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1.0 LEARNING OBJECTIVES



e  This chapter will be devoted to explaining the main concepts of interpolation.
e  Some theorems concerning the interpolation of the functions will be proved.

e  Various interpolation relations/methods have been discussed.

1.1 INTRODUCTION

The calculus of finite differences deals with the changes that take place in the value of a
function due to finite changes in the independent variable. On the other head, in infinitesimal
calculus, we study those changes in a function that occurs when the independent variable

changes continuously in a given interval.

Suppose that the function y = f(x) is tabulated for equally spaced values (x;,y;), i=
1,2,3,---,n such that x; = xo + ih. If we are required to recover the values of f(x) or its
derivatives for some intermediate values of x in the range x, < x < x,,, the following three types

of differences are found useful.

FORWARD DIFFERENCES: The forward difference or simply difference operator is
denoted by A and may be defined as

Af(x) = f(x + h) — f(x)
or, writing in terms of y, at x = xi, Eq.(i) becomes
Af(xi) = f(xi + h) — f(xi)
or Ayi = Yi+1 —Yi, 1i=0,1,2,...,n-1

The differences between the first-order differences are called the second differences and they are

denoted by
Ao, A%y, ..., A?yn.
Hence A?Yo = Ay1—Ayo = (y2 - y1) — (Y1 - Yo) = Y2 — 2y1+ Yo
A?y1=Ay2— Ay1=(y3—y2) - (Y2—y1) S ys—2y2+y1
A%yo = A%y1 — A?yo = (ys—2y2 + Y1) — (Y2 — 2y1 + Yo) = y3— 3y2 + 3y1 - o

A%y1 = ya—3ys + 3y2 —y1, etc.



Generalizing, we have
A™H(x) = A[AM(x)], i.e., A" lyi= A[A"i], n=0,1,2,
Also, A™H(x) = A"[f(x + h) — f(x)] = A"f(x + h) — A™(X)
And A"Myi= Anyisi —Ai,n=0,1, 2
where A = identity operator i.e., A’f(x) = f(x) and Al = A.

Forward difference table:

X y Ay A%y Ay Aty A%y
Xo Yo
Ayo
X1 Y1 A%yo
Ay1 Ayo
X2 y2 A%y1 Atyo
Ay2 A¥y1 Ao
X3 Y3 A%y, Aty1
Ays3 A3y>
X4 ya A%y3
Ays
X5 Y5

The forward differences for the arguments Xo, X1, ...., X5 are shown in the above Table.

Which is called a diagonal difference table or forward difference table. The first term in Table is
yo and is called the leading term. The differences Ayo, A%yo, A%y, ...., are called the leading

differences. Similarly, the differences with fixed subscripts are called forward differences.

BACKWARD DIFFERENCES: The backward difference operator is denoted by V and it
is defined as V(x) = f(x) — f (x — h).

This can be written as Vyi =yi—vVi-1, i=n,n-1,...,1

or Vyi=yi—Yo, Vy2=y2—-y1,...,Vyn=yn—Yyn

These differences are called first differences. The second differences are denoted by V2y2, V2ys,

cene szn.

Hence, V2y2 = V(Vy2) = V(Y2 — Y1) = Vy2 — Vy1 = (Y2 — Y1) — (Y1 — Yo) = Y2 — 2y1 + Yo.

Similarly, V2ys = y3 — 2y2 + y1, V?y4 = ya — 2y3 + y2, and so on.



Generalising, we have V¥yi = V<lyi —Vklyia i=nn-1,..,k
where Vi = yi, Vlyi = Vyi.

The backward differences written in a tabular form are shown in the following table as the

differences V"y with a fixed subscript ‘i’ lie along the diagonal upward sloping.

Backward difference or horizontal table:

X y vy V2y Viy Viy
Xo Yo
Vy1
X1 y1 V2y»
Vy2 Vys3
X2 y2 V2y3 Vys
Vys Viy4
X3 y3 V2y4
Vya
X4 Y4

CENTRAL DIFFERENCES: The central difference operator is denoted by the symbol §
and is defined by

8f (x) = (x + h/2) — f (x — h/2)
where h is the interval of differencing.
In terms of y, the first central difference is written as
Oy1 = Yi+1/2 — Yi-1/2

where yit12 = f(Xi + h/2) and yi-12 = f (xi — h/2).

Hence Oy12 = Y1—Yo, 0y32 = Y2 —VY1, ...., 0yn-1/2 = Yn — Yn-1.

The second central difference is given by 82yi = yi+12 — Yi172
= (Yi+1—Yi) = (Yi— Yi1)
=Vl —2YitYyia

Generalising, Syi = 8" Lyivrro — 8™ yiia

The central difference table for the seven arguments Xo, Xu, ...., x4 is shown in following table



Central difference table:

X y Sy Y Y Y 5y %y
Xo Yo
dy1r2
X1 y1 3%y1
Syar 5%y
X2 y?2 3%y 3%y
Sysi2 53ys12 8°ys12
X3 Y3 3%y3 d%ys 3%y
Sy7r 33y71 8y
X4 Y4 8%y 8%
Syoar 53yor2
X5 Y5 3%ys
dy11/2
X6 Ve

It is noted in the above table all odd differences have fraction suffices and all the even

differences are with integral suffices.
PROPERTIES OF THE OPERATOR (A):
1. Ifcisaconstant then Ac = 0.
Proof: Let f(x) =c
Hence f (x + h) = ¢, where h is the interval of differencing.
Hence Af(x)=f(x+h)-f(X)=c-c=0
or Ac=0
2. Adis distributive, i.e., A[f (x) = g(x)] = Af (x) £ Ag(x).
Proof: A[f(x) + g(x)] = [f(x + h) + g(x + h)] - [f(x) + g(x)]
= f(x + h) — f(x) + g(x+ h) — g(x)
= Af(x) + Ag(x).
Similarly, we have A[f(x) — g(x)] = Af(x) — Ag(x)

3. Ifcis a constant then A[cf(x)] = cAf(X).

From properties 2 and 3 above, it is observed that A is a linear operator.

Proof: A[cf(x)] = cf(x + h) — cf(X) = c[f(X + h) — f(x)] = cAf(Xx)



Hence A[cf(x)] = cAf(x).
4. If m and n are positive integers then ATA(x) = A™ * "f(X).
Proof: ATA"f (x) = (AXAXA ... m times) (AXA ... n times) f(x)
=(AAA ... (m + n) times) f (x)
=A™ "f(x).
Similarly, we can prove the following properties:
5. A[fi(x) + f2(x) + ... + fa(x)] = Afi(x) + Afa(x) + ... + Afa(X).
6. AIf (\)200] = f(x) Ag(x) + g(x) Af (x).

A[ f (x)} g()AF ()~ f (X)Ag(¥)
9] 9(®g(x+h)

DIFFERENCE OPERATORS

(@) Shift operator E:
The shift operator is defined as
E f(x) = f(x + h)
or Eyi =yin

Hence, the shift operator shifts the function value yi to the next higher value yi +1. The

second shift operator gives

E2f(x) = E[Ef(X)] = E[f(x + h)] = f(x + 2h)

E is linear and obeys the law of indices.

Generalizing, E"f(x) = f(x + nh) or E"Yyi = Yi+nh

The inverse shift operator E™ is defined as

E-1f(x) = f(x — h)

Similarly, second and higher inverse operators are given by

E-2f(x) = f(x — 2h) and E"f(x) = f(x — nh)



The more general form of E operator is given by
E'f(x) = f(x + rh)
where r is positive as well as negative rationals.

(b) Average operator (: The average operator W is defined as

2 f(x) = %f[(x+h/2)+f(x-h/2)]

, 1
ie., Hyi = 5 [yi+12 + yi-are]
(c) Differential operator D: The differential operator is usually denoted by D, where
d
Df(x) = —f(x) = f(x)
dx

D2f(x) = %f(x) = f(x)

RELATION BETWEEN THE OPERATORS:

To develop approximations to differential equations, the following summary of operators is

useful.
Operator Definition

Forward difference operator A Af(x) = f(x + h) — f(X)
Backward difference operator V | VI(X) V="F(x)-f(x—h)
Central difference operator & of(x) = f(x + h/2) —f(x — h/2)
Shift operator E E f(x) = f(x + h)
Average operator p pf(x) = 0.5[f(x+h/2) — f(x— h/2)]
Differential operator D Df(x) = f'(x)

Here h is the difference interval. For linking different operators with differential operator D

we consider Taylor’s formula:

In operator notation, we can write it as:



This series in brackets is the expression for the exponential and
f(x +h) =f(x) + hf '(x) + %hzf'(x) o

hence we can write E = e"®

This relation can be used by symbolic programs such as Maple or Mathematica to analyze the

accuracy of finite difference schemes.
From the definition of A, we know that
Af(x) = f(x + h) — f(X)
where h is the interval of differencing. Using the operator E we can write
Af(x) = Ef(x) — f(X)
= A f(x) = (E — 1) f(x)
The above relation can be expressed as an identity
A=E-lie,E=1+A
1.2 INTERPOLATION

Let f(x) is a single-valued, continuous, and explicit function having the values of f(x)
corresponding to certain values of X, as Xo, X1, Xz, ......... Xn can be obtained easily and tabulated.
The main problem is to converse the tabular values (Xo, yo), (X1, Y1), (X2, ¥2)...c.ovene.... (Xn, Yn)
satisfying the relation y = f(x) where the explicit nature of f(x) is not known, it is required to find
a simpler function [say, ¢(x)], such that f(x) and ¢(x) satisfy the set of tabular points. This

process of finding @(x)’s known as Interpolation.

There are different types of interpolation depending on whether @(x) is finite trigonometric
series, a series of Bessel functions, etc. In other words “The study of interpolation is based on the
assumption that there are no sudden jumps in the value of the dependent variable for the period
under consideration. It is also assumed that the rate of change of figures from one period to

another is uniform.



1.2.0 NEWTON'S FORWARD INTERPOLATION FORMULA

Let (x;,¥;),i = 0,1,2,---n be the set of (n + 1) data values of the function y = f(x), which are
equispaced so that x; = x, + ih,i = 0,1,2,3,---,n. Suppose it is required to evaluate f(x) for

X = x + ph, where p is any real number. Then

Yp = f(xo +ph) = EPf(xg) = (1 +8)Py,, (¥ E =1+ 4,y = f(xo))

-1 -D(p-2
= |1+pA+ p(pZ' ) A? + P 3)|(p ) A3+ - ] Yo, by using the binomial theorem.
-1 -Dp-2
= Yo +ply, + %Az}’o + 20 ;,(p )A3yo + o

If y = f(x) is a polynomial of the nth degree, then A™*1y, and higher-order differences will be

zero. Hence we have

p(pZT 1) A2y, + p(p — D —2)

pp—1D(—n—-1)
+ n!

A3y0 + ...

Yp = Yo + pAy, +

It is called Newton's forward interpolation formula. This formula is used for interpolating the
values of y near the beginning of a set of tabulated values and extrapolating values of y a little

backward i.e. to the left of y,.
1.2.1 NEWTON'S BACKWARD INTERPOLATION FORMULA

Let (x;,y:),i = 0,1,2,3 - n be the set of tabulated values of the function y = f(x). Suppose it is

required to evaluate f(x) for x = x,, + ph, where p is a real number. Then we have

YW = f(xq +ph) = EPf(x,) = (1 = V) Py, ( E7t=1-V, Yn = f(xn))

+1 +D(p+2
=|1+pV+ % V2 + LG 3)'(p ) V3 + - ] Y, using the binomial theorem.
+1 +D(p+2
=yn+pVyn+%V2yn+p(p 3),(19 )V3yn+~~

If y = f(x) is a polynomial of degree n then V**1y, and higher-order differences vanish. Hence

p(p+1)(p+2)---(p+n-1)
n! Vnyn

p(p+1)
we have y, = y, +pVy, + = —V2y, + -+



It is called Newton's backward interpolation formula. This formula is used for interpolating the
values of y near the end value of a set of tabulated values and also for extrapolating values of y a

little ahead i.e. to the right of y,,.

1.2.2 CENTRAL DIFFERENCE INTERPOLATION

In this section, we shall discuss and develop central difference formulae which are best suited for
interpolation near the middle of a tabulated set. The most important central difference formulae
are due to Stirling, Bessel, and Everett. Gauss's formulae are also of interest from a theoretical

standpoint only.

GAUSS'S FORWARD AND BACKWARD INTERPOLATION FORMULAE

Let us assume Gauss forward interpolation formula, which uses differences lie on the solid line

in the forward difference table, of the form
Yp = Yo + G4y, + GzAZJ’—l + G3A3)’—1 + G4A4)’—2 + - 1)
where G4, G,, G, -+ are to be determined. By Newton's forward difference formula, we have

Yp = EPy, = (1 + APy,
-1 -1)(p-2
= Yo + phyo + 2 a%y, + EEE p3y 4 . 2)

Now

Ay ; = N2E7ly, = A2(1+A) ty, = A2(1 — A+ A% — A3 + )y,
= A%yy — A%yo + Atyy — A%y + -

Ay_1 = My, — Ay, + Ay, — Ayg + -
Ay 5 = A*E72y, = A*(1 — A) 72y, = A*(1 — 2A + 3A% — 443 + )y,
= A4y0 - ZAsyO + 3A6y0 - 4A7y0 + e

and so on. Thus, we have
Yp = Yo + G1Ayo + Go(A%yy — A3y, + Ay, — ASyo + )

+G3(A3y, — Aty + Ay — ASyo + )
+G4(A4y0 - ZAsyo + 3A6y0 - 4A7y0 + ) +



Comparing (1) and (2), we obtain

_pe-D . _@+pe-D . _@+Dp-DE-2)

Gy =p, G o1 U3 31 » by 41

tc.

Hence the Gauss forward interpolation formula is given by

p(p—1) A (p—Dplp—1)

- - A%y +(p—1)p(p— 1)(29—2)A4

Yp = Yo + PAy, + 3 —1 2 V-2

This formula is used to interpolate the values of y for p(0 < p < 1) measured forwardly from

the origin.

Gauss's Backward Interpolation formula uses the differences which lie on the dashed line in the

forward difference Table and can therefore be assumed of the form
Vp = Yo+ GiAy_1 + G3A%y_; + G3A3y_, + GiA*y_, + -

where G1, G3, G5, G, --- have to be determined. Following the above procedure and comparing it

with Newton's backward difference formula, we obtain

p(p+1) o = (p+Dplp—1) o = P+2)(p+Dpp-1)
_—, = = etc.

Therefore, Gauss backward interpolation formula is given by

p(p+1) P+ Dp—-1)
Yp = Yo +pAy_1 + TAzy_l + 30
+2)(p+1 -1
Ny, + (»+2)@ . n(p )Azty_2 Lo

This formula is used to interpolate the values of y for a negative value of plying between —1 and

0. Gauss formulas are not of much practical use, however, these have theoretical significance.
STIRLING'S FORMULA

If we take the mean of the Gauss forward and backward formulas, we obtain



Ay_; + Ay, | p® p(p? — 1D ANy_ + Ny, p*(p*-1)
Vo= Yot p—— o+ Ny St Ay

This is known as Stirling's formula. In the central differences notation, the Stirling formula takes

the form

2 2 2 2 2 2
p p(p* —1°) p*(p* —1°)
Yo = Yo + PuEYo + o7 85y 187 yo + 8"y + -

since

1 1 1 1
5 Byo +4y-1) =5 (8y1/2 +6Y_1/2) = u8yo, 5 (A%yy +4%y5) = 5 (633/% +6 3y_%)

= ud3y, etc.

BESSEL'S FORMULA

This is a very useful formula for practical interpolation, and it uses the differences as shown in

the following table where brackets mean that the average has to be taken

X-1 Y-
A A A
X0 (xl) Yo Azyo V-1 A4y_1 ) Aﬁy—z

Therefore, we have assumed Bessel's formula of the form

Yo + 1 A*y_; + A%y, Aty_, + A*y_;
yp = 2 + BlAYO + BZ f + B3A3y_1 + B4_ 2 +
1 A%y_, + A? A*y_, + A*y_
=y0+<Bl+E>Ay0+B2u+B3A3y_1+B4 yzz y1+

Newton's forward differences interpolation formula is given by

p(p—l)AZ p(p —1)(p—2) +p(p—1)(p—2)(p—3)

Yo = Yo+ pByo +——— 0%, 30 Ay, 2 Ayo + -

Comparing the above results after simplifying the differences, we obtain



1
1 _po-D _Pe-DP-3) _@+rpe-ve-2

Bit5=p B, 21 3 30 » P4 41

Thus the Bessel formula becomes

1
p(p — 1) A%y_; + A%y, N p(p—1) (p - 7)

L+t Dpe-De -2, + Ay,
41 2

In central differences notation, this can be written as

1
-1 p—5)p(p—-1)
Yp = Yo +Pby1 +Mu62yg + ( 2> 6°y1
3 2! 3 3! >
+1 —1)(p -2
G )p(p4' )(p )#543’1+"'
. 2

since
1 2 2 2 1 4 4 4
5 (A%y-1 + A%0) = u6%y1,5 (A%, + A%-) = pd"y1 ete.
2 2

EVERETT'S FORMULA

This formula is extensively used and involves only even differences on and below the central

line as shown below.
Xo Yo A%y_, A*y_, ASy_s--- Central line
X1 ;1 Az_yo A4;’—1 A6;’—2
Hence this formula has the form

Vp = Egyo + E;0%y_y + Efy_5 + -+ Foyy + F,A%y0 + FAYy g + -

where coefficients E,, Fy, E,, F,, E4, Fy, -+ can be determined by the earlier method as used in

the proceeding cases, we obtain.



Ec=1-p=gq, Fo=p
E;, =q(g* — 1Y) F, = p(p? —1?)
_q(q2 - 1%)(q* — 22) _ p(p* — 1%)(p* — 22) otc

= 5! » Fa 5!
q(q* —1%) q(q* — 1*)(q* — 2%)
Yo = QYo+ A%y 1+ 2] Aty _p +
2 2 2 2 2 2
p*—1 p(p? — 19)(p* — 2%)
+pyL+ P A%y + 3 Ay_y+ -

where g = 1 — p. There is a close relationship between Bessel's formula and Everett's formula
and one can be deduced from the other by suitable rearrangements. It is also interesting to
observe that Bessel's formula truncated after third differences is Everett's formula truncated after

second differences.

CHOICE OF AN INTERPOLATION FORMULA

As for as practical interpolation is concerned, we have to see which formula yields the most
accurate results in a particular problem. The coefficients in the central difference formulae are
smaller and converge faster than those in Newton's formulae. After a few terms, the coefficients
in String's formula decrease more rapidly than those of Bessel's formula and the coefficients of
Bessel's formula decrease more rapidly than those of Newton's formula. As such, whenever
possible, the central difference formula should be used in preference to Newton's formulae. The
right choice of an interpolation formula, however, depends on the position of the interpolated

value in the given data.
(i) To find a tabulated value near the beginning of the table use Newton's forward formula.
(i1) To find a value near the end of the table, use Newton's backward formula.

(i) To find an interpolated value near the center of the table, use either Stiring's or Bessel's, or

Everett's formula.

If the interpolation is required for _71 <p< i, prefer Stirling's s formula. If interpolation is

. 1 3 , \ . .
required for SSP=y then use Bessel's or Everette's formula. But in the case where a series of

calculations have to be performed, it would be inconvenient to use both these formulae, and a

choice must be made between them. The choice depends on the order of the highest difference



that could be neglected so that contributions from it and further differences would be less than
half a unit in the last decimal place. If this highest difference is of even order, Stirling's formula
is recommended, if it is of even order, Bessel's formula might be preferred. Even the estimation
of the maximum value of a difference of any order in an interpolation formula is also not
difficult.

Example 1.1 Find f(22) from the Gauss forward formula:

x: | 20 25 30 35 40 45

F(x): | 354 | 332 | 201 | 260 | 231 | 204

Solution: Taking x, = 25, h = 5, we have to find the value of f(x) for x = 22.

X—xo _ 22-25
=

e, forp = = —0.6 The difference table is as follows:

x p Yo Ay, AZ)’p A3Yp A4yp Asyp

20 | =1 | 354(=y_,) | —22

25 | 0 332(=y,) | —41 | —-19 | 29

30 |1 291(=y,) | =31 | 10 -8 | —37 | 45

35 | 2 260(=y,) | =29 | 2 0 8

40 | 3 231(=y3) | —27 | 2

45 | 4 204(= y,)

Gauss forward formula is



Yo = o + Phyo + % Ny + (p + 1);(10 - 1)
N (»+ 1)p(p47 D -2) Ay,

N P+ - 1);9!(29 —2)(p+2) It
~ £(22) = 332 + (0.6)(—41) +
(064 1)(—;)!.6)(—0.6 ~1) 8)
L 06+ 1)(—0.6)(;!0.6 ~1)(=0.6 — 2) 37
, (F06+ 1)(=0.6)(-06 ;!1)(—0.6 ~2)(—0.6 + 2)
=332+ 24.6 — 9.12 — 0.512 + 1.5392 — 0.5241

A33’—1

y_z + s
(—0.6)(—0.6 — 1)
2!

(—19)

(45)

Hence f(22) = 347.983.

Example 1.2 Use Gauss's forward formula to evaluate ys,, given that y,; = 18.4708, y,s =
17.8144,y,9 = 17.1070, y33 = 16.3432 and y3, = 15.5154.

Solution: Taking x, = 29, h = 4, we require the value of y for x = 30

ie., forp = % = 39729 _ 0.25 The difference table is given below:

x| p Y Ay, Ay, Ay, Ay,

21 | —2 | 18.4708
—0.6564

25 | —1 | 17.8144 —0.0510
—0.7074 —0.7074

29 17.1070 —0.0564 —0.0022
—0.7638 —0.0076

33 16.3432 —0.0640




—0.8278

37 | 2 15.5154

Gauss's forward formula is

+1 +Dpp —1
Yp = Yo + DAYy, + p—(pl_z )Azy_l w 1)_2_(5 )A3y_1
+Dplp—1)(p -2
G )pl(.pZ.M)(p )A4y_2 o
(0.25)(—0.75)
Y50 = 17.1070  +(0.25)(—0.7638) + > (—0.0564)
s (1.25)(0.265)(—0.75) (0.0076) + (1.25)(0.25)(2;0.75)(—1.75)
x (—0.0022)

=17.1070 —0.19095 + 0.00529 + 0.0003 — 0.00004 = 16.9216 approx.

Example 1.3  Using Gauss backward difference formula, find y(8) from the following table.

x| 0|5 [10] 15| 20 | 25

y | 7111 |14 | 18 | 24 | 32

Solution: Taking x, = 10,k = 5, we have to find y for x = 8, i.e., forp = =22 =20 = _¢ 4,

The difference table is as follows:

x | p| v | Dy | A%y, | Ay, | Ay, | A,
0 |27

4
5 | 1|11 ~1

3 2
10 |0 | 14 1 —1

4 1 0
15 | 1 | 18 2 —1




20 [ 2 | 24 2

25 | 3 | 32

Gauss's backward formula is

1 Dpp -1
Yp =Yo+DpAy_ + e+ Dp -;! i Ay_; + + );9!(}9 )A33’—2
Lt 2)19(19:' Dp(p -1 Ay, +
J(8) = 14 + (—04)(3) + (—0.4 +21!)(—o.4) D+ (—0.4 + 1)(—;)!.4)(—0.4 - 1) @

, (044 2)(-04+ 1(=04)(-04 1)

4!
=14-12-0.12+0.112 + 0.034

(D

Hence yg) = 12.826

Example 1.4 Interpolate using Gauss's backward formula, the population of a town for the year
1974, given that:

Year: 1939 | 1949 | 1959 | 1969 | 1979 | 1989

Population:

27 39 52
(in thousands) 12 15 20

Solution: Taking x, = 1969, h = 10, the population of the town is to be found for

1974-1969

- 5
p 10 0

The Central difference table is

1939 | =3 | 12 | 3 2 0 3 —10




1949 | -2 | 15
5
1959 | —1 | 20 2
/ 3
1969 | O 27 5 _7
12 —4
1979 | 1 39 1
13
1989 | 2 52
Gauss's backward formula is
@+ Dp @+ Dpp—-1)
U A T L
+2 +1 -1
4 (» )p(p4' )p(p )A4y_2
+ 2 +1 -1 -2
* L L )gl(p G )ASY3 + .-
1.5)(0.5 1.5)(0.5)(—0.5
Yos = 27+(0.5)(7)+()2#(5)+( )(0.5)(—0.5)

6
(2.5)(1.5)(-0.5) (2.5)(1.5)(0.5)(—=0.5)(1.5)
* 24 =7+ 120
27 +3.54+1.875—-0.1875+ 0.2743 — 0.1172
= 32.532 thousand approx.

(=10)

Example 1.5 Employ Stirling's formula to compute y;, , from the following table

(y, =1+ logypsinx):

x°: | 10 11 12 13 14

10%y,: | 23,967 | 28,060 | 31,788 | 35,209 | 38,368
Solution: Taking the origin at x, = 12°,h =1 and p = x — 12, we have the following central

difference table:



P Vx Ay, A%y, A%y, A*y,
-2 0.23967
=X_3 =Y
0.04093
=Ay_,
-1 0.28060 —0.00365
=X =Y =A2y_,
0.03728 0.00058
= Ay, =AMy,
0=y 0.31788 —0.00307 —0.00013
0 =Yo = AZ}’—1 = A43’—2
0.03421 —0.00045
= Ay, = A%y_4
1=y 0.35209 —0.00062
! =N = A%y,
0.03159
= Ay,
0.38368
2 = xZ
=

At x =12.2,p = 0.2. (As p lies between —% and i, the use of String's formula will be Quite

suitable.)

Stirling's formula is

pAy_1 + A4y, P’

p(p*—1) Ay, +Ay,

Yo =DYo +1T+§A23’—1+

3!
+p2(p;— 1) My, 4

When p = 0.2, we have

Yoz = 0.3178 + 0.2 (0'03728 er 0'03421) (0'22)2 (—0.00307)

2




N (0.2)2[(06.2)2 —1] (0.00058 ; 0.00054) N (0.2)2[(;)[.}2)2 —1] (~0.00013)
= (0.31788 + 0.00715 — 0.00006 — 0.000002 + 0.0000002
= 0.32497.
Example 1.6 Given
6°: 1 0|5 10 15 20 25 30

tanf: [ 0 | 0.0875 | 0.1763 | 0.2679 | 0.3640 | 0.4663 | 0.5774

Using Stirling's formula, estimate the value of tan 16°.

Solution: Taking the origin at 8° = 15°,h =5° and p = %, we have the following central

difference table:

p | y=tan6 Ay A%y A3y A*y ASy
-3 0.0000

0.0875
-2 0.0875 0.0013

0.0888 0.0015
-1 0.1763 0.0028 0.0002

0.0916 0.0017 —0.0002
0 0.2679 0.0045 0.0000

0.0961 0.0017 0.0009
1 0.3640 0.0062 0.0009

0.1023 0.0026
2 0.4663 0.0088

0.1111
3 0.5774




16 — 15
=0.2

At =16°,p =
P="75
Stirling's formula is
3 p Ay_i+Ay,  p?, pi(p*—1) A%y ,+M3y_,
Yo =Yot T g AVt 2
2002
-1
+MA431_2 + vee

4!

0.0916 + 0.0916\  (0.2)?
Yo, = 0.2679 + 0.2( . ) + == (0.0045) + -

= 0.2679 + 0.01877 + 0.00009 + --- = 0.28676

Hence, tan 16° = 0.28676.

Example 1.7 Apply Bessel's formula to obtain y,s, given y,, = 2854, y,, = 3162, y,g =
3544,y;, = 3992.

Solution: Taking the origin at x, = 24, h = 4, we have p = (x — 24).

-~ The central difference table is

p y Ay | A%y | A3y
—1 | 2854
308
0 | 3162 74
382 -8
1 | 3544 66
448
2 | 3992

(25-24) _ 1
4 4

At x =25,p = (As p lies between i and %, the use of Bessel's formula will yield

accurate results)



Bessel's formula is

1
PP~ DAy +M%y (P-2)p -1

3
21 2 21 Ay-at

Yp = Yo + PAy, +

When p = 0.25, we have

0.25(=0.75) /74 + 66\  (0.25)0.25(—0.75)
yp =3162+025x382+——— ( . >+ = _g

= 3162 + 95.5 — 6.5625 — 0.0625
= 3250.875 approx.

Example 1.8 Apply Bessel's formula to find the value of f(27.5) from the table:

x: | 25 26 27 28 29 30

f(x): | 4.000 | 3.846 | 3.704 | 3.571 | 3.448 | 3.333

Solution: Taking the origin at x, = 27,h = 1, we have p = x — 27 The central difference table

is

x | p y Ay A%y A%y Aty
25 | —2 | 4.000
—0.154
26 | —1 | 3.846 0.012
—0.142 —0.003
27 | 0 | 3.704 0.009 0.004
~0.133 —0.001
28 | 1 | 3571 0.010 ~0.001
~0.123 ~0.002
29 | 2 | 3.448 0.008
~0.115
30 | 3 | 3.333




At x = 27.5,p = 0.5 (As p lies between 1/4 and 3/4, the use of Bessel's formula will yield an

accurate result),

Bessel's formula is

1
—1)A%y_; + A? p—5)p(p—1)
Yo = Yo +pAy0+p(p2| ) A%y 12 yo+( 2)3' Ay

_ _ 4 4
MCEs 1)p(p4! D -2) <A Y2 JZFA y-1> .

When p = 0.5, we have

(0.5)(0.5 — 1) /0.009 + 0.010
Y, = 3.704— . ( 5 ) +0
, (05 + 1)(0.5)(0.5 — 1)(0.5 — 2) (~0.001 — 0.004)

2 2
= 3.704 - 0.11875 - 0.00006 = 3.585

Hence f(27.5) = 3.585.

Example 1.9 Using Everett's formula, evaluate f(30) if f(20) = 2854, f(28) = 3162,
f(36) = 7088, f(44) = 7984

Solution: Taking the origin at x, = 28, h = 8, we have p = % The central table

x | p y Ay A’y Ay
20 | —1 | 2854

308
28 | 0 | 3162 3618

3926 —6648
36 | 1 | 7088 —3030

896
44 | 2 | 7984




At x =30,p

30-28

Everett's formula is

=0.25andg=1—-p =0.75

q(q® — 1) q(q® —1%)(q* = 2%)
Yo =aYo t——g—— A%y + el A%y o + -
2 _ 12 2 _ 12 2 _ 22
oy, + p(p - )Azy0 P 5)|(p )A4y_2 o
0.75(0.752 - 1)
= (0.75) + (3162) + (3618) + -
0.25(0.252 — 1)
+0.25 + (7080) + c (—3030) + -
= 2371.5—-351.75+ 1770 + 94.69 = 3884.4
Hence f(30) = 3884.4
Example 1.10 Given the table
x: | 310 320 330 340 350 360
logx: | 2.49136 | 2.50515 | 2.51851 | 2.53148 | 2.54407 | 2.55630
find the value of log 337.5 by Everett's formula.

Solution: Taking the origin at x, = 330 and h = 10, we have p =

x—330

. The central difference

table is
P y Ay A%y A%y Aty A%y
—2 | 2.49136
0.01379
—1 | 2.50515 —0.00043
0.01336 0.00004
0 | 251881 —0.00039 —0.00003
0.01297 0.00001 0.00004
1 | 253148 —0.00038 0.00001




0.01259 0.00002
2 2.54407 —0.00036
0.01223
3 2.55630
To evaluate log 337.5, i.e., for x = 337.5,p = B757330 _ 0,75

10

(Asp > 0.5 and = 0.75, Everett's formula will be quite suitable)

Everett's formula is
q(q* — 1%)(q* - 2?%)
5 Aty 5 + -

p(p? —13)(p* - 2%)
5!

