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CHAPTER-1 

CONCEPT OF A CURVE 

Objectives: Students will learn about curve characteristics in space, curve parametric equations, 

curve vector representation, curve path, arc length,  tangent to the curve, and inflexional tangent in this 

chapter. Throughout the booklet, the this chapter play vital role. 

1.1 INTRODUCTION  

 The study of geometric figures using calculus methods is referred to as differential geometry. 

Curves and surfaces embedded in three-dimensional Euclidean space R3 are investigated in detail in this 

chapter. Local characteristics are the qualities of the curves and surfaces that are dependent exclusively 

on points at a certain point on the figure. In the simple world, differential geometry is the study of local 

characteristics. Global characteristics are those that relate to the overall geometric shapes. Differential 

geometry in the large is the study of global characteristics, especially as they relate to local properties. 

          We know that the geometric character of the curves and the surfaces changes with time, and that 

this is accomplished by differential calculus. Differential geometry is divided into two branches: one 

studies the characteristics of curves and surfaces in the neighbourhood of a point, and the other studies 

the properties of curves and surfaces as a whole.  

 

 Let Q and R be two points near a point P on the curve  in a plane and let CQR be the circle 

through P,Q and R, as shown in the figure 1.1. Now consider the limiting position of the circles CQR as 

P 

R 

Q 

C 

CQR 

 

Figure: 1.1 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  4 | 

 

Q and R approach P.  In general, the limiting point will be a circle C tangent to  at P. The radius of C is the 

radius of curvature of  at P. The radius of curvature is an example of a local property of the curve, for 

it depends only on the point on  near P.  

 The Moebius strips shown in figure 1.2 an example of a one-sided surface. One sidedness is an 

example of global property of a figure, for it depends on the nature of the entire surfaces. Observe that a 

small part of the surface surrounding an arbitrary point P is a regular two-sided surface, i.e. locally the 

Moebius strip is two-sided.  

 

1.2 (i) SPACE CURVES 

 A curve in space can be described analytically by stating the equations of surfaces of which it is 

the intersection. Thus two surfaces represented by the equation of the form 

0),,(,0),,( 21 == zyxfzyxf                                                   (1.1) 

Represent the curve of intersection of the surfaces. 

For many practical purposes it is more convenient to describe a curve by parametric equations for the 

co-ordinates zyx ,, . 

(ii) TO FIND PARAMETRIC EQUATIONS FOR SPACE CURVES 

       To find the parametric equations for the curve, we eliminate x between equations (1.1) and get 

equation of the form )(3 zfy = , say; similarly eliminating y  between equations (1.1), we get another 

equation of the form )(4 zfx =  say. Thus we have represented the co-ordinate x  and y  as some 

functions of z . Now if the co-ordinate z  is a function of some parameter u say; then co-ordinates x  and 

Figure 1.2 
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y  becomes functions of the same parameter u . Thus the co-ordinates of a point on the space curve can 

be represented by the following equations: 

                   )(),(),( 321 uzuyux  ===                                                  (1.2) 

Equations (1.2) are parametric equations of the curve in space where 321 ,,  are real valued functions 

of a single real parameter u  ranging over the set of values bua  . In the light of the parametric 

representation of the space curves, we have the following definition. 

Definition: A curve in the space is defined as the locus of a point whose Cartesian co-ordinates are the 

functions of a single variable parameter u , say. 

(iii) VECTOR REPRESENTATION OF A CURVE 

Definition: A curve in the space is the locus of a point whose position vector r relative to a fixed origin 

may be represented as a function of a single variable parameter u , say. It is represented as  

                     )(urr =                                                                                         (1.3) 

where r is a position vector of a current point on the curve. The vector representation (1.3) is equivalent 

to the Cartesian representation (1.2), since the Cartesian co-ordinates zyx ,,  of the point P(r) are called 

the component of r. Thus we have 

                      r = x i+ y j+ z k 

                         = )(1 u i+ )(2 u j+ )(3 u k 

we shall often write this equation as 

                 ))(),(),(( 321 uuu =r                                                                      (1.4) 

If the curve lies in a plane it is called plane curve, otherwise it is called skew, twisted or tortuous curve. 

Note: A parametric representation of the curve gives sense of description of the curve also. The positive 

direction of the description of the curve is that in which the parameter u  increases and the opposite 

direction is the negative direction. 

(iv) FUNCTIONS OF CLASS r 

        A real valued function f  is said to be of class r (Cr-function), over a real interval I if it has rth 

derivative at each point of I and this derivative is continuous on I. Here r is a positive integer. 
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       A function is said to be class   or C - function, if it is infinitely differentiable. If f  is single 

valued and possesses continuous derivatives of all orders at each point of I, then f  is said to be analytic 

over I, and f  is called a function of class w  or a wC - function. 

A vector valued function R=(X,Y,Z) is said to be of class r over a real interval I if it has rth derivative at 

each point of I and this derivative is continuous on I; or if each of its components X, Y, Z are of class r

.  

          The function R is said to be regular, if the derivative 

                          0= R
R

du

d
       on the real interval I. 

This is equivalent to saying that each of the components
du

dX
,

du

dY
 and 

du

dZ
 never vanishes 

simultaneously on I. The parameter u  is called a regular parameter. 

Note: In the rest of the book we shall always assume unless otherwise stated, that the equation (1.4) 

above always represents a regular analytic curve in terms of a regular parameter u . 

Example: 1.1: The function juiux )3()1( 2 +++= , − u  is a regular parametric representation, 

since ujix 2+= is continuous and 0x for all u. The image of the function is the parabola.  

Example 1.2:  The graph of the equation 1cos2 −= r ,  20  , in polar coordinates. Polar and 

rectangular coordinates are related by the equations cos1 rx = , sin2 rx = . Upon substitution for r , 

we obtain the representation 

jix )1cos2(sin)1cos2(cos1 −+−=   

This representation is regular, since 

   jix  cossin2cos2sincossin4 22 −−++−=  

is continuous and it can be computed that 0cos45 −= x for all   and hence 0x  for all  . 

 Note: A regular parameter representation )(uxx = on I  can have multiple points,
21 uu   in I for 

which )()( 21 uxux  . However, locally this will not be the case. 

1.3 PATH 

A path of class r is a regular vector valued function of class r .    
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Equivalent Paths: Two paths 1R  and 2R  of the same class r on the real intervals I1 and I2 

respectively are called equivalent if there exist a strictly increasing function   of class r ,  

which maps I1 and I2 and is such that oRR 21 = .                                              

Change of Parameter: The function (or mapping)  (as defined above) which relates two 

equivalent paths is called a change of parameter. This produces a change in the manner of description of 

the curve while sense remains the same. 

Let the equation of the curve in parameter u  be 

                                )(urr =                                                                                    (1.5) 

Consider the change in parameter )(tu = , where )(t  is a real single valued, analytic function of t  

defined on the same real interval. Now the equation (1.5) transform to  

                   )(uRr =                                                                                     (1.6)  

             Hence from equations (1.5) and (1.6), we get 

                           )()( ut rR =        

     
dt

du

du

dr

dt

d
=

R
                                                                                      (1.7) 

Since r )(u is regular, therefore 0
du

dr
. Hence it follows from the equation (1.7) that 

0
dt

dR
,                     iff  0

dt

du
. 

Thus t  is also a regular parameter iff  
dt

du
 is never zero. 

Example 1.3: Consider the circular helix whose parametric equation is given by 

                    = ucuuaua 0),sin,cos(r                             (1.8) 

                  ),cos,sin( cuaua
du

d
−=

r
. 

We clearly see that 0
du

dr
 for any value of u  in  u0 . 

Hence u  is a regular parameter. Let the change in parameter be 
2

tan
u

t = . 
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..ei                tu 1tan2 −=                                                                             (1.9) 

 0
1

2
2


+
=

tdt

du
               for  t0 . 

Hence t is also regular parameter defined by (1.9), in the interval  t0 .      

The equivalent representation of equation (1.8) in terms of parameter t is;      

                   













++

−
= − ttc

t

at

t

t
a 0,tan2,

1

2
,

1

1
. 1

22

2

r . 

1.4 ARC LENGTH 

To find the arc length of a curve between two points. 

Let us consider a curve C  of class 1 , and  

                    r =r )(u                                                                                   (1.10) 

be the equation of the curve C . Suppose it is required to find the arc length between two points A and B 

on the curve (1.10) corresponding to the values a and b of the parameter u . [We shall find the length of 

the curve in the positive direction, as in relation 1.4]. Now corresponding to any subdivision   of the 

interval [a, b] by points 

                     buuuuua n == ......3210  

we have the length 

                     −==
=

−−

n

l
llll ururAAL

1
11 )((                                           (1.11) 

of the polygon inscribed to the arc by joining the successive points )(.....,),( 10 BAAAA n ==   

on it. If we increase the number of points of the subdivision, the length of the polygon will be  

increased (because the sum of the two sides of a triangle is greater than the third side). Therefore, the 

length of the arc is defined to be the upper bound of L  take over all  possible subdivisions of the 

interval [a, b]. Therefore we have from (1.11) 
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         =
=

−



n

l

l
u

l
u

duuL
1

1

)(r        













=−

−

− duuuu
l

u

l
u

ll )()()(

1

1 rrr                   (1.12)      

The equation (1.12), using Schwartz inequality gives 

               duuduuL
b

a

n

l

l
u

l
u

= 
=

−

 )()(
1

1

rr                                                     (1.13)      

Now (1.13) shows  the right hand member of (1.13) is finite and independent of   and hence upper 

bound of L . We shall now show that the upper bound of  L  is actually 

                duu
b

a
 )(r . 

Let )(uss =  denote the arc length from )(0 au =  to u ..ei  )()( 0usus −  where buua = )( 0 Therefore 

from equation (1.13), we have 

               duuusus
u

u

−

0

0 )()()( r                                                              (1.14)   

Also the definition of arc length implies that  

                  )()()()( 00 ususuu −−rr                                                      (1.15) 

The equation (1.14) and (1.15) give  

                         
−


−

−


−

− u

u

duu
uuuu

usus

uu

uu

000

0

0

0 )(
1)()()()(

r
rr

  

Taking limit as 0uu → , we get 

R(un) 

An(=B) 

R(un-1) 

An-1 

Al 

A l-1 

A2 

A1 A0(=A) 

R(u) 
R(u1) 

r(u2) 
R(ul-1) 

R(ul) 
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                         )()()( uuu rsr    

                 )()( uu rs  =                                                                            (1.16) 

Since this is true for any value of 0u  in the range of u , Hence we have  

             ==
u

a

duuuss )()( r                                                                       (1.17) 

The formula (1.17) is used as formula to determine the arc length from a point a  to any pointu . 

Formula (1.17) may also be rewritten as  

                  ==
u

a

duuuss )()( 2
r  

Cartesian Equivalent: Let   r= x i+ y j+ z k 

So that    
222, zyxzyx  ++=++= rkjir          

                                 ( ) ++=
u

a

duzyxs 222   

Also the equation (1.16) may written as  

                              2222 zyxs  ++=     

In terms of differentials it gives  

                          
2222 dzdydxds ++= , 

where ds is called the linear element of the curve C . 

Note 1: Since )(/ s=duds   will never vanish, we can use s as a new parameter. Changing the parameter 

from u  to in the function )(uss = , let )(su = , the parametric equation of curve with parameter s  

becomes )}.({ srr =  

Note 2: We shall use dashes to denote differentiation with respect to arc length s and dots to denote 

differentiation with respect to any other parameter u . Thus we have  

                           r
r

r
r

==
2

2

,
ds

d

ds

d
etc. 

and                    r
r

r
r

 ==
2

2

,
du

d

du

d
 etc. 
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Example 1.4: Find the length of circular helix. 

          r )(u = ua cos i+ ua sin j+ uc k,    − u  from )0,0,(a  to )2,0,( ca  . 

 Also obtain its equation in terms of parameter s .                       

Solution. Clearly the limits of u are from  0=cu to ccu 2= ..ei  from 0=u  to 2=u . 

The equation of circular helix is  

                             r )(u = ua cos i+ ua sin j+ uc k 

                         
du

dr
r = =- ua sin i+ ua cos j+ c k,    

                   
2/1222/122222 )()cossin()( cacuauau +=++=r                

Therefore the length of the circular helix from )0,0,(a  to )2,0,( ca   is 

                  + ==
 2

0

22
2

0

)( ducaduur        

                 )(2])[( 222
0

22 cauca +=+=  . 

Again suppose s denotes the arc length from the point where 0=u to any point u , we have  

                               duus
u

=
0

)(r                  

                                  2/122
0

2/1

0

2222 )(][)( bauubaduba u
u

+= +=+=  

                             
2/122 )( ba

s
u

+
=   

Hence the given equation of the circular helix in terms of parameter s transforms to 

                   )(sr =












+ 22
cos

ca

s
a i + 













+ 22
sin

ca

s
a j +

22 ca

cs

+
k    

Example 1.5: Find the length of one complete turn of the circular helix 

          r )(u = ua cos i+ ua sin j+ uc k ,  − u .                              

Solution: The range of parameter u corresponding to one complete turn of the helix is  

                       200 + uuu .     
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Therefore the limit of u are from 0uu =  to 20 += uu .         

From example (1) above, we have 

                             )()( 22 cau +=r        

   Required arc length              = 

+ 2
0

0

)(

u

u

duur  

                                                    =  +

+ 2
0

0

22
u

u

duca                     

                                                    =
2

0

0

22 ][
+

+
u

u
uca  

                                                              =
222 ca +  

Example 1.6: Find the length of the curve given as the intersection of the surfaces  

                    







==−

a

z
x

b

y

a

x
cosh;1

2

2

2

2

 from the point )0,0,(a  to the point ),,( zyx .               

Solution. The equation of the curve in the parametric form may be taken as  

                           auzubyuax === ,sinh,cosh  

The position vector r of any point on the curve is given by 

                  )(ur = ua cosh i+ ub sinh j+ au k 

                  )(ur = ua sinh i+ ub cosh j+ a k 

                  )(ur =
2/122222 }coshsinh{ aubua ++  

                            =
2/12222 }cosh)sinh1({ ubua ++  

                        = 2/12222 }coshcosh{ ubua +          

                        = uba cosh22 +           

Also limit ofu are clearly from 0=u to any point u . 

            duus
u

=
0

)(r                       
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                  duuba
u

 +=
0

22 cosh       

                  bybauba /sinh 2222 +=+=  

1.5  TANGENT LINE 

Definition: The tangent line to a curve C  at a point )(uP  of C  is defined as the limiting position of a 

straight line L  through )(uP  and neighboring point )( uuQ +  on C  as Q  approaches P  along the 

curve. 

(i) To find the unit tangent vector to a curve: Consider two neighboring point )(uP  and )( uuQ +  

on C  with position vectors r  and r+r respectively. We have 

                                PQ=OQ-OP  

              Or           uuu rrr −+= )(       

              u

 (u)- u)(u 







 rrr +
=

u  …(1.18)                                                                                  

             Now as   ,0, →→ uPQ      

 )( r
rr

=→
ud

d

u



 

 

Therefore taking the limit PQ →  of expression (1.18)  

We get  

                                         
u

uuu
Lim

du

d

u 





)()(

0

rrr
r

−+
==

→
         

Thus we conclude that the vector r  is parallel to the tangent line at P . The unit tangent vector is 

denoted by the symbol t and is, therefore, given by 

                   
s

r

r

r
t








==                                                                         [Because, ,rs  = ]                       =

r
rr

==
ds

d

du

ds

du

d
/ . 

Note that t always points in the direction of motion along the curve. 

 

 

rr + r

r

uu +

O )(uP

Q

C

t
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(ii) To find the equation of tangent line to a curve at a point: Suppose it is required to  

find the equation of the tangent line at a  

point )(rP  on the curve. 

              )(urR =        ……(1.19)                                      

Consider a current point R with  

position R on the tangent line at P .  

We know that the vector r  is 

 parallel to the tangent line at P .  

Hence the vector equation of the tangent line at P  is the vector sum of the position vector r of P  and a 

vector in the direction of the tangent line. Hence the equation of tangent line in terms of parameter u  is 

given by 

                      rrR w+=                                                                (1.20) 

where w  is a scalar parameter. 

            Again if instead of parameter u , we use parameter s (arc length), then since t is unit vector along 

the tangent at P , the equation of the tangent line at P  is given by    

                         trR +=                                                                    (1.21) 

                                     rrR +=      ],[ rt =Because                                         (1.22) 

 where,   is a scalar parameter.  

Cor.1. Tangent line in Cartesians: we may write 

                kjirkjir zyxzyx  ++=++= ,  

      and    kji ZYXR ++=  

Substitute these values in eqn. (1.22) of tangent line, we get 

              )( kjikjikji zyxwzyxZYX  +++++=++  

which gives on equating coefficients of i, j, k from both sides 

           zwzZywyYxwxX  +=+=+= ,,  

      i.e.     w
z

zZ

y

yY

x

xX
=

−
=

−
=

−

  

 

 

R

O Pr
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     i.e       
z

zZ

y

yY

x

xX



−
=

−
=

−
                                                                          (1.23)   

This is required equation of tangent line at ),,( zyx   and direction cosines of the tangent line are 

proportional to ),,( zyx  . 

If we use parameter s then substituting values in (1.21) and (1.22), we have 

          )( kjikjikji zyxzyxZYX +++++=++   

This gives  

                       =


−
=



−
=



−

z

zZ

y

yY

x

xX
 

This is the equation of tangent line and the quantities ),,( zyx   are direction cosines of the tangent 

line. 

Cor. 2. : If the equation of the curve is given as the intersection of two surfaces  

                      0),,(0),,( 21 == zyxFandzyxF                 

We have         0... 111 =







+








+









u

z

z

F

u

y

y

F

u

x

x

F
                                                                                                   

     and              0... 222 =







+








+









u

z

z

F

u

y

y

F

u

x

x

F
                           

     or                 0... 111 =



+




+





z

F
z

y

F
y

x

F
x                                      

      and              0... 222 =



+




+





z

F
z

y

F
y

x

F
x                       

Therefore, from last two relations for, ),,( zyx  we get 

  

x

F

y

F

y

F

x

F

z

z

F

x

F

x

F

z

F

y

y

F

z

F

z

F

y

F

x








−








=








−








=








−







 212121212121 ......


                    (1.24) 

From which we obtain the direction cosines of the tangent. Substituting valuing of ),,( zyx  in equation 

(1.24) we shall get the equation of the tangent line at a point of the curve of intersection of the surface 

                                         0),,(0),,( 21 == zyxFandzyxF  
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Example 1.7: Show that the tangent at any point of the curve whose equations are 

,2,3,3 32 uzuyux ==  makes a constant angle with the line 0=−= xzy .  

Solution. The position vector r  of any point of the curve is  

                                      )2,3,3( 32 uuu=r  

                                      )6,6,3( 2uu
du

d
==

r
r  

                                      )21(3)63()36369( 222/142 uuuu +=+=++== rs   

The direction cosines of the tangent are given by 

                                   
)21(

)2,2,1(
..

)21(3

)6,6,3(
2

2

2

2

u

uu
ei

u

uu

++
 

The equation of the given line is  

                                  
101

0
zyx

orxzy ===−=  

Its direction cosines are )2/1,0,2/1(  

       If    is the required angel between the tangent and the given line 

     
2

1

)21(2

21

)21(2

1.20.21.1
cos

2

2

2

2

=
+

+
=

+

++
=

u

u

u

uu
  

Hence,   is constant.        

Example 1.8: Show that the tangent at a point of the curve of the intersection of the ellipsoid  

1
2

2

2

2

2

2

=++
c

z

b

y

a

x
, and the confocal whose parameter is  is given by 

))((

)(

))((

)(

))((

)(
222222222222  −−

−
=

−−

−
=

−−

−

cbac

zZz

bacb

yYy

acba

xXx
 

or 

Find the tangent at a point of the curve of intersection of the ellipsoid 1
2

2

2

2

2

2

=++
c

z

b

y

a

x
and the 

confocal 1
)()()( 2

2

2

2

2

2

=
−

=
−

=
−  c

z

b

y

a

x
, where   is a parameter. 
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Solution. The equation of the confocal to 01
2

2

2

2

2

2

1 =−++=
c

z

b

y

a

x
F                  (1.25) 

 is  01
2

2

2

2

2

2

21 =−
−

+
−

+
−

=
 c

z

b

y

a

x
F                                   (1.26) 

       Let the curve of the intersection of the surfaces (1.25) and (1.26) be )(ur . Differentiating (1.25) 

and (1.26) with respect to )(u , we have   

                          0,0
222222

=
−

+
−

+
−

=++
 c

zz

b

yy

a

xx

c

zz

b

yy

a

xx 
 

Solving for ),,( zyx  we have  

)()()()()()( 222222222222  −
−

−

=

−
−

−

=

−
−

− ab

xy

ba

xy

z

ca

zx

ac

zx

y

bc

yz

cb

yz

x 

 

or  

))((

)(

))((

)(

))((

)(
2222

22

2222

22

2222

22













−−

−
=

−−

−
=

−−

−

abba

baxy

z

caac

aczx

y

bccb

cbyz

x 
 

or,   
zcbac

z

ybacb

y

xacba

x

/))((/))((/))(( 222222222222  −−
=

−−
=

−−



 

The equation of required tangent is  

zzZzyyYyxxXx  /)(/)(/)( −=−=−  

))((

)(

))((

)(

))((

)(
..

222222222222  −−

−
=

−−

−
=

−−

−

cbac

zZz

bacb

yYy

acba

xXx
ei

 

Example 1.9:. Find the equation to the tangent at the point u on the circular helix. 

          cuzuayuax === ,sin,cos  

Solution. The vector equation of the helix is given by 

                kjir cuuaua ++= sincos  

                kjir cuaua ++−= cossin  

The equation of the tangent is  

                rrR w+=  

or       )cossin()sincos( kjikjiR cuauawcuuaua ++−+++=  
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if       kjiR ZYX ++= , then 

kjikji )()cos(sin)sincos( wucuwuauwuaZYX ++++−=++  

which gives 

c

cuZ

ua

uaY

ua

uaX −
=

−
=

−

−

cos

sin

sin

cos
 

It is the required equation of the tangent line. 

 

 

Example 1.10: Prove the length of the curve  

          atzatytttax 4,2,})1({sin2 221 ==−+= −  

Between the points where 1tt = , and 2tt =  is )(24 12 tta − . Show also that the curve is a helix drawn 

on a cylinder whose base is a cycloid and making an angle of 
045 with the generators.  

Solution. The positive vector r  of any point o the curve is given by  

                    )4,2,)1((sin2 221 atzatyttta ==−+= −
r      

                    




























−
−−+

−
== aat

t

t
t

t
a

dt

d
4,4,

)1(2

2
)1(

)1(

1
2

2

2
2

2
r

r
  

222

2

2

22
2 1616

1

1
4. ata

t

ttt
a ++













−

−−+
= rr   

                222222 321616)1(16 aatata =++−=  

 The required length )(2424 12

2

1

ttadtas

t

t

−==  

Again putting sin=t , in the equation of the curve. 

                sin4,sin2),cossin(2 2 azayax ==+=  

                sin4),2cos1(),2sin2( azayax =−=+=  

The first two equations clearly represent a cylinder whose base is cycloid and generators parallel to z-

axis. Also the direction cosines of the tangent at the point   are proportional to 
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                 ./,/,/  ddzddyddx  

      cos4)2sin2(,)2cos22(.. aandaaei +  

      cos2,2sin,)cos2.. 2aei  

If  is the angle between z-axis (a generator of the cylinder) and the tangent  

     2/12224 )cos4cossin4cos4/()cos2100(cos  ++++=  

             045cos2/1 ==  

Therefore 045= , which was to be proved. 

1.6  IMPLICIT REPRESENTATION OF CURVES 

A curve in space can be determined as the intersection of two surfaces, i.e. as those points 

(x,y,z) 

satisfying two relations of the form 

                                 

0),,(1 =zyxF and 0),,(2 =zyxF                                                   (1.27) 

If at a point (x,y,z) satisfying the above,  

0det
22

11





































y

F

x

F

y

F

x

F

 

then it follows from the implicit function that for some neighborhood of z, we can solve (1.27) for x and 

y as functions of z, obtaining a representation of the form  

                                                         x=x(z), y=y(z), z=z                                        (1.28) 

with z itself the parameter. This defines at least locally a regular curve. 

Example.1.11: The intersection of the two second degree surfaces 02 =− zy and  02 =− yzx is the 

third degree curve 3tx = , 2ty = , tz = together with the x-axis, tx = ,y=0, z=0. These are obtained as 

follows. For 0z we can solve the given relations for x and y in terms of z, obtaining  

3
42

3 , z
z

z

z

y
xzy ==== , 

  tztytx === ,, 23
or if we let z=t                                      (1.29) 
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If z=0, then y=z2=0 and x can be arbitrary. This gives the x-axis, x=t, y=0, z=0. Observe that the point 

(0,0,0) is the intersection of the two curves.  

1.7 CONTACT OF nth ORDER OF A CURVE AND A SURFACE 

Definition: If nPPPP .....,,,, 21 points of a given curve lie on a given surface and nPPPP .....,,,, 21

coincide with P , the curve and the surface are said to have the contact of nth order at the point P . 

(i) To find the condition that a curve and a surface have a contact of nth order. 

Let the equation to the curve C and the surface S be 

         ]),(),(),([ 3121 uuur =  and 0),,( =zyxf respectively 

 and let the class of curve C be sufficiently high. The value of ‘ u ’ which gives the point of intersection 

of the curve and the surface ( i. e.  the points common to C and S) are zeros of the functions 

                  }),(),(),({)( 3121 uuuuF =  

[Substituting the values of zyx ,,  (which are )(1 ux = etc. from the curve in the equation of surface)]. 

Let 0u be such a zero, then expressing )(uF by Taylor’s theorem 

                 )()( 00 uuuFuF +−=  

                          )( 0uhF +=  

                )(0)(
!

.......)(
!2

)()( 1
00

2

00
++++++ nn

n

huF
n

h
uF

h
uFhuF                 (1.30) 

where 0uuh −=  

But 0)( 0 =uF , therefore (1) reduces to  

                     )(0)(
!

.......)(
!2

)()( 1
00

2

0
+++++= nn

n

huF
n

h
uF

h
uFhuF  

Now 0u is called a simple zero of )(uF  if 0)(  uF then in this case C and S are said to have a simple 

intersection at the point )( 0ur . 

There is a contact of first order at 0uu = , if 0)( 0 = uF and 0)( 0  uF for )(uF is of the second order 

of h, 0u is a double zero of )(uF and C and S have two point contact. 
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There is a contact of 2nd order at 0uu = , if 0)()( 00 == uFuF and 0)( 0  uF for )(uF is of 3rd order 

of h, 0u is a triple zero of )(uF and C and S have three point contact. Similarly there is a contact of nth 

order at 0uu = , if  

                       0)(.......)()( 000 ==== uFuFuF n
and 0)( 0

1 + uF n

                
(1.31) 

also then C and S are said to have (n+1) point contact. 

(ii) INFLEXIONAL TANGENT 

Definition: At a point P  where 0=r , the tangent line is called inflexional and the point P  is called 

the point of inflexion. 

Alternative Definition: Let the equation to the line through a point ),,( 111 zyx  on a given surface be  

                )(111 u
n

zz

m

yy

l

xx
=

−
=

−
=

−
    

The inflexional tangent are the lines which have three point contact inside the given surface where 

0=u . 

Example 1.12:  Find the plane that has three point contacts at the origin with the curve  

                 1,1,1 234 −=−=−= uzuyux     

Solution. Let the equation of the plane at the origin with the curve  

                 0=++ nzmylx                                                                                          (1) 

The equations of the given curve are 

                 1,1,1 234 −=−=−= uzuyux                                                                (2) 

At the origin, 01,01,01 234 =−=−=− uuu  

               Clearly 1=u  satisfies all of these three equations. 

 at the origin, we have 1=u . 

Now the points of intersections of the curve (2) and the surface (1) are given by the zeros of the 

function 

                  )1()1()1()( 234 −+−+−= unumuluF  

or       nmlnumuluuF −−−++= 234)(                                                                   (3) 

For three point contact, we should have 0)( = uF  
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                  0)( = uF                          where dudFuF /)( =  

Now 0234)( 23 =++= numuluuF                                                                     (4) 

  and        026212)( =++= nmuluuF                                                                     (5) 

At the origin i.e. at 1=u , the equation (4) and (5) becomes  

                         02612,0234 =++=++ nmlnml  

Solving, lnlm 2,)3/8( =−=  

Putting values in (1), the equation of the required plane is given by 

                     068302)3/8( =+−=+− zyxorllylx . 

Example 1.13: Find the lines that have four point contact at (0,0,1) with the surface  

                  122323 2224 =+−−+−−++ zyxyyzzyxxyx  

Solution. Any line through (0,0,1) is  

                   t
n

z

m

y

l

x
=

−
==

1
                   (say)                                                         (1) 

ntzmtyltx +=== 1,,                                          

01)1(223)1(2

)1()1(3)(

2

22222244

=−++−−++

+−−++=

ntmtlmtntmt

nttmtlntlmttltF
                              

                0)2(3 2222344 =+−−++= mnnmltlmnttl                

For four point contact, we should have 

0)( = uF , 0)( = uF and 0)( = uF  at (0,0,1) where dudFuF /)( = , at the point (0,0,1) we clearly 

have 0=t . Now at 0=t , we have the following, 

                   00)( == lmnuF                                                           (2) 

                      020)( 222 =+−−= mnnmluF                                   (3) 

 Solving (2) and (3), we get 

From (2) :                                  00,0 === norml  

If 0=l , from (3)                       nm =                                                                        (4) 

The required line is                  10/ −== zyx  

If 0=m , from (3)                    nl =                                                                         (5) 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  23 | 

 

The required line is                 1/)1(0/1/ −== zyx  

Lastly if 0=n , from (4)         ml =                                                                         (6) 

The required line is                 0/)1(1/1/ −== zyx  

Equation (4), (5) and (6) are the equations of required lines. 

Example 1.14: Show that if the circle czzxnzmylx 2,0 222 =++=++ has three point contact at the 

origin with the paraboloid 

                     )/()(,2 222222 amblmlcthenzbyax ++==+  

Solution. Let a point on the circle  

                 czzyxzbyax 2,2 22222 =++=+  

be denoted by )(,)(,)( 321 tfztfytfx ===                                                             (1) 

              Substituting the values of zyx ,, in zbyax 222 =+ and differenting w.r.t. ‘t’, we get 

                            zybyxax  =+         

                           zybyxaxybxa  =+++ 22                                                               (2) 

where zyx ,,  are as in (1) and dots  denote differentiation w.r.t. ‘t’. 

          Proceeding in a similar manner with the equation to the circle 

                        0=++ znymxl                                                                                    (3) 

                        0=++ znymxl   

                  zczzyyxx  =++                                                                                     (4) 

                   zczzyyxxzyx  =+++++ 222                                                           (5) 

At the origin from (4), 0..,0 == zeizc                                                                        (6) 

Hence from (3), 0=+ ymxl                                                                                        (7) 

           Also (3) and (7) at the origin reduce to  

                      222 zybxa  =+                                                                                    (8) 

                      222 zcyx  =+                                                                                      (9) 

Dividing (9) by (8), we get  
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22

2

2

22

2

2

22

22

yby
l

am

yy
l

m

ybxa

yx
c









+

+

=
+

+
=                             [from (9)] 

                         
22

22

blam

lm

+

+
 

Example 1.15: Determine a, h, b, so that the paraboloid 22 22 byhxyaxz +=  may have the closet 

possible contact at the origin with curve 12;1;12 2323 +−=−=+−= ttztyttx  

Find also the order of contact. 

Solution. Here 

 233232232 )1()1)(12(2)12()12(2)( −−−+−−+−−+−= tbttthttatttF  

23452223 3)1(2)4106(2)43()12(244 ttbttthttttat
dt

dF
−−+−−−+−−−=  

which is clearly zero at t=1 i.e. at the origin. 

          

434

2223

2

2

3.6)44030(2

)43(2)46)(12(24

tbtth

ttattta
dt

Fd

−+−−

−−−+−−=
 

Now for contact of 2nd order at the origin i.e. at t=1, we have  

      0181224
2

2

=−+−= bha
dt

Fd
                                                                              (1)  

           

3323

2223

3

3

72)624(.2)120120(2

)46)(43(4)43)(46(26)12(2

bttbtth

tttatttatta
dt

Fd

−−−−−

−−−−−−+−−=
 

Now for contact of 3rd order at the origin i.e. at t=1, we have  

         010812010884
3

3

=−=−+= baorbaa
dt

Fd
                                                  (2) 

Again 

2222

222

4

4

216)72(.2)240360(2)46(46)43(4

6)43(2)46(2)43(12

bttbtthtatta

ttatatta
dt

Fd

−−−−−−−−

−−−−−−=
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Now for contact of 4th order at the origin i.e. at t=1, we have  

            0360240162412812
4

4

=−−−++−= bhaaaaa
dt

Fd
 

01510.. =−− bhaei                                                                                             (3) 

Now we have got three equations to find out a, h, b hence solving (1), (2) and (3), we have  

          
18

1
,

54

5
,

6

5
−=== hba  

Also for these values 0
5

5


dt

Fd
 

Hence when
54

1

3545
=

−
==

hba
, there is a contact of 4th order at the origin. 

Example 1.16: Find the inflexional tangent at ),,( 111 zyx on the surface axzy 42 =               

Solution. The equation to a line through ),,( 111 zyx  is  

                      u
n

zz

m

yy

l

xx
=

−
=

−
=

− 111                               (say)                              (1) 

The inflexional tangents are the lines which have three-point contact inside the surface where 0=u .                                                                                                                 

From equation (1) substituting the values of ),,( zyx  in the equation of surface axzy 42 =  we get  

                0)(4)()()( 11
2

1 =+−++= xluaznuymuuF                                             (2) 

For three point contact, we have  

                04)().(2)()( 2
111 =−++++= alnymuznumymuuF                             (3) 

                0)(2)(2)(2)( 111
2 =+++++= ymumnymumnznumuF                      (4) 

At 0=u , the above equations (2), (3) and (4) reduce to  

                04 11
2
1 =− axzy                                                                                            (5) 

                042 2
111 =−− alnyzmy                                                                                (6) 

                0222 111
2 =+− mnymnyzm  

  or          02 11 =+ nymz   

  or          )2/( 11 ymzn −=                                                                                            (7) 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  26 | 

 

  Using (6), (7) becomes 

               
a

zmy
loraly

y

mz
zmy

8

3
04

2
2 112

1

1

1
11 ==−−  

Substituting values of l and n in (4), we get  

               

1

1

11

11

1

28

3

y

mz

zz

m

yy

a

zmy

xx

−

−
=

−
=

−
 

               
1

1

1

1

1
2
1

1

2

4

3 z

zz

y

yy

a

zy

xx

−

−
=

−
=

−
 

 or  
1

1

1

1

1

1

23 z

zz

y

yy

x

xx

−

−
=

−
=

−
 which is the required equation of the inflexional tangent. 

1.8 CHECK YOUR PROGRESS 

SA1:  Define a space curve and explain your definition by means of examples. 

SA2:  Deduce the formulae for the arc length of a curve between two points in vector  form. 

SA3:  Find the length of one complete turn of the circular helix 

SA3:  Obtain the direction cosines of the tangent to the curve of intersection of the 

  surfaces 0),,(0),,( 21 == zyxFandzyxF  

SA4:  Find the direction cosines and equation of tangents to the curve of intersection   

 of the surfaces 0),,(0),,( 21 == zyxFandzyxF                            

SA5:  Show that 
sd

rd
→

is unit tangent vector to a space curve at the point )(
→

rP . 

SA6:  Define the contact of nth order of a curve and surface and find the condition for  this type of 

contact. 

SA7:  Show that a curve is a straight line if all tangent lines are parallel. 

SA8:  Find the intersection of the 21xx  plane and the tangent line to the curve 

 3
3

2
2

1 )1()1( etetetx ++−+= at t=1.                                       Ans. (4/3, 1/3, 0) 
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SA9:  Show that tangent vectors along the curve 3
3

2
2

1 etebtaex ++= where 2b2=3a  make a 

constant angle with the vector 31 eea += .

 
SA10:  Find the length of one complete turn on the circular helix 

 

1.9 SELF ASSESSMENT TEST 

i.) Find a representation of the intersection of the cylinders xz =2 , xy −=12    

 that does not involve radicals. Hint: 122 =+ zy    

 Ans: 2cos=x , sin=y , cos=z ,  20  . 

ii) The conchold of Nicomedes in polar coordinates is c
a

r +=
cos

, 0a , 0c   − . 

Sketch and find a representation in rectangular coordinates. 

 Ans: coscax += ,  sintan cay += . 

iii) Show that the representation )()2( 32 ttktjitx ++++=  is regular for all t   

 and sketch the projections on the xz and xy  planes. 

iv) Show that 115103 35 +++= ttt is an allowable change of parameter for all t. 

v) Compute the length of the arc kejteitex ttt ++= sincos ,  t0 .  

 Ans: )1(3 −e .  
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CHAPTER-2 

CURVES IN SPACE R3(I) 

Objectives: In continuation of first chapter, in this chapter students will learn about  plane of 

curvature or Osculating plane, Osculating plane at the point of  inflexion, Tangent plane at any point 

of the surface, normal plane, Principal  normal, Binormal and their directions, Equations of 

principal normal,  Binormal and their relationship, Curvature, Torsion of the curve and plane. 

2.1 INTRODUCTION 

 One of the basic problems in geometry is to determine exactly the geometric quantities which 

distinguish one figure from another. For example, line segments are uniquely determined by their 

lengths, circles by their radii, triangles by side-angle-side, etc. It turns out that this problem can be 

solved in general for sufficiently smooth regular curves.  In the first chapter we have studied different 

form of the curve and its representation, class, contact of nth order of a curve and surface, tangent line, 

and inflection tangent recall that the tangent line at a point on a curve can be defined as the limiting 

position of a line passing through two neighboring points on the curve as the two points approach the 

given point. In this way a line is obtained that in a sense best fits the curve at a point. Similarly, the 

osculating plane at a point can be defined as the limiting position of a plane passing through three 

neighbouring points on the curve as the points approach the given point. The tangent line and osculating 

plane are examples of geometric figures which have a certain order of contact with the curve.  

Definition 2.1: Let C be a curve of class 2 , consider two neighbouring points P and Q on C. Then the 

osculating plane of C at P is the limiting position of the plane which contains the tangent line at P and 

contains the point Q as PQ → . 

Definition 2.2: Let C be a curve of class 2 , consider two neighbouring points P and Q on C. Then the 

osculating plane of C at P is the limiting position of the plane which contains the tangent line at P and is 

parallel to the tangent at Q as PQ → . 

Alternative Definition: If P, Q, R be three points on a curve , the limiting position of the plain PQR, 

when Q and R independently tend to P, is called the osculating plane at the point P. The definition 

implies that an osculating plane has a contact of 2nd order or three point contact. 
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(A) To find the equation of the osculating plane (or Plane of curvature (figure 2.1)): 

We shall find out the equation of the osculating plane separately by using definitions 1 and 2. 

Using definition 1: Let the equation of the curve C be )(srr =  where C is the class 2 . Let )(sP and 

)( ssQ +  with position vectors respectively )(sr and )( ss +r  be two neighbouring points on the 

curve C where the  arc length s  is measured from some fixed on C.  Let the position vector of a current 

point R, on the plane containing tangent line at P and containing the point Q be R.  Now the vectors 

            )(,)( ss rtrRPR =−=  

and      )()( sss rrPQ −+=   

lie in the plane RPQ and therefore their scalar triple product must be zero, ..ei  the equation of the plane 

RPQ is given by 

                   0)]()(,)(,)([ =−+− sssss rrrrR                                                      (2.1) 

Now expanding )( ss +r by Taylor’s series in ascending powers of s , we have  

      }){(0)(
!2

)(
)()()( 3

2

ss
s

sssss 


 rrrr ++=+                                             (2.2) 

Equation (2.1) may be written as  

                  0)}()({)()}({ =−+− sssss rrrrR   

C 
P 

Q 

R 

O 

r 
r(s) r(s+s) 

Figure 2.1 

Osculating Plane 
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   or           0}){(0)(
!2

)(
)()()}({ 3

2

=







++− ss

s
ssss 


 rrrrR             using (2.2) 

  or           0}){(0)(
!2

)(
)()}({ 3

2

=







+− ss

s
ss 


rrrR      [ 0)()( = srsr ] 

  or            0)(0)()()}({ =+− ssss rrrR  

Hence the limiting position of the plane PQR as PQ →  

  i.e.  as 0→s  is 

           0)}({)(.)}({ =− sss rrrR  

i.e. 0)](,)(,)([ =− sss rrrR                                                                                    (2.3) 

This is the equation of the osculating plane  in parameter s  at the point P on C. If the arc length s  be 

measured from P, then at P, 0=s and equation (3) of the osculating plane becomes  

                   0)]0(,)0(,)0([ =− rrrR                                                                   (2.3 ) 

By Definition 2 : Here we shall find the equation of osculating plane in general parameter u . 

Let )(uP and )( uuQ + be two neighbouring points on the curve C. The tangent at these two points is 

parallel to the vectors )(ur and )( uu +r  respectively.  

 Therefore the plane through the tangents at )(uP  and )( uuQ + is perpendicular to the vector  

                 )()( uuu + rr  i.e. to the vector )]()([)( uuuu rrr  −+   [ 0= rr  ] 

i.e.            
u

uuu
u



 )()(
)(

rr
r




−+
                

As PQ → , 0→u in the limit the osculating plane is perpendicular to the vector  

                  0)()( = uu rr  . 

If R be the position vector of any current point on the osculating plane, the equation of the osculating 

plane may be written as  

                     0)( =− rrrR   

                   0],,[ =− rrrR                                                                                   (2.4) 

Corollary. In Cartesian: Let  
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                    kjiR  ++= ,           and    kjir zyx ++=    

Substituting these values in (4) the equation of the osculating plane is given by  

                  0=

−−−

zyx

zyx

zyx







 

Remark 1: The definitions 1 and 2 of the osculating plane are equivalent since equation (2.4) can be 

obtained from equation (2.3). We have 

                
s

rrr
r




===

du

ds

du

d

ds

d
/                           

                
•

•

••••••

−
= s

s

srrs
.

.

2

r                                                     







= s

du

ds
 

Substituting in equation (2.3), we have  

                       0,
3

=






 −
−

s

srrs

s

r
rR








            

  or                  0],,[ =− rrrR   

which is the equation (2.4) of the osculating plane. 

 Also if we use the same parameter s in finding equation (2.4), then equations (2.3) and (2.4) 

coincide. Hence definitions 1 and 2 of osculating plane are equivalent. 

Remark 2: The equation (2.3') of the osculating plane are may be written as  

                        0[ =− ]tt,,rR                                                                                      

(B) Osculating plane at the point of inflexion 

Theorem: Show that when the curve is analytic, there exist a definite osculating plane at a point of 

inflexion P provided the curve is not a straight line. 

Proof: We know that )( tr = is a unit tangent vector, therefore  

                         12 =r  

Differentiating w.r.t. ‘t’, we get 

                         0= rr  

Again differentiating, we get  
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                         0=+ rrrr  

   or                   0= rr                                                                                                          (2.5) 

                                                                                  [ 0=r  at the point of inflexion] 

If 0r , then r  is linearly independent of r  . Differentiating successively (2.5) and applying above 

argument, we shall get 

                                   2,0 = mm
rr  

where m
r  is the first non zero derivative of r at point P. Therefore if 0m

r , we have from equation 

(2.2) 

                }){()(.
!

)(
)()( 1++=−+ mm

m

sOs
m

s
sss 


 rrr                       as 0→s  

  Hence the equation (2.1) of the osculating plane at P becomes 

               0)](,)(,)( =− sss m
rrr[R                                                                      (2.6)  

Again if for all 2m  the derivative 0=m
r , we conclude )( tr = is constant (since the curve under 

consideration is analytic) i.e. the tangent vector is same at each point of the curve and hence the curve is 

a straight line. 

Hence equation (2.6) is the equation of osculating plane at a point of inflexion P when the curve is not 

straight line. 

2.2 TO FIND THE TANGENT PLANE AT ANY POINT OF THE SURFACE f(x,y,z)=0 

If s is the arc length measured from a fixed point upto the point ),,( zyxP , we have 

             0... =



+




+





ds

dz

z

f

ds

dy

y

f

ds

dx

x

f
 

or        0),(.,,0 =



















=




+




+




 zyx

z

f

y

f

x

f

z

f
z

y

f
y

x

f
x                        (2.7) 

We know that the vector ),( zyx  i.e. )( kjir zyx ++= is the unit tangent vector to the curve at P, 

hence (2.7) shows that r  is perpendicular to the vector )(,, sayf
z

f

y

f

x

f
=




















. Thus all the tangent 

line to the surface at P are perpendicular to this vector f , and therefore lie in the plane through P 

perpendicular to this vector. This plane is called the tangent plane to the surface at P. Hence if R is the 
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position vector of a current point and r the position vector of P, then the equation of the tangent plane 

is given by  

                     0)( =− frR  

(A) Normal Plane: The plane through P and perpendicular to the tangent line at P is called the 

normal plane at P of the curve. Clearly its equation will be 

                0).( =− rrR               or                   0).( =− trR                           (2.8) 

Cor.1. : The equation of the normal plane in Cartesian is given by  

                   0)()()( =−+−+− zzZyyYxxX                                               (2.9) 

Cor.2. : The normal plane is perpendicular to the osculating plane 

 We clearly see from (2.8), that the normal plane is perpendicular to the vector r , but the 

osculating plane is perpendicular to the vector rr   . 

              Now 0)( == rrrrrr                                        [ 0= rr  ] 

which shows that the vectors r  and rr   are at right angle. Hence the result follows. 

2.3 TO FIND THE OSCULATING PLANE AT A POINT OF A SPACE CURVE GIVEN BY 

THE INTERSECTION OF SURFACES 0);0 == ψ(rF(r)  

The tangent plane to the given surfaces at )(rP are given by  

              0)( =− frR ,         0)( =− rR                                                              

Let         0)()( =−−−  rRrR fF                                                        (2.10) 

be the plane through the line of intersection of the two tangent planes i.e. through the tangent line to the 

curve of intersection of the two surfaces. 

If (2.10) be the equation of the osculating plane at P, it must have three point contact with the curve at 

P. Therefore the required conditions are  

                           0,0,0 === FFF   

dots denotes the differentiation w.r.t. ‘  ’. 

0=F  gives 0)()()( =−−−−+ ••  rRRrRR ff                  (2.11) 

At P, rR = , condition (2.11) reduces to  

                     0=−  rR f                                                                         (2.12) 

which is an identity, tangent and normal being orthogonal, 
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     0,0 ==
••

rr f                                                                          (2.13)  

Similarly 0=F  yields  

                   0=−  rr  f                                                                             (2.14)  

or                  






=

r

r



 f
                                                                                          (2.15) 

Differentiating (2.13) w.r.t. u , we get 

                     0)( =+ •ff rr  ;     0)( =+ • rr   

which gives 


=



=




•

•

)(

)(

)(

)(

r

r

r

r







 ff
         from (2.15) 

Substituting of u  in (2.10) yields 

                     
•

•




=

−

−

)(

)(

)()(

)()(

 r

r

rR

rR



 ff
 

or               
•• 

−
=



−

)(

)()(

)(

)()(





r

rR

r

rR

 f

f
                                                          (2.16) 

which is the required equation of the osculating plane at )(rP . 

Cor. In Cartesians: Let ),,()( zyxff =r ,    ),,()( zyx =r  

         kjiR ZYX ++= ,         kjir zyx ++=  

          kji zyx ffff ++=                                                              [where, 
x

f
f x




= ] 

         i ++= • )()( zfyfxff zzyyxx   

Substituting in (2.16) of the osculating plane, we get 

)2......(

)()()(

)2......(

)()()(

22
yzxx

zyx

yzxx

zyx

zyx

zZyYxX

fzyfx

fzZfyYfxX





 ++

−+−+−
=

++

−+−+−

      

(2.16') 

Example 2.1: For the curve 32 2,3,3 tztytx === , show that any plane meets it in three points and 

deduce the equation to the osculating plane at 1tt = . 

Solution. Let the equation of the plane be  

                 0=+++ DCzByAx  
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          0233)( 32 =+++ DCtBtAttF  

which is cubic in t . Hence the plane meets the given curve in three points. 

Also                             26,6,3 tztyx ===                                  [ dtdxx /= ] 

                                    tzyx 12,6,0 ===   

Hence the equation of osculating plane at the point 1t  is 

                                   0

1260

663

333

2

3
1

2
11

=

−−−

t

tt

tztytx

 

or  3
11

2
1 222 tzytxt =+−  is the required equation of the osculating plane at 1tt = . 

2nd Method: The position vector r of any point on the curve is given by 

                 )2,3,3( 32 tttr =          )2,2,1(3)6,6,3( 22 tttt == r  

                )2,1,0(6 t=r                                                      [here, ./ etcdtdr=r ]  

                )1,2,2(18 2 tt −=rr        

The equation of the osculating plane at 1tt =  is given by  

                0)22(18.)}233(){( 1
2
1

3
1

2
11 =+−++−++ kjikjikji tttttzyx  

                                                           {using 0],,[ =− rrrR   and kjiR zyx ++= } 

         or   0)1)(2()2)(3()2)(3( 2
1

2
1

2
11 =−+−−+− tzttyttx  

         or   3
11

2
1 222 tzytxt =+−  

Example 2.2: Find the equation of the osculating plane at a general point on the curve  given by 

),,( 32 uuu=r . Show that the osculating planes at any three points of this curve meet at a point lying in 

the plane determined by these three points. 

Solution. ),,( 32 uuu=r  

                )6,2,0(;)3,2,1( 2 uuu == rr   

      )6,2,0()3,2,1( 2 uuu = rr   
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                    )33(2

620

321 22
kji

kji

+−== uu

u

uu  

The equation of the osculating plane at a general point ),,( 32 uuu is given by  

               0],,[ =− rrrR                         i.e. 0)).(( =− rrrR   

       or   0)33(2)].()[( 232 =+−++−++ kjikjikji uuuuuzyx  

       or   0)()(3)(3 322 =−+−−− uzuuyuux  

       or   033 32 =−+− uzuyxu                                                                                  (1) 

Let 32 ,, uuu be the three distinct values of the parameter. The osculating planes at these three points are 

linearly independent and these planes meet at a point, say ),,( 000 zyx . The point ),,( 000 zyx  lies on (1) 

i.e. the parameters 32 ,, uuu  will satisfy the condition 

                        033 000
23 =−+− zuyxuu                                                                  (2) 

Suppose that the equation of the plane passing through these three points is given by  

                       0=+++ dczbyax                                                                               (3) 

The parameters must therefore satisfy the condition 

                      032 =+++ dcubuau  

  or                 023 =+++ daubucu                                                                          (4) 

But the equation (4) has three distinct roots, therefore 0c .  

