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Chapter-1 

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS -I   
 

 

Objectives 

This chapter will be devoted to explaining the main concepts of the systems of 

linear differential equations. Some theorems concerning the fundamental matrix of 

such systems will be proved. Relations between Wronskian and linear 

independence/dependence of solutions of such systems will be developed.   

Introduction  

 We have already studied single differential equation of different types and 

obtained the existence and uniqueness of solution of initial value problem of first 

order equations which are not necessarily linear. But in some practical situations we 

have to deal with more than one differential equation with many variables or 

depending upon a single variable. Such system of equations arise quite naturally in the 

analysis of certain physical situations. There is a very important class of differential 

equations known as linear differential equations, for which a general and elaborate 

theory is available. Apart from their theoretical importance, these equations are of 

great significance in physics and engineering in the problem of oscillation and electric 

circuits among others. This chapter extends the theory to a system of linear equations 

which give rise to the study of matrix differential equation, which will include both 

homogeneous and non-homogeneous type.  

Types of Linear Systems 

 The general linear system of two first-order differential equations in two 

unknown functions x and y is of the form  

 ),()()()()( 14321 tFytaxta
dt
dyta

dt
dxta =+++     

 )()()()()( 24321 tFytbxtb
dt
dytb

dt
dxtb =+++   (1) 
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 A solution of system (1) is an ordered pair of real functions (f, g) such that      

x = f(t),   y = g(t) simultaneously satisfy both equations of the system (1) on some real 

interval a ≤ t ≤ b. 

 The general linear system of three first-order differential equations in three 

unknown functions x,  y  and z is of the form  

 

).()()()()()()(

),()()()()()()(

),()()()()()()(

3654321

2654321

1654321

tFztcytcxtc
dt
dztc

dt
dytc

dt
dxtc

tFztbytbxtb
dt
dztb

dt
dytb

dt
dxtb

tFztaytaxta
dt
dzta

dt
dyta

dt
dxta

=+++++

=+++++

=+++++

 (2) 

 A solution of system (2) is an ordered pair of real functions (f, g, h) such that  

x = f(t),   y = g(t),  z = h(t) simultaneously satisfy all three equations of the system (2) 

on some real interval a ≤ t ≤ b. 

 We shall consider the standard type as a special case of linear system (1), 

which is of the form  

  ),()()( 11211 tFytaxta
dt
dx

++=    

  ).()()( 22221 tFytaxta
dt
dy

++=   (3) 

 This is the so-called normal form in the case of two linear differential 

equations in two unknown functions. We shall assume that the functions a11, a12, F1, 

a21,  a22, and F2 in (3) are all continuous on a real interval a ≤ t ≤ b. If F1(t) and F2(t) 

are zero for all t, then the system (3) is called homogeneous; otherwise, the system is 

said to be non-homogeneous. An example of such a system with variable coefficients 

is  

   ,)1( 32 tytxt
dt
dx

+++=  

  ,3 tt eytxte
dt
dy

−+=  

while one with constant coefficients is  
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  ,75 2tyx
dt
dx

++=  

  .232 tyx
dt
dy

+−=  

 The normal form in the case of a linear system of three differential equations 

in three unknown functions x, y, and z is  

  ),()()()( 1131211 tFztaytaxta
dt
dx

+++=  

  ),()()()( 2232221 tFztaytaxta
dt
dy

+++=  

  )()()()( 3333231 tFztaytaxta
dt
dz

+++=  

   An example of such a system with constant coefficients is  

  ,23 tzyx
dt
dx

+++=  

  ,542 2tzyx
dt
dy

−+−=  

  .1234 ++−+= tzyx
dt
dz  

 The normal form in the general case of a linear system of n differential 

equations in n unknown functions x1, x2……., xn is 

   ),()(.........)()( 11212111
1 tFxtaxtaxta

dt
dx

nn ++++=   

  ),()(.........)()( 22222121
2 tFxtaxtaxta

dt
dx

nn ++++=   

   Μ  

  ).()(.........)()( 2211 tFxtaxtaxta
dt

dx
nnnnnn

n ++++=   (4) 

 An important fundamental property of a normal linear system (4) is its 

relationship to a single nth – order linear differential equation in one unknown 
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function. Consider the so-called normalized (the coefficient of the highest derivative 

is one) n-th order linear differential equation.  

  )()()(......)( 11

1

1 tFxta
dt
dxta

dt
xdta

dt
xd

nnn

n

n

n

=++++ −−

−

 (5) 

in the one unknown function x. Let  

   x1 = x,    ,2 dt
dxx =  

  .     ,,......, 1

1

2

2

12

2

3 −

−

−

−

− === n

n

nn

n

n dt
xdx

dt
xdx

dt
xdx  (6) 

From (6) we have  

  . ,,.....,   , 1
1

1
2

2

2
1

dt
dx

dt
xd

dt
dx

dt
xd

dt
dx

dt
xd

dt
dx

dt
dx n

n

n
n

n

n

==== −
−

−

 (7) 

 Then using both (6) and (7), the single n-th order equation (5) can be 

transformed into 

   ,2
1 x

dt
dx

=  

   

),()(...)()(

    

,

1211

1

3
2

tFxtaxtaxta
dt

dx

x
dt

dx

x
dt

dx

nnn
n

n
n

+−−−−=

=

=

−

−

Μ

 (8) 

which is a special case of the normal linear system (4) of n equations in n unknown 

functions. 

Homogeneous Linear Systems   

 We shall now assume that F1(t) and F2(t) in the system (3) are both zero for all 

t and consider the basic theory of the resulting homogeneous linear system.  

   ,)()( 1211 ytaxta
dt
dx

+=    
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   ,)()( 2221 ytaxta
dt
dy

+=   (9) 

Theorem 1.1  

Hypothesis   Let  

   x = f1(t),  x = f2(t)      

and   y = g1(t), y = g2(t),  (10) 

be two solutions of the homogeneous linear system (9). Let c1 and c2 be two arbitrary 

constants.  

Conclusion Then 

   x = c1f1(t) + c2f2(t),   (11) 

   y = c1g1(t) + c2g2(t) 

is also a solution of the system (9) 

 The solution (11) is called a linear combination of the solutions (10). 

Definition 

Let   x = f1(t),  x = f2(t),      

and   y = g1(t), y = g2(t), 

be two solutions of the homogeneous linear system (9). These two solutions are 

linearly dependent on the interval a ≤ t ≤ b if  there exist constants c1 and c2, not both 

zero, such that    

   0,  (t)fc  (t)fc 2211 =+   

   0,  (t)gc  (t)gc 2211 =+   (12) 

for all t such that a ≤ t ≤ b. 

Definition 

Let  

   x = f1(t),  x = f2(t), 

and   y = g1(t), y = g2(t), 



  

 6

be two solutions of the homogeneous linear system (9). These two solutions are 

linearly independent on the interval a ≤ t ≤ b if they are not linearly dependent a ≤ t ≤ 

b. That is, the solutions x = f1(t), y = g1(t) and x = f2(t),  y = g2(t) are linearly 

independent on a ≤ t ≤ b if   

   0,  (t)fc  (t)fc 2211 =+    

   0,  (t)gc  (t)gc 2211 =+    (13) 

for all t such that a ≤ t ≤ b 

   c1 = c2 = 0. 

Definition 

Let    

    x = f1(t),  x = f2(t), 

and    y = g1(t), y = g2(t), 

be two solutions of the homogeneous linear system (9). The determinant  

   
(t)g(t)g 
(t)f(t)f

21

21   (14) 

is called the Wronskian of these two solutions. We denote it by W(t). We may now 

state the following useful criterion for the linear independence of two solutions of 

system (9). 

Theorem 1.2 

Two solutions  

      x = f1(t),  x = f2(t), 

and   y = g1(t), y = g2(t), 

of the homogeneous linear system (9) are linearly independent on a interval a ≤ t ≤ b 

if and only if their Wronskian determinant.  

     
(t)g(t)g 
(t)f(t)f

)(
21

21=tW  (15) 
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is different from zero for all t such that a ≤ t ≤ b. Concerning the values of W(t), we 

also state the following results. 

Theorem 1.3 

Let W(t) be the Wronskian of two solutions of homogeneous linear system (9) on the 

interval a ≤ t ≤ b. Then either W(t) = 0 for all t∈ [a, b] or W(t) = 0 for no t ∈ [a, b].  

Example 

Let us employ theorem 1.2 to verify the linear independence of the solutions  

   x = e5t,  x = e3t, 

and   y = -3e5t, y = -e3t,  

of the system    

       yx
dt
dx

−= 2   

   yx
dt
dy 63 +=  

We have  

   02
e-3e- 

ee
)( 8

3t5t

3t5t

≠== tetW  

on every closed interval a ≤ t ≤ b. Thus by Theorem 1.2 the two solutions are indeed 

linearly independent on a ≤ t ≤ b. 

 Before proceeding further, we state without proof the following two theorems 

from algebra.  