X (—0.00039)

q(q* —1?)
Yp = qYo +TA23’—1 +

.p(pz -1%)

A%y, +

3
0.25(0.0625 — 1)
= 0.25x 251851 + -

0.25(0.0625 — 1)(0.0625 — 4)
+ 70 x (—0.00003)

0.75(0.5625 — 1)
+ 0.75x 253148 + -

0.75(0.5625 — 1)(0.5625 — 4)
c X (—0.00001)

= 0.62963 +0.00002 — 0.0000002 + 1.89861 + 0.00002 + 0.0000001
= 2.52828 nearly.

A4y_1 + ...

+py: +

X (—0.00038)

1.3 INTERPOLATION WITH UNEQUAL INTERVALS

Newton’s forward and backward interpolation formulae are applicable only when the values of n
are given at equal intervals but in case of unequal intervals, we use Lagrange’s formula for

interpolation.
1.3.0 LAGRANGE’S INTERPOLATION FORMULA

Let y = f(x) be a real-valued continuous function defined in an interval [a, b]. Let Xo, X1, X2,..., Xn
be (n+1) distinct points that are not necessarily equally spaced and the corresponding values of

the function are yo, yi,....... , yn. Since (n + 1) values of the function are given corresponding to



the (n+1) values of the independent variable x, we can represent the function y = f(x) as a
polynomial in x of degree n.

Let the polynomial is represented by

or % = (X = %) (Xg = X, )venen. (X = %;)

Putting x = x2 in (3) we obtain
f(X1) = an(X1- X0)(X1 = X2).evenenininennen. (X1 — Xn)

_ f(x)
(4 =X ) (X = X3 )evreen (X = X))

or a,

Similarly putting X = X2, X = X3, X = Xn in (3) we obtain

f(x,)
(Xz _Xo)(xz _Xi)(xz _Xs) -------- (Xz _Xn)

a,

f(x,)

(X, =X ) (X, = X)) (X, =X, ) (X, —X,_1)

and a =

n

Substituting the values of ao, a, ..., an in (3) we get

e (XXX %) (X X,)
& f(X) B (Xo _Xl)(XO _Xz)(xo _Xs) -------- (Xo _Xn) f(XO) i

(X=X )(X=X,) .o (x=x,)

(% = X) (% = X )04 =X )-eenn (X = X,)
(X=X) (X=X oeee (X=X, )

(Xn - Xo)(xn - Xl)(xn - XZ) """" (Xn - Xn—l)

f(x,) .(4)

The formula given by (4) is known as Lagrange’s interpolation formula.



Example 1.11 Given the values

X.

11

13 17

f(x):

150

392

1452

2366 | 5202

evaluate f(9), using Lagrange's formula

Solution: Here xy =5,x;, =7,x, = 11,x3 = 13,x, = 17

and y, = 150,y; = 392,y, = 1452,y; = 2366,y, = 5202.

Putting x = 9 and substituting the above values in Lagrange's formula, we get

(9 —7)(9 — 11)(9 — 13)(9 — 17)

fO) = G-76-11)GB-13)(5-17)

(9—5)(9—7)(9 —13)(9 — 17)

(11 -5)(11 - 7)(11 — 13)(11 — 17)

(9=5)(9—7)(9 = 11)(9 — 17)

(13 —5)(13 — 7)(13 — 11)(13 — 17)

(9—5)(9 —7)(9 — 11)(9 — 13)

(17 —5)(17 — 7)(17 — 11)(17 — 13)

2366 578
=810

50 3136 3872

3+15+3

3

5

X 1452

X 2366

X 5202

X 150 +

(9 —5)(9 —11)(9 — 13)(9 — 17)

7 =57 =10 (7 —13)(7 —17) < >°*

Example 1.12 Find the polynomial f(x) by using Lagrange's formula and hence find f(3) for

Solution: Herex, = 0,x; = 1,x, = 2,x3 =5

X:

f(x):

147

and yo = 2, Y1 = 3,yZ = 12, Y3 = 147

Lagrange's formula is



(= x)(x — x3)(x — x3) (x = x0) (x — x3) (x — x3)
(%0 — x1) (%9 — x2) (%9 — x3) 0 (1 — x0) (%1 — x2) (X1 — x3) !
(x = x0) (x — x1) (x — x3) (x — x0) (x — x1) (x — x7)
(22 — x0) (a2 — x1) (x5 — xs)yz (x3 — x0) (x5 — x1) (x5 — x3)
(x —1D(x—-2)(x—5) (x —0)(x —2)(x = 5)
0-DO-20-5 2 a-oa-va-5H "
(x —0)(x —1)(x —5) (x—0)(x —1)(x —2)
+ 2-002-1)2-5) (12) + G-006B-1DH5B-2)

Y3

(147)

Hence f(x) = x3 +x2 —x + 2
“ f(3)=27+9-3+2=35

1.3.1 HERMITE'S INTERPOLATION FORMULA
This formula is similar to Lagrange's interpolation formula. In Lagrange's method, the
interpolating polynomial P(x) agrees with y(x) at the points xg, xq, ... ... ,Xn, Whereas in

Hermite's method P(x) and y(x) as well as P'(x) and y'(x) coincide at the (n + 1) points, i.e.,
P(x;)) = y(x;) and P'(x;) = y'(x);i = 0,1, ...,n ..(5)
As there are 2(n + 1) conditions in (1), (2n + 2) coefficients are to be determined.
Therefore P(x) is a polynomial of degree (2n + 1).
We assume that P(x) is expressible in the form
p(x) = Xito Ui(x)y(x;) + Xizo Vi(x)y'(x;) ... (6)

where U;(x) and V;(x) are polynomials in x of degree (2n + 1). These are to be determined.

Using conditions (5), we get

Ui(x) = 0 when i # j; V;(x;) = 0 for all i
e 1wheni=j )
' . O wheni #j
U{(x;) = 0 forall i; V;(x;) = {1 when i =j}

We now write



Ui(x) = A;)[L;(x)]% Vi(x) = B;(x)[L;(x)]?
(x —x)(x — 1) =+ (X — x-1) (¢ — Xj41) =+ (X — xp)
(; = x0) (g — xq) -+ (g — 2321 O — Xigq) -+ (g — xp)

where  L;(x) =
Since [L;(x)]? is of degree 2n and U;(x),V;(x) are of degree (2n + 1), therefore 4;(x) and
B;(x) are both linear functions

~ We can write

Ui(x) = (a; + bix)[Li(x)]z} .. (8)

Vi(x) = (¢; + dix)[L;i(x)]?
Using conditions (7) in (8), we geta; + b;x = 1,¢; +d;x = 0 and
b + 2L(x;) = 0,d; = 1}
Solving these equations, we obtain

b; = =2L;(x;),a; = 1 + ZXiL'i(Xi)}
d; =1and ¢; = —x;

Now putting the above values in (8), we get

Ui(x) = [1+ 2x;L;(x;) — 2xL; (x)][L; (x)]?
= [1 = 2(x = x)L;(x)][L; ()]?

and V;(x) = (x — x)[L;(x)]?
Finally substituting U;(x) and V;(x) in (6), we obtain
p() = ) 1= 20 = LG LIEPYE) + ) (& = 2Ly ()
i=0

i=0

This is the required Hermite's interpolation formula which is sometimes known as the osculating

interpolation formula.

Example 1.13 For the following data:



x| fO | f10

05 | 4 —16

Find Hermite’s interpolating polynomial.

Solution: We have x, = 0.5,x; = 1,y(xo) = 4,y(x1) = 1;y'(xy) = —16,y'(x;) = -2

Also Lj(xg) = 2750 = X1 = oy —1); Li(xp) = —2

(xj—x9) T —05

B (x — xp) _x—05
Lix) = (x; —xy) 1—0.5

=2x—1;Li(x) =2

Hermite's interpolation formula, in this case, is

P(x) = [1 = 2(x — xo) L' (xo)][L(xp)]*y (x0) + (x — x0)[L(x0)]?y" (x0)
+[1 = 2(x — x )L Q)L () Py (xq) + (x — ) [Lx) ]2y (x1)
=[1-2(x—05)(-2)][-2(x — D]*4) + (x — 0.5)[-2(x — 1)]*(—16)
+[1-2(x—1D2)]2x — 1D?(1) + (x — D(2x — 1)?(-2)
=16[1+4(x — 0.5](x? —2x + 1) — 164(x — 0.5)(x%2 — 2x + 1)
+[1—4(x—D](4x% —4x+1) — 2(x — D) (4x? —4x + 1)

Hence P(x) = —24x3 + 324x2 — 130x + 23

Example 1.14 Determine the Hermite polynomial of degree 4 which fits the following data:

x: | 0| 1] 2

y(x): 01110

y'(x): | 0o]ofo

Solution: Here x,=0,x, =1,x, =2,y(x,) =0,y(x;) =1,y(x,) =0 and y'(x,) =0,

y'(x;) = 0,y'(x2) = 0. Hermite's formula in this case is



P(x) = [1—2Ly(xo)(x — x0)1[Lo(x)]?y(x0) + (x — x0)[Lo(x)]?y’ (x0)
+[1 = 2L () (x = x)][L1(0)]? X y(xq) + (x — %) [L1(0)]?Y" (x1)
+[1 = 2L5 (x) (x — x2)] X [L, (x)]zy(xz) + (x — x)[L, (x)]zy’(xz)

Substituting the above values in P(x), we get

P(x) = [1 = 2L3 Ce) (x — DL, (0)]?

Where Lj(x) = ==X00&%2) _ 9y 32 and L, (%) = (2 — 2%),_; =0 Hence p(x) =

(X1 —x2)(x1-%3)

[L:(0)]? = (2x — x*)*.

Example 1.15 Using Hermite's interpolation, find the value of f(—0.5) from the following

x: | =1 (0|1

foo: |1 |13

f'tx): | =5 (1|7

Solution: Here xo = —-1,x; =0,x, =1, f(x0) =1,f(x1) =1, f(xp) =3 and f'(x,) = =5,
fle) =1, (x) =7.

Hermite's formula in this case is
P(x) = Upf (x0) + Vof'(x0) + Urf Cx) + Vif' (x1) + Upf (x3) + Vo f ' (x2)
where Up = [1 — 2L (xg) (x — x0)1[Lo (X)]%, Vo = (x — x0)[Lo (x)]?
Uy = [1 = 2L70e) G — x)[L ()], Vy = (x — x0) [Ly (0)]?
Uy = [1 = 2L5(x2) (x — x2)1[Ly(x2)]%, Vo = (x — x2)[L2 (X)]?

_ Gmx)exy) _ xe=D) g, 1
and Lo(x) = (o= = = Lo(x) = x =3




(x — x0) (x — x2) _

b (®) = (21 — %) (X1 — %) L=t =) = -2
= xdx—x)  x(x+1) B 1
B e T 2 T

Substituting the values of L, Ly; L1, Ly and L,, L', we get

x*(x—1)% 1
Uy = [1+3(x+1)]%=Z(3x5—2x4—5x3+4x2)
x*(x—1)% 1
V0=(x+1)(T)=Z(x5—x4—x3+x2)
U =x*—-2x2+1,V1 =x°—-2x3+x
1 1
U, =Z(3x5—2x4—5x3+4x2),Vz =Z(x5—x4—x3+x2)

Substituting the values of Uy, Vy, Uy, Vy; Uy, V, in (i), we get

1 1
P(x) = Z(st —2x* —5x3 +4x?)(1) + Z(x5 —x*—x3 +x?)
+(x* —2x2 + 1)) + (x5 = 2x3 + x)(1)
1 1
— Z(3x5 —2x* = 5x3 + 4x*)(3) + Z(x5 —x* —x3 +x%)(7)
= 2x*—x*+x+1

Hence £(—0.5) = 2(—0.5)* — (—0.5)? + (—0.5) + 1 = 0.375
1.4. DIVIDED DIFFERENCES

Lagrange's formula has the drawback that if another interpolation value were inserted, then the
interpolation coefficients are required to be recalculated. This labor of recomputing the
interpolation coefficients is saved by using Newton's general interpolation formula which
employs what is called "divided differences.” Before deriving this formula, we shall first define

these differences.

If (x,¥0), (x1,v1), (x2,¥2), -+ be given points, then the first divided difference for the

arguments x,, x, is defined by the relation [x,, x;] = —i’l_i"’
140
Similarly [x, x,] or Ay,, = Y221 and [xy, x5] = 222

X2—X1 X3—X2



The second divided difference for xo, xy, x, is defined as [xo, xy, x,] = %
2740
[x1,%2,%3]—[x0,%1,%2]

X2—Xo

The third divided difference for x,, x;, x5, x5 is defined as [x,, x4, x5, x3] =

PROPERTIES OF DIVIDED DIFFERENCES

I. The divided differences are symmetrical in their arguments, i.e, independent of the order of the

arguments. For it is easy to write

Yo Y1
Xo, X = + =|Xq{, X Xg, X1, X
[ [\l 1] xo_xl xl_xo [ 1 0]1[ 01 2]

_ Yo Y1 Y2
(xo —x)(x0 —x2) (1 —x0) (1 —x2)  (xz — x0) (X2 — x41)
= [x1, %3, %] or [x3,%0, ;| and so on

I1. The nth divided differences of a polynomial of the nth degree are constant.

Let the arguments be equally spaced so that

X]—Xg =Xy — Xy =+ =X, —Xp_q1 = h. Then
[xo, %] = Y17 Yo _ Ay
' X, —%Xy h
[to, x,%,] = [x1, %] — [x0 — x1] _ i{% _ %}
Y Xy — Xo 2h( h h
— 1 2 : — 1 n
= Ay, and in general, [xg, X1, X5, .. .. X ] = Ao

If the tabulated function is a nth degree polynomial, then A™y, will be constant. Hence the nth

divided differences will also be constant.

1.4.0 NEWTON'S DIVIDED DIFFERENCE FORMULA

Let yo, ¥4, -+, yn be the values of y = f(x) corresponding to the arguments x,, x4, :-, x,,. Then

from the definition of divided differences, we have

Y—Yo
x_xo

[x, xO] =



So that

y =yo+ (x —x0)[x, x,] .. (9)

[x,x0]—[x0,%1]
X—X1

Again [x, xo, x;] =

which gives [x, xo] = [x0, x1] + (x — x1)[x, X, x1] Substituting this value of [x, x,] in (9), we

get

y =yo + (x —x0)[x0, x1] + (x — x0) (x — x1)[x, X0, %1 ] ... (10)

[x-20,51 ]—[x-20,%2]

Also [x, xg, X1, X5] = —x
—A2

which gives [x, xq, x1] = [xo, x1, x2] + (x — x2) [x, x0, X4, x5]
Substituting this value of [x, x,, x;] in (10), we obtain

y=yo +(x—x0)[x0, %]+ (x —x0)(x — x1)[x0, X1, x2]
+(x — x0) (x — x1) (x — x3)[x, X0, X1, %3]

Proceeding in this manner, we get

y=yo +(x—x0)[x0, %]+ (x —x0)(x — x1)[x0, %1, x2]
+(x = x0) (x — x1) =+ (x — x)[x, X0, X1, *** X ]
+(x — x0) (x — x1) (x — x3)[x, X0, X1, X5] + -+

which is called Newton's general interpolation formula with divided differences.

RELATION BETWEEN DIVIDED AND FORWARD DIFFERENCES
If (x9, Vo), (x1,¥1), (x3,v,), -+ be the given points, then

Y1— Yo
X1 — Xo

[x0,x1] =

Also Ay, =y; —yo

If xo, x4, x,, -++ are equispaced, then x; — x, = h, so that



.. A
Similarly [x;, x,] = %

Now [xg, x;, x,] = Zarzl=loxl

A23’1/2h2 - A2y0/2h2 _ AZY1 - AZYO

_ Ayy/h — Ay, /h

2h
_ Ay, — Ay,
2h?

X2—Xg
[+ x; — xo = 2h]
Thus [ | =22
u X0, X1, X2] = 21p2
Similarly
AZ)’l
[x0, X1, X2] = W2
o (X0, X1, X2, X3] =
Thus 021, %5, %] =A3y0
0 A1) A2, 43 3! h3

In general, [xg, X1, X,] =

This is the relation between divided and forward differences.

Example 1.16 Given the values

X3 — Xp

A"y,
n! hn

2h2(3)

X:

13

17

f(x):

150

392 | 1452 | 2366

5202

evaluate f(9), using Newton's divided difference formula

Solution: The divided differences table is

[+ x5 —xo = 3h]



X y First Diff Second Diff Third Diff
392 — 150
5 150 — =121
7-5
7 392 265 — 121 _
11-5
1452 — 392 32— 24
11 | 1452 S—————— =
11-7 265 135
2366 — 1452 457 — 265
13 | 2366 | ——M — = T " _37
13-11 457 13-7 3
709 — 457
17 -11
17 | 5202

Taking x = 9 in Newton's divided difference formula, we obtain

f09)

= 150 + 484 + 192 — 16 = 810.

Example 1.17 Using Newton's divided differences formula, evaluate f(8) and f(15) given:

=150+ (9—5)x 121+ (9—=5)(9—7) X 24+ (9—5)(9—7)(9 — 11) x 1

x: | 4 5 7 10 11 13
y=f(x): | 48 | 100 | 294 | 900 | 1210 | 2028
Solution: The divided differences table is
x | f(x) | First Diff | Second Diff | Third Diff | Fourth Diff
4 48 0
52
5 100 15




97 1

7 294 21 0
202 1

10 | 900 27 0
310 1

11 | 1210 33
409

13 | 2028

Taking x = 8 in Newton's divided difference formula, we obtain

F(8) =48+ (8—4)52+ (8—4)(8—15)15+ (8 —4)(8—5)(8— 7)1
= 448,

Similarly f(15) = 3150.
1.4.1 INTERPOLATION BY ITERATION

We now describe the method due to Aitken, which has the advantage of being very easily
programmed for a digital computer. Suppose we are given a set of (n+ 1) data points
(x;,y1),i =0,1,2,3,:--n of y = f(x), where the value of x need not necessarily be equally
spaced. Then to find the value of y corresponding to any given value of x, we proceed iteratively
as follows: We obtain a first approximation to y by considering the first two points only. Then
obtain its second approximation by considering the first there points and so on, The different
interpolations are polynomials denoted by A(x) with suitable subscripts then at the first stage of
approximation we have

1 yO Xo_x

Bo1(x) = Yo + (x = x0)[x0, 1] = X —x 1 X —x|

Similarly, we can form A02(x), Ay3(x), -+

Next Ay, is formed by considering the first three points as



1

X2~ X1

A X — X
Dp12(x) = o1 ! |

AOZ X2 — X

and similarly A013(x), Ay14(x), etc are formed. At the nth stage of approximation, we obtain

) _
A n® = ; Ao123m-1  Xn—X
012 )
Xy — Xy _
n n=1[Agi53.mozn  Xn —X

the computation can be conveniently arranged in the table below
Table 1: Aitken's scheme

x y

X0 Yo
Agy (x)

X1 V1 Ag12(x)
Agz(x) Ag123(x)

X ¥, Ay (2) Do1234(x)
Ag3(x) Ap124(x)

X3 Y3 Ap14(x)
Dga(x)

X4 Va

A modification of this scheme suggested by Neville is given in Table 2 which is particularly
suited for iterated inverse interpolation
Table 2: Neville's scheme

x y
Xo | Yo
Ag1(x)
X1 | M Ag12(x)
Ay (x) Ag123(x)




X2 | V2 Aq23(x) A1234(x)

Aj3(x) Aq234(x)

X3 | V3 Ag24(x)

A4 (x)

An obvious advance of Aitken's method is that it gives a good idea of the accuracy of the result
at any stage.

Example 1.18 Use Aitken's method to complete log,, 301 from the data

X 300 304 305 307

logox | 24771 | 2.4829 | 2.4843 | 2.4871

Also compare the result with those of Lagrange's and Newton's divided difference formulae.

Solution: Aitken's scheme is given by

x log1o x
300 24771
2.47855
304 2.4829 2.47858
2.47854 2.47860
2305 2.4843 2.47857
2.47854
307 2.4871

Hence log,, 301 = 2.4786

Using Lagrange's interpolation formula, we get



—3(=H(=6) 1(=4)(=6) 1(=3)(=6)

log10301 = — =T (24771) + =) (2.4829) + W(z.zms)
+%(2.4B71) = 1.2739 + 49658 — 4.471 + 0.7106 = 2.4786
which is same as above. The divided difference table is
X log;ox  1st 2nd
300 24771
0.00145
304 2.4829 0.00001
0.00140
305 2.4843 0.00000
0.00140
307 24871

Using Netwon's divided formula, we get log,,301 =2.4771+ 0.00145 + (—3)(—
0.00001) = 2.4786, which is again the same as obtain above. It is clear that the arithmetic
method is simpler than Lagrange's method. The Aitken's scheme has the advantage to given
better estimate at each stage in addition the simplest arithmetic.

1.5 DOUBLE INTERPOLATION

So far, we have derived interpolation formulae to approximate a function of a single variable. In
the case of functions, of two variables, we interpolate with respect to the first variable keeping
the other variable constant. Then interpolate with respect to the second variable. Similarly, we

can extend the said procedure for functions of three variables.

1.6 INVERSE INTERPOLATION
So far, given a set of values of x and y, we have been finding the value of y corresponding to a
certain value of x. On the other hand, the process of estimating the value of x for a value of y

(which is not in the table) is called inverse interpolation. When the values of x are unequally



spaced Lagrange's method is used and when the values of x are equally spaced, the Iterative

method should be employed.

1.6.0 LAGRANGE'S METHOD

This procedure is similar to Lagrange's interpolation formula (4), the only difference being that x

Is assumed to be expressible as a polynomial in y.

Lagrange's formula is merely a relation between two variables either of which may be taken as

the independent variable. Therefore, by interchanging x and y in Lagrange's formula, we obtain

_ =y)=y2)y-yn)

T -y -y -y) 0

=y0) y=y2)-(y—yn)

1=Y0) W1=y2) - (1-yy) "
Y=y0) Y—y1)(¥y—yn-1)

Example 1.19 The following table gives the values of x and y

On=Y0) ¥n=y1)n=-yYn-1) "

X: 1.2

2.1

2.8

4.1

4.9

6.2

y: | 4.2

6.8

9.8

13.4

15.5

19.6

Find the value of x corresponding to y = 12, using Lagrange's technique.

.11

Solution: Here x, =1.2,x; = 2.1,x, =2.8,x3 =4.1,x, =49,x5 = 6.2 and y, =4.2, y; =
6.8,y, =9.8,y; = 13.4,y, = 15.5,y; = 19.6.

Taking y = 12, the above formula (11) gives



(12 — 6.8)(12 — 9.8)(12 — 13.4)(12 — 15.5)(12 — 19.6)
(42— 68)(42—98)(42 —134) (42— 15.5)(42 —19.6) * -2
(12 — 4.2)(12 — 9.8)(12 — 13.4)(12 — 15.5)(12 — 19.6)
(68— 42)(68—98)(68—134)(68—155)(68—19.6) « =
(12 — 4.2)(12 — 6.8)(12 — 13.4)(12 — 15.5)(12 — 19.6)
(98— 42)(98—68)(98— 13.4) (98— 155)(9.8 — 19.6) ~ =5
(12 — 4.2)(12 — 6.8)(12 — 9.8)(12 — 15.5)(12 — 19.6)
(134 —42)(134—68)(13.4 —9.8)(13.4 — 15.5)(134 — 19.6) * 1
(12 — 4.2)(12 — 6.8)(12 — 9.8)(12 — 13.4)(12 — 19.6)
(155 — 4.2)(155 — 6.8)(15.5 — 9.8)(15.5 — 13.4)(155 — 19.6) .
(12 — 4.2)(12 — 6.8)(12 — 9.8)(12 — 13.4)(12 — 15.5)
(19.6 — 4.2)(19.6 — 6.8)(19.6 — 9.8)(19.6 — 13.4)(19.6 — 15.5)
= 0.022 —0.234 + 1.252 + 3.419 — 0.964 + 0.055 = 3.55

4.9

6.2

Example 1.20 Apply Lagrange's formula inversely to obtain a root of the equation f(x) = 0,
given that £(30) = =30, f(34) = —13,f(38) = 3,and f'(42) = 18.

. Here xo = 30,x, = 34,x, = 38,x3 = 42
| n: 0 » A1 y A2 y A3
Solutio andy, = —30,y;, = —13,y, = 3,y = 18

It is required to find x corresponding to y = f(x) = 0.
Taking y = 0, Lagrange's formula gives

=) —y)—y3) ot =y —y2)¥ —y3) .

Do =)o —Y2) o —¥3) " 0 —y0) 1 —¥2) - (P1—y3) !
=)=y —y3) . V=) —y)—y2) y
2 = y0) 2 —y) (2 — y3) 2 s —y0) vz —y) s — y2) 3
13(=3)(—18) 30(—3)(—18)

17 (=33)(—48) < >t 716y <31y <!
30(13)(—18) 30(13)(=3)
33(16)(=15) ~°° T 28@31)(15)

—0.782 + 6.532 + 33.682 — 2.202 = 37.23.

42

Hence the desired root of f(x) = 0is 37.23.

1.6.1 ITERATIVE METHOD

Newton's forward interpolation formula is



p(p—1) A p(p — D(p —2)

Yp = Yo + pAy, + o0 Yo+ 3 Myo+ -
From this, we get
_ 1 p(p—1) r2 p(p—1)(P-2) 3
p_A_yo[yp_yO+ o Ay0+TA y0+°"] ... (12)

Neglecting the second and higher differences, we obtain the first approximation to p as

p1 = (¥p — ¥0)/Ayo

To find the second approximation, retaining the term with second differences in (12) and

replacing p by p,, we get

1 pi(py — 1) 2
Pz—A—yOl)’p—)’M'TA Yo

To find the third approximation, retaining the term with third differences in (12) and replacing

every p by p,, we have

_L _ +p2(P2 -1

p Ay, +

p2(p2 — ;?(Pz —-2) A33’0]

and so on. This process is continued till two successive approximations of p agree with each

other

This method is a powerful iterative procedure for finding the roots of an equation to a good

degree of accuracy.

Example 1.21 The following values of y = f(x) are given

x: | 10 15 20

y: | 1754 | 2648 | 3564

Find the value of x for y = 3000 by an iterative method.



Solution: Taking x, = 10 and h = 5, the difference table is

x y Ay | A%y

10 | 1754

15 | 2648 | 894

20 | 3564 22

Here y, = 3000, y, = 1754, Ay, = 894 and A%y0 = 22.

. The successive approximations to p are

1
p; = —— (3000 — 1754) = 1.39

894
_ ! [3000 1754 - 23939~ D) 22] = 1.387
P2 = 394 2 -
_ ! [3000 1754 _ 13871387 — 1) 22] = 1.3871
P3 = goa 2 -

We, therefore, take p = 1.387 correct to three decimal places. Hence the value of x
(corresponding to = 3000) = x, + ph = 10 + 1.387 X 5 = 16.935.

1.7CHECK YOUR PROGRESS

1. Use Stirling's formula to interpolate the value of y = e* at x = 1.91 from the data

X: 1.7 1.8 1.9 2.0 2.1 2.2

y=e* | 54739 6.0496 6.6859 7.3891 8.1662 9.0250

2. Use Stirling's formula to find us, form the data
Uy = 14.035,uy5 = 13.674,Uze = 13.257, uzs = 12.734, 1y = 12.089,uys
= 11.309.
3. Using Gauss's forward formula, find the value of f(32) given that
£(25) = 0.2707, f(30) = 0.3027, f(35) = 0.3386, f(40) = 0.3794

4.  Using Gauss's backward formula, find the value of v12.516 given that



V12500 = 111.803399,v12510 = 111.848111,V12520 = 111.892806,V1230
= 111.937483
5. Evaluate sin(0.197) form the following table :

X: 0.15 0.17 0.19 0.21 0.23

sinx: [ 0.14944 0.16918 0.18886 0.20846 0.22798

6. If y(1)=-3,y(3)=9,y(4) =30 and y(6) = 132, find the four point Lagrange's
interpolation polynomial that takes the same values as y at the given points.

7.  Evaluate v155 using Lagrange's interpolation formula from the data:

X: 150 152 154 156

y =+x: | 12247 12329 12410 12.490

8.  Using Hermit's interpolation formula estimate the value of log(3.2) from the following
table:

x 13 3.5 4.0

y=log, | : | 1.09861 | 1.25276 | 1.38629

y’=l ? | 0.33333 | 0.28571 | 0.25000
X

1.8 SUMMARY

e  The students are made familiar with some preliminary definitions and fundamental
results of interpolation.
o Different types of interpolations with Lagrange, Hermite, Bessel, and Stirling formulae

etc. have been developed to get the solution in various conditions.



1.9

KEYWORDS

Lagrange’s interpolation, Lagrange’s inverse interpolation, Bessel’s interpolation, Stirling’s

interpolation, Gauss’s backward interpolation, Newton’s forward and backward interpolation.

1.10 ANSWERS TO CHECK YOUR PROGRESS

1
2
3
4
5.
6
7
8

1.12

6.7531

13.062

0.3165

111.8749

0.19573
x3—3x2+5x—6
12.45
1.16314

SELF-ASSESSMENT TEST:
Find the unique polynomial P(x) of degree 2 or less such that P(1) = 1, P(3) = 27, P(4) =
64 using each of the following methods :

(1 Lagrange interpolation formula,

(i) Newton divided the difference formula and evaluate P(1.5).

Calculate the nth divided difference of f (x) =1/ x.

Use Everett’s interpolation formula to find the value of y when x = 3.5 from the
following table:

X 1 2 3 4 5 6

Y =1f(x) | 1.2567 | 1.4356 | 1.5678 | 1.6547 | 1.7658 | 1.8345

Find the zero of the function y(x) from the following data:
X 1.0 0.8 0.6 0.4 0.2

Y =1(x) | -1.049 -0.0266 | 0.377 | 0.855 |1.15
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2.0 LEARNING OBJECTIVES
o This chapter will be devoted to explaining the approximation of a function.
o It also briefs spline interpolation.

e  Various ways of approximation of function have been discussed with their suitable

examples.



2.1 INTRODUCTION

Often engineers, scientists, organizers, and sociologists have to take some decisions concerning
the phenomena of which they know only the behavior from experimentally measured values. In
certain cases, for example in physics, the fundamental knowledge of the phenomena in question
allows us in proposing a precise, deterministic mathematical model which we call the model of
knowledge. In many branches of applied mathematics, it is required to express a given data,
obtained from observations in form of the law connecting the two variables involved. Such a law
inferred by some scheme is known as an empirical law. Several equations of different types can
be obtained to express the given data approximately. But the problem is to find the equation of
the curve of 'best fit' which may be most suitable for predicting the unknown values. The process
of finding such an equation of 'best fit' is known as curve fitting. The method of least squares is
probably the best to fit a unique curve to a given data. It is widely used in applications and can
be easily implemented on a computer. There are several cases when we have information or data
"y ' available at several discrete locations 'x' for example tabulated values of the steam,
trigonometric, logarithmic, and other functions, etc. Till the use of online measurement devices
and recorders became popular, experimental results taken in a laboratory were available in a
similar form. We may be required to interpolate or extrapolate these data or may at times, be
interested in computing slopes or integrals of functions described by them. This chapter is

devoted to the discussion of several techniques for doing this.

2.2 APPROXIMATION OF THE FUNCTIONS

The graphical method and the method of group averages have the obvious drawback of being
unable to give a unique curve fit. The principle of least squares, however, provides an elegant
procedure for fitting a unique curve to a given data. A French mathematician Adrian Marie
Legendre in 1806 suggested the "Principle of least squares,” which states that the curve of best fit
is that for which the errors (or residuals) are as small as possible i.e., the sum of the squares of
the errors is a minimum. The principle of least squares does not help us to determine the form of
the appropriate curve which can fit a given data. It only determines the least possible values of
the constants in the equation when the form of the curve is known beforehand. The selection of
the curve is a matter of experience and practical consideration. Here we shall discuss the fitting

of various types of curves by the method of least squares.



