method. 

We shall now discuss important methods of solving ordinary differential equations of first order 

by using single and multiple step methods. 

 

TAYLOR'S SERIES METHOD 

Consider the first order equation 

                                           
  

  
  (   ), where      at                            … (7.1) 

Let    ( ) be the solution of the above equation such that  (  )   . Expanding   

 ,   (    )- by Taylor's series about point   , we get or 



   (  )  (    ) 
 (  )  

(    )
 

  
   (  )   

     (    )
   

  
(    )

 

  
  

                                                                 (   )

 

This gives the value of   for every value of   for which equation (   ) converges. 

Putting           and      in (7.2), we get 

         
  

  

  
  

   
  

  
  

      

Similarly, we can obtain 

           
  

  

  
  

   
  

  
  

      

where      denotes the   th derivative of   w.r.t.   at the point (     ) 

Putting the values of                  , we can find      which is the solution of (7.1) 

numerically. 

Note. This method works well as long as the successive derivatives can be calculated easily. If 

the calculation of higher order derivatives become tedious, then Taylor's method is not useful. 

This is the main drawback of this method and is not of much importance. However, it is useful 

for finding starting values for the application of methods like Runge-Kutta method and Milne 

Simpson's method. 

 

RUNGE-KUTTA METHOD 

The Taylor's series method for solving differential equations numerically involves lot of labour 

in finding out the higher order derivatives. In Runge-Kutta method, the calculations of higher 

order derivatives is not required. Also this method gives greater accuracy. The method requires 

the functional values at some selected points and agrees with the Taylor's series solution up to 

the term containing   , where   differs from method to method and is called the order of that 

method. In these methods the accuracy increases at the cost of calculations. The most widely 

used method is Runge-Kutta of fourth order. 

RUNGE-KUTTA METHOD OF FOURTH ORDER This method is most commonly 

used and is often referred to as Runge-Kutta method only. 

To find the increment   of   corresponding to an increment   in   by R-K method from 
  

  
 

 (   )  (  )    ; we proceed as follows: 



Calculate      (     ) 

     [   
 

 
    

  

 
] 

     [   
 

 
    

  

 
]        ,          - 

and 

  
 

 
(             ) 

After obtaining values of             and   finally compute 

        

or 

      
 

 
,             - 

Example 7.1 Using Taylor's method, obtain the approximate value of   at       for the 

differential equation 
  

  
         ( )    and compare the numericalsolution obtained with 

the exact solution. 

Solution: The given differential equation is 

  

  
         (   ) 

The initial conditions are      at      

We have 

           ( )    ( )     

              ( )     ( )     

                 ( )      ( )      

 (  )            (  )( )       ( )      

 

By Taylor's series, we have 

 ( )    ( )     ( )  
  

  
   ( )  

  

  
    ( )  

  

  
 (  )( )      

       
 

 
   

  

 
   

  

  
      

     
 

 
   

 

 
   

  

 
      

 

Putting      , we get 



 (   )    (   )  
 

 
(   )  

 

 
(   )  

  

 
(   )   

       
 

 
(    )  

 

 
(     )  

  

 
(      )   

                         
        

 

To find exact value of   at       : 

Now, we have 
  

  
        

  

  
        

which is a linear differential equation of the form 
  

  
     , where            

 I. .   ∫       ∫             

Thus the solution is   (I.F.)  ∫  Q(I.F.)      

       ∫          

or 

              

Multiplying both sides by    , we get 

            

Putting        , we have 

           

Putting this value of  , we have 

            

Hence, exact solution of given equation is 

   (      ) 

Putting      , we have 

 (   )   ,         -         

We can see that numerical solution approximates to the exact value upto 3 decimal places. 

Example 7.2 Apply Runge-Kutta fourth order method to find an approximate value of   when 

     , given that 
  

  
     and     when    . 

Solution: The given differential equation is 



  

  
      (   ) 

The initial conditions are  ( )    when     i.e.,      and      

Taking      , we have 

      (     )     ,     -     

      (   
 

 
    

  

 
)     [(   

 

 
)  (   

  

 
)]

     ,       -      

      (   
 

 
    

  

 
)     [(   

 

 
)  (   

  

 
)]

     ,        -        

 

      (          )     ,(    )  (     )-

     ,         -        

   
 

 
(             )  

 

 
(                     )

        

 

Also 

                        

   Required approximate value of   at       is          . 

Example 7.3 Given 
  

  
     , where     when    ; find  (   )  (   ) and  (   ). 

Solution: The given differential equation is 

  

  
     .  

The initial conditions are     when     i.e.,      and      

Taking      , we have 

                          

To compute    we use           and       



        (     )   (    
 )     (   )     

      (   
 

 
    

  

 
)     [  (   

  

 
)
 

]     ,  (   ) -

     (     )       

      (   
 

 
    

  

 
)   [  (   

  

 
)
 

]     ,  (     ) -

     (          )          

      (          )   ,  (     )
 -     ,  (       ) -

     (          )         

       
 

 
(             )

  
 

 
,     (             )         -        

 

To compute   , we use                  and       

     (     )     (    
 )     ,(  (      ) -        

     (   
 

 
    

  

 
)     [  (   

  

 
)
 

]

           ,  (             ) -

           ,  (      ) -        

     (   
 

 
    

  

 
)     [  (   

  

 
)
 

]

          ,  (             ) -     ,  (      ) -        

     (          )     ,  (     )
 -

          ,  (             ) -

          ,  (      ) -        

      
 

 
(             )

              
 

 
,                           -

                           . 

 

To compute   , we use                  and      . 



      (     
 )     ,    

 -     ,  (      ) -

     ,         -

     ,       -        
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)     [  (   
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]

     ,  (             ) -     ,  (      ) -

     ,        -        

      (   
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     ,  (             ) -
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(             )

         
 

 
,        (             )        -
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Thus we have  (   )          (   )         and  (   )         . 

Milne-Simpson's method  

Given 
  

  
  (   ) and      at     . To find an approximate value of   for         

 by Milne-Simpson's method. 

The given differential equation is 
  

  
  (   ) 

The initial conditions are      at     . 

In this method, we first obtain the approximate value of      by predictor formula and then 

improve this value by means of corrector formula. 

By Newton's formula for forward interpolation, we have 

          
 (   )

  
     

 (   )(   )

  
     

 (   )(   )(   )

  
    

   

where   
    

 
 i.e.,         

In terms of    and  , the formula is 



     
      

  
 (   )

  
    

  
 (   )(   )

  
                         

 

           
 (   )(   )(   )

  
    

                                                                 (   )

 

Integrating over the interval    to       or     to 4, we have 

  

∫  
     

  

      ∫  
     

  

 [  
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Substituting   (   ), we get 
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This is Milne's predictor formula.  

To obtain the corrector formula, we integrate (7.3) over the interval    to       or 

    to 2 . Thus we have 

 ∫  
 

 

       ∫  
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 (   )

  
    

  
 (   )(   )

  
    

 

                         
 (   )(   )(   )
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or 
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Substituting   (   ), we get 
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This is Milne's corrector formula.  