Comparing coefficients of like powers of u in (2) and (4), we have    

 
d

z

a

y

b

x

c

000 331 −
==

−
=      000 ,3,3 czdcxbcya −=−==  

Putting values in (3), the equation of the plane is  

                           033 000 =−−− czczycxxcy  

      or                  033 000 =−−− zzyxxy  

which clearly passes through ),,( 000 zyx .                                              

Example 2.3: Show that the osculating plane at a point P has, in general three point contact (contact of 

second order) with the curve at P.                                                                    
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Solution. Let the equation of the curve be  

                        )(srr =  

Let the arc length be measured from the point P, so that 0=s  at P. The equation of the osculating plane 

at P is given by 

             0)0(,)0(),0([ =− rrrR  

Let              0)]0(,)0(),0()([)( =−= rrrr ssF  

                        0)0(),0(),(0)0(
!3

)0(
!2

)0( 4
32

=







+++= rrrrr s

ss
s  

                                                 [expending )(sr in power of s by Taylor’s series] 

                         0).(0)0(),0(,)0(
!3

4
3

=+= s
s

rrr  

                                                                      [since 0)0()0(,0)0()0( == rrrr ] 

Obviously     0)( = sF  and 0)( = sF at 0=s  i.e. at P. 

Also             0)(  sF  at 0=s  i.e. at P provided 

                        0)]0(),0(),0([  rrr  

This shows that the osculating plane at P has in general three point contact with curve at P. In case 

0)]0(),0(),0([ = rrr then 0)( = sF and thus the osculating plane at P has at least four point 

contact with curve at P. 

Example 2.4: Prove that there are three points on the cubic 

                 fetzdtctybatx +=+=+= 3,33, 23  

such that the osculating planes pass through the origin, and that the points lie in the plane 

03 =+ afycex . 

Solution. )3,33,( 23 fetdtctbat +++=r  

   ),2,(3 2 edctat
dt

d
+== r

r
  

                )0,,(6 cat=r  

))(,,(18 2 adtactaetec +−−= rr   
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Let         kjiR ZYX ++=  

Hence the equation of the osculating plane  

               0],,[ =− rrrR                         i.e. 0)).(( =− rrrR   reduce to 

               
0])([

.])3()33()[(

2

23

=+−+−

−−+−−+−−

kji

kji

adtactaetec

fetZdtctYbatX
 

If it passes through the origin, then putting 0=== ZYX , we get  

                0))(3())(33()( 223 =+++−−++ adtactfetaetdtctecbat  

     or       023 =+++ becadftacftaect  

which is cubic in t , giving three values of t , hence there are three such points. Let the parameter t  for 

the points be 321 ,, ttt .The plane passing through these points is  

                   0

1333

1333

1333

1

33
2
3

3
3

22
2
2

3
2

11
2
1

3
1

=

+++

+++

+++

fetdtctbat

fetdtctbat

fetdtctbat

ZYX

 

  or              0))()((
3

3 1332121 =−−−







+ tttttt

ec

af
YXec        

  or              03 =+ afYecX                                             [ 321 ttt  ] 

Example 2.5: The normals are drawn from the point ),,(  to the ellipsoid  

                        1)/()/()/( 222222 =++ czbyax  

Find the equation to the osculating plane at ),,(  of the cubic curve through the feet of the normals. 

Solution. The equation of the normal to the ellipsoid at ),,( zyx is  

                     )(
/// 222

sayu
cz

zZ

by

yY

ax

xX
=

−
=

−
=

−
 

where u is a parameter. If this line passes through ),,(  , then 

                    )(
/// 222

sayu
cz

z

by

y

ax

x
=

−
=

−
=

− 
 

222222 /)(,/)(,/)( cuczbubyauax +=+=+=   
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or   )(),/(,)/( 222222 ucczubbyuaax +=+=+=                                            (1) 

Now we are to find the osculating plane at ),,(  of the curve given by (1). Putting 

 === zyx ,, , we get 0=u  in each case. 

Now the position vector r of any point on the curve is given by  

              














+++
=

uc

c

ub

b

ua

a
2

2

2

2

2

2

,,


r  

     














+++
−=

22

2

22

2

22

2

)(
,

)(
,

)( uc

c

ub

b

ua

a 
r  

             














+++
=

32

2

32

2

32

2

)(
,

)(
,

)(
2

uc

c

ub

b

ua

a 
r  

At 0=u , 







=

222
,,
cba


r ;   








=

444
,,2
cba


r  

0
)(

,
)2(

,
)(

44

22

44

2

44

22

=











 −−−
=

cb

ab

ca

cha

cb

bc 
rr   

The equation of the osculating plane at the point r is  

                         0],,[ =− rrrR         

At the point ),,(   it reduces to  

0
)()2()(

.})()(){(
44

22

44

2

44

22

=











 −
+

−
+

−
−+−+− kjikji

cb

ab

ca

cha

cb

bc
ZYX


  

or    0
)(

)(
44

22
44

44
=

−
−−

bc

bc
bc

bc

X



 

or   0)()( 22422
4

= −−− cbacb
Xa


 

or   0
))(())(( 2222

4

2242

4

=
−−

−
−− acba

a

acba

Xa


 

or  01
))(( 2242

4

=+
−− acba

Xa


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Example 2.6: Prove that the osculating plane at ),,( 111 zyx on the curve of intersection of the cylinders 

222222 , bzyazx =+=+ is given by 243
1

3
1

243
1

3
1 /)(/)( bbzzyyaazzxx −−=−− . 

Solution. Let 0),,( 222 =−+= azxzyxf                                                                  (1)     

                       0),,( 222 =−+= bzyzyx                                                                 (2) 

zyzffxf zyxzyx 2,2,0,2,0,2 ======   

At the point ),,( 111 zyx , the above values are  

   1111 2,2,0,2,0,2 zyzffxf zyxzyx ======                               (3) 

Similarly .0,0.,0,2 etcetcff xyxxxyxx ====   

Let the equation of intersection of the surfaces (1) and (2) be )(urr = . Differentiating (1) and (2) with 

respect to ‘ u ’, we have 

                                0,0 =+=+ zzyyzzxx   

 At ),,( 111 zyx ,   0111 =−== zzyyxx   

or      
111 /1/1/1 z

z

y

y

x

x 
−==                                                                                (3) 

Now the equation of the osculating plane at ),,( 111 zyx given by 

                      
xyzxyzzzyyxx

zyx

fyxfxzfzyfzfyfx

fzzfyyfxx

 222

)()()(

222

111

+++++

−+−+−
          [see (2.16') ]                                                                           

 
xyzxyzzzyyxx

zyx

yxxzzyzyx

zzyyxx





 222

)()()(

222

111

+++++

−+−+−
=                                                         

Becomes [using the relation (2) and (3)] 

                    
22

1111

22

1111 )()()()(

zy

zzzyyy

zx

zzzxxx

 +

−+−
=

+

−+−
 

  or              
2
1

2
1

2
1

2
111

2
1

2
1

2
1

2
111

/1/1

)(

/1/1

)(

zy

zyzzyy

zx

zxzzxx

+

+−+
=

+

+−+
                                       using (3) 

Since the point ),,( 111 zyx lies on (1) and (2) both, hence  

           22
1

2
1

22
1

2
1 , bzyazx =+=+                                                                         (4)     
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Using (4) the equation of the osculating plane becomes  

            
2

2
1

2
11

2

2
1

2
11 )()(

b

ybzzyy

a

xazzxx −+
=

−+
 

or         
2

2
1

22
1

3
1

2

2
1

22
1

3
1 ))(())((

b

zbbzzyy

a

zaazzxx −−+
=

−−+
                                             

or       2
1

2
1

243
1

3
1

2
1

2
1

243
1

3
1 /)]([/)]([ bzzzbbzzyyazzzaazzxx ++−−=++−−  

or        )(/)()(/)( 1
2
1

243
1

3
11

2
1

243
1

3
1 zzzbbzzyyzzzaazzxx ++−+=++−−  

or       243
1

3
1

243
1

3
1 /)(/)( bbzzyyaazzxx −+=−−  

This is the required equation of the osculating plane. 

Example 2.7: Prove that the points of the curve of intersection of sphere and coincide

1222 =++ zrryxr , 1222 =++ zcbyxa , at which the osculating planes through the origin lie on the 

cone  0444 =
−

−
+

−

−
+

−

−
z

ba

rc
y

ac

rb
x

cb

ra
 

Solution. Let 01),,( 222 =−++= zrryxrzyxf                                                      (1) 

                      01),,( 222 =−++= zcbyxazyx                                                      (2) 

               czbyaxrzfryfrxf zyxzyx 2,2,22,2,2 ======   

               .02,2,2 etcfrfrfrf xyzzyyxx ====  

Let the equation of the curve of intersection of (1) and (2) be )(urr = . Differentiating (1) and (2) w.r.t. 

‘u ’, we have  

             0=++ zrzyryxrx  ,    0=++ zczybyxax   

or         0=++ zzyyxx   

Solving 
ba

zz

ac

yy

cb

xx

−
+

−
+

−


 

or        
zba

z

yac

y

xcb

x

/)(/)(/)( −
+

−
+

−


                                                                  (3) 

Now the equation to the osculating plane [see (2.16')] is 
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)(2

2)(2)(2)(
222 zyxr

cyzZbyyYrxxX

 ++

−+−+−
 

                          
)(2

2)(2)(2)(
222 zcybxa

cyzZbyyYrxxX

 ++

−+−+−
=  

Since the osculating plane passes through the origin, hence 

  0)]([ 2222222 = ++−++ zcybxaczbyaxx   

or   0)}]()({[ 222 = −+− bayaczx   

or    0
)()()()(

2

2

2

2
2 =



















 −−

−
−−

y

baac

z

acba
x                                       using (3) 

or   0})(){(
))(( 22

22

2 =




















−−−
−−

zacyba
zy

acba
x  

or   0)}()({
)(

2222

22

2

=




















+−+
−

czbyzya
zycb

x
 

or   0)1(
1

)(

. 22

222

22

= 
















−−







−

−
axx

r
a

cbzyx

xx
             

or   0)(
)(

4

= 







−

−
ra

cb

x
                                                

2.4 THE PRINCIPAL NORMAL AND BI-NORMAL 

 A curve is the locus of a point whose position vector r relative to a fixed origin may be 

expressed as a function of  a single variable parameter known as tangent. Then its Cartesian coordinates 

x, y, z are also functions of the same parameter. When the curve is not a plane curve it is said to be 

skew, tortuous or twisted. We shall confine our attention to those portions of the curve which are free 

from singularities of all kinds. All the normal to the curve at any point lie in the plane through the point 

perpendicular to the tangent to the curve i.e. in the normal plane. Two of these normals are of great 

importance and are given special names. 

(i) Principal normal: The normal which lies in osculating plane at any point of a curve is called 

Principal Normal. Obviously, this normal is along the line of intersection of the osculating plane and 

the normal plane at the point (as shown in the figure 2.3). 
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(ii) Bi-normal: The normal which is perpendicular to the osculating plane at a point R(t) (as shown in 

the figure 2.3) is called the Bi-normal. Obviously, binormal is also perpendicular to the principal 

normal as well as tangent to the curve. 

The unit vector along the principal normal and the bi-normal are denoted by n and b respectively. 

(A) To find the direction of principal normal and binormal: Since bi-normal is perpendicular to 

the osculating plane (osculating plane is perpendicular to the vector rr    and therefore bi-normal is 

parallel to the vector rr   . 

The principal normal being perpendicular to the tangent (tangent is perpendicular to the        vector r ) 

and the bi-normal, will be parallel to the vector 

                    rrrrrrrr  )()(..)( 2 − ei . 

If the parameter be arc length s: We know t is the unit tangent vector at a point of space curve.  

Hence 1.1. == rrtt or which on differentiation w.r.t. ‘s’ gives 1. =rr ; showing that r  is 

perpendicular to the vector r  and hence principal normal will be parallel to the vector r  , and bi-

normal will be  parallel to the vector rr  . Since bi-normal is perpendicular to the tangent and the 

principal normal. 

Corollary: In Cartesians 

(i) When the parameter u  

Here,  kjir zyx ++= ,    =++= ikjir xzyx   

           = ir x                               iirr )()( yzzy  −=  

Hence the principal normal being parallel to the vector  

           iirrr − xyzzyei  ])([..)( *  

i})()({.. xyyxyzxxzzei  −−−  

the direction ratios of it are 

            )()(;)()(;)()( zxxzxyzzyyyzzyzxyyxxxyyxyzxxzz  −−−−−−−−−  

Since the bi-normal is parallel to the vector 

              rr   i.e. to  − i)( yzzy  , its direction ratios are 

           xyyxzxxzyzzy  −−− ,;   

(ii) When the parameter is arc-length s 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  44 | 

 

Since principal normal is parallel to the vector r  , its direction ratios are zyx  ,, .The bi-normal 

being parallel to the vector rr   i.e. to  − i)( yzzy , the direction ratios of bi-normal are given by 

 )(,)(,)( xyyxzxxzyzzy −−−  

(B) The unit vector t, n, b 

In the study of differential geometry the three unit vectors viz. unit tangent vector t, the unit principal 

normal vector n, and the unit bi-normal vector b play an important part. The sense of the unit vector b is 

chosen so that tried t, n, b form a right handed orthogonal system of axes i.e. as shown in figure 2.2. 

 

tbnntbbnt === ,,  and 0.,0.,0. === tbbnnt  

This adjoining figure 2.3, shows that at each point of the curve there are three mutually perpendicular 

planes. 

(C) Fundamental planes 

(i) The osculating plane containing t and n  and clearly its equation is 0=− r).b(R . 

(ii) The normal plane containing n and b and clearly its equation is 0=− r).t(R . 

(iii) The rectifying plane containing b and t and clearly its equation is 0=− r).n(R  

Where the point P(r) is on the space curve and R as indicated in the figure, lies in these planes, these 

planes are also called fundamental planes that explain in figure 2.3 

t 

n 

b 

Anticlock wise 

direction 

Figure 2.2 

Curve R(t) 
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Corollary. In Cartesians: Let ),,(  be a current point and ),,( zyx the point where the planes are 

determined. 

kjirkjiR zyx ++=++= ,  

Again let ),,( rrr nml where )3,2,1( =r be the direction ratios of the tangent, principal normal and bi-

normal, so that 

kjit 111 nml ++= , kjin 222 nml ++= , kjib 333 nml ++=  

Substituting values in the equations to three fundamental planes, we get 

Normal plane as                            0)()()( 111 =−+−+− znymxl   

Rectifying plane as                  0)()()( 222 =−+−+− znymxl   

Osculating plane as                  0)()()( 333 =−+−+− znymxl   

(D) To find the equation of the principal normal and binormal. 

Let r be the positive vector of a point  P on the given curve C at which we are to find equations of 

principal normal and binormal (as shown in figure 2.4). Let R be the positive vector of  current point R 

on the principal normal 
→

PR , then we have  

  nPRR,ORr,OP v===
→→→

 

Since n is the unit vector along the  principal normal 
→

PR  and v  is some scalar. Therefore triangle law 

of vectors, namely 

  

→→→

+= PROPOR  gives R=r+ v n.  

n 
t 

b 

R Curve 

Principal normal 

Binormal 

Tangent 

Figure 2.3 

Rectifying 

Plane 

Normal 

Plane 

Osculating Plane 

P(r) 
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This is the require equation of the principal normal at a point P(r) on the curve C. Similarly if R denotes 

the position vector of a current point Q on the binomial, the equation of the binomial at a point P(r) on 

the curve C is given in figure 2.4 

                        R=r+ b,    where  is some scalar. 

 

Example 2.8: Find the basic unit vector t, n, and b of the curve ),,( 32 uuu=r at the point 1=u . Also 

find the equation of tangent, the principal normal and binormal of this point. 

Solution. The equation of the given curve is 

                                   ),,( 32 uuu=r  

                          )3,2,1( 2uu
du

d
== r

r
       

  or                     )3,2,1(. 2uu
du

ds

ds

d
=

r
          

 or                        )3,2,1(. 2uu
du

ds
=t                                                                    (1) 

    on squaring both side of equation (1), we have       

                       )941(941 4242

2

uu
du

ds
uu

du

ds
++=








++=








                          (2) 

      Using equation (2) in (1), we get 

C 

O 

 

 

 

P 

t 

b 

n 

Q 

R 

Figure 2.4 
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                    )3,2,1(
)941(

1 2

42
uu

uu ++
=t                                                          (3) 

    Differentiating equation (1) w.r.t. ‘ u ’, we get 

   or           )6,2,0(.
2

2

u
du

sd

du

ds

du

ds

du

ds

ds

d
=+








t

t
                                                    (4)       

  Taking vector product of equation (2.30) and (2.33), we get    

                   )2,6,6( 2

3

uu
du

ds
−=








b                                                  ]0,[ == ttbnt  

On squaring )991(4 42

6

2 uu
du

ds
++=








  

       )991(2 42

3

uu
du

ds
++=








                                                                (5) 

Hence, using equation (3), (4) becomes   

             )1,3,3(
)991(

1 2

42
uu

uu
−

++
=b                                                      (6) 

Now putting 1=u , in (2) and (6), we have 

                      )3,2,1(
14

1
=t , )1,3,3(

19

1
−=b                        

Also       )9,8,11(
266

1
−−== tbn  

The equation of the tangent at 1=u  i.e. at )1,1,1(=r  are 

                 
3

1

1

1

1

1 −
=

−
=

− ZYX
                                                                           (7) 

 The equation of principal normal at 1=u , are 

                  
9

1

8

1

11

1 −
=

−

−
=

−

− ZYX
                                                                           (8) 

The equation of binomial at 1=u  , are                                                          

                  
1

1

3

1

3

1 −
=

−

−
=

− ZYX
                                                                           (9) 
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Example 2.9: Let C be a curve given by the equation ),,( 32 uuu=r , find the curvature and torsion of C 

at the point (0,0,0). Also find the equation of its binormal line and normal plane at the point (1,1,1).  

Solution. At the point (0,0,0) of the curve ),,( 32 uuu=r , we have 0=u . Putting 0=u  in relation (1) 

and (2) of above example, we get  

                                2=  and 3=  

  Again at the point (1,1,1) of the curve C, 1=u . See example (2.8) the binormal is given by equation 

(9).  

             The equation of normal plane at (1,1,1) using (R-r).t=0 is given by        

                           0)32(
)14(

1
})1()1()1{( =++−+−+− kjikji ZYX   

       or                  0)1(3)1(2)1( =−+−+− ZYX    

       or                   X+2Y+3Z=6  

2.5  (A) CURVATURE 

Definition: (A)Tangent: It is usually convenient to choose as the scalar parameter the length s of the arc 

of the curve measured from a fixed point A on it. Then for points on one side A the value of s  will be 

positive, for points on the other side, negative. The positive direction along the curve at any point is 

taken as that  corresponding to algebraically increase of s . Thus the position vector r of a point on the 

curve is a function of s , regular within the range considered.   

 

 

P 

Q A 

C 

O 

r 

r+r 

r 

Figure 2.5 
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Its successive derivatives with respect to s  will be denoted by r', r'', r''', and so on. Let P, Q be the 

points on the curve whose position vectors are r, r+r corresponding to the values s , ss +  of the 

parameter, then r is the vector PQ. The quotient  sδr is a vector in the same direction as r ; and in 

the limit, as s tends to zero, this direction becomes that of the tangent at P. Moreover the ratio of the 

lengths of the chord PQ and the arc PQ tends to unity as Q moves up to coincidence with P. Therefore 

the limiting values of sδr is a unit vector parallel to the tangent to the curve at P, and in the positive 

direction. We shall denote this by t and call it the unit tangent at P. Thus 

    r
rr

t ===
→ ds

d

s
lt
s 



 0

                                                           (2.5.1) 

The vector equation of the tangent at  P may be written down at once. For the position vector R of a 

current point on the tangent is given by  

   trR u+=                                                                           (2.5.2) 

where u is a variable number, negative or positive. Thus relation (2.5.2) is known as the equation of the 

tangent. In Cartesian coordinates equation of tangent can be written as  

   0)( =− trR                                                                      (2.5.3) 

Every line through P in the plane (2.5.3) is a normal to the curve. 

 

(B) CURVATURE 

The curvature of the curve at any point is the arc-rate of rotation of the tangent. Thus if   is the angle 

between the tangents at P and Q (figure 2.5), s is the average curvature of the are PQ; and its 

limiting value as s tends to zero is the curvature at the point P. This is sometimes called the first 

curvature or the circular curvature. We shall denote it by k. Thus 

   








===
→ ds

d

s
k lt

s 0

                                                        (2.5.4) 

The unit tangent is not a constant vector, for its direction changes from point to point of the 
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curve. Let t be its value at P and t+t  at Q. If the vector BE and BF are respectively equal to these, then 

t  is the vector EF and   the angle EBF. The quotient 


t
is a vector parallel to t , and therefore in 

the limit as s tends to zero its direction is perpendicular to the tangent at P.  Moreover since BE and BF 

are of unit length, the modulus of the limiting value of 


t
 is the limiting value of 

s


, which is k. 

Hence the relation 

   

n
t

k
s

t

ds

d
lt
s

==
→ 



 0                                                                                            

(2.5.5) where n  

is a unit vector perpendicular to t and in the plane of the tangents at P and a consecutive point. This 

plane, containing two consecutive tangents and therefore three consecutive points at P, is called the 

plane of curvature or the osculating plane at P. 

The arc rate at which the tangent changes direction 








ds

d
ei

t
.. as the point P moves along the curve is 

called the curvature vector of the curve and its magnitude is denoted by k. 

By definition we have  k=t  where k is the curvature vector. In order to determine the sign of k, we 

have from (figure 2.3) )( r =t laying in the osculating plane and normal to t and therefore t  is 

proportional to n, i.e. we may write nt k= . But we choose the direction of n such that the curvature k 

is always positive i.e. we take nt k= . 

(C)  TORSION 

F 

E 
B 

t 

t+t 
t 

Figure 2.6 

 
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Among the normals at P to the curve that which is perpendicular to the osculating plane is called the 

binormal. Being perpendicular to both t and n it is parallel to nt  . Denoting this unit vector by b we 

have to trio t, n, b forming a right-handed system (as shown in figure 2.2) of mutually perpendicular 

unit vectors, and therefore connected by the relations 

0=•=•=• tbbnnt and 

bnt = , tbn = , ntb =  

the cyclic order being preserved in the cross products. We may call b the unit binormal. The positive 

direction along the binormal is taken as that if b, just as the positive direction along the principal normal 

is that of n. The equation of the binormal is  

ubrR +=  and rrρntb ==   

Definition: The arc rate at which the changes direction bi- normal 








ds

d
ei

b
.. as PI moves along the curve 

is called the torsion vector of the curve and its magnitude is denoted by  .           The torsion  may 

have positive as well as negative direction. Therefore   is determined both in magnitude and direction. 

An alternative definition of Torsion: The angle between the osculating planes at any two points P, Q 

of a curve is called the whole torsion of the arc PQ. The limiting value of the ratio of the whole torsion 

to the arc PQ is called the torsion of the curve at the point P as PQ → .       The radius of the circle 

whose curvature is equal to the torsion of the curve at any point , is called the radius of torsion at that 

point and is denoted by  . 

Solved Examples 

Example 2.10:Calculate the curvature and torsion of the cubic curve given by ),,( 32 uuu=r . 

Solution. Here ),,( 32 uuu=r  

                      )3,2,1( 2uu= r         

               )62()32( 2
kjkjirr uuu +++=   

                             iijk
22 61262 uuu −+−=       

                             )2,6,6(266 22 uuuu −=+−= kji  

                            )1,3,3(2 2 uu −=  
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2/124 )199(2 ++= uurr   

Also, )6,0,0()1,3,3(2],,[ 2 •−=•= uurrrrrr        

                     2(0+0+6)=12       

                 
2/342

2/124

3 )941(

)199(2

uu

uu
k

++

++
=


=

r

rr




                                                     (1) 

 And      
)199(4

12,,

242 ++
=


=

uurr

rrr




  

Or          
)199(

3
24 ++

=
uu

                                                                                      (2) 

Example 2.10: For the curve )3( 3uuax −= , 23auy =  show that curvature and torsion are equal. 

Solution. The positive vector r of any point of the curve is given by 

                  ))3(,3),3(( 323 uuaauuua +−=r  

Differentiating w.r.t. ‘u’, we have 

                 )33,6,33( 22 uuuua +−=r    

                 )6,6,6( uua −=r  

                 )1,0,1(6)6,0,6( −=−= aar              

                ),1,(6)1,2,1(3 22 uuauuua −+−=rr   

                       ])1()1(22)1()1[(18 2222222
ijikjk uuuuuuuua +−+−+−−−−=  

                       ])21()()1([18 223322
kji uuuuuuua +−++−+−−−=      

                       ])1(2)1([18 222
kji uuua ++−−−=                   

             
2/1222222 ])1(4)1[(18 uuua +++−=rr         

                      )1(218])1()1[(18 222/122222 uauua +=+++=  

            )]1,0,1(6).1(2,)1([18],,[ 2222 −+−−=•= auuuarrrrrr       

                        32223 216)]1(0)1([108 auua =+++−+=                

                    
2/122222 })1(4)1{(3 uuua +++−=r  
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                        )1(23})1()1{(3 22/12222 uauua +=+++=  

           
)1(3

1

)1(2183

)1(218
2323

22

3 uaua

ua
k

+
=

+

+
=


=

r

rr




 

And      
22224

3

2 )1(3

1

)1(21818

216,,

uaua

a

+
=

+
=


=

rr

rrr




  

 Hence =k . 

Example 2.11: Find the radii of curvature and torsion of the helix uax cos= , uay sin= , tanauz = . 

Solution. Here )tan,sin,cos( auuaua=r  

Differentiating w.r.t. ‘ u ’ we get 

                        )tan,cos,sin( uua −=r  

                        )0,sin,cos( uua −−=r  

                        )0,cos,(sin uua −=r           

                       )1,tancos,tan(sin2  uua=rr      

                       sec)]1tancostan[(sin 22/122222 auua =++=rr   

                    tan0tancostan(sin],,[ 3223 auua =++=•= rrrrrr   

       Also,             sec]tancos[sin 2/1222 auua =++=r         

                            
aacsea

a
k





 2

233

2

3

cos

sec

1sec
===


=

r

rr




           

                             2sec
1

a
k
==  

       and                           









sec

sin

sec

tan
24

2

aa

a
==      

                               


 seccos
1

eca==       

Example 2.12: For the curve  uax 3cos4= , uay 3sin4= , ucz 2cos3=  
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         Prove that 
uca

a

2sin)(6 22 +
=  

Solution. Here, )2cos3,sin4,cos4( 33 ucuaua=r  

Differentiating w.r.t. arc length ‘s’  

                         
ds

du
ucuuauua )2sin,cossin2,sincos2(6 22 −−== tr  

ds

du
cuauauu ),sin,cos(cossin12 −−=t                           (1) 

Squaring equation (1) and using 12 =t  

                              

2

2222222 )sincos(cossin1441 







++=

ds

du
cuauauu  

        or         )(cossin12 22 cauu
du

ds
+=                                                                 (2) 

                                    Substituting equation (2) in (1), we get 

                             
)(cossin12

1
),sin,cos(cossin12

22 cauu
cuauauu

+
−−=t     

              ),sin,cos(
)(

1

22
cuaua

ca
−−

+
= t                                                     (3) 

Differentiating equation (3) w.r.t. ‘s’ and using nt = , we have 

               
ds

du
uaua

ca
)0,cos,sin(

)(

1

22 +
== nt                                                 (4) 

                 







+

+
=

ds

du
uaua

ca

2/12222

22
)cossin(

1
n                    

   or          
2222 cossin12

.
1

cauu

a

ca ++
=                     [ 1=n  and using (2)] 

  or          
uca

a

2sin)(6
.

22 +
= . 
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Example 2.13:  Find the radii of curvature and torsion at any point of the curve  

                   azyxayx =−=+ 22222 , .   

Solution. Let the parametric equation of the curve be 

                uax cos= , uay sin= , uaz 2cos=  

          )2cos,sin,(cos uuua= r  

          )2sin2,cos,sin( uuua −−= r     

           )2cos4,sin,cos(2 uuua −−−= r   

         )2sin8,cos,(sin3 uuua −−= r                                                                        (1)  

              
)sincos,2cossin4cos2sin2

,2sinsin22coscos4(

22

2

uuuuuu

uuuua

+−

−−=rr 
                       

                     ]1,2cossin2)2sin(2),2cos(22coscos2[2 uuuuuuuua −−−−−=                                        

                     ]1,2cossin2sin2,cos22coscos2[2 uuuuuua −−−=    

                     )1,sin4,cos4( 332 uua −=                                                                      (2) 

Taking scalar product of equation (2) with (1), we have  

               }2sin8cossin4cossin4{],,[ 333 uuuuua +−−=rrr   

                           }2sin8)sin(coscossin4{ 223 uuuua ++−=  

                           }2sin8cossin4{3 uuua +−=  

                           uauua 2sin6}2sin82sin4{ 33 =+−=  

   Also,       )2sin4sin(cos 22222
uuua ++=r  

                        }2cos45{}2sin41{ 2222 uaua −=+=       

  And    )1sin16cos16( 6642
++= uuarr   

                        ]1)}sincossin)(cossin{cos16[ 2244224 +−++= uuuuuua  

                        ]1}sincos3)sin{(cos16[ 222224 +−+= uuuua  

                        ]1}sincos31{16[ 224 +−= uua  

                        ]sincos4817[ 224 uua −=  
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                        ]2sin1217[ 24 ua −=   

                         ]2cos125[ 24 ua +=     

   Now,      
)2cos125(

)2cos45(1
24

326

2

6

2

2

ua

ua

k +

−
=


==

rr

r




      

                                














+














−

=

2

2

3

2

2
2

12
5

4
5

a

z

a

z
a

                              [since uaz 2cos= ] 

                                
( )
( )222

3222

125

45

zaa

zaa

+

−
=   

 And     
ua

ua

2sin6

)2cos125(

],,[

1
3

242
+

=


==
rrr

rr






  

                       
)(6

125

16

12
5

22

22

2

2

2

2

za

za

a

z

a

z
a

−

+
=














−














+

=  

Example 2.14: A right helix of radius a and slope  has four point contact with a given curve at the 

point where its curvature and torsion are /1  and /1 . Prove that  

              )/( 222  +=a    and  /tan = . 

Solution. For a three point contact between two curves, consecutive tangents to the curves are same. 

Hence   is the same. 

If in addition there is contact at the fourth point also, consecutive osculating planes and hence 

consecutive binormals are the same. Hence   is the same.  

Thus   and   for the curve are the same as   and   for the helix. 

For the helix, we have 

                            2seca=     or     
a2

2cos11 



+
=                                                 (1) 
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        and            



cossin

a
=       or      

a2

2sin1 


=                                         (2) 

    From (1) and (2), we have 

                        
22

2

4

11

2

11

aa
=+








−


 

  Or                   
a

111
22
=+       or          

22

2





+
=a  

  Also     







tan

2cos1

2sin
=

+
= . 

2.6 CHECK YOUR PROGRESS 

SP-1.  Define the osculating plane at a point of a space curve and determine its equation. 

SP-2.  Show that if a curve is given in terms of a general parameter u , then equation of the osculating 

plane is  0],,[ =− rrrR   

SP-3.  Define the osculating plane of a curve at a point and from this definition find its equation.                                                                                                          

SP-4.  Find the equation of the osculating plane at a point of a space curve given by the intersection of 

surfaces 0)( =rf and  0)( =rg . 

SP-5.  Find the osculating plane at a point of intersection of the surface 0),,( =zyxf and

0),,( =zyx . 

SP-6.  Define the normal plane to a space curve at a point and find its equation. 

SP-7.  Find the osculating plane at the point u on the helix  cuzuayuax === ,sin,cos .  

SP-8.  Show that oscillating planes at any three points on the curve  3
3

2
2

1
3

1

2

1
etettex ++=

 
meet at a point laying in the plane determined by  these three points. 

SP-9.  Show that a curve is a plane curve if all oscillating planes have a common  point of intersection. 

SP-10. Explain the concept of unit tangent vector, unit principal normal vector and  unit binomial 

vector for a space curve. 

SP-11. If the tangent and the binormal at a point of a curve makes angles  ,   respectively with a 

fixed direction, show that 






 k

d

d
−=

sin

sin
. 
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SP-12. Show that the principal normals at consecutive points do not intersect unless  0= . 

SP-13. Find the curvature along the curve 321 )cos1()sin( teetettx +−+−= . 

SP-14. Show that radius of spherical curvature of a circular helix is equal to radius of  circular 

curvature. 

SP-15. Find the curvature and torsion of the curve )sin( uuax −= , )cos1( uay −= ,  bus = . 

SP-16. Find the curvature, centre of curvature, and the torsion of the curve  uax cos= ,

 uay sin= , uaz 2cos= . 

SP-17. Establish briefly the Serret-Frenet formulae at a point of space curve.  

SP-18. Define the curvature k  and torsion  of a twisted curve and establish Serret- Frenet 

formulae.                                                                                                   
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CHAPTER-3 

CURVES IN SPACE R3(II) 

Objectives: The students will learn about Screw curvature, Serret Frenet formulae, and  how to 

use Serret Frenet formulae to find the curvatures and torsion of a skewed  plane in this chapter, which 

is a continuation of the second chapter. 

3.1 INTRODUCTION 

 In previous chapter we have studied the characterstics of continuous curve of class  2 and plane  

like, osculating plane, tangent plane, normal plane, rectifying plane, intersection of space curve and 

plane, principal normal and binormal, curvature, and torsion of the curve. In  continuation of second 

chapter, to know about the more characterstics of the curves and surfaces the current chapter is required.   

3.2  SCREW CURVATURE 

Definition: The arc rate at which the principal normal changes direction 








ds

d
ei

n
..  as PI moves along 

the curve is called the screw curvature and its magnitude is denoted by 22 +k . 

Note: We often say /1=k  where   is called the radius of curvature and  /1= , where   is called 

the radius of torsion. 

(A) Serret Frenet formulae: The following three relations are known as Serret Frenet formulae 

            nt k=                                                                                                  (1) 

            tbn k−=                                                                                             (2) 

            nb −=                                                                                                (3) 

where the symbols have their usual meaning.  

Proof: Proof of formula (1). We know  

                     12 =t  

Differentiating w. r. t. the arc length ‘s’ 

                     0= tt         This implies t  is perpendicular to t . 

The equation of the osculating plane at a point PI of the curve is  

                    0],,[ =− ttrR                                  
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The last equation shows that t  lie in the osculating plane and hence t  is perpendicular to the binomial 

b (since osculating plane is perpendicular to b). 

Thus t  is parallel to  tb        t  is parallel to n 

We may write  

                       nt k=  

By conclusion, we have 

                       nt k= . 

Note: One proof of first formula has also been given in (1) above. 

Proof of formula (3). We know that 

                       12 =b  

Differentiating w. r. t. the arc length ‘s’ 

         0=bb  showing that b is perpendicular to b and thus b  lies in the osculating plane. 

Also,       0= tb  

Differentiating w. r. t. ‘s’ 

          0..0 =+=+ nbtbtbtb kei  

0.. = tbei  

Showing b  is perpendicular to t, but b  is also perpendicular to b and b  lies in the osculating plane 

and therefore b  must be parallel to n. [Alternatively b  is perpendicular to b and t both implies b  is 

parallel to btb  ..ei  is parallel to n]. 

We may write                            nb =     

By conclusion, we have            nb −= . 

Where   is the torsion of the curve and measures the arc rate of turning of b. 

       Proof of formula (2): 

                              tbn k−=   

We know               tbn =  

Differentiating w. r. t. ‘s’ 

            nbtntbtbn k+−=+=           [ nb −= and nt k= ] 
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                  tb k−=   

Remark: Serret Frenet formulae may be represented in the form of matrix equation as follows  

                     

































−

−=























b

n

t

b

n

t

00

0

00



k

k

 

Corollary: Serret frenet formulae in Cartesians. 

Let 
333222111 ,,;,,;,, nmlandnmlnml be the direction cosines of the tangent, the principal normal 

and the binormal respectively at a point on the curve, so that  

kjit 111 nml ++= ;  kjin 222 nml ++= ;  kjib 333 nml ++= ; 

Then substitution in Frenet’s formulae provide  

                                

2

1
2

1
2

1 ,,
n

n
m

m
l

l =


=


=


 

                                

31

1
31

1
31

2 ,,
nn

n
mm

m
ll

l +−=


+−=


+−=


               

                                

2

3
2

3
2

3 ,,
n

n
m

m
l

l −=


−=


−=


 

Theorem 3.1: To show that a necessary and sufficient condition that a curve be a straight line is that 

0=k  at all points. 

Proof: Necessary Condition: The equation of a straight line bar += s where a and b are constant 

vectors. 

Hence atar == ..ei ; differentiating again 0=t  but  nt k=     (Frenet’s formula) 

nk= 0 , squaring we get 02 =k  i.e. 0=k which is, therefore, the necessary condition for a curve to 

be a straight line. 

Sufficient Condition: Conversely if 0=k , Frenet’s Formula nt k= gives 0=t  i.e. 0=r

.Integrating we get ar = constant vector, integrating once more we get an equation of the type 

bar += s where a and b are constant vectors and represent a straight line. Hence 0=k is also 

sufficient.  
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Theorem 3.2: If C is a curve for which b varies differentially with arc length. Then to show that a 

necessary and sufficient condition that C is a plane curve is that 0=  at all points.                 

Proof: Necessary Condition: Let the curve lie in a plane. Since b is normal to the osculating plane, 

therefore the plane curve lies in the osculating plane, i.e. the plane considered is osculating plane and it 

must be fixed. Now we know t and n lie in this plane (osculating plane) and hence ( ntb = ) is a 

constant vector. 

a= b constant vector and so 0=b  

Hence Frenet's formula nb −= gives n−=0 , squaring we get 0= , as the necessary condition for 

the curve to be a plane curve. 

Sufficient Condition: Conversely given 0=  to prove that the curve is a plane. We have from 

Frenet’s Formula ( nb −= ), 0=b ; integrating it, b=a constant vector. If the equation of the curve  is 

r=r(s), we have  

                   00....).( +=+=+= brbtbrbrbr                              [ 0,0. == bbt ] 

i.e. abr =.  

constant   that any vector from the origin to the curve is a right angle s (taking this constant to be 

zero) to the fixed b. Hence the curve must be a plane curve. Hence 0=  is also the sufficient condition 

for the curve to be the plane curve. 

Theorem 3. 3 (i): To show that necessary and sufficient condition for the curve to be the plane curve is 

0],,[ = rrr                                                             

Proof: We have tr =                                                                                                      (1) 

Differentiating w.r.t. s, 

                tr =                or        nr k=                                                                     (2) 

Taking vector product of (1) and (2), 

                          brr k=                                                                                   (3) 

Differentiating (3) w.r.t. ‘s’, 

                          bbrrrr +=+ kk  

                          nbrr kk −=             [ 0= rr ]                                       (4) 

Taking scalar product of (1) and (4) 
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                         nnnbrrr .).( 2kkk −=  

   or                    2],,[ k−=− rrr                        [ 1.,0. == nnbn ] 

  or                       2],,[ k= rrr                                                                                   (5) 

If the left hand member of the equation (5) is zero, then either 0=k or 0= . 

Now let 0  at some points of the curve, then in the neighborhood of this point 0 . Hence 0=k  in 

this neighbourhood and hence the curve is a straight line (see Theorem 1) and therefore 0=  on this 

line and this is in contradiction to our hypothesis. Hence 0=  at all points and the curve is a plane. 

Conversely: If 0=  i.e. the curve is a plane and therefore from the equation (5) 0],,[ = rrr . 

Therefore the condition is necessary as well as sufficient. 

Theorem 3.3(ii): Theorem 3(a) may also be put as – To show that the necessary and sufficient 

condition for the curve to be plane is  

                          0],,[ =rrr                                                                                  

Proof: We have  

                     ]3[],,[ 32 uuuuuu ++++= rrrrrrrr   

                                      ],,[6
rrr u=  

   or                 ],,[],,[ 6
rrrsrrr =                                








===

s


1

/

1

dudsds

du
u  

                                           26 ks=  

 Now see theorem 3(i). 

Example 3.1: Using Frenet’s formula, for the curve ua 3cos4 , uay 3sin4= , ucz 2cos3=  

         Prove that 
uca

a

2sin)(6 22 +
=  

Solution. Here, )2cos3,sin4,cos4( 33 ucuaua=r  

Differentiating w.r.t. arc length ‘s’  

                         
ds

du
ucuuauua )2sin,cossin2,sincos2(6 22 −−== tr  
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ds

du
cuauauu ),sin,cos(cossin12 −−=t                                               (1) 

Squaring equation (1) and using 12 =t  

                              

2

2222222 )sincos(cossin1441 







++=

ds

du
cuauauu  

        or               )(cossin12 22 cauu
du

ds
+=                                                                 (2) 

                                    Substituting equation (2) in (1), we get 

                             
)(cossin12

1
),sin,cos(cossin12

22 cauu
cuauauu

+
−−=t     

                    ),sin,cos(
)(

1

22
cuaua

ca
−−

+
= t                                                    (3) 

Differentiating equation (3) w.r.t. ‘s’ and using nt = , we have 

               
ds

du
uaua

ca
)0,cos,sin(

)(

1

22 +
== nt                                                       (4) 

                 







+

+
=

ds

du
uaua

ca

2/12222

22
)cossin(

1
n                    

   or          
2222 cossin12

.
1

cauu

a

ca ++
=                     [ 1=n  and using (2)] 

  or          
uca

a

2sin)(6
.

22 +
= . 

Example 3.2: Given the curve ),cos,sin( uuu eueue −−−=r . Find at any point ‘u ’ of this curve  

(i) Unit tangent vector t 

(ii) The equation of tangent  

(iii) The equation of normal plane 

(iv) The curvature 

(v) The unit principal normal vector b, and 
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(vi) The equation of the binormal. 

Solution. The equation of given curve is  

                      ),cos,sin( uuu eueue −−−=r   

      
ds

du
eueueueue

ds

du

du

d

ds

d uuuuu ),cossin,sincos( −−−−− −−−−===
rr

t  

    or  
ds

du
uuuue u )1,cossin,sin(cos −−−−= −

t                                                                (1)  

Squaring both sides of equation (1), we have  

        

2

2222 ])1()cossin()sin[(cos1 







−+−−+−= −

ds

du
uuuue u                            [ 12 =t ]  

 or 
3

3.1

2

2
u

u e

ds

du

ds

du
e =








= −                                                                                  (2)  

putting the value of dsdu /  in (1), we have  

          )1,cossin,sin(cos
3

. −−−−= − uuuu
e

e
u

u
t  

  or )1,cossin,sin)(cos3/1( −−−−= uuuuet                                                                  (3)  

The relation (3) gives the unit tangent vector t.  

The equation of the tangent line to the curve at the point ‘u ’ is  

                 trR +=  

  or            )1,cossin,sin)(cos3/1(),cos,sin( −−−−+= −−− uuuueueue uuu R  

  If R=(X,Y,Z) the equation of the tangent line in Cartesian coordinates are  

               
1cossin

cos

sincos

sin

−

−
=

−−

−
=

−

− −−− uuu eZ

uu

ueY

uu

ueX
                                                           (4)  

The equation of the normal plane to the curve at point ‘ u ’ is  

                                              0)( =•− trR   

  or  0)1,cossin,sin)(cos3/1()],cos,sin([ =−−−−•− −−− uuuueueue uuu
R   

  or  0)1,cossin,sincos)](,cos,sin([ =++−− −−− uuuueueue uuu
R  

If R=(X,Y,Z), the equation of normal plane in Cartesian form is  
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         01).()cos)(sincos()cos)(sinsin( =−++−+−− −−− uuu eZuuueYuuueX  

  or     ueZuuYuuX −=+++− 2)cos(sin)cos(sin                                                         (5)  

Now differentiating equation (3) w.r.t. ‘s’ and using Frenet’s formula, we have   

        ds

du
uuuu

ds

du

du

d
)0,sincos,cossin(

3

1
. +−−−==

t
n                                              (6)  

Squaring both sides of (6), we have  

                 

2

2222 )]0)sincos()cossin[(
3

1








++−+−−=

ds

du
uuuu  

or             







=








=

ds

du

ds

du

3

2

3

2
2

2                                                                      (7)  

Using (2) in (7), we have  

                         
u

u

e
e

3

2

33

2
==                                                                                 (8)  

Relation (8) gives curvature of the curve.  

Substituting the value of   from (7) to (6), we have  

                        
ds

du
uuuu

ds

du
)0,sincos,cossin(

3

1

3

2
+−−−=








n         

                          )0,sincos,cossin(
2

1
uuuu +−−−=n   

The relation (9) gives us the unit principal normal vector n. The equation of the principal normal at the 

point ‘ u ’ is  

                              nrR v+=           

  or   )0,sincos,cos(sin
2

)],cos,sin( uuuu
v

eueue uuu −−+−= −−−R                

In cartesian form, the equation of principal normal are  

                     
0sincos

cos

cossin

sin uuu eZ

uu

ueY

uu

ueX −−− −
=

−

−
=

+

−
                                                    (10) 

 Now, we have  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  67 | 

 

 )0,sincos,cos(sin
2

1
)1,cossin,sin(cos

3

1
uuuuuuuu −−+








−−−−−== ntb                                                                              

       or           )2,cossin,sin(cos
6

1
uuuu −−−−=b                                                         

       or          )2,cossin,cos(sin
6

1
−+−= uuuub                                                        (11)  

 The relation (11) gives us the unit binormal vector b. The equation of the binormal at the point ‘u ’ is  

                    brR +=     

     or            )2,cossin,cos(sin
6

)],cos,sin( −+−+= −−− uuuueueue uuu 
R        

  In Cartesian form, the equation of the binormal is                       

                           
2cossin

cos

cossin

sin

−

−
=

+

−
=

−

− −−− uuu eZ

uu

ueY

uu

ueX

 

Example 3.3: Calculate the curvature and torsion of the cubic curve given by ),,( 32 uuu=r . 

Solution. Here ),,( 32 uuu=r  

                      )3,2,1( 2uu= r         

               )62()32( 2
kjkjirr uuu +++=   

                             iijk
22 61262 uuu −+−=       

                             )2,6,6(266 22 uuuu −=+−= kji  

                            )1,3,3(2 2 uu −=  

       
2/124 )199(2 ++= uurr   

Also, )6,0,0()1,3,3(2],,[ 2 •−=•= uurrrrrr        

                     2(0+0+6)=12       

                 
2/342

2/124

3 )941(

)199(2

uu

uu
k

++

++
=


=

r

rr




                                                            (1) 

 And      
)199(4

12,,

242 ++
=


=

uurr

rrr




  
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Or          
)199(

3
24 ++

=
uu

                                                                                             (2) 

Example 3.4: For the curve )3( 3uuax −= , 23auy =  show that curvature and torsion are equal. 

Solution. The positive vector r of any point of the curve is given by 

                  ))3(,3),3(( 323 uuaauuua +−=r  

Differentiating w.r.t. ‘u’, we have 

                 )33,6,33( 22 uuuua +−=r    

                 )6,6,6( uua −=r  

                 )1,0,1(6)6,0,6( −=−= aar              

                ),1,(6)1,2,1(3 22 uuauuua −+−=rr   

                       ])1()1(22)1()1[(18 2222222
ijikjk uuuuuuuua +−+−+−−−−=  

                       ])21()()1([18 223322
kji uuuuuuua +−++−+−−−=      

                       ])1(2)1([18 222
kji uuua ++−−−=                   

             
2/1222222 ])1(4)1[(18 uuua +++−=rr         

                      )1(218])1()1[(18 222/122222 uauua +=+++=  

            )]1,0,1(6).1(2,)1([18],,[ 2222 −+−−=•= auuuarrrrrr       

                        32223 216)]1(0)1([108 auua =+++−+=                

                    
2/122222 })1(4)1{(3 uuua +++−=r  

                        )1(23})1()1{(3 22/12222 uauua +=+++=  

           
)1(3

1

)1(2183

)1(218
2323

22

3 uaua

ua
k

+
=

+

+
=


=

r

rr




 

And      
22224

3

2 )1(3

1

)1(21818

216,,

uaua

a

+
=

+
=


=

rr

rrr




  

 Hence =k . 

Example 3.5: Find the radii of curvature and torsion of the helix uax cos= , uay sin= , tanauz = . 
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Solution.  Here )tan,sin,cos( auuaua=r  

Differentiating w.r.t. ‘ u ’ we get 

                        )tan,cos,sin( uua −=r  

                        )0,sin,cos( uua −−=r  

                        )0,cos,(sin uua −=r           

                       )1,tancos,tan(sin2  uua=rr      

                       sec)]1tancostan[(sin 22/122222 auua =++=rr   

                    tan0tancostan(sin],,[ 3223 auua =++=•= rrrrrr   

       Also,             sec]tancos[sin 2/1222 auua =++=r         

                            
aacsea

a
k





 2

233

2

3

cos

sec

1sec
===


=

r

rr




           

                             2sec
1

a
k
==  

       and                           









sec

sin

sec

tan
24

2

aa

a
==      

                               


 seccos
1

eca==       

Example 3.6: For the curve uax 3cos4= , uay 3sin4= , ucz 2cos3=  

         Prove that 
uca

a

2sin)(6 22 +
=  

Solution. Here, )2cos3,sin4,cos4( 33 ucuaua=r  

Differentiating w.r.t. arc length ‘s’  

                         
ds

du
ucuuauua )2sin,cossin2,sincos2(6 22 −−== tr  

                          
ds

du
cuauauu ),sin,cos(cossin12 −−=t                                              (1) 

Squaring equation (1) and using 12 =t  
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2

2222222 )sincos(cossin1441 







++=

ds

du
cuauauu  

        or               )(cossin12 22 cauu
du

ds
+=                                                                 (2) 

                                    Substituting equation (2) in (1), we get 

                             
)(cossin12

1
),sin,cos(cossin12

22 cauu
cuauauu

+
−−=t     

                    ),sin,cos(
)(

1

22
cuaua

ca
−−

+
= t                                                     (3) 

Differentiating equation (3) w.r.t. ‘s’ and using nt = , we have 

               
ds

du
uaua

ca
)0,cos,sin(

)(

1

22 +
== nt                                                     (4) 

                 







+

+
=

ds

du
uaua

ca

2/12222

22
)cossin(

1
n                    

   or          
2222 cossin12

.
1

cauu

a

ca ++
=                     [ 1=n  and using (2)] 

  or          
uca

a

2sin)(6
.

22 +
= . 

Example 3.7: Given the curve ),cos,sin( uuu eueue −−−=r . Find at any point ‘u ’ of this curve  

(vii) Unit tangent vector t 

(viii) The equation of tangent  

(ix) The equation of normal plane 

(x) The curvature 

(xi) The unit principal normal vector b, and 

(xii) The equation of the binormal. 

Solution. The equation of given curve is  

                      ),cos,sin( uuu eueue −−−=r   
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      
ds

du
eueueueue

ds

du

du

d

ds

d uuuuu ),cossin,sincos( −−−−− −−−−===
rr

t  

 

    or  
ds

du
uuuue u )1,cossin,sin(cos −−−−= −

t                                                                (1)  

Squaring both sides of equation (1), we have  

        

2

2222 ])1()cossin()sin[(cos1 







−+−−+−= −

ds

du
uuuue u   

                                                                                                                   [ 12 =t ]  

 or    
3

3.1

2

2
u

u e

ds

du

ds

du
e =








= −                                                                               (2)  

putting the value of dsdu /  in (1), we have  

          )1,cossin,sin(cos
3

. −−−−= − uuuu
e

e
u

u
t  

  or )1,cossin,sin)(cos3/1( −−−−= uuuuet                                                                 (3)  

The relation (3) gives the unit tangent vector t.  