2.2.0 STRAIGHT LINE FITTING

Suppose it is required to fit a straight line
y=a+ bx ..(2.1)

to a given set of observations (xy,y;), (X2, ¥2) -.. (X5, Yn). Since (2.1) passes through the data

points (x;, y;), we have
y; = a+ bx;
The error e; between the observed and expected values of y = y; is defined as
eg=y;—(a+bx;)i=123,..n

Therefore the sum of the squares of these errors is

E:Z ei2=zn: [y; — (a + bx;)]?
. -

n
i=1 i
Now for E to be minimum, we must have

0E 0E

Zﬂ;:z O’Eﬁ;:z 0

There provide us

and

n

n
Z Vi =na+bz X;
i=1

=1

n n n
z XY =az xi+bz x?
i=1

i=1 i=1

These equations are called normal equations. Solving these equations for a and b, we obtain



n n

_1 b Z

a= n|” . Xi . Vi
=1 i=1

_ nz?=1 XiYi — (Z?=1 xi)(2?=1 yi)

b
n¥in & — QG x)?

Upon substitution of the values of a and b in (2.1) we obtain the required line of "best fit".

2.2.1 PARABOLIC CURVE FITTING

Suppose the equation of the parabola to fit is given by
y = a + bx + cx? ..(2.2)

Let the data points be (x;,y;),i = 1,2,3,...n. Since (2.2) passes through these data points, we

have
y; = a+ bx; + cx?
The error e; between the observed and expected values of y = y; is defined as
e, =y;— (a+bx; +cx?),i=123,..n
Therefore, the sum of the squares of these errors is
n n
E=Z e/ =Z i — a— bx; — cx})?
i=1 i=1
For E to be minimum, we have

OE _ OE OE

aa V3= %%

which leads to the normal equations



Z yizna+bz xi+cz x; 2
z xl-yl-=az xl-+bz xi2+cz x; 3
Z xizyizaz xi2+bz xi3+cz x;

Solving these equations for a, b, and c, and using these values in equation (2.2), we obtain the

desired curve of best fit.

2.2.2 FITTING OF OTHER CURVES

1.  Power curve: Let the curve be given by

y =ax
Taking logarithms, we get

log,oy = log,pa + blogigx ..(2.3)
Y =A+DbX

where
X =logiox,Y =logioy

Therefore normal equations for (2.3) are

Z Y; =nA+bz X;
z X;Y =AZ Xl-+bz X?

From these A and b can be determined. Then a can be calculated from A = log,,a. The values

of a and b so obtained are used in (2.3) to get the required curve of best fit.
2.  Exponential curve: Let the curve given by,
y =ae

Taking logarithms, we get



log,, vy = log;pa + bxlog;,e
Y = A+ Bx ..(2.4)

where
Y =log,,y, A =log,,a, and B = blog,,e

Here the normal equations are

Z Y; =nA+BZ X;
le'yi :AZ xi+Bz xl-z

From these A and B can be found and consequently a, b can be calculated and used in (2.4) to

obtain the desired curve of 'best fit'.
Example 2.1 Fit a second-degree curve to the following data

x: 1.0 15 20 25 3.0 35 40
y: 11 13 16 20 2.7 34 41

Solution: Let the required curve be y = a + bx + cx?
We put X = 2x — 5 so that this equation becomes

y=a+bX + cX?

x y y | xy | x*| x?y | x3 | x*
10 | -3 | 11 |-33|9 | 99 | 27|31
15 | -2 | 13 | -26|4 | 52 | -8 | 16
20 | -1] 16 | -16|1 | 16 | -1 |1
25 |0 20 | 00 |0 | 00 |0 0




3.0 1 2.7 2.7 1 27 |1 1

3.5 2 6.8 6.8 4 136 | 8 16

4.0 3 123 | 123 | 9 369 | 27 81
Total | O 162 | 143 | 28 | 699 | O 196

The normal equations are

7a + 28c = 16.2,28b = 14.3,28a + 196¢ = 69.9

Solving these equations leads to a = 2.07, b = 0.511,c = 0.061

Therefore,

y =2.07+0511X + 0.061X? = 2.07 + 0.511(2x — 5) + 0.061(2x — 5)2
= 1.04 — 0.198x + 0.244x2

Thus the required second-degree curve (parabola) is

y = 1.04 — 0.198x + 0.244x?

Example 2.2  Fit a straight line to the following data:

Year (x): 1951 | 1961 | 1971 | 1981 | 1991
Production (y): 5 10 12 10 16
in thousand tons

Also, find the expected production in 1996.

Solution: Suppose the equation of the required straight line be y = a + bx

Xy

x2

1951

15608

3806401




1961 10 19610 3845521
1971 12 23652 3884841
1981 10 19810 3924361
1991 16 31856 3964081
Yx =9855 | Yy =56 | Yxy = 110536 | 19425205

The normal equations are

imply that

5a + 9855b = 56
9855a + 19425205 b = 110536

Solving these equations, we get a = 304.16,b = .16

=~ The required straight line isy = .16x — 304.16

2.2.3 GENERAL LEAST SQUARE METHOD

Here we propose the following model in terms of the unknown coefficients ¢;,j = 1,2,3,...m as

Vi = lel(xl') + CZfZ(xi) + ot Cmfm(xi)'i = 1'2'3' n

where x; € R or R™. The error committed at the i th point in approximating the observed value

y; for the expected value y; is

ei=y;—y;, fori=123,..n

m

=y; — Z ¢ifj(x),i=123,..n

j=1




This is a system of n equations in (n +m) unknowns ¢;,j = 1,2,3,..m and e;,i = 1,2,3, ...n,
and hence it has an infinite number of solutions. Among all these solutions, we define the best

solution as the one that minimizes the scalar quantity

where w; > 0 are the weights so that
n
ly —y7ll, = Z i — y)?w;
i=1

defines the weighted least squares norm. We look for minimizing E with respect to the
parameters {c, ¢, c3, ..., C;p}. The necessary condition in which E is minimum in the space of

{c1, ¢y, ... Cpp ) is that

0F
—=0,k=123..n
ack

Permuting the summation and partial derivative operation and taking the derivative, we obtain

25T wie; gj =0,k=12,..,m ...(2.6)

Using equation (2.5) in (2.6), we obtain

Z w; |y; —Z ¢ifi(x) | filx;)) =0,k =12,..m

i=1 j=1
This implies that

m n n

Z Cjz w; fi(x) fie (x;) = Z wiyifie(x), k=123 ..m

j=1 i=1
m
Z agjci = b,k =12..m

j=1



where

ay; =X G)fiedwik=1.2,..m,j=123..m

(2.7
by =Xk wiyifi(xp), k=12..m (2.7)

In matrix form we have

apy  Ap 1[G b,
Am1 " Qmn Cm bm

The quantities a,; and by defined in (2.7) are completely determined because the pairs (x;, y;)

and the function f;(x) are known in the linear system (2.8), it remains only to determine these m

unknowns {cy, ¢, ..., Cim }-
Algorithm for Least squares method: Linear model
The n pairs (x;, y;) of data points are given along with their weights w;
1. Define the function f;(x) composing the model so that y; = Y72, ¢; fj(x;)

2. Fork =1,2,3,---m, calculate the terms
n
akj = Z f}'(xj')fk(xi)wi,jj = 1,2,3, . m
i=1
and
n
be = ) wiyifilx)

i=1

3. Solve the linear system of the symmetric matrix equation

Z ak]'Cjzbk,k = 1,2,3, L. m

j=1

2.3 SPLINE INTERPOLATION



In the interpolation methods so far explained, a single polynomial has been fitted to the tabulated
points. If the given set of points belongs to the polynomial, then this method works well,
otherwise, the results are rough approximations only. If we draw lines through every two closest
points, the resulting graph will not be smooth. Similarly, we may draw a quadratic curve through
points A;, A;,, and another quadratic curve through A;,;, 4;,, such that the slopes of the two
quadratic curves match at A;,; (Fig. 2.1). The resulting curve looks better but is not quite
smooth. We can ensure this by drawing a cubic curve through 4;, A;,; and another cubic through
A1, A;4, Such that the slopes and curvatures of the two curves match at A4;,,. Such a curve is
called a cubic spline. We may use polynomials of higher order but the resulting graph is not
better. As such, cubic splines are commonly used. This technique of "spline-fitting" is of recent

origin and has important applications.

y A
. A .
')(j_](x) - iy fu—](")
-
o I
M—.Q : -
AL l H A
! I I 1
! I I 1
' I I 1
E Ui : Yiz !’J',H i.’)‘“ N
:\:r'+] ”‘:i+3 ”\n—l :‘:n rl-
FIGURE 2.1

CUBIC SPLINE

Consider the problem of interpolating between the data points (xg, Vo), (X1, V1), =** (Xn, ¥3,) USing

spline fitting.

Then the cubic spline f(x) is such that

(i) f(x) is a linear polynomial outside the interval (x,, x,,),
(i) f(x) is a cubic polynomial in each of the subintervals,

(iii) f'(x) and f" (x) are continuous at each point.



Since f(x) is cubic in each of the subintervals f"'(x) shall be linear. . Taking equally-spaced

values of x so that x;,; — x; = h, we can write

F@) = 7 [~ 0f () + G = x)f " Cxian)]
Integrating twice, we have

FO) = 2| B2 60 + B2 )| @i — 0 + bi(x =) ..(29)

The constants of integration a;, b; are determined by substituting the values of y = f(x) at x;

and x;,,. Thus,

2

1 h 144 1 rn
yi—=5-f"(x)| and b; = n YVi+1 — yf (Xi41)

" h

Substituting the values of ai,bi, and writing f"(x;) = M;, (2.9) takes the form f(x) =

(xip1—%)3 M _I_(x xl) M

6h i+1
i1~ h? —Xi h?
+%()’i _?Mi) +%()’i+1 —;Mi+1) ...(2.10)
, (Xi41 — %)° (x —x;)? h 1
~ () = - on M; + 61 Miyq — E(Miﬂ - M;) + E(Yiﬂ —¥i)

To impose the condition of continuity of f'(x),weget f'(x —¢) = f'(x +€)ase - 0

h 1 h 1
@M+ Mi_y) + (i = yi1) = =2 @My + Miyq) + 5 (Vier — i)

6 _ ..(2.11)
Mi_y +4M; + My = 5 (Vi1 = 2y; + yia), i = 1t0n — 1
Now since the graph is linear for x < x, and x > x,,, we have
My=0,M,=0 ...(2.12)

(2.11) and (2.12) give (n + 1) equations in (n + 1) unknowns M;(i = 0,1, ---n) which can be

solved. Substituting the value of M; in (2) gives the concerned cubic spline.



Example 2.3 Obtain the cubic spline for the following data

Solution: Since the points are equispaced with h =1 and n = 3, the cubic spline can be

determined from M;_; + 4M; + M;,; = 6(¥;_1 — 2y; + Viz1), i = 1,2
Mo+ 4My + My = 6(yo — 2y, +¥2)
M, + 4M;, + M3 = 6(y, — 2y, + y3)
ie.,4M; + M, = 36; M; + 4M, = 72 [ My = 0, M5 = 0]
Solving these, we get M; = 4.8, M, = 16.8.

Now the cubic splinein (x; < x < x; +1)is

f(x)=1(x- —x)3M-+1(x—x-)3M- +(x; —x)( -—EM->
g i+l ity i i+1 i+1 Yi 6
1
+ (c—x) <}’i+1 - gMi+1>
Taking i = 0, the cubic splinein (0 <x <1)is
1 1 1
flx) = g(l —x)3(0) + g(x —0)3¢U8)+1-x)(x—-0)+x [—6 — 5(4.8)]

=08x3—-88x+2(0<x<1)
Taking i = 1, the cubic splinein (1 <x < 2)is

1 1 1
f@= 2@-0°@8) +-(x—1*168) + (2~ ) [—6 -= (4.8)]

+(x — 1)[-8 — 1(16.8)]
= 2x3—5.84x% — 1.68x + 0.8

Taking i = 2, the cubic splinein (2 <x <3)is



f(x) = %(3 —x)3(4.8) + %(x —2)3(0) + (3 —x)[-8 — 1(16.8)]

+ +(x—2)[2-1(2)]
=—0.8x3+ 2.64x? +9.68x — 14.8

Example 2.4 The following values of x and y are given:

Find the cubic splines and evaluate y(1.5) and y'(3).

Solution: Since the points are equispaced with h =1 and n = 3, the cubic splines can be

obtained from
M;_1 +4M; + My 1 = 6(yi—1 — 2y; + ¥i41), i = 1,2,

My +4M; + M, = 6(yy — 2y; +¥2)
M; +4M, + M3 = 6(y; — 2y, +y3)

4M; + M, = 12, M, + 4M, = 18
[ Mo = 0,M3 = 0]
which give,
M, =2,M, = 4.

Now the cubic spline in (x; < x < x;,,) is

1 1 1
f(x) = g(xi+1 —x)*M; +g(x — %;)*Mipq + (X341 — %) ()’i - gMi>
1
+(x — x;) (Yi+1 - gMi+1)

Thus, taking i = 0,i = 1,i = 2, the cubic splines are



1
§(x3—3x2+5x)1SxS2

1
fx) =1 §(x3—3x2+5x)2§x£3

1
3 (—2x3 —24x2—76x+81)3<x <4
~y(15) = f(1.5)=11/8

Example 2.5 Find the cubic spline interpolation for the data:

x: | 12345

fo: |1]o]1fof1

Solution: Since the points are equispaced with h = 1,n = 4, the cubic spline can be found using
M1 +4M; + Mipq = 6(yi-1 — 2y; + Yi41), i = 1,2,3
Mo + 4’M1 + M2 = 6(y0 - Zyl +y2) = 12
Ml + 4‘M2 + M3 = 6(y1 - Zyz + Y3) = _12
MZ + 4’M3 +M4 = 6(y2 - 2y3 +y4) = 12
SinceMy =yy =0and M, =y, =0
o 4‘M1 + M2 = 12, Ml + 4‘MZ + M3 = _12, Ml + 4‘M3 =12

Solving these equations, we get M; = 30/7,M, = —36/7, M5 = 30/7

Now the cubic splinein (xi < x <xi+1)is

1 1
f(x) = g(xi+1 —x)3M; + g(x — %;)* Mg + (X471 — %)
1 1
(%’ - gMi> + (x — x;) (}’i+1 - gMi+1>

Taking i = 0, the cubic splinein (1 <x < 2)is



1 1
y = 2 [0 = X°Mo + G = %) My] + Gy = ) (o — 2 Mo

+(x — xo) (3’1 - %M1)

1 1
=212 = %0 + (x = %)*BO/N)] + 2 - 0) (1 - £ ()
Fx—1 0_1@)

c-n(0-=(5

ie, y=071x3 —2.14x2 + 042x + 2 (1 < x < 2)

Taking i = 1, the cubic splinein (2 <x <3)is
1 30 36 1,30
y=gle-0' T+ e-2(-F)|+6-» (0‘5<7>>
1/ 36
)

ie, y=—157x3+11.57x% — 27x + 20.28. (2 < x < 3)
Taking i = 2, the cubic splinein (3 <x <4)is

1 S 36\ 1 ;30 1/ 36 5
y=gt-0(-7)+5a-3) 7*<4‘x><1‘5(‘7))“’“‘”(“7)
i.e, vy =157x3—16.71x? + 57.86x — 64.57 (3 < x < 4)

Taking i = 3, the cubic splinein (4 <x <5)is

1 30 5
y=c(-x) (7) +(5—x)° (—7) +(x—H(L)
i, y = —0.71x3 + 2.14x2 — 0.43x — 686. (4 < x <5)

24 CHEBYSHEV POLYNOMIALS
The Chebyshev polynomials of the first kind, T;,(x) are defined by

T, (x) = cos(ncos ! x)

where n is a non-negative integer.

Remark. Chebyshev polynomials are also known as Tchebicheff, Tchebieheff, or Tschebysheff.



RECURRENCE RELATIONS (FORMULAE)
. The1(x) — 2xT,(x) + Tp,—q1(x) = 0.
. (1—x3)T,"(x) = —nxT,(x) + nT,_,(x).

Proof I. We have, by definition T, (x) = cos(ncos™! x)

~ T,(cos ) = cos(ncos™ cos @) = cosnb ...(2.13)
so that T, (cos8) = cos(n+ 1)6 and T,,_;(cos8) = cos(n — 1)8 ...(2.14)
We are to show that T,,,,(x) — 2xT,,(x) + Ty, (x) = 0. ...(2.15)

Replacing x by cos @ in (2.15), we must now prove that

Th4+1(cos8) — 2cos 8T, (cosB) + T,,_1(cos8) =0

cos(n + 1)8 — 2cos Bcosnf + cos(n — 1)8 = 0, by (2.13) and (2.14)
ie.,
cos(n + 1)8 + cos(n — 1)8 — 2cos Ocosnb = 0. ...(2.16)
Now, L.H.S. (2.16) = 2cosnfcos 8 — 2cos fcosnb = 0,

which proves (2.16) and hence (2.14) is true.

-n

V(1-x2)

Il. We have T;,(x) = —sin(ncos™ ! x) -

’ —_ o -1 "
or T,(cos ) = sin(ncos™ " cos ) Toews
Thus,
T,(cos 8) = (nsinnf)/sinb ..(2.17)

We are to show that



(1 —x®)T;(x) = —nxT,(x) + nTp_q(x). ...(2.18)
Putting x = cos 8 and using (2.14) and (2.17), (2.18) may be re-written as

sin? @ % = —ncos fcos nf + ncos(n — 1)0
or sin@sinnf = cos(n — 1)@ — cos Bcosnb. ...(2.19)
R.H.S. of (2.19) = cos(nf — 6) — cos 6 cos n6
= cosnfcos 8 + sinnfsin  — cos Bcos nb

= sinnfsin @ = L.H.S. of (2.19),
which proves (2.19) and hence (2.18) is true.
Example 2.6 Show that T}, (x) is the solution to Chebyshev's equation

(1 —x?)(d?y/dx?) — x(dy/dx) + n*y = 0. ...(2.20)

Solution: Chebyshev's equation is (1 — x2)(d?y/dx?) — x(dy/dx) + n?y = 0

To show that T, (x) is a solution of (2.20), by definition we have

T, (x) = cos(ncos 1 x) . (2.21)
2T () = - cos(ncos™ ) = ~sin(ncos ™ x) -
oy n(x) = Ix cos(ncos™" x) = —sin(ncos™" x) - n L
or
LT (x) = —2——sin(ncos™! x) (2.22)
dx ™ (1—x2)1/2 ...(2.

and



I[ _1(1 — xz) z( 2x) - sin(ncos™1 x) ]|
=n
I[+(1 —x?)7/2cos(ncos™! - x) - n a= iz)1/zJ|

Thus, d—T (x) = ~1x). ..(2.23)

m sin(ncos™! x

Using (2.21), (2.22), and (2.23), we have

d? d
(1= x%) 5 T () = x =T () + n° Ty (x)

nx
= 7 sin(n cos™! x) — n® cos(n cos ™' x)
(1—x2)2
nx . L 1
_ msm(ncos‘ x) + ncos(ncos™" x)

showing that T,,(x) is a solution of (2.20).
ORTHOGONAL PROPERTY OF CHEBYSHEV POLYNOMIALS

Show that

1 T (X)Th(x) dx

=) n/2,m=n+0

{O,m n
nm=n=20
Proof. We have, by definition

T, (x) = cos(mcos™1x) and T,(x) = cos(ncos™!x).
T, (cos @) = cos(mcos™? cos 8) = cos mf

' OT,
Letlzf \/((f)_ix(zx) - (2.24)

Putting x = cos 8 so that dx = —sin 8d6 and (2.24), reduces to



[ fo cos mfcos nf

0
. (—sin8)do or I =j cos mbcosnbdo
sin 0 -

T

Case 1. Let m # n so that (m — n) # 0. then, (2.24) gives

T

o [cos(m +n)8 + cos(m —n)6]do

y 1
I = Efo 2cos mBcosnfdo = Ef

=0

1 [sin(m +n)6 N sin(m — n)G]’T
) m+n m-—n 0

Case 2. Letm = n # 0. Then (2.24) gives

n 1 4+ cos2m@ 1 sin 2mo1"
1=f coszmedezf —d@z—[9+ ] _
. . 2 2 2m |,

SIE

Case 3. Letm = n = 0. Then cosmé@ = cosné = 1. Then (2.24) gives

s
1= @dx =15 =
0
From cases 1, 2, and 3, the required result follows.
Example 2.7 Show that T, (x) = (1/2) x [{x + i(1 — x)2}" + {x — i(1 — x*)1/2}"].
Solution: Putting x = cos 6, and using the definition, we have

T.(x) = cos(ncos™tx),= cos(ncos™tcosB) = cosnd = (e + e~9)/2
= (1/2) x {(e®)" + (e7)"} = (1/2) x {(cos 6 + isin )" + (cos 6 — isin )"}
= (1/2) X [{cos @ + i(1 — cos? 9)1/2}n + {cos 8 — i(1 — cos? 9)1/2}n]
=1/2) x[{x+i(1- x2)1/2}n +{x—i(1- xz)l/z}n], as x = cos O

Example 2.8 Show that T,,{T;,(x)} = T, {Tpn (%)} = Ty (x).
Solution: We have, by definition
T {T,(x)} = T,,[cos(ncos™1x)]

= cos[mcos~*{cos(ncos™! x)}], by definition again
= cos(nmcos~ 1 x). ..(2.25)



Again, T,,{T;,,(x)} = T,[cos(mcos~1 x)], by definition

= cos[ncos {cos(mcos™! x)}], by definition again

= cos(nmcos™1 x), ...(2.26)
Finally,
Tun (x) = cos(mncos™! x), by definition ..(2.27)

From (2.25), (2.26), and (2.27), we get the required result.

2.5 CHECK YOUR PROGRESS

1.  Fitastraight line by the method of least squares to the data:

X: 1 2 3 4 5
y: 14 27 40 55 68
2. Fitaleast square geometric curve y = ax® to the data:
X: 1 2 3 4 5
y: 0.5 2 45 8 12.5

3. Use the method of least squares to fit a relation of the form y = ab* to the data :

x: 2 3 4 5 6

y: 144 172.8 207.4 248.8 298.5
4.  Find the parabola of the form y = a + bx + cx? which fits most closely with the

observations:

x: | -3 2 -1 0 1 2 3

y: | 463 211 067 0.09 063 215 458
5. Obtain the natural cubic spline which agrees with y(x) at the set of data points:

X: 2 3 4




|| m| 49| a2

Hence compute y(2.5) and y'(2)

6.  Determine the cubic spline valid in the interval |x;_;, x, | for the following data:

X 6.2 6.5
y = xlogx 11.3119 14.1014

26 SUMMARY

e  The students are made familiar with the approximation of functions.

o Different types of approximation have been developed for the functions.

2.7 KEYWORDS
Approximation, Least Square method, Spline interpolation, Chebyshev’s approximation

2.8 SELF-ASSESSMENT TEST

1. Show that
Tinan (%) + Ty (x) = 2T3 () T ().
2. and
2{T ()Y =1+ Ton(%).

3. Show that the set of Chebyshev polynomials T, (x) = cos(ncos™tx),(n=

0,1,2 ...)is orthogonal on the interval (—1,1) with respect to the weight function

p(x) = 1/(1 —x»)"2.

4. Show that Chebyshev's polynomials T,,(x) = cos(ncos™! x) are solutions of
5 (1—x?(d?y/dx?) — x(dy/dx) + n*y = 0.
6. Provethat T,,(x) — 2xT_1(x) + T,_2(x) = 0

2.9 ANSWERS TO CHECK YOUR PROGRESS

1. y=13.6x



2.10

a=0.5012,b =1.9977
a=99.86,b=1.2
y = 1.243 — 0.004x + 0.22x2
_( 3x?2—-9x%2+11x-11 2<x<3
Y(X) - 2 2
—3x“ 4+ 27x* —61x+ 37 3<x<4

y(2.5) = —4.625,y'(2) = 11
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3.0 LEARNING OBJECTIVES

e This chapter will be devoted to explaining the main concepts of the numerical
differentiation of functions.

e Some methods concerning the numerical differentiation of the functions will be
established.

3.1 INTRODUCTION

The process, by which we can find the derivative of a function at some assigned value of the
independent variable when we are given a set of values of that function, is called "numerical
differentiation™. The problems of numerical differentiation are solved by first approximating
the function by an interpolating formula and then differentiating this formula as many times

as desired. In case the values of the argument are equally spaced, and we desire to find the



derivatives of the function at a point near the beginning (end) of a set of tabular values, we
use Newton Gregory's forward (backward) formula. To find the derivative at a point near
the middle of the table, we should use a central different formula. For calculating the
derivatives of a function whose argument values are unequally spaced, we should use
Newton's divided difference formula to represent the function. While using these formulae,
it must be observed that the table of values defines the function at these points only and does
not completely define the function hence the function may not be differentiable at all. As
such the process of numerical differentiation should be used only if the tabulated values are
such that the differences of the same order are constants. Otherwise, errors are bound to
creep in which go on to increase as derivatives of higher order are found. This is because the
difference between the actual function f(x) and the approximating polynomial ¢ (x) may be

small at the data points but f'(x) — ¢'(x) maybe large.

3.2 NUMERICAL DIFFERENTIATION
The general method for deriving the numerical differentiation formula is to differentiate the
interpolating polynomial. We illustrate the derivation with Newton's forward formula only
because the method of derivation about other formulae is the same. Consider the function
y = f(x) which is tabulated for the values x;(= x, + ih),i = 0,1,2,3, ...n. Then Newton's
forward difference formula is given by

u(uz!— 1) Ny, + u(u — 13)!(u -2)

Y = Yo +uly, + Nyo + -

where x = x4 + uh.

Then
dy dydu 1d u? —u u®—3u® +2u
& dudc hau M T Ao T At
1 2u—1 3u? —6u+2
=|Ay0 + = 82y + My, + - (31
d’y 1ddyy 1d]1 2u—1 , 3u —6u+2
et o B e o O T e TR s e RS
1], 6u—6_  12u2—-36u+22



The formulae (3.1) and (3.2) are used for computing the values of Z—Z and ZZ for

nontabulated values of x respectively. For tabular values of x, these formulae take simple
forms, for by setting x = x,, we obtain u = 0 and hence expressions (3.1) and (3.2) give us

[d 1[A 1A2 +1A3 1A4 + ]
dxxxo h Yo ) Yo 3 Yo 7 Yo

and

1y, . 11, 5
dxz P[AJ’O_A%"'EA}’O_EAYO ]

The higher derivates may be computed from the formulae, which can be obtained by
successive differentiation. Alternatively, we know that 1 + A = E = e which implies that

D—11 1+A—1[A 1A2+1A3 1A4+ ]
=plos(l+4)=414-7 3% 7%

and

2

1 1 1 1 1 11
2 =~ IA_ A2 A3 __ A4, 2 340 27 A4 ...
D hZ[A zA +3A 4A + ] nz [A —A +12A + ]

and so on higher order derivatives formulae can be obtained by applying these identities to
Yo- Similarly, different formulae can be derived by interpolation formulae

(a) Newton's backward difference formula

dy 1] 2u+1_, 3u? +6u+2 .
xRt Tt T Ut
and
dy 1 [, 6u+6 . 12u® +36u +22 _,
iz o |Vt Vot 2 Vi + -

for non-tabular values of x, where x = x,, + uh. For tabular values, we obtain.
[d _1 [V + ! vy, + ! V3y, + ]
dx x=x, h, yTl 2 yTl 3 yTl

dzy 1 ) 3 11 " 5
E =ﬁ[v Yo +V yn+EV yn+6V Vn + ] ...(3.3)
x

X=Xn

Alternatively, we also know that 1 — V= E~1 = e~"? which implies that

D 11 1-V 1[V+1V2+1V3+1V4+ ]
plogd=V) =5 |V+aVi+3V 42



and

1 1 1 1 21 11
2 - R v/ _v3 _y4 - 2 3 I vZ
D hz[V+2V +3V +4V+ ] hZ[V +V +12V+ ]
and so on. Applying these identities to y,,, we get a formula similar to (3.3)

(b) Stirling's formula
u (Ayo + Ay — 1) u? u(u? —12) <A3y_1 + A3y_2>

Y=o+

— — A2
0T T 2 LT e Y 2

2! -

u?(u? — 1%

- " A4
+ 2 A*y_, +
where x = x4 + uh.

Differentiating, we get

dy 1[/Ay,+Ay_4 3u2—1(/My_ +203y_,\ 4ud—-2u
— = —[(——22) 4 ua?y_ Ay 4
dx hl( 2 >+u e T 2 Y Y-z +
At x = xy,,u = 0, we get

dy\ _ 1[(Ayo+Ay—1\ 1 (My_1+8%y5\ | 1 (ASy_,+A%y_35

(E)_h[( 2 ) 6( 2 )+30( 2 )+ ] ..-(3.4)
Similarly,

a2y — 1 (A2 _ 1 a4 1 6
(dxz)x=x0 - h2 [A y—l 12A y—Z + 90A }’—3 + ] (35)

We can similarly also use other interpolation formulae for computing the derivatives.

Example 3.1  Given that

x: 1.0 1.1 1.2 1.3 1.4 1.5 1.6

y: 7989 8403 8781 9.129 9451 9.750 10.031
2
Find 2 and X at x = 1.1
dx dx
Solution: The difference table is
x y A A? A3 A* A® A®
1.0 7.989
0.414
1.1 8.403 -0.036
0.378 0.006
1.2 8.781 -0.030 -0.002
0.348 0.004 0.002




1.3 9.129 -0.026 0.000 -0.001
0.322 0.004 0.001

1.4 9.451 -0.023 0.001
0.299 0.005

1.5 9.750 -0.018
0.281

1.6 10.031

Here h = 0.1 and x, = 1.1. Therefore at x = 1.1 we get.

dy 1 1 1 1 1
[ -——[0378———(—003)4——(0004)———(0)4——(0001)]::&946
dxl,—q11 4 5

11 5
[del (01)2[ 003-(0004)4-—5(0)-5(0001)]::&545

3.3 ERRORS IN NUMERICAL DIFFERENTIATION

There are two types of errors, viz. Truncation errors and round-off errors, which generally
occur in the numerical computation of derivatives. The truncation error is caused by
replacing the tabulated function with an interpolation polynomial. This error can usually be
estimated by a formula of error estimation in polynomial interpolation. However, the
truncation error in any numerical differentiation formula can easily be estimated as below.

Suppose that the tabulated function is such that its differences of a certain order are small
and that the tabulated function is well approximated by the polynomial. We consider, for

example, Stirling's formula (3.4), which can be written in the form

Y1—Y-1

[ ] AJ/—1 +AYO
x=x 2h

+T, = + T,

...(3.6)

where T, the truncation error is given by

1 |A3y_,+A3y_
Ty = |- ..(3.7)
Similarly, formula (3.5) leads to
dzyl 1
) = SNy +T,
Idx2 x=xq h?
where
Tz = ! |A4y_2| (38)

12h2




The round-off error, on the other hand, is inversely proportional to h in the case of first-
order derivatives and inversely proportional to h? in the case of second-order derivatives
and so on. Thus the round-off error increases as h decreases. In the case of Stirling's formula
(3.6), the roundoff error does not exceed 2 €/2h = €/h, where € the maximum error in the

value is y;. On the other hand the formula (3.4) viz.

dy Ay_1+Ay A3y_,+A3y_ Y_2—8Y_1+8y,-y
[_] — 1+HAyo 2 1y =2 148y17y2 . ..(3.9)
dxly=0.x, 2h 12h 12h

. . 18 3
has the maximum rounding error j = ﬁ whereas the formula (3.5)
h2

a’y _ Ayl Yoty
[dxz]x=x0_ 224 = + ...(3.10)

has the maximum rounding error % This shows that in the case of higher derivatives, the
round-off error in cases is rather rapid.