Since                are any five consecutive values of  , so in general equations (7.4) and 

(7.5) can be written as 

          
  

 
,     

      
     

 -                                                                           (   )

       
( )

      
 

 
,    

     
      

 -                                                                                (   )

 

 

Thus Milne-Simpson's method uses the formulae 

          

and the predictor           
  

 
,              - 

and the corrector     
( )

      
 

 
,          (         )- for             (   )  

as an approximate solution to the differential equation 
  

  
  (   ) 

Remarks: 

1. As we fit up a polynomial of degree four, therefore we have considered the differences 

upto the third order. The terms containing     
  are not used directly, but they give the 

principal parts of the errors in the two values of      computed from equations (7.4) and 

(7.5). 

2. The Milne-Simpson's method is not a self starting method. Three additional starting 

values          must be given. They are usually computed using the Runge-Kutta 

method. 

Example 7.4 Find  ( ), if  ( ) is the solution of 
  

  
 

 

 
(   ), assuming that 

 ( )     (   )         (   )        and  (   )       .  

Solution: The given equation is 



  

  
 

 

 
(   )   (   )                        

Taking      , we have                           

                         and          

We have 

                         and          
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It is required to find    corresponding to      

By Milne's predictor formula, we have 
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Using corrector formula, we have 
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,       -                       
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,         -         

 

Again applying the corrector formula, we get 
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]

        
   

 
,        (     )         -

        
 

 
,        -                       

 

Hence  ( )       . 

Example 7.5 Use Milne-Simpson's method to obtain the solution of the equation 
  

  
      

at       given that  ( )     (   )          (   )          (   )        . 

Solution: The given equation is 

  

  
       (   ) 

The starting values with       are . 

                      
   

                        
        

                        
        

                        
        

 

By Milne's predictor formula, we get 

       
  

 
,          -

    
   

 
, (      )          (      )-                                                        (   )

 

Thus, we have                  and        (      )          

By Milne's corrector formula, we get 

  
( )

     
 

 
,         -

         
   

 
,        (      )        -

           hich is nearl  same as (   )

 

Thus, we have at                

 (   )         

Example 7.6 Use Milne-Simpson's method to find  (   ) from           ( )   . Find 

the initial values  (    )  (   ) and  (   ) from the Taylor's series method. 

Solution. The given equation is           (   )                         

The initial conditions are      and     . 



We have 

            

         (  )       

                                       

 

Putting      and     , we have 
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Using Taylor's series, we get 
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 (   )              
 

 
(     )  

 

 
(      )   

                              
         

 (   )              
 

 
(     )  

 

 
(      )   

                                   
        

 

Taking      , the starting values for Milne's method a 

                            
            
                         
                        

 

By Milne's predictor formula, we have 

        
  

 
,          -

         
   

 
,               -

                      

 



     
     

  (   )  (      )        

Using Milne's corrector formula, we have 

  
( )

     
 

 
,         -

          
   

 
,        (      )       -

                       

  
( )

  (   )  (       )       

 

Again, using the corrector formula, we have 

  
( )

     
 

 
[         

( )
]

          
   

 
,        (      )       -

                       

 

Thus, we have   (   )        . 

Example 7.7 Using Runge-Kutta method of order 4, find   for               given that 

  

  
        ( )   . Continue the solution at       using Milne-Simpson's method . 

Solution: The given differential equation is 

  

  
        (   )                                 

The initial conditions are      and     . 

Taking      , we shall find    corresponding to        in the following way 

     (     )      (   )     ,   -     

     (   
 

 
     

 

 
  )      (         )     (     )        

     (   
 

 
     

 

 
  )      (           )     (      )        

     (          )      (          )     (      )         

                    
 

 
(             )

 

          
 

 
,(     (      )   (      )         )-

 
 

 
(       )                                                          

                        

 

Now to compute    corresponding to        using                  and       



      (     )      (          )     (      )        

      (   
 

 
     

 

 
  )      (           )     (      )        

      (   
 

 
     

 

 
  )      (          )     (      )       

      (          )      (          )     (      )        

   
 

 
(             )

  
 

 
,        (            )        -

  
 

 
,      -        

                             

 

To find    corresponding to        using                  and      . 

      (     )      (          )     (      )        

      (   
 

 
     

 

 
  )      (           )     (      )        

      (   
 

 
     

 

 
  )      (           )     (      )        

      (          )      (          )     (      )        

   
 

 
,    (     )    -

  
 

 
,        (             )        -  

 

 
,      -          

 

                             
 

Thus, the starting values for Milne's method are 

                  
   

                         
        

                         
        

                         
        

 

Using Milne's predictor formula, we get 

       
  

 
,          -

    
   

 
, (      )          (      )-

                 
                    and           

        

 

Using Milne's corrector formula, we get 



  
( )

     
 

 
,         -

         
   

 
,        (      )        -

               
         

  
( )

    
( )

[     
( )

]        ,          -         

 

Again applying Milne's corrector formula, we have 

  
( )

     
 

 
[         

( )
]

         
   

 
,        (      )        -

                       

  
( )

    
( )

[     
( )

]        ,          -        

 

Again, by Milne's corrector formula, we have 

  
( )

     
 

 
[         

( )
]

         
   

 
,        (      )        -

                      

    
( )

    
( )

[     
( )

]        ,          -        

 

Hence  (   )        . 

 

ADAMS-BASHFORTH METHOD 

We have 

                 
  

  
  (   ), where     (  )                                              … (7.9) 

In this method, we compute      (    )      (     )      (     ) by Taylor's 

series or Euler's method or Runge-Kutta method. 

Using the given relation     (   ), we have 

   
   (        ) 

   
   (         ) and    

   (         ) 
 

Integrating (7.9) from    to     , we get 

                             ∫  
    

  

 (   )                                                                                        (    ) 



The integral can be evaluated by replacing unknown function  (   ) by polynomial  ( ). Using 

Newton's backward interpolation formula, we have 

 (   )   ( )          
 (   )

  
     

 (   )(   )

  
       

where   
    

 
 and     (     ) 

  Equation (7.10) becomes 

      ∫  
    

  

[        
 (   )

  
     

 (   )(   )

  
      ]   

Since                . 

At          and at            

         ∫
 

 
 [        

 (   )

  
     

 (   )(   )

  
      ]   

     [   
 

 
    

 

  
(
 

 
 

 

 
)     

 

  
(
 

 
)       ] 

     [   
   
 

 
 

  
     

 

 
        ] 

Substituting        , we get 

       [   
 

 
(     )   

 

  
(     )    

 

 
(     )     ] 

     [   
 

 
(     )   

 

  
(          )   

 

 
(               )    ] 

     [   
 

 
   

 

 
    

 

  
   

 

 
    

 

  
    

 

 
   

 

 
    

 

 
    

 

 
     ] 

     [(  
 

 
 

 

  
 

 

 
)   (

 

 
 

 

 
 

 

 
)     (

 

  
 

 

 
)    

 

 
     ] 

     [
  

  
   

  

  
    

  

  
    

 

 
     ] 

    
 

  
,                       -                                                                       (    ) 

This is called Adams-Bashforth Predictor Formula. 