Theorem A  A system of n homogeneous linear algebraic equations in n unknowns 

has a nontrivial solution if and only if the determinant of coefficients of the system is 

equal to zero.  

Theorem B  A system of n linear non-homogeneous algebraic equations in n 

unknowns has a unique solution if and only if the determinant of coefficients of the 

system is unequal to zero.  
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Characteristic Values and Characteristic Vectors.  

 Let A be a given n x n square matrix of real numbers, and let S denote the set 

of all n x 1 column vectors of numbers. Now consider the equation  

   Ax  = λx  (14) 

in the unknown vector x ∈S, where λ is a number. Clearly the zero vector 0 is a 

solution of this equation for every number λ. We investigate the possibility of finding 

nonzero vectors x ∈S which are solutions of (14) for some choice of the number λ.  

Definitions 

 A characteristic value (or eigenvalue) of the matrix A is a number λ for 

which the equation Ax = λx has a nonzero vector solution x.  

 A characteristic vector (or eigenvector) of A is a nonzero vector x such that 

Ax = λx for some number λ. 

The Matrix method for homogeneous linear systems with constant coefficients: n 

equations in n unknown functions: 

We consider a homogeneous linear system of the form 

   

,...

,...

,...

2211

2222121
2

1212111
1

nnnnn
n

nn

nn

xaxaxa
dt

dx

xaxaxa
dt

dx

xaxaxa
dt
dx

+++=

+++=

+++=

Μ

     (15) 

where the coefficients aij, (i = 1, 2,…, n ; j = 1, 2,…, n), are real constants. 

 We will express this system in vector-matrix notation. We introduce the n x n 

constant matrix of real numbers  

   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

aaa

aaa
aaa

A

Λ
ΜΜΜ

Λ
Λ

21

22221

11211

   (16) 



  

 9

and the vector 

    

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nx

x
x

Μ
2

1

x    (17) 

Then by definition of  the derivative of a vector,  

    

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

dt
dx

dt
dx
dt
dx

dt
d

n

Μ

2

1

x ; 

and by multiplication of a matrix by a vector, we have  

  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nnnn

n

n

aaa

aaa
aaa

A

Λ
ΜΜΜ

Λ
Λ

21

22221

11211

x  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

nx

x
x

Μ
2

1

 = 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

+++

+++
+++

nnnnn

nn

nn

xaxaxa

xaxaxa
xaxaxa

...

...

...

2211

2222121

1212111

Μ
 

 Comparing the components of dx/dt with the left members of (15) and the 

components of Ax with the right members of (15), we see that system (15) can be 

expressed as the homogeneous linear vector differential equation 

    .xx A
dt
d

=   (18) 

 The real constant matrix A that appears in (18) and is defined by (16) is called 

the coefficient matrix of (18). 

Definition 

By a solution of the system (15), that is, of the vector differential equation (18), we 

mean an n x 1 column-vector function 

   ,2

1

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nφ

φ
φ

Μ
φ  
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whose components, 1φ , 2φ ,…, nφ  each have a continuous derivative on the real 

interval a ≤ t ≤ b, and which is such that  

   ),(...)()()(
1212111

1 tatata
dt

td
nnφφφφ

+++=  

   ),(...)()()(
2222121

2 tatata
dt

td
nnφφφφ

+++=  

   Μ 

   ),(...)()()(
2211 tatata

dt
td

nnnnn
n φφφφ

+++=  

for all t such that a ≤ t ≤ b. In other words, the components 1φ , 2φ ,…, nφ of φ are such 

that  

     

)(

)(
)(

22

11

tx

tx
tx

nn φ

φ
φ

=

=
=

Μ
 

simultaneously satisfy all n equations of the system (15) identically on a ≤ t ≤ b.  

Theorem 1.4 

 Any linear combination of n solutions of the homogeneous linear system (15) 

is itself a solution of the system (15) 

Theorem 1.5 

 There exist sets of n linearly independent solutions of the homogeneous linear 

system (15). Every solution of the system can be written as a linear combination of 

any n linearly independent solutions of (15).  

Definition   

Let  

   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

nn

n

n

nn φ

φ
φ

φ

φ
φ

φ

φ
φ

Μ
Κ

ΜΜ
2

1

2

22

12

1

21

11

,,, n21 φφφ  
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be n linearly independent solutions of the homogeneous linear system (15). Let c1, 

c2,...,cn be n arbitrary constants. Then the solution  

   ),()()( 21 tctctc n n21 φφφx +++= Κ  

that is,  

   

),()()(
                             

),()()(
),()()(

2211

22222112

11221111

tctctcx

tctctcx
tctctcx

nnnnnn

nn

nn

φφφ

φφφ
φφφ

+++=

+++=
+++=

Κ
Μ

Κ
Κ

  

is called a general solution of the system (15) 

Theorem 1.6 

 n solutions  1φ , 2φ ,…, nφ  of the homogeneous linear system (15) are linearly 

independent on an interval a ≤ t ≤ b if and only if  

0))(( ≠tW n21 φ,...,φ,φ  

for all t ∈ [a, b] 

Concerning the values of ),( n21 φ,...,φ,φW  we also state the following result.  

Theorem 1.7 

 Let   1φ , 2φ ,…, nφ   be n solutions of the homogeneous linear system (15) on 

an interval a ≤ t ≤ b. Then either 0))(( =tW n21 φ,...,φ,φ for all t ∈ [a, b] or 

0))(( =tW n21 φ,...,φ,φ for no t ∈ [a, b]. 

Preliminary Definitions and Notations 

 If A is a matrix of complex numbers (aij) with n rows and n columns, define 

the norm, A , of A by  

    ∑
=

=
n

ji
ijaA

1,
   (1) 

 In case x is an n – dimensional vector, represented as a matrix of n rows and 

one column, then the vector magnitude coincides with the norm of x as defined by (1). 

The norm satisfies the following properties  
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 (i) BABA +≤+   

 (ii) BAAB   ≤  

 (iii) xAAx   ≤   

where A and B are matrices, and x is an n-dimensional vector.  

 The distance between two matrices A and B is defined by  BA − , and this 

distance satisfies the usual properties of a metric.  

 The zero matrix will be denoted by 0, and the unit matrix by E. These n-by-n 

matrices will be denoted by 0n and En, respectively. Note that   0,0 =n and n, =nE  

and not 1.  

 The complex conjugate matrix of A = (aij), denoted by A , is defined by 

),a(A ij= where  ija  is the complex conjugate of aij. The transposed matrix of A, 

denoted by A', is defined by A' = (aji). The conjugate transposed matrix of A is        

A* = 'A . Note that .' * AAAA ===  Also (AB)* = B* A*. The determinant of A 

is denoted by det A.  

 If det A = 0, then A is said to be singular. A nonsingular matrix A possesses 

an inverse (or reciprocal), A-1, which satisfies 

   AA-1 = A-1 A = E 

 The polynomial in λ of degree n, det  (λE-A), is called the characteristic 

polynomial of A, and its roots are the characteristic roots of A. If these roots are 

denoted by λi, i = 1, . . . , n, then clearly  

    det  (λE - A) = ∏
=

−
n

i
i

1
)( λλ   

 Two n-by-n complex matrices A and B are said to be similar if there exists a 

nonsingular n-by-n complex matrix P such that 

    B = P A P-1 

 If A and B are similar, then they have the same characteristic polynomial,  

for   
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   det  (λE - A) = det  (P (λE - A)P-1) 

    = det  P det (λE - A) det P-1 

    = det  (λE - A) 

 In particular, the coefficients of the powers of λ in det (λE - A) are invariant 

under similarity transformations. Two of the most important invariants are det A and 

tr A, the determinant and trace of A, respectively.  

 If {Am} is a sequence of matrices, this sequence is said to be convergent 

if, given any ∈ > 0, there exists a positive integer N∈ such that 

 ε<− pq AA     whenever p, q > N∈ 

The sequence {Am} is said to have a limit matrix A if, given any ∈ > 0, 

there exists a positive integer N∈, such that 

 ε<− AAm     whenever m > N∈  

 Clearly {Am} is convergent if and only if each of the component sequences is 

convergent, and this implies that {Am} is convergent if and only if there exists a 

limit matrix to which it tends. 

The infinite series 

∑
∞

=1m
mA  

is said to be convergent if the sequence of partial sums is convergent, and the 

sum of the series is defined to be the limit matrix of the partial sums. 

 The following fundamental result concerning the canonical form of a 

matrix is assumed.  

Theorem 1.8 Every complex n - by- n matrix A is similar to a matrix of the 

form  

 

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

sJ

J
J

J

Λ
Κ
Λ
Λ

000
....
000
000

1

0
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where J0 is a diagonal matrix with diagonal λ1, λ2,. . ., λq, and  

 ),...,1(

00000
10000
......
00010
00001

siJ

iq

iq

iq

iq

i =

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

+

+

+

+

λ
λ

λ
λ

Λ
Λ
Λ
Λ
Λ

     

 The λj,  j = 1,…, q + s, are the characteristic roots of A, which need not all be 

distinct. If λj is a simple root, then it occurs in J0, and therefore, if all the roots are 

distinct, A is similar to the diagonal matrix.  