The equation of the tangent line to the curve at the point ‘u ’ is  

                 trR +=  

  or            )1,cossin,sin)(cos3/1(),cos,sin( −−−−+= −−− uuuueueue uuu R  

  If R=(X,Y,Z) the equation of the tangent line in Cartesian coordinates are  

               
1cossin

cos

sincos

sin

−

−
=

−−

−
=

−

− −−− uuu eZ

uu

ueY

uu

ueX
                                                          (4)  

The equation of the normal plane to the curve at point ‘ u ’ is  

                                              0)( =•− trR   

  or  0)1,cossin,sin)(cos3/1()],cos,sin([ =−−−−•− −−− uuuueueue uuu
R   

  or  0)1,cossin,sincos)](,cos,sin([ =++−− −−− uuuueueue uuu
R  

If R=(X,Y,Z), the equation of normal plane in Cartesian form is  

         01).()cos)(sincos()cos)(sinsin( =−++−+−− −−− uuu eZuuueYuuueX  
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  or     ueZuuYuuX −=+++− 2)cos(sin)cos(sin                                                         (5)  

Now differentiating eequation (3) w.r.t. ‘s’ and using Frenet’s formula, we have   

        ds

du
uuuu

ds

du

du

d
)0,sincos,cossin(

3

1
. +−−−==

t
n                                             (6)  

Squaring both sides of (6), we have  

                 

2

2222 )]0)sincos()cossin[(
3

1








++−+−−=

ds

du
uuuu  

or             







=








=

ds

du

ds

du

3

2

3

2
2

2                                                                      (7)  

Using (2) in (7), we have  

                         
u

u

e
e

3

2

33

2
==                                                                                  (8)  

Relation (8) gives curvature of the curve.  

Substituting the value of   from (7) to (6), we have  

                        
ds

du
uuuu

ds

du
)0,sincos,cossin(

3

1

3

2
+−−−=








n         

                          )0,sincos,cossin(
2

1
uuuu +−−−=n   

       The relation (9) gives us the unit principal normal vector n. 

The equation of the principal normal at the point ‘ u ’ is  

                              nrR v+=           

  or   )0,sincos,cos(sin
2

)],cos,sin( uuuu
v

eueue uuu −−+−= −−−R                

In cartesian form, the equation of principal normal are  

                     
0sincos

cos

cossin

sin uuu eZ

uu

ueY

uu

ueX −−− −
=

−

−
=

+

−
                                                     (10) 

 Now, we have  
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)0,sincos,cos(sin
2

1

)1,cossin,sin(cos
3

1

uuuu

uuuu

−−+







−

−−−−== ntb

                                                                             

       or           )2,cossin,sin(cos
6

1
uuuu −−−−=b                                                         

       or          )2,cossin,cos(sin
6

1
−+−= uuuub                                                        (11)  

 The relation (11) gives us the unit binormal vector b. 

The equation of the binormal at the point ‘ u ’ is  

                    brR +=     

     or            )2,cossin,cos(sin
6

)],cos,sin( −+−+= −−− uuuueueue uuu 
R        

  In Cartesian form, the equation of the binormal is                       

                           
2cossin

cos

cossin

sin

−

−
=

+

−
=

−

− −−− uuu eZ

uu

ueY

uu

ueX

 

Example 3.8: Find the basic unit vector t, n, and b of the curve ),,( 32 uuu=r at the point 1=u . Also 

find the equation of tangent, the principal normal and binormal of this point. 

Solution. The equation of the given curve is 

                                  ),,( 32 uuu=r  

                         )3,2,1( 2uu
du

d
== r

r
       

  or                    )3,2,1(. 2uu
du

ds

ds

d
=

r
          

 or                       )3,2,1(. 2uu
du

ds
=t                                                                                  (1) 

    on squaring equation (1), we have       

                      )941(941 4242

2

uu
du

ds
uu

du

ds
++=








++=








                                  (2) 

      Using equation (2) in (1), we get 
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                   )3,2,1(
)941(

1 2

42
uu

uu ++
=t                                                                    (3) 

    Differentiating equation (1) w.r.t. ‘ u ’, we get 

   or          )6,2,0(.
2

2

u
du

sd

du

ds

du

ds

du

ds

ds

d
=+








t

t
                                                                (4)       

  Taking vector product of equation (1) and (4), we get    

                  )2,6,6( 2

3

uu
du

ds
−=








b                                                      ]0,[ == ttbnt  

On squaring )991(4 42

6

2 uu
du

ds
++=








  

      )991(2 42

3

uu
du

ds
++=








                                                                            (6) 

Hence, using equation (5), (6) becomes   

            )1,3,3(
)991(

1 2

42
uu

uu
−

++
=b                                                                (7) 

Now putting 1=u , in (3) and (7), we have 

                     )3,2,1(
14

1
=t , )1,3,3(

19

1
−=b                        

Also      )9,8,11(
266

1
−−== tbn  

The equation of the tangent at 1=u  i.e. at )1,1,1(=r  are 

                
3

1

1

1

1

1 −
=

−
=

− ZYX
                                                                                         (8) 

 The equation of principal normal at 1=u , are 

                 
9

1

8

1

11

1 −
=

−

−
=

−

− ZYX
                                                                                                    (9) 

The equation of binomial at 1=u  , are                                                          

                 
1

1

3

1

3

1 −
=

−

−
=

− ZYX
                                                                                                  (10) 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  75 | 

 

Example 3.9: Find the radii of curvature and torsion at any point of the curve  

                   azyxayx =−=+ 22222 , .   

Solution. Let the parametric equation of the curve be 

                uax cos= , uay sin= , uaz 2cos=  

          )2cos,sin,(cos uuua= r  

          )2sin2,cos,sin( uuua −−= r     

           )2cos4,sin,cos(2 uuua −−−= r   

         )2sin8,cos,(sin3 uuua −−= r                                                                             (1)  

              
)sincos,2cossin4cos2sin2

,2sinsin22coscos4(

22

2

uuuuuu

uuuua

+−

−−=rr 
                       

                     ]1,2cossin2)2sin(2),2cos(22coscos2[2 uuuuuuuua −−−−−=                                        

                     ]1,2cossin2sin2,cos22coscos2[2 uuuuuua −−−=    

                   )1,sin4,cos4( 332 uua −=                                                                             (2) 

Taking scalor product of equation (2) with (1), we have  

               }2sin8cossin4cossin4{],,[ 333 uuuuua +−−=rrr   

                           }2sin8)sin(coscossin4{ 223 uuuua ++−=  

                           }2sin8cossin4{3 uuua +−=  

                           uauua 2sin6}2sin82sin4{ 33 =+−=  

   Also,       )2sin4sin(cos 22222
uuua ++=r  

                        }2cos45{}2sin41{ 2222 uaua −=+=       

  And    )1sin16cos16( 6642
++= uuarr   

                        ]1)}sincossin)(cossin{cos16[ 2244224 +−++= uuuuuua  

                        ]1}sincos3)sin{(cos16[ 222224 +−+= uuuua  

                        ]1}sincos31{16[ 224 +−= uua  
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                        ]sincos4817[ 224 uua −=  

                        ]2sin1217[ 24 ua −=   

                         ]2cos125[ 24 ua +=     

   Now,      
)2cos125(

)2cos45(1
24

326

2

6

2

2

ua

ua

k +

−
=


==

rr

r




      

                                














+














−

=

2

2

3

2

2
2

12
5

4
5

a

z

a

z
a

                              [since uaz 2cos= ] 

                                
( )
( )222

3222

125

45

zaa

zaa

+

−
=   

 And     
ua

ua

2sin6

)2cos125(

],,[

1
3

242
+

=


==
rrr

rr






  

                       
)(6

125

16

12
5

22

22

2

2

2

2

za

za

a

z

a

z
a

−

+
=














−














+

=  

Example 3.10: Find the osculating plane, curvature and torsion at any point of the curve uax 2cos= , 

uay 2sin= , uaz sin2= . 

Solution. The position vector r of any point on the curve is given by  

                )sin2,2sin,2(cos uuua=r  

                )cos,2cos,2sin(2 uuua −=r   

                )sin,2sin2,2cos2(2 uuua−=r   

                )cos,2cos4,2sin4(2 uuua −−=r   

            )2},2coscos{cos},cos2sin({sin4 2 uuuuuua +−+=rr    
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]cos2)2coscos(cos2cos4

)]cos2sin(sin2sin4[8],,[ 3

uuuuu

uuuua

−++

+=•= rrrrrr 
 

                    
]cos2)2sin2(cos2cos4

)]sin2sincos2(cos4[8

22

3

uuuu

uuuua

−++

+=
 

                   uauuua cos48]cos2cos4cos4[8 33 =−+=  

          2/1222 ]4)2coscos(cos)cos2sin[(sin4 ++++= uuuuuuarr    

                   2/122 ]cos35[4 ua +=   

 Thus osculating plane is  

                      0],,[ =− rrrR                            ..ei          0)( =•− rrrR         

  ..ei           

  0)sin2(2)2cos1(cos)2sin()cos2sin)(sin2cos( =−++−−+− uazuuuayuuuuax  

or    uuzuyxuuu sin32cos2)cos2sin(sin 3 =+−+  

Also        
2/323

2/122

2 )cos1(8

)cos35(4

ua

ua

+

+
=


=

r

rr




  

                  
2/32

2/12

)cos1(

)cos35(

u

u

+

+
=   

     
)cos3sec5(

3

)cos35(16

cos8

][

],,[
24

3

2 uuaua

ua

+
=

+
=


=

rr

rrr




 . 

Example 3.11: A right helix of radius a and slope   has four point contact with a given curve at the 

point where its curvature and torsion are /1  and /1 . Prove that  

              )/( 222  +=a    and  /tan = . 

Solution. For a three point contact between two curves, consecutive tangents to the curves are same. 

Hence   is the same. 

If in addition there is contact at the fourth point also, consecutive osculating planes and hence 

consecutive binormals are the same. Hence   is the same.  

Thus   and   for the curve are the same as   and   for the helix. 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  78 | 

 

For the helix, we have 

                            2seca=     or     
a2

2cos11 



+
=                                                      (1) 

        and            



cossin

a
=       or      

a2

2sin1 


=                                             (2) 

    From (1) and (2), we have 

                        
22

2

4

11

2

11

aa
=+








−


 

  Or                   
a

111
22
=+       or          

22

2





+
=a  

  Also     







tan

2cos1

2sin
=

+
= . 

Example 3.12: For the curve  

               uax tan= , uay cot= , uaz tanlog2= . Prove that 
u

a

2sin

22
2

=−=  . 

Solution.  Here )tanlog2,cot,tan( uauaua=r   

Differentiating w.r.t.’s’  

                         

2

22

cossin

2
,cos,sec 





















−==

ds

du

uu
uecuatr                                        (1)  

Squaring and using 12 =t , we get  

                         

2

22

442

cossin

2
cossec1 
















++=

ds

du

uu
uecua          

        or    












 ++
=









uu

uuuu
a

du

ds
44

2244
2

2

cossin

cossin2cossin
   

                           
uu

uu
a

44

222
2

cossin

)cos(sin +
=   

                
uu

a

du

ds
22 cossin

=                                                                                          (2)  
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        from (1) and (2)  

                                
a

uu

uu
uecua

22
22 cossin

cossin

2
,cos,sec














−=r  

                             )cossin2,cos,(sin 22 uuuu −=   

 Differentiating again  

                 
a

uu
uuuuu

22 cossin
)2cos2,sincos2,cossin2(== nr                             (3)  

                                            







=

a

uu

ds

du 22 cossin
                                     [from (2)]  

   or          ]2cos2sincos4cossin4[
cossin 22222

2

44
2 uuuuu

a

uu
++=   

  or           2/12222
22

)]sin(coscossin4[
cossin2

uuuu
a

uu
−+=    

  or           
a

uu
uu

a

uu 22
222

22 cossin2
)]sin[cos

cossin2
=+=     

  or           
u

a

u

a

2sin

22

2sin2

41
22

=== 


  

Substituting for   in (3), we get  

                )2cos2,2sin,2(sin
cossincossin2 2222

uuu
a

uu

a

uu
=n    

  or      )2cos2,2sin,2(sin
2

1
uuu=n   

Differentiating w.r.t. ‘s’  

           







−=−=

ds

du
uuu )2sin22,2cos2,2cos2(

2

1
tbn     

  or       )2sin2,2cos,2(cos
2

cossin2 22

uuu
a

uu
−=− tb    
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Squaring )2sin2,2cos,2(cos
cossin2 222

2

44
22 uuu

a

uu
−=−   

  or     
2

44

2

44
2 cossin4cossin2

a

uu

a

uu
=+         [putting for  ]  

  or     
a

uu 22 cossin2
−=                                 [taking –ve sign]    

  or  
u

a

2sin

221
2

==


 . 

Example 3.13: Prove that at the point of intersection of the surfaces  

                222 zyx =+ , 
x

y
az 1tan −= . 

where  tanxy = , the radius of curvature of the intersection is  

              2/1423/22 )58/()2(  +++a . 

Solution. For the point of intersection   

                  tanxy = , a
x

y
az == −1tan  

  and           
22222 tan  axx =+        

                   2222 sec  ax =  

                    cosax =  

Also                 sinay =   

Hence the parametric equations of the curve is 

                aaa ,sin,cos=r   

       )0,cossin,sin(cos 


+−== a
d

d
r

r
                                                           (1)  

            )0,sincos2,cossin2(  −−−= ar                                                            (2)  

            )0,cossin3,sincos3(  −−+−= ar                                                         (3)  

Taking cross product of (1) and (2), we get  
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        )2,sin2cos,cos,cos2sin( 22 +−−−−= arr                                     (4)  

    rrrrrr  •= )(],,[  

                )cossin3)(sin2cos()sincos3](cos2sin[3  ++++−−= a   

                ]cossin6cossin5sincos6cossin5[ 2222223  +++++−= a     

               )6( 23 += a                                                                                                        (5)  

Squaring (1), 1)cos(sin)sin[(cos 2222
+++−= ar  

                      ]2[ 23 += a   

             2/12 ]2[ += ar    

  From (4),  ])2()sin2cos()cos2sin[( 222242
+++−= arr    

                              ]444[ 2424 ++++= a   

                              ]58[ 424  ++= a   

    
2/142

2/32

2/1422

2/3233

]58[

]2[

]58[

]2[1












++

+
=

++

+
=


==

a

a

a

rr

r




  

  and  
]6[

]58[

]6[

]58[

],[

1
2

42

22

4242

+

++
=

+

++
=


==












a

a

a

rrr

rr




.  

Example 3.13: A point moves on a sphere of radius, ‘ a ’ so that its latitude is equal to its longitude. 

Prove that at ),,( zyx ,  

                  
2/122

2/322

)38(

)2(

zaa

za

−

−
= ,  

2/122

22

)(6

38

za

za

−

−
=   

Solution. For any point of sphere  

                cossinax = ,  sinsinay = , cosaz =  

          If latitude=longitude,  =   

            cossinax = ,  sinsinay = , cosaz =   
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        







=  cos,sin,2sin

2

1 2 aaar   

  Differentiating w.r.t. ‘ ’ and let dot denote the differentiation w.r.t. ‘ ’.  

           )sin,2sin,2(cos  −= ar   

           )cos,2cos2,2sin2(  −−= ar   

            )sin,2sin4,2cos4(  −−= ar   

            sin6],,[ 3a=rrr    

                ]4)sin4sin41(cos[sin 242642
++++= arr    

                               ]4cossin4cossin4[ 2224 +++= a   

                               ]cos38[]4cossin4[ 24224  −=++= aa  

                   2/122 )cos38( −= arr     

                            2/122/1222 )sin1(]sin2sin2[cos  +=++= aar   

                                2/12 )cos2( −= a  

                          
2/323

2/122

3 )cos2(

)cos38(






−

−
=


=

a

a

r

rr




   

                                 
2/322

2/122

2/3

2

2

2/1

2

2

)2(

)8(

2

38

za

zaa

a

z
a

a

z

−

−
=














−














−

=     

                 })38(/{)2(
1 2/1222/322 zaaza −−==


   

                     
2/122

22

3

24

)(6

38

sin6

)cos38(

],,[

][1

za

za

a

a

−

−
=

−
=


==








rrr

rr




  

Example 3.14: Prove that the principal normal to the helix is the normal to the cylinder.  

Solution. Let the equation to the helix be  
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                   )tan,sin,cos( auuaua=r  

                   )tan,cos,sin( uua −=r  

                   )0,sin,cos( uua −−=r   

Now d.c.’s of principal normal are  

                    rrrrr  2)()( +−   

..ei        )0,sin,cos().tancos(sin0 2222 uuauua −−+++    

    ..ei      )0,sin,(cos).tan1( 32 uua+−      

Hence d.c.’s of principal normal are proportional to )0,sin,(cos uu .  

  Also the equation of cylinder is  

         222 ayx =+   

    Tangent plane to the cylinder at )0,sin,cos( uaua  is  

            
2sincos auYauXa =+    

    ..ei     auYuX =+sincos       

         d.c.’s of normal are proportional to )0,sin,(cos uu .  

Example 3.15: Show that if the space curve C, )(srr =  has constant torsion   than the curve 1C ,  

+−= dsb
n

r


1  has constant curvature  .  

Solution. Let the quantities belonging to 1C  be distinguished by the use of suffix unit. Thus 1r  

denotes the position vector of a current point on 1C , etc. 

         Now we are given that +−= dsb
n

r


1                                                                   (1)  

Differentiating (1) w.r.t. ‘ s ’ , we get  

                               b
nr
+


−=
ds

ds

ds

d 1

1

1                         [  is constant ]  

  or                         btbt +−−= )(
11

1 
ds

ds
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  or                       tt



−=

ds

ds1
1                                                                                         (2)  

  This relation show that 1t  is parallel to t , we may take  

                              tt =1                                                                                                 (3)  

Thus using (3) in (2), we get  

                                   nt
t

==
ds

ds

ds

d 1

1

1                                                                       (4) 

            or                    nn 



 =








11 ,                                                 [using (4)]  

            or                     nn  =11                                                                                      (5)  

   The relation (5) shows that 1n is parallel to n , we may take  

                               nn =1                                                                                              (6)  

  Thus using (6) in (5), we get  

                                         =1  

       Curvature of 1C  is   which is constant.  

Example 3.16: On the binormal to a given curve  a point Q is taken at a constant distance c from the 

given curve. Prove that the curvature 1  of the locus of Q is given by  

      22222423222
1 )()1()1(  ccccc +−++=+ . 

Solution. Let the quantities belonging to the locus of Q be distinguished by the use of suffix unity. Let 

the position vector of P on the curve be r and that of Q at a distance c from P on the binormal PQ be 1r .  
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                                Hence brr c+=1  

Differentiating w.r.t. ‘s’ and let dash denote differentiation w.r.t. ‘s’.  

                            nt
r

r cbt
ds

ds

ds

ds

ds

d
−=== 1

1
1

1

1
1                       [ nb −= ] 

Squaring        22

2

1 1 c
ds

ds
+=








  

  or                 )1( 221 c
ds

ds
+=








  

Also differentiating equation (1), we get  

                          )(1
−=


ntr c   

  or                     bnttbnnr
2

1 )()(  ccccc −−+=−−−=


  

 Now           
3)( 1

11

3

1

2

1
2

1

1
hs

ds

ds

ds

d

ds

d




=












=
rr

rr

   

                   
2/322

2

1
)1(

])([)(






c

cccc

+

−−+−
=

bntnt
  

  or                    
2

222322
1

322 ])()1( bnt  ccccc +−++=+   

P

nb
Q

O

r

1r
c

t
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  or                                          2224264 )(  cccc +−++=                         

  or                     22222422
1

322 )()1()1(  ccccc +−++=+         

Example 3.17: A point Q is taken on the binormal at a variable point P of a curve of constant torsion   

so that PQ is of constant length c. Show that the binormal of the curve traced by Q makes an angle                      

})(/{tan 221  +− cc  with PQ.  

Solution.  Proceeding as in previous example as above, we have  

                      )(1 ntr c−= , bntr
2

1 )(  ccc −−+=   

 and         bntrr )( 22232
11  ccc +++=                      [  =const. 0= ]. 

   We know that the binormal to a curve is parallel to 11 rr  .  

Hence if   is the angle between PQ (i.e. b) and binormal to the locus of Q (i.e. 11 rr  ), then  

             
2/12222242

22232

11

11

})()1({

})({
cos






ccc

ccc

+++

+++•
−




•=

bntb

rr

rr
b   

                      
2/12222242

22

})()1({ 



ccc

c

+++

+
=    

                    
)()1()(

)}1({
tan

222222

2/12242














+
=

+
=

+

+
=

c

c

c

c

c

cc
 

                 }])(/{[tan 221  += − cc   

Example 3.18: On the tangent to a given curve a point Q is taken at a constant distance c from the point 

contact. Prove that curvature 1  of the locus of Q is given by  

                232222223222
1 )()1()1(  cccc ++++=+ .    

Solution. Let the quantities belonging to the locus of Q be distinguished by the suffix unity. Let the 

position vector of the point P on the curve be r and that of Q on the tangent at P on the curve be .  
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                                Since PQ=c,       trr c+=1  

Differentiating w.r.t. ‘s’ and let dashes denote differentiation w.r.t. ‘s’.  

                          ntt
r

r c
ds

ds

ds

ds

ds

d
+=== 1

1
1

1

1
1                                                             (1) 

Squaring        )1( 22

2

1 c
ds

ds
+=








  

  or                 2/122
1 )1( cs +=   

   Differentiating equation (1) again                       

                )(1 tnnnnntr  −−+=+−=


cccc    

  or           bntr  ccc −++−=


)(2
1   

            ])([)( 2
1 bntntrr  cccc −++−+=         

                      tbnb  2232)( cccc ++−+=   

                       bnt )( 3222  cccc +++−=    

         23222222
1 )()1(  cccc ++++= rr           

Hence                 
3

1

21
1

)(s


=

rr
                                             











 
=

3
1

21

s
Formula



rr
   

  or             
2

21
2
1

6
1)( rr = s    

  or    232222222
1

322 )()1()1(  ccccc ++++=+                                            (2)  



P
Q

O

r
1r

c
t



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  88 | 

 

Example 3.19: A point Q is taken on the tangent t at the point P on a curve C so that PQ=c, a constant. 

Prove that the unit tangent vector 1t  at a point on the locus 1C  of Q is parallel to the osculating plane of 

C at P. Also show that necessary and sufficient conditions for 1C  to be a straight line is   

                   0)()1( 23222222 =++++  cccc .     

Solution.  Proceeding as in example 3.18 above, we get from (1)  

                                                    ntt c
ds

ds
+=1

1         

The equation shows that 1t  is a linear combination of vectors t and n. But t and n lie in the osculating 

plane of at P. Hence it follows that 1t  is parallel to the osculating plane of C at P.  

        Again we know that a necessary and sufficient condition for a curve 1C  to be a straight line is that 

its curvature 01 = . Thos putting 01 = , in equation (2) of above example, the required condition is 

given by  

                   0)()1( 23222222 =++++  cccc .  

Example 3.20: There is a one –to-one correspondence between the points of two curves, and the 

tangent at corresponding points are parallel, show that the principal normals are parallel and, also the 

binormals. Prove also that  

                            /// 111 == dsds .  

Solution. Suppose C and 1C  are two curves. Let the suffix unity be used to distinguish quantities 

belonging to 1C .  

       Since the tangents at corresponding points of C and 1C  are parallel, we may write  

                                   tt =1                                                                                            (1)  

Differentiating (1) w.r.t. ‘s’, we get  
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ds

d

ds

ds

ds

d tt
=1

1

1 ,   or              nn  =
ds

ds1
11                                     (2)  

Equation (2) shows that 1n is parallel to n i.e. principal normals at corresponding points on C and 1C  are 

parallel, we may write          

                                      nn =1                                                                                       (3)  

Using (3) in (2), we get  

               =
ds

ds1
1           or       



11 =
ds

ds
                                                                     (4)   

Taking cross product of (1) and (3), we get  

          ntnt = 11             or         bb =1                                                                      (5)  

This shows that the binormals at the corresponding points of C and 1C  are parallel.  

                   Differentiating (3), w.r.t. ‘s’, we get   
ds

d

ds

ds

ds

d nn
=1

1

1                

  or           )()( 1
1111 tbtb  −=−

ds

ds
                                                                          (6) 

Taking dot product of (5) and (6), we get  

                        =1
1

ds

ds
  or  



1

1

=
ds

ds

                   

 [taking +ve sign]                          (7)  

     From (4) and (7), we get  

                      






 1

1

1 ==
ds

ds
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CHAPTER-4 

CURVATURE AND ITS CHARACTERISTICS 

Objectives: The students will learn about locus of centre of curvature, principal normal  at 

consecutive points do not intersect unless 0= , Spherical curvature, Locus of  centre of spherical 

curvature, Helices, Spherical Indicatrix which create extra  capacity to understand about curvature on 

the curve and plane. 

4.1  INTRODUCTION 

 In previous chapter we have studied the characterstics of continuous curve of class  2 and plane  

like, osculating plane, tangent plane, normal plane, rectifying plane, intersection of space curve and 

plane, principal normal and binormal, curvature, torsion of the curve, screw curvature, Serret Frenet 

formulae and uses of these formula to find the curvature and torsion of a skewed plane, Helices and 

spherical indicatrix. In  continuation of this study,  to know about the locus of centre of curvature. 

4.2 Locus of centre of curvature. Just as the arc-rate of turning of the tangent is called the 

curvature, and the arc-rate of turning of the binormal the torsion, so that the arc rate of turning of the 

principal normal is called the screw curvature. Its magnitude is the modulus ofn . But we have seen that  

                                           tbn  −= .                                                                    (4.2.1) 

Hence the magnitude of the screw curvature is 
22  + . This quantity, however, does not play such 

an important part in the theory of curves as the curvature and torsion. 

        The centre of curvature at P is the point of intersection of the principal normal at P with that 

normal at the consecutive point P   which lies in the osculating plane at P. Consecutive principal 

normals do not in general intersect. It is worth nothing that the tangent to the locus of centre of 

curvature lies in the normal plane of the original curve. For the centre of curvature is the point whose 

position vector c is given by  

                        nrc +=                                                                               (4.2.2) 

The tangent to its locus, being parallel to 
ds

d c
, is therefore parallel to   

                                  )( tbnt  −++ ,  
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that is ,              bn  + . 

It therefore lies in the normal plane of the original curve, and is inclined to the principal normal n at an 

angle   such that  

                                  










=


=tan .                                                                   (4.2.3) 

If the original curve is one of constant curvature, 0= , and the tangent to the locus of C is then 

parallel to b. It will be proved that the locus of C has then the same constant curvature as the original 

curve, and that its torsion varies inversely as the torsion of the given curve. 

4.2.1 Locus of centre of curvature in term of parameter. If s is the are-length measured from a fixed 

point A on the curve to the current point P, the position vector r of P is a function of s; and therefore, by 

Taylor’s Theorem,  

             .....
!3!2

0

3

0

2

00 ++++= rrrrr
ss

s ,                                                                (4.2.4) 

where the suffix zero indicates the values of the quantity is to be taken for the point A. If bnt ,, are the 

unit tangent, principal normal, and binormal at A, and  ,  the curvature and the torsion at that point, 

we have  

                                    nrtr == 00 , ,                                                                      (4.2.5) 

while the values of 0r  and 0r   are as given in Ex.1. Hence the above formula gives  

                 )(
!3!2

2
32

0 btnntrr  +−+++=
ss

s                               

                            .....})2(3){(
!4

23
4

+++−−−+ btnn 
s

 

If then A is taken as origin, and the tangent, principal normal and binormal it A as coordinate axes, the 

coordinates of P are the coefficients of bnt ,,  in the above expansion. Thus since 0r  is now zero, we 

have  

                            .....
86

43
2

+


−−= sssx


,  
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                            .....)(
24

1

62

42332 +−−+


+= sssy 


  

                           .....)2(
24

1

6

1 43 +++= ssz                                             (4.2.6) 

From the last equation it follows that, for sufficiently small values of s, changes sign with s (unless  or 

 is zero). Hence at an ordinary point of the curve, the curve crosses the osculating plane. On the other 

hand, for sufficiently small values of ys, does not change sign with s ( 0 ). Thus in the 

neighbourhood of an ordinary point, the curve lies on one side of the plane determined by the tangent 

and binormal. Thus plane is called the rectifying plane.  

Example 4.1: Show that Serret-Frenet formulae can be written in the form  

               bwbnwntwt === ,, and determine w. 

Solution: w is called Darbouxe vector of the curve.  

We have from Frenet’s formulae  

              tbttnt +==               

                  tbt += )(                                                [ ntbtt == ,0 ]   

            tw= ,              where btw  +=                                                                      (1) 

which proves that first result 

               )()( nbnttbn +=−=            

                   nwnbt =+= )(        

             )()( bbbtnb +=−=                  [ btnbb =−= ,0 ] 

                 bwbbt =+= )(                where btw  +=  from (1). 

Example 4.2:  If the position vector r of a current point on a curve is a function of any parameter u  and 

dots denote differentiation with respect to u , then prove that  

             ntrtr
2, sss  +==     

and      bntr
332 )3()( ssssss   +++−=     

Hence deduce that  
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3s





rr
b


= ,  

3s

ss







rr
n

−
= , 

4

22
2

s

s



 −
=

r
 , 

62

],,[

s






rrr
=  

Solution: We have  

             tr
rr

r ss
du

ds

ds

d

du

d
 ====  

  or       tr s =                                                                                                                     (1) 

Differentiating again w.r.t. ‘ u ’ , we get 

      ttr += 2ss                 or  ntr
2ss  +=            [ nt = ]                                         (2) 

where dash represents differentiation w.r.t. ‘s’ . Differentiating (2) again w.r.t. ‘ u ’, we get 

        nnttr ++++= 32 )2( sssssss    

           )()2( 32
tbnnt  −++++= sssssss   

or   bntr
332 )3()( ssssss   +++−=                                                                   (3) 

 Now cross product of (1) and (2) gives 

        ntttrr += 3sss           

or    brr
3s =                                                                         [ 0, == ttbnt ]   (4) 

or    
3s





rr
b


=                                                                                                                      (5) 

Now multiplying (2) by s  and (1) by s  and and subtracting, we have  

         nrr
3sss  =−    

 or     
3s

ss







rr
n

−
=         

squaring (2), we get  

422224222 .2 ssssss   +=++= ntntr  

         
4

2
2

s

s



 −
=

r
                                                                                                             (6)  
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Now finally taking the dot product of (4) and (3), we get  

        62. s = rrr                                                                  [ 1.,0.,0. === bbnbtb ]  

        62],,[ s =rrr              or   
62

],,[

s






rrr
=  

Example 4.3: Show that principal normal at consecutive points do not intersect unless 0= . 

Solution: Let us consider two consecutive points on the curve with position vector r and rr d+ with 

respect to some fixed origin O. Again let n and nn d+ be the unit principal normals at these two points 

respectively. Now the principal normals will intersect if the three vectors rd , n, nn d+ are coplanar ..ei  

if their scalar triple product is zero.  

 

..ei  if 0],,[ =+ nnnr dd  

or       0],,[ =nnr dd                                    [ 0=nn ] 

or       0],,[ =
ds

d

ds

d n
n

r
 

or       0],,[ =nnt                  or           0],,[ =− tbnt    

or       0],,[ =bnt                                [ 0= tt ]                             

or     0],,[ =bnt                                                                                                              (1)  

Since 01],,[ =bnt . Hence eqn. (1) hold only when 0= .  

Example 4.4:  Prove that for any curve −= bt . . 

rd

r

n

nn d+rr d−

O

Figure 4.1  
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Solution. It immediately follows from Frenet’s formulae. 

We have nt =  and nb −=  

               −= bt .                                                                                        [ 1. =nn ] 

Example 4.5: If the tangent and the binormal at a point of a curve make angles  , respectively with a 

fixed direction, show that 











−=

d

d

sin

sin

 

where   and  have their usual meaning.  

Solution. Let the tangent and binormal at a point of a curve make angles  and   with fixed direction 

say, d, then  

                            cosd=•dt                                       where d=d   

                            cosd=•db    

            Differentiating w.r.t. ‘s’ we get  

                           )/(sin dsdd −=• dt                    [ b  is constant vector]  

        ..ei           )/(sin dsdd  −=•dn                                                                           (1)  

       and             )/(sin dsdd −=• db  

       ..ei         )/(sin dsdd  −=•− dn                                                                           (2)  

       Dividing (1) by (2) we get the required result as  

                       











−=

d

d

sin

sin
. 

Example 4.6: If a particle moving in a space have velocity V and acceleration f, show that radius of 

curvature  is given by  

            )/(3 fVv . 

Solution. Since we know that the velocity at a point of curve is along the tangent to the curve at the 

point. Hence the velocity V is given by 

                 tV v=                              where t is the unit tangent vector. 

         Differentiating w.r.t. parameter t (time) and let dots denotes differentiation w.r.t. ‘t’. 
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dt

ds

ds

d
vv .

t
tV +=   

         ..ei                        vvv ntf +=   

                                  bfV 3v=   ..ei         3v= fV              [ 1=b ]  

         or                            
fV

=
3v

                                                    [as  /1= ]  

Example 4.7: Show that the principal normals at the consecutive points do not intersect unless 0= .  

Solution.  Let the consecutive points be rrr d+,  and the unit principal normal nnn d+, . For 

intersection of the principal normals the necessary condition is that the three vectors nnnr dd +,, be 

coplanar that is, that nnr  ,,  be coplanar. This requires  

                                       0],,[ =− tbnt  ,  

that is                              0],,[ =bnt ,  

which holds only when  vanishes.  

Example 4.8: Parameters other than s.  

Solution. If the position vector r of the current point is a function of any parameter u , and dashes 

denote differentiations with respect to u , we have  

                          t
r

r s
du

ds

ds

d
== , 

                          ntr
2ss +=    

                          bntr
332 )3()( ssssss +++−=  .  

Hence prove that  

                            
3/ s= rrb ,   

                            
3/)( sss −= rrn ,  

                            
4222 /)( ss −= r ,  

                            
62/],,[ s=  rrr .  
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Example 4.9: In the case of a curve of constant curvature find the curvature and torsion of the locus of 

its centre of curvature C. 

Solution. The position vector of C is equal to  

                                     nrc +=  

Hence, since   is constant,  

                    sddsd btbtc



 =−+= )}({ .  

Let the suffix unity distinguish quantities belonging to the locus of C. Then 11 sdd tc = . We may take 

the positive direction along this locus so that bt =1 , then it follows that  

                             



=

ds

ds1 .  

Next differentiating the relation bt =1 , we obtain  

                        nnn  −=−=
1

11
ds

ds
. 

Therefore the two principal normal are parallel. We may choose  

                        nn −=1 ,  and therefore  =1 .  

Thus the locus of C has the same constant curvature as the given curve. The unit binormal 1b is now 

fixed : for   

                        tnbntb =−== )(111 .  

Differentiating this result we may obtain  

                        nnn





2

1

11 ==−
ds

ds
 , and therefore     /2

1 = . 

Example 4.10: Prove that btnr  +−= 2
, and hence that  

                btnr )2(3)( 23  ++−−−=  

                  (using Serret Frenet formulae)  

Example 4.11: Prove the relations  

                         −=•−=•=• 3,,0 2
rrrrrr      

                      )(, 23  −−=•=• rrrr  
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2232  +++=• rr .  

Example 4.12: If 321 ,, mmm  are the moment about the origin of unit vectors bnt ,, localized in the 

tangent, normal and binormal, and dashes denote differentiations with respect to s, show that  

21 mm = ,  312 mmbm  +−= ,  23 mnm −−= .  

Solution:  If r is the current point, we have  

          trm =1 , nrm =2 , brm =3   

Therefore 21 )( mnrttm  =+=   

 and similarly for the others. 

4.3 Spherical curvature. The sphere of closest contact with   curve at P is that which passes 

through four points on the ultimately coincident with P. This is called the osculating sphere or sphere of 

curvature at P.  

 

Its centre S and radius R are called the centre and radius of spherical curvature. The centre of sphere 

through P and an adjacent point Q on the curve lies on the plane which is the perpendicular bisector of 

PQ; the limiting position of this plane is the normal plane at P. The centre of spherical curvature is the 

limiting position of the intersection of three normal planes at adjunct points. Now the normal plane at 

the point r is  

                   0)( =•− trs                                                                                            (4.3.1) 

n

C



P

b

t

1t

rs −

S

Figure 4.2 
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  being the current point on the plane. The limiting position the line of intersection of this plane and an 

adjacent normal plane is determined by (i) and the equation obtained by differentiating it with respect to 

ar-length s,  

                                01)( =−•− nrs                                                                                           

or its equivalent  

                            =•− nrs )(                                                                                 (4.3.2) 

The limiting position of the point of intersection of three adjacent normal planes is then found from 

(4.2.1), (4.3.2) and the equation obtain by differentiating (4.3.2), viz.  

                           =−•− )()( tbrs                                                                      (4.3.3) 

which in virtue of (4.3.1), is equivalent to 

                                =•− brs )(                                                                        (4.3.4)                               

The vector )( rs − , satisfying (4.3.1), (4.3.2), and (4.3.4) is clearly  

                                  bnrs  +=−                                                                    (4.3.5) 

and this equation determines the position vector s of the centre of spherical curvature. Now n is the 

vector PC, and therefore   is the vector CS. Thus the centre of spherical curvature is on the axis of the 

circle of curvature, at a distance   from the centre of curvature. On squaring both sides of the last 

equation, we have for determining the radius of spherical curvature  

                                  2222  +=R                                                                      (4.3.6) 

Another formula for 2
R , maybe determines as follows. On squaring the expansion for r  , we find  

                    22422  ++=r     

                            )1( 224
R += , by (4.3.6).  

 Hence the formula    

                      2242  −= rR ,                                                                              (4.3.7) 

which is, however, not so important as (4.3.6).  

For a curve of constant curvature, 0=  and the centre of spherical curvature coincides with the centre 

of circular curvature.  
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4.3.1 Locus of centre of spherical curvature. The position vector s of the centre of spherical curvature 

has been shown to be  

                     bnrs  ++= .                                                                               (4.3.8) 

Hence, for a small displacement ds of the current point P along the original curve, the displacement of S 

is  

                snbbtbnts dd })({  −++−++=   

                      b







++= 




sd .                                                                    (4.3.9) 

Thus the tangent to the locus of S is parallel to b. We may measure the arc-length 1s  of the locus of S in 

that direction which makes its unit tangent 1t  have the same direction as b.  

Thus                     bt =1 ,  and, since  11 sts dd = , it follows that  

                  



++=

sd

sd 1   

                    )( 



+=

sd

d
                                                                               (4.3.10) 

To find the curvature 1  of the locus of S differentiating the equation  

                                         
11

11
sd

sd

sd

sd

sd

d
n

b
n  −==   

Thus the principal normal to the locus of S is parallel to the principal normal of the original curve. 

We may choose the direction of 1n  as opposite to n . Thus  

                                              nn −=1 .  

The unit binormal 1b  of the locus of S is then  

                               tnbntb =−== )(111  

and is thus equal to the unit tangent of the original curve. The curvature 1  as found above is thus equal 

to  

                                
1

1
sd

sd
 = .  

The torsion 1  is obtained by differentiating tb =1 . Thus  
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11

11
sd

sd

sd

sd

sd

d
n

t
n  ==−   

so that                  
1

1
sd

sd
 = .                                                                                  (4.3.11) 

From the last two results it follows that  

                               11  =   

so that the product of the curvatures of the two curves is equal to the product of their torsions. The 

binormal of each curve is parallel to the tangent to the other, and their principal normals are parallel but 

in opposite directions. 

If the original curve is one of constant curvature, 0= , and S coincides with the centre of circular 

curvature. Then  

                 







==

sd

sd 1 ,   

and              =1 .                                                                                  (4.3.12) 

Thus the locus of two centers of curvature has the same (constant) curvature as the original curve. Also  

                                        /2
1 =                                                                           (4.3.13) 

So that the product of the torsions of two curves is equal to the square of their common curvature.  

Example 4.12: Prove that in order that the principal normals of a curve be binormals of another, the 

relation  ba =+ )( 22  must hold, where a and b are constant. 

Solution. Let the quantities belonging to the other curve 1C (say) be denoted by the use of suffix unity.  

We have nb =1                                                            (given)                       (1)  

P(r) and Q( 1r ) be two points on the curves C and 1C  respectively.  

                nrr c+=1  where c is some scalar                                                                    (2)  

             

        Differentiating (2) w.r.t. ‘s’ 

                nr
r

+= c
ds

ds

ds

d 1

1

1          
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     or        )(1
1 tbtt  −+= c

ds

ds
                     (using Frenet’s formulae) 

 

 Differentiating again w.r.t. ‘s’ and making use of Frenet’s formulae 

                ))({ 2

2

1
112

1
2

1 ntnbnnt  −−−++=







+ c

ds

ds

ds

sd
   

  or        tbnnt  −+−−==







+ ccccc

ds

ds

ds

sd
)( 22

2

1
112

1
2

1                               (3)  

Now multiplying scalarly the L.H.S. of (3) by 1b  and R.H.S. by n , [since nb =1  by (1)], we have  

                                            )(0 22  +−= c   

         or                                   =+ )( 22c     

we can write                          ba =+ )( 22                                       [where bac /= ]  

Example 4.12: On the binormal of a curve of constant torsion  , appoint Q is taken at a constant 

distance c from the curve. Show that the bi-normal to the locus of Q is inclined to the bi-normal of the 

given curve at an angle )]1(/[tan 2221 +−  cc .  

Solution. Let the quantities belonging to the locus of Q be denoted by the use of suffix unity.  

  brr c+=1                            (see figure 4.4) 

O
t

1t

)( 1rQ

1n1C

1b

n

)(rP

b

Figure 4.3 
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Differentiating w.r.t. ‘s’  

                  ntt c
ds

ds
−=







 1
1                       (Frenet’s formulae)  

  Squaring both sides, we get  

                  22

2

1 1 c
ds

ds
+=








          or        2/1221 )1( c

ds

ds
+=








                                     (2)  

  Hence substituting 
ds

ds1  in (1), we get  

                2/122
1 )1/()(  cc +−= ntt  

  Differentiating again w.r.t. ‘s’  

                     ])1/()([ 2/1221
11  cc

ds

ds
+−−= tbnn                                                 (3)  

                                                                   [using Frenet’s formulae and =constant given]  

Squaring both sides, we get  

                )1/(][)1( 222222422222
1  cccc +++=+                                [using (2)]  

  or      
222

2
2
1

)1( 


c

A

+
=            ..ei                  

)1( 221



c

A

+
=  

                                                                                      [where 422222 )1(  ccA ++= ]  

Hence from (3); Acc /)( 2
1 bntn  −+= .  

OQ

)(r

b

n

t

)(rp

C

c

Figure 4.4 
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Let  be the angle of inclination of b with 1b  

                 ],,[][cos 11111 ntbntbbb =•=•=   

but              ( )}1{,,
)1(

1 22232

22
11 


ccc

c
+

+
=nt   

               
A

c

cA

c )1(

)1(

)1(
],,[

22

22

22

1111





 +
=

+

+
=•= ntbntb   

                    )1()/(cos 22 cA +=  

              







−

+
=−= 1

)1(
)1(sectan

222

2
2




c

A
  

                           








+

+−++
=

)1(

)1()1(
222

22342222





c

ccc
 

)1( 22

2





c

c

+
=   

              














+
= −

)1(
tan

22

2
1






c

c
  

Example 4.13: If 321 ,, mmm  are the moments about the origin of unit vector t, n, b localized in the 

tangent, principal normal and binormal, show that  

             21 mm = , 312 mmbm +−=  , 23 mnm −−= .  

Solution. Let r be the position vector of any current point. 

        We have trm =1 , nrm =2 , brm =3   

                   nrttm +=1                        [ nttr == , ]  

                             nr=                                    [ 0= tt ]  

                             2m=                                                                                      [using (1)]  

  Also              )(2 nrntm +=   

                              13)( mmbtbrnt  −+=−+=       
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         Similarly find 3m .  

Example 4.14: Prove that for any curve  

                   







=−==






ds

d53 )(],,[],,[ rrrttt  and  

                   







=−=






ds

d53 )(],,[ bbb .  

Solution. (i) We have by Frenet’s formulae, 

          ntrtr === ,                                                                                                 (1)  

  bntntbnntr  ++−=+−=+== 2)(                                          (2)  

       bbnntttr +++++−==  )(22   

            nbtbntn
23 )()(2  −++−++−−=   

            bnt )2()(3 32  ++−=+−=                                                      (3)  

                  ttbtrr =+= 32               [using (1) and (2)]                                (4)  

     From (1), (2), (3) and (4), we have  

                 rrrrrrttt •== ],,[],,[  

                      )2(3 33  ++−=                [Taking scalar product of (3) and (4)]  

                                 )(3  −=   

                                  







=

−











ds

d5

2

5 )(
 

 (ii) We have by Frenet’s formulae  

                         nb −=                                                                                                   (5)  

                         bnbntbb
2)(  −−=−−−=                                              (6)   

                         bbnnttb −−−−++= 22)(    

                               nbtbnnt
32 2)()(  +−−−−++=   
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                              bnt  −+−++= 3)()2( 32                                           (7)  

               btbb
23  +=    [Taking cross product of (5) and (6)]                             (8)  

      Taking scalar product of (7) and (8), we get  

          bbbbbb •= ],,[   

                          )(3)2( 333  −=−+=     

                          







=

−











ds

d5

2

5 )(
.                                                                    (9) 

Example 4.15: Prove that the position vector of the current point on a curve satisfies the differential 

equation  

               0
2

2

2

2

=+







+



























ds

d

ds

d

ds

d

ds

d

ds

d

ds

d rrr








 .  

Solution. We know that  

              



1

= , 



1

=   

             tr
r

==
ds

d
, ntr

r
===

2

2

ds

d
 

  The left hand side of the given differential equation may be rewritten as  

                ntn 










+







+

















•

ds

d

ds

d

ds

d 11
  

                        ( ) 







++









= tnn





 ds

d

ds

d

ds

d 1
  

                        







++









= tnn





 ds

d

ds

d 1
 

                        nt
tb









+







+







 −

=
ds

d

ds

d
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                         nttb 







+







+









−=
ds

d

ds

d
  

                         ntt
b









+







+









−=
ds

d

ds

d

ds

d
  

                          0=+−=+= nnnb  .  

Example 4.16: Show that the position vector r(s) of any space curve of the class satisfies the 

differential equation  

              0
2

22 2
2

22 =






 
−


+











 −
+


+++






 
+


− rrrr


























h
.  

Solution. We have from example 10 above.  

                 tr = , ntr ==  

                 bntr  ++−= 2   

                 bntr )2()(3 32  ++−−+−=   

 Substituting these values in L.H.S. of given differential equation, we have left hand side  

 

tn

bntbnt








 
−


+








 −
+


+++

++−






 
+


−++−−+−=





























2
2

22

232

2

2

)(
2

)2()(3

h

 

                     

bt

nt

)22(

2

2

23

2

23
2

32
22
































−−++



















−


+


+++


−


−−−

+






 

−+


++−=

 

  

=0t+0n+0b=0  

Hence the positive vector r(s) of the current point satisfies the given differential equation. 

Example 4.17: If the nth derivative of r with respect to s is given by 

                         bntr nnn
n cba ++=)(   
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Prove the following reduction formulae  

                            nnn baa −=+1  
 , nnnn cabb  −−=+1 , nnn bcc +=+1          

Solution.  bntr nnn
n cba ++=)(             (given)                                                              (1) 

                         Replacing n by (n+1) in (1), we get  

        bntr 111
)1(

+++
+ ++= nnn

n cba                                                                                      (2)  

 Now differentiating equation (1), w.r.t. s , we get  

                            bbnnttr nnnnn
nn ccbbaa +++++=+ )1(   

           or               bnntbtnr nnnnn
nn ccbbaa +−++−++=+ )()()()1(    

           or              bntbr )()()()1(
nnnnnnn

n cbcaba ++−++−=+                         (3)  

Since L.H.S. of (2) and (3) are same , therefore, R.H.S. will also be same. Hence equating coefficient of 

t, n and b in R.H.S. of (2) and (3), we have                   

                              nnn baa −=+1   

                              nnnn cabb  −−=+1  

                               nnn bcc +=+1          

 

Example 4.18: A curve is uniquely determined, except as to position in space, when its curvature and 

torsion are given functions of its arc-length s.  

Consider two curves having equal curvatures   and equal torsion   for the same values of s. Let bnt ,,  

refer to one curve and 111 ,, bnt to the other. Then at point on the curve determined by the same value of 

s, we have  

                  111 )()( tnnttt •+•=• 
ds

d
, 

                  1111 )()()( ntbtbnnn •−+−•=• 
ds

d
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                   111 )()()( bnnbbb •−+−•=• 
ds

d
   

Now the sum of second members of these equations is zero.  

Hence        0)( 111 =•+•+• bbnntt
ds

d
  

and therefore )( 111 bbnntt •+•+• =constant.  

Suppose now that the two curves are placed so that their initial points, from which s is measured, 

coincide, and are then turned (without deformation) till their principal planes at the initial point also 

coincide. Then, at that point 111 ,, bbnntt === , and the value of the constant in the last equation is 3. 

Thus  

                                3111 =•+•+• bbnntt   

But the sum of the cosines of three angles can be equal to 3 only when each of the angles vanishes, or is 

an integral multiple of 2 . This requires that, at all pairs of corresponding points,  

                                  111 ,, bbnntt ===     

So that the principal planes of the two curves are parallel. Moreover, the relation 1tt =  may be written 

0)( 1 =− rr
sd

d
,  

So that 1rr − =constant vector.  

But this difference vanishes at the initial point; and therefore it vanishes throughout. Thus 1rr −  at all 

corresponding points and the two curves coincide.  

In making the initial points and the principal planes there coincident, we altered only the position and 

orientation of the curves in space; and the theorem has thus been proved. When a curve is specified by 

equations giving the curvature and torsion as function of s  

                        )(),( sFsf ==  , 

These are called the intrinsic equations of the curve.  

4.4. Helices: A curve traced on the surface of a cylinder, and cutting the generators at a constant 

angle to a fixed direction. If then t is the unit tangent to the helix, and ‘a’ a constant vector parallel to 

the generators of the cylinder, we have  

                                      t.a=const                                                                                (4.4.1) 
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and therefore, on differentiation with respect to s,  

                                      •n. a=0.                                                                              (4.4.2) 

Thus, since the curvature of the helix does not vanish, the principal normal is everywhere perpendicular 

to the generators. Hence the fixed direction of the generators is parallel to the plane of t and b; and since 

it makes a constant angle with t, it also makes a constant angle with b.  

An important property of all helix is that the curvature and torsion are in a constant ratio. To prove this, 

we differentiate the relation •n a=0, obtaining  

                                        •− )( tb  a=0.                                                                  (4.4.3) 

Thus a is perpendicular to the vector tb  − . But a is parallel to the plane of t and b, and must 

therefore be parallel to the vector bt  + , which is inclined to t at an angle  /tan 1− . But this angle 

is constant. Therefore the curvature and the torsion are in a constant ratio.  