2
Example 3.2 Estimate the errors in the values of Z—Z and % at x = 1.6 for the data given

x: 1.0 1.2 1.4 1.6 1.8 2.0 2.2
y: 27183 3.3201 4.0552 49530 6.0496 7.3891 9.0250

Solution: Form equation (3.7), we have

Truncation error = - |[2¥=1=4%%| _ 100361400441 _ 33,
6h 2 6(0.2) 2 ) '
Also from equation (3.9), we have
—4
Round-off error = 3¢ = 30107 _ 0.00038,

2h 2(0.2)
Here €< 0.00005 = 0.5 x 1074,
= Total error = 0.03342 + 0.00038 = 0.0338
From Stirling's formula (3.6) with first-order differences, we get

(dy) _ Ay + Ay, 08978+ 1.0966 1.9944
dx) 16 2h N 0.4 04

The exact value is 4.9530 as the tabulated function is e* so that the error in the above
solution is (4.9.860 — 4.9530) = 0.0330, which agrees with the total error obtained above.
Using (3.10), we obtain

= 4.9860




d?y _ Ay—1 01988 49700
dx? ~ hz 0.04
x=1.6

so that error = 4.9700 — 4.9530 = 0.0170.

1 4 _ 1 _
= |A*y_,| = 2(008) 0.0080 = 0.01667

Also, the truncation error =

= 0.0050.

4 4x0.5x107*
and the round-off error = —= = =~
h 0.04

2
Hence, total error in (d—y) = 0.0167 + 0.0050 = 0.0217
x=1.6

dx?

3.4 Maximum and minimum values of a tabulated function

Consider Newton's forward difference formula

r(p—1) plp—1(p—-2)
Y = Yo+ pAyo +———4%, + c Ny + -
Differentiating with respect to p we get
d 2p—1 3p% —6p +2
é = Ay, + P Ay, + %A%’o +

We know that for maxima or minima Z—Z = 0. Hence, terminating the right-hand side for

simplicity, after the third-order differences and equating it to zero, we obtain

where
Co+cip+cp?=0 ..(3.11)
L, 1
co = Ayp _EA Yo +§A Yo
€1 = AZ)’O - Ag)’o
1
C = EA Yo

The equation (3.11) being a quadratic, can be solved for p and the corresponding values of x

are then found from x = x, + ph, at which y is maximum or minimum.

Example 3.3 Find the minimum values of y from the table

x: 3 4 5 6 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224

Solution: The difference table is



3 0.205
0.035
4 0.240 -0.016
0.019 0.000
5 0.259 -0.016 0.001
0.003 0.001 -0.001
6 0.262 -0.015 0.000
-0.012 0.001
7 0.250 -0.014
-0.026
8 0.224

Taking x, = 3 and h = 1, Newton's forward difference formula gives us
y = 0.205 + p(0.035) + 222 (~0.016) ...(3.12)

Differentiating this with respect to p, we get

dy 2p—1
— = 0.0354+—(-0.016
™ 5 ( )
For y to be minimum, Z—Z = 0, which implies that p = 2.6875

& x =x9+ph=3+2.6875(1) = 5.6875

Using the values in equation (3.12) we get

1
Ymin = 0.205 + 2.6875(0.035) + > (2.6875)(1.6875)(~0.016) = 0.2628

Example 3.4 Find the maximum value of f(x) in the range of x from the following table

of values

x: 60 75 90 105 120
f(x): 282 382 432 409 377

Solution: The difference table is



x y = f(x) A A? A2 At

60 28.2
10.0
75 38.2 -5.0
5.0 -2.3
90 43.2 -7.3 8.7
-2.3 6.4
105 40.9 -0.9
-3.2
120 37.7
From Stirling's formula, we have
7= ) =y § (2 + Gy 4 M () My
...(3.13)
where x = x, + phand y, = f(x,),xo =90 and h = 15.
Therefore, we have
dy_dy dp_1dy
dx dp dx hdp
To have y = f(x) maximum, we solve the equation
%:f’(x) :0:3—;}=O:>f’(p) =0.
Ie.
Ay, -;Ay_l N 22—2!9A2y_1 N 3p23!— 1A%y, +2A3y -2 N 4p34: 24A4y_2 _o

17.4p3 + 12.3p% — 96.3p + 12.10 = 0
Solving this equation by the Newton-Raphson method, we have p = 0.128126
~ x =90+ 15p =90 + 15(0.128126) = 91.92189
Using these values of x and p in (3.13), we get
Vimax = £(91.92189) = 43.2641

which is the required maximum value of f(x).



Example 3.5 From the following table find the maximum value of y correct to two

decimal places

x: 1,2 1.3 1.4 1.5 1.6
y: 09320 09636 09855 0.9975 0.9996

Solution: The difference table is

x y A A? A3 A*
1.2  0.9320
0.0316
1.3 0.9636 —0.0097
0.0219 —0.0002
14 0.9855 —0.0099 0.0002
0.0120 0.0000
1.5 0.9975 —0.0099
0.0021
16 0.9996

Let x, = 1.2. Thus from Newton's forward difference formula, we have

2p—1
2

0 =0.0316 + (—0.0097)

= p=38
& x =X+ ph=12+(3.8)(0.1) = 1.58
For this values of x, Newton's backward difference formula at x,, = 1.6, gives us

—0.2(=0.2 + 1)
y(1.58) = 0.9996 — 0.2(0.0021) + >

= 0.9996 — 0.0004 + 0.0008 = 1.0
which is the required maximum value.

(=0.0099)

3.5 CHECK YOUR PROGRESS



Given that

X: 1.0 11 1.2 13 14 1.5 1.6

y: 7.989 8.403 8.781 9.129 9.451 9.750 10.031

find 2 dx and £ at (@) x= 1.1 (b) x = 1.6,

Find the value of cos (1.74) from the following table:

X 1.7 1.74 1.78 1.82 1.86

Sin x 0.9916 0.9857 0.9781 0.9691 0.9584

A slider in a machine moves along a fixed straight rod. Its distance x cm. along the

rod is given below for various values of the time t seconds. Find the velocity of the

slider and its acceleration when t = 0.3 seconds.

t:

0

0.1

0.2

0.3

0.4

05

0.6

Xt

30.13

31.62

32.87

3364

33.95

33.81

33.24

The elevation above a datum line of seven points of a road is given below:

X:

0

300

600

900

1200

1500

1800

y:

135

149

157

183

201

205

193

Find the gradient of the road at the middle point.

From the table below, for what value of X, y is minimum? Also, find this value of y.

X: 3 4 5 6 7 8
y: 0.205 0.240 0.259 0.262 0.250 0.224
SUMMARY

The students are made familiar with some preliminary definitions and fundamental

results of numerical differentiation of various functions.

Application of the numerical differentiation of the functions has been developed.



»  Lastly, maxima-minima and partial differentiation of the function have been

explained in detail.

3.7 KEYWORDS

Numerical Differentiation, maxima-minima of tabulated function, Optimum choice of step
Length, partial differentiation, Methods Based on Undetermined Coefficients.

3.8 SELF-ASSESSMENT TEST

1. Find the first, second, and third derivatives of f(x) at x = 1.5 if

X 15 2.0 2.5 3.0 3.5 4.0
f(x) 3.375 7.000 | 13.625 24.000 38.875 59.000

2. Find the first and second derivatives of the function tabulated below, at the point x =

1.1
X 1.0 1.2 14 1.6 1.8 2.0
f(x) 0.000 0.128 | 0.544 1.296 2.432 4.000
3. Given the following table of values of x and y
X 1.00 1.05 1.10 1.15 1.20 1.25 1.30
Y 1.000 1.025 | 1.049 1.072 1.095 1.118 1.140
find dy/dx and d?y/dx? at (a) x = 1.05. (b) x = 1.25 (c) x = 1.15.
4.  For the following values of x and y, find the first derivative at x = 4.
X 1 2 4 8 10
Y 0 1 5 21 27
5. Find the derivative of f(x) at x = 0.4 from the following table:
X 0.1 0.2 0.3 0.4
f(x) 1.10517 1.22140 1.34986 1.49182
6.  From the following table, find the values of dy/dx and d?y/dx? at x = 2.03.
X 1.96 1.98 2.00 2.02 2.04
Y 0.7825 0.7739 0.7651 0.7563 0.7473

Using the following data, find x for which y is the minimum and find this value of y.



w

w
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o

x: 0.60 0.65 0.70 0.75
y: 0.6221 0.6155 0.6138 0.6170
Find the value of x for which f (x) is maximum, using the table

X: 9 10 11 12 13 14
f(x): 1330 1340 1320 1250 1120 930
Also, find the maximum value of f (x).

ANSWERS TO CHECK YOUR PROGRESS

3.952, -3.74 (ii) 2.75, -0.715

0.175

The required velocity is 5.33 cm/sec and acceleration is — 45.6 cm/sec?.

The gradient of the road at the middle point is 0.085.

y is minimum when x = 5.6875, y = 0.2628
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4.0 LEARNING OBJECTIVES

e  This chapter will be devoted to explaining the main concepts of the numerical integration
of functions.

e Some methods concerning the numerical integration of the functions will be established.

41 INTRODUCTION

Numerical integration is primary tool used by engineers and scientists to obtain approximate
answers for definite integrals that cannot be solved analytically. The process of evaluating a
definite integral from a set of tabulated values of the integrand y = f(x) is called numerical

integration. The general problem of numerical integration may be stated as follows:

Given a set of data points (x;,y;),i = 0,1,2,3,...n of a function y = f(x), where f(x) is not

known explicitly, it is required to compute the value of the definite integral
b
I = fa ydx (41)

As in the case of numerical differentiation, we here again replace y = f(x), by an interpolating
polynomial ¢(x) in order to obtain an approximate value of the definite integral. Thus different
integration formulae can be obtained depending upon the type of the interpolation formula used.
Here we derive a general formula for numerical integration by using Newton's forward

difference formula. Let the interval [a, b] be divided into n - equal subintervals such that

b—a

a=xy<x <xy<:<x,=>b,withx, =x,+nhh= -

Hence, the integral (4.1) becomes

Using Newton's forward difference formula, we get



plp—1) A2 plp—D(p—2)

I = fxxn [yo + pAy, + o Yo + 30 Ay, + ] dx, where x = x, + ph.
. ! !
B hfn (3’0 + pAy, +p2 _pAZ}’O +p3 - 32692 - 2pA33’0 + "'>dp
0
Therefore, on simplification, we have
I = f;;” ydx = nh [yo + gAyo +@A2yo +n(nz—_42)2A3yo + ] ...(4.2)

From the general formula (4.2), we can find different integration formulae by putting n = 1,2,

3... etc. This formula is also knows as Newton's -cotes closed quadrature formula.

4.2.0 TRAPEZOIDAL RULE
Putting n = 1 in (4.2) and taking the curve y = f(x) through the points (x,, y,) and (x;,y;) as
a straight line i.e. a polynomial of first degree so that differences of order higher than first

become Zero, we get
X 1 1 h
1, = j ydx = h[yo +§Ayo] = h[yo +§(y1 _Yo)] = E(Vo +¥1)
Xo
.. X2 h
Similarly, I, = fx1 ydx = E(y1 +y,)

x3 h
I3 =j ydx =§(yz +y3)
X

2

and so on. In general, we get

Xn h
L, = j ydx = 3 Vn-1+ ¥n)
X

n-1

Adding all these expressions and using interval additive property of the definite integrals, we

obtain.

n
2
i=1 0

Xn h h
I = E 1i=f ydx=—[yo+2(y1+yz+y3+---+yn_1)+yn]=§(X+21)
. X



where X = sum of end ordinates, I = sum of intermediate ordinates. This expression is known as
the trapezoidal rule. Geometrically this rule signifies that the curve y = f(x) is replaced by n
straight lines joining the points (x;,y;),i = 0,1,2,3,...n. The area bounded by the curve y =
f(x) the ordinates x = x,, x = x,,, and the x-axis is then approximately equivalent to the sum of

the areas of the n-trapeziums so obtained.

4.2.1 SIMPSON'S 1/3 RULE
Putting n = 2 in (4.2) and taking the curve through the points (x,, yo), (x4, ;) and (x,,y,) as a

parabola i.e. a polynomial of second degree so that differences of order higher than second

vanish, we get

X2 1 h
L = j ydx = 2h (3’0 + Ay, + €A2y0> = 5(3’0 + 4y, +y2)
Xo

Similarly, I, = fxx:ydx = g(yz +4y3 + y4)

X6 h
I; = f ydx == (Vs + 4Y5 + Vo)
X4
and so on. In general, we have

Xon h
I, = f ydx = §(YZn—2 +4Yon—1 + Yan)
X

2n-2

Summing up these integrals, we get

Xn h
I = j ydx =§[YO+4(3’1 + Y3+ Y5+ Vono1) + 20V + Vi + Ve + o Yan-2) + Yanl
Xo

h
=3 (X +40 + 2E)

where X = sum of end ordinates, O = sum of odd ordinates and E = sum of even ordinates.

This expression is known as Simpson's 1/3-rule, or simply Simpson's rule and is most
commonly used. It is observed that this rule requires the whole range i.e. the given interval must

be divided into even number of equal sub-intervals, since we find the area of two strips at a time.



4.2.2 SIMPSON'S 3/8 RULE
Setting n = 3 in (4.2) above and taking the curve through (x;,y;),i = 0,1,2,3 as a polynomial of

degree three so that the differences higher than the third order vanish, we get

*3 3 3 1 3
L = f ydx = 3h (J’O + EAYO + EAZYO + §A33’0) = gh(}’o + 3y, + 3y, +y3)
Xo

Similarly,

x6 3
Q=f wh=§Mm+3m+3n+ya

x3

X9 3
I; = .f ydx = gh(J% + 3y; + 3ys + Vo)
X6
and so on. In general, we have

X3n 3
I, = f ydx = gh()’sn—3 + 3Y3n—2 + 3Y3n-1 + Y3n)

X3n-3

Summing up all these expressions, we get

X3n 3
1=f yﬂ:gh[%+%h+h+ﬂ+%+%+%+“+%wﬂﬁmﬂ
Xo
+2(J’3 + Yot Yo+t Y3n—3) + 3’3n]

This expression is known as Simpson's 3/8 rule. It is noticed that in order to apply this formula

the number of sub-intervals should be taken as multiples of 3. This rule is not as accurate as

Simpson 1/3 rule, the dominant term in the error of this formula being ;—;’hsyi” ()

4.2.3 BOOLE'SRULE
Putting n = 4 in (4.2) above and taking the curve through (x;,y;),i = 0,1,2,3,4 as a polynomial

of degree 4, so that the difference of order higher than four are neglected, we get



X4 5 2 7
f ydx =4h (yo + 20y, + =A%y, + = A3y, + —A4y0>
. 3 3 90

2h

Similarly, fxisydx = % (7y4 + 32ys + 12y, + 32y, + 7yg) and so on.

Adding all these integrals from x, to x,,, where n is a multiple of 4 , we get

Xn 2h
1 =f ydx=g[7yo +32(y; +ystys +y; +) 120y, + Y + V1o + )
Xo
+14’()’4 +yg+ Yy, + )+ 7Yn]

This expression is known as Boole's rule. While applying this result the number of subintervals
should be taken as a multiple of 4. The leading term in the error of formula can be shown as

-8h7  _
s V().

4.2.4 WEDDLE'S RULE
Putting n = 6 in (4.2) above and taking the curve y = f(x) through the points (x;,y;),i = 0,1,
2,3,4,5,6 as a polynomial of degree six so that the differences of order higher than six are

neglected, we obtain.

fxe d —6h( F 3070 + 2 A2yg + 487y + 0 Nty 4 ok ASyy ks )
xo}’x— Yo Yo 2 Yo Yo 60 Yo 20 Yo 840 Yo

3h
=10 o +5¥1 +¥2+ 63+ 34 +5y5 + y6l,
since if we replace %Myo by %A%/O, the error made will be negligible.

Similarly,

X12 3h
f ydx = E(}’e + 5y; + yg + 6Y9 + Y10 + 5¥11 + ¥12) and so on.
X

6

Adding these integrals from x, to x,,, where x is a multiple of 6 , we get



*n 3h
f ydle_O[J’O‘*'S(J’l +ys+y;, tyit+ )+ Ot yatystyiot )
X0

+6(y3 + Y9+ yis + ) +2(¥6 + Y12 + Vig + ) + Vil

This expression is known as Weddle's rule. It is generally, more accurate than any of the other

rules and the error in this is given by ITh;y‘”'(f). While applying this result the number of

subintervals should be taken as multiply of 6.

dx
1+x

Example 4.1 Evaluate f06 > by using (i) Trapezoidal rule, (ii) Simpson's 1/3 rule, (iii)

Simpson's rule and (iv) Weddle's rule and command the result the results

Solution: We divide the interval (0,6) into six parts with h = 1. The values of x and y =

1
1+x2

are given by x> 001 2 3 4 5 6
y: 1 05 0.2 0.1 0.0588 0.0385 0.027

0] Trapezoidal rule

6 dx 1
I= f ~==[(1+0.027) + 2(.5 +.2 +.1 + 0588 +.0385)] = 1.4108
o I1+x* 2

(i) Simpson's 1/3 rule

I=[°-2 = ~[(1+.027) + 4(0.5 + 0.1 + 0.0385) + 2(0.2 + 0.0588)] =

0 1+x2

1.3662
(iii))  Simpson's 3/8 rule

[=[°% = %[(1 +0.027) + 3(0.5 + 0.2 +.0.0588 + 0.0385) + 2(0.1)] =

0 1+x2

1.3571

(iv)  Weddle's rule

I=[°-2 = = [1+5(0.5) + 0.2 + 6(0.1) + 0.0588 + 5(0.0385) + 0.027] =

0 1+x2

1.3735



6 dx
0 1+4x2

Also I = | = |tan"! x|§ = tan™' 6 = 1.4056

This shows that the values of the integral found by Weddle's rule is the nearest to the actual

value followed by Simpson's 1/3 rule.

Example 4.2 A solid of revolution is formed by rotating about the x-axis, the area between the

lines x = 0 and x = 1 and a curve through the points with following coordinates.

x: 0.00 0.25 0.50 0.75 1.00
y: 1.0000 0.9896 0.9589 0.9089 0.8415

Estimate the volume of the solid formed by using Simpson's § rule.

Solution: Here h = 0.25, y, = 1, y; = 0.9896y, =.09589, y; = 0.9089 and y, = 0.8415.

Therefore, the required volume of the solid generated, by Simpson's rule is given by

1 h
Vo= f my?dx = ?[(yé +yi) + 407 +y3) + 2y3]
0

- —0'235n [{1 + (0.8415)%} + 4{(0.9896)* + (0.9089)*} + 2(0.9589)?]

_0.25(3.1416)

. [1.7081 + 7.2216 + 1.839] = 2.8192

which is the required volume.
4.3 ROMBERG INTEGRATION

Romberg's method provides a simple modification to the approximate quadrature formula
derived with the help if finite differences method in order to find their better approximations. As

an illustration, we improve upon the value of the integral

=[] ydx =[] f(x)dx ..(4.3)

by trapezoidal rule. We evaluate (4.3) by trapezoidal rule with two different widths h; and h, to
obtain the approximate values I; and I, respectively. The corresponding errors E; and E, are

then given by



(- a)h? (b — a)h?

— eV =_—2 "=

Since y"'(x) is also the largest value of y''(x), so it is reasonable to assume that the quantities

y"'(x) and y" (x) are very nearly equal. Therefore we have

B B _

Ry ity ..(4.4)
Now since I = I; — E; = I, — E,, therefore
E,—E,=L—1 ...(4.5)
From (4.4) and (4.5), we have
E, = h—%(Ez —E) = L(Iz - 1)
h3 — h? h3 — h, 2
Iy=I,—E, = 112 2 — ;flhzl : . (4.6)

which is a better approximation of I. In order to evaluate | systematically, we take h; = h and

h, = %h so that (4.6) gives

h? ,
I_Ilf_lzh’ _412_11
-1 _
a—
h
_ o 4(3) -1
|.e.1<h,§> =—— (47)

Now we use the trapezoidal rule several times successively halving h and apply (4.7) to each pair

of values as per the following scheme.



~
N\
=
—/

Q) 1(rz3

1) 1(3) 17 35)
/(5)1Gs)

/(5)

The computation is continued till successive values are close to each other. This method, due to
L.F. Richardson, is called the deferred approach to the limit and the systematic tabulation of this
is called Romberg integration.

Example 4.3 Use Romberg's method to compute fol % correct to 4 decimal places, by taking

x2’

h = 0.5,0.25 and 0.125.
Solution: We evaluate the given integral by using trapezoidal rule
0] When h = 0.5, we have

x: 0 05 1.0
:10.80.5

y=1+x2

bodx .5 _
I = fo TT2- 7 [1+4 2(.8) + 0.5] = 0.775 by Trapezoidal rule

(i) When h = 0.25, the values of x and y are
(iii)

X: 0 0.25 0.5 0.75 1.0
1 09412 0.8 0.64 0.5

Y ST

Therefore by trapezoidal rule, we have

1—]1 B 251 4 2009412 + 0.8 + 0.64) + 0.5] = 0.7828
= | Tya- e 8+ 0.64) + 0.5] = 0.



(iv)  When h = 0.125, we find that / = 0.7848. Now using formula (4.7) we obtain the

table of values as

0.5 0.775
0.7854

0.25 0.7828 0.7855
0.7855

0.125 0.7848

Hence the value of the integral is 0.7855.

Example 4.4 Use Romberg's method to compute I = [

14 .
0 ﬁ correct to three decimal places.

Solution: We take h = 0.5,0.25 and 0.125 and use trapezoidal rule successively to obtain.
h
I(h) = 1(0.5) = 0.7084, I (E) — 1(0.25) = 0.6970
and
h
I (Z) =1(0.125) = 0.6941

Now using formula (4.7) we obtain

h 4(0.6970) — 0.7084
I(h’f) = 3 = 0.6932
/ <h h h) _ 4(0.6941) — 0.6970 0.6931
'2°4) 3 o
(h h) _4(06931) — 06932 _ .
2°4) 3 e
The table of values is therefore
0.5 0.7084
0.6932
0.25 0.6970 0.6931
0.125 0.6941
06931

Hence the value of the given integral is 0.6931



44 GAUSSIAN INTEGRATION

Consider the integral
b b
I=[ ydx=[ f(x)dx ... (4.8)
Setting x = %u(b —a)+ %(a + b) the integral (4.8) takes the form

b—a (!
[=——| f(uwdu
2 -1

Gauss derived a formula, which uses the same number of function values, but with different
spacing in contrast to other integration formulae, which require values of the function at equally

spaced points of the interval and it gives better accuracy. This formula is expressed in the form

[}, Fdu = WyF (uy) + WoF up)WsF (ug) + - + Wy F (un) = iy WiF (u)
(4.9)

where W; and u; are called the weights and abscissas respectively, which are symmetrical with
respect to the middle points of the interval. The weights and abscissa can be determined such that
the formula is exact when F(u) is a polynomial of degree not exceeding 2n — 1 as there are total

2n arbitrary constants. Hence we have
F(u) = co + ciu + cu? + cgud + - + cpp_qu®™? ... (4.10)

Then from (4.9) we have

1 1 2 2
f F(uw)du = f [co + cru + cu? + czu + - + cppu? du = 2¢y + 3Gt gt
-1 -1

.. (4.11)

Now (4.10) implies that F(w;) = ¢ + ciu; + cauf + -+ + cpp_qu?™ ! so that from (5.7.3) we

have



1 1
f F(uwdu = f Fwdu = wy(cy + cyuy + cou? + -+ cyp_quz™™ 1)
-1 -1

+W2(C0 + CluZ + Czug + eee + C2n_1u%n_1)

+W3(C0 + C1u3 + Czug + + C2n_1u§n_1)

+ o+ wp(cy + cruy + ¢y + o+ Cppquz™ ) .. (4.12)

Therefore, we get

1
f F(u)du == CO(WI + WZ + e + Wn) + Cl(Wlul + W2U2 + "'Wnun)
-1
+cy(wiu? + woui + - + wyu?)
4t e W u T+ w4 wpudt ) . (4.13)

Now comparing expressions (4.11) and (4.13) we get
wy+w, +ws -+ w, =2

Wiy + wouy, + wauz + -+ wpu, =0
wiu? + wyus + wi + -+ wul = 2/3 ... (4.14)

—

w2+ woud T+ waud T+ wpudtl =0
a system of 2n equations in 2n unknowns w; and u;, (i = 1,2,3, ..., n).

In order to illustrate, we take n = 2. Then the formula is
f_ll F(uw)du = w F (uy) + woF (uy) ... (4.15)
This formula is exact when F (u) a polynomial of degree not exceeding 3 is, we put successively

F(u) = 1,u,u? and u® Then (4.15)  provides us
wy+w, =2
Wity +wou, =0 ... (4.16)
wiu? + wous = 2/3
wiud + wous =0

This system of equations gives us

Wl :WZ == 1,112 s _ul = 1/\/§



This method when applied to the general system (4.14) above will be extremely complicated
difficult and an alternative method must be chosen to solve the non-linear system (4.14). It can
be shown that u; are the zeros of the (n+ 1) Legendre polynomial P,,;(u), which can be

generated by using the recurrence relation
(m+ DPpys(u) = Cn+ Dub(w) —nPy_y (w)

where Py(u) = 1 and P, (u) = u. The first five Legendre polynomials are given by

1
Py(u) =1,P(u) =u,P(u) = E(Bu2 -1

1 1
Pow) = 1, P (w) = w, Po(w) = 5 (3u? — 1), Ps(w) = 5 (5 — 3u),

1 4 2
P,(u) = g(SSu —30u” + 3)

It can also be shown that the corresponding weights w; are given by

Wi = f_ll [Tj-o <u_uj) du ... (4.17)

R
jeEi o~

where u; 's are the abscissas. For example when n = 1 we solved P,(u) =0 i.e., %(3112 -1 =

0 which implies that u, = —\/—15 = —/3/3 and u1% =+/3/3

The corresponding weights are given by

T u—u 1 [u?
W0=j du = —=—-wul =1
_1 Ug — Uy Ug— Uy | 2 1
L u—u, !
W1=j du = ——uou =1
-1 U1 — U Uy — U -

Similarly, for n = 3 we solve P,(u) = 0 i.e. %(SSu4 —30u?+3)=0

1/2
which implies that u; = + [15+2‘/_

The weights w; can then be found from (4.17).



Example 4.5 Evaluate ] = [ ledx, by Gauss's formula

Solution: Put x = %(u +1),weget] = if_ll (u+ Ddu = i * WiF(u;) where F(u;) = u; +

1. For simplicity, we take n = 4, we obtain

I ==[(~0.86114 + 1)(0.34785) + (—0.33998 + 1)(0.65214) + (0.33998 + 1)(0.65214)

+(0.86114 + 1)(0.34785)] = 0.49999 ...

1
4

where the abscissae and weights have been rounded to five decimal places.

45 EULER-MACLAURINS FORMULA

We consider Af (x) = g(x) and define inverse operator A~ as

fe)=2""g(x)

Now

f(x1) — f(xo) = Af (x0) = g(xp)
fQx) — f(x) = g(xy)
f(x3) — f(x) = gxz)
f(xn) - f(xn—l) = g(xn—l)
On addition these lead to
) = f(xo) = X155 g(x) ... (4.18)

where x; =i = 0,1,2,...n are (n + 1) equally spaced values such that x; = x, + ih.

Now, we have



f)=A0"g(x)=(E+1)gx) = ("’ = 1) 1g(x),V:E = e"’]
h?D? h3D3 -
= I<1+hD+ T + 3 +--->—1] gx)

1 l hD h?D? h*D*

—_n-1 —
B i e T R 7T lg(x)
3

7209

1 1 h
:Ef g()dx — 5 g(x)dx + 59" (x) — ") + .. (4.19)

Upon putting x = x,, and x = x, in (4.19) and then subtracting, we get

" 1) — g/ (xo)]

1 (*n 1
Fo) = fG) = 5[ 9@ =59t - gleo)] + 35
h3
~75019" C) = g" ()] + - - (4.20)

Now (4.18) and (4.20) provide us

S

-1

" 19 g ()]

1 (*n 1
g(x;) = Efxo gx)dx — E[g(xn) —g(0)] + =

Il
o

i
3

h
— oo ™ Co) — g™ ()] +

which implies that

n—1
*n 1 h
i g = 2, 900+ 3190 = 9] = 314/ G) = ')

3

h
+ 2o 19" Co) — g™ ()] +

h
[g' (xn) — g (x0)]

1
= E{g(xo) +2[g(x1) + g(x3) + -+ g(xp_)] + g(xn)} — 1z

3

h
+m[g (xn) — g™ (x0)]

Hence



Xn h h?
f ydx = E[J’o +2(y + Y, + Y3+t Yno1) + vl —E(yr’l - ¥0)
X

0
4

h
" m

where y = g(x) and x,, = xynh.

This is called Euler-Maclaurins formula. The first term on the right hand side of (4.21) represents
the approximate value of the integral obtained from trapezoidal rule and other terms denote the
successive corrections to this value. This formula is often used to find the sum of series of the

form
y(xo) + v(xy) + y(xp) + y(x3) + -+ + y(x,)+.. where x; = x, + ih.

Example 4.6 Use Euler-Maclaurins formula to find the value of log?2 from fol i—xx.

Solution: Here we take y = ﬁ,xo = 0,n =10, h = 0.1 so that

! ndy'" = 6
ey =adror

!

Y =+ 0z

Then Euler-Maclaurin's formula gives us

Udx 04 1 1 1 1 1 1
fo 1+x 2 m+2<1+o.1+1+0.2+1+0.3+"'+1+o.9)+1+1]
0.2 -1 ~1 O.D*r —6 6
~ 2 [(1 ¥1)2 1+ 0)2] 720 [(1 T (1+ 0)4]
= 0.693773 — 0.000625 + 0.000001 = 0.693149

Also [ 2 = Jlog(1 + x)[} = log, 2.

d
1+x
Hence log, 2 = 0.693149, approximately.

n?(n+1)>2

Example 4.7 Use Euler-Maclaurins formula to prove that Y7 x3 = "

Solution: Here y = x3,y’ = 3x2,y"" = 6 and h = 1.From Euler-Maclaurins formula we have



1
o+ 201 + Y2 + Y3+ o+ Yno1) + Yl

2
1 [*n h 3 5
' ' v _ .
= — d - — _
This leads to
Zn: 3= fn x3dx + = ( +1) 4+ (3 3) 6—6 n4—1+n3+1+n2—1
=) e n 720( V=73 2 4

n*—1 n®+1 n?-1
x Tz tT3
_ (n:r_l)[(nz+1)(n—1)+2(n2—n+1)+(n—1)]

1
= Z(n+1)[n3—n2+n—1+2n2—2n+2+n—1]
n?(n + 1)2

2 :

1
= Z(n + 1) [n® +n?] =
Example 4.8 Evaluate ] = [ ?sinxdx by using Euler-Maclaurins formula.

Solution: Here y = sinx,x, = 0 and x, = =

Then Euler-Maclaurins formula for h = /4 provides us

/2 h h2 h4 h6
fo sinxdx =2 o + 200+ 52+ yn) bl + o0t 3pa0 T
m? T T 2 w*
== 2 == roximatel
(O+ +0)J’192 182320 T = 21 1oz T 1gazzq APProximately

= 0.785398 + 0.051404 + 0.000528 = 0.83733
Forh = g we obtain

T

2 s
f sinxdx = 16 [0+ 2(0.382683 + 0.707117 + 0.923879) + 1.000000]
0
= 0.987119 + 0.012851 + 0.000033 = 1.000003.