   

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

n

1

1

λ000
....
00λ0
000λ

J

Κ
Κ
Λ
Λ

 

 From Theorem 1.8 it follows immediately that  

   det  A = ,∏ iλ      tr A =  ∑ iλ  

where the product and sum are taken over all roots, each root counted a number of 

times equal to its multiplicity. The Ji are of the form 

 Ji = λq+i Eri + Zi 

where Ji has ri rows and columns, and  

  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

000000
100000
......
000100
000010

Λ
Λ
Κ
Λ
Λ

iZ  

An equally valid form of Ji is λq+i Eri + γZi , where γ is any constant not  zero. 

The matrix 2
iZ  has its diagonal of 1s moved one element to the right from that of Zi 

and all other elements zero. From this it follows that ir
iZ  is a matrix which contains 

all zeros except for a single 1 in the first row and last column. Hence ir
iZ is the zero 

matrix, and Zi is nilpotent. 
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A particular series which is of great importance for the study of linear 

equations is the one defining the exponential of a matrix A, namely, 

 ∑
∞

=

+=
1m

m
A

m!
AEe  (2) 

where Am represents the m-th power of A. The series defining eA is convergent for all 

A, since for any positive integers p, q,  

 ∑∑
+

+=

+

+=

≤
qp

1m1 !
A

      
! p

mqp

pm

m

mm
A   

and the r.h.s. represents the Cauchy difference for the series e⎟ A⎟ which is convergent 

for all finite ⎟A⎟. Also  

 AA ene +−≤ )1(    (3) 

 For matrices, it is not in general true that eA+B = eAeB, but this relation is valid 

if A and B commute.  

 Every matrix A satisfies its characteristic equation det (λE – A) = 0 and this 

remark is sometimes useful for the actual calculation of eA. As a simple example, if  

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
10

A  

then det (λE – A) =  λ2 = 0, and therefore A2 = 0, which implies Am = 0, m > 1. 

Hence,  

  eA = E + ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00
10

A  

Using all these observations, we will prove the basic theorem:  

If B is a nonsingular matrix, then it will be shown that there exists a matrix A 

(called a logarithm of B) such that eA = B. Indeed, if B is in the canonical form J of 

Theorem 1.8, it is evident that A can be taken as  
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

s

1

0

A000
....
00A0
000A

A

Λ
Κ
Λ
Λ

 

provided that eAj = Jj, j = 0, 1, . . ., s. It is also easily verified that a suitable A0 is given 

by 

  

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

q

2

1

0

logλ00
...
0logλ0
00logλ

A

Λ
Κ
Λ
Λ

 

Clearly  

  Jj = λq+j ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
j

jq
rj ZE

λ
1

 

where Zj is the nilpotent matrix defined after Theorem 1.8. Since large powers of Zj 

all vanish, the series 

  k
j

k
jq

k

k Zk −
+

∞

=

−+∑ − )()1(
1

11 λ  

has only a finite number of terms, and is thus convergent. Define 

  log  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
j

jq
rj ZE

λ
1

 

to be this series, which is, of course, a polynomial in jjq Z1−
+λ . Thus  

F ( )jjq Z1−
+λ  = exp [log (Erj + jjq Z1−

+λ )]  

is a polynomial in jjq Z1−
+λ . On the other hand, from  

1 + x = elog(1+x) 

  = 1 + 1,
2
1

!2
1

2
1 2

22 <+⎟
⎠
⎞

⎜
⎝
⎛ +−+⎟

⎠
⎞

⎜
⎝
⎛ +− xxxxx ΛΛΛ   
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It follows that, when the right member is rearranged, the coefficients of xk, ,2≥k are 

all zero, while the coefficient of x is 1. This implies the same result for F, and proves 

that  

  exp [log (Erj + jjq Z1−
+λ )] = Erj + jjq Z1−

+λ  

From this follows readily that a suitable Aj, j=1, . . .,s, is given by 

  Aj =  (log  λq+j) Erj + log  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+

+
j

jq
rj Z

λ
1E  

Using the fact that for any matrix M,  

  (PMP-1)k = PMk P-1 (k = 1, 2, . . . ) 

one readily see that  

  PeMP-1  = 
-1PMP e  

 From this it follows that the result just sketched for a canonical matrix B is 

valid for any nonsingular matrix B. Indeed, if J = eA and B= PJP-1, then B = eA, where 
-1PAPA~ =    

Definition 

 If Φ is an n x n matrix of functions defined on a real t-interval I (the functions 

may be real or complex), then Φ is said to be continuous, differentiable or analytic on 

I, if every element of Φ is continuous, differentiable or analytic function of t on I.  

   Φ= It

tt

tt

nnn

n

∈

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

,

)()(

)()(

1

111

φφ

φφ

ΛΛ
ΛΛΛΛΛΛ
ΛΛΛΛΛΛ

ΛΛ

 

If Φ is differentiable on I, then Φ' denotes the matrix of derivatives i.e.  

    Φ'  =  )]('[ tijφ   

Note: If Φ and ψ are two differentiable n x n matrix functions, then  

    (Φψ)' =  Φ' ψ +   Φψ' 

and that Φ' ψ ≠  Φ ψ'  in general.  
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Remark 

 If Φ is a non-singular matrix and Φ'(t) exist, then show that Φ-1 is 

differentiable at t and find ( )′Φ−1 . 

Proof As A-1  = Adj A / ⎟A⎟ 

    1−Φ  = 
Φ

Φ
det

~
,   where ( )ijφ~~ =Φ    (1)      

and  ijφ~  is the cofactor of jiφ . Equation (1) shows that 1−Φ  is differentiable at t as Φ 

is differentiable at t.  

 [Adj A = Transpose of matrix of co-factors]  

 Now we find ( )  1 ′
Φ− . 

 We know that  Φ Φ-1 = E 

⇒ ( )′ΦΦ −1  = E' = 0 

⇒ ( )′ΦΦ −1  =  - Φ′  1−Φ   

Pre-multiplying both sides by  1−Φ  

  ⇒ ( )′Φ−1    =   -  1−Φ   Φ′   1−Φ  

   where det Φ ≠ 0  

Theorem 1.9 

 The set of all solutions of the system  

  x'(t) = A(t) x(t),  (1) 

  x(t0) = x0,        t, t0 ∈ I 

forms an n-dimensional vector space over the field of complex numbers.  

Proof  

 First we shall show that the set of all solutions forms a vector space and then 

establish that it is of dimension n.  

 Let x1 and x2  be the two solutions of (1)  
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Then   )()()(     ),()()( 2211 txtAtxandtxtAtx =′=′  

Now for any constants c1 and c2, we get  

  221122112211 )()(][ xtAcxtAcxcxcxcxc
dt
d

+=′+′=+  

   = A(t) [c1x1 + c2x2] 

so that   [c1x1 + c1x2]' = A(t) [c1x1 + c2x2] 

which proves that if x1 and x2 are two solutions of (1), then c1x1 + c2x2 is also a 

solution of (1). This shows that the solutions form a vector space. 

 We note that each solution is an n-tuple. More precisely it is a column vector 

consisting of n components. We shall show that this vector space of solutions is of 

dimension n. For this we have to prove that the solution space contains n- linearly 

independent vectors which span the space.  

 Let ei = (0, 0, …, 1, 0 0…0) where 1 is in the i-th place. We know that {ei,        

i = 1, 2, 3, …,n} is the standard basis for Rn. We shall construct a basis of solutions 

with the help of ei’s. By the existence theorem, given t0∈ I, there exist solutions xi,     

i = 1, 2, 3… such that  

  x1(t0) = e1, x2(t0) = e2,....., xn(t0) = en (2) 

 We shall show that x1, x2, …, xn is a linearly independent set which spans the 

space of solutions.  

 If x1, x2, ….., xn are not linearly independent in Rn, there must exist scalars c1, 

c2,…..cn, not all zero, such that 

  c1x1(t) + c2x2(t) + … + cnxn(t) = 0, t∈ I (3)  

Since (3) is true for all t∈ I, it is true in particular for t = t0 so that we have  

  c1x1(t0) + c2x2(t0) + … + cnxn(t0) = 0 (4) 

Using (2) is (4), we get  

  c1e1 + c2e2 + … + cnen = 0 (5) 

which is a contradiction to the hypothesis that e1, e2,… en is a linearly independent set 

in Rn. 
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This proves that xi’s are linearly independent.  