      Conversely, we may prove that a curve whose curvature and torsion are in a a constant ratio is a 

helix. Let  c= , where c is constant. Then since  

                                 nt = ,  

and                          nnb  c−=−= , 

it follows that          0)( =+ tb c
ds

d
,  

and therefore                =+ tb c  a,  

where a is a constant vector. Forming the scalar product of each side with t we have  

                •t a=c.                                                                                             (4.4.4) 

Thus t is inclined at a constant angle to the fixed direction of a, and the curve is therefore a helix.  

Finally we may show that the curvature and the torsion of a helix are in a constant ratio to the curvature 

0  of the plane section of the cylinder perpendicular to the generators. Take the z-axes 
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Parallel to the generators, and let s be measured from the intersection A of the curve with yx  plane. Let 

u  be the arc length of the normal section of the cylinder by the yx  plane, measured from the same 

point A up to the generator through the current point ),,( zyx . Then, if   is the constant angle at which 

the curve cuts the generators, we have  

                                             sinsu =   

and therefore                  sin=u .  

The coordinate ),( yx  are function of u , while cossz = . Hence for the current point on the helix, we 

have  

                                             )cos,,( syx=r , 

so that                                  )cos,sin,sin( 
du

dy

du

dx
=r ,  

and                                       )0,sin,sin( 2

2

2
2

2

2


du

yd

du

xd
=r  

Hence the curvature of helix is given by   

                                       42
0

4

2

2

2
2

2

2
22 sinsin =




























+













==

du

yd

du

xd
r ,  

so that                              2
0 sin= .                                                                     (4.4.5) 

For the torsion, we have already proved that  

                                      /tan 1−= ,  

so that                            cossincot 0== .  

P

AN

s

u

z

Figure 4.5 
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From these results it is clear that the only curve whose curvature and torsion are both constant is the 

circular helix. For such a curve must be a helix, since the ratio of its curvature to its torsion is also 

constant. And since 0  is constant, so that the cylinder on which the helix is drawn is a circular 

cylinder.  

4.5. Spherical Indicatrix. The locus of a point, whose position vector is equal to the unit tangent t 

of a given curve, is called the spherical indicatrix of the tangent to the curve. Such a locus lies on the 

surface of a unit sphere, hence the name. Let the suffix unity be used to distinguish quantities belonging 

to this locus. 

 Then                                tr =1                                                                                   (4.5.1)  

and therefore 
111

1
1

ds

ds

ds

ds

ds

d

ds

d
n

tr
t === ,  

showing that the tangent to the spherical indicatrix is parallel to the principal normal of the given curve. 

We may measure 1s so that  

                                          nt =1                                                                                 (4.5.2) 

 and therefore                 =
ds

ds1 .  

For the curvature 1  of the indicatrix, on differentiating the relation nt =1 , we find the formula  

                                     )(
1

1

11 tb
n

n 


 −==
ds

ds

ds

d
.  

Squaring both sides we obtained the result  

                                        2222
1 /)(  +=                                                              (4.5.3) 

So that the curvature of the indicatrix is the ratio of the screw curvature to the circular curvature of the 

curve. The unit binormal of the indicatrix is  

                                        
1

111


 bt
ntb

+
== .                                                       (4.5.4) 

The torsion could be obtained by differentiating this equation; but the result follows more easily from 

the equation.  
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                                          ],,[],,[ 321

6

1
1

2
1 tttrrr ==








=

ds

sd
   

                                                    )(3  −=   

which reduces to              
)(

)(
221






+

−
= .                                                               (4.5.5) 

Similarly the spherical indicatrix of the binormal of the given curve is the locus of a point whose 

position vector is b. Using the suffix unity to distinguish quantities belonging to this locus, we have  

                                                        br =1                                                                   (4.5.6) 

and therefore                             
11

1
ds

ds

ds

ds

ds

d
n

b
t −== .  

We may measure 1s  so that     nt −=1    

and therefore,  =
ds

ds1 .  

To find the curvature, differentiating the equation nt −=1 . Then  

                                           )(
1

)(
1

11 btnn 


 −=−=
ds

ds

ds

d
     

giving the direction of the principal normal. On squaring this result, we have  

                                             2222
1 /)(  += .                                                      (4.5.7) 

Thus the curvature of the indicatrix is the ratio of the screw curvature to the torsion of the given curve. 

The unit binormal is 
1

111


 bt
ntb

+
== ,  

And the torsion, found as in the previous case, is equal to  

                                                 
)(

)(
221






+

−
= .                                                        (4.5.8) 

4.6. Surfaces. We have seen that a curve is the locus of a point whose coordinates zyx ,,  are 

functions of a single parameter. We now define a surface as the locus of a point whose coordinates are 

functions of two independent parameters vu, . Thus    

                     ),(1 vufx = ,       ),(2 vufy = ,              ),(3 vufz =                              (4.6.1) 
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Are parametric equations of a surface. In particular cases one, or even two, of the functions may involve 

only a single parameter. If now vu,  are eliminated from the equation (1), we obtain a relation between 

the coordinates which may be written  

                      0),,( =zyxF                                                                                          (4.6.2) 

This is the oldest form of the equation of surface. The two parametric representation of a surface as 

given in (4.6.1) is due to Gauss. In subsequent chapters it will form the basis of our investigation. But 

for the discussion in the present chapter the form (4.6.2) of the equation of a surface will prove more 

convenient.  

4.7. Normal to the Tangent plane. Consider any curve drawn on the surface               

                                                       0),,( =zyxF                                                        (4.7.1) 

Let s be the arc-length measured from a fixed point up to the current point ),,( zyx . Then, since the 

function F has the same value at all points of the surface, it remains constant along the curve as s varies. 

Thus  

                     0=



+




+





ds

dz

zds

dy

yds

dx

x

FFF
, which may written more briefly  

                  0=++ zyx zyx FFF .                                                                              (4.7.2) 

Now the vector ),,( zyx   is the unit tangent to the curve at the point ),,( zyx ; and the last equation 

shows that it is perpendicular to the vector ),,( zyx FFF . The tangent to any curve drawn on surface is 

called a tangent line to the surface. Thus all tangent lines to the surface at the point ),,( zyx  are 

perpendicular to the vector ),,( zyx FFF , and therefore lie in the plane through ),,( zyx  perpendicular to 

this vector. This plane is called the tangent plane to the surface at that point, and the normal to the plane 

at the point of contact is called the normal to the surface at that point. Since the line joining any point 

(X,Y,Z) on the tangent plane to the point of contact is perpendicular to the normal, it follows that  

                  0)()()( =



−+




−+




−

z

F
zZ

y

F
yY

x

F
xX                                                 (4.7.3) 
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This is the equation of the tangent plane. Similarly if (X,Y,Z) is a current point on the normal, get               

z

F

zZ

y

F

yY

x

F

xX





−
+





−
+





− )()()(
                                                      (4.7.4) 

These are the equations of the normal at the point ),,( zyx .  

4.8 CHECK YOUR PROGRESS 

SA 1: Prove that the tangent plane to the surface 3axyz = , and the coordinate planes,  bound a 

tetrahedron of constant volume.  

SA 2: At points common to the surface xyzxyzxyza =++ )(  and a sphere whose centre  is the 

origin, the tangent plane to the surface makes intercepts on the axes whose  sum is constant.  

SA 3: Any tangent plane to the surface 0)( 22 =++ xyzyxa  meets it again in a conio  whose 

projection on the plane of xy  is a rectangular hyperbola. 

 

SA 4: If   is zero at all points, the curve is a straight line. If   is zero at all points, the  curve is plane. 

The necessary and sufficient condition that the curve be plane is  

                           0],,[ = rrr .  

SA 5:  If the tangent and the binormal at a point of a curve make angles  ,   respectively with a 

fixed direction, show that 











−=

d

d

sin

sin
.  

SA 6:  Prove that the shortest distance between the principal normals at consecutive  points s apart, 

is 22  +s , and that it divides the radius of curvature in the  ratio 
22 : .  

SA 7:  Find the curvature, the centre of curvature, and the torsion of the curve  

             uax cos= , uay sin= , uaz 2cos= .  

SA 8: Prove that the position vector of the current point on a curve satisfies the  differential equation 

0
2

2

2

2

=+







+



























ds

d

ds

d

ds

d

ds

d

ds

d

ds

d rrr








 .    

SA 9:  If 1s  is the arc length of the locus of centre of curvature, show that  
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               2

2

222

2

1 1








+








=+=

ds

ds
. 

SA 10: Prove that, for curve drawn on the surface of a sphere, 0)( =+ 




sd

d
;  that is               

 0
2

2

=+





d

d
, where dsd  = .  

SA 11: Show that the radius of spherical curvature of a circular helix is equal to the  radius of 

circular curvature.  

SA 12: The normal plane to the locus of centre of circular curvature of a curve C bisects  the radius of 

spherical curvature at the corresponding point of C.  

SA 13: A curve is drawn on a right circular cone everywhere inclined at the same angle    to the axes. 

Prove that  tan= .  

 SA14: On the tangent to a given curve a point Q is taken at a constant distance c from the  point 

of contact. Prove that the curvature 1 of the locus of Q is given by  

                                 232222223222
1 )()1()1(  ccccc ++++=+ .  

SA 15:On the tangent to a given curve a point Q is taken at a constant distance c from the  point 

of contact. Prove that the curvature 1 of the locus of Q is given by  

                                 22222423222
1 )()1()1(  ccccc +−++=+ . 

4.9 SELF ASSESSMENT TEST 

i) The normal at a point P on the ellipsoid 1
2

2

2

2

2

2

c

z

b

y

a

x
++  meets the coordinate  planes in 

321 ,, GGG . Prove that the ratios 321 ;: PGPGPG  are constant.  

ii) If  is such that dsd  = , show that  

           
2

2

1

1

1









d

d
+== ,  














+==

2

2

1

1

1













d

d
,  

           

2

22









+=






d

d
R ,  12

2








=+=

d

d

d

d R
R .  
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iii) Show that for any curve 







=






ds

d5],,[ rrr .  

iv) Prove that for any curve 







=−==






ds

d53 )(],,[],,[ rrrttt  

 and also that 







=−=






ds

d53 )(],,[ bbb .  

v) For the curve uax 3cos4= , uay 3sin4= , ucs 2cos3=  prove that  )0,cos,(sin uu=n  

and    
uca

a

2sin)(6 22 +
= . 

vi) The shortest distance between consecutive radii of spherical curvature divides the  radius in ratio 

2

22 : 











d

Rd
.   

vii) On the binormal of a curve of constant torsion   a point Q is taken at a constant  distance c 

from the curve. Show that the binormal to the locus of Q is inclined to  the binormal of the given 

curve at an angle 
)1(

tan
22

2
1

+

−





c

c
.  

ix) Prove that the curvature 1  of the locus of centre of (circular) curvature of a  given curve is 

given by 
42

42
2

3

2
2
1

1

RRds

d

R 









+









−






 
= , where the  symbols have their usual meanings. 

x) If there is one-one correspondence between the points of two curves, and the  tangents at 

corresponding points are parallel, show that the principal normals are  parallel, and therefore also 

the binormals. Prove also that 






 1

1

1 ==
ds

ds
. Two  curves so related are said to be deducible from each 

other by a combescure  transformation.  
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CHAPTER-5  

ENVELOPE, DEVELOPABLE SURFACES(I) 

Objectives: In this chapter the students will learn about family of surfaces, and its 

 characteristics, Envelope, Equation of envelope, Edge of regression, Equation of  edge of 

regression of the envelope, Envelope of the system of surfaces with two  parameters, Ruled Surface 

(Developable and skew), Equation of the tangent plane  to a ruled surface , Developable surface, 

Osculating plane of the edge of  regression at any point is the tangent plane to the developable at 

that point, Locus  of the centre of osculating spheres, Characterization of a developable surface. 

5.1 INTRODUCTION 

 Family of Surfaces: An equation of the form  

                                  0),,,( =azyxf                                                                               (1) 

Where ‘ a ’ is the constant, represent a surface. If ‘ a ’ can takes all real values i.e. if ‘ a ’ is a parameter, 

then (1) represent the equation of one parameter family of surfaces with ‘ a ’ as parameter. Giving 

different values to ‘ a ’ we shall get different surfaces (members) of this family of surfaces. Similarly 

the equation of the form  

                                            0),,,,( =bazyxf                                                                 (2) 

where ‘ a ’ and ‘b’ are parameters represents the family of surfaces with two parameters ‘ a ’ and ‘b’.    

5.1.1 Characteristic: Let 0),,,( =azyxf  be the equation of one parameter family of surfaces, a being 

the parameter and which is constant for any given surface. Let the two members of the family be  

                                 0),,,( =zyxf , 0),,,( =+zyxf     

The curve of intersection of these two surfaces may be given by  

                                 0),,,( =zyxf , 0
),,,(),,,(
=

−+



 zyxfzyxf
      

Now the limiting position of the curve as 0→ , becomes  
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                                 0),,,( =zyxf , 0=






f
    

this limiting position is called the characteristic corresponding to the value  .  

5.1.2 Envelope : The locus of characteristic for all values of the parameter is called the envelope of the 

system of surfaces.  

The equation of the envelope: Eliminating   between 0=f , 0=






f
, we get the equation of the 

envelope.  

Theorem 5.1: The envelope of a family of surfaces touches each member of the family, at all points of 

its characteristic. 

Proof: Let the equation of given family of surfaces be 0),,,( =zyxf  where   is a parameter. 

The equation of the envelope is obtained by eliminating  from the equations.  

                   0),,,( =zyxf ,  0
),,,(
=







zyxf
                                                              (1) 

Thus the equation of the envelope may be regarded as                          

                        0),,,( =zyxf                                                                                         (2) 

in which  is not constant but a function of  zyx ,,  given by  

                       0
),,,(
=







zyxf
                                                                                       (3) The normal to 

the envelope is parallel to the vector  

                       
















+













+













+





z

f

z

f

y

f

y

f

x

f

x

f 










,,           

But using equation (3), this vector reduces to  

                          




















z

f

y

f

x

f
,,        

which is a vector to which the normal to the surface 0),,,( =zyxf is parallel. This means that all 

common points, the surface and envelope have the same normal, and therefore, the same tangent plane; 

so that they touch each other at all points of characteristic. 
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5.1.3 The edge of regression : We have seen that the curve in which any surface is met by the 

consecutive surface is called the characteristic of the envelope. Every characteristic will meet the next 

in one or more points, and the locus of these points is called the edge of regression cumspidal edge of 

envelope. Since each characteristic lies on the envelope, therefore the edge of regression is a curve 

which lies on the envelope. 

Alternate definition of edge of regression: It is the locus of the ultimate points of intersection of 

consecutive characteristics of one parameter family of surfaces.  

5.1.4 To find the equation of edge of regression of the envelope: The equation of the characteristic 

corresponding to the surface 0),,,( =zyxf  are 

                                           0),,,( =zyxf  and  0=






f
                                               (1) 

The equations of the next consecutive characteristic are therefore,  

                     0),,,( =+zyxf  and 0),,,( =+






zyxf                                   (2) 

or           0.....)( =+



+




f
f          and        0

2

2

=



+








ff
                           (3) 

Hence at any point of the regression, we must have  

               0=f , 0=






f
, 0

2

2

=






f
       

[ for points of intersection of (2) with (1), all four equations must be satisfied]. 

Eliminating  from the equations, we get the required equations to the edge of regression (curve).  

5.1.5 To prove that each characteristic touches the edges of regression:  

The edge of regression is given by  
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              0),,,( =zyxf , 0),,,( =






zyx

f
, 0),,,(

2

2

=






zyx

f
   

so it may be considered to be the curve given by               

              0),,,( =zyxf , 0),,,( =






zyx

f
  

where  is a function of zyx ,, , given by   0
2

2

=






f
.  

The tangent at ),,( zyx  to the edge of regression is the line of intersection of the tangent planes of the 

surfaces. It is therefore perpendicular to each of the vectors  

                 
















+













+













+





z

f

z

f

y

f

y

f

x

f

x

f 










,,   

    and        






















+













+













+





z

f

z

f

y

f

y

f

x

f

x

f 









 2

22

2

22

2

22

,,     

  For the edge of regression 0=






f
, 0

2

2

=






f
.   

Therefore, the vectors to which the tangent is perpendicular reduce to    

        




















z

f

y

f

x

f
,,      and          



























 z

f

y

f

x

f 222

,,         

which are the vectors perpendicular to the tangent planes at ),,( zyx to 

0),,,( =zyxf , 0),,,( =






zyx

f
 i.e. to the characteristic. This means, the tangent to the edge of 

regression is parallel to the tangent to the characteristic and hence the two curves touch at their common 

points.  
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Example 5.1: Find the envelope of the plane 32 33 tzytxt =+− and show that its edge of regression is 

the curve of intersection of the surfaces zxy =2 , zxy = .  

Solution:      033),,,( 32 =−+−= tzytxttzyxf                                                             (1) 

                        0336 2 =−−=



tyxt

t

f
                                                                             (2) 

                          066
2

2

=−=



tx

t

f
                                                                                   (3) 

Eliminating ‘t’ from (1) and (2), the equation of the envelope is obtained.  

Multiply (1) by 3 and (2) by t and subtract, we get 

                            0363 2 =+− zytxt       or        022 =+− zytxt                                    (4) 

Solving (2) and (4), we get  

                 
yxzxy

t

zxy

t

22

1

22 22

2

−
=

−
=

−
         

Hence eliminating ‘t’ the envelope is  

                            ))((4)( 222 yxzxyzxy −−=−         

For edge of regression, we need to eliminating ‘t’ between (1), (2) and (3),  

               1=x   from (3), 

From (2),     22 336 xyx =−                          yxt == 22              

From (1),    0.33 =−+− xyzyxxy     or    zxy =  

Also  22 yyx =                             [ yyyxhyx .22 == ]  

or    2)( yxyx =                                    or    2yxz =      
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  The edge of regression is the curve of intersection of zxy = , 2yxz = .  

Example 5.2: The envelope of surfaces 0),,,,,( =cbazyxf where cba ,, are parameters connected by 

the equation   0),,( =cba  and f and   are homogeneous with respect to cba ,,  is found by 

eliminating cba ,,  between the equations       

                      0=f , 0= , 
c

cf

b

bf

a

af




=




=





/

/

/

/

/

/


. 

Solution: We have from the given equations 

                     0=



+




+




dc

c

f
db

b

f
da

a

f
                                                                            (1) 

                     0=



+




+




dc

c
db

b
da

a


                                                                           (2) 

Multiplying (2) by   and adding to (1).  

                     0=











+




+












+




+












+




dc

cc

f
db

bb

f
da

aa

f 






       

Now   is at our choice, so we choose , such that  

                       0=











+





aa

f 
    or        


−=









aa

f
/       

Again ‘b’ and ‘c’ can be treated as independent variables, so coefficients of dcdb; are separately zero.  

            


−=



=





c

cf

b

bf

/

/

/

/
  

where     
c

cf

b

bf

a

af




=




=





/

/

/

/

/

/


                                                                                  (3) 

  So envelope will be obtained by eliminating cba ,, between the equations (3) and 0=f , 0= . 
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Example 5.3: Find the envelope of the plane 0=++ nzmylx , where 0222 =++ cnbmal .  

Solution. Refer last question, the envelope is obtained by eliminating nml ,, between  

                                 0=++= nzmylxf , 0222 =++= cnbmal  

  and  
n

nf

m

mf

l

lf




=




=





/

/

/

/

/

/


   

  or   
)(

)///(//

222

222

cnbmal

czbyax

nc

cz

mb

by

la

ax

cn

z

bm

y

al

x

++

++
======    

Since 0222 =++ cnbmal , the required envelope is  

          0/// 222 =++ czbyax .  

Example 5.4: Prove that the envelope of the normal planes drawn through the generators of the cone 

0222 =++ czbyax  is given by 

          0)()()( 3/23/23/13/23/23/13/23/23/1 =−+−+− zbacyacbxcba . 

Solution. Let ),,(   be any point on the cone, the equation of the tangent plane is  

                    0=++  czbyax   

The equation of the generator through this point is  

                     /// zyx ==     

Let 0=++ NzMyLx , be the normal plane.  

Since the generator lies on it  

                    0=++  NML                                                                                         (1) 

Since it is perpendicular to tangent plane           
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              0=++  NcMbLa                                                                                         (2) 

From (1) and (2),   

                   
)()()( ba

N

ac

M

cb

L

−
=

−
=

−


     

     equation of the normal plane  

          0=++ NzMyLx becomes  

      0=
−

+
−

+
−

z
ba

y
ac

x
cb


                                                                                     (3) 

Also  0222 =++  cba                                   [since  ,,  is a point the given cone]  

Here    















=




=





/

/

/

/

/

/ fff
   gives  

              
 c

zba

b

yac

a

xcb

2

)(

2

)(

2

)(
222

−
=

−
=

−
    

or           
 3/1

3/13/1

3/1

3/13/1

3/1

3/13/1 )()()(

c

zba

b

yac

a

xcb −
=

−
=

−
  

or           
23/23/1

3/13/23/2

23/23/1

3/13/23/2

23/23/1

3/13/23/2 )()()(

 cc

czba

bb

byac

aa

axcb −
=

−
=

−
    

                
−

=
23/23/1

3/13/23/2)(

aa

axcb
    

             =−= 0)( 3/13/23/2 axcb      since  0222 =++  cba  

Hence the required envelope is          

                =−= 0)( 3/23/23/1 xcba .  
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5.2 To find the envelope of the system of surfaces whose equations  involve two 

parameters. 

Let the equation of the surface be 0),,,,( =bazyxf where ba, are the parameters. A consecutive surface 

of the system is  

                             0),,,,( =++ bbaazyxf    

              or            0.....),,,( =+++
b

f
b

a

f
aazyxf









    

Hence when ba  , are infinitely small we must have a point of ultimate intersection:  

               0=f , 0=



+





b

f
b

a

f
a   

Since ba  , are independent,  

               0=f , 0=




a

f
, 0=




b

f
    

Hence the curve of intersection of 0=f  with any surface consecutive to it goes through the point 

which satisfy the equation               

               0=f , 0=




a

f
, 0=




b

f
 

By eliminating ba, from the above equations we get the equation of the envelope.  

5.2.1 To prove that the envelope touches each surface of the system at the  corresponding 

characteristic points.  

Consider the surface 0),,,,( =bazyxf . The normal at ),,( zyx  to a surface of the family 0=f is 

parallel to the vector  

               




















z

f

y

f

x

f
,,                                                                                                     (1) 
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 The characteristics points are given by   0=f , 0=




a

f
, 0=




b

f
 and the equation of the envelope can 

be regarded as 0),,,,( =bazyxf where ba,  are functions of ),,( zyx given by  

                      0=




a

f
, 0=




b

f
                                                                                          (2) 

The normal at ),,( zyx  to envelope is parallel to the vector  

              
















+









+













+









+













+









+





z

b

b

f

z

a

a

f

z

f

y

b

b

f

y

a

a

f

y

f

x

b

b

f

x

a

a

f

x

f
,,            (3) 

  Since 0=




a

f
, 0=




b

f
 hence using (2), (3) reduces to  

                 




















z

f

y

f

x

f
,,           

which means that the envelope has the normal line and therefore, the envelope and the surface of the 

family have the same tangent plane at a characteristic point.  

Example 5.5: Find the envelope of the plane  

                         1cos)/(sinsin)/(sincos)/( =++  czbyax .  

Solution. Differentiating partially w.r.t.   and  , 

                        0sincos)/(sinsin)/( =+−  byax                                                   (1)  

                           0sin)/(cossin)/(coscos)/( =−+  czbyax                              (2) 

 From (1), bxay /tan = .  

From (2),  sin)/(cos)/(tan)/( byaxcz +=                                                               (3) 

Also                  cos)/(1sinsin)/(sincos)/( czbyax −=+                                 (4) 

               cos)/(1sintan)/( czcz −=                                           from (3) and (4)  
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              1
cos

cossin 22

=











 +





c

z
            cz /cos =                                                 (5) 

          Eliminating   from (3) and (5), we have    

              
z

zc

c

z

b

y

a

x )(
sincos

22 −
=+                                                                        (6) 

Also from (1),   0cos)/(sin)/( =−  byax                                                                   (7) 

Squaring (6) and (7) and adding 

                        1
2

2

2

2

2

2

=++
c

z

b

y

a

x
.    

Example 5.6: Prove that the envelope of the surfaces 0),,,,,,( =dcbazyxf where dcba ,,, are 

parameters connected by the equation  0),,,( =dcba and f and  are homogeneous with respect to 

dcba ,,,  is found by eliminating dcba ,,,  between the equations 0=f , 0=  and  

          
d

df

c

cf

b

bf

a

af




=




=




=





/

/

/

/

/

/

/

/


.  

Solution. We have from the given equations  

                 0=



+




+




+




dd

d

f
dc

c

f
db

b

f
da

a

f
                                                                  (1) 

               0=



+




+




+




dd

d
dc

c
db

b
da

a


                                                                   (2) 

Multiplying (2) by   and adding to (1).  

                     0=











+




+












+




+












+




+












+




dd

dd

f
dc

cc

f
db

bb

f
da

aa

f 









       

here   is at our choice, we choose , such that  
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                       0=











+





aa

f 
    i.e.        


−=









aa

f
/       

Now out of the four variables dcba ,,,  one variable can be eliminated between the equations 0=f , 

0=  and therefore three are independent, coefficients of dddcdb ,, must be separately zero.  

            
bb

f




−=



 
   etc. 

          
d

df

c

cf

b

bf

a

af




=




=




=





/

/

/

/

/

/

/

/


                                                                                     

  Eliminating dcba ,,, from these ratios and 0=f , 0= , the envelope can be found.  

Example 5.7: Find the envelope of pnzmylx =++  when  

                     2222222 pncmbla =++ .  

Solution. Refer last question,  

here 0=−++= pnzmylxf                                                                                             (1) 

                 02222222 =−++= pncmbla                                                                      (2) 

       
p

pf

n

nf

m

mf

l

lf




=




=




=





/

/

/

/

/

/

/

/


   

gives   
pnc

z

mb

y

la

x 1
2

2

2

2

2

2

=++                  
2a

px
l =  etc.                                                     (3) 

    The envelope is   1
2

2

2

2

2

2

=++
c

z

b

y

a

x
                [Eliminating pnml ,,, from (2) and (3)]. 

Example 5.8: Find the envelope of a plane that forms with the rectangular coordinates planes a 

tetrahedron of constant volume 6/3c .  

Solution. Let the plane be 1/// =++  zyx                                                             (1) 
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Also equations of three coordinate planes are  

                                            0,0,0 === zyx        

Thus to obtained vertices of tetrahedron, we solve above four equations taken three at a time. 

        Equation (1) with 0,0 == zy  gives =x . 

     Point of intersection is )0,0,(A . Similarly we get )0,,0( B , ),0,0( C and 0,0,0 === zyx  

gives )0,0,0(O .  

        Volume of tetrahedron OABC is given by  

                   

100

100

100

1000

6

1

6

2






−=

c
     

    or         
6

1

6

1 3 =c        or              3c=                                                            (2)   

For envelope  










 222 /// zyx
==                                                            [Example 5.6]    

  or       
3

1

111

///
=

++

++
===





zyxzyx
                                                       [Using (1)] 

Substituting in (2), the equation of the required envelope is  

                                         327 cxyz = .  

Example 5.9: A plane makes intercept cba ,, on the axes, so that
2222 −−−− =++ kcba . So that its 

envelopes is a coincoid which has axes as equal conjugate diameters.  

Solution. The equation of the plane is  

                                1/// =++  zyx                                                                         (1) 
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2222

1111

kcba
=++                   (given)                                           (2) 

           For the envelope  
3

2

3

2

3

2

/2

/

/2

/

/2

/

c

cz

b

by

a

ax
==   

                                 0

1

)()(
0

2

2

2

2

222

222222

=

−−

cb

r

bazcacyb







       

  or  0
)()( 2

2

22222

2

22
2

222

=












−

−
+












−

−









 b

rbazc

c

racyb
       

  or    ))(())(( 222243222243 cracbybrbacz −−=−−      

 or     
)(

)(

)(

)(

)(

)(
224

223

224

223

224

223

cbxa

r

bazc

cr

acyb

br

−

−
=

−

−
=

−

− 
                                                        (4) 

Eliminating  ,, between (1) and (4), the equation of envelope is  

                    =
−

−
−

0
)(

)]([
3/122

3/222

ar

bbxa
. 

Example 5.10: Show that the edge of regression of the envelope of the plane  

                           1=
+

+
+

+
+  c

z

b

y

a

x
   is the cubic curve given by  

               
))((

)(
,

))((

)(
,

))((

)( 333

cbca

c
z

babc

b
y

abac

a
x

−−

+
=

−−

+
=

−−

+
=


.  

Solution. For the edge of regression of   
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                               1=
+

+
+

+
+  c

z

b

y

a

x
                                                                    (1) 

  Differentiating w.r.t.  , we get  

                           0
)()()( 222

=
+

−
+

−
+

−
 c

z

b

y

a

x
                                                      (2) 

Again differentiating w.r.t.  , we get  

                           0
)(

2

)(

2

)(

2
333
=

+
−

+
−

+
−

 c

z

b

y

a

x
                                                       (3) 

Multiplying (2) by )/(2 +c  and subtracting from (3),   

                           0
11

)(

211

)(

2
22

=








+
−

++
+









+
−

++  acb

y

aca

x
,  

                  
)()(

))((

)()(

))((

)()(

))((
222 bac

baz

acb

acy

cba

cbx

−+

++
=

−+

++
=

−+

++












                [by symmetry]  

  or              
)()()()()()( 333 bac

z

acb

y

cba

x

−+
=

−+
=

−+ 
     

                                                                                       [Dividing by ))()((  +++ cba ]  

  or                       
)()(

)/(

)()(

)/(

)()(

)/(
222 bac

az

acb

by

cba

ax

−+

+
=

−+

+
=

−+

+












   

                        
)()()()()()(

)/(
222 bacacbcba

ax

−++−++−+

 +
=




    

                        
)()()(

1
222 bacacbcba −+−+−

=      

                        
))()((

1

baaccb −−−

−
=      
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                    
))((

)( 3

abac

a
x

−−

+
=


, 

))((

)( 3

baac

b
y

−−

+
=


, 

))((

)( 3

cbca

c
z

−−

+
=


. 

5.3 Ruled Surface (Developable and skew) 

Definition: A ruled surface is a surface which is generated by the motion of one parameter family of 

straight line and straight line itself is called its generating line, generating or ruling. Cones, Cylinders 

and coincoids are special form of ruled surfaces.  

      There are two distinct classes of ruled surfaces, namely those on which consecutive generators 

intersect and those on which generators do not intersect; these are called developable and skew 

surfaces respectively. Skew surfaces are also named scrolls. 

      To find equation of the ruled surfaces: If C is any curve on the ruled surface such that it meets 

each generator precisely once, then C is called a base curve or directrix (these are many in number) 

and the ruled surface is determined by any curve C and the direction of the generator at their point of 

meeting with the curve. Let )(ug be any unit vector along the generator   at a curved point Q on C and 

)(ur  the position vector of Q,  

 

then R the position vector of general point P on ruled surface is given by  

                               vg+= rR   

where v  is the parameter and determines directed distance along the generator from C. 

5.3.1 To find weather the surface generated is developable or skew: Let 1g and 2g  

P )(rQ

g

OC
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be two consecutive generators through )( 01 rQ  and )( 01 dsQ tr +  on the directrix C and let their direction 

be along the unit vector g  and dsgg + .  

     Let MN be the line of shortest distance between the generators 1g and 2g . The shortest distance MN 

being perpendicular to both 1g and 2g , will be parallel to the vector  

                               gdsgg + )(  i.e. gg    

Also unit vector along MN  

                                    
gg

gg




=   

Shortest distance MN=Projection of  )(21 dsQQ t= on MN 

                     
a

ds

gg

gg
ds ],,[. ggtt =




=                         where        agg =           

We know that if consecutive generators intersect the surface is a developable and then the  

 

S.D. is zero. Hence the necessary and sufficient condition that the ruled surface is developable is  

                             0],,[ = ggt   

If  however the ruled surface is skew, the S.D. MN must not be zero i.e.  

1Q 2Q

MN

0g 1g

..DS

dsgg +

tdsr +0
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                                 0],,[  ggt  

Example 5.11: To find the condition that the surface generated by += azx x, += bzy  is 

developable or skew, where  ,,,ba are function of t.  

Solution. Let the two consecutive generators be  

                
1

z

b

y

a

x
=

−
=

− 
, z

bb

y

aa

x
=

+

−−
=

+

−−








  

 They will intersect if the shortest distance between above lines is zero i.e.   

  if                    0

1

1

0

=++

ba

bbaa 



   or     0

1

1

0

=

ba

ba 



             

  or         0=− ab    

           0)( 2 =− dtab                   where  tddaa /=  etc.     

     They intersect i.e. the surface is developable if  0=− ab  , and they do not intersect, i.e. the 

surface is skew if 0− ab  .  

   Alternate Method: Here )0,,( =r  

       )0,,(  == rt   

          )1,,( ba=g ,  and    )0,,( ba =g   

          ),( babaab −−=gg  

          ab −== ).(],,[ ggtggt   

Therefore the surface is developable if 0=− ab   and the surface is skew if 0− ab  . 

Example 5.12: Show that the line given by 3ttxy −= , 63 tytz −= generate a developable surface.  
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Solution. Write the equation as  

                 
21

ty
t

x += ,  
3

3

1
tz

t
y +=     

             
2

4
2t

t

z
x +=    and        

3

3

1
tz

t
y +=      

  Refer (Example 5.11) above, we have  

            22t= , 
4

1

t
a = , 3t= , 

3

1

t
b =    

         0
4

3
3

4
5

2

4
=

−
−

−
=−

t
t

t
tab    

  Hence the surface is developable. 

Example 5.13: Show that the line  

                 )31(23 42 ttztx −+= , )43(2 22 tttzy ++−=  generate a skew surface. 

Solution. Refer (Example 5.11) above, we have  

                   
23ta = , 

562 tt −= , tb 2−= , 42 43 tt +=        

                06)166()2)(302( 34 =+−−−=− ttttab      

                                      
424 963604 ttt −−+−= .  

 

5.3.2 To find the equation of the tangent plane to a ruled surface  

When the equation to the surface is ),( vurr = ,  the normal to the surface is 21 rr  , the tangent plane at 

the point r is  

                            0)()( 21 =− rrrR  or  0],,[ 21 =− rrrR   
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Now let the ruled surface be generated by grr += 0  where 0r and g are function of u and r is a 

function of  u and  . Let the suffix (1) and (2) denote the the differentiation w.r.t. u and 

respectively. 

                             grgrr =+= 201 ,    

           and            

















=




=




=

.,/

,

00

211

etc

u





rr

r
r

r
r

  

Hence the equation to the tangent plane reduces to  

                             0],,[ 0 =+− ggrrR                                                                          (1) 

  which is the required equation to the tangent plane. 

  Cor. 5.1:  Cartesian form: Let us suppose  

              kjiR zyx ++= , kjir  ++=0 ,  

               kjig nml ++= , kjig nml ++=    

Substituting these values in (1), we get  

               0

)()()(

=

+++

+−+−+−

nml

nml

nzmylx





   

 [ kjigrr )()()(0 nml  +++++=+= ]                                                   (2) 

Cor.5.2: If ),,(   be a point on the surface which is generated by straight lines += azx , 

+= bzy ,  where  ,,, ba are function of t.  

             ,,  can be regarded as the function of t and z given by  

                             += az ,  += bz , z=   
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   The equation of the tangent plane at ),( zt is  

                            0=

























−−−

z

z

z

y

z

x

t

z

t

y

t

x

zyx 

       

  or      0

1

0

)()(

=++

−+−+−

ba

zbza

zZbzYazX





     

Subtracting ‘ a ’ times column 3 from column one and ‘ b ’ times column 3 from two, we have  

                 0

100

0 =++

−−−−−





zbza

zZbzYazX

    

or (i)   0))(())(( =+−−−+−−  zabzYzbazX   

This is a plane passing through the line += azX , += bzY which is generator through ),( zt . Thus 

the tangent plane at any point of a ruled surface must contain the generator through the point.  

      Again if the surface is developable, i.e. 0=− ab    

  or      k
zb

za

zb

za

b

a
=
+

+
=




=



=












 (say)  

‘k’ being some function of t . 

  The equation of the tangent plane becomes  

           0)()( =−−−−−  bzYkazX   

which is independent of z and involve ‘t’ only. Since ‘t’ is given for a given generator, the tangent pane 

will be same at all points of generator.     
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If 0− ab  , the tangent plane given by (1) will change if ‘t’ is fixed and ‘ z ’ varies. Hence if the 

surface be a developable surface, the tangent plane is the same at all points of generator and contain 

only one parameter and if the surface be a skew, the tangent plane are different at different point of 

generator.  

 Note: From the above we conclude two important points. 

(i) Tangent plane to a developable surface contains only one parameter. 

(ii) If the ruled surface is developable, the tangent plane at all points of any generator must be same.  

5.3.3 Developable Surface  

An important example of one parameter family of surfaces is furnished by one parameter family of 

planes. “A surface generated by one parameter family of planes is called a developable surfaces or 

simply a developable.”  

If N denotes unit normal vector to the plane, the equation to such a family of planes is given by         

                         )()(. upu =Nr   

where u is parameter and p is the length of the perpendicular from the origin to the plane.  

(A)  To prove that the envelope of a developable plane whose equation involves one parameter is a 

developable surface:  

Let 0. =−= pNrV  where N and p are functions of a single parameter u . Now by varying parameter 

u , a characteristics of this form of planes is given by  

                       V=0, 0=V             where        p −= NrV .                                              (1) 

 dots denoting differentiation w.r.t. u .  

Now since equation (1) represent planes, the characteristics are straight lines and therefore the envelope 

is a ruled surface.  

Again two consecutive characteristics are given by  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  142 | 

 

                        V=0, 0=V ;  0=+ uVV  ,  0=+ uVV    

and these clearly lie in the plane 0=+ uVV   and therefore intersect. Hence the envelope is a 

developable surface.  

(B) To prove that the osculating plane of the edge of regression at any point P is the tangent plane 

to the developable at P.  

The edge of regression of the envelope is given by  

                         V=0, 0=V ; 0=V i.e.  

     0. =− pNr                                  (1)                    0. =− pNr                                   (2) 

     0. =− pNr                                  (3)  

 Where r is regarded as function of u . 

  Differentiating (1), we obtained  

                      p =+ NrNr ..   

   or                0. =Nr                    [using (2]                                                                   (4) 

  Differentiating (2),  

                       p =+ NrNr ..     

  or                0. =Nr                    [using (3)]                                                                   (5) 

Differentiating (4)  

                   0.. =+ NrNr     

  or            0. =Nr                              [using (5)]                                                             (6) 
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From equation (4) and (6) we notice that both r and r  are perpendicular to N, it follows that rr    is 

perpendicular to the osculating plane and N being perpendicular to the plane 0. =− pNr and hence the 

osculating plane of edge of regression at any point is the tangent plane to the developable at the same 

point.  

(C)  To find the condition that ),( yxfz = may represent a developable surface.  

If  ),,( zyx is a point on it, the equation of the tangent plane at this point is  

                             0)()()( =−+



−+




− zZ

y

z
yY

x

z
xX    

    or                      0=−



+




=−




+




z

y

z
y

x

z
xZ

y

z
Y

x

z
X                        (say)  

    or                       =−+=−+ zqypxZqYpX          where 











=




=

y

z
Yq

x

z
Yp ,    

   If ),( yxfz =  is developable surface then tangent plane to it should involve only one parameter say u

. 

                    )(1 ufp = , )(2 ufq = , )(3 uf=   

By eliminating u , we can express p and   as function of q. By differential calculus we know that if p 

is a function of q. 

                            0
),(

),(
=





yx

qp
                                   [since  p, q are functions of x and y]  

       or                   0=

















y

q

x

q

y

p

x

p

       02 =− srt    
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                where    











=




=




=




=




=




=




=

y

q

y

z
t

y

p

x

q

yx

z
s

x

p

x

z
r

2

22

2

2

,,    

Also when   as function of q, we have 0
),(

),(
=





yx

q
  

       or                   00 =
++

=

















ts

tysxsyrx

y

q

x

q

yx



          

        0=
ts

sr
          02 =− srt , if   as function of q. 

Hence 02 =− srt  is the necessary and sufficient x condition for the surface ),( yxfz =  to be 

developable.  

5.3.4 Developable Associated with Space Curves  

Since the equation to their principal planes namely osculating plane, normal plane and rectifying plane 

contains only a single parameter which is usually taken to be the arc length s , hence their envalopes and 

developable surfaces and they are called osculating developable or tangential developable , polar 

developable and rectifying developable. Also the generators of the polar developable and rectifying  

developable are called polar lines and rectifying lines respectively.  

(A)  To prove that the curve itself is the edge of regression of the osculating developable. 

At any point r on the curve )(srr =  the equation of the osculating plane is  

                     0).( =− brR                   [where r and b are function of s.]                        (1) 

Differentiating (1) w.r.t. s, we get  

                        0.)(. =−−− nrRbt    

  or                   0.)( =− nrR                                 ( 0,0. = bt )                               (2) 
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The characteristic is given as the intersection of (1) and (2) i.e. at the intersection of osculating plane 

and the rectifying plane and is therefore the tangent to the curve at r. 

For edge of regression differentiating (2) ahain w.r.t. ‘s’  

                      0)()(. =−•−+− tbrRnt    

  or                    0)()( =−•− tbrR                                 ( 0. =nt )                          (3) 

         or                                   0.)( =− trR                       [using (1)]                             ( 3 ) 

  The edge of regression being given by (1), (2), and ( 3 ) is given by  

                                          rRrR ==− 0)(  

Thus the points of curve coincide with the point of the edge of regression and the space curve itself is 

the edge of regression. 

(B)  To prove that the edge of regression of the polar developable (i.e. envelope of the normal 

planes) is the locus of the centre of osculating spheres. 

At any point r on the curve )(srr =  the equation of the normal plane is  

     0][ =− trR                                                                                                       (1) 

Differentiating w.r.t. s, we get  

                             0)( =−− ttnrR       

    or                      0)( =−− nrR                                   [ 1= tt ]                            (2) 

        or                    0)( =−− nnrR                                    [ 1=nn ]                     ( 2 ) 

Characteristics is given as the intersection of (1) and ( 2 ) and is clearly a straight line parallel to b and 

passing through the centre of circular curvature. 

For edge of regression, differentiating (2), w.r.t. ‘s’ we get  
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                =−−+− )()( tbrRnt   

        or                           =− brR )(                               [ 1=nt  and using (1)]                

        or                           =− brR )(    

edge of regression of is given as the intersection of (1), ( 2 ) and (3), equation (1) shows that )( rR −  is 

the normal plane. Equation (2) implies component of )( rR −  along n is  .And equation (3) implies 

component of )( rR −  along b is   . Hence equation of edge of regression is given by  

                bnrRbnrR  ++=+=−   

Thus R coincides with the centre of spherical curvature. Thus the edge of regression of the polar 

developable is the locus of the centre of spherical curvature (osculating spheres).  

   The tangent to the locus are the polar lines, which are the generators of the developable. 

(C) To prove that the edge of regression of the rectifying developable has equation  

                     





−

+
+=

)( bt
rR .  

The equation of the rectifying plane at any point r is given by  

                     0)( =− nrR                                                                                                (1) 

  where r and n are function of s. Differentiating (1) w.r.t. ‘s’, we get  

                0)()( =−− tbrR                                              [ 0.. == ntnr ]                  (2) 

The characteristic (rectifying lines) is given as intersection of (1) and (2) and is clearly a straight line 

perpendicular to both n and )( tb  −  and therefore it is parallel to the direction )( bt  + . Hence it is 

included to the tangent at an angle  , such that  

                                    



 =tan                                                                                        (3) 



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  147 | 

 

 

To find the edge of regression, differentiating (2) w.r.t. s , we have  

                                     0)()( =+−−  tbrR                                                          (4) 

Again since the rectifying line is parallel to the direction )( bt  + , the point R on the edge ofd 

regression is given by  

                             )( btrR  +=−                                                                             (5) 

where  is some scalar.  

Substituting the value of )( rR − from (5), in (4), we get  

                               0))(( =+−+  tbbt   

         or                      0)( =+−   

       or                      )/(  −=                                                                              (6) 

Hence from (6) and (5), we have  

                 





−

+
=−

)( bt
rR       or                   






−

+
+=

)( bt
rR .  

Which is the required equation of edge of regression.  

P

n

t

rR − 

b
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The term ‘rectifying’ used for this developable is justified, when the surface is developed into a plane 

by unfolding about consecutive generators, the original curve becomes a straight line.  

We also know that if the curve is a helix  / is constant and from equation (3) the angle  is equal to 

the angle  . Thus the rectifying lines are generators of the cylinder on which the helix is drawn, and 

rectifying developable is cylinder itself.  

5.3.5 Characterization of a developable surface  

Developable surface: The surfaces, for which the Gaussian curvature K is zero, are called developable 

surfaces. Hence the surface will be developable if and only if  

                                  02 =−MLN                                                                                  (1) 

Theorem 5.1: The necessary and sufficient condition for a surface to be developable surface is that its 

Gaussian curvature should be zero.  

Proof: Necessary condition  

Let the surface be developable, to prove that the Gaussian curvature K is zero. For a developable surface 

to be a cylinder or cone, the Gaussian curvature K=0; and if these be excluded, the general equation of 

developable may be written  

                                 trtrR vvs +=+= )(                                                                      (2) 

 If the suffix 1 and 2 denote partial differentiation w.r.t. s and v respectively, we have  

                        bRRtRntR vv  −==+= 2121 ,,   

                       0,,)( 22211211 ===+−+= RnRRntbnR  vv   

                          
H

b

H

RR
N

v−
=


= 21    

   0.,0.,. 2212

22

11 =====
−

== RNRN
H

RN NM
v

L

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Hence Gaussian curvature   0
2

2

=
−

−
=

FEG

MLN
K                         since M=N=0.  

Sufficient condition 

If the Gaussian curvature K=0 for the given surface ),( vurr =  to prove that the given surface is 

developable. We have  

                          0=K                         or                        0/)( 22 =− HMLN         

  or         02 =−MLN   

  or         0)()()()( 12212211 =− NrNrNrNr   

  or         0)()( 2121 = NNrr                                [by vector identity due to Lagrange]       

  or              0)(. 21 =NNNH            or         0],,[ 21 =NNNH   

  or                0],,[ 21 =NNN                             [since 0H ]                                         (1) 

In view of relation (1) above, there arise following four possibilities:  

(iii) N, N1 and N2 are coplanar.  

(iv) 01 =N              or            (iii) 02 =N   

(v)   21 NN =   

     Now we shall discuss these possibilities:  

(i)   N, N1 and N2 are coplanar.  

Since N is a vector of unit length (i.e. constant length) and so 01 =•NN  and 02 =•NN . These 

relations together imply that N is perpendicular to both N1 and N2 . Hence N, N1 and N2 can not be 

coplanar.  

(ii) 01 =N . The equation of the tangent plane at any point ),( vur  on the surface ),( vurr =  is      

              0)( =− NrR   
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We have  0)(}){( 11 =−+−=−



NrRNrNrR

u
  [since 0,0 11 == NNr ] 

Thus NrR − )(  is independent of parameter u and hence the equation of the tangent plane contains 

only one parameter v . Therefore, the surface is envelope of a single parameter family of planes and 

hence it is a developable surface.  

(iii) 02 =N . Proceeding similarly as in (ii) above, the equation of the tangent plane contains only 

one parameter u . Hence in this case also the surface is developable.  

(iv)  21 NN = . Let us change the parameters vu,  to vu ,  by the transformation  

              vuvvuu −=+= , , we obtained  

              21211 11.. NNNN
NNN

N +=+=







+







=



=

v

v

vu

u

uu
    

             0)(1.. 21212 =−=−+=







+







=




= NNNN

NNN
N 

v

v

vv

u

uv
  [ 21 NN = ]   

These relations shows that N, the surface normal depends on only one parameter. Hence by case (iii) 

above, the surface is developable. Thus the theorem is completely proved.  
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CHAPTER-6 

ENVELOPE, DEVELOPABLE SURFACES (II) 

Objectives: In continuation of the fifth chapter in the current chapter the students will  learn about 

property of lines of curvatures on developable surfaces, Condition that  a curve on a surface be a line 

of curvature  is that the surface normal along the  curve is developable, Application of  developable 

surfaces with examples. 

6.1  Property of lines of curvatures on developable  

Monge’s Theorem: A necessary and sufficient condition that a curve on a surface be a line of curvature 

is that the surface normal along the curve is developable.  

Proof: Suppose )(srr =  is the equation of a curve on the surface ),( vurr = . Consider the unit vector 

N along the normal to the surface ),( vurr = at point )(rP on the curve )(srr = . Then r is a function of 

s and also N may be regarded as a function of s. The position vector R of a point Q on the such a normal 

is represented by  

            NrNrR  +=+= )()( ss                                                                                   (1) 

where s and  are two parameters. Thus equation (1) is the equation of the surface formed by the 

normal to the surface ),( vurr =  along the given curve.  

Let suffix (1) and (2) be used to denote partial differentiation w.r.t. s and  respectively.  

From (1) we have  

                        NtNrR +=+= 1                                   [where, 
ds

d

ds

d N
N

r
r == , ] 

                       NR =2                                                                                                       (2) 

From (2)   0; 221221 === RRNR   

  If M and N are fundamental coefficients of second order of surface (1), we have  
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                     ],,[ 1221 RRR=HM   

  and             ],,[ 2221 RRR=HN      

                ],,[],,[ NNtNNNt =+= HM            since 0],,[ = NNN                         (3) 

  and             0]0,,[ =+= NNt HN    

  i.e.               0=HN   Implies   N=0, as 0H  

  Hence the Gaussian curvature K of (1) is given by  

                       
2

2

2

2

H

M

FEG

MLN
K −=

−

−
=         (since N=0)                                                   (4) 

  Now we know that a surface is developable if and only if its Gaussian curvature K is zero.  

  i.e.                if and only if 
2

2

H

M
− is zero 

  i.e.                if and only if M is zero. 

  i.e.                if and only if ],,[ NNt   is zero [using (3) and 0H ] . 

Hence we are to prove only      

                                             0],,[ =NNt      

If and only if the curve  )(srr =  is a line of curvature on the surface ),( vurr = . 

Necessary condition: If the condition  

                                             0],,[ =NNt                 

hold, then to prove that the curve )(srr =  is a line of curvature on the surface   

                                               ),( vurr =    

        Now                               0],,[ =NNt    



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  153 | 

 

i.e.          0],,[ = NNt       i.e.            0)( = NNt                                                          (5) 

We know that N is perpendicular to N, therefore N lies in the tangent plane ),( vurr =  and so )( Nt   

is parallel to the unit surface normal vector N. Thus in order equation (5) hold )( Nt   must be zero 

since 0N .   

          equation (5) implies  0)( =Nt   

    tN −=  for some function  . 

     
ds

d

ds

d rN
−=                           0=+ rN dd   

Which is Rodrigue’s formula characteristics only of lines of curvature and therefore the curve )(srr =  

is a line of curvature on the surface ),( vurr = . 

Sufficient condition: Conversely if the given curve )(srr =  is a line of curvature on the surface 

),( vurr = , then we have  

                                     0=+ rN dd                                              [Rodrigue’s formula]  

                       0=+
ds

d

ds

d rN
                      0=+ tN   

                       tN −=   

Hence    0],,[],,[ =−= tNtNNt   

i.e.          0],,[ =NNt   

So that the condition of developability is satisfied.  