4.6 EVALUATION OF SINGULAR INTEGRALS



We have so for considered the integration of the function y = f(x), which can be represented
either by a polynomial or can be expanded in a Taylor's series in the interval of integration [a, b].
A function f(x) is said to be singular at a point if f(x) or any of its derivatives is infinite at that
point. In such cases the formulae discussed earlier cannot be applied, and some special methods
will have to be adopted. The approach depends, in general, on the type of the problem under
consideration. We describe below some methods which can be applied in certain situations.

4.6.0 PRINCIPAL VALUE INTEGRALS

Consider the integral

[ = [P .. (4.22)

a x-t

which is singular at t = x. The principal value P(I) of integral (4.22) is defined as

T dx + ’ @dx
x—t

a tye X —
=[,fort<aort>h

P(I)=Lim6_>ol ,a<t<b

We take x = a + uh and t = a + kh in (4.22) so that

P(I)=Pfopf—(3izh)du b-a

Upon replacing f(a + uh) by Newton's forward difference formula at x = a and simplifying,

we have

I = Z =t AN . (423)

Here (u)o =1, (w); = u, (u), = u(u — 1), etc. Various approximate formulae can be obtained

by truncating the series on the right hand side of (4.23). Hence we can write (4.23) as



to obtain rule of orders 1,2,3, ... by setting n = 1,2,3, ... respectively.

(@) Two pointrule (n = 1)

1

A
L= 06 = af@ + df@ = (o - @)@+ cuf (@ + 1)

j=0

(b) Three point rule (n = 2)

2 .
b= 06— af@+ abf@ + 8@
j=0

- (co -~ %cz>f(a) +(cp—c)f(a+h)+ %czf(a 4 2h)

In the above relations, we have

2

p—k p
,CL =P+ cok,cy =7+p(k—1)+c0k(k—1)

co = log, 5

4.6.1 GENERALIZED QUADRATURE

Consider the integral

I(s) = [, F(O$(t — s)dt

where f(t) is continuous but ¢ (u) may have an integrable singularity by adopting the forms of

the type |s — t|% a > —1 or log|s — t| etc. For the numerical evaluation, we divide the range

(a, b) such that ti=a+jhj=012..n withnh =b — a.

Then (4.24) becomes

1) = %)% [ F@a(e —s)dt



Now we approximate f(t) by a linear interpolating function f,,(t) as

u® = 3 [(tn = 7 (6) + (6= 6)F(720)]

so that (4.25) takes the form

n-1
1 Lj+1
) = HZ f [(tis1 = OF (&) + (¢ = ) f (t41)] bt — 5)dt
j=0 "t
n-1 1
- h; J; [(1 o p)f(tj) + pf(tj+1)]¢(tj + ph — S)dp

where t = t; + ph. This can be rewritten as

n-1

1) =) () +BF(5:0)]

j=0

1
where a = hf (1- p)d)(tj + ph — s)dp
0

1
and B = hf qu(tj + ph — s)dp
0
Clearly if ¢(u) = 1, then a; = B; = %and hence (4.26) gives us

[f(to) + Z{f(t1) + f(tz) + -t f(tn—l)} + f(tn)]

h
I(S) :E

.. (4.26)

.. (427)

which is the trapezoidal rule. Therefore the rule defined by (4.26) and (4.27) is called generalized

trapezoidal rule due to K. E. Atkinson. For ¢p(u) = log |u|, this rule finds important applications

in the numerical solution of certain singular integral equations. In general, the computation of the

weights a; and §; may be difficult but they can be evaluated once and for all, for a given ¢ (u).

In a similar fashion we can also deduce the generalized Simpson's rule, analogous to the ordinary

Simpson's rule, by approximating f(t) by means of a quadratic interpolating function in the

interval (tj, tj+1). The error in generalized quadrature can also be estimated by the method used



in case of ordinary quadrature formulae. For example it can be shown that the error in the

generalized trapezoidal rule is of order h?, assuming that /"’ is continuous in [a, b].

4.7 DOUBLE INTEGRATION
The double integral of the type

I= f ' f  fey)dxdy

is evaluated numerically by two successive integration in x and y direction considering one

variable at a time by repeated applications of trapezoidal or Simpson's rule.

4.7.0 TRAPEZOIDAL RULE
We divide intervals (a,b) and (c,d) into n and m equal subintervals each of length h and k

respectively, so that we have

X; =xg+ih,xg=a,x,=b,i=0,12,..n
yi=Yotjk,yo=¢yn=d,j=012,..m

Using trapezoidal rule in both direction, we get

Ym Xn
I = f f f(x,y)dxdy
Yo X0

h Ym
= Ef {f o, ) + O y) + 2[f (o1, ¥) + fx2, ¥) + -+ + f(xn-1,¥) 3y
Yo

hk

= T[(foo + fom) + 2(f01 + foo ++ fO,m—l) + (fo + fam) + 2(fn1 + foz + +fn,m—1)
n-1

+2 {(fio + fim) + 2(fi1 + fio +r 4+ fi,m—l)}  fij = f(xin]')

4.7.1 SIMPSON'S RULE

In this case we divide the interval (a, b) in 2n equal subintervals each of width h and the interval

(¢, d) into 2m equal subintervals each of width k so that we have

X =xo+ih, yj=yo+jk,xog =a, % = b, Yo =¢,Yom =d



Then by Simpson's rule in both directions, we have

Vji+1 [Xi+1 h rYi+1
|7 [ rendndy =5 [ 17 Ga) + 4Gy + FGren )y
YVj-1 “Xi-1 Vj-1

hk
= ? [(fi—l,j—l + 4'fi—1,j + fi—1,j+1) + 4(fi,j—1 + fz] + fi,j+1) + (fi+1,j—1 + 4’fi+1,j + fi=1,j+1)]

hk
iy [fi—l,j—l + ficije1 t firrj-1 + fivrje1 + 4(fi—1,j + fij-1+ +fije t fi+1,j) + 16fi,j]

Adding all such intervals, we obtain the value of

Yam [X2n
I = j f f(x,y)dxdy
Yo X0

Example 4.9 Evaluate the integral I = [ 01 f Ole“ydxdy
by using (i) trapezoidal rule and (ii) Simpson's rule
Solution: We take h = k = 0.5 and f(x,y) = e**V,

(i) Trapezoidal rule

12.3050

_ 025
4

I [1.0 + 4(1.6487) + 6(2.7183) + 4(4.4817) + 7.3891] = = 3.07625

(if)  Simpson's rule

0.25
I = 5 [1.0 + 2.7183 + 7.3891 + 2.7183

+4(1.6487 + 4.4817 + 4.4817 + 1.6487) + 16(2.7183)]
2659042

= 2.9545
9

The exact value of the double integral is 2.9525 and thus the result obtained by Simpson's rule is

sixty time more accurate than that given by trapezoidal rule.



48 CHECK YOUR PROGRESS

1 Find the sum of the series —2+—2+—2+ +—2 by using Euler-Maclaurins
51 53 55 99

summation formula.

2  Drive Gauss lan integration formula when n = 2 and apply this to evaluate the integral

J:

1 1+x2

3 Use there point Gauss-Legendre formula to evaluate the integral 05 sin xdx Compare this

result with that obtained by Simpson's rule using seven points.
4 Use Romberg's method to compute fol 1dex with h = 0.5,0.25 and 0.125. Hence evaluate

log? correct to four decimal places.
5  Apply Romberg's method to evaluate given that

X: 4.0 4.2 4.4 4.6 4.8 5.0 5.2
log,2: 13863 1.4351 1.4816 1.526 15686 1.6094 1.6486

_ n(n+1)(2n+ 1)

6  Use Euler-Maclaurins formulae to prove that Yx? = -

7  Evaluate [ 1f 1xeydxdy using Trapezoidal rule (h = k = 0.5).

dxdy
x2

8  Apply Trapezoidal rule to evaluate f f -, taking two subintervals.

9  Evaluate f f 52 dXdy

, using Simpson's rule.

49 SUMMARY

The students are made familiar with various methods for numerical integration.

410 KEYWORDS

Numerical Integration, Romberg Integration, Gaussian Integration, Singular Integral, Double

Integration.

411 SELF-ASSESSMENT TEST



4.12

© O ~N O~ W N P

4.13

by using (i) Trapezoidal rule taking h = 0.25, (ii) Simpson's § rule

1 d
Evaluate [, +x

1+x2

taking h = 0.25, (iii) Simpson's % rule taking h = % (iv) Weddle's rule taking h = %

Evaluate folexdx by Simpson's rule given that e = 2.72,e? = 7.39,e3 = 20.09,e* =

54.6 and compare it with the actual value

Calculate the value of [ 2sin xdx, by Simpson's é rule using 11 ordinates.

Integrate numerically [ 2v/cos 6d6.

ANSWERS TO CHECK YOUR PROGRESS

0.004999
1.5
1.00002
0.6931
1.8278
0.876
4.134
0.49
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5.0 LEARNING OBJECTIVES

Students are able to
e Solve linear simultaneous equations using various iterative methods : Jacobi’s method,
Gauss-Seidel method, SOR, Relaxation method.

e Solve Ill-conditioned equations.

51 INTRODUCTION

Most problems arising from engineering and applied sciences require the solution of systems of
linear algebraic equations and computation of eigenvalues and eigenvectors of a matrix. We
assume that the readers are familiar with the theory of determinants and elements of matrix
algebra since these provide a convenient way to represent linear algebraic equations. Consider

the system of equations.



a11%; + A12X; + a43%X3 = by
Az1X1 + Az2X; + A3x3 = by
A31X; + A32X; + A33X3 = by

This may be represented as the matrix equation, where

AX=0b
a;; Q12 Qg3
Qz1 Qdzz Q33
a3y 043z dAszs

A= X =

o

To solve this system, we discuss some iterative method such as Jacobi and Gauss-Seidel, SOR,

etc. Before proceeding further, we need to define norms on matrices.

VECTOR AND MATRIX NORMS
The distance between a vector and the null vector is a measure of the size or length of the vector.
This is called a norm of the vector. The norm of the vector x, written as || x I, is a real number

which satisfies the following conditions or axioms:

IxlI=0 and [[x[l=0 ifandonlyifx=0 ..(5.1)
Il ax ll=|a| Il x I forany real @ ..(5.2)
Ix+ylI<IxIl+Ilyll (triangle inequality). ..(5.3)

For the vector

x=|" . (5.4)

some useful norms are

m
I lly=[xq| + |oxa] + o+ |y | = Z || ..(5.5)
i=1
n 1/2
2 o= 121 |2 + |2 1% + -+ + x| = [Z |in2] =l x Il,
i=1

Il x llo= miaXIin ..(5.6)



The norm |1l is called the Euclidean norm since it is just the formula for distance in the three-

dimensional Euclidean space. The norm [|-]|, is called the maximum norm or the uniform norm.

It is easy to show that the three norms || x Il1, Il x Il, and |l x |l satisfy the conditions (5.1) to
(5.3), given above. Conditions (5.1) and (5.2) are trivially satisfied. Only condition (5.3), the

triangle inequality, needs to be shown to be true. For the norm || x |l; we observe that

n
lx+yl =z lx; + yil

Tl

Z (il + 1yi])
|x; | +Z il

i
Sl oy I - (5.7)

I
M:

[y

Similarly, for || x I, we have

Ilx+ylle, = ml.aXIxi + yil
< ml.aX(Ixil + lyiD)
= xlloo +Hll Y lloo - ...(5.8)

The proof for the Euclidean norm is left as an exercise to the reader.

To define matrix norms, we consider two matrices A and B for which the operations A + B and
AB are defined. Then,

|A+B| < |A|+|B] ..(5.9)
|AB| < |A||B| ..(5.10)
|adA| = |a|]A| (« a scalar). ...(5.11)

From Eq. (3.10) it follows that
|AP| < |A[P,

where p is a natural number. In the above equations, |A| denotes the matrix A with absolute

values of the elements.



By the norm of a matrix A = |al-]-|, we mean a nonnegative number, denoted by |l A [I, which

satisfies the following conditions
IAll =0and [All=0 ifandonlyifA=0
laAll =la|llAll (aascalar)

ITA+BIl <IAIl+IBI
IAB 1 <l Al B I

From above Eq., it easily follows that
AP <I AP,

where p is a natural number. Corresponding to the vector norms given in Egs. (5.5)-(5.6), we

have the three matrix norms

Il A ll;= max E |la;;| (the column norm)
J -
4

1/2

I All= Z |a;|” (the Euclidean norm)

ij

I Allo= maxz |lai;| (the row norm).
l
J

In addition to the above, we have || A |I, defined by
Il A ll,= (M aximum eigenvalue of ATA)/2,

The choice of a particular norm is dependent mostly on practical considerations. The row-norm
is, however, most widely used because it is easy to compute and, at the same time, provides a

fairly adequate measure of the size of the matrix.
The following example demonstrates the computation of some of these norms.

Example 5.1 Given the matrix



findll All, 1 Alleand | A llo.

Solution: We have

lTAll;, =m [1+4+72+5+83+6+9]=m [12,15,18] =18
I Al = (12422432 +4%+52+ 62+ 72+ 824 9%)1/2
=(14+4+9+16+ 25+ 36+ 49 + 64 + 81)'/2

= (285)%/2
= 16.88.

lAll,e, =m [14+2+34+5+67+8+9]

=m [6,15,24]
= 24.

The concept of the norm of a matrix will be useful in the study of the convergence of iterative

methods of solving linear systems. It is also used in defining the 'stability’ of a system of

equations.

5.2 SOLUTION OF TRIDIAGONAL SYSTEMS

Consider the system of equations defined by

blul + C1u2 = dl 1

azul + bzuz + C2u3 = dz
aguz + b3u3 + C3u4 = d3
ApUp_1 + bpu, =d,.

The matrix of coefficients is

..(5.12)

..(5.13)



Matrices of the type, given in Eq. (5.13), called the tridiagonal matrices, occur frequently in the
solution of ordinary and partial differential equations by finite difference methods. The method
of factorization described earlier can be conveniently applied to solve the system (5.12). For

example, for a (3 x 3) matrix we have

by ¢ O 1 0 01by ¢ 0
a2 b2 C2] = [121 1 0] [O u22 C2 ]
b, 0 Iy 1

0 a3 0 0 ‘uszs

This matrix equation gives

la1by = ay, lyic1 + Uy, = bz}
l3oupp = az, 3¢, + Uz = by

From these four equations, we can compute l,, u,,, I3, and us; and these values are stored in
the locations occupied by a,, b,, a; and b, respectively. These computations can be achieved by

the following statements:

Do i = 2(1)N
a(i) =a(i)/b(i—1)
b(i) =b(i) —a()c(@—-1)
Next i
When the decomposition is complete, forward and back substitutions give the required solution.

This algorithm is due to Thomas and possesses all the advantages of the LU decomposition.

5.3 ILL-CONDITIONED LINEAR SYSTEMS

In practical applications, one usually encounters systems of equations in which small changes in
the coefficients of the system produce large changes in the solution. Such systems are said to be
ill-conditioned. On the other hand, if the corresponding changes in the solution are also small,

then the system is well-conditioned.

I1lI-conditioning can usually be expected when |A|, in the system AX = b, is small. The quantity
c(A) defined by

c(A) =LAl NAT,



where || A || is any matrix norm, gives a measure of the condition of the matrix. It is, therefore,
called the condition number of the matrix. Large condition numbers indicate that the matrix is ill-

conditioned. Again, let A = [a;;] and
si=lafi +afy + -+ ap,]'?
If we define

|4
e=———y
Slsz soe sn

then the system is ill-conditioned if k is very small compared to unity. Otherwise, it is well-

conditioned.

Example 5.2 The system

2x+y=2 }
2x +1.01y = 2.01

has the solution x =0.5 and y = 1.

But the system

2x+y=2 }
2.01x +y = 2.05

has the solution x = 5 and y = —8.
Also,

Il All,=3.165 and ||A‘1||e = 158.273
Therefore, condition number c(4) =l A || ||[A™Y]| = 500.974.
Hence the system is ill-conditioned.

Also



|A] = 0.02
51 = V5 and S, = 2.24

So,
k =4.468 x 1073
Hence the system is ill-conditioned.

Example 5.3 Let

QI = Ul =N =
Ol R R W| =
5|r—x\1|>—=-(>|r—x

which is called Hilbert's matrix.
Solution: Now

|A] = 0.0000297, which is small compared to 1.
Hence A is ill-conditioned.

Example 5.4 Let

25 24 10
A= |66 78 37
92 -73 -80

Solution: Now

|A| = 1.0.

Also,

s1 = 36.0694, s, = 108.6692 and s; = 142.1021.



Therefore,
k = 1.7954 x 107°.
which shows that A4 is ill-conditioned.

METHOD FOR I1I-CONDITIONED SYSTEMS
In general, the accuracy of an approximate solution can be improved upon by an iterative

procedure. This is described below. Let the system be

ay1X1 + Q12X + A13x3 = by
Az1X1 + QX7 + Ap3X; = by ...(5.14)
A31X; + A32X; + A33X3 = by

Let xfl), x§” and xgl) be an approximate solution. Substituting these values in the left side of Eq.

(5.14), we get new values of by, b, and bs. Let these new values be bfl), bgl) and bs(,l). The new

system of equations is given by

1 1 1 1

allxi ) + alzxé ) + a13x§ ) == bi )

a21x§1) + azzxgl) + a23x?()1) = bgl) (515)
1 1 1 1

a31xi ) + a32x£ ) + a33x§ ) == b:g )

Subtracting each equation given in (5.15) from the corresponding equation given in (5.14), we

obtain

as1e1 + a6, +agze; =d;
azi1€y + aze; + azze; = d, ..(5.16)
azie; + azze; + aszze; = ds

where e; = x; — x™ and d; = b; — b{". We now solve the system (5.16) for e;, e, and e. Since
1

e; = x; —x; ~, We obtain

which is a letter approximation for x;. The procedure can be repeated to improve upon the

accuracy.



Example 5.5 Solve the system

2x+y =2
2x +1.01y =201

Solution: Let an approximate solution of the given system be given by
xM =1 and y® =1.
Substituting these values in the given system, we obtain

Zx(l) + y(l) = 3 .
- (D)

2xM +1.01y®  =3.01
Subtracting each equation of (i) from the corresponding equation of the given system, we get
2(x —x®) + (y —yW) = -1
2(x —xW) + 1.01(y —y®) = —1.
Solving the above system of equations, we obtain

1
x —x® =-3 and y —y® = 0.

Hence

_1 dy=1
x—zan y=1,

which is the exact solution of the given system.

54 SOLUTION OF LINEAR SYSTEMS-ITERATIVE METHODS

We shall now describe the iterative or indirect methods, which start from an approximation to the
true solution and, if convergent, derive a sequence of closer approximations - the cycle of
computations being repeated till the required accuracy is obtained. This means that in a direct
method the amount of computation is fixed, while in an iterative method the amount of

computation depends on the accuracy required.



In general, one should prefer a direct method for the solution of a linear system, but in the case

of matrices with a large number of zero elements, it will be advantageous to use iterative

methods which preserve these elements.

Let the system be given by

a11x1 + alzxz + a13X3 +
alel + azzxz + a23X3 +
aziX; + azpX; + azzxz + -

Ap1X1 + QpaXy + Apzxs + -

+ a1pXn = by
+ AoynXy = b2
+ a3nxn = b3

+ apx, = by,

. (5.17)

in which the diagonal elements a;; do not vanish. If this is not the case, then the equations should

be rearranged so that this condition is satisfied. Now, we rewrite the system (5.17) as

by ay; ais A1n )
X1 =—————Xp ———Xz— '~ —Xp
a1 A4y aiq aiq
Yo = b, a21x a23x aan
2T T T T Xy T T Xy T T T Xy
A, Ay az; az;
Y = bs a31x a32x agnx > ..(5.18)
3T T T T Xy T Xy T T Xy
a3z dQdsz ass ass
x. = bn An1 x An2 x Ann-1 x
n e — 1 — 2 — 88— n—l .
aTlTl aTlTl aTlTl aTlTl )
® @ fi ; ; h K
Suppose x;,x,°,..,x,  are any first approximations to the unknowns xi,x,,...,x,.

Substituting in the right side of Eq. (3.18), we find a system of second approximations

b a
MON . L N ON
aj;; a4
P =

1
Az, Ay

b a
yH_8_ =@ T8

sz Q4sz

X =

ann ann

Gin () )

br @1 @y _ G

b a
_”_leil) e

n )

..(5.19)



Similarly, if xf”),xgn), ...,x,(l") are a system of nth approximations, then the next approximation

is given by the formula

m+1) _ b1 a1z Ain () )
X1 ST Xy T T Xy
a;; Q11 ai
LD b, ax ™ Qon MO
2 =TT T T X T T T X
Ay, Qo ayr > ...(5.20)
(n+1) bn ani n) Ann-1 n)
n ST X T T T Xy
aTlTl aTlTl ann J

If we write Eq. (5.18) in the matrix form
X=HX+C
then the iteration formula (5.20) may be written as
X0 = gx™ 4 C.

This method is due to Jacobi and is called the method of simultaneous displacements. It can be

shown that a sufficient condition for the convergence of this method is that
Il HlI< 1.

A simple modification in this method sometimes yields faster convergence and is described

below:

In the first equation of Eq. (5.18), we substitute the first approximation (xfl), x§1>, x§1>, - x7(11))

into the right-hand side and denote the result as xf). In the second equation, we substitute

(x§2>,x§1>,x§1>,...,x,(l”) and denote the result as x.”. In the third, we substitute

(xf),xg”,xg”, e x,(ll)) and call the result as x§2>. In this manner, we complete the first stage of

iteration and the entire process is repeated till the values of x,,x,, ..., x, are obtained to the
accuracy required. It is clear, therefore, that this method uses an improved component as soon as
it is available and it is called the method of successive displacements, or the Gauss-Seidel

method.



The Jacobi and Gauss-Seidel methods converge, for any choice of the first approximation
x].(l)(j = 1,2, ...,n), if every equation of the system (5.18) satisfies the condition that the sum of
the absolute values of the coefficients a;;/a;; is almost equal to, or in at least one equation less

than unity, i.e. provided that

n

2

j=1,j#i

aij
aii

<1, (=12..,n), ..(5.21)
where the ' < ' sign should be valid in the case of ‘at least' one equation. It can be shown that the
Gauss-Seidel method converges twice as fast as the Jacobi method.

Let the coefficient matrix A be written as

A=L+D+U

where L, D, U are the strictly lower triangular, diagonal and strictly upper triangular parts of A

respectively. Write the system Ax=b as
(L+D+U)x=Db ....(a)

Jacobi Iteration Method
We rewrite (a) as

Dx=—(L+U)x+b
and define an iterative procedure as

x**) = —p~1(L 4+ U)x® + D~1b.

The iteration matrix is given by

H=-D"(L+U).

This method is called the Jacobi Iteration method.



Gauss-Seidel Iteration Method

In this case, we define the iterative procedure as
(D + L)x**D = —ugx® + b
or
x®+) = —(D + L)7'Ux® + (D +L)™'b

where H = —(D + L)~ !U is the iteration matrix.

Successive Over Relaxation (SOR) Method

The iterative procedure is given by
x®*D = (D + wL) 1 [(1 — w)D — wU]x® + w(D + wL)"'b
where w is the relaxation parameter.

When w = 1, it reduces to the Gauss-Seidel method. The relaxation parameter w satisfies the
condition 0 < w < 2. If w > 1 then the method is called an over relaxation method and if w <

1, it is called an under relaxation method. Maximum convergence of SOR is obtained when

2

14+1—p?

) and w,,,, is rounded to the next digit.

W=W0ptz%[1—\/1—_/¢2]:

where H= p(HJacobi
The rate of convergence of an iterative method is defined as
v = —In(p(H)), oralsoas v = —log,,(p(H)).

where H is the iteration matrix.

The spectral radius of the SOR method is W, — 1 and its rate of convergence is

V= —ln(Wopt — 1) orv = —loglo( Wopt — 1).



The working of the methods is illustrated in the following examples:
Example 5.6 We consider the equations:

10x; — 2x, —x3—x4 =3
—2x; +10x, —x3—x4 =15
—x1 — X, +10x3 — 2x, =27
—X1 — X, — 2x3 +10x, = —9.

Solution: To solve these equations by the iterative methods, we re-write them as follows:
x1 = 03 + 0.2x2 + O.1X3 + 0.1X4
x2 = 1.5 + O.2x1 + 0.1x3 + 0.1x4
x3 = 2.7 + 0.1x1 + O.lxz + 0.2x4
x4_ = _09 + 0.1x1 + 0.1x2 + 0.2x3.

It can be verified that these equations satisfy the condition (5.21). The results are given in Tables
5.1 and 5.2:

Table 5.1 Gauss-Seidel Method

X1 X2 X3 X4

0.3 1.56 2.886 —0.1368
0.8869 19523 29566 —0.0248
0.9836 19899 29924 —-0.0042
0.9968 19982 29987 —0.0008
0.9994 19997 29998 —-0.0001
0.9999 19999 3.0 0.0

~N O o A W N P S

1.0 2.0 3.0 0.0




Table 5.2 J acobi's Method

n Xy Xy X3 Xy

1 0.3 1.5 2.7 -0.9

2 0.78 1.74 2.7 —0.18

3 0.9 1.908 2916 —0.108
4 09624 19608 2.9592 —0.036
5 0.9845 1.9848 2.9851 —0.0158
6 0.9939 1.9938 2.9938 —0.006
7 0.9975 1.9975 2.9976 —0.0025
8 0.9990 1.9990 2.9990 —0.0010
9 0.9996 1.9996 2.9996 —0.0004
10 0.9998 1.9998 2.9998 —0.0002
11 09999 1.9999 2.9999 —0.0001
12 1.0 2.0 3.0 0.0

From Tables 5.1 and 5.2, it is clear that twelve iterations are required by Jacobi's method to

achieve the same accuracy as seven Gauss-Seidel iterations.
Example 5.7 Solve the system
6x+y+z=20
x+4y—z=6
x—y+5z=7
using both Jacobi and Gauss-Seidel methods.

Solution: (a) Jacobi's method

We rewrite the given system as



20 1

1
x=——-y——-z=33333-0.1667y — 0.1667z

6 6 6
y =15-0.25x + 0.25z

z=14-02x+ 0.2y

In matrix form, the above system may be written as

[2.8499]

11.0333
[2.9647]

11.0656

X =C+BX
where
3.3333 0 —-0.1667 —0.1667
C=| 15 |,B=|-025 0 0.25 andle
1.4 -0.2 0.2 0
Assuming
3.3333
x°=| 1.5 |,we obtain
1.4
13.3333] 0 —0.1667 —0.1667]1[3.3333]
X =] 15 —0.25 0 0.25 1.5
[ 14 | 1-02 0.2 o 1l 14 |
13.33331 [ O —0.1667 —0.1667][2.8499]
X@® =] 15 —0.25 0 0.25 1.0167
1.4 | —0.2 0.2 0 111.0333]
Proceeding in this way, we obtain
2.9991 2.9995
X® =1,0012| and X® = [1.0005].
1.0010 1.0004

We, therefore, conclude that

3
x=[1] iie,x=3, y=1landz=1
1

(b) Gauss-Seidel method

As before, we obtain the first approximation as

X
]
Z

1.0167

1.0458




2.8499
XM =(1.0167
1.0333

Then

x® =3.3333 -0.1667 x 1.0167 — 0.1667 x 1.0333 = 2.9916
y@ =1.5-0.25 % 2.9916 + 0.25 x 1.0333 = 1.0104

z® =14-02x%x29916 + 0.2 x 1.0104 = 1.0038

Similarly, we find
x® =29975, y®) =1.0016, z® = 1.0008,
x® =29995, y® =1.0003, z*» = 1.0002,
x® =29998, y©® = 1.0001, z(> = 1.0001.

At this stage, we can conclude that

Example 5.8 Solve by Jacobi's iteration method, the equations
20x +y—2z=17;3x + 20y —z = —18; 2x — 3y + 20z = 25.

Solution: We write the given equations in the form

i yi2n)
X =5 (17 -y +22)

~~

1 .
y =%(—18—3x+z) . (1)

1
Z=%(25—2x+3y)J

We start from an approximation x, = y, = z, = 0.

Substituting these on the right sides of the equations (i), we get

17 18 25
X, = % = 085’ Vi = % = —09, Z1 = % = 1.25

Putting these values on the right sides of the equations (i), we obtain



1
X2 =55 (17 —y1 + 2z;) = 1.02
1
Y, = 20 (=18 —3x +z1) = —0.965

1
7z, = —(25—-2x1+ 3y;) = 1.03
20
Substituting these values on the right sides of the equations (i), we have

1
x5 = 55 (17 =y, + 22;) = 1.00125
1
Vs = 55 (=18 = 3x; + 2;) = 1.0015

1
Z3 = %(25 — 2x, + 3y,) = 1.00325
Substituting these values, we get

1
X4 = %(17 —y3 + 2z3) = 1.0004
1
Yo = %(—18 — 3x3 + z3) = —1.000025

1
2y =5 (25 — 2x3 + 3y3) = 0.9965
Putting these values, we have

1
X5 = o5 (=17 — y, + 22,) = 0.999966
1
Vs = %(—18 —3x,4 + z,) = —1.000078

1
75 =35 (25 — 2x4 + 3y,) = 0.999956
Again substituting these values, we get

1
1
Vo = 20 (=18 — 3x5 + z) = 0.999997

1
Ze =55 (25— 215+ 3y5) = 0999992



The values in the fifth and sixth iterations being practically the same, we can stop. Hence the

solutionisx =1,y =-1,z=1.

Example 5.9 Solve by Jacobi's iteration method, the equations 10x +y —z =11.19, x +
10y + z = 28.08,—x + y + 10z = 35.61, correct to two decimal places.
Solution: Rewriting the given equations as x = %(11.19 —y+2z)y= 1—10 (28.08—x—2),z=

—(35.61+x—Y)

We start from an approximation, x, = y, = z, = 0. First iteration

11.19 28.08 .
X1 = T = 1119,_’)/1 = T = 2.808,Z1 = T = 3.561

Second iteration

1

X, = E(11.19 —y, +2) =119
1

Y2 = E(28'08 —x; —2y) =2.34
1

5 (3561 +x; —y1) = 3.39

Z2:1_

Third iteration

1

X3 = E(11.19 —y, 4 2,) =122
1

Y3 = E(Z&OS —x,—2,) = 2.35

1
Z3 == E(35.61 + xz - yz) S 3.4’5

Fourth iteration

1
75 (1119 = y5 + z3) = 1.23

1
T (28.08 — x3 — z3) = 2.34

X4_=

1
Z4 == E(35.61 + x3 - y3) S 3.4’5



Fifth iteration

1

xs =75 (1119 — y +2,) = 1.23
1

ys = 75 (28.08 = x, — z,) = 2.34

1
Zy = E(3561 + Xg4 — y4_) = 34‘5

Hence x = 1.23,y = 2.34,z = 3.45

Example 5.10 Apply the Gauss-Seidel iteration method to solve the equations 20x + y — 2z =
17;3x + 20y — z = —18; 2x — 3y + 20z = 25.

Solution: We write the given equations in the form

1 :
x—%(17—y+22) . (1)

1 .
y= ﬁ(_18 —3x+2) . (i0)

1
z=25 (25 —2x + 3y) .. (i)

First iteration

Putting y = y,,z = z, in first equation, we get x; = %(17 —yo + 22z5) = 0.8500

Putting x = x,, z = z, in second equation, we have y, = % (=18 — 3x; + z5) = —1.0275
Putting x = x;,y = y, in third equation, we obtain z; = % (25 — 2x; + 3y;) = 1.0109
Second iteration

Putting y = y,,z = z; in (i), we get x, = %(17 -y, +22z;) = 1.0025

PUtting x = x5,z = zq in (ii), we obtain y, = — (=18 — 3x, + ) = —0.9998



Putting x = x,,y = y, in (iii), we get z, = 2—10(25 — 2x, + 3y,) = 0.9998 Third iteration, we
get
1
x3 = 55 (17 = y2 + 22,) = 1.0000
1
Y3 = 55 (=18 — 3x3 + 2,) = —1.0000
1
Z3 = %(25 — 2x3 + 3y3) = 1.0000
The values in the second and third iterations being practically the same, we can stop.
Hence the solutionisx =1,y = -1,z = 1.
Example 5.11 Solve the system of equations
4'x1 + xz + x3 = 2
X1+5x2+ZX3 - -

6
X1 +2x2 + BX3 = —4

using the Jacobi iteration method. Take the initial approximation as x(® = [0.5,—0.5,—0.5]"

and perform three iterations in each case. The exact solutionis x; = 1,x, = —1,x,= —1.