 Let x be any solution of (1) on I such that x(t0) = x0. Since x0 ∈ Rn, there 

exists unique scalars ci, i = 1, 2,… n such that  

  ∑
=

=
n

i
iiectx

1
0 )(  

Since xi(t0) = ei, we get  )()( 0
1

0 txctx
n

i
ii∑

=

=  

Hence, the function  ∑
=

n

i
ii xc

1
is a solution on I which takes the value x0 at t0. By 

uniqueness of solutions, this must be equal to x on I so that we get  

  ∑
=

=
n

i
ii xcx

1
 

Therefore every solution x is a unique linear combination of the solution (xi) which 

proves the theorem. 

Definition 

 The set of all n linearly independent solutions of (1) is called a fundamental 

set of solutions of (1). 

Example 1.1 

 Find the fundamental system of solutions of   

  [0,1]in    
20
0

2

1
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1
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′

⎥
⎦
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⎢
⎣

⎡
x
x

t
t

x
x

 

 Since t and 2t are continuous in [0, 1], the matrix A(t) is a continuous matrix 

in [0, 1] 

  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦
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⎡
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′
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1

2

1
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20
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tx
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x
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x
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so that we get  

  1x′  = 1tx  and 22 2txx =′  
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 Solving these two equations, we gat x1 = c1 2/2te , x2 = c2
2te . Thus the vector 

space solutions are .
0

,
0

22

2
2

1 ⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= t

t

e
xex  Since x1(t) ≠ kx2(t) for any t in [0, 1], the 

two vectors are linearly independent. Further the dimension of the vector space of 

solutions is 2. 

Wronskian of Vector Functions 

 Consider the system  

  x'(t) = A(t) x(t), t∈ I (1) 

(where A is a continuous matrix) having n linearly independent solutions on I. In any 

general situation we can take the solution as a vector function ( )nφφφφ ,..., 21=  where 

we have 
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φ
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φ
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φ
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 (2) 

 in each of the vectors, the first subscript indicates the row and the second shows the 

vector solution. For example )(23 tφ shows the vector component in the second row of 

the vector )(3 tφ . Since we are concerned with the linear dependence or otherwise of 

the vector solutions, we introduce the Wronskian of the vector valued functions 1φ , 

2φ ,… nφ  as given in (2). 

Definition  

 Then n x n determinant consisting of components of 1φ , 2φ ,… nφ  as 

   

nnnn

n

n

φφφ

φφφ
φφφ

Κ
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Κ
Κ

21

22221

11211

  

is called the Wronskian of n vector functions 1φ , 2φ ,… nφ  and is denoted by W( 1φ , 

2φ ,… nφ ). Its value at any point t0 ∈I is denoted by W( 1φ , 2φ ,… nφ ) (t0). With the 
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help of the Wronskian of  1φ , 2φ ,… nφ , we shall obtain the condition of the vector 

functions for linear dependence and independence and then derive the criterion for 

linear dependence or otherwise of the solutions of the homogeneous linear vector 

differential equation (1). 

Theorem 1.10 

 The vector functions,   1φ , 2φ ,… nφ  are linearly dependent on I, then the 

Wronskian W( 1φ , 2φ ,… nφ ) (t) = 0 for every t ∈ I.  

Proof 

 If  1φ , 2φ ,… nφ  are linearly dependent on I, there exist n scalars c1, c2,…, cn, 

not all zero, such that  

    c1φ1(t) +  c2φ2(t) + … + cnφn(t) = 0 (3) 

for all t ∈ I. Using the components of φi, i = 1, 2, 3… n and considering an arbitrary 

point t0 ∈ I, the above single vector equation is equivalent to the following n 

equations in n unknowns c1, c2,…cn s.t. 

    c1φ11(t0) +  c2φ12(t0) + … + cnφ1n(t0) = 0 

    c1φ21(t0) +  c2φ22(t0) + … + cnφ2n(t0) = 0 

    …                …        …          …      …  

    c1φn1(t0) +  c2φn2(t0) + … + cnφnn(t0) = 0 

Since the scalars c1, c2, …, cn are not all zero, the above homogeneous system has a 

non-trivial solution. Using theorem A, the determinant of the coefficients of above 

system of equations is zero. So we get  

    

)()()(

)()()(
)()()(

00201

02022021

01012011

ttt

ttt
ttt

nnnn

n

n

φφφ

φφφ
φφφ

Κ
ΚΚΚΚ

Κ
Κ

= 0 

which gives W( 1φ , 2φ ,… nφ )(t0) = 0. Since t0 is an arbitrary point of I, we must have 

W( 1φ , 2φ ,… nφ ) (t) = 0 for all t ∈ I.  
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Note  In the above theorem, the vector functions are not the solutions of any linear 

homogeneous system. So the theorem is valid for any n-vector functions and in 

particular, the theorem is true for the solutions of homogeneous linear vector 

differential equations.   

Theorem 1.11 If the vector functions 1φ , 2φ ,… nφ  are the solutions of the system    x' 

= A(t) x on I, and the Wronskian W( 1φ , 2φ ,… nφ ) (t0) = 0 for some t0 ∈ I, then 1φ , 

2φ ,… nφ  are linearly dependent on I.  

Proof  Consider the system of equations  

    c1φ11(t0) +  c2φ12(t0) + … + cnφ1n(t0) = 0 

    c1φ21(t0) +  c2φ22(t0) + … + cnφ2n(t0) = 0 

    …                …        …          …      … (1)  

    c1φn1(t0) +  c2φn2(t0) + … + cnφnn(t0) = 0 

in the n-unknown scalars c1, c2,….cn. In the above homogeneous system, the 

determinant of the coefficients is W( 1φ , 2φ ,… nφ ) (t0), which is zero by hypothesis. 

So the system has non-trivial solution c1, c2,…cn, that is, there exist constants c1, c2,… 

cn, not all zero, satisfying the above equations, (using theorem A).  

 If  iφ  = ( i1φ , i2φ … niφ ), i = 1, 2,….n, then using the components, the above 

system can be written in an equivalent form as a vector equation.  

    c1φ1(t0) +  c2φ2(t0) + … + cnφn(t0) = 0 (2) 

Now consider the vector functions φ defined as  

    φ(t) = c1φ1(t) + c2φ2(t)+…+ cnφn(t), t ∈ I  (3) 

 Since φ1, φ2,… φn are the solutions of the system, their linear combination φ is 

also a solution of the system. Using (2), we have φ(t0) = c1φ(t0) +  c2φ(t0)…+ cnφn(t0) 

= 0. Hence by using the result that x(t) = 0 is the only solution of the initial value 

problem x' = A(t)x, x(t0) = 0, where t, t0 ∈ I and A(t) is a continuous matrix on I,       

φ(t) = 0 for all t ∈ I. That is, c1φ1(t) + c2φ2(t)+…+ cnφn(t) = 0 for all t ∈ I where c1, 

c2,…,cn are not all zero. Thus, using the definition, φ1, φ2,… φn are linearly dependent.  
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Corollary  If φ1, φ2, …. φn are the solutions of the system x' = A(t)x, t ∈ I. Then either 

W(φ1, φ2,… φn) (t) is zero for all t ∈ I, or W(φ1, φ2,… φn)(t) is never zero on I.  

Proof  To prove this let us assume W(φ1, φ2,… φn)(t) = 0 for some t or W(φ1, φ2,… 

φn)(t)≠0 for any t ∈ I. If W(φ1, φ2,… φn)(t) = 0 for some t ∈ I., then by theorem 1.11 

φ1, φ2,… φn are linearly dependent on I so that W(φ1, φ2,… φn)(t) = 0 for all t ∈ I or 

W(φ1, φ2,… φn)(t) ≠ 0 for any t ∈ I. 

Theorem 1.12  Let the vector functions φ1, φ2,… φn be n solutions of the 

homogeneous linear vector differential equation x' = A(t)x on I. Then the n-solutions 

are linearly independent on I if and only if W(φ1, φ2,… φn)(t) ≠ 0 for all t ∈ I. 

Proof  By theorems 1.10 and 1.11, the solutions are linearly dependent on [a, b] if 

and only if W(φ1, φ2,… φn)(t) = 0 for all t∈I. Therefore the solutions are linearly 

independent on I if and only if W(φ1, φ2,… φn)(t) ≠ 0 for some t0 ∈ [a, b]. By the 

corollary of the previous theorem W(φ1, φ2,… φn)(t) ≠ 0 for some t0 ∈ I if and only if 

W(φ1, φ2,… φn)(t) ≠ 0 for all t ∈ I. 

Theorem 1.13  There exists a fundamental set of solutions of the homogeneous linear 

vector differential equation.  

    x' = A(t)x, t ∈ I. (1) 

Proof. Since we are concerned with solution vectors in Rn, let us consider the 

standard basis {ei, I = 1, 2, 3…n} where ei = (0, 0, …,1, 0,…0). Here 1 is in the i-th 

place and zeros in all other places. Let φ1, φ2,… φn be n vector solutions which satisfy  

    φ1(t0) = e1, φ2(t0) = e2, φn(t0) = en for t0 ∈ I       

Then 

 W(φ1, φ2,… φn)(t0) = W(e1, e2,… en) = 0

10000
01000

00010
00001

≠

Λ
Λ

ΜΜΜΜΜΜ
Λ
Λ

   

Hence by corollary of Theorem 1.11, W(φ1, φ2,… φn)(t) ≠ 0 for any t ∈ I and thus φ1, 

φ2,… φn are linearly independent on I. 
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Theorem 1.14  Let φ1, φ2,… φn be a fundamental set of solutions of the homogeneous 

linear vector differential equation   

    x' = A(t) x on I  (1) 

and let φ be any arbitrary solution on the interval I. Then there exist unique scalars c1, 

c2,…cn such that  

    φ = c1φ1 +  c2φ2 + … + cnφn on I  

that is, φ can be expressed as a suitable linear combination of the fundamental set of 

solutions.  