Exercise 6.1: Prove that surface 2)( czxy −=  is developable.  

Solution.  xycz =− 2)(   
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                  xycz =− )(                   or               xycz +=(       

                 
x

y

x

z
p

2

1
=




= ,                                 

y

x

y

z
q

2

1
=




=    

                 
2/32/1

2

2

4

1 −−=



= xy

x

z
r ,                     2/32/1

2

2

4

1 −−=



= yx

y

z
t   

  and       2/12/1
2

4

1 −−=



= yx

yx

z
s    

         0
16

1

16

1 11112 =−=− −−−− yxyxstr   

Hence the surface is developable. 

Exercise 6.2: By considering the volume of 2str − , determine, if the surface 3azyx = is developable. 

Solution. Here 
xy

a
z

3

=   

              
yx

a

x

z
p

2

3

−=



= ,      

2

3

xy

a

y

z
q −=




=        

             
yx

a

x

z
r

3

3

2

2 2
=




= ,        

3

32

xy

a
t =  ,    

22

32 2

yx

a

yx

z
s =




=              

  Now 0
34

44

6

44

6

44

6
2 =−=−

yx

a

yx

a

yx

a
str    

Hence the surface is not developable.  

Exercise 6.3: Prove that xyz sin= is a ruled surface.  

Solution. xy
x

z
p cos=




= ,       x

y

z
q sin=




=    
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                  xy
x

z
r sin

2

2

−=



=    ,    x

yx

z
s cos

2

=



=     ,   0

2

2

=



=

y

z
t          

        xstr 22 cos−=−                                                                                                   (1) 

  which is finite. Hence the given surface is ruled surface.  

If 2/)12( += nx , 02 =− str  from (1), and surface is developable, where n is any integer.  

Exercise 6.4: Prove that the equations of developable surface are tangent to a curve. 

Solution. Let += azx , += bzy  

                      uzuaax  +++= )( , uzubby  +++= )(  

be the equations of the generators of a developable surface. Their point of intersection is given by   

            
a

a
x




 −= ,   

b

b
y




 −= , 

ba
z







 
−=−=   

i.e. the coordinates contain only one parameter ‘ u ’ and so the locus of the points of intersection of 

consecutive generators of a developable is curve.  

Note: This curve is called edge of regression.  

     Now by differentiating, we have  

             Similarly zby = .  

    The equation to the tangent at ),,(  a point on the surface is  

             
z

z

y

y

x

x



 −
=

−
=

−
        i.e.        

z

z

zb

y

za

x



 −
=

−
=

−
  

  or    +=+−= azaazx    

       +=+−= bzbbzy                                                                                             (1) 
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  Since  += a ,               and  += b   

Equations (1) represent the generator. Hence the theorem is proved. 

Exercise 6.5: Find the tangent to the edge of regression of the developable  

           2ttxy −= , 63 tytz −= .  

Solution. We know that the edge of the developable surface is tangent to the edge of regression refer 

exercise 6.4 above i.e., the point of intersection of the two consecutive generators of a developable 

surfaces is a point on the edge of regression.  

      The two consecutive generators are  

           2ttxy −= , 63 tytz −=                                                                                          (1) 

         3)()( ttttxy  +−+= ,    63 )()( ttyttz  +−+=                                               (2) 

Solving  03 2 =− tttx  , neglecting higher powers of t .  

                               
23tx =                                                                                                 (3) 

Now from second of (1) and (2),  

         0.6.3 52 =− ttytt       or   32ty = ,  6623 2. ttttz =−=   

    632 ,2,3 tztytx ===  may be taken to represent the edge of regression.  

Exercise 6.6: Find the equation to a developable surface which has 32 2,3,6 tztytx === for edge of 

regression.  

Solution. The equation of edge of regression is  

           )2,3,6( 32 ttt=r                                                                                                     (1) 

                      )6,6,6(/ 2ttdtd == rr    
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We know that r is the tangent vector to the curve )(trr = at the point r.  

The developable is a surface generated by the tangents to the edge of the regression (1). Let R be the 

position vector of a current point ),,( zyx  on the developable, the equation of tangent at the point r is  

               rrR +=  

   or        )6,6,6()2,3,6(),,( 232 tttttzyx +=   

   or         )6,6,6()2,3,6( 232 tttztytx =−−−   

Hence,  232 62,63,66 ttzttytx =−=−=−  

  or         =
−

=
−

=
−

2

32

6

2

6

3

6

6

t

tz

t

tytx
  

  or         k
t

tz

t

tytx
=

−
=

−
=

−
2

32 23

1

6
(say)  

  or       232 2,3,6 kttzkttytkx +=+=+=   

  and     23tyxt =−         and        3tzty =−  

         )(33 2 ztytyxt −==−                        0342 =+− ztyxt   

Also 03 2 =+− yxtt  

whence,   
yx

i

zxy

t

zxy

t

12934 22

2

+−
=

−
=

+−
   

   )12)(43()9( 222 xyyxztxy −−=−  is the required equation.  

Exercise 6.7: Find equations to the developable surface which has the helix 

                          cuzuayuax === ,sin,cos   for its edge of regression.  

Solution. The equation of regression is  
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                   ),sin,cos( cuuaua=r                                                                                   (1) 

                       ),cos,sin(/ cuauadud −== rr  

We know that the tangent vector to the curve )(urr =  at the point. The required developable is a 

surface generated by the tangents to the edge of regression (1). Let R be the position vector of a current 

point ),,( zyx on the developable, then  

                       rrR +=  

  or               ),cos,sin(),sin,cos(),,( cuauacuuauazyx −+=   

  or               ),cossin,sincos(),,(  ccuuauauauazyx ++−=   

      )()cossin(,)sincos(  ccuzuauayuauax +=+=−=   

are the equations of developable surface, where u and  are two parameters.  

Exercise 6.8: Show that a developable surface can be found to pass through two given curves.  

Solution. The equation to any plane contain 3 parameters, if it touches the first curve, one parameter is 

eliminated and if it touches second , one more parameter goes.  

Hence only one parameter is left and its envelope is a developable surface.  

Exercise 6.9: Find the equation of the developable surface which pass through the curves  

                  bzyxaxyz 4,0;4,0 22 ==== . 

Solution. Any line tangent to axyz 4,0 2 == is  

                                               0,/ =+= zmamxy   

   any plane touching the first parabola is  

                                               0/ =+−− zmamxy                                                          (1) 

    Now the plane (1) will touch the curve  
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                                  bzyx 4,0 2 ==                                                                                 (2) 

     If 04

2

=−







+− bz

m

a
z  has coincident roots.  

i.e. 0
2

4
2

2
22 =+








+−

m

a
z

m

a
bz


  has equal roots.  

  04
2

4
2

2
2 =−








+

m

a
z

m

a
b 


                                                 [ 042 =− ACB ] 

i.e. mab /−=      or               abm/−=   

  The equation of the plane touching the two curves is  

                0)( =−−−= z
a

bm

m

a
mxymf                                                                           (3) 

                                                                                                 [using the value of   in (1)]  

Now developable is given by  

                 0)(,0)( == mfmf    

    Differentiating (3) partially w.r.t. ‘m’  

                        0
2

=−+− z
a

b

m

a
x                                                                                    (4) 

Now write (3) as,  0)(
2

=++−
a

bz

m

a
xmy   

  or      0
2

2
=








−

m

a
my                                           with the help of (4). 

  or      yam /2=   

  Putting this value of m in (4), we get  
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            bzaxy 442 +=    

  which is the required equation of developable.  

Exercise 6.10: Find the equation of developable surface whose generating lines pass through the curves 

0,42 == zaxy ; czayx == ,42 and show that its edge of regression is given by  

                       )(303 22 zcaxcyayzcx −−==− .  

Solution. Any plane touching axyz 4,0 2 ==  is  

                       0=−−+
m

a
mxyz                                                  [see exercise 6.9 above]   

Its section by cz =  is  

                       0. =−−+=
m

a
mxyccz     

 or               cz
m

a

m

c

m
x =








−+= ,

1
2


                                                                          (1) 

  If it touches ayxcz 4, 2 == , (1) should be of the form  

                         
M

a
yMx +=                                                                                           (1 ) 

       
m

M
1

=    and     
22 m

a

m

c

m

a
−=


                  [ comparing coefficients of (1) and (1 )]      

       
2m

a
am

m

c
+=


           or                

mc

a

c

am
+=

2

    

     The plane touching both the curve is  

                0
2

=−−+












+

m

a
mxyz

mc

a

c

am
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  or         0)()( 23 =−−++= axmym
c

z
aammf                                                              (2) 

         Differentiating (2) partially w.r.t. m  

               02)3()( 2 =−+= mxy
c

z
ammf                                                                         (3) 

Eliminating m between (2) and (3), the equation of the developable is obtained.  The edge of regression 

is given by 0)(,0)( == mfmf and 0)( = mf , therefore differentiating (3), we get  

                    026 =− x
c

z
am              or 

az

cx
m

3
=                                                              (4) 

  Putting the value of m in (3) and (2), we have  

                       0
3

2.
9

3 2

22

22

=−+
az

cx
y

c

z

za

xac
  

  or            023 22 =−+ cxayzcx       or  032 =− ayzcx                                                   (5) 

  and          0
93

.

27 22

32

32

33

=−−+












+ a

za

xc

az

cxy

c

z
a

za

xc
                     

  or             0
327

3)27(
22

333333

=−+
−+

a
az

cxy

cza

xczaxc
           

  or             0279272 2323333 =−++− czaxyazczaxc   

  Using (5), we have  

                  0932)(27 2223 =+−−− xyazcayzxczcza   

  or             0.)(3 22

2

42

=+−− cxxczc
y

xc
a                     

 or             0)(32 =−− zcaxcy                                                                                          (6) 
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  Hence the edge of regression is given by (5) and (6). 

Exercise 6.11: Show that the edge of regression of the developable that passes through the parabolas 

ayzx 4,0 2 ==  ; azyax 4, 2 ==  is given by  

                                   
)(3

3

xa

z

z

y

y

x

−
== .  

Solution. Any plane touching ayzx 4,0 2 ==  is  

                       0=−−+−
m

a
myzx   

  or                 mxmamzy /)/(/ +−=  

   Its section by ax =  is  

                     m
m

amzy /
1

/ 







+−=                                                                                 (1) 

  If it touches azyax 4, 2 == , (1) should be of the form  

                       
M

a
Mzy +=   

    
m

M
1

=                        and                    







+−= 

mm

a

M

a 1
                                      (2) 

      
m

a

m

a
am


−−=

2
              or                   

m

m31+
−=               

     The plane touching both the parabolas is  

                x
m

m

m

a
z

m
y

2

3

2

)1(1 +
+−=   

  or          0)(23 =−++− axmzymxm   
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  The edge of regression is given by  

                0)()( 23 =−++−= axmzymxmmF ,   0)(,0)( == mFmF       

                 0)(23 =−++− axmzymxm                                                                           (3) 

  Differentiating partially w.r.t. ‘m’  

                    023 2 =+− zmyxm                                                                                        (4) 

  Again differentiating partially w.r.t. ‘m’  

                    022 =− ymx                                                                                                 (5) 

  From (5), mxy 3=                  or                       )3/( xym =                                              (6) 

Dividing (4) by 3x, we get  

                     0
33

22 =+−
x

z

x

y
mm    

  or                  0
3

2 22 =+−
x

z
mm                                 [using (6)]  

 or                                     xzm 3/2 =                                                                                (7) 

  Dividing (3) by x, we get  

                             0123 =−++−
x

a

x

z
m

x

y
mm   

                              0133 333 =−++−
x

a
mmm              [using (6) and (7)]  

            or                xxam /)(3 −=                                                                                    (8) 

Now we have         223 )(mmm =   
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            i.e.              
2

2

93
.

x

z

x

y

x

xa
=

−
                                  [using (6), (7), (8)]  

            or               )}(3/{/ xazzy −=                                                                               (9) 

  Again mmm .23 =  gives  

                               
x

y

x

z

x

xa

3
.

3
=

−
         or        

z

xa

x

y )(3

3

−
=  

             or               )}(3/{
3

xaz
y

x
−=                                                                             (10) 

   From (9) and (10), the edge of regression is given by  

                                
)(3

3

xa

z

z

y

y

x

−
== .  

Exercise 6.12: Show that two cones pass through the curves 0,4 222 ==+ zayx ; 

)(4,0 2 azayx +== ; and that their vertices are the points )2,0,2( aa − , )2,0,2( aa− . 

Solution. A tangent plane to the first is  

                    0)1(2 2 =+−−+ mamxyz    

                                                        [ tangent to the first is )1(2,0 2mamxyz ++== ]  

If it touches the second  

                     0)1(2 2 =+−+ mayz  

  and             0)( =−+−
M

a
azMy  are equivalent,  

  or               
M

a
aMmaM +=+−= )1(2, 2     
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  or                01)1(2 22 =++− MmM    

  or                0)11(})1({ 222 =−+−+− mmM   

  or                )1( 2mmM ++=  ,  )1( 2mmM +−=  

     The plane is 0)1(2])1([ 22 =+−−++− mamxyzmm   

  or               0)2()1()( 2 =++−− azmxzm                                                                 (1) 

  or                Differentiating (1) w.r.t. ‘m’  

                      

( )
0)2(

)1(

)(
2

2

=+

+

−− az

m

m
xz                                                             (2) 

   or               0))(1()2( 2 =−+−+ xzmazm                                                                   (3) 

  From (1) and (3)  

                     
])2()[(

1

)2(

)1(

)( 22

2

azxzazy

m

xzy

m

+−−
=

+−

+
=

−−
  

 Eliminating m in between these equations  

                     
222

22

222

22

])2()[(

)2(

])2()[(

)(
1

azxz

azy

azxz

xzy

−−−

+
=

+−−

−
+   

  or                 
22

2

)()2( xzaz

y
i

−−+
=   

  i.e.   222 )()2( zxazy +−+=   and 222 )()2( zxazy −−+=   

 both these equations represent cones with vertices at  

                      )20,2( aa −  and )2,0,2( aa− .  
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Exercise 6.13: Find the equation of the developable which passes through 222334,0 xcbyaz == ; 

xbczay 4234,0 == . Also find the edge of the regression.  

Solution. Let the equation of any plane be  

                                         1=++ nzmylx  

If this plane touches the first curve  

                                        23223 27 lacbm =                  [using 042 =− ACB ]  

  Also it touches the second  

                                          027 343 =+ nbcla     







−===

3

34

2/3

2/3

2733 a

nbc

a

bcm
l   

  The equation of the plane is  

                                            1
33

3/43/2

3/1

3/23/2

3/2

=−+
cb

alz
y

cb

al
lx    

Replacing l by 
3L  

                                        1
33

3/43/23/23/2

2
3 =−+

cb

aLz
y

cb

aL
xL                                                  (1) 

  Differentiating (1) w.r.t. L,  

                                          0
2

3/43/23/23/2

2 =−+
cb

az

cb

ayL
xL                                                  (2) 

  Multiplying (2) by L and subtracting from (1) 

                                           01
2

3/43/13/23/2

2

=−−
cb

azL

cb

ayL
                                                      (3) 

      From (2) and (3)  
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3/43/4

22

3/43/12

2

3/83/2

22

3/23/2

2

22

1

22

cb

ya

cb

axz

bc

yza
x

L

cb

za

cb

ay

L

−−

=

+−

=

−
−

  

Eliminating L, get  

                               2222222 )())((4 xbcyzaazycaybzxa −=++    

which is the required equation of the developable.   

       For the edge of regression, differentiating (2)  

                               
3/23/2 cb

ay
Lx −=   

Substituting for L in (2)  

                 0
2

.
3/43/13/23/23/23/2

2

3/23/2
=−−









cb

az

xcb

ay

cb

ay
x

xcb

ay
  

  or                         
3/43/13/43/4

22

cb

axz

cb

ya
−=   or            bxzay −=2                                      (4) 

Also substituting for L in (3),  

                               01.
2

.
3/23/23/43/13/43/4

22

3/23/22
=−+

xcb

ay

cb

az

cb

ya

cbx

ay
           

     or                      0.2 222233 =−+ xcbbxyzaya   

     or                       0.2
2

42
22233 =−−

z

ya
cyayaya      

     or                        042233 =+ ycazya   or   022 =+ ycaz   

  which is the required equation of the edge of regression.  
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Exercise 6.14: Prove that the edge of regression of the developable that passes through the circles 

222,0 ayxz =+=  ; 222,0 bzyx =+=  lies on the cylinder 3/4223/223/22 )/1/1()/()/( babzax −=− .  

Solution. Let a plane be 1=++ nzmylx                                                                           (1) 

      This touches 222,0 ayxz =+= , if  

                                    1)( 222 =+mla                                                                              (2) 

      and (1) touches 222,0 bzyx =+= , if  

                                       1)( 222 =+ nmb                                                                          (3) 

    with the help of (2) and (3), (1) becomes  

 

                  1.)1(.)1( 2222 =−++−
b

z
mbmy

a

x
ma     

                  01.)1(.)1( 2222 =−−++−
b

z
mbmy

a

x
ma                                                   (4) 

Then for edge of regression, we are to eliminating m between 0)(,0)(,0)( === mfmfmf , where 

dashes denote differentiation w.r.t. m. 

Differentiating (4) w.r.t. m,  

              0
)1()1( 2222
=

−
−+

−
−

mb

bz

m

y

ma

ax
                                                               (5) 

              Differentiating (5) w.r.t. ‘m’  

           0
)1()1( 2/32222/322

2

=
−

−+
− mb

bz

m

y

ma

maxa
                                                                (6) 

Multiplying equation (6) by m and subtracting (5) from it  
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                0
)1()1( 2/3222/322

=
−

+
− mb

bz

ma

ax
                                                                   (7) 

Also multiplying (5) by 2m  and subtracting it from (4)  

                        0
)1()1( 2222
=

−
+

− mbb

z

maa

x
                                                            (8) 

  Equation (7) can also be written as  

                          0
)1(

)(

)1(

)(
2/122

3/1

2/122

3/1

=
−

+
− mb

bz

ma

ax
                                                           (9) 

From (8) and (9)  

                     
3/2

2

3/13/1

22

)(

)(.)(

1
bz

bz
a

x

b

z
ax

ma
−









−+

=−                                                        (10) 

  and               
3/2

2

3/13/1

22

)(

)(.)(

1
ax

bz
a

x

b

z
ax

ma








−+

=−                                                      (11) 

Multiplying (10) by 
2b  and (11) by 

2a  and subtracting and simplifying  

                              

3/1

22

3/2

2

3/2

2

11








−=








−









bab

z

a

x
.  

Exercise 6.15: Prove that the section by the xy-plane of the developable generated by the tangents to the 

curve    

                               2222 rzyx =++ , 
2

2

2

2

2

2

c

z

b

y

a

x
=+  is given by  

                              
2

22

2

222

2

222 )()()(
,0

r

ba

y

cbb

x

caa
z

−
=

+
=

+
= .  
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Solution. Let ),,( zyx  be a point on the curve.  

Then the tangent plane is   

                          2rZzYyXx =++ , 
222 c

Zz

b

Yy

a

Xx
=+                                                           (1) 

  where,                 2222 rzyx =++ , 
2

2

2

2

2

2

c

z

b

y

a

x
=+                                                       (2) 

The developable required is the surface obtained by eliminating ),,( zyx  between (1) and (2), its section 

by the xy-plane is obtained by putting 0=z  or what is the same thing, we may eliminate x and  and y 

between  

                     2rYyXx =+ , 0
22
=+

b

Yy

a

Xx
                                                                           (3) 

                               2

2

2

2

2
222 r

b

y

a

x
cyx =













+++                                                               (4) 

From (3),                 
22

22

2222 // ba

ba

ar

Yy

br

Xx

−
=

−
+  

  or                       
Yba

rb
y

Xba

ra
x

)(
,

)( 22

22

22

22

−

−
=

−
=                                                           (5) 

     Substituting from (5) in (4), we get required result.  

Exercise 6.16: An ellipsoid 1/// 222222 =++ czbyax  is surrounded by a luminous ring 

222,0 azyx =+= . Show that the boundary of the shadow cast on the plane 0=z  is given by  

                               
22

2

22

2

2

2

ca

a

cb

y

a

x

−
=

−
+ . 

Solution. Here it is required to find the equation of developable which touches the ellipsoid and 

luminous ring. 
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  Let 1=++ nzmylx                                                                                               (1) 

be a plane touching both the ellipsoid and the ring, then  

            1222222 =++ ncmbla                                                                                          (2) 

  and            1)( 222 =+ nma                                                                                              (3) 

  Eliminating 2n between (2) and (3)  

       222222222 )(. camcbalaa −=−+                                                                             (4) 

  Now (1) intersects 0=z  in  

                                    1=+ mylx                                                                                      (5) 

Therefore the required curve is the envelope of (5) subject to the condition (4).  

                










=−+

=+

))4((0)(

))5((0

2224 from
dl

dm
cbmala

from
dl

dm
yx

                                                           (6) 

  Eliminating 
dl

dm
 between equation (6) 

                     mxcblya )( 222 −=  

  or               
22

2

2

22222 )( ca

a

a

ca

mylx

cbm

y

la

x

−
=

−

+
=

−
+             [using (4) and (5)]               (7) 

  Substituting from (7) in (5),  

                                 
22

2

22

2

2

2

ca

a

cb

y

a

x

−
=

−
+ .  
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Exercise 6.17: Prove that the developable surface that envelopes the sphere 2222 czyx =++  and the 

hyperboloid 1/// 222222 =++ czbyax meet the plane 0=y  in the conic 

)/()/()/( 222222222 cbccbzabx −=++− . 

Solution. Tangent plane to the sphere is  

                                            cnzmylx =++                                                                      (1) 

                                           1222 =++ nml                                                                       (2) 

  If it is tangential to the hyperboloid also  

                                             
2222222 cncmbla =−+                                                       (3) 

                                          0=++ z
dn

dm
y

dn

dl
x    

                                              0222 =−+ nc
dn

dm
mb

dn

dl
la   

                                              0=++ n
dn

dm
m

dn

dl
l   

          or                       0

222

=

− ncmbla

nml

zyx

                                                                (4) 

     Putting 0=y  and eliminating m, (1) to (4) can be written down as  

                                     0=−+ cnylx                    [from (1)]                                            (5) 

                                       22222222 )1( cncnlbla =−−−+       [from (2) and (3)]  

        or                          22222222 )()( cbcbnabl −=++−                                              (6) 

                                     0)()( 2222 =+−− cbnxablz                                                        (7) 
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                From (5) and (7),  

             
)()(

1

)()( 2222222222 abzcbxabcz

n

cbcx

l

−−+−
=

−−
=

+
  

  Substituting in (6)  

             22

2222222

22222222222222

)}()({

)()()()(
cb

abzcbx

cbabzcabcbxc
−=

−++

+−+−+
  

  or        )}()(){())(( 2222222222222 abzcbxcbabcbc −++−=−+   

  or           
22

2

22

2

22

2

ab

c

cb

z

ab

x

−
=

+
+

−
. 

Exercise 6.18: A developable surface is drawn through the curves  

                           czyx ==+ ,2222  ; czyx −==+ ,122    

show that its section by the plane 0=z  is given by  

                              coscos2,sinsin2 +=+= yx     

  where         tantan = .  

Solution. Any point on the first curve is ),cos,(sin c and a point on the second curve is 

),cos,(sin c− .  

A line through these two points is  

                         
c

czyx

2coscos

cos

sinsin

sin

−

+
=

−

−
=

−

−








                                                       (1) 

By eliminating   and   between two equations (1), we get the ruled surface generated by the line .  

The section of this surface by the plane 0=z  is evidently  
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2

sinsin
sin)sin(sin

2

1 


+
=+−=x  

                                  
2

coscos
cos)coscos(

2

1 


+
=+−=y   

  Since the ruled surface is developable, consecutive generators intersect if  

                       0coscossinsinsincos =







−−+








+− 











d

d

d

d
      [ 0=− ab  ] 

   or                   cossincossin =  

   or                   tantan = .    

Exercise 6.19: If the coincoids 1/// 222222 =++ czbyax , 1/// 2
1

22
1

22
1

2 =++ czbyax  are confocal 

and a developable is circumscribed to the first along its curve of intersection with the second, the edge 

of regression lies on  

                            =− − 1)( 3/23/2223/2 acbx .  

Solution.  The plane 1=++ nzmylx                                                                               (1) 

is a tangent plane to 1/// 222222 =++ czbyax ,  if   1222222 =++ ncmbla               (2) 

 Also the point of contact is to lie on. Since this point of contact is to lie on, we get     

                           1/// 2
1

22
1

22
1

2 =++ czbyax   

                           1
2
1

24

2
1

24

2
1

24

=++
c

nc

b

mb

a

la
                                                                        (3) 

  Differentiating (1), (2), and (3); and eliminating dndmdl ,,  

              0

)()()(

2
1

24

2
1

24

2
1

24

222

2
1

2
1

2
1

2

22

2
1

2
1

2
1

2

22

2
1

2
1

2
1

2

22

=

−−−

c

nc

b

mb

a

la

ncmbla

nbac

baz

macb

acy

lcba

cbx
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              0

1

1

)()(
0

2
1

24

2
1

24

22

2
1

2
1

2
1

2

22

2
1

2
1

2
1

2

22

=

−−

c

nc

b

mb

ncmb

nbac

baz

macb

acy

  

  or  
)()()( 224

1

43

224
1

43

224
1

43

cbxa

al

bazc

cn

acyb

bm

−
=

−
=

−
                                                          (5)  

Substituting values of nml ,, from (5) in (4), we get the required equation.  

Exercise 6.20: A developable surface passes through the curves  

              )2)((,0 2 bzbaxy −=−== ; )2)((,0 2 azbayx −−== . 

Prove that the edge of regression lies on the cylinder 0)( 3/23/23/2 =−+− bayx .   

Solution. Consider the plane 1=++ nzmylx                                                                   (1) 

  If this plane touches the first curve  

              nbnlba 2)( 22 +=−                                                                                             (2) 

And, if it touches the second  

                                        nanmba 2)( 22 +=−                                                                (3) 

Differentiating (1), (2), and (3) w.r.t. nml ,, ); and eliminating dndmdl ,,  

              0

1

)1(0)( =

−

+−−

yx

bnlba

zyx

 

              0

)(

0)(

1

=

−

−

−

nmyax

nlba

yx

 

or      0
)(
=

−
++

n

ba

m

y

l

x
                                                                                                 (4) 

For edge of regression, differentiating (4) and eliminating dndmdl ,, and differential of (2) and (3),  
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              0

)1()(0

)1(0)(

)(
222

=

+−−

+−−

−

namba

bnlba

n

ba

m

y

l

x

   

              0

)1()(

)1(0

/)(/0

=

+−−

+−

−

annmban

nbnm

nbamy

  

  or                 
333

)(

l

x

m

y

n

ba
=

−
=

−
        

Hence,           
3/13/13/1 )( ba

n

y

m

x

l

−
=

−
=                                                                            (5) 

  Substituting from (5) in (4), the required result is obtained. 

Exercise 6.21: Find the equation of developable surface which contains the two curves  

               0,42 == zaxy and 0,4)( 2 ==− xczby     

and show that its edge of regression lies on the surface  

                )(3)( 2 byabxczbyax +=++ .  

Solution. Any line tangent to  0,42 == zaxy  is  

                     0, =+= z
m

a
mxy    

any plane touching this parabola is  

                     0=+−− z
m

a
mxy    

If it touches czbyx 4)(,0 2 =−= , i.e. if  

                       0=−+
m

a
zy         

  touches  czby 4)( 2 =−     

                  04

2

=−







−+− czb

m

a
z  should have coincident roots, so  
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              0442

2

2

2

=







−−








−







−− b

m

a
cb

m

a
  

   or        01616 2 =







−+ b

m

a
cc      

   or         )/( abmmc −=    

  The plane touching second is  

                0=
−

+−−
abm

mcz

m

a
mxy   

  or      022232 =++−+−− czmaabmxamxbmamybym   

  or      0)()( 223 =−++++− abyamczbyaxmxbym                                                     (1) 

Differentiating w.r.t. m,  

                   0)()(23 2 =++++− byaczbyaxmxbym                                                       (2) 

Multiplying (1) by 3 and (2) by m and subtracting  

          09)()()}(6)(2{ 22 =++++−+−++ bxaybaczbyaxybabxczbyaxm   

  or      
)(6)(2

9))((
2

2

ybabxczbyax

bxaczbyaxyba
m

+−++

−+++
=    

putting this value of m in (2), the equation of the developable is obtained. 

   Now for edge of regression, differentiating (2) w.r.t. ‘m’  

             0)(26 =++− czbyaxbmx   

  or       
bx

czbyax
m

3

++
=   

putting this value in (2),  

              )(
3

2
3

2

yba
bx

czbyax

bx

czbyax
+−=







 ++
−







 ++
 

Hence edge lies on two surfaces. 

Exercise 6.22: Show that the radius of curvature of the edge of the regression of rectifying developable 

is equal to 














d

ds

d

d
ec 2sincos , where 




 =tan  
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and that the radius of torsion is equal to 







−




d

ds

ds

d
p 2sin .   

Solution. At a point r on the curve, the equation of rectifying plane is  

                                   0).( =− nrR                                                                                   (1) 

    Differentiating w.r.t. s , we get  

                        0.)()( =−−•− nttbrR    

            or         0)()( =−•− tbrR                                                                 [ 0. =nt ]         

           or         0)(cot)( =−•− tbrR             [  /cot../tan == ei ]              (2) 

  Differentiating (2) w.r.t. ‘s’ we get  

                        0)(cotcotcos)( 2 =−−







−−−− tbtnnbrR 




ds

d
ec   

            or         01cos)( 2 =+







−− brR

ds

d
ec


    [using (1), and 1,0 =•=• ttbt ]  

           or         )(sin)( 2 say
d

ds



 =+=•− brR                                                            (4) 

  when,              )(cotcos/1 2 



ds

d

ds

d
ec −=+=                                                            (5) 

  The edge of regression is clearly given by (1), (2) and (3). 

 Now from (2),   cotcot)()( =−−•− brRtrR                                               [by (4)]   

Hence,            )(cot)( btrR +=−                                                                            (6) 

Equation (6) clearly; satisfies (1) and (4), hence point R on the edge of regression is given by  

                      )(cot btrR ++=                                                                                    (7) 

Now it is required to find curvature and torsion of the locus of R. Let the quantities belonging to the 

locus of R be distinguished by the use of suffix unity. 

Differentiation of (7) w.r.t. ‘s’ provides  

                  







−−+++= ntnbttt 




1
cot)(cot1

1
ds

ds
           [using equation (5)]        or       

)(cot1
1 bttt ++= 

ds

ds
                                                            [using  /cot = ]  
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   sin/)sin(cos bt +=  

On squaring,              

               



2

22

1

sin


=









ds

ds
     or            





sin

1 
=

ds

ds
                                                       (7 ) 

and therefore,        btt  sincos1 +=                                                                              (8) 

Now again differentiating (8), w.r.t. ‘s’, we get  

                
ds

d

ds

ds 
 )cossin()sin(cos1

11 btnnn +−+−=   

                    
ds

d
 )cossin( bt +−=                     [ first bracket is zero for  /cot = ]  

Squaring,               
ds

d

ds

ds
ei

ds

d

ds

ds 



 =








=







 1
1

22

1
1 ..                                              (9) 

Hence,                btn  cossin1 +−=                                                                            (10) 

  From (9);   






d

ds
ec

d

ds

ds

ds
cos.1

1
==                                                  [from ( 7 )]   

  or               






d

ds
ec

d

ds

ds

d
cossin2

1 







=

                  

                            [from (4)]  

                          







=







d

ds

d

d
ec 2sincos   

Again              nntb −== 111                                   [takng cross product of (8) and (10)]  

Differentiating w.r.t. ‘s’  

                    bttbn  cot)(1
11 −=−−=−

ds

ds
             [using  /cot = ]     

                                      ]cossin[
sin

bt 



+−−=   

                                      1
sin

n



=                                                 [from (10)]                

Hence,                 





sin

1
1 =

ds

ds
          or                               

ds

ds1
1 sin =    
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  or                        





sin
sin1


=                                              [from ( 7 )]     

                                  







=




d

ds

ds

d 2sin   

                             







=




d

ds

ds

d 2
1 sin       choosing such direction of 1n . 

6.2 CHECK YOUR PROGRESS 

SA1:  Exercise the terms (i) characteristic of the surface 0),,,( =zyxf for the parameter  , (ii) 

envelope of the family of surface 0),,,( =zyxf ; (iii) edge of regression and prove that  

(a) The envelope touches each member of the family of surfaces at all points of its 

characteristics; 

(b) The characteristic of a family of surface of one parameter are tangent to the edge of 

regression . 

SA2:  Prove that the edge of regression of the envelope of the normal planes of a curve  is the locus of 

the centre of spherical curvature.  

SA3: Prove that the generator of the rectifying developable of a skew curve makes with  the tangent to 

the curve an angle   where  /tan = .  

SA4:  Show that on a developable surface the generators form one system of curvature.  

SA5: Show that the envelope of the plane 1cossinsinsincos =++ 
c

z

b

y

a

x
,  where, are 

independent parameters, is the ellipsoid 1
2

2

2

2

2

2

=++
c

z

b

y

a

x
. 

SA6: Prove that the envelope of a plane which forms with the coordinate planes a  tetrahedron of 

constant volume is a surface 1=xyz . 

SA7: The envelope of a plane, the sum of the squares of whose intercepts on the axes is  constant, is a 

surface .3

2

3

2

3

2

constzyx =++  
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SA8: The envelope of the plane )()1()1()( vuabcabzuvcayuvbcxvu +=−+++−  where u , v

are parameters, is the hyperboloid 1
2

2

2

2

2

2

=++
c

z

b

y

a

x
. 

SA9: The envelope of the plane pnzmylx =++ , where 
2222222 ncmblap ++= is  an 

ellipsoid. 

SA10: Find the envelope of the plane 1=
+

+
+

+
+ uc

z

ub

y

ua

x
, where u is the  parameter, and 

determine the edge of regression. 

SA11: A fixed point O on the x-axis is joined to a variable point P on the yz-plane. Find  the envelope 

of the plane through P at right angle to OP. 
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CHAPTER-7 

FUNDAMENTAL FORMS-I  

Objectives: In continuation of the previous chapters in the current chapter the students will learn 

Curvilinear coordinates, Parametric form of the curve, Tangent plane and Normal, First fundamental 

form and their geometrical representation, Relationship between coefficients of first fundamental form, 

Directional coefficients and ratios, Normals with some solved example. 

7.1. Curvilinear Coordinates. We have seen that a surface may be regarded as the locus of a 

point whose position vector r is a function of two independent parameters vu, . The Cartesian 

coordinates zyx ,,  of the point are then known functions of vu, , and the elimination of the two 

parameters leads to a single relation between zyx ,,  which is usually called the equation of the surface. 

We shall confine our attention to surfaces, or portions of surfaces, which present no singularities of any 

kind.  

Any relation between the parameters say 0),( =vuf  represents a curve on the surface. For r then 

becomes a function of only one independent parameter, so that the locus of the point is a curve. In 

particular, the curves on the surface, along, which one of the parameters remains constant, are called the 

parametric curves.  

  

 1r

2r

bv =

au =

Figure 7.1 
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The surface can be mapped out by a double infinitude of values that can be assigned to each of the 

parameters. The parameters vu,  thus constitute a system of curvilinear coordinates for points on the 

surface, the position of the point being determined by the value of u  and v . 

        Suppose for example, that we are dealing with the surface of a sphere of radius a, and that three 

mutually perpendicular diameters are chosen as coordinate axes. The latitude   of a point P on the 

surface may be defined as the inclination of the plane containing P and the z-axes to the xz-plane. Then 

the coordinates of P are given by  

               coscosax = ,  sincosay = , sinaz = .                                        (7.1) 

Thus   and   may be taken as parameters for the surface. The parametric curves  =constant are the 

small circles called parallels of latitude; the curve  =constant are the great circle called the meridians 

of longitude. As these two systems of curves cut each other at right angles, we say the parametric curves 

are orthogonal.  

As another example, consider the osculating developable of a twisted curve. The generators of this 

surface are the tangents to the curve. Hence the position vector of a point on the surface is given by  

                                trR u+=                                                                                 (7.2) 

Where u  is the distance of the point from the curve measured along the tangent at the point r. But r, t 

are functions of the arc-length s of the given curve. Hence us,  may be taken as parameters for the 

osculating developable. The parametric curves s=constant, are the generators; and the curves u

=constant, cut the tangents at a constant distance from the given curve.  

 If the equation of the surface is given in Monge’s form 

                                   ),( yxfz =  

the coordinates yx,  may be taken as parameters. In this case, the parametric curves are the intersections 

of the surface with the planes x =constant and y =constant.  

              Or, let us consider a surface ),( vurr =  defined on a domain D and if u  and v  are functions of 

single parameter t, then the position vector r becomes a function of single parameter t, and hence its 

locus is a curve laying on the surface ),( vurr = . Let )(tuu =  and )(tvv = , then )}(),({ tvturr =  is a 

curve laying on the surface ),( vurr =  in D.   
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  It should be noted that the surface ),( vurr =  and curves )(tuu =  )(tvv = lie in the same domain and 

if m and n are class of the )}(),({ tvturr =  on the surface is smaller than m and n. The equations 

)(tuu =  )(tvv =  are called curvilinear equations of the curve on the surface.  

7.2 Parametric curves. Let ),( vurr =  be the equation of the surface defined on a domain D. Now 

by keeping u =constant or v =constant, we get curves of special importance which are called parametric 

curves. Thus:  

 If v =constant say (c), then as u varies, the point ),( curr =  describes a parametric curve called 

the u  curve or the parametric curves curve v = c. Similarly, if u =constant say (c), then as v varies, the 

point ),( vcrr =  traces a parametric curve called the v  curve or the parametric curves curve u = c. For 

u curve, u  is the parameter and determines a sense along the curve. The tangent to the curve in the 

sense of u  increasing is along the vector 1r .  

Similarly, the tangent to v  the curve in the sense of v  increasing is along the vector 2r . Thus we have 

two systems of parametric curves viz., u curve and v curve, and since we know that 021 rr , 

therefore the parametric curves of the different systems can not touch each other.  

 If 021 =•rr  at a point P, the two parametric curves through the point P are orthogonal. If this 

condition is satisfied at every point i.e. for all values of u  and v  in the domain D, the two systems of 

parametric curves are orthogonal.  

7.3. Tangent Plane and Normal 

7.3.1 Tangent plane. Let the equation of the curve be )(tuu = , )(tvv =  then the tangent is parallel to 

the vector r . 

       where        
dt

dv

vdt

du

udt

d
..




+




==

rrr
r   

  or                    
dt

dv

dt

du

dt

d
21 rr

r
+=                             [or therefore, dvdud 21 rrr += ]  

But 1r and 2r  are non-zero and independent vectors, therefore the tangent to a curve (on the surface) 

through a point P lies in the plane which contains the two vectors 1r and 2r . This plane is called the 

tangent plane at P. Hence 21 rr   gives the direction of the normal to the tangent plane is  
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                      0)).(( 21 =− rrrR                                                                             (7.3) 

where r  is the position vector of P and R that of a current point on the plane.  

 

7.3.2 Normal. The normal to the surface at the point P is a line passing through P and perpendicular to 

the tangent plane at P. Thus, if ),( vurr = is the equation of the surface, then clearly normal to the 

tangent plane at P is perpendicular to both 1r and 2r  hence parallel to 21 rr   and therefore the equation 

of the normal line at P to the surface is                 

                                            )( 21 rrrR +=                                                           (7.4) 

 where R is the position vector of a current point on the normal.  

The normal to the surface at P is the same as normal to the tangent plane at P and therefore the unit 

surface normal vector N is given  by  

                         
H

21

21

21 rr

rr

rr
N


=




=            where 021 = rrH .  

Note. The sense of the unit surface normal vector N is fixed by considering that 1r , 2r , N in this order 

form a right-handed system.  

7.3.3 Cartesian Formulation. If the equation of the surface be ),,( zyxF then the equation of the 

tangent plane at any point ),,( zyx is given by  

              0)()()( =



−+




−+




−

z

F
zZ

y

F
yY

x

F
xX                                                     (1) 

And the equations of the normal line at any point ),,( zyx are given by  

               

z

F

zZ

y

F

yY

x

F

xX





−
=





−
=





− )()()(
                                                                        (2) 

where, ),,( ZYX is the current point on the tangent plane or the normal lines.  

7.3.4 Theorem. To show that a proper parametric transformation either leaves every normal 

unchanged or reverses every normal.  

Proof. Let ),( vurr =  be the equation of the surface and the relationship ),( vuu =  ),( vuv =  gives a 

proper parametric transformation. By calculus we have  
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u

v

vu

u

uu 






+








=




..

rrr
                                                                                           (3) 

   
v

v

vv

u

uv 






+








=




..

rrr
                                                                                           (4) 

Cross product of the (3) and (4), yield the following  

               
vuu

v

v

u

v

v

u

u

vu 






















−








=








 rrrr
   

  or           NN 



= H

vu

vu
H

),(

),(
  

where the symbols NN ,;, HH  have usual meaning in the two systems of parameters vu,  and vu ,

respectively.  

Since the parametric transformation is proper, hence we have  

                    0
),(

),(






vu

vu
  

i.e. 0J  where 
),(

),(

vu

vu
J




= .  

We know that H and H   are always positive. Therefore relation (5) implies that the unit vectors N and 

N  are in the same directions if 0J  and are in the opposite direction if 0J . But the jacobian J  is 

continuous over the domain D of parameters vu,   and does not vanish and hence J  is of invariable 

sigh throughout D. Therefore throughout D the vectors N and N are either the same vectors or are 

opposite vectors. Hence a proper parametric transformation either leaves every normal unchanged or 

reverses every normal.  

7.4. First fundamental form or Metric  

Let ),( vurr =  be the equation of a surface. The quadratic differential form  

                                
22 2 GdvFdudvEdu ++   

in dvdu,  where 2
1r=E , 21 rr •=F , 2

2r=G , is called metric or first fundamental form. The quantities 

E, F, G are called first-order fundamental magnitudes, or first fundamental coefficients, and are of great 

importance. The values E, F, G will generally vary from point to point on the surface these quantities 

are a function of vu,  
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 7.4.1 Geometrical Interpretation of Metric  

Consider a curve )(tuu = , )(tvv =  on the surface ),( vurr = . Let r and rr d+ corresponding to the 

parameter values vu,  and dvvduu ++ ,  respectively be the position vectors of two neighboring points 

P and Q on the surface.  

We have  

                       dvdudv
v

du
u

21 rr
rr

r +=



+




=     

 

Let the arc PQ be ds. Since the points P and Q are neighboring points, therefore  

                 rdds =          or          22
rdds =                    

   or          2
21

2 )( dvddudds rr +=    

                        22
221

22
1 .2 dvdudvdu rrrr ++=       

  or           
222 2 GdvFdudvEduds ++=                                                                     (1) 

ds is the ‘infinitesimal distance’ from the point vu,  to the point ( dvvduu ++ , ).  

 The name metric is assigned to the first fundamental form as mainly it is used to calculate the 

arc lengths of the curves on the surface. The arc length s of the curve has the following relation with 

parameter t  

                 

222

2 







+
















+








=









dt

dv
G

dt

dv

dt

du
F

dt

du
E

dt

ds
  

Special Case. On the parametric curve u =constant, du=0 and hence the metric (1) reduces to  

22 Gdvds =  and on the parametric curve v =constant, dv=0 and therefore the metric (1) reduces to 

22 Eduds = .    

7.4.2 Relation between the coefficients E, F, G, and H.  

)(rP

)( rr dQ +

Figure 7.2 
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We have  2
21

2
2

2
1

2
21 ).()( rrrrrr −=   

                                02 −= FEG        for     [E>0, G>0 ]  

 22 HFEG =−  (say), is always positive quantity and H is taken as the positive square root of 

2FEG −= .  

7.4.3 Important Properties  

 Following are two important properties of the first fundamental form or metric.  

Property I: The metric is a positive quadratic form in du, dv.  

Since 0E we may write 
222 2 GdvFdudvEduds ++=    

              ]2[
1 222 EGdvEFdudvduE
E

++=   

              ])()[(
1 222 dvFEGFdvEdu
E

−++=      

             ])[(
1 222 dvHFdvEdu
E

++=   

             0  as 02 H  and for all real values of du and dv.  

Again if 02 22 =++ GdvFdudvEdu    

  i.e.     0)( 222 =++ dvHFdvEdu , then  

             0)( 2 =+ FdvEdu  and 022 =dvH   

  i.e.       0=+ FdvEdu  and  0=dv  as 02 H   

  i.e.        0=Edu   and    0=dv    

  i.e.         0=du   and    0=dv   as 0E   

  But both du and dv can not vanish together. Hence Metric i.e.  

                 
22 2 GdvFdudvEdu ++    

is a positive definite quadratic form in du, dv.  

Property II: The invariance Property.   

The metric remains invariant if the parameters vu,  are transformed to the parameters vu ,  by the 

relation (say).  

            ),(),,( vuvvuu  ==   



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  189 | 

 

Then    













+



=




=




+



=








+







=




=

v

v

v

u

v

u

v

u

u

u

v

vu

u

uu

212

211 ..

rr
r

r

rr
rrr

r

                                             (1) 

Again 














+




=





+




=

vd
v

v
ud

u

v
dv

vd
v

u
ud

u

u
du

                                                                                    (2) 

Now we have  

               
22 2 vdGvdudFudE ++   

             22
221

22
1 .2 vdvdudud ++= rrrr   

             2
21 )( vdud += rr   

  

2

2121 




















+



+












+



= vd

v

v

v

u
ud

u

v

u

u
rrrr [putting 1r  and 2r  from equation (1)]  

            

2

21 




















+




+













+




= vd

v

v
ud

u

v
vd

v

u
ud

u

u
rr  

            2
21 )( dvdu rr +=                                                                    [using equation (2)]  

             22
221

22
1 .2 dvdudvdu rrrr ++=   

             
22 2 GdvFdudvEdu ++=   

Hence the metric is invariant.  

7.4.4 Element of area. Consider the figure ABCD whose vertices A, B, C, D have parameter values

),( vu , ),( vduu + , ),( dvvduu ++ , ),( dvvu +  respectively. If du and dv are small and positive, then the 

figure ABCD is approximately a parallelogram. Let r denote the position vector of any point on the 

figure, then  

 

),( vuA

),( vduuB +

),( dvvduuC ++

),( dvvuD +

du1r

dv2r

Figure 7.3 
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      AD=Position vector of D –Position vector of A  

           ),(),( vudvvu rr −+=   

           ),(),( vudv
v

vu r
r

r −



+=  

            dvdv
v

2r
r

=



. 

  Similarly du1rAB =  

Hence the area ds of the parallelogram ABCD is given by  

          HdudvdudvdvdudS === 2121 rrrr .  

Thus the element of the area on the surface at the point ),( vu  is taken to be Hdudv.  

 7.5. First Order magnitudes. The suffix 1 will be used to indicate the partial differentiation with 

respect to u , and the suffix 2 partial differentiation with respect to v . Thus  

                
u


=

r
r1 , 

v


=

r
r2  

               
2

2

11
u


=

r
r , 

vu 


=

r
r

2

12 , 
2

2

22
v


=

r
r   

and so on. The vector 1r  is tangential to the curve v =constant at the point r, for its direction is that of 

the displacement rd  due to a variation in ud  the first parameter only. We take the positive direction 

along the parametric curve v =constant as that for which u  increases. This is the direction of the vector 

1r . Similarly for 2r  is tangential for the curve u =constant in the positive sense, which corresponds to 

increase of v . 

       Consider the neighboring points on the surface, with position vectors r and rr d+ , 

corresponding to the parameter values vu,  and duu + , dvv +  respectively. Then  

                                  dv
v

du
u

d



+




=

rr
r  

                                       dvdu 21 rr + .  

Since the two points are adjacent points on a curve passing through them, the length ds  of the element 

of arc joining them is equal to their actual distance rd  apart. Thus  
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                                   2
21

22 )( dvdudds rrr +==    

                                          22
221

22
1 2 dvdudvdu rrrr +•+     

If then we write 2
1r=E , 21 rr •=F , 2

2r=G                                                              (1) 

We have the formula  

                                     222 2 GdvFdudvEduds ++=                                                 (2) 

The quantities denoted by E, F, G are called the fundamental magnitudes of the first order. They are of 

the greatest importance and will occur throughout the remainder of this book. The quantities EG-F2 are 

positive on a real surface when u  and v  real. For E  and G are the modules of 1r  and 2r , and if 

denote the angle between these vectors, cosEGF = , and therefore EG-F2 is positive. We shall use 

the notation  

                                      22 FEGH −=                                                                       (3) 

and let H denote the positive square root of this quantity.  

The length of an element of the parametric curve v =constant found from (2) by putting 0=dv .  

Its value is, therefore E . The unit vector tangential to the curve v =constant. Thus  

                                        1
2/11
r

r
a

−=



= E

uE
.  

Similarly, the length of an element of the curve u =constant, dvG and the unit tangent to this curve is  

                                        2
2/11
r

r
b −=




= G

vG  

 

The two parametric curves through any point on the surface at an angle   such that  

1r

2r
cu =



curveu −

curvev −

Figure 7.4 
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EG

F

EG
=

•
=•= 21cos

rr
ba  

Therefore                    
EG

H

EG

FEG
=

−
=

2

sin                                                     (4) 

and                               
F

H
=tan .  

Also since                     21

1
sin rrba ==

EG
   

it follows that                H= 21 rr                                                                            (5) 

The parametric curves will cut at right angles at any point 0=F  at that point, and they will do so at all 

points if 0=F  on the surface. In this case, they are said to be orthogonal. The 0=F  is the necessary 

and sufficient condition that the parametric curves may form an orthogonal system.  

7.5.1 Theorem. To prove that F=0, is the necessary and sufficient condition for the parametric 

curves on a surface to be orthogonal. 

Solution. We know that FH /=                                                                             (1) 

where   is the angle between the parametric curves. 

            Necessary condition: Suppose the system of parametric curves is orthogonal i.e.  
2

1
= .  

Equation (1) gives 0../ == FeiFH .  

          Sufficient condition: Suppose  0=F .  

Equation (1) gives =tan which implies 
2

1
=  and hence the system of parametric curves is 

orthogonal.  

7.5.2 Theorem. To prove through every point of the surface there passes one and only one 

parametric curve of each system. 

 Solution. Consider a point ),( 00 vuP ; then 0u  and 0v  are uniquely determined by P and there are just 

the two parametric curves 0uu =  and 0vv =  through P. It follows that no two parametric curves of the 
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same system intersect and that the curves 0uu =  and 0vv =  intersect once but not more than once if 

),( 00 vu belong to D, the domain of the surface over which the curves lie.  

7.6. Direction coefficients 

 At a point )),(( vuP r  on a surface, ),( vurr =  there are independent vectors, N (the unit normal to the 

surface) and 21,rr  (the tangential vectors) so that an arbitrary vector a at P can therefore be exposed in 

the form  

                 )( 21 rrNa  ++= na                                                                                 (1) 

             Where 21 rr  +  is the tangential part of a and ,,na  are scalars defined uniquely by (1).  