Now we shall obtain    (       ) 

In order to obtain a better approximation for   , we shall derive a corrector formula by putting 

Newton's backward formula at    i.e., 



 (   )          
 (   )

  
     

 (   )(   )

  
                                          (    ) 

where         and       . 

Using (7.12) in (7.10), we get 

  
( )

    ∫  
    

  

[         
 (   )

  
     

 (   )(   )

  
      ]   

 ince             so           and           

   
( )

      ∫  
 

  

 [        
 (   )

  
     

 (   )(   )

  
      ]  

      [   
 

 
    

 

  
     

 

  
      ]

 

Taking        , we have 

  
( )

      [   
 

 
(     )   

 

  
(     )    

 

  
(     )      ]

      [   
 

 
(     )  

 

  
(          )   

 

  
(               )    ]

      [   
 

 
(     )  

 

  
(          )  

 

  
(               )     ]

      [(  
 

 
 

 

  
 

 

  
)    (

 

 
 

 

 
 

 

 
)   (

 

  
 

 

 
)     

 

  
       ]

     
 

  
,                 -                                                                              (    )

 

This is called Adams-Moulton Corrector Formula. 

Note: For applying Adams-Bashforth method, we need four starting values of   which can be 

calculated by means of Taylor's series method or Euler's method or Runge-Kutta method. In 

practice fourth order RungeKutta formula together with Adams -Bashforth formula is most 

useful. 

Example 7.8 Given 

  
  

  
   (   ) and  ( )     (   )         (   )         (   )        

Evaluate  (   ) by Adams-Bashforth method. 

Solution:   (   )    (   ) 

Taking      , starting values are 



             
                
                
              

 

      (   )   

     (   ) ,       -       

     (   ) ,       -       

    (   ) ,       -       

 

Using the predictor formula, we have 

       
 

  
,                     -

        
   

  
,  (     )    (     )    (     )   ( )-

       

 

Thus we have                . 

     
 (    )  (   ) ,       -        

Using the corrector formula, we have 

       
 

  
,                 -

        
   

  
, (      )    (     )   (     )       -

       

 

Thus at      , we have         

Hence,  (   )       . 

Example 7.9 Using Adams-Bashforth method, obtain the solution of 
  

  
      at      , 

given the values. 

   0             

    0                      

 

Solution: Here 
  

  
       (   ) 

Taking      , the starting values of Adams-Bashforth method are 



                        

                        (    )        

                          (      )        

                       (      )        

 

Using the predictor formula, we have 

      
 

  
,                     - 

         
   

  
,  (      )    (      )    (      )   ( )-

                      

 

Thus, we have                  

       (      )         

Using the corrector formula, we have 

  
( )

     
 

  
 ,                 -

         
   

  
, (      )    (      )   (      )        -

                      

 

Thus, we have at                 

 (   )        .  

Example 7.10 Given          ( )    and the starting values  (   )         , 

 (   )           (   )         . Evaluate  (   ) using Adams-Bashforth method . 

Solution: Here 
  

  
       (   ) 

Taking      , the starting values of Adams-Bashforth formula are 

                        

                      (   )                  

                      (   )                  

                   (   )                  

 

Using the predictor formula, we have 

       
 

  
,                     -

          
   

  
,  (        )    (        )    (        )   (  )-

                                                                                                                 (    )

 

Thus, we have                  

   (   )  (       )           



Using the corrector formula, we have 

  
( )

     
 

  
,                 -

          
   

  
, (        )    (        )   (        )  (        )

                          hich is same as (    )

 

Thus, we have at                 

 (   )         .  

 

7.4 SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS 

The simultaneous differential equations of the type 

  

  
   (     )                                                                                         (    )

                                       
  

  
   (     )                                                                                        (    )

 

with initial conditions  (  )     and  (  )     can be solved by the methods discussed in the 

preceding sections, especially Picard's or Runge-Kutta methods. 

PICARD'S METHOD  

This method is used as follows 

      ∫   (       )         ∫   (       )  

      ∫   (       )         ∫   (       )  

      ∫   (       )         ∫   (       )  

 

and so on. 

 

TAYLOR'S SERIES METHOD 

This method is used as follows: 

If   be the step-size,     (    ) and     (    ). Then Taylor's algorithm for (7.15) and 

(7.16) gives 



                                  
  

  

  
  

    
  

  
  

                                                                 (    )

         
  

  

  
  

   
  

  
  

                                                                    (    )

 

Differentiating (7.15) and (7.16) successively, we get        , etc. So the values   
    

     
     and 

     
     

     are known. Substituting these in (7.17) and (7.18), we obtain       for the next 

step. 

Similarly, we have the algorithms 

                              
  

  

  
  

   
  

  
  

                      … (7.19) 

                             
  

  

  
  

   
  

  
  

                    … (7.20) 

Since    and    are known, we can calculate   
    

     and   
    

    . Substituting these in (7.19) 

and (7.20), we get    and   . 

Proceeding further, we can calculate the other values of   and   step by step. 

 

RUNGE-KUTTA METHOD 

Runge-Kutta method is applied as follows: 

Starting at (        ) and taking the step-sizes for       to be       respectively, the Runge-

Kutta method gives, 

     (        )

     (        )

     (   
 

 
     

 

 
      

 

 
  )

     (   
 

 
     

 

 
      

 

 
  )

     (   
 

 
     

 

 
      

 

 
  )

     (   
 

 
     

 

 
      

 

 
  )

     (   
 

 
     

 

 
      

 

 
  )

     (   
 

 
     

 

 
      

 

 
  )

 

Hence 

      
 

 
(             ) 



and 

      
 

 
(             ) 

To compute    and   , we simply replace          by          in the above formulae. 

Example 7.11 Using Picard's method, find approximate values of   and   corresponding to 

     , given that  ( )     ( )    and                     . 

Solution: Here               , 

and  
  

  
  (     )      

  

  
  (     )       

       ∫
  

 
  (     )   and      ∫

  

 
  (     )   

First approximations 

      ∫  
 

  

  (       )     ∫  
 

  

 (   )       
 

 
  

      ∫  
 

  

  (       )     ∫  
 

  

 (   )        
 

 
  

 

Second approximations 

       ∫  
 

  

  (       )     ∫  
 

 

 (     
 

 
  )   

      
 

 
   

  

 

       ∫  
 

  

  (       )     ∫  
 

  

 [  (    
 

 
  )

 

]   

       
 

 
      

  

 
 

  

  

 

Third approximations 



       ∫  
 

  

  (       )       
 

 
   

 

 
   

 

 
   

 

  
   

 

   
  

       ∫  
 

  

  (       )  

       
 

 
   

 

 
   

 

  
   

  

  
   

 

  
   

 

   
  

 

and so on. 