Solution: We have

0 0 0 4 0 0 0 1 1
L=[100,D=050,U2002]
1 2 0 0 0 3 0 0 0
4 0 0170 1 1
H =—D‘1(L+U)——[ 50 [102]
1 2 0

1/4 0 0 1 1 -1/4 -1/4
0 1/5 0”1 0 2] [1/5 0 —2/5]

0 1 2 0 1/3 —2/3 0
1/4 0 1/2
 one[o o o[- [
0 0 1/3 —4/3

Therefore, Jacobi iteration method becomes




0 -1/4 -1/4 1/2
x(k+1) = [_1/5 0 —2/5] x4+ —6/5],k =0,1,..
-1/3 =2/3 0 —4/3

Starting with x(® = [0.5, 0.5, —0.5]7, we obtain

0.75 1.0667 0.9333
x( = [ —1.1] ,x(@) = [—0.8833] ,x3) = [—1.0733]

—-1.1667 —0.8500 —1.1000

Alternately, we may write directly

1 1
(k+1)  _ () () (k+1) _ (k) (k)
Xy —Z[Z—xz — X3 ],xz —g[—6—x1 — 2x5 ]

(k+1) _ ) )
X3 = §[—4—x1 — 2x, ]

=

Starting with x* = 0.5,x{” = —0.5,x{” = —0.5, we get

xM =10.75,-1.1,-1.1667],x® = [1.0667,—0.8833, —0.8500]"
x®) =[0.9333,-1.0733,-1.1000]".

Example 5.12 Solve the system of equations
2x1 - x2 + OX3 = 7
—x1 + 2x2 - X3 - 1

Oxl_x2+2x3=1

using the Gauss-Seidel method. Take the initial approximation as x(® = 0 and perform three

iterations.

Solution: We have

2 0 0 0 -1 0
D+L=|-1 2 0f,Uu=10 0 -1
0 -1 2 0 0 0

The Gauss-Seidel method gives

x*+D = —(D + L)"tUx® + (D + L) 'b.



We get

2 0 o' (/2 o0 0O
(D+L)‘1=[—1 2 o] [1/4 1/2 o]
1/8 1/4 1/2
1/2 _1 -1/2 0
(D+L)"'Uu=|1/4 1/2 ” _1] [ —1/4 —1/2]
1/8 1/4 1/2 -1/8 —1/4
1/2 0 7/2
(D+L)b=|1/4 1/2 ]H [9/4]
1/8 1/4 1/2 13/8

Therefore, we obtain the iteration scheme

0 1/2 0 7/2
x®k+D =10 1/4 1/2]x(")+ 9/4]
0 1/8 1/4 13/8

Starting with zero initial vector, we get
3.5 4.625 5.3125
x(M =] 225],x@ =] 3.625(,and x® = [4.3125
1.625 2.3125 2.6563

The exact solution is x = [6,5,3]".
POWER METHOD

In many engineering problems, it is required to compute the numerically largest eigenvalue and
the corresponding eigenvector. In such cases, the following iterative method is quite convenient

which is also well-suited for machine computations.

If X;,X,---X, are the eigenvectors corresponding to the eigenvalues A, 1,,:--4,, then an

arbitrary column vector can be written as
X = k1X1 + kzXz + -+ leXTL

Then



AX == klAXI + kZAXZ + -+ leAXTl
= k1/11X1 + k2/12X2 + -+ knAan

Slml|al’|y AZX - k1/11 2X1 + kzlz 2X2 + + knln ZXn
and
AT‘X = klllrxl + szZrXZ + -+ knﬂn an

If |A1] > |A,] > -+ > |A,], then A, is the largest root and the contribution of the term k,A7X; to
the sum on the right increases with r and, therefore, every time we multiply a column vector by
A, it becomes nearer to the eigenvector X;. Then we make the largest component of the resulting

column vector unity to avoid the factor k;.

Thus we start with a column vector X which is as near the solution as possible and evaluate AX
which is written as A X® after normalization. This gives the first approximation AV to the
eigenvalue and X to the eigenvector. Similarly we evaluate AX® = 2 x ) which gives the
second approximation. We repeat this process until [X™ — X=D] becomes negligible. Then

AT will be the largest eigenvalue and X ™, the corresponding eigenvector.

This iterative procedure for finding the dominant eigenvalue of a matrix is known as Rayleigh's

power method.
NOTE: Rewriting AX = AX as A™'AX = AA71X or X = 1A71X.
We have A71X = %X

If we use this equation, then the above method yields the smallest eigenvalue.

Example 5.13 Determine the largest eigenvalue and the corresponding eigenvector of the matrix
[5 4

1 21
Solution: Let the initial approximation to the eigenvector corresponding to the largest eigenvalue

of Abe X = [(1)]



man = [} [ - sl -

So the first approximation to the eigenvalue is A = 5 and the corresponding eigenvector is

X = [0%2]
Now AX( = [i g] [0%2] - [51'2 =58 [0.2141] =A2x®

Thus the second approximation to the eigenvalue is A1 =5.8 and the corresponding

. . (2)= 1 .
eigenvector is X [0.241], repeating the above process, we get
@ [ 47 1 1= N EEE)
AX 1 2llo.241] =906 .0.248] A=X
@ [ 4] 1 1= 0
AX 1 2llo.249] = 2966 .o.zso] VX
@ [ 47 1 1= 1] 3e¢6)
AX 1 2llo.250] =999 .0.25] APX
® =[> Y[ 116l 1 ]2 0x®
AX 1 2 .0.25] 6[0.25] A2X

Clearly 23 = A(® and X&) = x(© upto 3 decimal places. Hence the largest eigenvalue is 6 and

the corresponding eigenvector is [O 125]

Example 5.14 Find the largest eigenvalue and the corresponding eigenvector of the Matrix
[ 2 -1 0

-1 2 —1] using the power method. Take [1,0,0]” as the initial eigenvector.
0o -1 2
Solution: Let the initial approximation to the required eigenvector be X = [1,0,0]".
2 -1 011 2 1
-1 2 -1||o]=[-1|=2]|-05]=20xD

0 0

0o -1 2 0

Then AX =

So the first approximation to the eigenvalue is 2 and the corresponding eigenvector



X® =11,-0.5,0].

2 -1 0
0 -1 2

Repeating the above process, we get

1 0. 87

AX@D =28 —1|=21®x®; 4xG) =343 = A®x®
0.43 0. 54
0.80] 0.76

AX® =341 —1|=21®xG); 4XG) =341 -1 | = 2©x©®
0.614 0.65
0.74]

AX® =341 —1|=21Dx?
[0.67.

Clearly 1(® = A and X(© = X approximately. Hence the largest eigenvalue is 3.41 and the

corresponding eigenvector is [0.74, —1,0.67]'

Example 5.15 Obtain by the power method, the numerically dominant eigenvalue and

eigenvector of the matrix

15 -4 -3
A=|[-10 12 -6|.
-20 4 -2

Solution: Let the initial approximation to the eigenvector be X = [1,1,1]". Then

SR (AL

So the first approximation to eigenvalue is —18 and the corresponding eigenvector is
[—0.444,0.222,1]".

—0.444
0.222| = AWx®
1

AX =

15 —4 —0.444 1
Now AX® =|-10 12 0222 = —10.548|-0.105| = AWx@
—20 4 —0.736

The second approximation to the eigenvalue is —10.548 and the eigenvector is
[1,—0.105,—0.736]".



Repeating the above process

'—0.930] 1
AX® = -18948| 0.361]| =213X®);AXx® = —18.394 [—0.415] =1*x@®
i 1 —0.981
—0.995] i 1
AX®W = -19.698| 0.462|=AOXG;4X® = -19.773| —480| = 1©OX©®
i 14 | —0.999]
—0.997] i 1]
AX®© =-19.922| 0.490| = ADXD; AX = —-19.956| —495|=21®Xx®
1 | —0.999]

Since A7) = A® and X = X® approximately, therefore the dominant eigenvalue and the

corresponding eigenvector are given by

-1 -1
A®x® = 19956 [0.495] i.e., 20 [0.5]
0.999 1

Hence the dominant eigenvalue is 20 and eigenvector is [—1,0.5,1]".
RELAXATION METHOD

Consider the equations

a;x +by+cz=d;
a,x + b,y + c,z = d,We define the residuals R,, R,, R, by the relations
azx + byy + c3z = dj

di —a;x — by — ¢,z
dz —aX — bzy — CZ (522)
d; —azx — by —c3z

o= R=
I

x
y
z

To start with we assume x = y = z = 0 and calculate the initial residuals. Then the residuals are
reduced step by step, by giving increments to the variables. For this purpose, we construct the

following operation table:



ox=1| —a; | —a, | —as
8y = —b, —b, —b;
52 = 1 _Cl _Cz _C3

We note from the equations (5.22) that if x is increased by 1 (keeping y and z constant),
R,2, Ry, and R, decrease by ay, a,, as, respectively. This is shown in the above table along with

the effects on the residuals when y and z are given unit increments. (The table is the transpose of

the coefficient matrix).

At each step, the numerically largest residual is reduced to almost zero. To reduce a particular
residual, the value of the corresponding variable is changed; e.g., to reduce R, by p, x should be
increased by p/a,. When all the residuals have been reduced to almost zero, the increments in

x,y, z are added separately to give the desired solution.

Relaxation method can be applied successfully only if the diagonal elements of the coefficient
matrix dominate the other coefficients in the corresponding row, i.e., if in the equations (5.22)

las| = |b1] + |4

|b2| = |a2| + |c,|

les| = las| + |bs]
where > sign should be valid for at least one row.
Example 5.16 Solve the equations:
10x — 2y — 3z = 205; —2x + 10y — 2z = 154; —2x — y + 10z = 120 by Relaxation method.
The residuals are given by

R, =205—-10x+ 2y + 3z

R, =154+ 2x — 10y + 2z
R, =120+ 2x+y— 10z



The operations table is

SR, | OR, SR,
o6x=1 1| —-10 | 2 2
6z=1 13 2 -10
The relaxation table is
R, Ry, R,
x=y=2z=0 205 154 120
ox =20 5 194 160
6y =19 43 4 179
6z =18 97 40 -1
ox =10 -3 60 19
oy = 9 0 25
6z=2 15 4 5
ox = -5 8 9
0z=1 -2 10 -1
dy=1 0 0 0

Yox = 32,20y = 26,%6z = 21

Hence x = 32,y = 26,z = 21.

5.5 CHECK YOUR PROGRESS

1. Use Jacobi and Gauss-Seidal methods to solve the following equations correct up to three

decimal places.

(i) 10x + 2y +z = 9,2x + 20y — 2z = —44,—2x+ 3y + 10z = 22
(i) 83x+ 11y —4z=957x+52y+ 13z =104,3x+ 8y + 29z =71



5.6

Use relaxation method to solve
(i) 3x+9y—2z=114x+ 2y + 13z =244x — 4y +3z= -8
(i) 10x =2y —2z=6,—x+10y—-2z2=7,—x—-y+ 10z =8.

Find the largest eigenvalue and corresponding eigenvectors of the matrix by power

method
10 -2 1
[—2 10 —2].
1 -2 10
SUMMARY

The students are made familiar with some preliminary definitions and fundamental

results of various iterative solution of system of linear equation.

5.7

KEYWORDS

Linear Systems, Jacobi’s method, Gauss-Seidel method, SOR, Relaxation method, Power

method, Ill-conditioned Systems.

5.8
1.

5.9

1.

SELF-ASSESSMENT TEST

Solve by Jacobi's method, the equations: 5x —y +z =10;2x + 4y =12; x + y + 5z =

—1; starting with the solution (2,3,0).

Solve by Jacobi's method the equations:
13x+5y—3z+u=18;2x+ 12y +z—4u=13;x — 4y + 10z + u = 29;
2x +y—3z+9u = 31.

Solve the equations 27x + 6y —z = 85;x + y + 54z = 40; 6x + 15y + 2z =72 by

(i) Jacobi's method (ii) Gauss-Seidal method.

Solve, by the Relaxation method, the following equations:

3x+9y—2z=11;4x + 2y + 13z = 24;4x — 4y + 3z = —8.
ANSWERS TO CHECK YOUR PROGRESS

(i) x=1.013, y= -1.996, z= 3.001



2.

3.

(if) x=1.052, y=-1.369, z= 1.962
(1) x=1.35, y=2.103, z= 2.845
(i) x=y=2z=1

9,[1 0 -1]7
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6.0 LEARNING OBJECTIVES

Students are able to

e Solve nonlinear equations using various iterative methods : Newton Raphson method, General
iterative method.

e Find complex roots.

6.1 INTRODUCTION
In this chapter we shall consider some numerical methods for the solution of nonlinear systems
which can well be manipulated and managed on digital computers and microprocessors. We

consider a system of two nonlinear equations in two unknowns as

f,y)=0
gx,y) =0 .. (6.1)



6.2 SOLUTION OF NONLINEAR EQUATIONS

Let (x,yx) be a suitable approximation to the root (&,7n) of the system (6.1). Let Ax be an

increment in x;, and Ay be an increment in y,, such that (x; + Ax, y;, + Ay) is the exact solution,

that is

fl +Ax,y, +Ay) =0
glx, + Ax, vy, + Ay) = 0.

Expanding in Taylor series about the point (xy, yx), we get

0 0 11, 0 91
ooy + |+ 8y ) Fx ) + 3 e g+ 2y | G+

( )+[A 9 1 a] ( )+1[A 9 1 a]z oo v +
I\ Xk, Yk xax yaygxk'yk ol xax yay I\ Xk, Yk

Neglecting second and higher powers of Ax and Ay, we obtain

f (e yie) + Axfi(xie, yie) + Ay f, (i, Y1) = 0
9, yi) + Bx gy (xp, Yi) + Ay gy (X, yx) = 0

where suffixes with respect to x and y represent partial differentiation.

Solving above equations for Ax and Ay, we get

1
Ax = — - [f Ceier 1) 9y (s ¥i0) = 9 Gt i fy (1, 910

1
Ay = _D_k L9 Gers Yi) fe s Yi) — f (s i) G Ok Vi)

where
Dy = fx(xk'yk)gy (X, Vi) — gx(xk;}’k)fy(xk'Yk)-
We obtain
Xis1 = X + Ax, and yp g = yi + Ay.

Writing the equations (6.2) in matrix form, we get

=0

=0.

- (6.2)



fx(ka yk) fy(ka yk) AX] — f(xk: yx)]

Ix oY) Gy O, yi) [ 1AY B 9(Xk, Vi)
or
JkAx = —F(xy, yy)
where
]k:[fx fy] 'F:[f] 'Ax:[ﬁx
9x Gy (Y1) g 1yi) y
The solution of the system (6.3) is
Ax = —J;'F(x, vi)
L [fx fy]‘l _ i[ gy —fy]
X = =
9x Gy (X1.YK) Dil=gx fx XYi)
Therefore, we can write
[Ax ! f (e, vie)
Ay g G yi)

w27 = (5] 3] - 5]~ (020 -

or
x(k+1) = 5 (k) _];1p(x(k))

where

x®) = [x(k),y(k)]T,F(x(k)) = [f Cero i), 9 Gy i1

... (63)

This is known as Newton-Raphson’s method. This method can be easily generalized for solving

a system of n equations in n unknowns

fl(x1'x2!”"xn) =0



f2(x1, %2, , %) = 0
fn(xlixZI'“'xn) =0
or

F(x)=0

where x =[xy, x5, , %17, F = [fy, fo, -+, fl T

T
If x(© = [xf’),xg"), L, Xp, (0)] is an initial approximation to the solution vector x, then we can

write , the method as

xD = x0) — AR (x®), k= 0,1,

where
0f1/ 0x; 0fy/0x, - 0f1/0x,
Je = 0fz/ 0xy 0fy/ 0x, -+ 0f;/ 0xy
afn/ axl afn/ axz afn/ 6xn (x(k))

is the Jacobian matrix of the functions f;, f, -+, f,, evaluated at x).
Note that the matrix J; * is to be evaluated for each iteration. We can also write the method as
Jio (204D — x00) = —F(x(0)
or
Je® = —F(x(k))
where
) = x(k+1) _ x() js the error vector.

We solve it as a linear system of equations (by a direct method if the system is small and by an

iterative method if the system is large) for each iteration.



The convergence of the method depends on the initial approximate vector x(®. A sufficient

condition for convergence is that for each k
et <1
whereas a necessary and sufficient condition for convergence is
pUeh) < 1.

where |I-|| is a suitable norm and p(J; 1) is the spectral radius (largest eigen value in magnitude)

of the matrix J; 1.

If the method converges, then its rate of convergence is two. The iterations are stopped when
lxC+D) — x B < ¢

where ¢ is the given error tolerance. We may use either the L, norm or the maximum norm.

Example 6.1 Perform three iterations of the Newton-Raphson method to solve the system of

equations

x2+xy+y*=7
x3+y3=09.

Solution: Take the initial approximation as x, = 1.5,y, = 0.5. The exact solution is x = 2,y =
1. We have

flx,y) =x*+xy+y*-7
gxy) =x*+y*-9

J = fre(Xrs Vi) fy(xkryk)l _ [Zxk + Vi X+ 2y
k Ix Xk, Vi) gy(xk»Yk) 3x,§ 33’1%
o= 1 3yg —Oo + 2y
k Dk —3X]% 2xk + Yk

where

Dy = x| = 3y (2xy + yi) — 3x5 (xx + 2.



We can now write the method as

xk+1] _ "k i
YVie+1

3ye  —(xi + 2yp)
—3x} 2%, + Vi

Xig + XY + yie =7
X +yi—9
k=0,1,.-.

~ el b,

Using (x,y,) = (1.5,0.5), we get

ERT 1 257
X é.g]_ [0.75 2.5”_3.75 _[2.2675

V1] —14.251-6.75 3.5 5.50] ~ 10.9254
X2] _ [2.2675] _ 1 2.5691 —4.1183 [1.0963] _ [2.0373
lv.] 1092541  —49.49511-15.4247  5.4604113.4510 0.9645

[X3] '2.0373]_ 1 [ 2.7908 —3.9663 [0.0458 _ [2.0013
¥zl 129645 —35.32441-12.4518 5.0391110.3532 0.9987

GENERAL ITERATION METHOD

Consider the solution of the following system of equations

fl,y)=0
g(x,y) =0.

We may write this system in an equivalent form as

x=F(x,y)
y=G(xy) ..(6.4)

Let (£,n) be a solution of this system. Therefore, (&, n) satisfies the equations
§=F(E&mn)
n=a6Emn ... (6.5)

Let (xo,yo) be a suitable approximation to (¢,n). Then, we write a general iteration method for
the solution of (6.4) as

X1 = F Qo i)
y}€+1 = G(xkr yk)rk = 011121 (66)

If the method converges, then



limx, = £and lim y, = 1.
X—00 X—00

The functions F and G are called the iteration functions. Not all forms of F and G can lead to

convergence. Subtracting (6.6) from (6.5), we get

§— X1 = F(&,m) — F(xg, yi)
N = Yk+1 = G(En) — GO, Vie)-

Let g, = & — x; and 6, = n — y, be the errors in the k th iterate. Then, we obtain

exr1 = F(xp + €, Vi + 8) — F(xp, yie)
Op41 = G(xp + &, Vi + 6k) — G(xp, Yio)-

Expanding in Taylor series about (x, y,) and neglecting the second and higher powers of g, 6y,

we obtain

err = ExF (o, yie) + 6k Fy O, Vi)

Ok+1 = &Gy (xp, yi) + 6k Gy (X, i)

5k+1] [BCaoyi) By (e i) [Sk]
O

Ok+1 B Gy (X, i) Gy(xk'yk)
gt = g g

Fe(xe, yi) B (e, yie)
where €®) = [g,, 8, ]T and A, = | Y
[ k k] f Gx(xkl yk) Gy(xk' yx)
is the Jacobian matrix of the iteration functions F and G evaluated at (x, y)-

A sufficient condition for convergence is that for each k, ||A;ll < 1, where ||. || is a suitable

norm.

If we use the maximum absolute row sum norm, we get the conditions

|Fx(xk'yk)| + |Fy(xk:yk)| <1

(6.7
|G (X, i) | + |Gy(xk:yk)| <L

The necessary and sufficient condition for convergence is that for each k



p(A) <1
where p(A;) is the spectral radius of the matrix Ay,.

If (xo,y0) is a close approximation to the root (&, n), then we usually test the conditions (6.7) at

the initial approximation (x,, yo).
The method can be easily generalized to a system of n equations in n unknowns.
Example 6.2 The system of equations

f,y)=x*43x+y—-5=0
gx,y) =x2+3y2—-4=0

has a solution (1,1). Determine the iteration functions F(x,y) and G(x,y) so that the sequence

of iterates obtained from

Xer1 = F(xp, yi)
Vi1 = G(xg, Vi), k=0,1,-

(x0,¥0) = (0.5,0.5) converges to the root. Perform five iterations.
Solution: We write the given system of equations in an equivalent form as

x=x+a(x?+3x+y—5)=F(x,y)
y=y+pE*+3y*—4) =G(x,y)

where a and S are arbitrary parameters, which are to be determined. If we use the maximum

absolute row sum norm, we require that

and

|Fx(x0!3/0)| + |Fy(x0:y0)| <1
|Gx(x0'y0)| + |Gy(x0;y0)| <L

Differentiating F and G partially with respect to x and y and evaluating at (x,, y,) = (0.5,0.5),

we get



F(x,y) =14+ (2x+3)a, FE((0.50.5)=1+4a

E,(x,y) = a, F,(0.505) =«
Gy(x,y) = 2fx, G,(0.505)=p
Gy(x,y) =1+ 6By, G,(0.5,0.5) =1+ 3p.

Therefore, the conditions of convergence become

|1+ 4a|+|a| <1
Bl +11+38] < 1 -+ (68)
Any values of a, f which satisfy (6.8) can be used. Obviously, both « and 8 are negative.

Taking « = —1/4 and § = —1/6, we obtain the iteration method

1 1
Xk+1 = X —Z(xi +3x, +yr—5) = —Z(xi — Xk + Yk —5) = F(xg, i)

1, 2 1, 2
Yi+1 = Vi —g(xk + 3y —4) = _E(xk + 3y — 6y —4) = G(xg, yi)-

Starting with (x,, y,) = (0.5,0.5), we get

(1, 1) = (1.1875,1.0), (x5, y,) = (0.944336,0.931641),
(x3,3) = (1.030231,1.015702), (x,, v,) = (0.988288,0.989647),
(xs,s) = (1.005482,1.003828).

Example 6.3 Take one step from a suitable starting point with Newton-Raphson's method

applied to the system

10x +sin(x+y) =1

8y —cos?(z—y) =1

12z +sinz =1.
Suggest some explicit method of the form x**1 = F(x(®)) where no inversion is needed for F,
and estimate how many iterations are required to obtain a solution correct to six decimal points

from the starting point.

Solution: We have the system of equations



fi(x,y,z) =10x +sin(x+y)—1=0
fo(x,y,2) =8y —cos*(z—y) —1=0
fz(x,y,z) =12z +sinz—1=0.
To obtain a suitable starting point, we use the approximations
sin(x+y) =0
cos(z—y) =1
sin(z) =0
and obtain from the given equations
xo=1/10,y = 1/4,2z, = 1/12.
We have

(fx (f)y (1)
Je = (fz)x (fZ)y (fz)z
(e )y (),

10 + cos(x + ) cos(x +y) 0
= 0 8 —sin(2(z—y)) sin(2(z—-y))
0 0 12+ cosz 1,
11 1 [10.939373 0.939373 0
Jo=]J (———) = 0 8.327195 —0.327195]
1074712 L o 0 12.996530
[0.091413 —0.010312 —0.000260
ot = 0 0.120089 0.003023 ]
| 0 0 0.076944
f1(1/10,1/4,1/12)|  10.342898
F, =1/,(1/10,1/4,1/12)| = [0.027522]
f3(1/10,1/4,1/12) 0.083237

Using the Newton-Raphson method
xk+D) = x(K) _ J-1F,
we obtain, for k = 0

x®  =xO —J-1F,.
x; =0.0689,y; = 0.246443,z, = 0.076929.



We can write an explicit method in the form

1

Xk+1 = 10 [1 — sin(xy + yi)] = f1(xk, Vir 21)
1

Vi+1 = 3 [1 4 cos®(z, — yi)] = f> Xk, Vier 2x)
1

Zg41 = 12 [1—sin(z,)] = f3(Xk, k> Zx)-

We note that the conditions (6.7) are satisfied at the initial approximation (x,, vy, z,). Starting

with the initial approximation x(®> = [1/10,1/4,1/12]", we obtain the sequence of iterates

xM =[0.065710,0.246560,0.076397]7
x® =10.069278,0.246415,0.076973]"
x®) =[0.068952,0.246445,0.076925]"
x™® =10.068978,0.246442,0.076929]"
x®) =[0.068978,0.246442,0.076929]"

Hence, the solution correct to six decimal places is obtained after five iterations.

6.3 METHODS FOR COMPLEX ROOTS

The root of an equation f(z) = 0, in which z is a complex variable can be obtained by using the
methods discussed earlier provided we use complex arithmetic and complex initial

approximation.
We can also obtain a root of the equation
f(z)=0 ..(6.9)
by using real arithmetic. Substituting z = x + iy in equation (6.9), we get
f@)=fx+iy)=ulxy) +iv(x,y) =0

where u(x,y) and v(x,y) are the real and the imaginary parts of f(z) respectively. Comparing

the real and the imaginary parts, we get

u(x,y) =0,v(x,y) =0 ..(6.10)



Thus, the problem of finding a complex root of (6.9) reduces to solving a system of two
nonlinear equations (6.10).

The system of equations (6.10) can be solved using the methods discussed earlier.
Example 6.4 Obtain the complex roots of the equation
f(z)=2z3+1=0

correct to eight decimal places. Use the initial approximation to a root as (x; yo) = (0.25,0.25).

Compare with the exact values of the roots (1 + iv/3)/2.
Solution: Substituting z = x + iy in the given equation, we get

fx+iy) =uly)+ivix,y) =((x+iy)>+1
=3 -3xy?+ 1) +i(3x*y —y3) = 0.

Therefore,

u(x,y) =x3-3xy2+1=0, v(x,y) =3x2y—y3=0
| = [ux uy] _ [3x2 — 3y? —6xy
Ux Uy 6xy 3x% — 3y?
D =] =9(x*—y?)* +36x°y? = 9(x* + y?)?
. 1iBxE-y3 6xy
J B 5[ —6xy 3(x% — yz)]

Using the Newton method, we obtain

1
el = bl = 5;

3(xf —yi) 6X Vi lxi:’ — 3%, yi + 1]
—6X1 Yk 3(951% - }’1%) 3x1€}’k - 3’13

Using (xq,yo) = (0.25,0.25), we get

xl] _ [0.25 _ 1 [ 0
V1 8?266667(]).140625 —0.375
[ :

2.8333333

0.375] [0.96875
0 0.03125

The successive iterates are given in Table 6.1.



Table 6.1 Approximations to the Complex Root by the Newton-Raphson Method

k Zk f(zx) Zk+1

0 (0.25,0.25) (0.9687,0.3125(—1)) (0.16666667,2.83333333)
1 (0.16666667,2.83333333) (—0.3009(1),—0.2251(2)) (0.15220505,1.89374026)
2 (0.15220505,1.89374026) (—0.6340,—0.6660(1)) (0.19263553,1.27724322)
3 (0.19263553,1.27724322) (0.6438(—1),—0.1941(1)) (0.31932197,0.91041889)
4 (0.31932197,0.91041889) (0.2385,—0.4761) (0.49252896,0.83063199)
5 (0.49252896,0.83063199) (0.1000,03140(—1)) (0.49983161,0.86738607)
6 (0.49983161,0.86738607) (—0.3284(—2),—0.2484(—2)) (0.49999870,0.86602675)
7 (0.49999870,0.86602675) (—0.1548(—5),0.5414(-5)) (0.50000000,0.86602540)

Obviously, the approximation to the second root is (0.5, —0.8660254).

6.4
1.

6.5

CHECK YOUR PROGRESS

Find a root of the equations x? = 3xy — 7, y = 2(x + 1)..

Solve the non-linear equations x? — y2 = 4,x% + y? = 16 numerically with x, = y, =

2.828 using the Newton-Raphson method. Carry out two iterations.

SUMMARY

The students are made familiar with fundamental results of various iterative solution of

system of nonlinear equation.

6.6

KEYWORDS

Nonlinear systems, Complex roots, Newton Raphson method.

6.7 SELF-ASSESSMENT TEST



6.8

Find a root of the equations xy = x + 9,y% = x2 + 7.

Use the Newton-Raphson method to solve the equations x = x2 + y?2,y = x? — y? correct
to two decimals, starting with the approximation (0.8,0.4).

Solve the non-linear equations x3 =y + 100, y3 = x + 100 numerically using the

Newton-Raphson method. Carry out two iterations.

ANSWERS TO CHECK YOUR PROGRESS

-1.9266, -1.8533
3.162, 2.45
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7.0 LEARNING OBJECTIVES

o In this chapter we will be able to explaining the Runge-Kutta methods of order four,

Multistep methods.

o It also brief about the Milan’s methods, simultaneous and higher order equations.

7.1 INTRODUCTION

An ordinary differential equation is a relation between a function, its derivatives and the variable

upon which they depend. The general form of an ordinary differential equation is given by



fG,y,y,y", . ,y™) =0

where y and its derivatives y', y", ... ....., y™ are functions of x.

Its general solution contains n arbitrary constants and is of the form ¢ (x, y, ¢y, ¢5, .. ..., ¢) = 0.
For finding the particular solution, n conditions must be given and the values of constants
C1y Coyp wre v , Cp, are to be determined. If these n conditions are prescribed at one point only, then
the differential equation together with the conditions is called initial value problem of the nth
order. In other cases, when the n conditions are prescribed at two or more points, then the
problem is boundary value problem. In case of ordinary differential equations of first order, one
arbitrary constant comes in the solution and this will be determined by the condition given to us.
The ordinary differential equations can be solved using various methods which are categorized
under single step method and multiple step methods.

7.2 SINGLE STEP METHODS

The method of solving an ordinary differential equation is called a single step method if it uses
information available at one previous point only. The most common single step methods are

Taylor series method, Runge-Kutta method, Picard's method and Euler's method.

7.3 MULTIPLE STEP METHODS

The method of solving an ordinary differentiable equation is called a multiple step method if it
uses information available at more than one previous points. The most common multiple step
methods are Euler's modified method, Predictor-Corrector method, Milne-Simpson's method and
Adams-Bashforth method.

We shall now discuss important methods of solving ordinary differential equations of first order
by using single and multiple step methods.

TAYLOR'S SERIES METHOD

Consider the first order equation
%zf(x,y),whereyzyo at x = x, ... (7.0)
Let y = F(x) be the solution of the above equation such that F(x,) # 0. Expanding y =

Flx, + (x — x,)] by Taylor's series about point x,, we get or



2
X —X
%F”(xo) + ..

Y+ . (7.2)

y =F(xo) + (x — x0)F'(x) +
(x — x9)?
2!
This gives the value of y for every value of x for which equation (7.2) converges.