  Let 21 rrT  +=                                                                                                       (2) 

                  Now ,  are the components of tangential vector 21 rr  +  written as vector ),(  . We 

have  

                    
2/122

21 )2(  GFE ++=+= rrT                                         (3) The scalar ‘ na ’ 

is called the normal component of a, and is given by  

                       Na.=na                                   [Taking the scalar product of (1) with N]  

To describe the direction of the tangent plane at P, it is convenient to use the component of a unit vector 

e, say, in the direction. These components are written as ml, and are called direction coefficients. Thus 

we have the identity  

                                      
222

21
2 21 GmFlmElml ++=+== rre  

                            i.e.      12 22 =++ GmFlmEl                                                          (4) 

Now we may define the direction coefficients of a direction on a surface as follows.  

Definition. Let T be a tangential vector to the surface at the point P. Suppose that the unit vector in the 

direction of T is e. If ),( ml  are the component of the unit vector e. i.e. 21 rre ml += , then ),( ml  are 

termed as the direction coefficients of the direction represented by T. The direction coefficient of the 

direction, opposite to the direction whose coefficients are ),( ml  are ),( ml −− .  

7.6.1 To find the angle between two directions (tangential direction) on a surface at point P.  
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Solution. Now let the direction coefficients of the two directions at a point P be ),( ml  and ),( ml −−  

then the corresponding unit vectors e and e  are given by  

               21 rre ml +=                         and                  21 rre ml +=  

If   be the angle between these two directions, then  

                ee = .cos   

  or           )().(cos 2121 rrrr mlml ++=   

                         222111 ..)(. rrrrrr mmmlmlll +++=    

                         mGmmlmlFlEl +++= )(  

                ee =sin   

  or           )()(sin 2121 rrrr mlml ++=   

                         ))(( 21 rr −= lmmll  

                         Hlmml )( −=                                           [where 21 rrN =H ] 

Also            
mGmmlmlFlEl

Hlmml

+++

−
==

)(

)(

cos

sin
tan




                           

Remark: If   is such that  0  then  

                 




−=

+++=

Hlmmland

mGmmlmlFlEl





sin

)(cos
                                         (1) 

7.7. Direction ratios.  

         If ),( ml  are the direction coefficients of a direction on the surface, then the numbers ,  which 

are proportional to ml,  respectively are called direction ratios.  

It is convenient to use ),(  as direction ratios and ),( ml  as actual direction cosines.  

To find the relation between l, m and ),(   

By definition, direction ratios ),(   are proportional to direction coefficients ),( ml , therefore, let  

              C
ml
==


, giving          CmCl == ,    

But we know      12 22 =++ GmFlmEl   
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                        12 22222 =++  GCFCEC   

  or                     
22

2

2

1

 GFE
C

++
=    

  or                       
2/122 )2(

1

 GFE
C

++
=       

                  
2/122 )2( 




GFE
Cl

++
==   

and                
2/122 )2( 




GFE
Cm

++
==   

Thus the relation between ),(  and ),( ml is expressed as  

                     2/122 )2/(),(),(  GFEml ++=                                                 (5) 

 Example 7.1 For a surface of revolution  

                        ))(,sin,cos( ufvuvu=r ,  

                       ))(,sin,(cos1 ufvv =r ,  

                       )0,cos,sin(2 vuvu−=r ;  

                    22
1 1 fE +== r ,  

                       021 =•= rrF   

                       22
2 uG == r   

are the parametric curves are orthogonal, and  

                       22222 )1( dvudufds ++= .   

Example 7.2 Calculate the same quantities for the surface of the preceding example.  

Example 7.3 Find the direction coefficients making an angle 2/  with the direction coefficients ),( ml

. 

Solution. Let ),( ml   be the required coefficients.  

  Since 2/ = ,   

       Then          0)( =+++ mGmmlmlFlEl                                                           (1) 

                          1)( =− Hlmml                                                                                 (2) 
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  Equation (1) may be written as  

                          0)()( =+++ GmFlmFmEll   

  or                     a
FmEl

m

GmFl

l
=

+


=

+



)()(
 (say)  

                      )(),( FmElamGmFlal +=+=                                                      (3) 

  Substituting these values in equation (2), we get  

                           1)()( =+++ GmFlHamFmElHal   

  or                      HGmFlmElH
a

=++= )2(
1 22       

  or                       
H

a
1

= .  

Substituting these values of a in equation (3), we have  

                    
H

GmFl
l

+
= ,       

H

FmEl
m

+
= . 

Example 7.4 Calculate the curve )(tuu =  and )(tvv = . Find the direction coefficients of the tangent to 

the curve.  

Solution. The position vector of a current point is given by  

                      ),( vurr =   

And 
dt

dr
 represent a tangent vector given by  

                   21 rr
r

vu
dt

d
+= .  

Since 
dt

dr
 is not a unit vector, therefore the components ),( vu   of 

dt

dr
 are direction ratios of the tangents 

to the given ),( vu  .   

7.8 Directions on a surface. Any direction on the surface on a given point ),( vu  is determined by 

the increments dvdu,  of the parameters for a small displacement in that direction. Let ds be the length 

of the displacement rd corresponding to increments dvdu,  and let s be the length of another 

displacement r due to increments vu  , . Then  
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                        dvdud 21 rrr += ,  

                       vu  21 rrr +=   

have an inclination   of these directions is then given by  

                         rr  •= dsds cos  

                                           vGdvudvvduFuEdu  +++= )( ,  

                         rr  = dsds sin  

                                            21 rr −= udvvdu    

                                            udvvduH  −= .  

These two directions are perpendicular if 0cos = , that is if   

                   0=+







++ G

v

u

dv

du
F

v

u

dv

du
E








                                                             (6) 

As an important particular case, the angle   between the direction dvdu,  and that of the curve v

=constant may be deduced from the above results by putting 0=v  and uEs  = .  

 

Thus                         













=









+=

ds

dv

E

H

ds

dv
F

ds

du
E

E





sin

1
cos

                                         (7) 

Similarly, its inclination   to the parametric curve u =constant is obtained by putting u =0 and 

vGs  = . Thus  



 b=

a=u

Figure 7.5 
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











=









+=

ds

du

G

H

ds

dv
G

ds

du
F

G





sin

1
cos

                                                          (8) 

The formula (6) leads immediately to the differential equation of the orthogonal trajectories of the 

family of curves given by  

                 0=+ vQuP    

where P, Q are functions of vu, . For the given family of the curves, we have  

                                 
P

Q

v

u
−=




 

And therefore from (6), if dvdu /  refer to the orthogonal trajectories, it follows that  

                   0)()( =−+− dvGPFQduFPEQ                                                             (9) 

This is the required differential equation. If instead of the differential equation of the original family of 

the curves, we are given their equation in the form  

                               cvu =),( ,  

Where c is the arbitrary constant, it follows that  

                             021 =+ vu  ,  

the suffixes as usual denoting partial derivatives with respect to u and v . The differential equation of 

the orthogonal trajectories is then obtained from the preceding result by putting 1=P  and 2=Q , 

which gives  

                       0)()( 1212 =−+− dvGFduFE                                                    (10) 

An equation of the form  

                             022 =++ RdvQdudvPdu  

Determines two directions on the surface, for it is quadratic in dvdu / . Let the roots of the quadratic be 

denoted by dvdu /  and vu  / . Then  

                   
P

Q

v

u

dv

du
−=+




,  
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and              
P

R

v

u

dv

du
=




   

and substituting these values in (6), we see that the two directions will be at right angles if   

                                    0=+− GPFQER                                                                 (11) 

7.9 Normal. The normal to the surface at any point is perpendicular to every tangent line through that 

point and is  

  

Therefore perpendicular to each of the vectors 1r  and 2r . Hence it is parallel to the vector 21 rr  , and 

we take the direction of this vector as the positive direction of the normal. The unit vector n parallel to 

the normal is therefore  

                       
H

21

21

21 rr

rr

rr
n


=




=                                                                           (12) 

This may be called the unit normal to the surface. Since it is perpendicular to each of the vectors 1r  and 

2r , we have                          

                        01 =•rn , 02 =•rn                                                                          (13) 

The scalar triple product of these three vectors has the value  

                         HH ==•= 2
2121 ],,[ nrrnrrn                                                     (14) 

For the cross product of n with 1r  and 2r , we have 

                          )(
1

)(
1

212111 rrrrrnr EF
HH

−== ,  

                          )(
1

)(
1

212122 rrrrrnr FG
HH

−== .   

Example 7.5 Find an equation for the tangent plane to the surface 22 yxz +=  at the point (1,-1, 2).  



1r

2r

Figure 7.6 
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Solution. Let the parametric equation for the surface be ux = , vy = , 22 yxz += , so that at the point 

(1, -1, 2), 1=u , 1−=v .  

Now position vector of any point on the surface is  

                           kjir )( 22 vuvu +++=   

                      ki
r

r u
u

21 +=



= ; kj

r
r v

v
22 +=




=   

  At the point 1=u , 1−=v  i.e. at (1, -1, 2)  

                          kir 21 += ; kjr 22 −=   

                          kjirr ++−= 2221   

Let kjiR zyx ++=  and kjir 2+−= at 1=u , 1−=v  

  The equation of the tangent plane at (1, -1, 2) is  

             0)()( 21 =− rrrR   

  or        0)}22()2(){( =++−+−−++ kjikjikji zyx   

  or        0)2()1(2)1(2 =−+++−− zyx  

  or        0222 =+++− zyx  

Example 7.6 Find the equation of the tangent plane and normal to the surface 4=xyz  at the point (1, 2, 

2).  

Solution. The equation of the surface is  

                          04),,( =−= xyzzyxF                                                                      (1) 

  Differentiating (1) partially w.r.t. x, y, z respectively, we have  

             yz
x

F
=




, xz

y

F
=




, xy

z

F
=




 

 At the point (1, 2, 2), we have   

            4=




x

F
, 2=




y

F
, 2=




z

F
 

  The equation of the tangent plane at (1, 2, 2) is given by  

            02)2(2)2(4)1( =−+−+− zyx  

  or       62 =++ zyx  
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  The equation of the normal line at the point (1, 2, 2) are  

             
2

)2(

2

)2(

4

)1( −
=

−
=

− zyx
 

  or        
1

)2(

1

)2(

2

)1( −
=

−
=

− zyx
  

Example 7.7 Find the equation of the tangent plane and normal to the surface xyz =  at the point (2, 3, 

6).  

Solution. Here zxyzyxF −=),,(   

                 y
x

F
=




, x

y

F
=




, 1−=




z

F
 

 At the point (2, 3, 6), we have   

            3=




x

F
, 2=




y

F
, 1−=




z

F
  

  Equation of the tangent plane at (2, 3, 6) is given by  

             0)1)(6(2)3(3)2( =−−+−+− zyx  

  or       623 =−+ zyx  

  The equation of the normal line at the point (2, 3, 6) are  

             
1

)6(

2

)2(

3

)2(

−

−
=

−
=

− zyx
.  

Example 7.8 Prove that the tangent to the surface 3axyz =  and the coordinate planes bound a 

tetrahedron of constant volume.  

Solution. The equation of the surface is  

                          0),,( 3 =−= axyzzyxF                                                                    (1) 

  Differentiating (1) partially w.r.t. x, y, z respectively, we have  

             yz
x

F
=




, xz

y

F
=




, xy

z

F
=




 

The equation of the tangent plane at any point zyx ,,  to the given surface (1) is  

            0)()()( =



−+




−+




−

z

F
zZ

y

F
yY

x

F
xX  
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  or         0)()()( =−+−+− xyzZxzyYyzxX  

  or         xyzxyZxzYyzX 3=++  

  or         3===
z

Z

y

Y

x

X
                                                                                             (2) 

The intercepts made by (2) on the co-ordinate axes are 3x, 3y, 3z respectively.  

           The volume of the tetrahedron formed by the tangent plane (2) and the coordinate plane is  

                 3

2

9

2

9
3.3.3

6

1
axyzzyx === ,   which is constant.  

Example 7.9 Show that the sum of the squares of the intercepts on the co-ordinate axes made by the 

tangent plane to the surface  

                          3/23/23/23/2 azyx =++  is constant.  

Solution. The equation of the surface is  

                          0),,( 3/23/23/23/2 =−++= azyxzyxf                                          (1) 

                          3/1

3

2 −=



x

x

F
, 3/1

3

2 −=



y

y

F
, 3/1

3

2 −=



z

z

F
  

The equation of the tangent plane at any point (x, y, z) to the given surface (1) is  

                         0)()()( =



−+




−+




−

z

F
zZ

y

F
yY

x

F
xX     

                         0
3

2
)(

3

2
)(

3

2
)( 3/13/13/1 =−+−+− −−− zzZyyYxxX      

  or                   3/23/23/23/13/13/1 zyxZzYyXx ++=++ −−−   

  or                    3/2

3/13/13/1
a

z

Z

y

Y

x

X
===         using (1)                                            (2) 

Let x  be the intercept made by (2) on the x-axes then point ( x , 0, 0) will lie on (2), thus giving  

                         
3/2

3/1
a

x

x
=


     or   

3/13/2 xax =   

Similarly, 3/13/2 yay = , 
3/13/2 zaz =   

where, y   and z  are intercepts made by (2) on y and z axes respectively.  

Therefore the sum of the square of intercepts  
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          23/13/223/13/223/13/2 )()()( zayaxazyx ++=++=   

          23/23/43/23/23/23/4 .( aaazyxa ==++     

Example 7.10 Prove that any tangent plane to the surface  

                   0)( 22 =++ xyzyxa   

meets it again in a conic whose projection on the xy-plane is a rectangular hyperbola.  

Solution. The equation of the surface is  

                          0)(),,( 22 =++= xyzyxazyxf                                                       (1) 

                          yzax
x

F
+=




2 , xzay

y

F
+=




2 , xy

z

F
=




  

Therefore at any point ( 111 ,, zyx ), we have  

                          1112 zyax
x

F
+=




, 1112 zxay

y

F
+=




, 11 yx

z

F
=




                

The equation of the tangent plane at ( 111 ,, zyx ) to the given surface is     

                         0)()()( 111 =



−+




−+




−

z

F
zZ

y

F
yY

x

F
xX     

   or         0))(()2)(()2)(( 1111111111 =−++−++− yxzzxayyyzyaxxx                   (2) 

Now eliminating z between (1) and (2) we have  

         
0).

)(
(

)2)(()2)((

111

22

1111111

=+
+

−

+−++−

yxz
xy

yxa

xayyyzyaxxx

     

   or   

111
22

111
2
1

2
1111111

})({

)222()]2()2([

yxxyzyxa

zyxayaxzxayyzyaxxxy

++=

++−+++
 

  or     

11111
22

111
2
1

2
1111

2
1

1

111
2
1

1

)(

)222()2()2(

zyxyxyxyxa

zyxayaxzyxay
y

y
zyxax

x

x
xy

++=









++−+++

         (3) 

Now the point ( 111 ,, zyx ) also lies on (1)  

              111
22 )( zyxyxa ++=                                                                                     (4) 
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  Also   )(22 2
1

2
1

2
1111

2
1 ayaxaxzyxax +−=+                                            [using (4)]          

  or        2
1

2
1111

2
12 ayaxzyxax −=+                                                                              (5) 

Similarly 2
1

2
1111

2
12 axayzyxay −=+                                                                           (6) 

Using (4), (5), and (6) in (3) we have  

      xyyxayxyxaaxay
y

y
ayax

x

x
xy )()(0)()( 2

1
2
111

222
1

2
1

1

2
1

2
1

1

+−+=







−−+−   

  or  )]()[()()( 11
2

11
2
111

2
111

2

11

2
1

2
1 yxyyxyyxxyxxa

y

y

x

x
yxaxy −−−=








−−   

  or   







−−








−=








−−

11

1
2
1

11

1
2
1

11

2
1

2
1 ))((

y

y

x

x
xyy

y

y

x

x
yxx

y

y

x

x
yxxy   

  or    )()())(( 2
111

2
1

2
1

2
1 yxyyxxyxxy −=−  

  or   )()())((,0 2
111

2
1

2
1

2
1 yxyyxxyxxyz −=−=   

Clearly (7) represents a cylinder that passes through the curve of intersection of (1) and (2). The 

projection of conic (7) on xy-plane (i.e. z=0). This is the equation of the rectangular hyperbola.  

Example 7.11 Find a unit normal vector to the surface  

                7432 2 =−− xxyxz  at the point (1, -1, 2).  

Solution. Here 07432),,( 2 =−−−= xxyxzzyxF   

    432 2 −−=



yz

x

F
 at (1, -1, 2)  

        33 −=−=



x

y

F
 at (1, -1, 2) 

        84 ==



xz

z

F
 at (1, -1, 2)  

The vector normal to the surface is  

        )/,/,/( zFyFxF    i.e. (7, -3, 8)  

Module of the normal vector  
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        122)64949(

222

=++=











+












+













z

F

y

F

x

F
 

  Unit vector normal to the surface is  

               







−

122

8
,

122

3
,

122

7
.  

Example 7.12 Prove that at points common to the surface  

                            xyzxyzxyza =++ )(  

and a sphere whose center is the origin, the tangent plane to the surface makes intercepts on axes whose 

sum is constant.  

Solution. The equation of the surface is  

                      0)(),,( =−++= xyzxyzxyzazyxF                                                     (1) 

yzyza
x

F
−+=




)( ; xzzxa

y

F
−+=




)( ; xyyxa

z

F
−+=




)(   

Let the equation of the sphere of radius r and center at the origin be  

                            2222 rzyx =++                                                                             (2) 

Let P(x,y,z) be a common point to the surface (1) and (2). The equation to the tangent plane to (1) at 

P(x,y,z) is  

        0])()[(])()[(])()[( =−+−+−+−+−+− xyyxzzZzxxzayYyzzyaxX   

  or   xyzxyzxyzaxyyxzZzxxzaYyzzyaX 3)(2])([])([])([ −++=−++−++−+   

  or      xyzxyzxyyxz
z

Z
zxxza

y

Y
yzzya

x

X
3)(2])([])([])([ −=−++−++−+  

  or     xyzaxy
z

Z
azx

y

Y
ayz

x

X
−=−+−+− ][][][                                               using (1) 

Now dividing throughout by (xyz), we get  

          1
222
=++

a

z

Z

a

y

Y

a

x

X
                                                                                            (3) 

Clearly, the intercept made by the tangent plane (3) on the coordinate axes are  

                   )/,/,/( 222 azayax   
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The sum of the intercepts  

        
a

r

a

zyx

a

z

a

y

a

x 2222222

=
++

=++                                                       using (3) 

which is constant.  

Example 7.13 Deduce the formulae  

          211 rrNN LMH −=       and          212 rrNN MNH −= .  

Solution. We know that  

            21 rrN =H                                                                                                      (1) 

Differentiating equation (1) w.r.t. ‘u’ we have  

             12121111 rrrrNN +=+ HH                                                                       (2) 

Taking the cross product of both sides of equation (2) with N, we have  

              )()( 1212111 rrNrrNNN +=H                                                         (3) 

Using the vector identity  

              ccc ).().()( bababa −= in the right-hand side of (3), we get  

      ]).().[(]).().[( 1211122111121 rrNrrNrrNrrNNN −+−=H   

          12 rr ML +−=    as L=).( 11rN , M=).( 12rN   

     21 .0. rNrN ==   

Again differentiating (1) w.r.t. ‘v’ we have  

                    22121222 rrrrNN +=+ HH                                                               (4) 

Taking the cross product of both sides of equation (4) with N, we have  

              )()( 2212122 rrNrrNNN +=H                                                     

                              ]).().[(]).().[( 221122212122 rrNrrNrrNrrN −+−=   

                  12 rr NM +−=    as M=).( 12rN  N=).( 22rN .  

Example 7.14 Shows that if L, M, N vanish everywhere on a surface, then the surface is a part of a 

plane.  

Solution. We know that the surface normals at every point of a plane surface are parallel and hence the 

surface normal N is constant for a plane surface. Thus in these equations, we are to show that N is 

constant at every point of a surface.  
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Given 0=== NML   

But      11.rN−=L , 1221 .. rNrN −=−=M , 22.rN−=N   

Therefore we have  

            0.,0. 2111 == rNrN                                                                                        (1)  

           0.,0. 2212 == rNrN                                                                                        (2) 

Now  0,0 21  rr , the equation (1) implies that either,  

            01 =N   

  or   1N  is perpendicular to the vectors 1r  and 2r  both  

    1N  is parallel to the vector 21 rr   

    1N  is parallel to the vector  HN   

    1N  is parallel to the vector  N .  

But this is not true as 1N  is perpendicular to N , N  being the vector of constant magnitude. Hence from 

(1), we must have  

             01 =N  i.e.  N is independent of u. 

Applying similar reasoning to equation (2), we get  

              02 =N  i.e.  N is independent of v.  

Hence N is a constant vector at every point of the surface. Hence proved.  

Example 7.15 A real surface for which the equations  

            NGMFLE /// ==  hold is either plane or spherical.  

Solution.  We know that  

         11.rN−=L , 1221 .. rNrN −=−=M , 22.rN−=N   

Let /1/// === NGMFLE   then  

         GNFMEL  === ,,                                                                                          (1) 

Consider the equation  

          11.rN−=L      

  or      0. 11 =+ rNL   

  or    0. 11 =+ rNE   



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  208 | 

 

  or    0.. 1111 =+ rNrr    since 11.rr=E   

  or     0)( 111 =+ rNr   

Similarly from relations 1221 .. rNrN −=−=M  and 22.rN−=N  equation (1), get  

          0)(,0)(,0)( 222211122 =+=+=+ rNrrNrrNr  .  

Since N is perpendicular to both 1N  and 2N , therefore each of 1N  and 2N  lies in the plane of vectors 

1r  and 2r . Hence the vector 11 Nr +  and 22 Nr +  lies in the plane of 1r  and 2r .  

Now since 01 r  and 02 r  and the vector 11 Nr +  is not perpendicular to both 1r  and 2r , therefore 

the equations  

            0).( 111 =+ rNr       and          0).( 211 =+ rNr  

will hold if and only if  

            0)( 11 =+Nr          i.e.             11 rN −=                                                     (2) 

Similarly from other two equations namely  

            0).( 122 =+ rNr       and          0).( 222 =+ rNr  

we conclude that  

            0)( 22 =+Nr          i.e.           22 rN −=                                                     (3) 

Differentiating equation (2) w.r.t. ‘v’ and (3) w.r.t. ‘u’ we get  

              121212 rrN  −−=                                                                                       (4) 

              211221 rrN  −−=                                                                                       (5) 

Subtracting (5) from (4), we get  

             1221 rr  =                                                                          [as 2112 NN = ]  

Now 1r  and 2r  are not parallel, therefore (6) will hold if  

               01 = ,   02 =  

  i.e.    is constant, being independent of   and v .  

Now if 0 , equation (2) gives  

               11

1
Nr


=   
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Integrating it, aNr +=


1
                                                       [where a is constant]  

or                          Nar


1
)( −=−   

squaring,                1
1

)( 2

2

2 =−=− Nar


  

This shows that the locus of r is a sphere. Hence the surface is spherical.    

Again if 0= , then (2) and (3) gives  

                             01 =N ,       and  02 =N    

This shows that N is constant being independent of   and v . Thus N is a constant vector at any point 

on the surface. Hence the surface is a plane surface.  

7.9 CHECK YOUR PROGRESS 

SA1:  On the surface of revolution cosux = , sinuy = , )(ufs = , what are the  parametric 

curves u =constant, and what are the curve  =constant.  

SA2:  On the right helicoids given by cosux = , sinuy = , cs = , show that  parametric 

curves are circular helices and straight lines.  

SA3:  On the hyperboloid of one sheet 












+

−
=

+

−
=

+

+
=

1
,

1

1
,

1 c

z

b

y

a

x
 . The  parametric 

curves are the generators. What curves are represented by  = ,  and by  =constant.  

SA4:  If   is the angle between the two directions given by  

                                      022 =++ RdvQdudvPdu ,  

 show that          
GPFQER

PRQH

+−

−
=

4
tan

2

 .  

SA5:  If the parametric curves are orthogonal, show that the differential equation of  lines on the 

surface cutting the curves u =constant at a constant angle   is  

                                           
E

G

dv

du
tan= . 
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SA6: Prove that the differential equations of the curves which bisect the angles  between the 

parametric curves are 0=− dvGduE  and 0=+ dvGduE .  

REFERENCES: 

1.  Lipschutz, Martin M. Schaum's outline of differential geometry. McGraw Hill  Professional, 

1969. 

2. Weatherburn, Charles Ernest. Differential geometry of three dimensions. Vol.  Cambridge 

University Press, 2016.                   
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CHAPTER-8 

FUNDAMENTAL FORMS-II  

Objectives: In continuation of the previous chapters in the current chapter the students will learn 

intrinsic and non-intrinsic properties of a surface, Second fundamental form and their geometrical 

meaning, hyperbolic, parabolic, elliptic, and planar, derivative of unit normal, the curvature of a normal 

section in terms of fundamental magnitudes, orthogonal trajectory and its condition, double family of 

curves . 

INTRODUCTION:  

 We recall that a curve in E3 is uniquely determined by two local invariant quantities curvature 

and torsion, as functions of arc length. Similarly, a surface of E3 is uniquely determined by certain local 

invariant quantities called the first and second fundamental forms. 

8.1. Intrinsic and non-intrinsic properties of a surface:  

Any property or formula of a surface which can be deduced from the metric of the vector function 

),( vur  [i.e. without knowing the equation of the surface] is called an intrinsic property. Those 

properties which are not intrinsic are called non-intrinsic properties of the surface.  

8.2. Second fundamental form 

        We now suppose ),( vuxx = is a patch on a surface of class 2 .Then at each point on the patch 

there is a unit normal 
vu

vu

xx

xx
N




= ,which is a function of u and v of class C1 with differential 

dvNduNd vu +=N . Observe in figure 8.1 that Nd is  

 

dN 

N 

Figure 8.1 
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orthogonal to N since it is parallel to the tangent plane of the spherical image of N . This also follows 

from ( ) N.NN.N ddd 2)1(0 === . Thus Nd is a vector parallel to the tangent plane at x as shown in the 

figure 8.1. 

Now consider the quantity ( ) ( )dvdudvdudd vuvu NNxxNx ++−=−  

 ( ) 22 dvdudvdu vvuvvuuu NxNxNxNx −+−−=  

 
22 2 NdvMdudvLdu ++=                                                                                              (8.1) 

where uu Nx −=L , ( )uvvM NxNxu +−=
2

1
, vvN Nx −=                                         

Let ),( vurr =  be the equation of the surface. The quadratic differential form  

                            22 2 NdvdvMduLdu ++    

in du, dv is called the second fundamental form. The quantities L, M, N are called second order 

fundamental magnitudes or fundamental coefficients and are explained as follow:   

 We know 
2

2

11
u


=

r
r ,  21

22

12 r
rr

r =



=




=

uvvu
,   

2

2

22
v


=

r
r   

                  
H

21

21

21 rr

rr

rr
N


=




=                                                                             (8.2) 

where n is the unit normal vector to the surface at the point ),( vurr = . W denotes the resolved parts of 

the vectors 221211 ,, rrr  along the surface normal N by L, M, N respectively thus   

      11.rN=L  ;   12.rN=M  ;  22.rN=N   

      
22

T=−MLN (say)     where 2
T  is not necessarily positive.                          (8.3) 

8.3. Second order magnitudes: The second derivatives of r with respect to u  and v  are denoted by  

          
2

2

11
u


=

r
r ,  

vu 


=

r
r

2

12 ,  
2

2

22
v


=

r
r .  

The fundamental magnitudes of the second order are the resolved parts of these vectors in the direction 

of the normal to the surface. They will be denoted by L, M, N. Thus  

                      11.rn=L  ,  12.rn=M  ,  22.rn=N   

It will be convenient to have a symbol for the quantity
2MLN − . We therefore write,  
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                    22 MLNT −=  

though this quantity is not necessarily positive. We may express L, M, N  in terms of scalar triple 

products of vectors. For  

                         HLH =•=•= 1111211121 ],,[ rnrrrrrr  

Similarly          HMH =•=•= 1212211221 ],,[ rnrrrrrr     

   and                HNH =•=•= 2222212221 ],,[ rnrrrrrr  

It will be shown later that the second order magnitudes are intimately connected with the curvature of 

the surface. We may here observe in passing that they occur in the expression for the length of 

perpendicular to the tangent plane from a point on the surface in the neighborhood of the point of 

connection. Let r be the point of contact, P with parameter values vu, and n the unit normal there. The 

position vector of a neighboring  point ),( dvvduuQ ++  on the surface has the value  

 

                .....)2(
2

1
)( 2

2212
2

1121 ++++++ dvdvdududvdu rrrrrr                                (8.4)  

The length of the perpendicular from Q on the tangent plane at P is the projection of the vector PQ on 

the normal at P, and is therefore equal to  

                  .....)2(
2

1
)( 2

2212
2

1121 +++•++• dvdvdududvdu rrrnrrn               

In this expression, the terms of the first order vanish since n is at right angles to 1r  and 2r . Hence the 

length of the perpendicular as far as terms of the second order is  

P

Q

R

r

rd rr d+

N

Figure 8.2 
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                   )2(
2

1 22 NdvdvMduLdu ++•n
 

 

 

8.4. Geometrical interpretations of Second order magnitudes: Consider the surface represented by  

3

22

21 )( evuveue −++=x
 

Here  31 2ueeu +=x , 32 2veev −=x , 32euu =x , 0=uvx , 32evv −=x ,  

 
vu

vu

xx

xx
N




= = ( ) ( )321

2

1
22 22144 eveuevu ++−++

−
 

Thus the second fundamental coefficients are  

( ) 2

1
22 1442

−
++== vuxL uu N , 0== NuVxM ,  ( ) 2

1
22 1442

−
++−== vuxN vv N  

and the second fundamental form is  

 )2( 22 NdvdvMduLdu ++ = ( ) ( )22
2

1
22 1442 dvduvu −++

−
                           (8.5) 

Suppose P is a point on a surface of class 2 , Q is a point in the neighborhood of P and ),( vuxx = is a 

patch containing P and Q. Let N= PQd be the projection of PQ onto the unit normal N at P, as shown 

in the figure 8.3. Observe that d  is positive or negative depending on whether Q is on one or the other 

side of the tangent plane at P and that d is perpendicular distance from Q to the tangent plane at P. 

Now suppose P and Q are the points ),( vux and ),( dvvduu ++x respectively.  

 

Taylor's theorem gives 

N 

P 

Q 

|d| 

Figure 8.3 
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 ),( dvvduu ++x = ),( vux + xd + x
2

2

1
d + )( 22 vdudo +  

Thus  ( ) NxxN −++== ),(),( vudvvduuPQd  

  = Nvdudodd 







+++ )(

2

1 222
xx  

  = 








+++ )(

2

1 222 vdudodd NxNx                                                           (8.6) 

But 0=Nxd ,since xd is parallel to the tangent plane at P.  Hence 

  







++= )(

2

1 222 vdudodd Nx                                                                      

  







++++= )()2(

2

1 2222 vdudoNdvdvMduLdud                                 (8.7) 

Thus )2( 22 NdvdvMduLdu ++  is the principal part of twice the projection of PQ onto N and 

)2( 22 NdvdvMduLdu ++  is the principal part of twice the perpendicular distance from Q onto the 

tangent plane at P.  

The function )2(
2

1 22 NdvdvMduLdu ++= is called the osculating paraboloid at P. The nature of this 

parboloid determines qualitatively the nature of the surface in the neighborhood of P. We distinguish 

four cases, depending upon the discriminant  
2MLN − . 

8.4.1 Elliptic case: A point is called an elliptic point if 02 − MLN . In this case   as a function of 

duand dv  is an elliptic paraboloid as shown in the figure 8.3. Observe that   maintains the same sign 

for all ),( dvdu . In the neighborhood of an elliptic point the surface lies on one side of the tangent plane 

at the point . 

8.4.2 Hyperbolic case: A point is called a hyperbolic point if 02 − MLN . In this case   as a 

function of ),( dvdu is a hyperbolic paraboloid. Here there are two distinct lines in the tangent plane 

through P which divide the tangent plane into four sections in which   is alternately positive and 

negative. On the two lines, 0= . In the neighborhood of a hyperbolic point the surface lies on both 

sides of the tangent plane as in the figure. 
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8.4.3 Parabolic case: A point is called a parabolic point if 02 =− MLN and 0222 ++ NML , i.e. if 

02 =− MLN and the coefficients ML, and N are not all zero. In this case   as a function of ),( dvdu is 

a parabolic cylinder. Here there is a single line in the tangent plane through P along which 0= , 

otherwise   maintains the same sign. It is to be noted that in the neighborhood of a parabolic point the 

surface itself  may lie on both sides of the tangent plane.  

8.4.4 Planar case: A point is called a planar point if 0=== NML . Here 0=  for all ),( dvdu . In this 

case the degree of contact of the surface and the tangent plane is of higher order than in the preceding 

case. 

Example 8.1 Calculate the fundamental magnitudes for the right helicoids given by  

               cosux = , sinuy = , cz = .  

Solution. With ,u  as parameters, we have  

                       ),sin,cos(  cuu=r ,  

                       )0,sin,(cos1 =r ,  

                       ),cos,sin(2 cuu −=r       

  Therefore  

        12
1 == rE ,   021 =•= rrF ,   222

2 cuG +== r ,   
2222 cuFEGH +=−=  

Since 0=F  the parametric curves are orthogonal. The unit normal to the surface is  

  Hucc
H

/),cos,sin(21  −=


=
rr

n  

Further            )0,0,0(11 =r   

                        )0,cos,sin(12 −=r   

                        )0,sin,cos(22  −−= ur   

So that the second order magnitudes are  

                 0=L ,  
H

c
M −= ,  0=N .   

Example 8.2 On the surface given by )( vuax += ,  )( vuby −= ,  uvz =  the parametric curves are 

straight lines.  
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Solution. Further   ),,(1 vba=r  

                                ),,(2 uba −=r   

and therefore 222 vbaE ++= , uvbaF +−= 22 , 222 ubaG ++=  

                    2222222 )()(4 vubvuabaH ++−+= .  

The unit normal is      Habauavbvbu /)2,,( −−+=n  

Again                      )0,0,0(11 =r ,  

                                )1,0,0(12 =r ,  

                                )0,0,0(22 =r  

And therefore 22222 /4,0,/2,0 HbaMLNTNHabML −=−==−== .  

8.5.  Derivative of unit normal (n). Moreover, means of the fundamental magnitudes, we may 

express the derivatives of n in terms of 1r  and 2r . Such an expression is clearly possible. For, since n is 

a vector of constant length, its first derivatives are perpendicular to n and therefore tangential to the 

surface. They are thus parallel to the plane of 1r  and 2r , and maybe express in terms of these.  

We may proceed as follows. Differentiating the relation 01 =•rn  with respect to u , we obtain  

                        0111 =•+• rnrn   

 and therefore  L−=•=• 11111 rnrn  

In the same manner, we find  

                         M−=•−=• 12121 rnrn      

                         M−=•−=• 2112 rnrn   

                         N−=•−=• 22212 rnrn                                                                  (8.8) 

Now since 1n  is perpendicular to n and therefore tangential to the surface, we may write  

                          211 rrn ba += ,  

 where a and b are to be determined. Forming the scalar products of each side with 1r  and 2r  

successively, we have                            

                           bFaEL +=− ,  

                           bGaFM +=−   
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On solving the equations for a and b, and substituting the values, so obtained in the formula for 1n , we 

find  

                  211
2 )()( rrn EMFLGLFMH −+−=                                                     (8.9) 

Similarly, it may be shown that  

                  212
2 )()( rrn ENFMGMFNH −+−=                                                (8.10) 

                It 1r  and 2r be eliminated in succession from these two equations, we obtain an expression for 

1r  and 2r  in terms of 1n  and 2n . The reader will easily verify that  

                  211
2 )()( nnr FLEMENFMT −+−=  

                212
2 )()( nnn GLFMFNGMT −+−=                                                  (8.11) 

These relations could also be proved independently by the same method as that employed in 

establishing (8.9).  

From the equations (8.9) and (8.10) it follows immediately that  

             2111
2 )})(())({( rrnn −−−−−= GMFNEMFLENFMGLFMH     

                               n
22TH=   

  so that     nnn
2

21 TH =                                                                                     (8.12) 

Thus the scalar triple product  

                   
H

T

H

T 22

21 ],,[ =•= nnnnn .  

And as a further exercise the reader may easily verify the following relations which will be used later: 

                    













−=

−=

−=

−=

GMFNH

FMFNH

GLFMH

FLEMH

],,[

],,[

],,[

],,[

22

12

21

11

rnn

rnn

rnn

rnn

                                                                  (8.13)     

Example 8.3 Calculate the fundamental magnitudes for Monge’s form of the surface ),( yxfz = .  

Solution. Please remember, if ),( yxfz =  is the equation of the surface, then  

                  
x

z
p




= ,  

y

z
q




= ,  

2

2

x

z
r




= ,  

yx

z
s




=

2

,  
2

2

y

z
t




=        
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  Now taking x, y as parameters, we have  

                        )),(,,( yxfyx=r   

                        ),0,1(1 p=r ,  ),1,0(2 q=r ,  ),0,0(11 r=r ,  ),0,0(12 s=r , ),0,0(22 t=r     

  Therefore      2
11 1 pE +=•= rr ,  pqF =•= 21 rr ,  2

22 1 qG +=•= rr  

                      22222222 1)1)(1( qpqpqpFEGH +==++=−= . 

                        Hqp /)1,,(21 −−=


=
H

rr
N  

                      
H

r
L == 11rN ,  

H

s
M == 12rN ,  

H

t
N == 22rN   

               
2

2
22

H

str
MLNT

−
=−= .  

Example 8.4 Calculate the fundamental magnitudes for the right helicoids given by  vux cos= , 

vuy sin= , cvz = .  

Solution.  With vu,  as parameters, we have  

                  ),sin,cos( cvvuvu=r   

If suffixes 1 and 2 represents partial differentiation with respect to u  and v  respectively, we have  

           )0,sin,(cos1 vv=r ,  ),cos,sin(2 cvuvu−=r   

           )0,0,0(11 =r ,  )0,cos,sin(12 vv−=r , )0,sin,cos(22 vuvu −−=r   

      1sincos 222
1 =+== vvE r , 021 == rrF , 222

2 cuG +== r ,  

       
2222 cuFEGH +=−=  

                       
H

uvcvc ),cos,sin(21 −
=


=

H

rr
N  

          011 == rNL ,  
H

c
M == 12rN ,  022 == rNN   

               
2

2
22

H

c
MLNT =−= .  

Since F=0, the parametric curves are orthogonal.   
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Example 8.5 Calculate the fundamental magnitudes for the right helicoids given by  vux cos= , 

vuy sin= , )(vfz = .  

Solution.  With vu,  as parameters, we have  

                  ))(,sin,cos( vfvuvu=r   

           )0,sin,(cos1 vv=r ,  ),cos,sin(2 fvuvu −=r               where, ]/[ dvdff =  

           )0,0,0(11 =r ,  )0,cos,sin(12 vv−=r , ),sin,cos(22 fvuvu −−=r   

where dashes represent differential w.r.t. v 

    1sincos 222
1 =+== vvE r ,  0sincossincos21 =+−== vvuvvuF rr    

       22222222
2 cossin fufvuvuG +=++== r ,  

       222222 0).(1 fufuFEGH +=−+=−=  

                       
H

uvfvf ),cos,sin(21 −
=


=

H

rr
N  

          011 == rNL ,  
H

f
vfvf

H
M


−=+−−== ]0cossin[

1 22
12rN    

         
H

fu
fuvvfuvvfu

H
N


−=++−== ]cossinsincos[

1
22rN   

               
2

2
22

H

f
MLNT


−=−= .  

Since F=0, the parametric curves are orthogonal.  

Example 8.6 Calculate the fundamental magnitudes for the surface of revolution  vux cos= , 

vuy sin= , )(ufz =  with vu,  as parameters. 

Solution.  With vu,  as parameters, we have  

                  ))(,sin,cos( ufvuvu=r   

            ),sin,(cos1 fvv =r ,  )0,cos,sin(2 vuvu−=r      where, [ dudff /= ] 

            ),0,0(11 f =r ,  )0,cos,sin(12 vv−=r , )0,sin,cos(22 vuvu −−=r   

       2
11 1 fE +== rr , 021 == rrF , 2

22 uG == rr ,  

        )1( 2222 fuFEGH +=−=  
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H

ufvufvu ),sin,cos(21 −−
=


=

H

rr
N  

           
H

fu
L


== 11rN ,  012 == rNM ,  

H

fu
N


==

2

22rN   

               
2

3
22

H

ffu
MLNT


=−= .  

Since F=0, the parametric curves are orthogonal.   

Example 8.7 Calculate the fundamental magnitudes and the normal to the surface 

 22 22 byhxyaxz ++=  taking x, y as parameters.  

Solution. The position vector r of a current point on the surface is given by  

            )
2

1

2

1
,,( 22 byhxyaxyx ++=r  

    ),0,1(1 hyax+= r ,   ),1,0(2 byhx+=r  

         ),0,0(11 a=r ; ),0,0(12 h=r ; ),0,0(22 b=r  

                  
H

byhxhyax )1),(),((21 +−+−
=


=

H

rr
N   

      2)(1 hyaxE ++= , ))(( byhxhyaxF ++= , 2)(1 byhxG ++= ,  

       2222 )()(1 byhxhyaxFEGH ++++=−=  

         
H

a
L = ,  

H

h
M = ,  

H

b
N =  , 

2

2
22

H

hab
MLNT

−
=−= .   

Example 8.8 For the paraboloid ),,( 22 vuvu −=r , find the metric.  

Solution. Here, ),,( 22 vuvu −=r  

                  )2,0,1(1 u=r ,  )2,1,0(2 v−=r  

        2
11 41 uE +== rr , uvF 421 −== rr , 2

22 41 vG +== rr   

  Hence the metric 222 2 GdvdvFduEduds ++=  becomes   

                             22222 )41(8)41( dvvdvuvduduuds ++−+=     
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Example 8.9 State the second fundamental form and find it for Monge’s form of the surface ),( yxfz =

.  

Solution. Now proceeding as in example 1(above), we have  

                 HtNHsMHrL /,/,/ ===  

  The second fundamental form namely 

             22 2 NdvdvMduLdu ++   

for the surface ),( yxfz =  is given by  

          22 2
dy

H

t
dxdy

H

s
dx

H

r
++ , where x, y are taken as parameters.  

8.6  Formula for the curvature of a normal section in terms of fundamental  magnitudes.  

Solution. Let n  denote the curvature of the normal section, then n  is positive when the curve is 

concave on the side towards which N points out. Then we know  

                  Nnr
t

nn
ds

d
 =−=                                        [since here n=N]  

              rN = .n                                                                                              (8.14) 

But we know  vu += 21 rrr   

Differentiating this relation w.r.t. ‘s’ we get  

                   v
ds

d
vu

ds

d
u +++= 2

2
1

1

r
r

r
rr   

                       v
ds

dv

vds

du

u
vu

ds

dv

vds

du

u
u 












+




++












+




+= 22

2
11

1

rr
r

rr
r      

                       vvuvuvuu +++++= )()( 2212212111 rrrrrr   

   i.e.           2
2212

2
1121 2 vuvuvu ++++= rrrrrr                                     (8.15) 

Substituting this value of r  in ((8.14)) and using  

   L=11.rN ,  M=12.rN ,  N=22.rN ,  0. 1 =rN ,  0. 2 =rN   

We get  

            
22 2. vNvuMuLn
++== rN    
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  or       
2

22 2

ds

NdvdvduMLdu
n

++
=  ,  

22

22

2

2

GdvdvduFEdu

NdvdvduMLdu
n

++

++
=           (8.16) 

                                                                                    [using first fundamental theorem]  

This gives the curvature of the normal section (usually called normal curvature) parallel to the direction

),( dvdu . Its reciprocal is called the radius of normal curvature and may be denoted by n .      

Now we may define the normal curvature as follows:  

Definition. Let a point P with position vector ),( vur  be on the surface ),( vurr = . The normal 

curvature at P in the directions ),( dvdu  is equal to the curvature at P of the normal section at P parallel 

to the direction ),( dvdu .  

Definition: Let a point P with position vector ),( vur  be on the surface ),( vurr = . Consider a curve 

)(srr =  through the point P laying on the surface. The component of the curvature vector r   along the 

normal to the surface is defined to be the normal curvature of the curve at point P. Therefore rN = .n .  

8.7  Show that the definitions of normal curvature given above are equivalent.   

Proof. Let N be the unit normal vector of the surface at P, then from the second definition  

                              rN = .n                                                                                  (8.17) 

where r   is the curvature vector at P.  

      Again let   be the curvature at P which contains the direction ),( dvdu .  

               Nnr  ==                                                    [ Nn = ] 

                =rN.                                                            [ 1. =NN ]             (8.18) 

                n =                                                                [using (8.17) and (8.18)]  

Hence curvature at P of normal section at P which contains the direction ),( dvdu  is equal to the normal 

curvature at P in the same direction.  

       Thus in the future, the terms ‘normal curvature’ and ‘curvature of normal section’ will represent the 

same thing.  

Note: We have seen 
2

22 2
.

ds

NdvMdudvLdu
n

++
== rN   
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22

2 







+
















+








=

ds

dv
N

ds

dv

ds

du
M

ds

du
L    

Now we know that the curves which have the same direction at the point P have the same value of their 

direction coefficients 








ds

dv

ds

du
,  at P. Also the values of second order fundamental magnitudes L, M, N 

are fixed at P. Hence all curves which have the same direction at P, have a fixed value of rN .  which 

is equal to the normal curvature at P of any one of these curves.  

8.8  Meusnier’s Theorem  

If n  and  are the curvature of the normal and oblique sections through the same tangent line, and   

is the angle between these sections, then the relation between n ,  

 and   is given by  

                               cos=n .  

Proof. Let the section be oblique and its curvature be denoted by  . Since the section is oblique, its n is 

not parallel to N but will be parallel to the unit vector )(/ nrr  =   . If    is the angle of 

inclination of the oblique section with normal section touching the curve at the point under 

consideration, then   is the angle between the normal of two sections i.e. it is the angle between the 

unit vector /r   and N. Thus  

                             /.cos rN =   

                         
22

22

2

)2(1

GdvdvFduEdu

NdvdvduLdu

++

++
=


   

                         


 n=    

       or                       cos=n .                                                                      (8.19) 

Another statement of Meusnier’s theorem  

If   is the angle between the principal normal to the curve on the surface and the surface normal at the 

point P, then   

                                  cos=n    
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where  is the curvature of the curve at P and n  is the normal curvature at P in the direction of the 

curve. 

Proof. Let P be a point ),( vu  on the surface ),( vurr = . Suppose n and N denote the principal normal to 

the curve on the surface and surface normal at P respectively. Since   is the angle between n and N, 

therefore  

                                Nn.cos =                                                                             (8.20) 

Now suppose r   is the curvature vector of the given curve at P. Then  

                                    nr =                                                                               (8.21) 

Taking the scalar product of both sides of (8.21) with N  

                                NnNr .. =      

        or                 cos. = Nr                [using ((8.19))]                                     (8.22)       

The values of Nr .  are fixed for all curves having the same direction at P and by definition, this value  

Nr .  is equal to the normal curvature n  in that direction (3).  

                            cos=n .  

Note: We have  =n  if and only if 0= . Thus the necessary and sufficient condition for the 

curvature of a curve at P to be equal to normal curvature at P in the direction of that curve is that the 

principal normal to the curve is along the surface normal at that point.  

Example 8.10 Establish the formula  

(i)  
)( 2

2

FEG

MLN

vu −

−
=








 nn
.  

(ii)  cos=n .  

where  is the curvature of an oblique section C of a surface, n  is the normal curvature of the surface 

in the direction of C, and   is the angle between the oblique section and the normal section.   

Solution. (i) We are to prove  

                       NNN
)( 2

2

21

FEG

MLN

−

−
=                 

                                                                       [ Nn = , here n being surface normal]    
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             or      NNN
H

T 2

21 = .  

Example 8.11 Find the curvature of a normal section of the right helicoids vux cos= , vuy sin= , 

cvz = .   

Solution. For the right helicoid given in the problem  

                 0,,0;,0,1 22 =−==+=== N
H

c
MLvuGFE   

The curvature of the normal section n  is given by  

                          
22

22

2

2

GdvdvFduEdu

NdvdvMduLdu
n

++

++
=   

                               
])([

2
2222 dvvuduH

dvcdu

+++

−
=     [ parameters being u and v ]      

Example 8.12 Find the curvature of a normal section of a helicoids 

            vux cos= , vuy sin= , cvufz += )( .   

Solution.  Proceed as in example 8.11.  

Example 8.13 Show that the curvature  at any point P of the curve of intersection of two surfaces is 

given by  

                      cos2sin 21
2
2

2
1

22 −+=    

where  21,  are the normal curvature of the surfaces in the direction of the curve at P and   is the 

angle between their normals at that point.   

Solution. Let N and N  be the unit normals to the two surfaces at a point P of the curve, then as given in 

the question  

                       NN •=cos                                                                                        (1) 

Let P(r) be the point on the curve of intersection of two surfaces, then  

                          nr
t

==
ds

d
                                                                                    (2) 

The vectors N, N , r   all are coplanar as they are perpendicular to the vector t and hence they are 

expressible as a linear combination of the form  
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                           NNr ba +=                                                                                    (3) 

Taking the scalar product of (3) with N and N  using equation (1), we have  

                           cos1 ba +=  ,  ba +=  cos2         

                                                                         [ using 21,  =•=• rNrN  ]    

Solving for a and b, we get  

                    2
21 sin/)cos( −=a ,      2

12 sin/)cos( −=b     

Substituting these values in equation (3), we get  

                  NNr )cos()cos(sin 1221
2  −+−=   

  or        NNn )cos()cos(sin 1221
2  −+−=                         [using (2)]  

Hence, on squaring we get  

             
)cos)(cos(2

)cos()cos(sin

1221

2
12

2
21

42





−−+

−+−=
   

                            




cos]coscos)([2

cos4)cos1)((

2
21

2
2

2
121

21
22

2
2
1

++−+

−++=
 

                            )cos1(cos2)cos2cos1)(( 2
21

222
2

2
1  −−−++=  

                             2
21

22
2

2
1 sincos2sin)( −+=  

         i.e.       cos2)(sin 21
2
2

2
1

22 −+= .  

Example 8.14 Show that the normal to the surface  

     uvzvuyvux =−=+= ,2/)(,2/)(   at a point ),( vu  is described by the unit vector  

                           
)1(2

)2,,(

)1(

)1,,(
2222 vu

vuvu

yx

yxf

++

−−+
=

++

−−
=n   

Also, evaluate curvature at the origin for the normal section in any direction ),( dvdu  and show that the 

curvature is zero for the normal sections which have the same tangents at the parametric curves through 

the origin.  