When       

                              
                               

 

Hence  (   )           (   )         

correct to four decimal places. 

Example 7.12 Find an approximate series solution of the simultaneous equations           

               subject to the initial conditions         ,    . 

 

Solution: Since   and   both being functions of  , Taylor's series gives 

 

 ( )        
  

  

  
  

   
  

  
  

     

 ( )        
  

  

  
  

   
  

  
  

     }
 

 
 

Differentiating the given equations w.r.t.  , we get 

 

        

        
 

and 

             

     (         )           

              

                      }

 

Putting                , we obtain 



        ( )      
   

  
       

    
       

            
 

      (  )(  )        (  )  (  )    

  
        (  )( )   (  )        

            etc 

 

Substituting these values in ( ), we get 

 ( )       
  

  
 (  )

  

  
           

 

 
    

 ( )       
  

  
  

  

  
       

 

 
   

 

 
    

 

Example 7.13  Solve the differential equations 

  

  
      

  

  
     for       

using the fourth order Runge-Kuta method. Intial values are    ,        . 

Solution: Here 

 (     )        (     )      

              .  et us ta e      . 

     (        )      (     )     (   )     . 

     (        )     (    )   

     (   
 

 
     

 

 
      

 

 
  )

  (   ) (           )     (      )       

     (   
 

 
     

 

 
      

 

 
  )

  (   ), (    )(    )-          

     (   
 

 
     

  

 
    

  
 
)

  (   ) (                    )

     ,               -         

     (   
 

 
     

  

 
    

  
 
)

     , (    )(      )-           

     (                )

      (                   )        

     (                )

     , (   )(       )-          

 



Hence  (    )     
 

 
(             ) i.e.,  (   )    

 

 
,     (     )  

 (       )        -          

and  (   )     
 

 
(             ) 

i.e. 

 (   )     
 

 
,   (        )   (         )  (        )-

         

 

 

SECOND ORDER DIFFERENTIAL EQUATIONS 

Consider the second order differential equation 

   

   
  (    

  

  
) 

By writing        , it can be reduced to two first order simultaneous differential Equations 

  

  
   

  

  
 (     ) 

These equations can be solved as explained above. 

Example 7.14  Find the value of  (   ) and  (   ) from              ( )      ( )   1, 

using the Taylor series method 

 Solution: Let      so that        

Then the given equation becomes           

       

          

such that 

 ( )     ( )         .  

Now  

                    

                           (     )

        (            )   (          )

    (           )   (        ) }
 

 

 



and Taylor's series for  (   ) is 

 (   )   ( )     ( )  
  

  
   ( )  

  

  
    ( )    

Also 

 ( )      ( )       ( )    ( )        ( )     ( )   

 (   )  ( )     ( )  
(   ) 

 
( )  

(   ) 

 
( )         

 

Taylor's series for  (   ) is 

 (   )   ( )     ( )  
  

  
   ( )  

  

  
    ( )    

Here 

 ( )      ( )       ( )        ( )   

 (   )  ( )     ( )  
(   ) 

 
( )  

(   ) 

 
( )        

 

Hence  (   )         and  (   )        . 

Example 7.15  Using the Runge-Kutta method, solve             for       correct to 4 

decimal places. Initial conditions are             . 

Solution: Let          (     ) 

Then 
  

  
         (     ) 

We have                      

  Runge-Kutta formulae become 

     (        )     ( )   

     (   
 

 
     

 

 
      

 

 
  )

     (    )       

     (   
 

 
     

 

 
      

 

 
  )

     (       )       

     (                )

     (       )         

 

Hence at      , 



     
 

 
(             )        

     (        )     (  )      

     (   
 

 
     

 

 
      

 

 
  )

     (      )         

     (   
 

 
     

 

 
      

 

 
  )

     (       )         

     (                )

     (      )         

  
 

 
(             )         

 

and 

                       

                          .  

Example 7.16  Given              ( )      ( )   , obtain   for    (   )    by 

any method. Further, continue the solution by Milne's method to calculate  (   ). 

Solution: Putting     , the given equation reduces to the simultaneous equations 

               

We employ Taylor's series method to find  . 

Differentiating the given equation   times, we get 

                   

At 

    (    )   (   )(  )  

   ( )   , gives   ( )       ( )      ( )          

and   ( )    yields   ( )    ( )      . Expanding  ( ) by Taylor's series, we have 

 ( )   ( )     ( )  
  

  
  ( )  

  

  
  ( )   

 ( )    
  

  
 

 

  
   

   

  
    

 

and 

 ( )    ( )     
 

 
   

 

 
          



Now, we have 

 (   )    
(   ) 

 
 

 

 
(   )         

 (   )    
(   ) 

 
 

(   ) 

 
         

 (   )    
(   ) 

 
 

(   ) 

 
 

(   ) 

  
       

 

Also, we have 

 (   )           (   )          (   )           

Also from ( )   ( )   (    ) 

    (   )          (   )           (   )       . 

Applying Milne's predictor formula, first to   and then to  , we obtain 

 (   )    ( )  
 

 
(   )*   (   )    (   )     (   )+

    (
   

 
) *                +         

 

and 

 (   )    ( )  
 

 
(   )*   (   )    (   )     (   )+ ,     -

    (
   

 
) *                   +        

 

Also    (   )   * (   ) (   )   (   )+ 

  *   (       )        +         .  

Now applying Milne's corrector formula, we get 

 (   )    (   )  
 

 
*  (   )     (   )    (   )+

         (
   

 
) *                  +         

 

 and  
 (   )    (   )  

 

 
*  (   )     (   )    (   )+

         (
   

 
) *                    +        

 

Hence  (   )         and  (   )         . 

 

 

 



7.6 CHECK YOUR PROGRESS  

1  Use the Runge-Kutta fourth order method to find the value of   when     given that 

  

  
 

   

   
  ( )    

2 Use the Runge-Kutta method to solve   
  

  
        ( )    for the interval 

        with       

3 Use predictor-corrector method for tabulating a solution of   
  

  
        ( )    

for the range           

4 Tabulate the solution of 
  

  
      ( )    for           with      , using 

predictor corrector formulae  

5 Solve the system of differential equations 
  

  
     

  

  
     with         when 

    taking          

6 Compute  (   ) and  (   ) given that 
  

  
     

  

  
 

  

 
 and  ( )  

 

 
  ( )   . 

7 Solve the equation 
   

        with the conditions  ( )    and   ( )   . Compute 

 (   ) and  (   ) 

 

7.7 SUMMARY 

Students are made familiar with some preliminary definitions and the methods for finding the 

solution of initial value problems. 

 

7.8    KEYWORDS 

Initial value problem, Multi-Step methods, Simultaneous First Order Differential Equations. 

 

7.9 SELF-ASSESSMENT TEST   

1 Explain Runge-Kutta method carefully for solving a first order differential equation. 

2 Using Runge-Kutta method of fourth order, compute  (   ) in steps of     if 
  

  
 

                  given that     when    . 