Yy =yo+ (x—2x0)"yo+

Puttingx = x; = x, + hand y = y, in (7.2), we get
h2 3
y1=Yo+hyo+5ryo +5v0 + o

Similarly, we can obtain
2 3

Ym+1 = Ym + hym + %Ym TR

where y,, " denotes the r th derivative of y w.r.t. x at the point (x,,, 1)

Putting the values of y,, Y '» Vi "' e cen e , we can find y,,,; which is the solution of (7.1)
numerically.

Note. This method works well as long as the successive derivatives can be calculated easily. If
the calculation of higher order derivatives become tedious, then Taylor's method is not useful.
This is the main drawback of this method and is not of much importance. However, it is useful
for finding starting values for the application of methods like Runge-Kutta method and Milne

Simpson's method.

RUNGE-KUTTA METHOD

The Taylor's series method for solving differential equations numerically involves lot of labour
in finding out the higher order derivatives. In Runge-Kutta method, the calculations of higher
order derivatives is not required. Also this method gives greater accuracy. The method requires
the functional values at some selected points and agrees with the Taylor's series solution up to
the term containing h", where r differs from method to method and is called the order of that
method. In these methods the accuracy increases at the cost of calculations. The most widely
used method is Runge-Kutta of fourth order.

RUNGE-KUTTA METHOD OF FOURTH ORDER This method is most commonly

used and is often referred to as Runge-Kutta method only.
To find the increment k of y corresponding to an increment h in x by R-K method from % =

f(x,¥),y(x9) = yo; we proceed as follows:



Calculate k; = hf (x4, o)

k
ks = hf [xo Z o+ ] ks = hf[xo +h, o + ks]
and
1
k = g(kl + 2k2 + 2k3 + k4)
After obtaining values of k4, k,, k3, k, and k finally compute

y1=Yotk
or

1
+g[k1 + 2k2 + 2k3 + k4]

Example 7.1 Using Taylor's method, obtain the approximate value of y at x = 0.2 for the

Y1 =DYo

differential equation Z—z = 2y + 3e*,y(0) = 0 and compare the numericalsolution obtained with

the exact solution.
Solution: The given differential equation is

d_y=2 +3e* = f(x,y)
dx <Y Y

The initial conditions are y, = 0 at x, = 0
We have
y' =2y +3e* y'(0) = 2y(0) +3 =3
y' =2y"+3e* y'(0)=2y'(0)+3=9
y'"=2y"+3e* y"(0)=2y"(0)+3=21
y@) =2y"" +3e* y™(0) =2y"'(0) + 3 =45
By Taylor's series, we have
2 3 4
Y =y(0) +xy'(0) + 7y (0) + 57y (0) + 27y (0) + -
21 45

=0+3x+2x2+—x3+—x4+--- ......
2 6 24

9 7 15
= 3x +§x2 +§x3 +§x4 + o

Putting x = 0.2, we get



9 7 15
y(0.2)  =3(02) +5(0.2)* +5(02)* +- (0.2)" + -

9 7 15
= =5.6 +5(0.04) +(0.008) + = (0.0016) + -

= 0.6 + 0.18 + 0.028 + 0.0030 + ---
= 0.8110

To find exact value of y at x = 0.2 :
Now, we have % = 2y + 3e*

dy
— — 2y = 3e*
dx Y ¢

which is a linear differential equation of the form % + Py =Q,where P = -2,Q = 3e”*
LF. = ef Pdx = of -2dx — p-2x,

Thus the solutionis y (I.F.) = [ Q(.F.) dx + ¢
ye 2% = Sf e *dx +c

or
ye = —-3e* +¢
Multiplying both sides by e?*, we get
y = —3e* + ce?*
Putting x = 0,y = 0, we have
0=-34+c>c=3
Putting this value of ¢, we have
y = —3e* + 3e?*
Hence, exact solution of given equation is
y =3(e* —e")
Putting x = 0.2, we have
y(0.2) = 3[e%* —e%2] = 0.8113
We can see that numerical solution approximates to the exact value upto 3 decimal places.

Example 7.2 Apply Runge-Kutta fourth order method to find an approximate value of y when
x = 0.2, given thatZ—z =x+yandy =1whenx =0.

Solution: The given differential equation is



dy_ by
=ty =[(x)

The initial conditions are y(0) = 1whenx =01i.e.,x,=0andy, =1
Taking h = 0.2, we have
ki = hf(x0,y0) = 0.2[xg + yo] = 0.2

k —h( +h +k1>—02[( +h)+( +k1>]
z—fXOE'YO7—-X0§ 3’0?

= 0.2[0.1 + 1.1] = 0.24
k;

ks =h +h +k2)—02[ +h)+( + )]
3 =hf (xo > » Yo 5 ) = (xo > Yo )
= 0.2[0.1 + 1.12] = 0.2440

ki =hf(xg+hyy+ks)=02[(x,+h)+ (yo + k3)]
— 02[0.2 + 1.244] = 0.2888

1 1
k= E(kl + 2k, + 2k; + ky) = 6(0'2 + 0.48 + 0.488 + 0.2888)

= 0.2428
Also

y1=Yo+k=1+0.2428 = 1.2428
Required approximate value of y at x = 0.2 is y; = 1.2428.
Example 7.3 Given Z—z =1+ y?, where y = 0 when x = 0; find y(0.2),y(0.4) and y(0.6).

Solution: The given differential equation is

=1 2,
dx ty

The initial conditionsare y = 0whenx =01i.e.,x,=0andy, =0
Taking h = 0.2, we have
Xg = 0,x1 = O.Z,XZ = 0.4‘,X3 = 0.6

To compute y; we use x, = 0,y, =0and h = 0.2



V1

= hf(x,y0) = h(1 +y3) = 0.2(1+ 0) = 0.2

h ky ki\?
= hf (xo + > Yo +7> =021+ (yo + 7) = 0.2[1 + (0.1)?]
=0.2(1 +.01) = 0.202

h k, k,\? ,
= hf (xo +2:%0 +7) =h|1+ (yo +7) = 0.2[1 + (0.101)?]
=0.2(1+0.010201) = 0.20204.
= 0.2(1 + 0.040820) = 0.20816

1
:yo +€(k1 +2k2 +2k3 +k4)

1
= 2[0.2 +2(0.202 +0.20204) + 0.20816] = 0.2027

To compute y,, we use x; = 0.2,y; = 0.2027 and h = 0.2

ky = hf (g, v,) = 0.2(1 + y2) = 0.2[(1 + (0.2027)2] = 0.2082

h ky ki)
k, = hf(x1 +§,y1 +7> =0.2 ll + (yl +7) l
= 0.2[1 + (0.2027 + 0.1041)?]
= 0.2[1 + (0.3068)%] = 0.2188
ks = hf (x1 W +E) = 0.2 I1 + <y1 +E)Zl
2 2 2
= 0.2[1 + (0.2027 + 0.1094)2] = 0.2[1 + (0.3121)?] = 0.2195
ky = hf(xy + h,ys + k) = 0.2[1 + (y; + k3)?]
= 0.2[1 + (0.2027 + 0.2195)?]
= 0.2[1 + (0.4222)?] = 0.2356

1
Yo = V1 +g(k1 +2k2 +2k3 +k4)

1
=0.2027 + 3 [0.2082 + 0.4376 + 0.4390 + 0.2356]
= 0.2027 + 0.2201 = 0.4228.

To compute y;, we use x, = 0.4,y, = 0.4228 and h = 0.2.



ki  =hf(x,y;)=02[1+y?] =02[1+ (0.4228)?]
= 0.2[1 + 0.17876]
= 0.2[1. 17876] = 0.2358

b =hf (ot hy+ _)_02[1+(y2+%)2]

1+ (0.4228 + 0.1179)2] = 0.2[1 + (0.5407)2]
1+ 0.2924] = 0.2585

h k2 ko \*

0.2[1+ (O 4228 + 0.12925)?]

= 0.2[1 + 0.3048] = 0.2609
k4_ = hf(xZ + h, V2 + k3)

= 0.2[1 + (0.4228 + 0.2609)?]

= 0.2[1 + 0.4674] = 0.2935

0.2
0.2

1
V3 =Y +€(k1+2k2+2k3+k4)
1
= 0.4228 +[0.2358 + 2(0.2585 + 0.2609) + 02935

1
= 0.4228 + - (1.5681)
= 0.4228 + 0.26135 = 0.68415.

Thus we have y(0.2) = 0.2027,y(0.4) = 0.4228 and y(0.6) = 0.68415.

Milne-Simpson's method

Given Z—z = f(x,y) and y = y, at x = x,. To find an approximate value of y for x = x, + nh
by Milne-Simpson's method.

The given differential equation is Z—i =f(x,y)

The initial conditions are y = y, at x = x,.

In this method, we first obtain the approximate value of y,,, by predictor formula and then
improve this value by means of corrector formula.

By Newton's formula for forward interpolation, we have

u(uz!— 1) Ny, + u(u — 13)!(u —-2) My, + u(u — 1)(u4!— 2)(u—3) Ay,

+

y =Y, +uly, +

where u = =22 - 2ie,x =x9+uh

In terms of y’ and u, the formula is



u(u—1 u(u—1)u -2
uu—1Dw—-2)(u-3
LU D@=DW=3) ) - (73)

4!
Integrating over the interval x, to x, + 4h or u = 0 to 4, we have

Xo+4h Xo+ah u(u—1) u(u—1)(u-2)
f y'dx = f [Yé Tubyo+ ——— Ny + 6 K5
X0 Xo

u(u—1D(u—-2)(u—3)
+ 7 A*

i

1, Couuw-1 L, uu-Du-2) .,
Ya—Yo=h f [yo+uAyo =A%y + e Ny,
0
+u(u—1)(u—2)(u—3)
24

, , 20 , 8 , 28 ,
= h [4y0 + 8Ay0 + ?AZyO + §A3y0 + %A4y0:|

or

Ayl + ]du

Substituting A = (E — 1), we get

, , 20 5, 8 s 1,28, .,
yo=yo = h|ays+8(E = Dys+ 5 (B - D2yh +5 (B = 17| + 5 hatyg + -

20 8
—h [4y(’) +8(E = Dy} + 7 (B = 2B+ Dyj + 5 (B3 — 382 + 3E - 1)y(’)]

+28hA4 b+
90 Yo
1A I ! 20 1A 40 1A 20 A 8 1A A ! 8 1A
=h [43’0 +8y1 —8yot+—5y2—5Vit+t—5Yot+t5y: — 8y, +8y; — _3’0]
3 3 3 3 3
28 o
+%A Yo + .-
4h , , , 28 o
Y Ys =Yoot ?(Zyl —y; + 2y3) +50 Ao+ - (7.4)

This is Milne's predictor formula.
To obtain the corrector formula, we integrate (7.3) over the interval x, to x, +2h or

u = 010 2. Thus we have

2 2 u(u—1 u(u—1Du -2
j y'dx = hj [y(') + uly, +¥A2y(’, + ( X )A3y(’,
. . 2! 3!
uu—1Nu—-2)(u—3
+ ( ) 7 X )A‘*y(’) +---...]du

or

14 14 1 2.7 1 4.1
YZ_YO:h[ZYO+2A3’o+§A yo—%A yo]



Substituting A = (E — 1), we get
i 1
Y2 =Yoth 2y6+2(E—1)y6+§(E—1) ] %0 Atys +

' 1
=y th 2y6+2(E—1)y6+—(E2—2E+1)yo] 90 Atyy +

=yo+h 2yo +2y; =2yt 3 (yz —2y; + yo)] - —A4J’o

h
Y2 =Yooty (yé +4y1 +y;3) — %A43’o ..(7.5)

This is Milne's corrector formula.
Since x,, x4, x5, X3, x, are any five consecutive values of x, so in general equations (7.4) and

(7.5) can be written as

4h
Yn+1 = Yn-3 + = [2y7-2 = Yn-1 + 2yn] ..(7.6)

h
and yffﬁl Yn-1t3 [Vn-1 + 4Yn + Ynial - (7.7)

Thus Milne-Simpson's method uses the formulae

Xi+1 = X + h
and the predictor y;,; = yi_3 + 2 [Zﬁ — fio1 + 2fi]
and the corrector yi(ﬂ =Yi-1t3 [ﬁ-_l +4f; + f(Xi41,Viz1)] fori =3,4,5, ... ... ... ,(m—1)

as an approximate solution to the differential equation % =f(xy)
Remarks:

1. As we fit up a polynomial of degree four, therefore we have considered the differences
upto the third order. The terms containing A*y} are not used directly, but they give the
principal parts of the errors in the two values of y,, ., computed from equations (7.4) and
(7.5).

2. The Milne-Simpson's method is not a self starting method. Three additional starting
values y;,y,,y; must be given. They are usually computed using the Runge-Kutta

method.
Example 7.4 Find y(2), if y(x) is the solution of % = %(x + y), assuming that
y(0) = 2,y(0.5) = 2.636,y(1.0) = 3.595 and y(1.5) = 4.968.

Solution: The given equation is



dy_l _
a—i(x‘ﬂ’)—f(xd’)

Taking h = 0.5, we have x, = 0,x; = 0.5,x, = 1.0,x3 = 1.5
“ Yo =2,y, = 2.636,y, = 3.595 and y; = 4.968
We have
Yo =2, ¥, = 2.636, y, = 3.595 and y; = 4.968

_1 —10 2)=1
fo—z(xo‘FJ’o)—E( +2)=

1 1
fi = E(xl +y) = 5 (0.5 +2.636) = 1.568

1 1
fa =506 +2) =5 (1.0 +3.595) = 2.2975
1 1
fz= E(953 +y3) = 5(1.5 +4.968) = 3.234
It is required to find y, corresponding to x, = 2

By Milne's predictor formula, we have

4h
Ya = Yo +?[2f1 — 2+ 2f5]

4(0.5)
=2+—

[2(1.568) — 2.2975 + 2(3.234)]

2
=2+ 3 [3.136 — 2.2975 + 6.468] = 6.8710

fi = %(x4 +y,) = %(2 +6.8710) = 4.4355
Using corrector formula, we have
}’il) =2 +§[fz +4fs + ful
= 3.595 + % [2.2975 + 4(3.234) + 4.4355]
= 3.595 + % [19.6690] = 3.595 + 3.27817 = 6.87317

1 1
0 =[x+ 7] = 512+ 6.87317] = 443659

Again applying the corrector formula, we get



h
J’F) =Yy +§[f2 +4f; + f4(1)]
0.5
= 3.595 + ? [2.2975 + 4(3.234) + 4.43659]

1
= 3.595 +g[19.67009] = 3.595 + 3.27835 = 6.87335

Hence y(2) = 6.873.
Example 7.5 Use Milne-Simpson's method to obtain the solution of the equation Z—i’ =x —y?

at x = 0.8 given that y(0) = 0,y(0.2) = 0.0200,y(0.4) = 0.0795, y(0.6) = 0.1762.
Solution: The given equation is

dy 5
XY =f(xy)

The starting values with h = 0.2 are .
XO =0 yo =00000 fO =x0—y02 =
x; =02 y,=00200 f,=x —y,2=0.1996
xZ = 04 yz = 00795 fz = xZ - yz 2 = 03937
x3 == 0.6 y3 = 0.1762 f3 x3 - y3 2 = 0.5689

By Milne’s predictor formula, we get

4h
Ya =DYo +?[2f1 — f2 +2f3]
0.8
= 0 +—-[2(0.1996) — 0.3937 +2(0.5689)] = 0.3049 (78)

Thus, we have x, = 0.8,y, = 0.3049 and f, = 0.8 — (0.3049)2 = 0.7070

By Milne's corrector formula, we get

h
Yil) =Y +§[f2 +4f3 + ful

= 0.0795 + % [0.3937 + 4(0.5689) + 0.7070]
= 0.3046, which is nearly same as (7.8)
Thus, we have at x = 0.8,y = 0.3046
y(0.8) = 0.3046
Example 7.6 Use Milne-Simpson's method to find y(0.3) from y’' = x2 + y2,y(0) = 1. Find
the initial values y(—0.1), y(0.1) and y(0.2) from the Taylor's series method.
Solution. The given equationis y' = x2 + y2 = f(x,y)

The initial conditions are x, = 0 and y, = 1.



We have

y'" =2x+2yy’
yIII — 2 + Z(yl)z + 2yy”
yw — 4y/yu + Zy/yu + zyyur — 6yryn + Zyyur

Putting x, = 0 and y, = 1, we have
y(0)=x+y2=0+1=1
y'(0) =2x0+2y0Y0=0+2=2
y"(0)=2+2(y)?* +2y0y9 =2+2+4=8
Yy (0) = 6yy4 + 2y0yy’ =12 + 16 = 28
Using Taylor's series, we get

2 3 x4

y() = y(0) +xy'(0) + 5y (0) + 513" (0) + 7 y*(0) + -
X Xt .
= 1+X(1) +?(2) +§(8) +Z(28) + .-

4 7
:1+x+x2+§x3+6x4+---

4 7
y(=0.1)  =1=0.1+0.01+5(~0.001) +=(0.0001) + -

=1-0.1+0.01-0.00133 +0.0001166 + --
= 0.9088

4 7
y(01)  =1+0.1+0.01+(0.001)+2(0.0001) + -

=1+0.1+0.01+0.00133 +0.00011 + ---
= 1.11145

4 7
y(0.2) =1+02+0.04+(0.008) +-(0.0016) + -

=1+0.2+0.04 + 0.0106666 + 0.00186666 + ---
= 1.2525

Taking h = 0.1, the starting values for Milne's method a

x_,=-01 y_,=09088 f,=0.8359

Xo =0 Yo =1 fo=1
x; =0.1 y; = 111145 f; = 1.2453
x, = 0.2 y, = 12525 f, =1.6088

By Milne's predictor formula, we have

4h
Y3 =Y +?[2f0 — f1 +2f3]

0.4
= 0.9088 + 3 [2 —1.2453 + 3.2176]
= 0.9088 + 0.5296 = 1.4384



fs = x32 +y3 2 = (0.3)2 + (1.4384)2 = 2.159

Using Milne's corrector formula, we have

h
3’3(1) =y + §[f1 +4f, + f3]

0.1
= 1.11145 + —[1.2453 + 4(1.6088) + 2.159)]

= 1.11145 + 0.328 = 1.43945
£ =(0.3)% + (1.43945)2 = 2.162

Again, using the corrector formula, we have

h
2 .
y3( ) =Y1+§[ll+4‘f2 +f;))(1):|

0.1
=1.11145 + 3 [1.2453 + 4(1.6088) + 2.162]

= 1.11145 + 0.3281 = 1.4395
Thus, we have y(0.3) = 1.4395.

Example 7.7 Using Runge-Kutta method of order 4, find y for x = 0.1,0.2,0.3 given that

&y xy + vy2,y(0) = 1. Continue the solution at x = 0.4 using Milne-Simpson's method .

dx
Solution: The given differential equation is
Z—i =xy+y*=f(x0y)
The initial conditions are x, = 0 and y, = 1.
Taking h = 0.1, we shall find y, corresponding to x; = 0.1 in the following way
ki = hf(xy,¥0) = 0.1f(0,1) = 0.1[0 + 1] = 0.1
k, = hf (xo + %h, Yo + %kl) — 0.1£(0.05,1.05) = 0.1(1.155) = 0.1155

1 1
ks = hf (xo +5hyo + §k2> = 0.1£(0.05,1.0578) = 0.1(1.1718) = 0.1172

ky = hf(x + h, vy + k3) = 0.1£(0.1,1.1172) = 0.1(1.3598) = 0.13598
1
k =g(k1 + Zkz + 2k3 +k4)

1
= 2[(0.1+2(0.1155) + 2(0.1172) +0.13598)]
1
= 2(0.70139) = 0.1169

Vi =Yo+k=1+0.1169 = 1.1169
Now to compute y, corresponding to x, = 0.2 using x; = 0.1,y; = 1.1169and h = 0.1



k, =hf(xy,y,) =0.1£(0.1,1.1169) = 0.1(1.3592) = 0.1359

1 1
k, =hf (x1 +shy + Ekl) — 0.1£(0.15,1.1849) = 0.1(1.5817) = 0.1582

1 1
ks =hf (xl +Shy; + §k2> — 0.1£(0.15,1.196) = 0.1(1.6098) = 0.161
k, =hfCe +hy, +ks) = 0.1£(0.21.2779) = 0.1(1.8886) = 0.1889
1
k :g(k1+2k2+2k3+k4)

[0.1359 + 2(0.1582 + 0.161) + 0.1889]

[0.9632] = 0.1605
Yy, =y, +k=11169 + 0.1605 = 1.2774

(o) e N

To find y; corresponding to x; = 0.3 using x, = 0.2,y, = 1.2774and h = 0.1.
k; = hf(x,y,) = 0.1£(0.2,1.2774) = 0.1(1.8872) = 0.1887

1 1
k, =hf (xz +5hy, + Ekl) = 0.1£(0.25,1.3718) = 0.1(2.2248) = 0.2225

1 1
ks =hf (xz +5hys + Ekz) = 0.1£(0.25,1.3887) = 0.1(2.2757) = 0.2276

ky, =hf(xy+hy,+ks)=0.1£(0.8,1.5050) = 0.1(2.7165) = 0.2717

1
k = [k1 + Z(kz + k3) + k4_]

[0.1887 + 2(0.2225 + 0.2216) + 0.2717] =

6
1
c [1.3606] = 0.2268

N

y3 =y,+k=12774+0.2268 = 1.5042

Thus, the starting values for Milne's method are

xX0=0 y=1 fo=xyoty5 =1

x; =01 y, =11169 f; =xy; +vy# = 13592
x, =02 y,=12774 f, =x,y, +y? =1.8872
x; =03 y;=15042 f; =x3y;+y5=27139

Using Milne's predictor formula, we get

4h
Ya =Yo +?[2f1 — f2 + 2f5]

0.4
= 1+—-[2(1.3592) - 1.8872 + 2(2.7139)]

=1+ 0.8345 = 1.8345
S Xy = 04‘, V4 = 1.8345 and f4 = XpYa + yf = 4.0992

Using Milne's corrector formula, we get



h
vi) =y tzlh+afs+ Al

0.1
= 1.2774 + —-[1.8872 + 4(2.7139) + 4.0992]

= 1.2774 + 0.5614
= 1.8388.

£ = yP[x, + V] = 1.8388[0.4 + 1.8388] = 4.1167.

Again applying Milne's corrector formula, we have

h
yiz) =Yy, + §[f2 + 4f; +f;;(1)]

0.1
= 12774 + —-[18872 + 4(2.7139) + 4.1167]
= 1.2774 + 0.56198 = 1.8394
£2 =3P, +3®| = 1.8394[0.4 + 1.8394] = 4.1192

Again, by Milne's corrector formula, we have

h
v =yt as+ A7)

0.1
= 12774 + —[18872 + 4(2.7139) + 4.1192]
= 1.2774 + 0.5621 = 1.8395
2 £ =y P s + 3] = 1.8395[0.4 + 1.8395] = 4.1196

Hence y(0.4) = 1.8395.

ADAMS-BASHFORTH METHOD
We have

% = f(x,y), where y, = y(x,) . (7.9)

In this method, we compute y_; = y(xo — h),y_, = y(xo — 2h),y_3 = y(x, — 3h) by Taylor's
series or Euler's method or Runge-Kutta method.
Using the given relation y' = f(x,y), we have

yii=f(xo—hy_1),
vy, =f(xo—2hy_;) and y_ ;3 = f(xo — 3h,y_3),

Integrating (7.9) from x, to x, + h, we get

x0+h
Y1 ="Yo +f f(x,y)dx ..(7.10)
X0



The integral can be evaluated by replacing unknown function f(x, y) by polynomial p(x). Using

Newton's backward interpolation formula, we have

u(u+1) ufu+1u+2)
f(y) = p(x) =f0+uvfo+TV2f0+ 30 Vfo +
where u = =X = f(x0,¥o)
=~ Equation (7.10) becomes
Xoth u(u+1) u(u+ 1)(u+2)
Yi=Yot j [fo"‘uvfo —V2f0+ 3 V3f0+---]dx
Since x = xy + uh - dx = hdu.
Atx =xgu=0andatx =x, +hu=1
1 u(u+1) u(u+1)(u+2)
L= b [fo bl + Sy + T | du

ofiegree e Qe

—3’0+h[f0 +_V2f0+3V3fo ]

Substituting V=1 — E~1, we get
1 5 i 3
}’1:}’0+h[fo+§(1—E 1)fo+ﬁ(1—E D% fo +§(1—E 1)3f0+"']
[ 1 -1 5 -1 -2 3 -1 -2 -3
=y +h f0+§(1—E o + 75 (1= 2B+ E)fy + (1 - 367 + 362 — F )f0+---]
1 5
= Yot h[fotzfo—gftigfom ol trsfatafo—afatafa—afat ]

=}’0+h<1+;+15_2+ )fo ( > 9)f1 (5 )fz_—fs ]

i 37
=yot+h _ﬁfo _ﬁf—1 +ﬁf—2 _gf—s + ]

=y0+%[55f0—59f_1+37f_2—9f_3+---] . (7.11)
This is called Adams-Bashforth Predictor Formula.

Now we shall obtain f; = (xo + h, y;)

In order to obtain a better approximation for y;, we shall derive a corrector formula by putting

Newton's backward formula at f; i.e.,



1
Fooy) = i+ unfy + N D

where x = x; + uh and dx = hdu.
Using (7.12) in (7.10), we get

u(u+1D(u+2)

T V3f, + - . (7.12)

Xoth u(u+1 u(u+ 1D +2
"o —3’0+f [—f1+uvf1 +—( o )V2f1+ ( 3),( )V3f1 +---]dx
%o ! !
Sincex =xp+h+uh,sox=xy=>u=—-landx=xy+h=>u=0
+ u(u+1)(u+2
)ﬁ(l) = Yo +hf [f1+ uVf; + ( D Vi + ( 3),( )V3f1+-~-]du

—)’0+h[f1 SV - V2f1 V fit+ ]

Taking V= 1 — E~, we have

W =yt k|5 (=B~ (- B - o (L= B 4 o
=y0+h:fl—%(fl—fo)—%(l—ZE‘l+E‘2)f1—%(1—3E‘1+3E‘2—E‘3)f1+
=yo+hﬁ—%(fl—fo>—%<f1—2fo+f_1>—i<f—3fo+3f_1—f_2)+---..]
=y°+h:(1_%_%_%)f1+(% : )f" (12 8)f1 f‘2+""']

h
=Yot oy [9f1 +19fo — 5f-1 + f-2] . (7.13)

This is called Adams-Moulton Corrector Formula.

Note: For applying Adams-Bashforth method, we need four starting values of y which can be
calculated by means of Taylor's series method or Euler's method or Runge-Kutta method. In
practice fourth order RungeKutta formula together with Adams -Bashforth formula is most
useful.

Example 7.8 Given

d
% = x2(1+y) and y(1) = 1,y(1.1) = 1.233,y(1.2) = 1.548,y(1.3) = 1.979

Evaluate y(1.4) by Adams-Bashforth method.
Solution: f(x,y) = x2(1+7v)

Taking h = 0.1, starting values are



x3=100 y ;=1
x_,=11 y_,=1.233
x_,=12 y_;=1.548
xXo=1.3 vo = 1.979

fos =10+1)=2

fo, = (1.1)%[1+1.233] = 2.702

foi = (1.2)%[1+ 1.548] = 3.669

fo = (1.3)%[1+1.979] = 5.035

Using the predictor formula, we have

h
Yi =Yo +ﬁ[55f0 —59f_1 +37f_, — 9f_3]

0.1
= 1.979 + - [55(5.035) — 59(3.669) + 37(2.702) — 9(2)]
= 2.572
Thus we have x; = 1.4,y, = 2.572.

fi =x2(1+y,) = (1.4)*[1 + 2.572] = 7.003
Using the corrector formula, we have

h
Y1 =Yo +ﬁ[9f1 + 19fy — 5f_1 + f-2]

0.1
= 1.979 +--[9(1.7003) + 19(5.035) — 5(3.669) + 2.702]

= 2.376
Thus at x = 1.4, we have y = 2.376

Hence, y(1.4) = 2.376.
Example 7.9 Using Adams-Bashforth method, obtain the solution of Z—i’ =x—y%atx=0.8,

given the values.

y:— | 0 [ 0.0200 | 0.0795 | 0.1762

Solution: Here % =x—y?=f(xy)

Taking h = 0.2, the starting values of Adams-Bashforth method are



x_s =00 y.3=00 f;=0-0=0

x, =02  y_,=002 f,=02-/(0.02)%=0.1996

x_;, =04 y_,=00795 f,=04—(0.0795)% = 0.3937
x, =06 y,=0.1762 f,=0.6—(0.1762)2 = 0.5689

Using the predictor formula, we have
h
Y1=Yot ﬁ[55f0 =591, +37f_; — 9f_5]

0.2
= 0.1762 + - [55(0.5689) — 59(0.3937) + 37(0.1996) — 9(0)]

= 0.1762 + 0.1287 = 0.3049
Thus, we have x; = 0.8,y; = 0.3049
fi = 0.8 —(0.3049)% = 0.7070

Using the corrector formula, we have

h
3’1(1) =Yo + 54 [9f1 +19f0 — 5f_1 + -]

0.2
= 0.1762 +5--[9(0.7070) + 19(0.5689) — 5(0.3937) + 0.1996]

= 0.1762 + 0.1284 = 0.3046
Thus, we have at x = 0.8,y; = 0.3046

y(0.8) = 0.3046.
Example 7.10 Given y' =x%2—1y,y(0) =1 and the starting values y(0.1) = 0.90516,
v(0.2) = 0.82127,y(0.3) = 0.74918. Evaluate y(0.4) using Adams-Bashforth method .

Solution: Here % =x2—y=f(xy)

Taking h = 0.1, the starting values of Adams-Bashforth formula are

x_3=00 y_;=10 fa=0—-1=—1

x_, =01 y_,=090516 f,=(0.1)2—0.90516 =—0.89516
x_,=02 y_,=082127 f,=(0.2)%—0.82127 = —0.78127
xo =03 y,=074918 f, = (0.3)2 — 0.74918 = —0.65918

Using the predictor formula, we have

h
Yi =Y+ ﬁ[55f0 —59f_1 +37f_, — 93]

= 0.74918 + % [55(—0.65918) — 59(—0.78127) + 37(—0.89516) — 9(—1)]
= 0.74918 — 0.0595 = 0.68968 . (7.14)
Thus, we have x = 0.4,y, = 0.68968
£, = (0.4)% — (0.68968) = —0.52968



Using the corrector formula, we have

h
W =yo 57 [9fi +19f0 =511 + o]

0.1
= 0.74918 + —=[9(—0.52968) + 19(-0.65918) — 5(-0.78127) + (~0.89516)
= (0.74918 = 0.0595 = 0.68968 which is same as (7.14)
Thus, we have at x = 0.4,y = 0.68968

(0.4) = 0.68968.

7.4  SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS

The simultaneous differential equations of the type

- f(x,y,Z) "'( " )
dx ( e ) ."( ' )

with initial conditions y(x,) = y, and z(x,) = z, can be solved by the methods discussed in the

preceding sections, especially Picard's or Runge-Kutta methods.
PICARD'S METHOD

This method is used as follows
Y1 ="Yo +f f(x,¥0,20)dx, 2z, = 2, +f d(x,y0, Zo)dx
y2 = yO +f f(x:}’1;Z1)dx,Zz = ZO +f ¢(x,y1,21)dx

Y3 =Yo +J f(x,¥2,23)dx, 23 = z +f b (x,y,,2,)dx

and so on.