Proof  Let us suppose φ(t0) = u0, where u0 = (u10, u20…un0) is a constant vector. Now 

consider the linear non-homogeneous algebraic system  

   c1φ11(t0) +  c2φ12(t0) + … + cnφ1n(t0) = u10 

   c1φ21(t0) +  c2φ22(t0) + … + cnφ2n(t0) = u20 

   …                …        …          …      …  

   c1φn1(t0) +  c2φn2(t0) + … + cnφnn(t0) = un0 (2) 

of n-equations in n-unknowns. Since φ1, φ2,… φn are linearly independent solutions of 

(1), W[φ1, φ2,… φn](t0) ≠ 0. But W[φ1, φ2,… φn](t0) is the determinant of the 

coefficients of the system of equations (2). Since W[φ1, φ2,… φn](t) ≠ 0, the system of 

equations (2) has a unique solution for c1, c2,…, cn, that is, there exist unique set of 

scalars c1, c2,…cn such that  

     c1φ1(t0) + c2φ2(t0) + cnφn(t0) = u0 (3) 

Hence we have    φ(t0) = u0 = ∑
=

n

k
kk tc

1
0 )(φ  

 Now consider the vector function ψ(t) = ∑
=

n

k
kk tc

1
)(φ . Since any linear 

combination of solutions of (1) is also a solution of (1), we have 

    ψ(t0) = ∑
=

n

k
kk tc

1
0 )(φ  (4) 

From (3) and (4), we have ψ(t0) =  φ(t0).      
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 Hence by the uniqueness of solutions ψ(t) =  φ(t) for all t ∈ I. Thus,               

φ(t) = ∑
=

n

k
kk tc

1
)(φ  for all t ∈ I is solution of (1). 

Fundamental Matrix and its Properties 

 We know that the solutions of the system x'(t) = A(t)x(t), t ∈ I  (1) 

form a vector space of dimension n. So it has n linearly independent solutions 

forming a basis. We can take the independent solutions as a vector φ = (φ1, φ2,… φn), 

where  
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Definition 1  Let ψ be a matrix whose columns are the solutions (2) of the given 

system (1). This matrix ψ is called a solution matrix, since it satisfies the matrix 

equation x'(t) = A(t) x(t), t ∈ I 

Definition 2  If the columns of the solution matrix are linearly independent, then the 

solution matrix is called a fundamental matrix.  

 According to Theorem 1.9, the n independent solutions of homogeneous 

system exist so that the fundamental matrix exists. We shall derive the differential 

equation satisfied by det ψ.  

Definition 

 The trace of an n x n matrix A is given by the formula A ∑
=

=
n

j
jja

1
. That is, the 

trace of A is the sum of its main diagonal elements.  

Theorem 1.15  Abel-Liouville Formula  

 Let the functions 
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be n solutions of the homogeneous linear vector differential equation  

    x' = A(t)x  (1) 

on the real interval [a, b]; let t0 be any point of [a, b]; and let W denotes the 

Wronskain of φ1,. φ2,… φn. Then  

    W(t) = W(t0)exp 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫
t

t

dsstrA
0

)(  (2) 

for  all t ∈ [a, b] 

Proof  We differentiate the Wronskian determinant 
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to obtain  
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 (3) 

where, primes denote derivatives with respect to t. Thus W' is the sum of n 

determinants, in each of which the elements of precisely one row are differentiated. 

Since φk, (k=1,2…,n), satisfies the vector differential equation (1), we have 
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,kk Aφφ =′  (k =1, 2,…,n), and so jk

n

j
ijik a φφ ∑

=

=′
1

, (i = 1, 2,…n; j =1, 2,…n). Substitute 

these for the indicated derivatives in each of the n determinants in the preceding 

expression (3) for W'. Then the i-th determinant, (i = 1, 2,….n) in (3) becomes  

   

nnnn

inii

n

n

φφφ

φφφ

φφφ
φφφ

Κ
ΜΜΜΜ

Κ
ΜΜΜΜ

Κ
Κ
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ΜΜΜ

Κ

ΜΜΜ
Κ
Κ

21

1
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1
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1

22221

11211

∑∑∑
===

 

Writing out each of the indicated sums in the preceding determinant and using 

fundamental properties of determinants, we see that it breaks up into the following 

sum of n determinants: 

   ...

21

22221

22221

11211

2

21

11211

22221

11211

1 ++

nnnn
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ii aa

φφφ

φφφ

φφφ
φφφ

φφφ

φφφ
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22221

11211

21

21

22221

11211

...+++  

 Each of these n determinants has two equal rows, except the ith one, and the 

coefficient of this exceptional one is aii. Since a determinant having two equal rows is 

zero, this leaves only the single exceptional determinant having the coefficient aii. 

Thus we have  
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 for each i = 1, 2,…n 

 Using this identity with i = 1, 2,….n, we replace each of the n determinants in 

(3) accordingly. Thus, (3) takes the form 
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...+++  

That is, W' = ,
1

Wa
n

j
jj ⎥

⎦

⎤
⎢
⎣

⎡
∑

=

 and so  

    W' = (tr A) W.  (4) 

or, W satisfies the first order scalar homogeneous linear differential equation 

   )()]([)( tWttrA
dt

tdW
=  

Integrating this, we at once obtain  

   W(t) = c exp 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫
t

t

dsstrA
0

)(  

Letting t = t0, we find that c = W(t0), and hence we obtain the required Abel-Liouville 
formula 
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  W(t) = W(t0) exp 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
∫
t

t

dsstrA
0

)(  (5) 

Note  From Abel-Liouville Formula, we can conclude that if det 0)( ≠Φ t  for some    

t ∈I, Then det 0)( ≠Φ t   I  t ∈∀  

Theorem 1.16  A solution matrix Φ of the matrix differential equation  

   x' = A(t)x, t ∈ I  (1) 

is a fundamental matrix if and only if det Φ(t) ≠ 0 for any t ∈ I. 

Proof 

 First we shall prove the necessary part of the theorem. Assuming that the 

given solution matrix Φ is a fundamental matrix of (1), we shall prove that det Φ (t) ≠ 

0 for any t ∈ I. Let the column vectors of Φ be φj = 1, 2,…n. Let ψ be any solution of 

(1). Since (φj) forms a basis of solutions, ψ can be expanded as linear combination of 

φj' s, that is, there exist unique non-zero constants c1, c2,… cn such that 

   nn

n

i
ii cccc φφφφψ +++== ∑

=

...  2211
1

 

which we can write in the matrix form as  

   [ ] C
c
c

n Φ=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

n

2

1

21

c
: :

 ..., φφφψ    (2) 

where C is the unique column vector. Equation (2) gives n-linear equations of the 

form  

   ∑
=

==
n

j
jiji nic

1
,...2,1,φψ  

in the unique constants c1, c2,… cn. Since the above non-homogeneous system has a 

unique solution c1,c2,…cn for a fix τ ∈ I, we get det 0)( ≠Φ τ for a fixed τ ∈ I. (Using 

Theorem B).  

From Abel-Liouville formula  
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   ⎥
⎦

⎤
⎢
⎣

⎡
Φ=Φ ∫

t

dsstrAt
τ

τ )(exp)(det)(det  

Using det 0)( ≠Φ τ  in the above integral equation, 0)( ≠Φ t  for any t ∈ I.  

 To prove the converse, let )(τΦ be any solution matrix of the system such that 

det 0)( ≠Φ t  for any t ∈ I. Now we shall prove that )(tΦ is a fundamental matrix. 

Since det 0)( ≠Φ t  for any t ∈ I, its Wronskian W( .0))(,..., 321 ≠tφφφ  Hence by 

theorem 1.12, φ1, φ2….., φn are linearly independent. In other words, the column 

vectors of the solution matrix Φ(t) are linearly independent. Hence Φ is a 

fundamental matrix of (1).  

Corollary 

 Two different homogeneous systems cannot have the same fundamental 

matrix.  

 If Φ(t) is the fundamental matrix of the given homogeneous linear system (1), 

we have 

    )()()( ttAt Φ=Φ′  (1) 

and det 0)( ≠Φ t  for any t ∈ I by the theorem so that is inverse, namely, )(1 t−Φ exists 

for every t ∈ I. Post multiplying both sides of (1) by )(1 t−Φ , we get A(t) = )(tΦ′  

)(1 t−Φ . Hence Φ determines A uniquely for the system. Therefore, it cannot be a 

fundamental matrix for another homogeneous system.  