3 Solve numerically 
  

  
      , at           by Milne-Simpson's method given their 

values at points                 are                                . 

4 Solve the initial value problem 
  

  
        ( )    for           by using Milne-

Simpson's method, given that 

               

                     

5 Use Milne-Simpson's method to solve 
  

  
     with initial condition  ( )    from 

       to       . 

6 Given 
  

  
     , where  ( )     (   )          (   )          (   )  

      . Using Milne-Simpson's method compute  (   ). 

7 Apply Milne-Simpson's method to find a solution of the differential equation      

   in the range       for the boundary condition     at    . 

8 Use Milne-Simpson's method to solve 
  

  
     with initial condition  ( )    for 

      to     

9 Solve by Milne-Simpson's method, the differential equation 
  

  
      with the 

following starting values: 

 ( )      (   )            (   )           (   )         

       and find the value of   when      . 

10 Find  (   )  (   )  (   ), and  (   ) from the system of equations:                 

given  ( )     ( )    using Runge-Kutta method of the fourth order. 

11 Using Picard's method, obtain the second approximation to the solution of 

   

   
   

  

  
     so that  ( )      ( )  

 

 
  

7.10 ANSWERS TO CHECK YOUR PROGRESS   

1  ( )         

2                             

3                                                          

4                                                                     



5 (   )          (   )         

6  (   )          (   )         

7  (   )          (   )      
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8.0 LEARNING OBJECTIVES  

• In this chapter we will be able to explaining the solution of boundary value problems 

based on second order finite difference methods. 

• It also brief about the Shooting method, cubic spline methods, and mixed boundary value 

problems. 

 

8.1 INTRODUCTION   

The boundary value problems require solution of a differential equation in a region R subject to 

the various conditions on the boundary of R. Practical applications give rise to many boundary 

value problems. Some simple examplés of two point linear boundary value problems are: 



                       𝑦′′(𝑥) + 𝑓(𝑥)𝑦′(𝑥) + 𝑔(𝑥)𝑦(𝑥) = 𝑟(𝑥)               … (8.1) 

with the boundary conditions 

                       𝑦(𝑥0) = 𝑎, y(xn) = 𝑏,  𝑦′(𝑥) + 𝑝(𝑥)𝑦(𝑥) = 𝑞(𝑥)                      … (8.2) 

Also with the conditions  𝑦(𝑥0) = 𝑦′(𝑥0) = 𝑎,  𝑦(𝑥𝑛) = 𝑦′(𝑥𝑛) = 𝑏 

There exists many numerical methods of solving such boundary value problems, the method of 

finite-difference is a popular one and will be described here. 

8.2 FINITE DIFFERENCE METHOD 
The Finite-difference method for the solution of a two point boundary value problem consists in 

replacing the derivatives occurring in the differential equation and the boundary conditions by 

means of their finite-difference approximations and solving the resulting linear system of 

equations by a standard procedure. To obtain the appropriate finite-difference approximations to 

the derivatives, we proceed as follows: If 𝑦(𝑥) and its derivatives are single-valued continuous 

functions of 𝑥 then Taylor's series expansion leads to 

𝑦(𝑥 + ℎ) = 𝑦(𝑥) + ℎ𝑦′(𝑥) + ℎ2

2
𝑦′′(𝑥) + ℎ3

6
𝑦′′(𝑥) + ⋯              … (8.3) 

which implies that 

𝑦′(𝑥) =
𝑦(𝑥 + ℎ) − 𝑦(𝑥)

ℎ
=
ℎ
2
𝑦′′(𝑥) +

ℎ2

6
𝑦′′(𝑥) + ⋯ 

Thus we have 

               𝑦′(𝑥) = 1
ℎ

[𝑦(𝑥 + ℎ) − 𝑦(𝑥)] + 𝑜(ℎ)                … (8.4) 

which is the forward difference approximation of 𝑦′(𝑥) with an error of order ℎ. 

Similarly, expansion of 𝑦(𝑥 − ℎ) in Taylor's series gives 

               𝑦(𝑥 − ℎ) = 𝑦(𝑥) − ℎ𝑦′(𝑥) + ℎ2

2
𝑦′′(𝑥) − ℎ3

6
𝑦′′(𝑥) + ⋯              … (8.5) 



from which we obtain 

𝑦′(𝑥) =
1
ℎ

[𝑦(𝑥) − 𝑦(𝑥 − ℎ)] + 𝑜(ℎ) 

which is the backward difference approximation 𝑦′(𝑥) with an error of the order ℎ. Subtracting 

(8.3) and (8.5), we obtain 

𝑦′(𝑥) =
1

2ℎ
[𝑦(𝑥 + ℎ) − 𝑦(𝑥 − ℎ)] + 𝑜(ℎ2) 

which is the central difference approximation of 𝑦′(𝑥) with an error of the order ℎ2. Clearly this 

central difference approximation to 𝑦′(𝑥) is better than the forward or backward difference 

approximations and hence should be preferred. Again adding (8.3) and (8.5), we get 

𝑦′′(𝑥) =
1
ℎ2

[𝑦(𝑥 + ℎ) − 2𝑦(𝑥) + 𝑦(𝑥 − ℎ)] + 𝑜(ℎ2) 

which is the central difference approximation to 𝑦′′(𝑥). In a similar manner, it is possible to 

derive finite-difference approximations to higher order derivatives. To solve the boundary value 

problems defined by (8.1) and (8.2), we divide the range [𝑥0, 𝑥𝑛] into 𝑛 equal subintervals of 

width ℎ so that 

𝑥𝑖 = 𝑥0 + 𝑖ℎ, 𝑖 = 1,2,3 …𝑛. 

The corresponding values of 𝑦 at these points are denoted by 

𝑦(𝑥𝑖) = 𝑦𝑖 = 𝑦(𝑥0 + 𝑖ℎ), 𝑖 = 1,2,3 … 

Hence the working expressions for the central difference approximations to the first four 

derivatives of 𝑦𝑖 are as under: 



𝑦𝑖′ =
1

2ℎ
(𝑦𝑖+1 − 𝑦𝑖−1)

𝑦𝑖′′ =
1
ℎ2

(𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1)

𝑦𝑖𝑚 =
1

2ℎ3
(𝑦𝑖+2 − 2𝑦𝑖+1 − 𝑦𝑖−2)

𝑦𝑖𝑖𝑣 =
1
ℎ4

(𝑦𝑖+2 − 4𝑦𝑖+1 + 6𝑦𝑖 − 4𝑦𝑖−1 + 𝑦𝑖−2)

 

The accuracy of this method depends on the size of the subinterval viz ℎ and also on the order of 

approximations. As we reduce ℎ, the accuracy improves although the number of equations to be 

solved increases. 

Example 8.1 To solve the equation 𝑦′′ + 𝑦 + 1 = 0 with the boundary conditions 𝑦(0) = 0 

and 𝑦(1) = 0. 