TAYLOR'S SERIES METHOD

This method is used as follows:

If h be the step-size, y, = y(xo + h) and z; = z(x, + h). Then Taylor's algorithm for (7.15) and
(7.16) gives



h2 3

Y1=Yot+hyo+5ryo + 50+ .. (7.17)
h2 3

zZ1 = zy + hzy + EZ(,), + ;Z(’)” + - ..(7.18)

Differentiating (7.15) and (7.16) successively, we get y", z", etc. So the values y{, vq, v -+ and

nr

Zy, 24,24 -+ are known. Substituting these in (7.17) and (7.18), we obtain y,, z; for the next

step.
Similarly, we have the algorithms
! hz n h3 124
yz :y1+hy1+;y1 +;yl + .- (719)
h? h3
Z, =zl+hZ{+;Z{’+;Z”’+~-- ... (7.20)

Since y; and z, are known, we can calculate y;, y;’, -+ and z;, z;', ---. Substituting these in (7.19)
and (7.20), we get y, and z,.

Proceeding further, we can calculate the other values of y and z step by step.

RUNGE-KUTTA METHOD

Runge-Kutta method is applied as follows:

Starting at (x,, yo, zo) and taking the step-sizes for x,y, z to be h, k, [ respectively, the Runge-

Kutta method gives,
ky = hf (x0, Y0, Zo)
L1 = ho(x, Y0, Zp)
1 1 1
k2 -_ h.f (xO +Eh,y0 +Ek1,Z0 +§ll>
1 1 1
L, = ho (xo +5hyo+ 5k 7 +§zl)
1 1 1
ks = hf (xo 5 hyo+ 5k +§lz>
1 1 1
l3 = hd) (xo +§h,y0 +§k2,ZO +El2)
1 1 1
ky = hf (xo +5hyo+5 ks, +513>
1 1 1
l4_ = h¢ (xo +Eh,y0 +Ek3,ZO +El3)
Hence

1
Y1 = Yo +g(k1+2k2+2k3+k4)



and
1
Zl = yo +g(l1 + 2l2 + 2l3 + l4_)

To compute y, and z,, we simply replace x, v,, zo by x4, 1, z; in the above formulae.

Example 7.11 Using Picard's method, find approximate values of y and z corresponding to
x = 0.1, given that y(0) = 2,z(0) = 1and dy/dx = x + z,dz/dx = x — y2.

Solution: Here x, = 0,y, = 2,2, = 1,
dy _
and = fx,y,z2)=x+z

dz

a= ¢(X,y,Z) =X—y2

X X
Sy =y + fxof(x,y, z)dx and z = z, + fxoqb(x,y,z)dx
First approximations
X X 1
h=Yrﬂff@Jm%Mx=2+f (x4 Ddx =2+ x + x>
Xo Xo 2
X X

1
z1=2o+ | ¢,y ze)dx=1+| (x—4)dx=1-4x +§x2

=

0 Xo
Second approximations

P

1
(1 — 4x +—x2) dx

X
V2 :3’o+f f(x,ylyzl)dx=2+f
X, 0 2

0
=2+ 32+X3
CETETYY TG

x x 1 2
Zy =Zo+f ¢(X.}’1,Zl)dX=1+f lx—(2+x+—x2)ldx
X0 Xo 2
3 x* x5
—1_ 22 _ .3 o r
1 4x+2x X 7 20

Third approximations



32 1o 1, 1 o 1 4
= 0+L f(xyz,zz)dx—2+x—§x —Ex —Zx ~20% " 120%

Zz3 =2zp+ ¢)(x,y2,zz)dx
Xo
3 5 7 31 1 1
— _ A2 — A3 _ 4-__ 5 _ 6__ 7
L=dxox 3+ o g Y128 T 252"
and so on.
When x = 0.1

y, =2.105, y, = 2.08517, y; = 2.08447
z, = 0.605, z, = 0.58397, z; = 0.58672.

Hence y(0.1) = 2.0845, z(0.1) = 0.5867

correct to four decimal places.

Example 7.12 Find an approximate series solution of the simultaneous equations dx/ dt = xy +

2t,dy/dt = 2ty + x subject to the initial conditions x = 1,y = —-1,t = 0.

Solution: Since x and y both being functions of ¢, Taylor's series gives

2 3

t
x(t) = xo + txy + Exo +§x(’)” + -
£2 3
rn

y(t) =yo +tyo + Z,yo tovo +

Differentiating the given equations w.r.t. t, we get

x'=xy+2t
y' =2ty +x
and
x" =xy'+x'y+2
x 1 — (xyll +xly/) + xlly + xly
y'=2ty'+2y +x’ }
ylll — Zty” + Zyl + Zyl + xll

4

Putting x, = 1,y, = —1,t, = 0, we obtain



x, =-1+2(0)=-1 yh =1

xXg = XoYo +XoYo + 2 Yo' =0+ 2y, + xg
=11+(-D(-1)+2=4 =2-D+(-1)=-3
x' =-3+C-DQ)+4(-1)-1=-9 Yo =2+2+4=8etc
Substituting these values in (i), we get
t? 3 3
=1- 4 — -9 —F .o =1— 262 ——3 4 ...
x(t) t+ 2!+( 9)3!+ t+2t" =2t +
t—1+t+32+8t3+ =1+t 3t2+4t3+
x(6) = 20 %3 T T 2° 73

Example 7.13 Solve the differential equations

Yot iy torx =03
v xz,—— = —xy forx = 0.

using the fourth order Runge-Kuta method. Intial valuesare x =0,y =0,z = 1.

Solution: Here

fx,y,z2) =1+ xz,¢(x,y,z) = —xy
X0 =0,y =0,z = 1. Let us take h = 0.3.
kl == hf(xO,yo,Zo) == 03f(0,0,1) = 03(1 + O) = 03
l1 = h¢(x0,y0, Zo) = 03(—0 X 0) =0

1 1 1
k, = hf(xo +5hyo+ 5k 7 +§l1>

= (0.3)£(0.15,0.15,1) = 0.3(1 + 0.15) = 0.345

1 1 1
l2 = h¢) (XO +Eh,y0 +Ek1,Z0 +§l1>

= (0.3)[—(0.15)(0.15)] = —0.00675
s = hf (o + by yo + 2, 70 + 2
3= f(xo ) » Yo 2'Z° 2)
= (0.3)£(0.15,0.1725,0.996625)

= 0.3[1 + 0.996625 x 0.15] = 0.34485

ls;=h P .
3= ¢(xo 2»3’0 2'ZO 2)

= 0.3[—(0.15)(0.1725)] = —0.007762
ky=nhf(xqg+ hyo+ ks 2o+ 13)

= 0.3f(0.3,0.34485,0.99224) = 0.3893
ly =hep(xg + h,yy + ks, zo + 13)

= 0.3[—(0.3)(0.34485)] = —0.03104



Hence y(xo+h) = yo + (ky + 2ky + 2k + ky) i€, ¥(0.3) = 0+-[03 +2(0.345) +
2(0.34485) + 0.3893] = 0.34483
and z(x + h) = yo + = (I + 20, + 213 + 1)
i.e.
z(03) =1+ % [0 + 2(—0.00675) + 2(0.0077625) + (—0.03104)]
= 0.98999

SECOND ORDER DIFFERENTIAL EQUATIONS

Consider the second order differential equation
d’y dy
=S ()
By writing dy/dx = z, it can be reduced to two first order simultaneous differential Equations
dy
dx
These equations can be solved as explained above.

dz
2,7 f(x,.2)

Example 7.14 Find the value of y(1.1) and y(1.2) from y” + y?y' = x3;y(1) = 1,y'(1) =1,
using the Taylor series method

Solution: Lety’ = zsothaty"" = z'

Then the given equation becomes z’ + y?z = z3

oo y’ =7
z' =x3—y?z
such that
y(1) =1,z(1) = 1,h = 0.1,
Now

7' =x3—y?z,7" =3x* —y?z' —2yz*(v y' = 2)
z'" =6x— (y*z" +2yy'z") — 2(y'z% + y?zz')
=6x — (y?z" + 2yz'?) — 2(23 + 2yzz")

— no_ 1 nro_ I
y =zy =z,y =2Z l



and Taylor's series for y(1.1) is

h2 3
yAD =y@) +hy' (D) + 57y 1) + 57y (D) + -

Also
yD=1Ly'H=,y" V=21 =0y"(1H)=z"(D) =1

(0.1)2 (0.1)3
y(11) = (1) +0.1(1) + == (0) + = (0) = 1.1002.

Taylor's series for z(1.1) is
2 3

z(11)=z(Q) +hz'(1) + %Z”(l) + %Z”'(l) + -

Here
z(D=12z'(1)=0,2z"(1)=1,2""(1) =3
(0.1)? (0.1)3
2(11) = (1) +0.1(0) +-—— (1) + ——(3) = 10055

Hence y(1.1) = 1.1002 and z(1.1) = 1.0055.

Example 7.15 Using the Runge-Kutta method, solve y"" = xy'? — y? for x = 0.2 correct to 4

decimal places. Initial conditionsare x = 0,y = 1,y’ = 0.

Solution: Letdy/dx =z = f(x,y,z)
Then Z—z =xz2 —y? =¢(x,y,2)
Wehavexy =0,y =1,z =0,h = 0.2
~ Runge-Kutta formulae become
ki = hf(x9,Y0,20) = 0.2(0) =0
ky = hf (xo i hyy + ok zg +%zl)

2 2
=0.2(-0.1) = —0.02

1 1 1
ks = hf (xo = hyy+ ko 2, +§lz>
— 0.2(=0.0999) = —0.02

k4 == hf(xo + h,yo + k3,ZO + l3)
= 0.2(—0.1958) = —0.0392

Hence at x = 0.2,



1
o k == g(kl + 2k2 + 2k3 + k4) = 0.0199
ll = hf(xo,yO, ZO) = 02(_1) = —-0.2

1 1 1
lz == h(p <x0 +Eh,y0 +5k1,ZO +Ell>

= 0.2(—0.999) = —0.1998

1 1 1
l3 = hd) (xo +§h,y0 +§k2,ZO +§lz)

= 0.2(—=0.9791) = —0.1958
l4_ = h¢(x° + h,yo + k3,ZO + lg)
= 0.2(0.9527) = —0.1905

1

and
y=yY,+k=1-0.0199 = 0.9801
y'=z=20+1=0-0.1970 = —0.1970.

Example 7.16 Given y"" +xy'+y =0,y(0) = 1,y'(0) = 0, obtain y for x = 0(0.1)0.3 by

any method. Further, continue the solution by Milne's method to calculate y(0.4).

Solution: Putting y" = z, the given equation reduces to the simultaneous equations
Z’+xz+y=0,y' =z
We employ Taylor's series method to find y.
Differentiating the given equation n times, we get
Yn+z T Xngr + Y+ =0

At

x=0,ns+2)o = —(m+ DOm0
~ y(0) =1, gives y,(0) = —1,y,(0) = 3,y,(0) = =5 % 3, ......
and y; (0) = 0 yields y3(0) = y5(0) = --- ... = 0. Expanding y(x) by Taylor's series, we have

2 3
y(x) =y(0) + xy,(0) + %yZ(O) + %yg(O) + ..

B x%2 3 , 5X3
O TRy

x® +

and

1 1
Z(x) :y’(x) = _x+§x3 _§x5 4o = —xy,



Now, we have

(0.1)% 1
Y1) =1--—=+ g(0.1)4 — .+ =0.995
y(0.2)=1- (0'22)2 + (0?4 — - =0.9802
_ (032 (03)* (03)°
y(0.3) =1 ————+-—F—— === 0956

Also, we have

2(0.1) = —0.0995,2(0.2) = —0.196,2(0.3) = —0.2863.
Also from (1),z'(x) = —=(xz + y)
« z'(0.1) = 0.985,2'(0.2) = —0.941,2'(0.3) = —0.87.

Applying Milne's predictor formula, first to z and then to y, we obtain
z(04) =2z(0)+ %(0.1){22’(0.1) —2'(0.2) + 22'(0.3)}
=0+ (%) {—=1.79 + 0.941 — 1.74} = —0.3692
and
y04) =y(0)+5 0Dy 0.1 -y (02) + 2y (03} [+ ' = 2]
=0+ (03—4> {—0.199 + 0.196 — 0.5736} = 0.9231

Also z'(0.4) = —{x(0.4)z(0.4) + y(0.4)}
= —{0.4(—0.3692) + 0.9231} = —0.7754.
Now applying Milne's corrector formula, we get

z(04) =2z(0.2)+ g{z’(O.Z) +4z'(0.3) +z'(0.4)}

0.1
= —0.196 + <?> {—0.941 — 3.48 — 0.7754} = —0.3692

h
y(0.4) =y(0.2)+ g{y’(O.Z) +4y'(0.3) + y'(0.4)}
and

0.1
= 0.9802 + <?> {—0.196 — 1.1452 — 0.3692} = 0.9232

Hence y(0.4) = 0.9232 and z(0.4) = —0.3692.



7.6CHECK YOUR PROGRESS

1

7.7

Use the Runge-Kutta fourth order method to find the value of y when x = 1 given that

dx  y+x’

Use the Runge-Kutta method to solve 10% =x2+y?%,y(0) =1 for the interval
0<x<04withh=0.1

Use predictor-corrector method for tabulating a solution of 102—1 =x2+y%y(0)=1
for therange 0.5 < x < 1.0

Tabulate the solution of Z—i =x+y,y(0)=0 for 0.4 <x < 1.0 with h = 0.1, using
predictor corrector formulae

Solve the system of differential equations % =y - t,% =x+twithx =1,y =1 when
t = 0taking At = h = 0.1

Compute y(1.1) and z(1.1) given that % = xyz,% =>and y(1) = %,z(l) =1.

Solve the equation % + y = 0 with the conditions y(0) = 1 and y'(0) = 0. Compute
v(0.2) and y(0.4)

SUMMARY

Students are made familiar with some preliminary definitions and the methods for finding the

solution of initial value problems.

7.8 KEYWORDS

Initial value problem, Multi-Step methods, Simultaneous First Order Differential Equations.

7.9
1

2

SELF-ASSESSMENT TEST

Explain Runge-Kutta method carefully for solving a first order differential equation.
Using Runge-Kutta method of fourth order, compute y(0.2) in steps of 0.1 if Z_i:

x + y? giventhaty = 1 when x = 0.



10

11

7.10

Solve numerically % = 2e* —y, at x = 0.4,0.5 by Milne-Simpson's method given their
values at points x = 0,0.1,0.2,0.3 are y, = 2,y; = 2.010,y, = 2.040, y; = 2.090.
Solve the initial value problem Z—z =1+ xy?,y(0) = 1 for x = 0.4; 0.5 by using Milne-

Simpson's method, given that

x: 0.1 0.2 0.3

y: 1.105 1.223 1.355

Use Milne-Simpson's method to solve Z—i = x + y with initial condition y(0) = 1 from
x = 0.20 to x = 0.30.

Given Z=1+y% where y(0)=0,y(0.2) = 0.2027,y(0.4) = 0.4228,y(0.6) =
0.6841. Using Milne-Simpson's method compute y(0.8).

Apply Milne-Simpson's method to find a solution of the differential equation y’' = x —

y? in the range 0 < x < 1 for the boundary condition y = 0 at x = 0.

Use Milne-Simpson’'s method to solve % = x + y with initial condition y(0) = 0 for
x=04t0x=1

Solve by Milne-Simpson's method, the differential equation Z—z =y —x? with the

following starting values:
y(0) = 1, ¥(0.2) = 1.12186, y(0.4) = 1.4682, y(0.6) = 1.7379

and find the value of y when x = 0.8.

Find y(0.1),z(0.1),y(0.2), and z(0.2) from the system of equations: y' = x + z,z" = x — y?
given y(0) = 0,z(0) = 1 using Runge-Kutta method of the fourth order.

Using Picard's method, obtain the second approximation to the solution of

d’y  .dy 1
— = x> = that y(0) = 1.y'(0) = =
Tx? X dx+x y so that y(0) y'(0) >

ANSWERS TO CHECK YOUR PROGRESS

y(1) = 1.4983

1.0101, 1.0207, 1.0318, 1.0438

1.0569, 1.0713, 1.0871, 1.1048, 1.1244, 1.1464

0.0918, 0.1487, 0.2221, 0.3138, 0.4255, 0.5596, 0.7183



(0.1) = 1.1003,y(0.1) = 1.1102
y(1.1) = 0.3707,z(1.1) = 1.0361
y(0.2) = 1.0204, y(0.4) = 1.0
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8.0 LEARNING OBJECTIVES

o In this chapter we will be able to explaining the solution of boundary value problems
based on second order finite difference methods.
o It also brief about the Shooting method, cubic spline methods, and mixed boundary value

problems.

8.1 INTRODUCTION

The boundary value problems require solution of a differential equation in a region R subject to
the various conditions on the boundary of R. Practical applications give rise to many boundary

value problems. Some simple examplés of two point linear boundary value problems are:



Y + f)y' () + gy (x) = r(x) - (8.1)

with the boundary conditions

y(xo) = a,y(xn) = b, ¥'(x) + p(x)y(x) = q(x) ... (8.2)
Also with the conditions y(x,) = y'(xy) = a, y(x,) =y'(x,,)) = b

There exists many numerical methods of solving such boundary value problems, the method of

finite-difference is a popular one and will be described here.

8.2 FINITE DIFFERENCE METHOD

The Finite-difference method for the solution of a two point boundary value problem consists in
replacing the derivatives occurring in the differential equation and the boundary conditions by
means of their finite-difference approximations and solving the resulting linear system of
equations by a standard procedure. To obtain the appropriate finite-difference approximations to
the derivatives, we proceed as follows: If y(x) and its derivatives are single-valued continuous

functions of x then Taylor's series expansion leads to
!/ h2 12} h3 12}
y(x+h)=y(x)+ hy (x)+7y (x)+?y () + - ... (8.3)

which implies that

h) — h h?
y') = ZEED YO Py 4 2y 4
Thus we have
y' () == [y(x + k) = y(x)] + o(h) .. (8.4)

which is the forward difference approximation of y’(x) with an error of order h.

Similarly, expansion of y(x — h) in Taylor's series gives

yx —h) = y(0) —hy' () + 25" () =Ly @) + - .. (85)



from which we obtain

1
y'() =3y -yl —m]+o(h)

which is the backward difference approximation y’(x) with an error of the order h. Subtracting
(8.3) and (8.5), we obtain

1
Y'(0) =5 [y +h) = y(x = ] + o(h?)

which is the central difference approximation of y’(x) with an error of the order h%. Clearly this
central difference approximation to y’(x) is better than the forward or backward difference

approximations and hence should be preferred. Again adding (8.3) and (8.5), we get

1
y%@=ﬁﬂﬂx+m—2ﬂ@+y@—hﬂ+dﬁ)

which is the central difference approximation to y"'(x). In a similar manner, it is possible to
derive finite-difference approximations to higher order derivatives. To solve the boundary value
problems defined by (8.1) and (8.2), we divide the range [x,, x,,] into n equal subintervals of
width h so that

X; =xo+ihi=123..n
The corresponding values of y at these points are denoted by
y(x) =y =y(xo +ih),i=123..

Hence the working expressions for the central difference approximations to the first four

derivatives of y; are as under:



, 1

Yi =op Vis1 — Yi-1)
144 1

Yi = ﬁ(Yi+1 —2yi +yi-1)
m

1
yi = m(}’nz — 2Yi41 — YVi—2)

1
v’ = F(J’Hz —4yi1 + 6y — 4y 1 +Yiop)

The accuracy of this method depends on the size of the subinterval viz h and also on the order of
approximations. As we reduce h, the accuracy improves although the number of equations to be

solved increases.

Example 8.1 To solve the equation y" +y 4+ 1 = 0 with the boundary conditions y(0) = 0
and y(1) = 0.

Solution: The given equation is
y'+y+1=0

we divide the interval (0,1) into four sub intervals so that h = 0.25 and the pivot points are
X9 = 0,x; =0.25,x, = 0.5,x3 =0.75 and x, =1.0. Then the differential equation is

approximated as

1
¥ Vier — 2yi +yicdl = —1—y;

or
16y,.1 — 31y, + 16y;_1,= —1,i = 1,2,3
Using y, = y. = 0, we get the system of equations
16y, — 31y, = -1

Their solutions are



y, = 0.1047,y, = 0.1403,y; = 0.1047

up to four decimal places. The exact solution of the given differential equation is

y(x) =

1—e7*

1

The error at each nodal point is given in the table below:

Computed value Exact value of
X Error
of y(x) y(x)
0.25 | 0.1047 0.099932 0.004768
0.5 0.1403 0.1224593 0.0178407
0.75 | 0.1047 0.0847038 0.0199961

Example 8.2 The deflection of a beam is governed by the equation % + 81y = ¢(x), where

¢(x) is given by

and boundary conditions y(0) = y'(0) = y" (1) = y' (1) = 0. Evaluate the deflection at the

X

[SSRINE

w| N
=

b (x)

81

162 | 243

pivot points of the beam using three subintervals.

Solution: Here h = 1/3 and the pivot points are x, = 0,x; = 1/3,x, = 2/3 and x5 = 1.

The corresponding values of y are y, = 0,y4,¥y,,y3;. The given differential equation can be

approximated to

1
h*

This leads to system of equations

[Vis2 — 4Vig1 + 6y — 4y +yi2] + 81y, = p(x;),i = 1,2,3




V3 — 4y, +7y;1 — 4y, +y_1 =1
Ya—4y3+ 7y, —4y; +yo =2 ... (8.6)
Ys =4y, +7y; =4y, +y1 =3

where y, = 0. Since y; = %(qu_l — y;_1), therefore for i = 0, we have

, 1
0=yo= 1 —y-1)=2y1=n - (8.7)

Also y;" = %(ym —2y; +y;_1), fori = 3 gives us

r 1
0=y; :ﬁ(ﬂ_zh"‘)’z):)ﬂ:z%_h ... (8.8)

nr

. 1 .
Again y;" = %(sz — 2Yi41 +2Yi_1 — Vi), for i = 3 leads to

' 1
0=y3" == (Vs = 2ya + 2y, =y1) @ ¥5 = 272 = 2y, + 11 ... (8.9)

Using equations (8.7) to (8.9) in equation (8.6) we obtain

y3—4y, +8y; =1

—y3+3y,—2y; =1

3yz3 —4y, +2y; =3
Solving this system of equations, we get

y, = 8/13,y, = 22/13,y, = 37/13
Hence the required solution is
y(1/3) = 0.6154,y(2/3) = 1.6923,y(1) = 2.8462

correct to four decimal places.

8.3 SHOOTING METHOD
This method can be applied to both linear and non-linear problems and required good initial
guesser for the slope. It is easy and convenient to apply. The men steps involve in this method

are:



Q) transformation of the boundary value problem into an initial value problem
(i) solution of the initial value problem by Taylor' series method ,or Runge-Kutta
method etc. and

(iii)  solution of the given boundary value problem

Consider the second order boundary value problem

y'(x) =f(x),y(0)=0,y(1) =1

Let us assume that the true value of y'(0) be m. We take two initial guesses for m as m, and
m,. Let y(my, 1) and y(m,, 1) be the corresponding values of y(1) obtained by initial value

method. The by using liner interpolation, we option a better approximation m,, for m, given by

m; — My _ my; — My
y(l) - y(mOJ 1) Y(ml; 1) - y(mOi 1)

which implies that

y()-y(mg,1) ... (8.10)

my = mo + (my = my) 2 DT

We now solve that initial problem

y"(x) = f(x),y(0) =0 and y'(0) = m, and obtain y(m,1).we again apply interpolation with
(my,y(my, 1)) and (my, y(m,, 1)) to obtain a better approximation ms for m and so on. The
process is repeated until the convergence and desisted level of accuracy is obtained i.e., until the
value of y(m,, 1) agree with y(1) of to the desired level of accuracy. The spaced of convergence
depends, on how good the initial guesses are chosen. However, the method will be difficult to

apply to higher order boundary value problem and in the case of now linear problems.

Example 8.3 Solve the boundary value problem y” (x) = y(x),y(0) = 0 and y(1) = 1.1752
by shooting method, taking m, = 0 and y(1) = 0.9.

Solution: Appling Taylor's series method, we obtain



x3  xb x’ x°
@) =y (0 Ix T T 120 " 5040 " 362800 l

Hence

1 1
120 15040 T 362800 T

1
y(1) =y'(0) [1 tet ] = 1.1752y’'(0)

With my = 0.8 and m; = 0.9, we get
y(my, 1) = 0.9402 and y(m,,1) = 1.578

Using liner interpolation formula (8.10), we get

= 0.8+ (0.1 1'1752_0'9402—08+01998—09998
m, =08+ (0.1) 7558 00402 = 28O -

which is closer to the exact value of y’(0) = 1 We now solve the initial value problem y"' (x) =
y(x),y(0) = 0, m,. Again using Taylor's series solution, we get y(m,, 1) = 1.174 which is
also closer to the exact value y(1) = 1.175. This problem can also be solve by using Runge
Kutta fourth order method.

8.4 CUBIC SPLINE METHOD

Let s(x) be the cubic spline approximating the function y(x) and let s"(x;) = M;. Then, at

x = x; the differential equation given in (8.1) gives

M; + fis'"(x;) + giyi =13 ... (8.11)

But
s'( =) = 5 (2M; + Mi_y) +3 (v — yiea) - (812)

and
S0t 4) = =5 @M + Miy) + 5 Giea — 1) .. (8.13)

Substituting (8.12) and (8.13) successively in (8.11), we obtain the equations

h 1
M; + f; [g (2M; + M;_1) + - (y; = yi—l)] t9yi =T ... (8.14)

and



M; + f; [_%(ZML' + Miyq) +%(:Vi+1 - }’i)] + 9y =T .. (8.15)
Since y, and y, are known, Egs. (8.14) and (8.15) constitute a system of 2n equations in 2n
unknowns, viz., My, M4, ..., M,,, 1, V5, ..., Yn—1. It IS, however, possible to eliminate the M; and
obtain a tridiagonal system for y;. The following examples illustrate the use of the spline
method.
Example 8.4 Solve the problemy” +y+1=10, y(0) =y(1) =0
Solve: If we divide the interval [0,1] into two equal subintervals, then from given problem and

the recurrence relations for M;, we obtain

3
5) =—=0.1
y(0.5) = 5> = 0.13636

and

M0=_1,M1=_ ,M2=_1

22
Hence we obtain
s'(0) = g, s'(1) = —ﬂ, s'(0.5) = 0.
88 88
From the analytical solution of the problem, we observe that y(0.5) = 0.13949 and hence the
cubic spline solution of the boundary-value problem has an error of 2.24%.
Example 8.5 Given the boundary-value problem
x2y" +xy' —y=0; y(1) =1, y(2) = 0.5
apply the cubic spline method to determine the value of y(1.5).
Solution: The given differential equation is
. 1,1
yrEoY vy
Setting x = x; and y"'(x;) = M;, given problem gives
Mi — _ly{ + iy.
xot o x2T

Using the expressions given in (8.12) and (8.13), we obtain

1 h h i+1—Yi 1 .
M; = —x—i(—gMi — My ) 4 2y 1= 0,12, — 1. ... (8.16)
and
Mi = —xi(ng +%Ml'—1 +%) +x_1_2yi' i = 1,2, o, n (817)

4



If we divide [1,2] into two subintervals, we have h = 1/2 and n = 2. Then Egs. (8.16) and
(8.17) give

10M, — M, + 24y, = 36
16M, — M, — 32y, = —12
M, + 20M, + 16y, = 24
M, + 26M, — 24y, = —9

Eliminating M,, M; and M, from these system of equation we obtain
y1 = 0.65599.
Since the exact value of y; = y(1.5) = 2/3, the error in the computed value of y, is 0.01 ,

which is about 1.5% smaller.

8.5 MIXED BOUNDARY PROBLEMS

We now consider the boundary conditions

apy(a) — a1y'(a) = 1,
boy(b) + byy'(b) = V.

We obtain the second order approximations for the boundary conditons as follows.

(i) At x = xo: agyo — ﬂ[}’1 —yal=n

2h
or
2ha, 2h
yo1=— @ }’0+Y1+a_1}’1
b
At x = Xyy41t boynyr T oh ez — YNl =72
or

2hb, 2h
YN+2 =YN ———VIn+1 T T Y2
b, by

The values y_; and yy,, can be eliminated by assuming that the difference equation for given
differential equation holds also for j = 0 and N + 1, that is, at the boundary points x, and xy .
(i) At x = xo: agyo — %(_3)’0 +4y1—y2) =11

or

(2hay + 3a,)yo — 4a,y, + a1y, = 2hy;.

b
Atx = xyy1:boyner T j(BYN+1 —4yy +Yn-1) = V2



or
byyn—1 — 4byyn + (2hby + 3b;)yn41 = 2hy,
Example 8.6 Use a second order method for the solution of the boundary value problem

y" =xy+1,x€][01],
y'(0)+y(0) =1y~1)=1,

with the step length h = 0.25.

Solution: The nodal points are x,, = nh,n = 0(1)4,h = 1/4, Nh = 1. The discretizations of the
differential equation at x = x;,, and that of the boundary conditions at x = 0 and x = x, = 1 lead

to

1
_ﬁ(yn—l =2y, + yn+1) + xpyn +1=0,n=0(1)3,

Y1— Y-
%+y0 = 1,)/4_ = 1.
Simplifying we get

—Yn-1+ 2+ xnhz)yn —Yn+1 = —h*n = 0(1)3
y-1=2hyo +y; —2h, y, = 1.

We have the following results.

1
n=0,x =0: _3’—1+23’0_)’1:_1_6
=1 = 0.25 +129 = 1
n= ,.X1— . . yO 64‘ yl yZ_ 16
=2 = 0.5: +65 = 1
n=4s41x, =U.o! 1 323’2 V3 = 16
131 1

n=3x;= 0.75: ') +ay3—}74 = -

1 1
and y_; = Eyo + Y1 _5'3’4 =1

x | 4 5 6 7

y | 0.15024 | 440.56563 | 3 1.54068 | 83.25434




x 8 9 10
y 5 |65

Substituting for y_, and y,, we get the following system of equations

3/2 -2 0 0 Vo 9
~1 129/64 -1 0 nl o 1] 1
0 -1 65/32 -1 ||y 16| 1
0 0 —1  131/64) 13 ~15

Using the Gauss elimination method, we find

yo = —7.4615,y, = —5.3149,y, = —3.1888,y5 = —1.0999.

8.6 CHECK YOUR PROGRESS

1  Solve the equation % + y = 0 with the conditions y(0) = 1 and y'(0) = 0. Compute
v(0.2) and y(0.4)

2 Solve the boundary value problem y'" — 64y 4+ 10 = 0 with y(0) = y(1) = 0, by finite

difference method. Compute y(0.5) and compute it with the true value.
3 Solve the boundary value problem
y'(x) —y(x) =0,y(0)=0,y(1) =1
by finite difference and cubic spline methods. In each case take h=0.5 and h=0.25.
4 Solve the boundary value problems
@ y'(x)=yx),y0)=0y1)=1
(b) y"—-64y+10=0,y(0)=y(1)=0

by shooting method.



8.7

8.8

SUMMARY

The students are made familiar with some preliminary definitions and results of
finite difference solution of boundary value problems.

Lastly the solution of mixed boundary value problems has been explained in detail.

KEYWORDS

Boundary value problems, finite difference methods, shooting method, cubic spline

method, mixed boundary value problems.

8.9

8.10

SELF-ASSESSMENT TEST

Solve the boundary value problem y" — 64y + 10 = 0 with y(0) = y(1) = 0 by the
finite difference method. Compute the value of y(0.5) and compare with the true value.
Solve the boundary value problem
y'+xy' +y=3x2+2,y0)=0,y(1) = 1.
Apply shooting method to solve the boundary value problem
d?y

Using shooting method, solve the boundary value problem

2

Py _ oy _
i 6y~-,y(0) =1,y(0.5) = 0.44

ANSWERS TO CHECK YOUR PROGRESS

v(0.2)=1.0204, y(0.4)=1.0



y(0.5)=0.1389 for n=2, y(0.5)=0.1470 for n=4.

0.443674, 0.443140
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