Note  The above theorem is true only for the solution matrices as there are matrices Φ 

with linearly independent columns but with det Φ = 0. For example, let 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ

00
)(

2tt
t . The column vectors are linearly independent for  

    0
00

2

21 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ t
c

t
c  

implies c1t + c2t2 = 0 which in turn implies c1 = 0, and c2 = 0. Further det Φ(t) = 0. 

Thus we have a Φ(t) with linearly independent columns for which det Φ(t) = 0 
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because ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

0
  

0

2

21
t

and
t

φφ  are not the solutions of any linear homogeneous 

system.  

Theorem 1.17  

(i) If Φ is a fundamental matrix of the system x' = Ax and C is constant non-

singular matrix, then ΦC is a fundamental matrix.  

(ii) Every fundamental matrix of the system is of this type for some non-singular 

matrix.  

Proof 

(i) Since Φ is a fundamental matrix, det Φ ≠ 0 by Theorem 1.16 so that it is non-

singular. By hypothesis, C is a non-singular matrix. Since the product of two 

non-singular matrices is non-singular, ΦC is non-singular so that det ΦC ≠ 0. 

Hence by Theorem 1.16  ΦC is a fundamental matrix.  

(ii) Let Φ1 and Φ2 be two fundamental matrices. Assume that  

    Φ2 = Φ1 ψ (1) 

and we will show that ψ is a constant non-singular matrix. Now using matrix 

differentiation, we get from (1) 

    ψψ ′Φ+Φ′=Φ′ 112  (2) 

Since Φ1 and Φ2 are  solutions of x' = Ax, we get 

    1122 , Φ=Φ′Φ=Φ′ AA   (3) 

With the help of (3) and (1) in the given equation, we have  

    '' 12111122 ψψψψψ Φ+Φ=Φ+Φ=′Φ+Φ′=Φ=Φ′ AAA  

Hence we get   

  0'  gives which  ' 1122 =ΦΦ+Φ=Φ ψψAA  (4) 

 Since Φ1 is non-singular (4) implies ψ' = 0 or ψ = C, where C is a constant 

matrix. Thus we have Φ2 = Φ1C. Hence we get C = 2
1

1 ΦΦ− . Since both Φ1 and Φ2 are 

non-singular, C is a constant non-singular matrix.  
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Hence, the proof of the theorem  

Note 

 If Φ is a fundamental matrix of the system, x' = Ax and C is any constant non-

singular matrix, then CΦ is not in general a fundamental matrix.  

Proof 

 If possible, let CΦ be a fundamental matrix of the system x'  = Ax. Then it 

should satisfy the equation (C Φ)' = ACΦ, that is, CΦ' = ACΦ.  

 Since C is non-singular, premultiplying by C-1, we get Φ' = C-1 ACΦ which 

shows that Φ is a fundamental matrix of x' = C-1 ACx, but two different homogeneous 

systems cannot have the same fundamental matrix. Hence a contradiction. 

Example 1.2 Find the fundamental matrix of the system 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

t
t

tt

x
x
x

x
00

00
0

A  and  

3

2

1

 

Now the system x' = Ax is equivalent to the set of differential equations 

    tx )( , tx-  )( , txtx-  )( 3322211 =′=′+=′ txtxtx  

Solving these three equations, we obtain the solutions as 

   ,  , 
2

2/
3

2/
2

2/
2

1

222 ttt exexetx === −−  

Hence the solution matrix is 

 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

−

2/

2/

2/
2

2

2

2

00
00

00
2

)(
t

t

t

e
e

et

tϕ    

Now let the column vectors of ϕ(t) be 
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     0
0

)(  , 
0

0
)(  , 

0
0

2
)(

2/
3

2/
2

2/
2

1
2

2

2

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

= −

−

t

t

t

e
tet

et

t φφφ   

Since W[φ1, φ2, φ3] (t) = 2/
2

2

2
tet −  ≠ 0,  the vectors φ1, φ2 and φ3 are linearly 

independent. Hence the solution matrix ϕ is a fundamental matrix. 

Example 1.3   If
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
=

241
010
031

A  , find the determinant of the fundamental matrix 

ϕ satisfying ϕ(0)= E. 

We know from Abel Liouville formula 

 ∫   = 
t

trAt
τ

τϕϕ ds exp)(det)(det  (1) 

Now let us choose  τ = 0. Hence det ϕ(0) = det E = 1. For the given matrix A,  

 trA = 1 + 1 – 2 = 0. 

Using the above values in (1), we get 

  == = ∫
t

1  (0) exp 1 dt  0exp 1)(det 
τ

ϕ t  

Hence det ϕ(t) = 1. 

Example 1.4  Check whether the matrix 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

= −

100
01
01

)( t

t

e
e

tϕ  is a fundamental matrix 

for the system x' = Ax, t  ∈ I.  

We know that ϕ (t) is a fundamental matrix if and only if det ϕ(t) ≠ 0. 

For the given matrix det ϕ(t) = 1 [ete-t – 1] = 0 by expanding ϕ(t) along the last row. 

Since det ϕ(t) = 0, ϕ(t) cannot be a fundamental matrix of given system. 
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Definition Adjoint system  

 If Φ is a fundamental matrix of LH system  

   x' = A(t)x  (1) 

 Then (as proved earlier)  

    [ ] 111 −−− ΦΦ′Φ−=′Φ  

  [ ] 111    −−− ΦΦΦ−=′Φ∴ A  

  [as Φ satisfies (1),   ] Φ=′Φ∴ A  

 ⇒ [ ] A11 −− Φ−=′Φ∴  

Taking conjugate transpose on both sides  

  ( ) ( )*1
*

1 A−− Φ−=⎟
⎠
⎞

⎜
⎝
⎛ ′

Φ  

    =   ( )*1* −Φ− A  

    = *]*[(AB)*        * 1* ABA =Φ−
−  

  ⇒ ( ) ′Φ
−1* =  ( ) * 1*−

Φ− A  (2) 

Also det ( ) 1* −
Φ  is ≠ 0 as det 0≠Φ . 

 Therefore  ( ) 1**1 −− Φ=Φ  is a fundamental matrix for the system 

   x' = -A*(t)x  (3) 

This system (3) is called the adjoint to LH system (1). 

Theorem 1.18  If Φ  is a fundamental matrix for LH system  

   x' = A(t) x    (1)  

then ψ is a fundamental matrix for its adjoint x' = - A*(t)x, iff ,* C=Φψ  where C is 

a constant non-singular matrix.  

Proof. Given Φ  is a fundamental matrix of (1)  

∴  1*−Φ  is a fundamental matrix of adjoint system  
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   x' = -A*(t)x (2) 

Let ψ be a fundamental matrix of (2). Thus ψ and 1*−Φ are fundamental matrices of 

the same system (2). Therefore, by theorem 1.17  

  ψ = ( ) D1* −Φ  (3)   

for some constant non-singular matrix D.  

Now   ( )( )*1*** −Φ= Dψ  

       =  ( )( ) 1
**1 ** −− Φ=Φ DD  

 ⇒ ***  * 1 DEDD ==ΦΦ=Φ −ψ  

  and let   D* = C 

Then  

  C=Φ *ψ , where C is a constant non-singular matrix. [as D is non-

singular ⇒ D* is non-singular] 

Conversely   Suppose that  

  C=Φ  *ψ      (4)  

where C is a constant non-singular matrix.  

Claim: If Φ  is a fundamental matrix of (1) and satisfies condition (4), then ψ is a 

fundamental  matrix of (3) 

Now given Φ  is a fundamental matrix, so det Φ  ≠ 0  ⇒  1−Φ exists. So from 

equation (4)  

⇒     ψ*=  C 1−Φ  

Apply conjugate Transpose operation  

  ( )**ψ  =  ( )*1−ΦC  

  ψ  =   ( )*1−Φ C*  =   ( ) 1* −
Φ  C* 
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 Since ( ) 1* −
Φ is a fundamental matrix of adjoint system (2). Then by Theorem 

1.17 ( ) 1* −
Φ C* is also a fundamental matrix of ajdoint system (2). Consequently ψ is 

also a fundamental matrix of adjoint system (2). Hence the proof. 

Theorem 1.19 

Hypothesis. Let f be a nontrivial solution of the nth-order homogeneous linear 

differential equation  

.0)()()()( 11

1

10 =++++ −−

−

xta
dt
dxta

dt
xdta

dt
xdta nnn

n

n

n

Κ  (1) 

Conclusion The transformation   

x = f(t)v (2) 

reduces Equation (1) to an (n-1)th-order homogeneous linear differential equation in 

the dependent variable w, where w = dv/dt. 