Solution: The given equation is 

𝑦′′ + 𝑦 + 1 = 0 

we divide the interval (0,1) into four sub intervals so that ℎ = 0.25 and the pivot points are 

𝑥0 = 0, 𝑥1 = 0.25, 𝑥2 = 0.5, 𝑥3 = 0.75 and 𝑥4 = 1.0. Then the differential equation is 

approximated as 

1
ℎ2

[𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1] = −1 − 𝑦𝑖 

or 

16𝑦𝑖+1 − 31𝑦𝑖 + 16𝑦𝑖−1, = −1, 𝑖 = 1,2,3 

Using 𝑦0 = 𝑦4 = 0, we get the system of equations 

16𝑦2 − 31𝑦1 = −1 

16𝑦3 − 31𝑦2 + 16𝑦1 = −1
−31𝑦3 + 16𝑦2 = −1  

Their solutions are 



𝑦1 = 0.1047,𝑦2 = 0.1403,𝑦3 = 0.1047 

up to four decimal places. The exact solution of the given differential equation is 

𝑦(𝑥) =
1 − 𝑒−𝑥

1 − 𝑒−1
− 𝑥 

The error at each nodal point is given in the table below: 

𝑋 
 Computed value 

 of 𝑦(𝑥)   Exact value of 
𝑦(𝑥)  Error 

0.25 0.1047 0.099932 0.004768 

0.5 0.1403 0.1224593 0.0178407 

0.75 0.1047 0.0847038 0.0199961 
 

Example 8.2 The deflection of a beam is governed by the equation 𝑑
4𝑦

𝑑𝑥4
+ 81𝑦 = 𝜙(𝑥), where 

𝜙(𝑥) is given by 

𝑥 
1
3

 
2
3

 1 

𝜙(𝑥) 81 162 243 
 

and boundary conditions 𝑦(0) = 𝑦′(0) = 𝑦′′(1) = 𝑦′′(1) = 0. Evaluate the deflection at the 

pivot points of the beam using three subintervals. 

Solution: Here ℎ = 1/3 and the pivot points are 𝑥0 = 0, 𝑥1 = 1/3, 𝑥2 = 2/3 and 𝑥3 = 1. 

The corresponding values of 𝑦 are 𝑦0 = 0,𝑦1, 𝑦2,𝑦3. The given differential equation can be 

approximated to 

1
ℎ4

[𝑦𝑖+2 − 4𝑦𝑖+1 + 6𝑦𝑖 − 4𝑦𝑖 + 𝑦𝑖−2] + 81𝑦𝑖 = 𝜙(𝑥𝑖), 𝑖 = 1, 2, 3 

This leads to system of equations 



𝑦3 − 4𝑦2 + 7𝑦1 − 4𝑦0 + 𝑦−1 = 1
                     𝑦4 − 4𝑦3 + 7𝑦2 − 4𝑦1 + 𝑦0 = 2

𝑦5 − 4𝑦4 + 7𝑦3 − 4𝑦2 + 𝑦1 = 3
                … (8.6) 

where 𝑦0 = 0. Since 𝑦𝑖′ = 1
2ℎ

(𝑦𝑖+1 − 𝑦𝑖−1), therefore for 𝑖 = 0, we have 

                         0 = 𝑦0′ = 1
2ℎ

(𝑦1 − 𝑦−1) ⇒ 𝑦−1 = 𝑦1                … (8.7) 

Also 𝑦𝑖′′ = 1
ℎ2

(𝑦𝑖+1 − 2𝑦𝑖 + 𝑦𝑖−1), for 𝑖 = 3 gives us 

                        0 = 𝑦3′′ = 1
ℎ2

(𝑦4 − 2𝑦3 + 𝑦2) ⇒ 𝑦4 = 2𝑦3 − 𝑦2              … (8.8) 

Again 𝑦𝑖′′′ = 1
2ℎ3

(𝑦𝑖+2 − 2𝑦𝑖+1 + 2𝑦𝑖−1 − 𝑦𝑖−2), for 𝑖 = 3 leads to 

                 0 = 𝑦3𝑚′ = 1
2ℎ3

(𝑦5 − 2𝑦4 + 2𝑦2 − 𝑦1) ⇒ 𝑦5 = 2𝑦4 − 2𝑦2 + 𝑦1             … (8.9) 

Using equations (8.7) to (8.9) in equation (8.6) we obtain 

𝑦3 − 4𝑦2 + 8𝑦1 = 1
 −𝑦3 + 3𝑦2 − 2𝑦1 = 1
3𝑦3 − 4𝑦2 + 2𝑦1 = 3

 

Solving this system of equations, we get 

𝑦1 = 8/13,𝑦2 = 22/13,𝑦3 = 37/13 

Hence the required solution is 

𝑦(1/3) = 0.6154,𝑦(2/3) = 1.6923,𝑦(1) = 2.8462 

correct to four decimal places. 

8.3 SHOOTING METHOD 
This method can be applied to both linear and non-linear problems and required good initial 

guesser for the slope. It is easy and convenient to apply. The men steps involve in this method 

are: 



(i) transformation of the boundary value problem into an initial value problem 

(ii) solution of the initial value problem by Taylor' series method ,or Runge-Kutta    

method etc. and 

(iii) solution of the given boundary value problem 

Consider the second order boundary value problem 

𝑦′′(𝑥) = 𝑓(𝑥), 𝑦(0) = 0, 𝑦(1) = 1 

Let us assume that the true value of 𝑦′(0) be 𝑚. We take two initial guesses for 𝑚 as 𝑚0 and 

𝑚1. Let 𝑦(𝑚0, 1) and 𝑦(𝑚1, 1) be the corresponding values of 𝑦(1) obtained by initial value 

method. The by using liner interpolation, we option a better approximation 𝑚2 for 𝑚, given by 

𝑚2 −𝑚0

𝑦(1) − 𝑦(𝑚0, 1) =
𝑚1 −𝑚0

𝑦(𝑚1, 1) − 𝑦(𝑚0, 1) 

which implies that 

                𝑚2 = 𝑚0 + (𝑚1 −𝑚0) 𝑦(1)−𝑦(𝑚0,1)
𝑦(𝑚1,1)−𝑦(𝑚0,1)

              … (8.10) 

We now solve that initial problem 

𝑦′′(𝑥) = 𝑓(𝑥), 𝑦(0) = 0 and 𝑦′(0) = 𝑚2 and obtain 𝑦(𝑚21).we again apply interpolation with 

�𝑚1, 𝑦(𝑚1, 1)� and �𝑚1, 𝑦(𝑚2, 1)� to obtain a better approximation 𝑚3 for 𝑚 and so on. The 

process is repeated until the convergence and desisted level of accuracy is obtained i.e., until the 

value of 𝑦(𝑚1, 1) agree with 𝑦(1) of to the desired level of accuracy. The spaced of convergence 

depends, on how good the initial guesses are chosen. However, the method will be difficult to 

apply to higher order boundary value problem and in the case of now linear problems. 

Example 8.3 Solve the boundary value problem 𝑦′′(𝑥) = 𝑦(𝑥),𝑦(0) = 0 and 𝑦(1) = 1.1752 

by shooting method, taking 𝑚0 = 0 and y(1) = 0.9. 