Solution. The equation of the surface with parameters ),( vu  is given by  
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                       






 −+
= uv

vuvu
,

2
,

2
r    

                       







= v,

2

1
,

2

1
1r  ,   







 −
= u,

2

1
,

2

1
2r      

                )0,0,0(),1,0,0(),0,0,0( 221211 === rrr      

                 22
221

22
1 1,,1 uGuvFvE +===•=+== rrrr    

  and         222 1 vuH ++=  

    ( unit normal to the surface)= H/)( 21 rr    

                         
)1(

)1,,(

)1(2

)2,,(

2222 yx

yx

vu

vuvu

++

−−
=

++

−−+
=r   

            0. 11 == rnL , 
22

12

1

1
.

vu
M

++

−
== rn , 0. 22 == rnN  

      The curvature of the normal section is given by  

           
22

22

2

2

GdvdvFduEdu

NdvdvMduLdu
n

++

++
=    

           
)1(])1(2)1[(

2

222222 vudvudvduuvduv

dvdu
n

++++++

−
= .  

8.9  Orthogonal Trajectories  

Definition: For any given family of curves on a surface here always exist a second family, called the 

orthogonal trajectories, and is such that at every point of the two curves, one from each family, are 

orthogonal.  

Theorem 8.1 To find the differential equation of the orthogonal trajectories and to show that every 

family of curves on a surface possesses orthogonal trajectories.  

Solution. Let ),( vu=r                                                                                                (1) 

be the equation of the surface.  

Again let       cvu == ),(                                                                                           (2) 
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be the equation of the given family of curves on (1). Hence   has continuous derivatives 1  and 2  

which do not vanish together.  

From (2), we have  

                      021 =+ dvdu                                                                                       (3) 

Let (3) be equivalent to  

                      0=+QdvPdu                                                                                        (4) 

                  1=P , 2=Q , 0    

Also            
P

Q

dv

du −
=

−
=

1

2




   

  or              
P

dv

Q

du
=

−
                                                                                                 (5) 

Therefore (-Q, P) is the direction ratios of the tangent at any point ),( vu  of a member of the family (2).  

Let the direction ratios of the tangent at ),( vu  of a member of the orthogonal trajectories of (2) be 

denoted by ),( vu  . ),( dvdu  and ),( vu   are orthogonal if   

                 0)( =+++ vGdvudvvduFuduE    

Using (5), it becomes  

                 0)()( =++−+− vGPuPvQFuQE   

 or             0)()( =−+− vFQGPuQEFP                                                              (6) 

which is the required differential equation of the orthogonal trajectories of the family of curves (2).  

         Since )( 2FEG − is always positive and P and Q do not vanish together, therefore the coefficients 

of u  and v  in (6) are continuous. Hence (6) is integrable. Let the solution of (6) be  

          kvuf =),((                                                                                                        (7) 

which is the equation of the orthogonal trajectories of the family of curves (2). This shows that ‘every 

family of curves on a surface possesses orthogonal trajectories’.  

Theorem 8.2 For a surface, parameters can always be chosen so that the curves of a given family and 

their orthogonal trajectories become parametric curves.  
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Solution. Firstly proceed up to equation (7) of the above theorem (1). Now differentiating (7), the 

differential equation of orthogonal trajectories is  

                                   021 =+ vfuf                                                                         (8) 

Relation (6) and (8) are equivalent. Therefore 1_ fEQFP =  and 2fFQGP =−  , where   is a 

function of u and v, and does not vanish.  

  Now                 
FQGPEQFP

QP

v

f

u

f

vu

vu

f

−
=

















=




_

1

),(

),(






 

                                        0)2(
1 22 +−= GPFPQEQ


  

             is independent of  f.  

Since 22 2 GPFPQEQ +−  is positive definite and P and Q do not vanish together. Thus the proper 

transformation ),( vuU = , ),( vufv = transforms the given family of curves and their orthogonal 

trajectories into the two families of parametric curves.  

8.10   Double family of curves. 

The quadratic differential equation of the form  

                    02 22 =++ RdvQdudvPdu                                                                     (1) 

Where P, Q, R are continuous functions of u and v and do not vanish together, representing two families 

of curves on the surface provided 02 − PRQ . The equation (1) may be written as   

                      02

2

=+







+








R

dv

du
Q

dv

du
P    

This is a quadratic equation in
dv

du
 and by solving this equation as a quadratic in

dv

du
, the separate 

differential equations for the two families are determined.    

8.10.1  Condition for orthogonality  

To find the condition that the quadratic differential equation (1) represents orthogonal families of curves 

or two orthogonal directions on the surface.  

        The differential equation of the family of curves is  
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                         02 22 =++ RdvQdudvPdu    

Let the two directions be 
dv

du
 and 

v

u




   

Hence        
P

R

v

u

dv

du

P

Q

v

u

dv

du
=




−=




+ ,

2
  

   or           
P

R

vdv

udu

P

Q

vdv

udvvdu
=




−=



+
,

2
   

if these directions are orthogonal, substituting the above values in equation (4), we get  

               0)( =+++ vGdvudvvduFuduE  

i.e.          02 =+− GPFQER         

Hence the two directions (or two families) given by 02 22 =++ RdvQdudvPdu , are orthogonal if and 

only if  

               02 =+− GPFQER                                                                                      (2) 

If P=0, R=0 the given differential equation (1) reduces to dudv=0, giving the two families of parametric 

curves and the condition (2) of orthogonality reduces to F=0.  

Example 8.15 Show that if   is the angle at the point ),( vu  between the two directions given by 

02 22 =++ RdvQdudvPdu , then  

              
GPFQER

PRQH

+−

−
=

2

)(2
tan

2/12

 .  

Hence or otherwise find the condition that the two directions are orthogonal.  

Solution. We have  

                          
P

R

v

u

dv

du

P

Q

v

u

dv

du
=




−=




+ ,

2
  

  and         
vGdvudvvduFvEdu

Hudvvdu

+++

−
=

)(
tan   

  i.e.          

G
v

u

dv

du
F

vdv

vdu
E

H
v

u

dv

du

+











++








−

=tan      
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G
P

FQ

P

R
E

H
vdv

vdu

v

u

dv

du

+−













−












−

=

2

4

2/1

                                        [from (1)]  

                         
GPFQER

PRQH

+−

−
=

2

][2 2/12

.         

The two directions are orthogonal if 
2

1
=  i.e. the condition is  

                          02 =+− GPFQER .  

Example 8.16 Find the tangent of the angle between the two directions on the surface determined by 

the quadratic  

                             022 =++ RdvQdudvPdu  

Hence the condition that the two directions are orthogonal is                 

                                0=+− GPFQER .  

Example 8.17 Show that the curves bisecting the angles between the parametric curves are given by  

                              022 =−GdvEdu .  

Solution. If   is the angle between two curves, then  

                          
sds

vGdvudvuduFuEdu



+++
=

)(
cos    

Let ),( vu   refer to the parametric curves and ),( dvdu  the required curves. 

If 1  is the angle between the parametric curve v=constant and bisecting curve of direction ),( dvdu .  

                         
sdsE

uFdvuEdu



+
=1cos  

Similarly, If 2  is the angle between the parametric curve u=constant and bisecting curve of direction

),( dvdu .  

                         
sdsG

vGdvvFdu



+
=2cos   

If parametric curves are orthogonal F=0, and we must have 21  =  i.e. 21 coscos  =  .  
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           i.e.      
vdsG

vGdv

udsE

uEdu




=




  or      0=− dvGduE    

the curve orthogonal to 0=− dvGduE  will also bisect one pair of angles between the orthogonal 

curves. The orthogonal curve is  

                                0=− dvGduE    

Hence the required curves are given by the differential equation  

                                0== dvGduE .  

Example 8.18 Show that the curves  

                             0)( 2222 =+− dvaudu   

form an orthogonal system on the right helicoids ),sin,cos( avvuvu=r .  

Solution. The equation of the given right helicoids is  

                            ),sin,cos( avvuvu=r    

                         22,0,1 auGFE +===    

We know that the two families of curves given by the quadratic differential equation   

          02 22 =++ RdvQdudvPdu                                                                               (1) 

Form an orthogonal system if and only if  

         02 =+− GPFQER                                                                                            (2) 

  Therefore comparing (1), with the given family of curves  

          0)( 2222 =+− dvaudu                                                                                      (3) 

We have     )(,0,1 22 auRQP +−===    

      01).(0.0.2)](.[12 2222 =++−+−=+− auauGPFQER   

Hence condition (2) is satisfied for equation (3). Therefore the curves are given by (3) form an 

orthogonal system on the given surface.  

 

 

Example 8.19 The metric of a surface is  

                 
2222 dvuduv + .   
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Find the equation of the family of curves orthogonal to the curves uv=constant, and find the metric 

referred to new parameters so that these two families are parametric.  

Solution. The metric of the surface is  

                   22222 dsdvuduv =+                                                                                 (1) 

     Comparing (1) with the metric  

                    222 2 dsGdvdvFduduE =++    

We get        22 ,0, uGFvE ===     

The equation of the given family of the curves is  

                       uv=constant                                                                                           (2) 

  i.e.  differential equation of (2) is  

                      0=+udvvdu                                                                                         (3) 

Comparing (3) with 0=+QdvPdu  

    We get      uQvP == ,     

Hence orthogonal trajectories of (3) are  

              0).0().0( 22 =−+− vuvuuuvv     

 or             022 =+− vvuuuv         or       0=


−


v

v

u

u
   

On integrating, we get     

                  
v

u
log =constant.  

    i.e.  
v

u
=constant.                                                                                                      (4) 

Equation (4) gives the required orthogonal trajectory.  

Second Part. Now the two families are (i) the given family of curves which is given by uv=constant, 

and (ii) their orthogonal trajectories which are given by 
v

u
=constant.  

If these two families are taken as parametric curves, then the new parameters vu , are given by  

                                uvv
v

u
u == ,                                                                           (5) 
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Solving for vu, , we get  

                               uvvvuu == /; 22 .  

        
u

v

v

u
v

v

u
u

2
2


=




=




  

Similarly   
22

,
2 uv

v

u

v

u

u

v

u


−=




=




          

         
uvv

v


=





2

1
   

  
vu

v

u

v

u

v

vu

u

uu 2211
22 


−


=








+







=




= rr

rrr
r    

  
uvu

u

v

v

vv

u

uv 
+


=








+







=




=

2

1

2
212 rr

rrr
r    

Now we shall calculate the new coefficients GFE  ,,   

  











−














−


== 22122111

22
.

22
. rrrrrr

uv

v

u

v

uv

v

u

v
E   

      
2
242

2

212

2
2

12

2

4
.

24
rrrr

uv

v

uuv

v

u

v




+




−


=    

      G
uv

v
E

u

v
42

2

2

2

44 


+


=                                                         ]0.[ 21 == Frr   

     
42

22

2

22

44 uv

uv

u

vv




+


=   

     
2

2

2

2

4

1

4

1

u

v

u

v




+




=                                                                               [using (5)]   

  0=F  as new parametric curves are also orthogonal  

     









+


•









+


=•= 212122

2

1

22

1

2
rrrrrr

uvu

u

uvu

u
G   

         G
uv

E
u

u
422

2

4

1

4 
+


=                                                         ]0.[ 21 == Frr   
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22

2

2

22

44 uv

u

u

vu


+


=   

         
2

1

4

1

4

1
=+=                                                                               [using (5)]   

Hence the metric referred to new parameters vu , is given by  

      222 2 vdGvdudFudEsd ++=     

             
22

2

2

2

1

2

1
vdud

u

v
+




=    

In general  

        
22

2

2
2

2

1

2

1
dvdu

u

v
ds += .  

Example 8.20 Show that the parametric curves on the sphere given by  

           uazvuyvuax cos,sinsin,cossin ===  form an orthogonal system. Determine the two 

families of curves that meet the curves v=constant at angles 
4

1
 and 

4

3
.  

Solution. The equation of the given sphere is  

                     )cos,sinsin,cos(sin uvuvua=r                                                            (1) 

                    )sin,sincos,cos(cos1 uvuvua −=r    

                    )0,cossin,sinsin(2 vuvua −=r   

We have uaGFaE 222
221

22
1 sin,0., rrrr =====          

Here F=0, therefore the parametric curves on the sphere (1) are orthogonal.  

Now    
22 FEGH −=  gives  

            uaH 242 sin=    i.e.          uaH sin2= .  

The direction ratios of the curve v=constant are (1, 0).  

Let the direction ),( dvdu  make an angle 
4

1
 with the direction (1, 0), we have  

and         
vGdvudvvduFvEdu

Hudvvdu

+++

−
=

)(
tan                                                   (2)     
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           
0.01.

sin1.0.

4
tan

22

2

dvadua

uadvdu

++

−
=


    

or                      
dua

dvua
2

2 .sin
=            or   dvduuec =cos  

on integrating,     cvu log
2

1
tanlog +=    

  or       vceu =
2

1
tan                     cuev =

2

1
tan                                                      (3) 

     family of curves which makes an angle 
4

1
 with the curve v=constant is given by (3).  

   using formula (2), we get  

                       
dua

udva
2

2 sin

4
tan =


    or             

du

udvsin
1=−    

   or      dvduuec =− cos     

   On integrating, we get                                

                    cvu log
2

1
tanlog −=−       

  or                vcu −= log
2

1
tanlog     

  or               vceu −=
2

1
tan             or          cue v =−

2

1
tan    

This is the equation of the family of curves making an angle  
4

3
 with the curve v=constant.  

Example 8.21 A helicoid is generated by the screw motion of a straight line that meets the axes at an 

angle . Find the orthogonal trajectories of the generators. Find also the metric of the surface referred 

to the generators and their orthogonal trajectories as parametric curves.  

Solution. The equation of the surface is given by  

                  )cos,sinsin,cossin( avuvuvu += r   

where vu,  are parameters and take all real values.  

                           )cos,sinsin,cos(sin1  vv=r   
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                              ),cossin,sinsin(2 avuvu −=r    

Hence,                    222 sin,cos,1 uaGaFE +===   

The generators are given by v=constant and have direction ratios (1, 0). If the direction ),( dvdu  is 

orthogonal to (1, 0), we have  

                             0cos..0 =+=+ dvadueiFdvEdu    

On integrating, the orthogonal trajectories of the generators are given by  

                                cosavu + =constant.  

To examines these trajectories, we note that u=0 for some values of v on every curve, so that every 

trajectory meets the axes of helicoids. There is no loss of generality, by taking the intersection, of a 

particular curve with the axes at the origin. Then cosavcu −=  and the curve is given by  

                  vvvvvva ;)sin,sincos,coscos(sin  −−=r  being parameter. The parametric equations 

to the curve are  

                   2sin,sincossin,coscossin avzvavyvavx =−=−=                      

We clearly see that this curve is the intersection of the cone 2222 cotzyx =+  and the cylinder whose 

cross-section by the xy-plane is the spiral  2sin
2

a
r = .  

                  [  cossincos)cos(cos 2 avuatavavavavuz −==+−=+= ]                        

 Now let us consider a transformation  

         vvavuu =+= ,cos  

which takes the generators and their orthogonal trajectories into parametric curves. The metric (with E, 

F, G as coefficients find above) is  

                  222222 )sin(cos2 dvuadudvaduds  +++=   

                         22222 )(sin)cos( dvuadvadu +++=     

with the above transformation, the metric become  

                   222222 })cos({sin vdvauaudsd −++=     

And thus the new coefficients are  

             })cos({sin,0,1 2222  vauaGFE −+=== .  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  239 | 

 

Example 8.22 A helicoid is generated by the screw motion of a straight line that meets the axes at an 

angle  . Find the orthogonal trajectories of the generators. Find also E, F, G of the surface referred to 

the generators and their orthogonal trajectories as parametric curves.  

Example 8.23 On the paraboloid zyx =− 22 , find the orthogonal trajectories of the section by the 

planes z-constant.  

Solution. Let vyux == ,  so that zvu =− 22 .  

         Equation of the paraboloid may be written in vector form as  

                       ),,( 22 vuvu −=r  so that given curves are zvu =− 22 .   

                       )2,0,1(1 u=r ; )2,1,0(2 v−=r   

                      22 41,4,41 vGuvFuE +=−=+=                                                (1) 

But the differential equations of the given curves are  

                     
u

dv

v

du
vdvudu ==− 0 .                                                   (2) 

Thus the tangent at ),( vu  has the direction ratios ),( uv . We also note that uP =  and vQ −=  vanish 

together at the origin, this point must be excluded.  

Let ),( dvdu  be orthogonal to the direction ),( uv , we have  

                      0)( =+++ GudvudvvduFEvdu                                                           (3) 

Substituting values from (1) in (3), we get  

                       0=+udvvdu           

Integrating yield uv =constant, giving the orthogonal trajectories. Therefore they are the sections of the 

paraboloid by the hyperbolic cylinders xy =constants.  

Example 8.24 Show that on a right helicoid, the family of curves orthogonal to the curves vu cos

=constant is the family vau 222 sin)( + =constant.  

Solution. Let the equation of right helicoids be  

                        ),sin,cos( avvuvu=r             

then          22,0,1 auGFE +===                                  

    The family of given curves is  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  240 | 

 

vu cos =constant                            i.e.           0sincos =− vdvuvdu .  

Hence the direction ratios of the tangent to the curve at the point ),( vu  is )cos,sin( vvu . Let the 

required family of orthogonal curves be in the direction ),( dvdu . Hence for orthogonality of 

)cos,sin( vvu  and ),( dvdu , we have  

                      0cos)cossin(sin =+++ dvvGvdvduvuFduvEu  

  or                   0cos)(sin 22 =++ dvvvuduvu   

  or                   0
sin

cos22
22

=+
+ v

vdv

vu

udu
 

integrating,   vvu sinlog2)log( 22 ++ =constant.  

Which is the required family of orthogonal curves. 

 

 

  

8.11 CHECK YOUR PROGRESS 

SA1:  On the right helicoids given by cvzvuyvux === ,sin,cos . Show that  the parametric 

curves are circular helices and straight lines.  

SA2:  On the surface generated by the binomials of a twisted curve, show that the  position 

vector R of the current point may be expressed as brR u+= , where  r and b are the functions of 

s. Taking u, s as parameters, show that  

                22222 1,1,0,1 uHuGFE  +=+=== , Hu /)( tnN +=   

                 HuuNHML /)(,/,0 222  −+=−== , where n is the unit  principal normal to 

the curve.  

SA3:  If  is the angle between the two directions given by  

                     02 22 =++ RdvQdudvPdu    

 Show that    
GPFQER

PRQH

+−

−
=

)4(
tan

2

 .  

  Hence show that the two directions will be orthogonal if 0=+− GPFQER .  
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SA4:  Show that the differential equation of the orthogonal trajectories of the family  of curves 

given by 0=+QdvPdu  is 0)()( =−+− dvGPFQduFPEQ .  

SA5:  Show that the parametric curves are orthogonal on the surface given by  

            })(log{,sin,cos 22 cuuczvuyvux −+=== .                   

SA6: Obtain the formula 
22

22

2

2

GdvdvFduEdu

NdvdvMduLdu
n

++

++
= for the curvature of the  normal section of the 

surface and deduce Meusnier’s theorem.  

SA7:  Define direction coefficient on a surface and obtain formulae for sine and  cosine of the angle 

between two directions.  

SA8:  Define the normal curvature. State and prove Meusnier’s theorem.  
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CHAPTER-9 

CURVES CONCERNING GEODESICS-I  

Objectives: In continuation of the previous chapters in the current chapter the students will learn 

about principal directions, Joachimsthal’s theorem, First and second curvatures, Euler’s Theorem, 

Dupin’s indicatrix, Surface in Monge’s form, Surface of revolution, Conjugate directions, Conjugate 

systems, Asymptotic lines, Curvature and torsion, Isometric Parameters, Gauss’s formulae for 

221211 ,, rrr , Gauss characteristic equation, Mainardi-Codazzi relation. 

9.1. Principal directions: Normals at consecutive points of a surface do not intersect; but at any 

point P there are two directions on the surface, at a right angle to each other, such that the normal at a 

consecutive point in either of these directions meets the normal at P. These are called principal 

directions at P. To prove this property, let r be the position vector of P and n the unit normal there. Let 

rr d+ be a consecutive point in the direction du, dv, and nn d+  the unit normal at this point. The 

normals will intersect if n, nn d+  and rd are coplanar, that is to say, if n, nd , rd are coplanar. This 

will be so if their scalar triple product vanishes, so that   

                                 0],,[ =rnn dd                                                                            (9.1) 

This condition may be expanded in terms of du, dv. For  

                                 dvdud 21 nnn +=   

                                 dvdud 21 rrr +=    

and the substitution of these values in (9.1), gives  

               0],,[]},,[],,{[],,[ 2
221221

2
11 =+++ dvdudvdu rnnrnnrnnrnn      

which, is equivalent to  

                0)()()( 22 =−+−+− dvGMFNdudvGLENduFLEM                           (9.2) 

This equation gives values of the ratio dvdu : , and therefore two directions on the surface for which the 

required property holds. And these two directions are at right angles, for they satisfy the condition of 

orthogonality.  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  243 | 

 

 It follows from the above that, displacement in a principal direction, nd is parallel to rd . For 

rd is perpendicular to n, and nd is also perpendicular to n since n is a unit vector. But these three 

vectors are coplanar, and therefore nd is parallel to rd . Thus, a principal direction n  is parallel to r , 

the dash denoting arc-rate of change.  

 A curve drawn on the surface, and possessing the property that the normals to the surface at 

consecutive points intersect, is called a line of curvature. It follows from the above that the direction of 

a line of curvature at any point is a principal direction at that point. Through each point on the surface 

pass two lines of curvature cutting each other at right angles, and on the surface, there are two systems 

of lines of curvature whose differential equation is (9.2).  The point of intersection of consecutive 

normals along a line of curvature at P is called a center of curvature of the surface and its distance from 

P, measured in the direction of the unit normal n, is called a (principal) radius of curvature of the 

surface. The reciprocal of a principal radius of curvature is called a principal curvature. Thus at each 

point of the surface, there are two principal curvatures a and b , and these are the normal curvatures 

of the surface in the directions of the lines of curvature. They must not be confused with the curvatures 

of the lines of curvature. The principal normal of a line of curvature is not in general the normal to the 

surface. In other words, the osculating plane of a line of curvature does not, as a rule, give a normal 

section of the surface, but the curvature of a line of curvature is connected with the corresponding 

principal curvature as in Meunier’s theorem.  

  The principal radii of curvature will be denoted by  , . As these are the reciprocals of the 

principal curvature, we have  

               1=a , 1=b   

Those portions of the surface on which the two principal curvatures have the same sign are said to be 

synclastic. The surface of a sphere or an ellipsoid is synclastic. The surface of a hyperbolic paraboloid is 

anticlastic. The surface of a hyperbolic paraboloid is anticlastic at all points.  

 At any point of a surface, there are two centers of curvature, one for each principal direction. 

Both lie on the normal to the surface, for they are the centers of curvature of normal sections tangential 

to the lines of curvature. The locus of the centers of curvatures is a surface called the surface of centers, 

or the Centro-surface. It consists of two branches, one corresponding to each system of lines of 

curvature. The properties of the Centro-surface will be examined in a later chapter.  
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Theorem 1. Joachimsthal’s theorem. If the curves of the intersection of two surfaces are a line of 

curvature on both, the surfaces cut at a constant angle. Conversely, if two surfaces cut at a constant 

angle, and the curve of intersection is a line of curvature on one of them, it is a line of curvature on the 

other also.  

Solution. Let t be the unit tangent to the curve of intersection, and nn, the unit normals at the same 

point to the two surfaces. Then t is perpendicular to n and n , and therefore parallel to nn . Further, if 

the curve is a line of curvature on both surfaces, t is parallel to n  and n  , the dashes are usual denoting 

arc-rate of change. Let   be the inclination of the two normals.  

Then nn•=cos , and  

                                   nnnn •+•=cos
ds

d
.  

Put each of these terms vanishes because n  and n   are both parallel to t. Thus cos    

is constant, and the surfaces are cut at a constant angle.  

 Similarly if   is constant, and the curve is a line of curvature on the first surface, all the terms of 

the above equation disappear except the last. Hence this must vanish also, showing that n  is 

perpendicular to n . But it is also perpendicular to n , because n  is a unit vector. Thus n   is parallel to 

nn  and therefore also for t. The curve of intersection is thus a line of curvature on the second surface 

also.  

9.2. First and second curvatures: To determine the principal curvatures at any point, we may 

proceed as follows. Let r be the position vector of the point, n the unit normal, and   a principal radius 

of curvature. Then the corresponding center of curvature is nr + . For an infinitesimal displacement of 

the point along the line of curvature, we have therefore  

                       dddd nnrs ++= )( .  

The vector in brackets is tangential to the surface, and consequently since sd has the direction of n.  

                         nr dd +=0                                                                                     (9.3) 

or, if   is the corresponding principal curvature,  

                          nr dd += 0                                                                                 (9.3 ) 
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This is the vector equivalent of Rodrigue's formula. It is of very great importance. Inserting the values 

of the differentials in terms of duand dv , we may write it  

                          0)()( 2211 =+++ dvdu nrnr    

Forming the scalar products of this with 1r  and 2r successively, we have  

                




=−+−

=−+−

0)()(

0)()(

dvNGduMF

dvMFduLE




                                                                (9.4) 

These two equations determine the principal curvatures and the directions of the lines of curvatures. 

   or         ,)())(( 2MFNGLE −=−−                 

               0)2( 222 =++−− TGLFMENH                                                         (9.5) 

A quadratic, giving two values of   as required.  

 The first curvature of the surface at any point may be defined as the sum of the principal 

curvatures. We will denote it by J.  

Thus                  baJ  += .  

Being the sum of the roots of the quadratic (9.5), it is given by  

                       )2(
1

2
GLFMEN

H
J +−=                                                                 (9.6) 

The second curvature or specific curvature, of the surface at any point is the product of the principal 

curvatures. It is also called the Gauss curvature and is denoted by K. It is equal to the product of the 

roots of (9.5), so that  

                         
2

2

H

T
K ba ==                                                                                (9.7) 

when the principal curvatures have been determined from (9.5), the direction of the lines of curvatures 

is given by either of the equation (9.4). Thus corresponding to the principal curvature a , the principal 

direction is given by  

                        








−

−
−=

LE

MF

dv

du

a

a




or  









−

−
−

MF

NG

a

a




,  

similarly for the other principal direction.  
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 The directions of the lines of the curvature may, of course, be found independently by 

eliminating   from the equation (9.4). This leads to  

                   0)()()( 22 =−+−+− dvGMFNdudvGLENduFLEM                        (9.8) 

The same equation as (9.2) was found by a differential method. It may be remarked that this is also the 

equation giving the directions of maximum and minimum normal curvature at the point. For, the value 

of normal curvature, being  

                                       






++

++
=

22

22

2

2

GdvFdudvEdu

NdvMdudvLdu
n                                          (9.9) 

Some writers call J the mean curvature and K the total curvature. On this question, Is a function of the 

ratio of dvdu: , and if its derivative with respect to this ratio is equated to zero, we obtain the same 

equation (9.8) as before. Thus the principal directions at a point are the directions of greatest and least 

normal curvature.  

 The equation (9.8) however, fails to determine these directions when the coefficients vanish 

identically, that is to say, when  

                                     NMLGFE :::: =                                                           (9.10) 

In this case, the normal curvature, as determined by (9.9), is independent of the ratio dvdu: , and 

therefore has the same value for all, directions through the point. Such a point is called an umbilic on 

the surface.  

If the amplitude of normal curvature, A, and the mean normal curvature, B, is defined by  

                               )(
2

1
),(

2

1
abab BA  +=−=                                     (9.11) 

It follows that  

                                 ABAB ba +=−=  ,                                         (9.12) 

Hence the second curvature may be expressed as  

                                                      22 ABK −= .  

We may also mention in passing that when the first curvature vanishes at all points; the surface is called 

a minimal surface. The properties of such surfaces will be examined in a later chapter.  
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Example 9.1 Find the principal curvatures and the lines of curvature on the right  helicoids 

 czuyux === ,sin,cos .  

Solution. The fundamental magnitudes for this surface are  

                    22222 ,,0,1 cuHcuGFE +=+===   

                     
2

2
2,0,,0

H

c
TN

H

c
ML −==−== .  

The formula (9.5) for the principal curvatures then becomes  

                       0)( 2222 =−+ ccu     

Whence           
22 cu

c

+
= .  

The first curvature is, therefore, zero so that the surface is minimal.  

The second curvature is 
222

2

)( cu

c

+
−=  

The differential equation for lines of curvature becomes  

                           0)( 2222 =++− cdcucdu ,  

that is                    
22 cu

du
d

+
= .  

Example 9.2 Find the principal directions and the principal curvatures on the surface  

                     uvzvubyvuax =−=+= ),(),( .  

Solution. We know that  

                        22222222 ,, ubaGuvbaFvba ++=+−=++ ,  

                         2222222 )()(4 vubvuabaH ++−+=    

and also            
2

22
2 4

,0,
2

,0
H

ba
TN

H

ab
ML −==−== .   

The differential equation for the lines of curvature therefore gives  

                          0)()( 22222222 =++−++ dvubaduvba   
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  or                       
)()( 222222 vba

dv

uba

du

++
=

++
.  

The equation for the principal curvatures becomes  

                         04)(4 222224 =−+−− bauvbaabHH    

So the specific curvature is 
4

224

H

ba
K −=  and the first curvature is  

                           322 /)(4 HuvbaabJ +−= .          

Example 9.3 Find the principal curvatures etc. on the surface generated by the  binormals of a 

twisted curve.  

Solution. The position vector of the current point on the surface may be expressed  

                     brR u+= ,  

where r and b are functions of the arc-length s. Taking su, as parameters, and using dashes as usual to 

denote s-derivatives of quantities belonging to the curve, we have  

                   ntRbR u−== 21 , ,  

where n is the unit principal normal to the curve. Hence  

                  22222 1,1,0,1 uHuGFE  +=+=== ,  

And the unit normal to the surface is  

                    
H

u

H

tnRR
n

+
=


= 21 .   

 Further      nRR −== 1211 ,0 ,  

                   )()(22 btnR  −+−= uu ,  

and therefore   
H

ML


−== ,0 ,  

                   
2

2
222 ,/)(

H
THuuN


 −=−+=  

The equation for principal radii of curvature then becomes 

                    0)(1)1( 222222222 =−−++−+  uuuu   

The Gauss curvature is therefore  
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222

2

)1( u
K





+
−= ,  

and the first curvature  

                     
2/322

22

)1( u

uu
J





+

−+
−= .  

For points on the given curve, 0=u . At such points the Gauss curvature is 2− , and the first curvature 

is  .  

The differential equation of the lines of curvature reduces to  

                 0)1()( 222222 =+−−+− dsududsuudu  .  

9.3. Euler’s Theorem: It is sometimes convenient to refer to the surface to its lines of curvature as 

parametric curves. If this is done the differential equation (9.2) for the lines of curvature becomes 

identical to the differential equation of the parametric curve, that is  

                                    0=dudv .  

Hence we must have  

                           0,0 =−=− GMFNFLEM ,  

and                                 0−GLEN .  

From the first two relations, it follows that  

                                     




=−

=−

0)(

0)(

FGLEn

MGLEN
,  

And therefore, since the coefficient of F and M does not vanish.  

                       0,0 == MF                                                                                 (9.13) 

These are the necessary and sufficient conditions that the parametric curves be lines of curvature. The 

condition 0=F  is that of orthogonality satisfied by all lines of curvature. The significance of the 

conditions 0=M will appear shortly.  

 We may now prove Euler’s theorem, expressing the normal curvature in any direction in terms 

of the principal curvatures at the point. Let the lines of curvature be taken as parametric curves, that 

0==MF . The principal curvature a  being the normal curvature for the direction 0=dv  is by (9.9)  
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                                ELa /= ,  

Similarly, the principal curvature for the direction 0=du  is  

                                GNb /= .  

Consider a normal section of the surface in the direction dvdu, having an angle   with the principal 

direction 0=dv . Since 0=F we have  

                                
ds

du
E=cos ,  

                                
ds

dv
G=sin .   

The curvature n  of this normal section is (9.9)  

                           

22









+








=

ds

dv
N

ds

du
Ln   

                                  22 sincos
G

N

E

L
+=  

that is                   22 sincos ban +=                                                          (9.14) 

this is Euler’s theorem on normal curvature. An immediate and important consequence is the theorem, 

associated with the name Dupin, that the sum of the normal curvatures in two directions right angle is 

constant and equal to the sum of the principal curvature.  

 Then the surface is anticlastic in the neighborhood of the point considered, the principal 

curvatures have opposite signs, and the normal curvature, therefore, vanishes for the directions given by  

                             ba  /tan −=  

                                      



−= ,  

where  ,  are the principal radii of curvature. But where the surface is synclastic, the curvature of any 

normal section has the +ve sign as the principal curvature that is to say sections are concave in the same 

direction. The surface in the neighborhood of the point then lies entirely on one side of the tangent plane 

at the point. The same result may also be deduced from the expression  
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                              )2(
2

1 22 NdvMdudvLdu ++ ,  

for the length p of the perpendicular on the tangent plane from a point near the point of contact. For if K 

is positive, 2MLN −  is positive by (9.7), and therefore the above expression for p never changes sign 

with a variation of dvdu / .  

Example 9.4 If B is the mean normal curvature and A the amplitude, deduce from Euler’s theorem that   

                                          2cosABn −= ,  

                                          2sin2Aan =− ,  

                                          2cos2Anb =− .  

9.4. Dupin’s indicatrix Consider the section of the surface by a plane parallel and indefinitely close 

to the tangent plane at the point P. Suppose first that the surface is synclastic in the neighborhood of P. 

then near P it lies entirely on one side of the tangent plane. Let the plane be taken on this (concave) side 

of the surface, parallel to the tangent plane at P, and at an infinitesimal distance from it, whose measure 

is h in the direction of the unit normal n.  

Thus h has the same sign as the principal radii of curvature,   and  . Consider also any normal plane 

QQP   through P, cutting the former plane in QQ  .  Then if  is the radius of curvature of this normal 

section, and r2  the length QQ  , we have  

                                 hr 22 =  

to the first order. If   is the inclination of this normal section to the principal direction 0=dv . 

 

Euler’s theorem gives  

                     
2

2 21
2sinh

1
cos

1

r

h
==+








.  

P

Q

Q



r r

Figure 9.1 
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If then we write  cosr=  and  sinr= , we have  

                           h2
22

=+







.  

Thus the section of the surface by the plane parallel to the tangent plane at P, and infinitely close to it, is 

similar and similarly situated to the ellipse  

                              1
22

=+







                                                                              (9.15) 

Whose axes are tangents to the lines of curvature at P. this ellipse is called the indirectrix at the point P, 

and P is said to be an elliptic point. It is sometimes described as a point of positive curvature because 

the second curvature K is positive.  

   Next suppose that the Gauss curvature K is negative at P, so that the surface is anticlastic in the 

neighborhood. The principal radii   and   have opposite signs, and the surface lies partly on one side 

and partly on the other side of the tangent plane at P. Two planes parallel to this tangent plane, one on 

either side and equidistant from it, cut the surface in the conjugate hyperbolas  

                                1
22

=+







                                                                          (9.16) 

which constitute the indicatrix at P. the point P is then called a hyperbolic point or a point of negative 

curvature. The normal curvature is zero in the direction of the asymptotes.  

 When K is zero at point P, it is called a parabolic point. One of the principal curvatures is zero, 

and the indicatrix is a pair of parallel straight lines.  

9.5. The surface. Let ),( yxfz = it frequently happens that the equation of the surface is given in 

Monge’s form  

                i.e.                   ),( yxfz = . 

Let yx, be taken as parameters and, with the usual notation for partial derivatives of z , let   

                    tzszrzqzpz ===== 22121121 ,,,,    

Then if r is the position vector of a current point on the surface  

                       ),0,1(1 p=r ,  
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                       ),0,1(2 q=r ,  

And therefore  

                22222 1,1,,1 qpHqGpqFpE ++=+==+=  .  

The inclination   of the parametric curves is given by  

                       
)1)(1(

cos
22 qp

pq

++
= .  

The unit normal to the surface is Hqp
H

/)1,,(21 −−=


=
rr

n .  

Further            ),0,0(11 r=r ,              

                        ),0,0(12 s=r , 

                        ),0,0(22 t=r ,  

So that the second-order magnitudes are  

     
22

2

2

2
2

1
;,,

qp

st

H

srt
T

H

t
N

H

s
M

H

r
L

++

−
=

−
==== . 

The specific curvature is therefore  

                     
222

2

2

2

)1( qp

srt

H

T
K

++

−
== .  

And the first curvature is  

                     )}1(2)1({
1 22

2
ptpqsqr

H
J ++−+= .  

The equation (9.5) for the principal curvature becomes  

                0)()}1(2)1({ 22224 =−+++−+− srtptpqsqrHH  .  

And the differential equation of the lines of curvature is  

              0)}1({)}1()1({})1({ 222222 =+−++−++−+ dyqstpqdxdyqrptdxrpqps   

Since a developable surface 
2srt −  is identically zero, it follows from the above values of K that the 

second curvature vanishes at all points of a developable surface; and conversely, if the specific 

curvature is identically zero, the surface is developable.  
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9.6. Surface of revolution A surface of revolution may be generated by the rotation of a plane 

curve about an axis in its plane. If this is taken as the axis of z  and u denotes the perpendicular 

distance from it, the coordinate of a point of a surface may be expressed  

                      )(,sin,cos ufzuyux ===  ,  

the longitude   being the inclination of the axial plane through the given point to the zx -plane. The 

parametric curve v =constant are the “meridian lines” or the intersection of the surface by the axial 

planes; the curve u =constant are the “parallels” or intersections of the surface by planes perpendicular 

to the axis.  

            With ,u  as parameters, and r the position vector of a current point on the surface, we have  

                   ),sin,(cos 11 f=r   

                   )0,cos,sin(2  uu−=r .   

The first order magnitudes are therefore  

         )1(,,0),1( 2
2

2222
1 fuHuGFfE +===+= .  

Since 0=F it follows that the parallels cut the meridians orthogonally. The unit normal to the surface is  

                        Huufuf /),sin,cos( 11  −−=n  

Further,           ),0,0(11 uf=r ,  

                        )0,cos,sin(12 −=r ,  

                        )0,sin,cos(22  uu −−=r ,  

So that the second-order magnitudes are  

              2
111

22
1

2
11 /,/,0,/ HffuTHfuNMHufL ==== .  

Since F and M both vanish identically, the parametric curves are the lines of curvature.  

The equation for the principal curvatures reduces to  

              0)}1({1)1( 111
2

1111
2

1
222

1 =++++−+ ffffufffu  ,  

The roots of which are  

                
  2/32

22

2/32
1

11

)/(1

/

)1( dudf

dufd

f

f
a

+
=

+
= ,  
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and          
 22

1

1

)/(1

/

)1( dudfu

dudf

fu

f
b

+
=

+
= .  

The first of these is the curvature of the generating curve. The second is the reciprocal of the length of 

the normal intercepted between the curve and the axis of rotation. The Gauss curvature is given by  

                       
22

1

111

)1( fu

ff
K

+
= ,  

and the first curvature by  

                        
2/32

1

2
1111

)1(

)1(

fu

ffuf
J

+

++
= .  

9.7. Conjugate directions Conjugate directions at a given point P on the surface may be defined as 

follow. Let Q  be a point on the surface adjacent to P , and let PR  be the line of intersection of the 

tangent planes at P and Q . Then, as Q  tends to coincidence with P , the limiting direction of PQ  and 

PR  are said to be conjugate directions at P . Thus the characteristic of the tangent plane, as the point of 

contact moves along a given curve, is the tangent lines in the direction conjugate to that of the curve at 

the point of contact. In other words, the tangent planes to the surface along with a curve C envelope a 

developable surface each of whose generators has the direction conjugate to that of C at their point of 

the intersection.  

  To find an analytical expression of the condition that two directions may be conjugate, let n be 

the unit normal at P where the parameters' values are vu,  and nn d+  that at Q where values are

dvvduu ++ , . If R is adjacent to P, in the direction of the intersection of the tangent planes at P and Q, 

we may denote the vector PR by r and the parameter values at R by vvuu  ++ , . Then since PR  is 

parallel to the tangent planes at P and Q, and r is perpendicular both to n and nn d+ . Hence r  is 

perpendicular to nd , so that  

              0=• rn d ,  

and consequently  

              0)()( 2121 =+•+ vudvdu  rrnn .  

Expanding this product and remembering that  
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             NML −=•−=•=•−=• 22122111 ,, rnrnrnrn  

We obtain the relation  

            0)( =+++ vNdvduuvduMuduL                                                     (9.17) 

 This is the necessary and sufficient condition that the direction vu  / be conjugate to the 

direction dvdu / , and the symmetry of the relationship shows that the property is a reciprocal one. 

Moreover, the equation is linear in each of the ratios dvdu :  and vu  : , so that to a given direction 

there is one and only one conjugate direction.  

 The condition (9.17) that two directions be conjugate may be expressed  

                          0=+







++ N

v

u

dv

du
M

v

u

dv

du
L








                                                 (9. 71 ) 

Hence the two directions are given by the equation  

              022 =++ RdvQdudvPdu   

Will be conjugate provide  

   

0=+







−+








N

P

Q
M

P

R
L   

that is  

        0=+− NPMQLR                                                              (9.18) 

Now the parametric curves are given by 0== RP  and 1=Q . Hence the directions of the parametric 

curves will be conjugated provided 0=M . We have seen that this condition is satisfied when the lines 

of curvature are taken as parametric curves. Hence the principal directions at a point of the surface are 

conjugate directions.  

 Let the lines of curvature be taken as parametric curves, so that 0=F and 0=M . The 

directions dvdu / and vu  /  are inclined to the curve v =constant at angles  , such that  

            



 −=−=

N

G

E

L
tantan ,  

That is to say, provided they are parallel to conjugate diameters of the indicatrix. 

 9.8. Conjugate systems Consider the family of curves  
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                       ),( vu =constant  

The direction vu  /  of a curve at any point is given by  

                         021 =+  u .  

The conjugate direction dvdu / , in virtue of (17), is then determined by  

                         0)()( 1212 =−+− dvNMduML                                              (9.19) 

This is a differential equation of the first order and first degree, and therefore defines a one-parameter 

family of curves ),( vu =constant. This and the family ),( vu =constant are said to form a conjugate 

system. At a point of intersection of two curves, one from each family, their directions are conjugate.  

                                        ),( vu =constant, 

                                         ),( vu =constant,  

we may determine the condition that they form a conjugate system. For, the directions of the two curves 

through a point vu,  are given by  

                                        




=+

=+

0

0

21

21

vu

vu




  

It then follows from (9. 71 ) that these directions will be conjugate if  

                      0)( 11122122 =++−  NML                                              (9.20) 

This is the necessary and sufficient condition that the two families of curves form a conjugate system. 

In particular, the parametric curves v =constant, u =constant will form a conjugate system if 0=M . 

This agrees with the result found in the previous article. Thus, 0=M  is the necessary and sufficient 

condition that the parametric curves form a conjugate system.  

 We have seen that when the lines of curvature are taken as parametric curves, both 0=F and 

0=M  are satisfied. Thus the lines of curvature form an orthogonal conjugate system. And they are the 

only orthogonal conjugate system. For, if such a system of curves exists, and we take them for 

parametric curves, 0=F and 0=M . But this shows that the parametric curves are then lines of 

curvature. Hence the theorem.  

Example 9.5  The parametric curves are conjugate on the following surfaces:  

   (i)  A surface of revolution  

             )(,sin,cos ufzuyux ===  ;  
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   (ii)  The surface generated by the tangents to a curve, on which  

                trR u+=              ( su, parameters);  

   (iii)  The surface  

               )()(),(),( vFufzvyux +===  ;  

   (iv)   The surface )()( yFxfz += ,    where yx,  are parameters;  

   (v) nmnmnm cvcuCzbvbuByavauAx )()(,)()(,)()( −−=−−=−−=    where 

),,,,,( cbaCBA  are constants.  

Example 9.6 Prove that at any point of the surface, the sum of the radius normal  curvature in 

conjugate directions is constant.  

9.9. Asymptotic lines The asymptotic directions at a point on the surface are the self-conjugate 

directions, and an asymptotic line is a curve whose direction at every point is self conjugate. 

Consequently, if in equation (9.17) connecting conjugate directions, we put vu  /  equal to dvdu / , we 

obtained the differential equation of the asymptotic lines on the surface  

                         02 22 =++ NdvMdudvLdu                                                           (9.21) 

Thus there are two asymptotic directions at a point. They are real and different when LMM −2
 are 

positive, that is to say when the specific curvature is negative. They are imaginary when K  are positive.  

They are identical when K  is zero. In the last case, the surface is developable, and the single asymptotic 

line through a point is the generator.  

 Since the normal curvature in any direction is equal to  

                        
22 2 vNdvduMduL ++ ,  

It vanishes for the asymptotic directions. These directions are therefore the directions of the asymptotes 

of the indicatrix, hence the name. They are at right angles when the indirectrix is a rectangular 

hyperbola, that is when the principal curvatures are equal and opposite. Thus the asymptotic lines are 

orthogonal when the surface is minimal.  

           The osculating plane at any point of an asymptotic line is the tangent plane to the surface. This 

may be provided as follows. Since the tangent t to the asymptotic line is perpendicular to the normal n 

to the surface, 0=• tn . On differentiating this with respect to the arc length of the line, we have  
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                                  0)( =•+• nntn  ,  

where n  is the principal normal to the curve. Now the first term in this equation vanishes, because, t is 

perpendicular to the rate of change of the unit normal in the conjugate direction, and an asymptotic 

direction is self-conjugate. Thus 0=• tn  and the last equation becomes  

                                         0=•nn .  

Then since both t and n  are perpendicular to the normal, the osculating plane of the curve is tangential 

to the surface. The binormal is therefore normal to the surface, and we may take its direction so that  

                                             nb =                                                                           (9.22) 

Then the principal normal n  is given by  

                                          tnn = .  

If the parametric curves be asymptotic lines the differential equation (9.21) is identical to the 

differential equation of the parametric curves  

                                          0=dudv .  

Hence the necessary and sufficient conditions that the parametric curves be asymptotic lines are  

                               0,0,0 == MNL .  

In this case, the differential equation of the lines of curvature becomes  

                              022 =−GdvEdu   

and the equation of the principal curvatures is  

                        02 222 =−+ MFMH    

so that               
2

2

H

M
K −= ,         

2

2

H

FM
J −=                                                        (9.23) 

9.10. Curvature and torsion We have seen that the unit binormal to an asymptotic line is the unit 

normal to the surface or nb = . The torsion   is found by differentiating the relation with respect to the 

arc-length s, thus obtaining  

                                   nn =− ,  

where rnn =  is the principal normal to the curve. Forming the scalar product of each side with n , 

we have  
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                                   nrn •=−   

so that                            ],,[ rnn =                                                                       (9.24) 

which is one formula for torsion.  

       The scalar triple product in this formula is of the same formula as that occurring in principal 

directions, the vanishing of which gives the differential equation of the lines of curvature. The 

expression (9.24) may then be expanded exactly as in the principal direction, giving the torsion of an 

asymptotic line  

                     })()((){(
1 22 vGMFNvuGLENuFLEM
H

−−+−= .  

Suppose now that the asymptotic lines are taken as parametric curves. Then 0== NL , and this 

formula becomes  

                     )( 22 vGuE
H

M
−= .  

Hence for the asymptotic line 0=dv , we have  

                     K
H

M

ds

du
E

H

M
−=−=








=

2

                                                          (9.25) 

in virtue of (9.23). Similarly, for the asymptotic line 0=du , the torsion is  

                      K
H

M

ds

dv
G

H

M
−=−=








=

2

                                                       (9. 52  ) 

Thus the torsions of the two asymptotic lines through a point are equal in magnitude and opposite in 

sign, and the square of either is the negative of the specific curvature. This theorem is due to Beltrami 

and Enneper.  

To find the curvature  of an asymptotic line, differentiate the unit tangent rt =  with respect to the 

arc-length s. Then  

                              rn = .  

Forming the scalar product of each side with the unit vector rnn = , we have the result  

                        ],,[ rrn =                                                                                   (9.26) 
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Example 9.7 On the surface ),( yxfz =  the asymptotic lines are                         

 02 22 =++ tdysdxdyrdx ,  and their torsion are     )1/( 222 qprts ++− .  

Example 9.8 On the surface of revolution, the asymptotic lines are                              

 02
1

2
11 =+ dufduf , write down the value of their torsions.  

Example 9.9 Find the asymptotic lines, and their torsions, on the surface generated by  the binormals 

lines to a twisted curve.  

Example 9.10 Find the asymptotic lines on the surface xyz sin= .  

9.11. Isometric Parameters Suppose that in terms of the parameters vu,  the square of the linear 

element of the surface has the form 

                           )( 222 dvduds +=                                                                       (9.27) 

where   is a function of vu,  or a constant. Then the parametric curves are orthogonal because 0=F . 

Further the length of elements of the parametric curves are du and dv , and these are equal if 

dvdu = . Thus the parametric curves corresponding to the values dvvvduuu ++ ,,,  bound a small 

square provided dvdu = . In this way, the surface may be mapped out into small squares through 

parametric curves, the sides of anyone square corresponding to equal increments in u and v .  

       More generally, if the square of the linear element has the form  

                               )( 222 VdvUduds +=                                                               (9.28) 

where U is the function of u  only and V a function of v  only, we may change the parameters to  ,  

by the transformation  

                               dvVdduUd ==  , .  

This does not alter the parametric curves; for the curve u =constant is identical to the curves 

=constant, and similarly, the curves v =constant are also the curves  =constant. The equation (9.28) 

                                   )( 222  ddds +=                                                            (9.29) 

which is of the same form as (9.27). Whenever the square of the linear element has the form (9.28) so 

that, without alternation of the parametric curve, it may be reduced to the form (9.27), the parametric 
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curves are called isometric lines, and the parameters isometric parameters. Sometimes the terms 

isothermal or isothermic are used.  

         In the form (9.27) the fundamental magnitudes E and G are equal; but in the more general form 

(9.28), they are such that  

                                      
V

U

G

E
=                                                                               (9.30) 

and therefore             0log
2

=




G

E

vu
                                                                     (9.31) 

Either of these equations, in conjunction with 0=F , expresses the condition that the parametric 

variable may be isometric. For, if it is satisfied, 2ds  has the form (9.28) and may therefore be reduced 

to the form (9.27).  

A simple example of isometric curves is afforded by the meridians and parallels on a surface of 

revolution. With the usual notation  

                             )(,sin,cos ufzuyux ===  , 

                              22
1 ,0,1 uGFfE ==+= , 

we have,               2222
1

2 )1( dudufds ++=   

                                     













+

+ 22

2

2
12 1

ddu
u

f
u                                                        (9.32) 

which is of the form (9.28). The parametric curves are the meridians constant and the parallel u

=constant. If we make the transformation 

                        duf
u

d 2
11

1
+= ,  

and curves  =constant are the same as the parallels, and the square of the linear element becomes  

                       )( 222  dduds += ,  

which is of the form (9.27). Thus the meridians and the parallels of the surface of revolution are 

isometric lines. 
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Example 9.11 Show that a system of confocal ellipses and hyperbolas are isometric  lines in the 

plane.  

Example 9.12 Determine )(vf so that on the right conoid     )(,sin,cos vfzvuyvux === , 

parametric curves may be isometric lines.  

Example 9.13  Find the surface of revolution for which 22222 )( dvuaduds −+= . 

Example 9.14  Find the asymptotic lines of the cylindroids  

               vmzvuyvux 2sin,sin,cos === .  

Example 9.15  On the surface )(3,)1(3,)1(3 222222 vuzvuvyuvux −=−+=−+= ,  

 the asymptotic lines are vu  =constant.  