Proof. Let x = f(t)v. Then   

 ,)()( vtf
dt
dvtf

dt
dx ′+=   

 
Μ

,)()(2)( 2

2

2

2

vtf
dt
dvtf

dt
vdtf

dt
xd ′′+′+=

 

.)(....)(
!2

)1()()( )(
2

2

1

1

vtf
dt

vdtfnn
dt

vdtfn
dt

vdtf
dt

xd n
n

n

n

n

n

n

n

n

++′′−
+′+= −

−

−

−

 

Substituting these expressions into the differential equation (1), we have 

 ⎥
⎦

⎤
⎢
⎣

⎡
++′+ −

−

vtf
dt

vdtfn
dt

vdtfta n
n

n

n

n

)(....)()()( )(
1

1

0  

 ⎥
⎦

⎤
⎢
⎣

⎡
++′−++ −

−

−

−

−

vtf
dt

vdtfn
dt

vdtfta n
n

n

n

n

)(....)()1()()( )1(
2

2

1

1

1  

 0)()()()()(1 =+⎥⎦
⎤

⎢⎣
⎡ ′+++ − vtftavtf

dt
dvtfta nnΚ  
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or 

[ ] Λ++′+ −

−

1

1

100 )()()()()()( n

n

n

n

dt
vdtftatftna

dt
vdtfta  

 [ ]
dt
dvtftatftna n

n )()()()( 1
)1(

0 −
− +++ Λ  

 [ ] .0 )()()()()()()()( 1
)1(

1
)(

0 =+′++++ −
− vtftatftatftatfta nn

nn Λ  (3) 

Now since f is a solution of Equation (1), the coefficient of v is zero. Then, letting 

w=dv/dt, Equation (3) reduces to the (n-1)th-order equation in w,  

,0)()()( 12

2

11

1

0 =+++ −−

−

−

−

wtA
dt

wdtA
dt

wdtA nn

n

n

n

Λ  (4) 

where 

A0(t)=a0(t)f(t), 

A1(t)=na0(t)f'(t)+a1(t)f(t),……., 

An-1(t)=na0(t)f (n-1) (t)+……..+an-1(t)f(t). 

Now suppose that w1, w2,…..wn-1 is a known fundamental set of equation (4). Then v1, 

v2,…..vn-1  defined by 

∫∫∫ −− === dttwtvdttwtvdttwtv nn )()(...............,)()(,)()( 112211  

is a set of (n-1) solutions of equation (3). Also, the function vn such that vn(t) = 1 for 

all t is a solution of Equation (3). These n solutions v1,v2….., vn of Equation (3) are 

linearly independent. Then, using (2) we obtain n solutions fi, where fi(t) = f(t)vi(t)      

(i =1,2..,n) of the original nth - order equation. The n solutions fi, so defined are also 

linearly independent and thus constitute a fundamental set of equation (1).  

 One may extend Theorem 1.12 to show that if m (where m < n) linearly 

independent solutions of equation (1) are known, then equation (1) may be reduced to 

a homogeneous linear equation of order (n-m).      
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Reduction of the order of a homogeneous system 

 If m (0 < m < n) linearly independent solutions of (LH) are known, it is 

possible to reduce the order of (LH) by m, and hence a linear system of order n-m 

only need be solved.  

 Suppose ϕ1,…, ϕm are m linearly independent vectors which are solutions of 

(LH) on an interval I. Let ϕi  have components ϕij (i = 1, …,n). Then the rank of the n-

by-m matrix with elements ϕij (i =1, …,n;j = 1,…,m) at every t ∈ I is m, because of 

the linear independence of its columns. This means that for each t ∈ I there is an m-

by-m determinant in this matrix which does not vanish there. Take any t0 ∈ I and 

assume for the moment that the determinant of the matrix Φm whose elements are ϕij 

(i = 1, …,m; j = 1. . .,m) is not zero at t0. Then, by the continuity of det Φm in its 

elements ϕij and the continuity of the functions ϕij near t0, one has that det Φ(t) ≠ 0 for 

t in some interval I~  containing t0. Let I~  be any such interval; the reduction process 

will be outlined for I~ . (The idea behind the process is a modification of the variation 

of constants).  

 Let the matrix U have the vectors ϕ1,..., ϕm for its first m columns and the 

vectors em+1, …, en for its lat n –m columns, where ej is the column vector with all 

elements 0 except for the j-th which is 1. Clearly U is non-singular on I~ . The 

substitution. 

  x  = Uy   (1) 

is made in (LH). [ Note that x = ϕj  (j = 1, …, m) in (1) corresponds to y = ej (j = 1,…, 

m). Thus the substitution (1) may be expected to yield a system in y which will have 

ej, j =1, …, m, as solutions]. Using (1) in (LH) we get 

  U' y +  U y' = AUy 

Writing this out gives  

 ∑∑∑∑∑
+== ===

+=′+′
n

mk
kik

m

j

n

k
jkjik

m

j
jij

m

j
jij yayayy

11 111
ϕϕϕ  (i = 1, …, m) 

 ),...,1(
11 111

nmiyayayyy
n

mk
kik

m

j

n

k
jkjik

m

j
jiji

m

j
jij +=+=′+′+′ ∑∑∑∑∑

+== ===

ϕϕϕ   
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Expressing the fact that the vectors ϕj with components ϕij are solutions of (LH),  

  ∑
=

=′
n

k
kjikij a

1
ϕϕ   (i = 1, . . ., n, j = 1, . . ., m) 

we get  

  ∑∑
+==

=′
n

mk
kik

m

j
jij yay

11
ϕ   (i = 1, . ., m) 

  ∑∑
+==

=′+′
n

mk
kik

m

j
jiji yayy

11
ϕ  (i = m + 1,…, n) (2) 

Since det Φm ≠ 0 on I~ , the first set of equations in (2) may be solved for 

),...,1( mjyi =′ in terms of ϕij, aik and yk (k = m + 1,…,n), and these values of 

),...,1( njyi =′ may then be put into the second set of formulas of (2). This gives a set 

of first-order equations satisfied by the yi (i = m + 1, …,n) of the type 

   ∑
+=

+
n

mk
kiki yby

1

'  (i = m + 1, . . ., n)  (3) 

that is, a linear system of order n – m.  

 Now suppose jnm ψψψ [,...1+ having components ψij (i, j = m+1,....,n)] is a 

fundamental set on I~ for the system (3). Let mn−Ψ  denote the matrix with elements 

)],...,1,( nmjiij +=ψ . Clearly det 0)( ≠Ψ − tmn  on I~ . For each j = m + 1,…, n, let ψij (i 

= 1, …,m) be solved for by quadratures (that is, by integration) from the relations  

  ∑∑
+==

=′
n

mk
kpik

m

j
jpij a

11
ψψϕ    (4) 

  i  = 1, . . . , m  p = m + 1, . . . , n 

Let ψp ( p = m+1, . . ., n) denote the vectors having components ψip ( i = 1, . . ., n),  

and let  

    ψp  = ep   (p = 1, . . . , m) 

Since ψp, p = 1,…, n, satisfy (3) and the first set of equations of (2), they must also 

satisfy the second set of equations of (2), and therefore ψp, p = 1,…, n, are solutions 

of (2). Thus, if now Ψ is the matrix with columns ψp, p = 1,…, n, and if  
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    Φ = UΨ 

then Φ is a matrix solution of (LH) on I~ . U is nonsingular. Since detΨ = det mn−Ψ  on 

I~ , it follows that Φ is nonsingular on I~ and hence a fundamental solution of (LH) on 

I~ . 

 The above procedure is summarized in the following theorem.  

Theorem 1.20  Let ϕ1,…., ϕm  (m < n) be m known linearly independent solutions of 

(LH) with ϕj (j = 1, …., m) having components ϕij (i = 1, …,n). Assume the 

determinant of the matrix with elements ϕij (i, j = 1,…,m) is not zero on some 

subinterval I~  of I. Then the construction of a set of n linearly independent solutions 

of (LH) on I~  can be reduced to the solution of a linear system (3) of order n – m, 

plus quadratures (4), using the substitution (1).  

 The restriction that the matrix Φm should be nonsingular on an interval will 

now be removed. It is clear that the n-by-m matrix with elements ϕij (i = 1, …., n;       

j =1, …, m), has rank m because of the independence of the solutions ϕj, j = 1,…m. 

Thus, at any t = t0, there is a non-singular m-by-m matrix obtained by taking m rows, 

i1, …, im, of the n-by-m matrix. By continuity, this matrix is nonsingular over some 

interval I~ . 

Summary 

 The students are made familiar with some preliminary definitions and 

fundamental results of linear homogeneous system. Relation between fundamental 

matrix and Wronskian of solution functions have been developed. Lastly procedure 

for reduction of order of a homogeneous linear system has been explained in detail.  

 

Keywords  Linear systems, fundamental matrix, Wornskian, variation of constant, 

reduction of order.  
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Chapter-2 

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS -II   
 

 

Objectives 

The main objectives of this chapter include finding out solution of non-homogeneous 

linear systems, linear systems with constant coefficients, systems with periodic 

coefficients along with the study of linear differential equation of order n.   