Solution: Appling Taylor's series method, we obtain 



𝑦(𝑥) = 𝑦′(0) ⋅ �𝑥 +
𝑥3

6
+

𝑥5

120
+

𝑥7

5040
+

𝑥9

362800
+ ⋯� 

Hence 

𝑦(1) = 𝑦′(0) �1 +
1
6

+
1

120
+

1
5040

+
1

362800
+ ⋯� = 1.1752y′(0) 

With 𝑚0 = 0.8 and 𝑚1 = 0.9, we get 

𝑦(𝑚0, 1) = 0.9402 and 𝑦(𝑚1, 1) = 1.578 

Using liner interpolation formula (8.10), we get 

𝑚2 = 0.8 + (0.1)
1.1752 − 0.9402
1.0578 − 0.9404

= 0.8 + 0.1998 = 0.9998 

which is closer to the exact value of 𝑦′(0) = 1 We now solve the initial value problem 𝑦′′(𝑥) =

𝑦(𝑥),𝑦(0) = 0,  m2. Again using Taylor's series solution, we get 𝑦(𝑚2, 1) = 1.174 which is 

also closer to the exact value 𝑦(1) = 1.175. This problem can also be solve by using Runge 

Kutta fourth order method. 

8.4 CUBIC SPLINE METHOD 

Let 𝑠(𝑥) be the cubic spline approximating the function 𝑦(𝑥) and let 𝑠′′(𝑥𝑖) = 𝑀𝑖. Then, at 

𝑥 = 𝑥𝑖 the differential equation given in (8.1) gives 

                        𝑀𝑖 + 𝑓𝑖𝑠′(𝑥𝑖) + 𝑔𝑖𝑦𝑖 = 𝑟𝑖               … (8.11) 

But 

                    𝑠′(𝑥𝑖 −) = ℎ
3!

(2𝑀𝑖 + 𝑀𝑖−1) + 1
ℎ

(𝑦𝑖 − 𝑦𝑖−1)             … (8.12) 

and 

                   𝑠′(𝑥𝑖 +) = − ℎ
3!

(2𝑀𝑖 + 𝑀𝑖+1) + 1
ℎ

(𝑦𝑖+1 − 𝑦𝑖)              … (8.13) 

Substituting (8.12) and (8.13) successively in (8.11), we obtain the equations 

                𝑀𝑖 + 𝑓𝑖 �
ℎ
6

(2𝑀𝑖 + 𝑀𝑖−1) + 1
ℎ

(𝑦𝑖 − 𝑦𝑖−1)� + 𝑔𝑖𝑦𝑖 = 𝑟𝑖            … (8.14) 

and 



                    𝑀𝑖 + 𝑓𝑖 �−
ℎ
6

(2𝑀𝑖 + 𝑀𝑖+1) + 1
ℎ

(𝑦𝑖+1 − 𝑦𝑖)� + 𝑔𝑖𝑦𝑖 = 𝑟𝑖 .                                … (8.15) 

Since 𝑦0 and 𝑦𝑛 are known, Eqs. (8.14) and (8.15) constitute a system of 2𝑛 equations in 2𝑛 

unknowns, viz., 𝑀0,𝑀1, … ,𝑀𝑛,𝑦1,𝑦2, … , 𝑦𝑛−1. It is, however, possible to eliminate the 𝑀𝑖 and 

obtain a tridiagonal system for 𝑦𝑖. The following examples illustrate the use of the spline 

method. 

Example 8.4 Solve the problem 𝑦′′ + 𝑦 + 1 = 0,  𝑦(0) = 𝑦(1) = 0 

Solve: If we divide the interval [0,1] into two equal subintervals, then from given problem and 

the recurrence relations for 𝑀𝑖, we obtain 

𝑦(0.5) =
3

22
= 0.13636 

and 

𝑀0 = −1,  𝑀1 = −
25
22

,  𝑀2 = −1 

Hence we obtain 

𝑠′(0) =
47
88

,  𝑠′(1) = −
47
88

,  𝑠′(0.5) = 0. 

From the analytical solution of the problem, we observe that 𝑦(0.5) = 0.13949 and hence the 

cubic spline solution of the boundary-value problem has an error of 2.24%. 

Example 8.5 Given the boundary-value problem 

𝑥2𝑦′′ + 𝑥𝑦′ − 𝑦 = 0;  𝑦(1) = 1,  𝑦(2) = 0.5 

apply the cubic spline method to determine the value of 𝑦(1.5). 

Solution: The given differential equation is 

𝑦′′ = −
1
𝑥
𝑦′ +

1
𝑥2
𝑦 

Setting 𝑥 = 𝑥𝑖 and 𝑦′′(𝑥𝑖) = 𝑀𝑖, given problem gives 

𝑀𝑖 = −
1
𝑥𝑖
𝑦𝑖′ +

1
𝑥𝑖2
𝑦𝑖 

Using the expressions given in (8.12) and (8.13), we obtain 

            𝑀𝑖 = − 1
𝑥𝑖
�− ℎ

3
𝑀𝑖 −

ℎ
6
𝑀𝑖+1 + 𝑦𝑖+1−𝑦𝑖

ℎ
� + 1

𝑥𝑖
2 𝑦𝑖 ,  𝑖 = 0,1,2, … ,𝑛 − 1.                … (8.16) 

and 

            𝑀𝑖 = − 1
𝑥𝑖
�ℎ
3
𝑀𝑖 + ℎ

6
𝑀𝑖−1 + 𝑦𝑖−𝑦𝑖−1

ℎ
� + 1

𝑥𝑖
2 𝑦𝑖 ,  𝑖 = 1,2, … ,𝑛                          … (8.17) 



If we divide [1,2] into two subintervals, we have ℎ = 1/2 and 𝑛 = 2. Then Eqs. (8.16) and 

(8.17) give 

10𝑀0 −𝑀1 + 24𝑦1 = 36
16𝑀1 −𝑀2 − 32𝑦1 = −12
𝑀0 + 20𝑀1 + 16𝑦1 = 24
𝑀1 + 26𝑀2 − 24𝑦1 = −9

 

Eliminating 𝑀0,𝑀1 and 𝑀2 from these system of equation we obtain 

𝑦1 = 0.65599.   

Since the exact value of 𝑦1 = 𝑦(1.5) = 2/3, the error in the computed value of 𝑦1 is 0.01 , 

which is about 1.5% smaller. 

 

8.5 MIXED BOUNDARY PROBLEMS 

We now consider the boundary conditions 

𝑎0𝑦(𝑎) − 𝑎1𝑦′(𝑎) = 𝛾1,
𝑏0𝑦(𝑏) + 𝑏1𝑦′(𝑏) = 𝛾2.  

We obtain the second order approximations for the boundary conditons as follows. 