Example 9.16 On the paraboloid 
2

2

2

2

2
b

y

a

x
z −= , the asymptotic lines are              

b

y

a

x
 =constant.  

Example 9.17 Find the lines of curvature and the principal curvatures on the  cylindroids 

mxyyxz 2)( 22 =+ .  

Example 9.18 If a plane cuts a surface everywhere at the same angle, the section is a  line of 

curvature on the surface.  

Example 9.19 Along a line of curvature of a conicoid, one principal radius varies as  the cube of 

the other.  

Example 9.20 Find the principal curvatures and the lines of curvature on the surface  

                              2222 )( cyxz =+ .  

Example 9.21 Find the asymptotic lines and the lines of curvature on the catenoid of  revolution 

c

z
cu cosh= .  

9.12. Gauss’s formulae for 221211 ,, rrr . The second derivatives of r with respect to the parameters 

may be expressed in terms of 1,rn ,and 2r . Remembering that the L, M, N are the resolved parts of 

221211 ,, rrr  normal to the surface, we may write  

                             









++=

++=

++=

2122

2112

2111

rrnr

rrnr

rrnr







nN

mM

lL

                                                              (9.33) 
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and the values of the coefficients  ,,,,, nml may be found as follows. Since  

                     1

2
1

111
2

1

2

1
E

u
=




=•

r
rr ,  

   and            21
2

121112
2

1

2

1
)( EF

uu
−=




−•




=• rrrrr ,  

we find from the first of (9.33), on forming the scalar product of each side with 1r  and 2r successively,  

                      










+=−

+=

GlFEF

FlEE





21

1

2

1

2

1

.  

Solving these for l  and  , we have 

                   










−−=

+−=

)2(
2

1

)2(
2

1

1212

2112

FEEEEF
H

FEFFGE
H

l



                                                           (9.34) 

Again since 2121
2

1
E=•rr  and 1122

2

1
G=• rr , we find from the second of (9.33), on forming the scalar 

product of each side with 1r  and 2r successively,  

                          










+=

+=

GmFG

FmEE





1

2

2

1

2

1

.  

Solving these for m  and  , we have 

                   










−=

−=

)(
2

1

)2(
2

1

212

122

FEEG
H

FGGE
H

m



                                                                    (9.35) 

Clearly, using the relations 12221
2

1
GF −=•rr  and  2222

2

1
G=•rr , and from the third of (9.33),  
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








+−=

+−=

)2(
2

1

)2(
2

1

1222

2122

FGFFEG
H

FGGGGF
H





                                                 (9.36) 

using formulae (9.33), with the values of coefficients given by (9.34), and (9.36), are the equivalent of 

Gauss’s formulae for 221211 ,, rrr , may be referred to under this name.  

and the parametric curves are orthogonal, the values of the coefficients are greatly simplified. For, in 

this case, 0=F  and EG= , so that  

                                  















++=

++=

−+=

2
2

1
1

22

2
1

1
2

12

2
2

1
1

11

22

22

22

rrnr

rrnr

rrnr

G

G

E

G
N

G

G

E

E
M

G

E

E

E
L

                                                       (A) 

Hence unit vectors parallel to 1r  and 2r , we have  

                                  
GE

21 ,
r

b
r

a == ,  

a, b, n form a right-handed system of unit vectors, mutually perpendicular. From these formulae, we 

deduce immediately that  

                                   



















−=




+=




+=




−=




an
b

an
b

bn
a

bn
a

H

G

G

N

v

H

E

G

M

u

H

G

E

M

v

H

E

E

L

u

2

2

2

2

1

2

1

2

                                                                (B) 

The derivative of a is perpendicular to a, and the derivative of b is perpendicular to b since a and b are 

vectors of constant (unit).  

9.13. Gauss characteristic equation The six fundamental magnitudes NMLGFE ,,,,, are not 

functionally independent but are connected by three differential relations. One of these, due to Gauss is 
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an expression for 2MLN −  in terms of   GFE ,, and their derivatives of the first two orders. It may be 

deduced from the formulae of the preceding article. For, in virtue of these,  

                            GFnlELN  ++++=• )(ln2211 rr ,  

            and                     GFmEmM 2222
12 2  +++=r .  

    It is also easily verified that  

                                   )2(
2

1
1211222211

2
12 FGE −+=•− rrr .  

Adding the first and third, and subtracting the second, we obtain the required formula, which may be 

written  

            

})({ln

)2()2(
2

1 22
112212

2

GFnlE

GFmEmGEFMLN





+++−

+++−−=−
                         (9.37)  

This is the Gauss characteristics equation. It is sometimes expressed in  the alternative form  

      











−




−








+












−








=−

u

E

EH

F

v

E

Hu

F

Hv
H

u

G

Hv

E

EH

F

u
HMLN

12

2

11

2

12  (9.38) 

This equation shows that the specific curvature K, which is equal to 22 /)( HMLN − , is expressible in 

terms of the fundamental magnitude GFE ,, and their derivatives of the first two orders. In this respect, 

it differs from the first curvature.  

Cor. Surface which has the same first-order magnitudes GFE ,,  (irrespective of the second-order 

magnitudes NML ,, ) has the same specific curvature.  

9.14. Mainardi-Codazzi relation In addition to the Gauss characteristics, there are two other 

independent relations between the fundamental magnitudes and their derivatives. If in the identity,  

                                 1211 rr
u


=






 

We substitute the values i=of 11r  and 12r ,  

              
1211121111

2212222122

rrnrrn

rrnrrn





+++++=

+++++

mMmM

lLlL
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If in this, we substitute again from (9.33) the values of the second derivatives of 1r and also for 1n  and 

2n , we obtain a vector identity, expressed in terms of the non-coplanar vectors 21,, rrn . We may then 

equate coefficients of like vectors on the two sides, and obtain three scalar equations. By equating 

coefficients of n, we have  

                                        MmLMNlML  ++=++ 12 ,  

         i.e.                           NMlmLML  −−−=− )(12                                      (9.39) 

Similarly from the identity 2212 rr
u


=






, on substituting from (9.33) the values of 12r  and 22r , we 

obtain the relation  

                                  
1211121111

2212222122

rrnrrn

rrnrrn





+++++=

+++++

nNnN

mMmM
   

Substituting again for second derivatives of r and also for 1n  and 2n , in terms of  21,, rrn  and equating 

coefficients of n on the two sides of the identity, we have  

                                        MnLNNmMM  ++=++ 12 ,  

         i.e.                         NMmnLNM  −−−=− )(12                                      (9.40) 

the formulae (9.39) and (9.40) are frequently called the codazzi equations. But as Mainardi gave similar 

results twelve-year earlier than Codazzi, the more justly termed the Mainardi-Codazzi relations. Four 

other formulae are obtained by equating coefficients of 1r and 2r in the two identities: but they are not 

independent. They are all deducible from (9.39) and (9.40) with the aid of the Guass characteristics 

equation.  

9.15. Alternative expression The above relations may be expressed in a different form, which is 

sometimes more useful. By differentiating the relation 
22 FEGH −=  with respect to the parameters, it 

is easy to verify that  

                                      )(1 += lHH , 

         and                       )(2 += mHH .  

  Therefore              12

1 H
H

N

H

N

H

N

u
−=












  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  268 | 

 

                                               )(
2

1 +−= l
H

N

H

N
,  

and similarly,           22

2 H
H

N

H

M

H

M

v
−=












  

                                                )(
2

2 +−= m
H

M

H

M
.   

Consequently  

                    )()()(
1

12 +++−−=











−











l

H

N
vm

H

M
NM

HH

N

uH

M

v
  

                                                   HlNmMnL /)2( +−=                                         (9.41) 

In virtue of (9.40). Similarly, it may be proved that  

                    HNML
H

L

vH

M

u
/)2(  +−=












−











                                       (9.42) 

The equations (9.41) and (9.42) are alternative forms of the Mainardi-Codazzi relations.  

     We have seen that if functions NMLGFE ,,,,,  constitute the fundamental magnitudes of a 

surface, they are connected by the three differential equations and Mainardi-Codazzi relations. 

Conversely, Bonnet has proved the theorem: When six fundamental magnitudes are given, satisfying the 

Gauss characteristic equation and Mainardi-Codazzi relation, they determine a surface uniquely, 

except as to position and orientation in space. The proof of the theorem is beyond the scope of this 

book, and we shall not have occasion to use it.  

9.16 CHECK YOUR PROGRESS 

SA1:  For the equation of the principal curvatures and the differential equation of the  lines of 

curvatures, for the surfaces  

    (i)  
b

y

a

x
z

22

2 += 2       (ii)  333 byaxz +=       (iii)  
x

y
cz 1tan−= .  

SA2:  The indicatrix at every point of the helicoids 
x

y
cz 1tan−=  is a rectangular  hyperbola.  

SA3:  The indicatrix at a point of the surface ),( yxfz =  is a rectangular hyperbola  if 

0)1(2)1( 22 =++−+ rqpqstp .  
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SA4:  At a point of intersection of the paraboloid czxy = with the hyperboloid  02222 =+−+ czyx  

the principal radii of the paraboloid are cz /)21(2  .  

SA5:  Show that the other four relations, similar to the Mainardi-Codazzi relations,  obtainable by 

equating coefficients of 1r and 2r in the proof of Mainardi- Codazzi relations, are equivalent to  

                                    nmlmFK −+−= 21 ,  

                                    nmFK −+−= 12 ,  

                                   2
12  −+−+−= mmlEK     

                                    nmmmnGK −+−+−= 2
21 ln .  

SA6:  Prove that these formulae may be deduced from the Gauss characteristic  equation and the 

Mainardi-Codazzi relations.  

SA7:  Prove that the relations    

                            HK
E

H

uE

H

v
=












−










 
,  

                            HK
G

Hm

vG

Hn

u
=












−











.  

SA8:  If  is the angle between the parametric curves, proves that  

                           HK
G

Hm

vE

H

u
+











+











=−


12    

                                    HK
E

H

vG

Hn

u
−











+











=−


.  

SA9:  If the asymptotic lines are taken as parametric curves, show that the Mainardi- Codazzi 

relations become  

                             )(),( 21 m
M

M
l

M

M
−=−=    

 Hence deduce that    

                           
M

M

H

H

M

M

H

H
l 1111 2,2 −=+=  ,  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  270 | 

 

                           
M

M

H

H

M

M

H

H
m 2222 2,2 +=−=  .  

SA10:  If the surface of revolution is a minimal surface,  

                 01

2

2

2

=




















++

du

df

du

df

du

fd
u . 

 Hence show that the only real minimal surface of revolution is that formed by  the revolution 

of a catenary about its directrix.  

SA11: On the surface formed by the revolution of a parabola about directrix, one  principal curvature is 

double the other.  

SA12: The moment about the origin of the unit normal n at a point r of the surface is  nrm = . 

Prove that the differential equation of the lines of curvature is  

                               0=• nm dd .  

SA13: Find equations for the principal radii, the lines of curvature, and the first and  second 

curvatures of the following surfaces:  

     (i)  the conoid            )(,sin,cos  fzuyux === ;  

     (ii)  the catenoid         )log(,sin,cos 22 cuuazuyux −+===  ;  

     (iii)  the cylindroids    mxyyxz 2)( 22 =+ ;  

     (iv)  the surface           22 22 byhxyaxz ++= ;  

     (v)  the surface  )(3,)1(3,)1(3 223232 vuzvuvyuvux −=−+=−+= ;  

     (vi)  the surface  
vu

uv

c

z

vu

vu

b

y

vu

uv

a

x

+

−
=

+

−
=

+

+
=

1
,,

1
;  

     (vii)  the surface  3axyz= .  

SA14:  The lines of curvature of the paraboloid azxy =  lie on the surfaces  

                     
a

y

a

x 11 sinhsinh −−  =constant.  

SA15:  Show that the surface )2)(2(4 222222 ayaxza −−=  has a line of umbilics  laying on the 

sphere 2222 4azyx =++ .  
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SA16:  On the surface generated by the tangents to a twisted curve, the current point  is trR u+= , 

taken su,  as parameters, proves that  

                  22222 ,1,1,1  uHuGFE =+=== ,  

                   0,,0,0 2 ==== TuNML  ,  

                   









uu
JK ba ==== ,0,,0 .  

 The lines of curvature are s =constant, su+ =constant.  

SA17: Show that the equation of the indicatrix, referred to the tangents to the  parametric curves as 

(oblique) axes, is 1
2 22 =++ 

G

N

EG

M

E

L
.  

SA18: Find the equation of the helicoids generated by a circle of radius  , whose  plane passes 

through the axis; and determine the lines of curvature on the  surface.  
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CHAPTER-10 

CURVES CONCERNING GEODESICS-II  

Objectives: In continuation of the previous chapters in the current chapter the students will learn 

about Geodesic and its properties, the Equation of Geodesic, Surface of revolution, Torsion of 

Geodesic, Bonnet’s Theorem, Joachimsthal’s theorem, Geodesic curvature, Geodesic parallels, 

Geodesic polar coordinates, Beltram’s theorem, Geodesic triangle, Geodesic ellipses and hyperbolas, 

Liouville surfaces, 

10.1. Geodesic property A geodesic line, or briefly a geodesic, on a surface, may be defined as a 

curve whose osculating plane at each point contains the normal to the surface at that point. It follows 

that the principal normal to the geodesic coincides with the normal to the surface, and we agree to take 

it also in the same sense. The curvature of a geodesic is therefore the normal curvature of the surface in 

the direction of the curve and has the value  

                       
22 2 vNvuMuL ++=                                                                 (10.1) 

and the dashes denoting derivatives with respect to the arc-length s of the curve.  

 Moreover, of all plane sections through a given tangent line to the surface, the normal section 

has the least curvature, by Meunier’s theorem. Therefore of all sections through two consecutive points 

P, Q on the surface, the normal section makes the length of the arc PQ a minimum. But this is the arc of 

the geodesic through P, Q. Hence a geodesic is sometimes defined as the path of the shortest distance 

on the surface between two given points on it. Starting with the definition, we may reverse the 

argument, and deduce the property that the principal normal to the geodesic coincides with the normal 

to the surface. The same may be done by the calculus of variation, or by statistical considerations in the 

following manner. The path of the shortest distance between two given points on the surface is the 

curve along which a flexible string would lie, on the (smooth) convex side of the surface, tightly 

stretched between the two points. Now the only forces on an element of the string are the tensions at its 

extremities and the reaction normal to the surface. But the tensions are in the osculating plane of the 
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element, and therefore so also is the reaction by the condition of equilibrium. Thus the normal to the 

surface coincides with the principal normal to the curve.  

10.2. Equations of geodesics From the defining property of geodesics, and the Serret-Frenet 

formulae, it follows that  

                               nr =                                                                                    (10.2) 

which may be expanded.   

                        nrrrrr =++++ 2
2212

2
1121 2 vvuuvu .  

Forming the scalar product of each side with 1r and 2r successively, we have  

                       










=++−++

=−++++

0
2

1
)

2

1
(

2

1

0)
2

1
(

2

1

2
21

2
21

2
122

2
1

vGvuGuEFvGuF

vGFvuEuEvFuE

                    (10.3) 

These are the general differential equations of geodesic on a surface. They are equivalent to the 

equations  

                           










++=+

++=+

)2(
2

1
)(

)2(
2

1
)(

2
22

2
2

2
11

2
1

vGvuFuEvGuF
ds

d

vGvuFuEvFuE
ds

d

                            (10.4) 

A third form, which is sometimes more convenient, may be found by solving (10.3) for u  and v  , thus 

obtaining  

                            






=++++

=+++

02

02

22

22

vvuvuv

vnvumulu


                                            (10.5) 

where ,l  etc. are the coefficients.  

 A curve on the surface is, however, determined by a single relation between the parameters. 

Hence the above pair of differential equations may be replaced by a single relation between vu, . If for 

example, we take the equations (10.5), multiply the first by 

2










du

ds

du

dv
, the second by 

2










du

ds
, and 

subtract, we obtained the single differential equation of geodesics in the form  
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              −−+







−+








=

du

dv
l

du

dv
m

du

dv
n

du

vd
)2()2(

22

2

2

                                   (10.6) 

 Now from the theory of differential equations, it follows that there exists a unique integral v on 

this equation that takes a given value 0v  when 0uu = , and whose derivative dudv/ also takes a given 

value when 0uu = . Thus through each point of the surface, there passes a single geodesic in each 

direction. Unlike lines of curvature and asymptotic lines, geodesics are not determined uniquely or in 

pairs at a point by the nature of the surface. Through any point pass, an infinite number of geodesics 

involve only the magnitudes of the first order GFE ,,  and their derivatives. Hence if the surface is 

deformed without stretching or tearing, so that the length ds of each arc element is unaltered, the 

geodesics remains geodesics on the deformed surface. In particular, when the developable surface is 

developed into a plane, the geodesics on the surface become straight lines on the plane. This agrees with 

the fact that a straight line is the path of the shortest distance between two given points on the plane.  

 From (10.6), it follows that the parametric curves v =constant will be geodesics if 0= . 

Similarly the curve u =constant will be geodesics if n =constant. Hence if the parametric curves are 

orthogonal (F=0), the curve  v =constant will be geodesics provided E is a function of u only, and the 

curve u =constant will be geodesics if G is a function of v only.  

Example 10.1 On the right helicoids given by  

                  czuyux === ,sin,cos  

Solution. We have seen that 22222 ,,0,1 cuHcuGFE +=+===   

Therefore the coefficients are  

                  unml −=== ,0,0   

                   0),/(,0 22 =+==  cuu  

The equation for the geodesics becomes  

                      






=++

=−

02)(

0

22

2





uucu

uu
 

From the second of these, it follows that  
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ds

d
cu


)( 22 + =constant=h (say).  

But on any arc on the surface  

                   22222 )( dcududs ++= .  

Hence for the arc of geodesic,  

                    222222222 )()(  dhcuduhdcu ++=+   

and therefore   ))((
1 22222 hcucu
hd

du
−++=


. This is the first integral of the differential equation 

of geodesics. The complete integral may be found in terms of elliptic functions.  

Example 10.2 When the equation of the surface is given in Monge’s form ),( yxfz =   then we have 

seen that, with yx,  as parameters,  

                   22222 1,1,,1 qpHqGpqFpE ++=+==+= .  

Solution. We have 
222

,,
h

pt
n

H

ps
m

h

pr
l ===   

                                 
222

,,
H

qt

H

qs

H

qr
===   

The equation of geodesics then takes the form  

                  rq
dx

dy
qspr

dx

dy
qtps

dx

dy
pt

dx

yd
qp −−+








−+








=++ )2()2()1(

23

2

2
22  

                                               












++















−= r

dx

dy
s

dx

dy
tq

dx

dy
p 2

2

.  

10.3. Surface of revolution On the surface of revolution  

                   )(,sin,cos ufzuyux ===  ,  

We have seen that with ,u as parameters 

                    )1(,,0,1 2
1

2222
1 fuHuGFfE +===+= .   

                     0,
1

,0 === 
u

  

The second equations for geodesics then take the form  
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                      0
2

2

2

=+
ds

d

ds

du

uds

d 
  

On multiplying by 2u  the equation becomes exact, and has its integral  

                         h
ds

d
u =

2
                                                                                      (10.7) 

where h  is a constant. Or, if  is the angle at which the geodesic cuts the meridian, we may write this 

result  

                         hu =sin                                                                                    (10.7 ) 

a theorem due to Clairaut. This is the first integral of the equation of geodesics, involving one arbitrary 

constant h . To obtain the complete integral, we observe that, for any arc on the surface,  

                           2222
1

2 )1( dudufds ++=    

And therefore by (10.7), for the arc of geodesic,  

                            22222
1

224 )1(  duhdufhdu ++=  

So that                du
hu

f

u

h
d

22

2
11

−

+
= .  

Thus,                   du
hu

f

u
hC 

−

+
=

22

2
111

                                                             (10.8) 

involving the two arbitrary constants C and h is the complete integral of the equation of geodesics on a 

surface of revolution.  

Cor. It follows from (10. 7 ) that h is the minimum distance from the axes of a point on the geodesic, 

and is attained where the geodesic cuts a meridian at right angles.  

Example 10.3 The geodesics on a circular cylinder are helices. For from (10. 7 ),  since u  is constant, 

  is constant. Hus the geodesics cut the generators at a  constant angle, and are therefore helices.  

Example 10.4 In the case of a right circular cone of semi-vertical angle  , show that  the equation 

(10.8) for geodesics is equivalent to  

                         )sinsec(  += hu   

 where h and  are constants.  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  277 | 

 

Example 10.5 The perpendicular from the vertex of a right circular cone, to a tangent  to a given 

geodesic, is of constant length.  

10.4. Torsion of Geodesic If r is a point on the geodesic, r is the unit tangent and the principal 

normal is the unit normal n to the surface. Hence the unit binormal is  

                                nrb =   

Differentiating with respect to arc length gives for the torsion of the geodesic  

                              nrnrn +=− .  

The first term in the second member is zero because r   is parallel to n. Hence  

                                 rnn =                                                                             (10.9) 

 and therefore             ],[ rnn =                                                                         (10.10) 

 This expression for the torsion of a geodesic is identical to that found for the torsion of an 

asymptotic line. The geodesic which touches a curve at any point is often called its geodesic tangent at 

that point. Hence the torsion of an asymptotic line is equal to the torsion of its geodesic tangent.  

Further, the expression ],,[ rnn   vanishes for a principal direction. Hence the torsion of a geodesic 

vanishes where it touches a line curve of curvature. It is also from (10.10) that if a geodesic is a plane 

curve, it is a line of curvature; and, conversely, if a geodesic is a line of curvature it is also a plane 

curve.  

 The triple product ],,[ rnn  may be expanded, by writing vu += 21 nnn  and vu += 21 rrr . 

The formula for the torsion of a geodesic then becomes  

                   })()(){(
1 22 vGMFNvuGLENuFLEM
H

−+−+−=                 (10.11) 

This may be expanded in terms of the inclination of the geodesic to the principal directions. Let the 

lines of curvature be taken as parametric curves then  

                    0==MF ,        EGH =2
,  

and the last formula becomes  

                    







−=

E

L

G

N
vuEG .  

But, if  is the inclination of the geodesic to the line of curvature v =constant,  
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                        cos=uE ,       sin=vG .  

Also, the principal curvatures are  

                          ELa /= ,    GNb /= .  

Hence the formula for the torsion of the geodesic becomes  

                            )(sincos ab  −=                                                            (10.12) 

From this, it follows that two geodesics at right angles have their torsions equal in magnitude but 

opposite in sign. Further, besides vanishing in the principal directions, the torsion of a geodesic 

vanishes at an umbilic. And of all geodesics through a given point, those which bisect the angles 

between the lines of curvature have the greatest torsion.  

      The curvature of a geodesic is the normal curvature in its direction. Its value, as given by Euler’s 

theorem, is therefore  

                                22 sincos ba +=                                                       (10.13) 

Example 10.6 If  ,  are the curvature and the torsion of a geodesic, prove that  

                                ))((2  −−= ba .  

 Also if the surface is developable )0( =a , show that  

                                            tan= .  

Example 10.7 Deduce from equation (12) that the torsions of the two asymptotic lines  at a point are 

equal in magnitude and opposite in sign.  

Example 10.8 Prove that the torsion of a geodesic is equal to  

                             
vNuMvMuL

vGuFvFuE

H ++

++1
.  

Example 10.9 Prove that, with the notation of the above article for a geodesic,  

                             cossincos a=− ,  

                             sincossin b=+ .  

10.5. Bonnet’s Theorem Let C be any curve drawn on the surface, r  its unit tangent, n  its 

principal normal,   its torsion, and W the torsion of the geodesics which touches it at the point 
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considered. We define the normal angle  of the curves as the angle from n  to the normal n to the 

surface, in the positive sense  

 

for a rotation about r . Thus  is positive if the rotation from n to n is in the sense from n  to the 

binormal b; negative if in the opposite sense. Then at any point of the curve, these quantities are 

connected by the relation  

                                      W
ds

d
=+


                                                                    (10.14) 

This may be proved in the following manner. By (10.9) of the previous article, we have, rnn =W . 

The unit binormal to the curve is nrb = ,  

                            nbnn •=•=  sin,cos  

Differentiating this equation, we have  

                             nbnb •+•=
ds

d
cos   

                                              nnrnn •+•−=   

                                              nn•+−= W cos  

                                               cos)( W+−=  

Hence the formula      W
ds

d
=+


,  



n

b

r Figure 10.1 
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Expressing a result due to Bonnet. Since W is the torsion of the geodesic tangent, it follows that the 

quantity 







+



ds

d
 has the same value for all curves touching at the point considered. The formula also 

shows that  is the torsion of the geodesic tangent relative to the curve C, or that − is that of C 

relative to the geodesic tangent.  

10.6. Joachimsthal’s theorem We have seen that the torsion W of the geodesic tangent to a line of 

curvature vanishes at the point of contact. If then a curve C on the surface is both a plane curve and a 

line of curvature, 0= and 0=W ; and therefore, in virtue of (10.14), 0= . Consequently, its plane 

cuts the surface at a constant angle. Conversely, if a plane cuts a surface at a constant angle, the curve of 

intersection has zero torsion, so that 0=  and 0= . Therefore in virtue of (10.14), W vanishes 

identically, showing that the curve is a line of curvature. Similarly if  is constant and the curve is a 

line of curvature,  must vanish, and the curve is plane. Hence if a curve on a surface has two of the 

following properties, it also has the third: (a) it is a line of curvature, (b) it is a plane curvature, (c) its 

normal angle is constant.  

 Moreover, if the curve of the intersection of two surfaces is a line of curvature on each, the 

surface is cut at a constant angle. Let  and 0 be the normal angles of the curve for the two surfaces. 

Then since the torsion W of the geodesic tangent vanishes on both surfaces,  

                        0=+


ds

d
,                      00 =+



ds

d
      

Hence               0)( 0 =−
ds

d
,   

So that              0 −  =constant.  

Thus the surfaces are cut at a constant angle. Similarly, if two surfaces cut at a constant angle, and the 

curve of intersection is a line of curvature on one, it is a line of curvature on the other also. For since  

                               0 −  =constant.  

It follows that         
ds

d

ds

d 0
= .  

Hence by (10.14), if W and 0W  are the torsions of the geodesic  
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                     −=− 0WW   

So that             0WW =   

If then W vanishes, so does 0W , showing that the curve is a line of curvature on the second surface also.  

 Further, we can prove the theorems for spherical lines of curvature, similar to those proved 

above for plane lines of curvature. Geodesics on a sphere are great circles, and therefore plane curves. 

Their torsion 0W  , therefore, vanishes identically. Hence for any curve on a sphere, if 0  is its normal 

angle,  

                      00 =+


ds

d
,    

Suppose then that a surface is cut by a sphere in a line of curvature. Then since the torsion W of the 

geodesic tangent to a line of curvature is zero, we have on this surface also  

                        0=+


ds

d
   

From these two equations, it follows that  

                         0)( 0 =−
ds

d
,   

So that              0 −  =constant.  

Hence if the curve of the intersection of the sphere and another surface is a line of curvature on the 

latter, the two surfaces cut at a constant angle.  

       Conversely, if a sphere cuts a surface at a constant angle, the curve of intersection is a line of 

curvature on the surface. For  

                                 
ds

d

ds

d 0
=    

 and therefore           W−= .  

Thus W  vanishes identically, and the curve is a line of curvature.  

10.7. Geodesic curvature Consider any curve C drawn on a surface. We define the geodesic 

curvature of the curve at a point P as its curvature relative to the geodesic which touches it at P.  
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 Now the vector curvature of the curve is r  , and the resolved part of this in the direction of the 

normal to the surface is rn •  or n  by Meunier’s theorem. But the vector curvature of the geodesic is 

normal to the surface, and its magnitude is also n . That is to say, the curvature of the geodesic is the 

normal resolved part of the vector curvature of C. hence the curvature of C relative to the geodesics its 

resolved part tangential to the surface. This tangential resolute is sometimes called the tangential 

curvature of C, but more frequently its geodesic curvature. As a vector, it is given by  

                                   nrnr •−       or         nr n−                                        (10.15) 

      Its magnitude must be regarded as positive when the deviation of C from the geodesic tangent is 

in the positive sense for a rotation about the normal to the surface. Thus we must take the resolved part 

of the vector curvature r  in the direction of the unit vector rn  . Denoting it by g , we have  

                          ],,[ rrn =g                                                                              (10.16) 

Then         rrrrrrn •= )(
1

],,[ 21
H

  

                               rrrrrrr ••−•= )(
1

1221
H

     

So that               rrrrrrr ••−•= )(
1

1221
H

g                                                  (10.17) 

It is also clear from the above argument, that, if   is the curvature of curve C, and  its normal angle,  

     while            




=

=





cos

sin

n

g
                                                                             (10.18) 

    Hence            






=

+=





tan

222

ng

ng
                                                                           (10.19) 

All these expressions for g  vanish when C is a geodesic. For then r   is parallel to n, and therefore 

perpendicular to 1r  and 2r , while   is zero. This means simply that the curvature of a geodesic relative 

to itself is zero.  

 It will be noticed that the expression ],,[ rrn   for the geodesic curvature is the same as that 

found for the curvature of an asymptotic line. This is because the osculating plane for an asymptotic line 
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is the tangent plane to the surface, while the curvature of the geodesic tangent, being the normal 

curvature in the asymptotic direction, is zero. Thus the curvature of an asymptotic line is equal to its 

geodesic curvature. 

10.8. In Other formulas for g  From (10.16) and (10.17) we may deduce an expansion for the 

geodesic curvature in terms of uu ,  etc. For instance, on substitution of the values of r and r  in 

terms of these, (10.17) becomes  

           

})
2

1
(

2

1
){(

1

}
2

1
)

2

1
(){(

1

2
122

2
1

2
21

2
21

vGFvuEuEvFuEvGuF
H

vGvuGuEFvGuFvFuE
H

g

−+++++−

++−+++=

 

  which may also be written   

           )2()2( 2222 vnvumuluvHvvuuvuHg
+++−+++=    

Each part of which vanishes for a geodesic, in virtue of (10.5). In particular, for the parametric curve v

=constant. We have 0== vv  and the geodesic curvature gu  of this curve is therefore equal to 

2uuH  , which may be written  

                              
2/3−= EHgu  .  

Similarly, the geodesic curvature gv  of the curve u =constant has the value  

                              
2/3−−= HnGgv .  

When the parametric curves are orthogonal, these become  

                          
GE

E
gu

2

2−= ,       
EG

E
gv

2

1−= .  

From these formulae, we may deduce the results, that the curves v =constant will be geodesics provided 

0= , and the curve u =constant provided 0=n . When the parametric curves are orthogonal, these 

conditions are 02 =E and 01 =G , so that the curve v =constant will be geodesics if E is a function of u

only; and the curve u =constant if G is a function of v  only.  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  284 | 

 

        Another formula for the geodesic curvature of a curve may be found in terms of the arc rate of 

increase of its inclination of the curve to the parametric curves. Let  be the inclination of the curve to 

the parametric curves v =constant, measured in the positive sense. Then since  

                      cosEvFuE =+ .  

We have on differentiation  

                
ds

d
E

ds

Ed
vFuE

ds

d 
 sincos)( −=+   

                                        
ds

d
vHvFuEvEuE

E


−++= ))((

2

1
21    

Now, if the curve is geodesic, the first member of this equation is equal to  

                                             ).2(
2

1 2
11

2
1 vGvuFuE ++    

On substitution of this value, we find for a geodesic  

                                       v
E

H
u

E

H

ds

d
H −−=

 22

.  

Thus the rate of increase of the inclination of a geodesic to the parametric curves v =constant is given 

by  

                                         )( vu
E

H

ds

d
+−= 


.  

Now the geodesic curvature of a curve C is tangential to the surface, and its magnitude is the arc rate of 

deviation of C from its geodesic tangent. This is equal to the difference in the values of dsd /  the 

curve and for its geodesic tangent. But its value for the geodesic has just been found. Hence if dsd /  

denotes its value for the curve C, the geodesic curvature of C is given by  

                                     )( vu
E

H

ds

d
g 


 ++=                                                    (10.21) 

Or, if   is the inclination of the parametric curve u =constant to curve C, we may write this  

                                      





 sinsin
EE

G

ds

d
g ++=                                   (10.22) 
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In the particular case when the parametric curves are orthogonal,  cossin = . Also, the coefficient of 

sin becomes equal to the geodesic curvature of the curve v =constant and the coefficient of sin  to 

that of the curve u =constant. Denoting these by gu  and gv  respectively, we have Liouville’s formula  

                                    


 sincos gvgug
ds

d
++=                                         (10.23) 

Example 10.10 Bonnet’s formula for the geodesic curvature of the curve ),( vu .  

Solution. By differentiation, we have      

                              021 =+ vu                                                                                  (1) 

  So that                 


1

12

=
−


=

 vu
,  

where                2
121

2
2 2  GFE +−=    

again differentiating (1), we find  

                          02 2
2212

2
1121 =++++ vvuuvu   

which may be written  

                          02)( 2
2212

2
11 =+++− vvuuuvvu        

By means of these relations, we find that  

                           






 −




+






 −











 2112 EF

v

GF

u
     

            )2()2( 2222222 vnvumuluvHvvvuuvuH +++−+++=   

gH=  

Hence Bonnet’s formula for the geodesic curvature  

            






 −




+






 −




=








 2112 11 EF

vH

GF

uH
g                                                (2) 

From this result, we may deduce the geodesic curvature of a curve of a family defined by the 

differentiation equation  

                                 0=+QdvPdu                                                                             (3) 

For, on comparing this equation with (2), we see that the required value  
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













+−

−




+














+−

−




=

2222 2

1

2

1

GPFPQEQ

EQFP

vHGPFPQEQ

GPFQ

uH
g .  

10.9. Geodesic parallels Let a single infinity family of geodesics on the surface is taken as 

parametric curves v =constant, and their orthogonal trajectories as the curve u =constant. Then 0=F , 

the square of the linear element has the form  

                                    222 GdvEduds += .  

Further, since the curve v =constant, E is a function of u alone. Hence, if we take  duE  as a new 

parameter of u , we have  

                                          222 Gdvduds +=                                                        (10.24) 

Which is called the geodesic form 
2ds . Since E is now equal to unity, the length of an element of the 

arc of a geodesic is du ; and the length of a geodesic intercepted between the two trajectories au =  and 

bu =  is  

                                             −=
b

a

abdu .  

This is the same for all geodesics of the family and is called the geodesic distance between the two 

curves. On account of this property of minimum length characteristic of the arc of a geodesic joining 

two points on it. Consider, for example, the two points QP, in which a geodesic is cut by the parallel 

au = , bu = . The length of the arc of geodesic joining the two points is )( ab − . For any other curve 

joining them the length of the arc is  

                              +=
b

a

Q

P

Q

P

duGdvduds 22 ,  

Since G is positive. Thus the distance is least in the case of the geodesic. With the above choice of 

parameters, many results take a simpler form. Since G is positive it may be replaced by 
2D , so that  

                             
2222 dvDduds +=                                                                   (10.25) 

Then since 0=F and 1=E , we have GH =2
, so that  
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                       11
2

1
,0,0 DDGnml −=−===  ,  

                        
D

D

G

G
v

D

D

G

G 2211

2

1
,

2

1
,0 =====  .  

The Gauss characteristic equation becomes  

                       
2

22
1

11
2

42

1

u

G
G

G

G
GMLN




−=+−=− ,  

and therefore the specific curvature is  

                     
2

22 1

u

G

GG

MLN
K




−=

−
= ,  

  Or               
2

21

u

D

D
K




−=                                                                                   (10.26) 

The first curvature is  

                                 
G

N
LJ += .  

The general equation (10.4) of geodesics becomes  

                              









=−

=−

0)(

0

2
2

2

2
1

vDDvD
ds

d

vDDu

                                                        (10.27) 

And, the single equation (10.6) gives  

                        02 1

2

2

2

1
2

2

2

=+







+








+

du

dv
D

du

dv
D

du

dv
DD

du

vd
D .  

Example 10.11 (Beltrami’s theorem). Consider a single infinite family o geodesic, out by a curve C 

whose direction at any point P is conjugate to that of the geodesic through P. the tangent to the 

geodesics at the point of C generates a developable surface, and are tangents to its edge of regression. 

Beltram’s theorem is that the center of geodesic curvature at P, of that orthogonal trajectory of the 

geodesics which passes through the point, is the corresponding point on the edge of regression.  

Solution. Let the geodesics be taken as the curve v =constant, and their orthogonal trajectories as the 

curves u =constant. Then the square of the linear element has the geodesic form  
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                             222 Gdvduds +=   

The geodesic curvature of the parametric curve u =constant is  

                                
u

G

G
g




=

2

1
 .  

This is measured in the sense of rotation from 1r  to 2r .hence the distance  from P to the center of 

geodesic curvature, measured in the direction 1r , is given by  

                                  
u

G

G 


=

2

11


.  

Let r be the positive vector of the point P on the curve C, R that of the corresponding point Q on the 

edge of regression, r the distance PQ, also measured in the direction 1r . Then, since 1=E ,  

                                  1rrR r+= .  

Along with C, the quantities are functions of the arc-length s of the curve. Hence, on differentiation,  

                                   )()( 1211121 vurrvu ++++= rrrrrR .  

But, because the generators are tangents to the edge of regression, R are parallel to 1r and therefore 

parallel to 2r . In forming the scalar product with 2r , we have  

                                      











+=•+=

u

G
GvvrvG

2

1
0 122 rr ,  

the other term vanishing in virtue of relations 0=F and 1=E . Hence, since v is not zero,  

                                             
u

G

Gr 


−=

2

11
 

showing that =r . Therefore the point Q on the edge of regression is the center of geodesic curvature 

of the orthogonal trajectory of the geodesic.  

10.10. Geodesic polar coordinates An important particular case of the preceding is that in which 

the geodesic v =constant is the singly infinite family of geodesics through a fixed point O, called the 

pole. Their orthogonal trajectories are the geodesic parallel u =constant and we suppose u chosen so 

that the 1=E . If we take the infinitesimal trajectory at the pole as the curve 0=u , u  is the geodesic 

distance of a point from the pole. Hence the name geodesic circles given to the parallels u =constant 

when the geodesic is concurrent. We may take v  as the inclination of the geodesic at O to a fixed 
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geodesic of reference OA. The position of any point P on the surface is determined by the geodesic 

through O on which it lies, and its distance u  from O along the geodesic. These parameters vu,  are 

called the geodesic polar coordinates of P. they are analogous to plane polar coordinates. On a curve C 

drawn on the surface, let P and Q be consecutive points ),( vu and ),( dvvduu ++ . Then dv  is the angle 

at O between the geodesics OP and OQ. 

 

Let PN be an element of the geodesic circle through P, cutting OQ at N. Then ON=OP therefore 

NQ=du. And since the angle at N is a right angle,  

                          2222 dsPQduNP ==+  

                                    
222 dvDdu += ,  

showing that                 PN=Ddv. 

Hence if  is the angle NPQ, at which the geodesic cuts curves C,  

                
du

dv
D

ds

du

ds

dv
D ===  tan,cos,sin . 

And we may also notice that the area of the element of sur-bounded by the geodesic dvvv +,  and the 

geodesic circle duu+  is  

                                          DdudvdS = .  

If the curve C is itself a geodesic, we may write the first equation (10.27) for geodesic in the form  

                                        0sin)(cos 1 =−
ds

dv
D

ds

d
 ,  

    or                                      0sinsin 1 =+ dvDd  .  

O
A

v

cv

P

Q
N

u

Figure 10.2 
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Hence for a geodesic,           dvDd 1−=                                                             (10.28) 

It is also important to notice that the pole 1D  has v unity. To see this we consider a small geodesic circle 

distance from the pole. The element of the geodesic from the pole to the circle is practically straight, 

and the element of the geodesic is therefore udv to the first order. Thus near the origin  

                           D=u + term of higher-order, 

And therefore, at the pole, 11 =D .  

10.11. Geodesic triangle If dS is the area of an element to the surface at a point where the specific 

curvature is K, we have KdS the second curvature of the element, and  KdS taking any portion of the 

surface is the whole second curvature of the portion. We shall now prove a theorem, due to Gauss, on 

the second curvature of the curvilinear triangle ABC bounded by geodesics. Such a triangle is called a 

geodesic triangle, and Gauss’s theorem may be stated: the whole second curvature of a geodesic triangle 

is equal to the excess of the sum of the angles of the triangle over two right angles.  

Let us choose geodesic polar coordinates with vertex A as the pole. Then the specific curvature is 

2

21

u

DK

D
K




−=  and the area of the element of the surface is Ddudv. Consequently, the whole second 

curvature   of the geodesic triangle is  

                                       dudv
u

D
KdS  




−= =

2

2

.  

Integrate first with respect to u from the pole A to side BC.  

 

Then since at the pole 1D  is equal to unity, we find on integration  

A

B

C



Figure 10.3 
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                                    dvD −= )1( 1 ,  

where the integration with respect to v  is along the side BC. But we have seen that, for a geodesic  

                                ddvD =− 1 .  

Hence our formula may be written  

                                  += ddv .  

Now the first integral, taken from B to C, is equal to angle A of the triangle. Also  

                                  )( BCd −−=  .  

Hence the whole second curvature of the triangle is given by  

                                −++= CBA                                                                 (10.29) 

as required. The specific curvature is positive, zero, or negative according to as the surface is synclastic, 

developable, or anticlastic. Consequently CBA ++  is greater than  for a synclastic surface, equal to 

  for a developable, and less than   for an anticlastic surface. When the surface is a sphere Gauss’s 

theorem is identical to Girard’s theorem on the area of a spherical triangle.  

10.12. Theorem on parallels An arbitrarily chosen family of curves, ),( vu =constant, does not, in 

general, constitute a system of geodesic parallels. So that they may do so, the function ),( vu  must 

satisfy a certain condition, which may be found as follows. If the family of curves ),( vu =constant is 

geodesic parallel to the family of geodesic ),( vu =constant, the square of the linear element can be 

expressed in the geodesic form  

                                  2222  dDedds +=  

where e is a function of  only, and D is a function of   and  .  

Equating two expressions 
2ds , we have the identity  

              2
21

22
21

22 )()(2 dvduDdvdueGdvFdudvEdu  +++=++      

and therefore                 2
2

22
1  DeE += ,  

                                      21
2

21  DeF += ,  

                                        2
2

22
2  DeG += .  



Differential Geometry    MAL-642 

DDE, GJUS&T, Hisar  292 | 

 

Consequently, eliminating 1  and 2 , we must have  

                     0)())(( 2
21

2
2

2
1 =−−−−  eFGeE                                                     (*) 

which is equivalent to  

                               
e

EFG
H

1
)2(

1 2
221

2
12

=+−                                               (10.30) 

Thus so that the family of curves ),( vu =constant may be a family of geodesic parallels,  

                              22
221

2
1 /)2( HEFG  +−     

must be a function of  only, or a constant.  The condition is also sufficient. For  

22
221

22
1

22 )()(2)( dveGdudveFdueEedds  −+−+−=−   

and this regarded as a function of du  and dv , is a perfect square, in virtue of (*) being satisfied. We 

can therefore write it as 22 dD , so that  

                                   2222  dDedds += ,  

Proving the sufficiency of the condition. So 0= , it is necessary and sufficient that 1=e , that is  

               22
221

2
1 2 HEFG =+−                                                                   (10. 03  ) 

10.13. Geodesic ellipses and hyperbolas Let two independent systems of geodesic parallels be 

taken as parametric curves, and let the parametric variables be chosen so that u and v  are the actual 

geodesic distances of the point ),( vu  from the particular curves 0=u and 0=v (or form the poles in 

case the parallels are geodesic circles). Then since the curves u =constant and v =constant are geodesic 

parallels for which 1=e , we have  

                    
2HGE == .  

Hence, if  is the angle between the parametric curves, it follows that  

                             
2sin

1
==GE ,   




2sin

cos
=F ,  

so that the square of the linear element is  

                          



2

22
2

sin

cos2 dvdudvdu
ds

++
=                                                    (10.31) 
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And conversely, when the linear element is of this form, the parametric curves are systems of geodesic 

parallels.  

 

With this choice of parameters the locus of a point for which vu+ =constant is called a geodesic ellipse. 

Similarly the locus of a point for which vu − =constant is a geodesic hyperbola. If we put  

                            )(
2

1
),(

2

1
vuvvuu −=+=                                                     (10.32) 

The above expression 2ds  becomes  

                                  

2
cos

2
sin 2

2

2

2
2



vdud
ds +=                                                       (10.33) 

Showing that the curves u =constant and v =constant are orthogonal. But these are geodesic ellipses 

and hyperbolas. Hence a system of geodesic ellipses and the corresponding system of geodesic 

hyperbolas are orthogonal. Conversely, whenever 
2ds is of the form (10.33), the substitution (10.32) 

reduces it to the form (10.31), showing that the parametric curves in (10.33) are geodesic ellipses and 

hyperbolas.  

   Further, if   is the inclination of the curve v =constant to the curve v =constant, it follows that  

                                       
2

sinsin,
2

coscos





 == ,  

and therefore                      
2


 =  .  

Figure 10.4 

0=u


v

0=v
u

P
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Thus the geodesic ellipses and hyperbolas bisect the angles between the corresponding systems of 

geodesic parallels. 

10.14. Liouville surfaces Surfaces for which the linear element is reducible to the form  

                                     ))(( 222 QdvPduVUds ++=                                           (10.34) 

in which U, P are functions of u alone, and V, Q are functions of v  alone, were first studied by 

Liouville, and are called after him. The parametric curves constitute an isometric system. It is also easy 

to show that they are a system of geodesic ellipses and hyperbolas. For if we change the parametric 

variables by the substitution  

                             
V

vd
dvQ

U

ud
duP == , , 

The parametric curves are unaltered, and the linear element takes the form  

                                













++=

V

vd

U

ud
VUds

22
2 )( .  

But this is of the form (10.33), where  

                                  
VU

V

VU

U

++
=

2
cos,

22
sin 22 

.  

Hence the parametric curves are geodesic ellipses and hyperbolas.  

   Liouville also showed that, when 
2ds  has the form (10.34), a first integral of the differential 

equation of geodesics is given by  

                                     22 cossin VU − =constant                                            (10.35) 

Where  is the inclination of the geodesic to the parametric curve v =constant. To prove this, we observe 

that 0=F , while  

                                QVUGPVUE )(,)( +=+= , 

so that                     QUGPVUPUE 1111 1,)( =++= ,  

                                QVUQVGPVE )(, 2222 ++== . 

Taking the general equations (10.4) of the geodesics, multiplying the first by Vu−2 , and the second by 

Uv2  , and adding, we may arrange the result in the form  
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           }){(}){()( 11
2

22
222 GUGVUvuEVEVUvuuVEUGv

ds

d
−+−−+=−   

Now the second member vanishes identically in virtue of the preceding relations. Hence  

                        22 uVEvUG − = constant, 

which is equivalent to  

                        22 cossin VU − = constant, as required.  

Example 10.11 If on the geodesic through a point O, points be taken at equal  geodesic distances 

from O, the locus of the points is an orthogonal trajectory  of the  geodesics. 

Solution. Let the geodesic through the pole O be taken as the curve v =constant, and  let u denote 

the geodesic distance measured from the pole. We have to show  that the parametric curves are 

orthogonal. Since the element of the arc of a  geodesic is du , it follows that 1=E . Also since the curve 

v =constant are  geodesic, 0= . Hence 01 =F , so that F is a function of v  alone. Now at the 

 pole, 2r is zero, and therefore F=• 21 rr is at the pole. But F is independent of  u , and 

therefore it vanishes along any geodesic. Thus F vanishes identically,  and the parametric curves are 

orthogonal.  

10.15 CHECK YOUR PROGRESS 

SA1: Deduce the geodesic curvatures of the parametric curves.  

SA2:  A curve C touches the parametric curve v =constant. Find its curvature relative  to the 

parametric curve at the point of contact.  

SA3:  Find the geodesic curvature of a parallel on a surface of revolution.  

SA4:  Deduce the geodesic curvature of the curve v = constant and u =constant. 

SA5:  When the curves of an orthogonal system have constant geodesic curvature,  the system is 

isometric.  

SA6:  If the curve of one family of an isometric system has constant geodesic  curvature, so also 

have the curves of the other family.  

SA7:  Straight lines on a surface are the only asymptotic lines that are geodesics.  

SA8:  Find the geodesics of an ellipsoid of revolution.  

SA9:  If two families of geodesics out at a constant angle, the surface is developable.  
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SA10:  A curve is drawn on a cone, semi-vertical angle  , to cut the generators at a  constant angle 

 . Prove that the torsion of its geodesic tangent is  )tan/(cossin  R , where R is the distance from 

the vertex. 

SA11:  Prove that any curve is a geodesic on the surface generated by its binormals,  and an 

asymptotic line on the surface generated by its principal normals.  

SA12:  Find the geodesics on the catenoid of revolution 
c

z
cu cosh= .  

SA13:  if a geodesic on a surface of revolution cuts the meridian at a constant angle,  the surface is 

a right cylinder.  

SA14:  If the principal normals of a curve intersect a fixed line, the curve is a geodesic  on a surface 

of revolution, and the fixed line is the axis of the surface.  

SA15:  A curve for which  / is constant is a geodesic on a cylinder, and a curve for  which 

)/( 
ds

d
is constant is a geodesic on a cone.  

SA16:  Show that the family of curves given by the differential equation  0=+QdvPdu will constitute 

a system of geodesic parallel provided  

                














+−


=















+−



2222 22 GPFPQEQ

HP

vGPFPQEQ

HQ

u
.  

SA17:  If on geodesics which cut a given curve C orthogonally, points be taken at an  equal 

geodesic distance from C, the locus of the points is an orthogonal  trajectory of the geodesics.  

SA18:  Necessary and sufficient conditions that a system of geodesics coordinates be  polar are that 

G  vanish with u , and 1/ = uG when 0=u .  

SA19:  Two points A, B on the surface are joined by a fixed curve 0C  and a variable  curve C, 

enclosing between them a portion of the surface of the constant area.  Prove that the length of C is 

least when its geodesic curvature is constant.  

SA20: If in the previous example the length of C is constant, prove that the area  enclosed is greatest 

when the geodesic curvature of C is constant.  
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SA21:  If the tangent to a geodesic is inclined at a constant angle to a fixed direction,  the normal to 

the surface along the geodesic is everywhere perpendicular to  the fixed direction.  

SA22:  Two surfaces touch each other along a curve. If the curve is geodesic on one  surface, it is 

geodesic on other surfaces also.  

SA23:  The ratio of the curvature to the torsion of a geodesic on a developable surface  is equal to the 

tangent of the inclination of the curve to the corresponding  generating line.  

SA24:  If the geodesic on a developable surface is a plane curve, it is one of the  generators, or else the 

surface is a cylinder.  

SA25: If a geodesic on a surface lies on a sphere, the radius of curvature of the  geodesic is equal to 

the perpendicular from the centre of the sphere on the  tangent plane to the surface.  

SA26: The locus of the centre of geodesic curvature of a line of curvature is an evolute of the latter.  

SA27:  The orthogonal trajectories of the helices on a helicoid are geodesic.  

SA28:  If the curve −=== duuf
c

zuufyuufx )(
1

,sin)(,cos)( 2
 is given a  helicoid's 

motion of pitch c2  about the z-axis, the various positions of the  curve are orthogonal trajectories of 

the helices, and also geodesic on the  surface.  
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