(i) At 𝑥 = 𝑥0:  𝑎0𝑦0 −
𝑎1
2ℎ

[𝑦1 − 𝑦−1] = 𝛾1 

or 

𝑦−1 = −
2ℎ𝑎0
𝑎1

𝑦0 + 𝑦1 +
2ℎ
𝑎1
𝛾1 

 At  𝑥 = 𝑥𝑁+1:  𝑏0𝑦𝑁+1 +
𝑏1
2ℎ

[𝑦𝑁+2 − 𝑦𝑁] = 𝛾2 

or 

𝑦𝑁+2 = 𝑦𝑁 −
2ℎ𝑏0
𝑏1

𝑦𝑁+1 +
2ℎ
𝑏1
𝛾2 

The values 𝑦−1 and 𝑦𝑁+2 can be eliminated by assuming that the difference equation for given 

differential equation holds also for 𝑗 = 0 and 𝑁 + 1, that is, at the boundary points 𝑥0 and 𝑥𝑁+1.  

(ii) At 𝑥 = 𝑥0:  𝑎0𝑦0 −
𝑎1
2ℎ

(−3𝑦0 + 4𝑦1 − 𝑦2) = 𝛾1 

or 

(2ℎ𝑎0 + 3𝑎1)𝑦0 − 4𝑎1𝑦1 + 𝑎1𝑦2 = 2ℎ𝛾1.   

At 𝑥 = 𝑥𝑁+1: 𝑏0𝑦𝑁+1 + 𝑏1
2ℎ

(3𝑦𝑁+1 − 4𝑦𝑁 + 𝑦𝑁−1) = 𝛾2 



or 

𝑏1𝑦𝑁−1 − 4𝑏1𝑦𝑁 + (2ℎ𝑏0 + 3𝑏1)𝑦𝑁+1 = 2ℎ𝛾2 

Example 8.6 Use a second order method for the solution of the boundary value problem 

𝑦′′  = 𝑥𝑦 + 1, 𝑥 ∈ [0,1],
𝑦′(0) + 𝑦(0)  = 1,𝑦(1) = 1,  

with the step length ℎ = 0.25. 

Solution: The nodal points are 𝑥𝑛 = 𝑛ℎ,𝑛 = 0(1)4,ℎ = 1/4,𝑁ℎ = 1. The discretizations of the 

differential equation at 𝑥 = 𝑥𝑛 and that of the boundary conditions at 𝑥 = 0 and 𝑥 = 𝑥𝑁 = 1 lead 

to 

 −
1
ℎ2

(𝑦𝑛−1 − 2𝑦𝑛 + 𝑦𝑛+1) + 𝑥𝑛𝑦𝑛 + 1 = 0,𝑛 = 0(1)3,
𝑦1 − 𝑦−1

2ℎ
+ 𝑦0 = 1,𝑦4 = 1.

 

Simplifying we get 

 −𝑦𝑛−1 + (2 + 𝑥𝑛ℎ2)𝑦𝑛 − 𝑦𝑛+1 = −ℎ2,𝑛 = 0(1)3
𝑦−1 = 2ℎ𝑦0 + 𝑦1 − 2ℎ,  𝑦4 = 1.

 

We have the following results. 

𝑛 = 0, 𝑥0 = 0:  − 𝑦−1 + 2𝑦0 − 𝑦1 = −
1

16

𝑛 = 1, 𝑥1 = 0.25:  − 𝑦0 +
129
64

𝑦1 − 𝑦2 = −
1

16

𝑛 = 2, 𝑥2 = 0.5:  − 𝑦1 +
65
32

𝑦2 − 𝑦3 = −
1

16

𝑛 = 3, 𝑥3 = 0.75:  − 𝑦2 +
131
64

𝑦3 − 𝑦4 = −
1

16

 and  𝑦−1 =
1
2
𝑦0 + 𝑦1 −

1
2

,𝑦4 = 1.

 

𝑥 4 5 6 7 

𝑦 0.15024 4 40.56563 3 1.54068 8 3.25434 



𝑥 8 9 10 

𝑦 5. 6.5   
 

Substituting for 𝑦−1 and 𝑦4, we get the following system of equations 

�

3/2 −2 0 0
−1 129/64 −1 0
0 −1 65/32 −1
0 0 −1 131/64

� �

𝑦0
𝑦1
𝑦2
𝑦3

� = −
1

16 �

9
1
1

−15

� 

Using the Gauss elimination method, we find 

𝑦0 = −7.4615,𝑦1 = −5.3149,𝑦2 = −3.1888,𝑦3 = −1.0999.  

 

8.6 CHECK YOUR PROGRESS  

1 Solve the equation 𝑑
2𝑦

𝑑𝑥2
+ 𝑦 = 0 with the conditions 𝑦(0) = 1 and 𝑦′(0) = 0. Compute 

𝑦(0.2) and 𝑦(0.4) 

2 Solve the boundary value problem 𝑦′′ − 64𝑦 + 10 = 0 with 𝑦(0) = 𝑦(1) = 0, by finite 

difference method. Compute 𝑦(0.5) and compute it with the true value. 

3 Solve the boundary value problem  

    𝑦′′(𝑥) − 𝑦(𝑥) = 0,𝑦(0) = 0,𝑦(1) = 1 

by finite difference and cubic spline methods. In each case take h=0.5 and h=0.25. 

4 Solve the boundary value problems 

(a)       𝑦′′(𝑥) = 𝑦(𝑥),𝑦(0) = 0,𝑦(1) = 1 

(b)      𝑦′′ − 64𝑦 + 10 = 0,𝑦(0) = 𝑦(1) = 0 

            by shooting method. 



 

 

 

8.7 SUMMARY  

 The students are made familiar with some preliminary definitions and results of 

finite difference solution of boundary value problems. 

 Lastly the solution of mixed boundary value problems has been explained in detail.  

 

8.8 KEYWORDS 

Boundary value problems, finite difference methods, shooting method, cubic spline 

method, mixed boundary value problems. 

 

8.9 SELF-ASSESSMENT TEST   

1 Solve the boundary value problem 𝑦′′ − 64𝑦 + 10 = 0 with 𝑦(0) = 𝑦(1) = 0 by the 

finite difference method. Compute the value of 𝑦(0.5) and compare with the true value.  

2 Solve the boundary value problem 

𝑦′′ + 𝑥𝑦′ + 𝑦 = 3𝑥2 + 2,𝑦(0) = 0,𝑦(1) = 1. 

3 Apply shooting method to solve the boundary value problem 

𝑑2𝑦
𝑑𝑥2

= 𝑦,𝑦(0) = 0 and 𝑦(1) = 1.1752 

4 Using shooting method, solve the boundary value problem 

𝑑2𝑦
𝑑𝑥2

= 6𝑦2, 𝑦(0) = 1,𝑦(0.5) = 0.44 

 

8.10 ANSWERS TO CHECK YOUR PROGRESS   

1 y(0.2)=1.0204, y(0.4)=1.0 



2 y(0.5)=0.1389 for n=2, y(0.5)=0.1470 for n=4. 

3 0.443674, 0.443140 
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