 Non-homogeneous Linear Equations: Variation of Parameters 

Consider the second order differential equation 

 L(t)y = a0(t)y'' + a1(t)y' + a2(t)y = b(t) (1) 

Important Fact 

 If you know the general solution of the associated homogeneous problem        

L(t) y = 0 then you can always reduce the construction of the general solution of (1) to 

the problem of finding two primitives (antiderivatives). The method for doing this is 

called variation of parameters.  

 We shall first illustrate the method of variation of parameters on second order 

equations in the normal form  

  L(t)y = y'' + p(t)y' + q(t)y = g(t).  (2) 

 You can put the general equation (1) into normal form by simply dividing by 

a0(t).  

 Suppose you know that Y1(t) and Y2(t) are linearly independent solutions of 

the homogeneous problem L(t)y = 0 associated with (2). The general solution of the 

homogeneous problem is then given by  

  y = YH(t) = c1Y1(t) + c2Y2(t) (3)

 The idea of the method of variation of parameters is to seek solutions of (2) in 

the form    
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  y = u1(t)Y1(t) + u2(t)Y2(t). (4) 

 In other words you simply replace the arbitrary constants c1 and c2 in (3) with 

unknown functions u1(t) and u2(t). These functions are the varying parameters referred 

to in the title of the method. These two functions will be governed by a system of two 

equations, one of which is derived by requiring that (2) is satisfied, and the other of 

which is chosen to simplify the resulting system.  

 Let us see how this is done. Differentiating (4) yields  

  y' = u1(t) )()()()()( )()( 2211221 tYtutYtutYtutY ′+′+′+′  (5) 

 We now choose to impose the condition  

   0)()()()( 2211 =′+′ tYtutYtu   (6) 

whereby (5) simplifies to  

   y' = u1(t) ).( )()( 221 tYtutY ′+′  (7) 

Differentiating (7) then yields  

   y'' = u1(t) ).()()()()( )()( '
2

'
2

'
1

'
1

''
22

''
1 tYtutYtutYtutY +++  (8) 

Now substituting (4), (7), and (8) into (2) and using the fact that Y1(t) and Y2(t) are 

solutions of L(t)y = 0, we find that  

   g(t) = L(t)y 

    = y'' + p(t)y' + q(t)y 

    = )(Y (t)u)(Y (t)u)(Y (t)u)(Y (t)u '
2

'
2

'
1

'
1

''
22

''
11 tttt +++  

     +p(t)u1(t) )(Y (t)u)()(Y '
22

'
1 ttpt +  

     +q(t)u1(t)Y1(t) + q(t)u2(t)Y2(t) 

     = )](Y q(t))(Y p(t))([Y (t)u 1
'

1
''

11 ttt ++  (9) 

     + )](Y q(t))(Y p(t))([Y (t)u 2
'
2

''
22 ttt ++  

     + )()()()( '
2

'
2

'
1

'
1 tYtutYtu +  

     =u1(t)[L(t)Y1(t)] + u2(t)[L(t)Y2(t)] 
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     + )()()()( '
2

'
2

'
1

'
1 tYtutYtu +  

     = ).()()()( '
2

'
2

'
1

'
1 tYtutYtu +  

Here we have used the fact that L(t)Y1(t) = 0 and L(t)Y2(t)= 0 to see that many terms 

in the expression for L(t)y cancel. The resulting system that governs u1(t) and u2(t) is 

thereby given by (6) and (9): 

      0)()()()( 2
'
21

'
1 =+ tYtutYtu  (10) 

     ).()()()()( '
2

'
2

'
1

'
1 tgtYtutYtu =+  

This is a linear system of two algebraic equations for )('
1 tu  and )('

2 tu . Because 

    ,0))(,()()()()( 21
'

12
'

21 ≠=− tYYWtYtYtYtY  

One can always solve this system to find 

    .
))(,(

)()()(   ,
))(,(

)()()(
21

1'
2

21

2'
1 tYYW

tgtYtu
tYYW

tgtYtu ==   

Letting U1(t) and U2(t) be any primitives of the respective right-hand sides above, one 

see that  

    u1(t) = c1 + U1(t),  u2(t) = c2 + U2(t), 

whereby (4) yields the general solution 

    y = c1Y1(t) + U1(t)Y1(t) + c2Y2(t) + U2(t)Y2(t) 

Notice that this decomposes as y = YH(t) + Yp(t) where 

   YH(t) = c1Y1(t) + c2Y2(t),     YP(t) = U1(t)Y1(t) + U2(t)Y2(t). 

 The best way to apply this method in practice is not to memorize one of the 

various formulas for the final solution given in the book, but rather to construct the 

linear system (10), which can then be rather easily solved for )(' tut  and )('
2 tu . Given 

Y1(t) and Y2(t) a fundamental set of solutions to the associated homogeneous problem, 

you proceed as follows.  

1) Write the equation in the normal form  

    y'' + p(t)y' + q(t)y = g(t)   
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2) Write the form of the solution you seek: 

    y = u1(t)Y1(t) + u2(t)Y2(t) 

3) Write the algebraic linear system for )(' tut  and )('
2 tu  

    ,0)()()()( 2
'
21

' =+ tYtutYtut  

    )()()()()( '
2

'
2

'
1

' tgtYtutYtut =+  

 The form of the left hand sides of this system mimics the form of the solution 

we seek. The first equation simply replaces u1(t) and u2(t) with )(' tut  and 

)('
2 tu , while the second also replaces Y1(t) and Y2(t) with ).(   )( '

2
'

1 tYandtY  

4) Solve the algebraic system for )(' tut  and )('
2 tu . This is always very easy to do, 

especially if you start with the first equation.  

5) Integrate to find u1(t) and u2(t). If you cannot find a primitive analytically then 

express that primitive in terms of a definite integral. Remember to include the 

constants of integration, c1 and c2. 

6) Substitute the result into the form of the solution you wrote down in step 2. If 

the problem is an initial-value problem, you must determine c1 and c2 from the 

initial conditions.  

Example 2.1 Find the general solution of  

     y'' + y = sec(t) 

 Before presenting the solution, notice that while this equation has constant 

coefficients the driving is not of the form that would allow you to use the method of 

undetermined coefficients. You should be able to recognize this right away and 

thereby see that the only method you can use to solve this problem is variation of 

parameters.  

 The equation is in normal form. Because this problem has constant 

coefficients, it is easily found that 

     YH(t) = c1 cos(t) + c2 sin(t) 
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Hence, we will seek a solution of the form  

     y = u1(t) cos(t) + u2(t) sin(t), 

where    
).sec()cos()()sin()(

,0)sin()()cos()(
'
2

'

'
2

'

tttuttu

ttuttu

t

t

=+−

=+
  

Solving this system by any means you choose, yields  

    1)(,
)cos(
)sin()( '

2
'
1 =−= tu

t
ttu  

These can be integrated analytically to obtain  

    u1(t) = c1 + ln(|cos(t)|),     u2(t) = c2 + t. 

Therefore the general solution is  

    y = c1 cos(t) + c2 sin(t) + ln(|cos(t)|) cos(t) + t sin(t).      

Non-Homogeneous Linear Systems 

Now we shall consider non-homogeneous linear systems of the type 

 x' = A (t)x + B(t), t ∈ I (1) 

where A is an n x n matrix of continuous functions on I and B is the continuous 

vector on I which is not identically zero. As in the case of non-homogeneous linear 

equations, we shall first explain how the solution of (1) is closely related to the 

solution of the corresponding homogeneous system 

 x' = A(t)x, t ∈ I (2) 

More precisely, we shall show that any solution of (1) is the sum of a particular 

solution of (1) and the solution of (2) given by the solution vectors. Since we can find 

the solutions of the homogeneous system, the problem is to find a particular solution 

of (1). Once we know the fundamental matrix of the homogeneous system, we can 

find a solution of the non-homogeneous system by the method of variation of 

parameters. First we shall formulate the theorem giving the general solution of (1). 

Theorem 2.1  Let φ0 be any solution of the non-homogeneous system (1) and φ1, φ2, 

... ,φn be a basis of solutions of the corresponding homogeneous system (2) and let 
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c1, c2,……..,cn be constants. Then 

(i) the vector function 

 ∑
=

+
n

k
kkc

1
0 φφ  (3) 

is also a solution of the non-homogeneous system for every choice of c1, c2,……..cn. 

(ii) an arbitrary solution of the non-homogeneous system (1) is of the form (3) for 

a suitable choice of c1, c2,……..cn. 

Proof  (i) Let ψ(t) = ∑
=

+
n

k
kkc

1
0 φφ . 

We shall show that ψ(t) is a solution of (1). Since φ0 and ∑
=

n

k
kkc

1
φ are solutions  of (1) 

and (2) respectively, we have 

 )()( 00 tBtA +=′ φφ  (4) 

 ∑∑
=

=′
n

k
kkkk ctAc

1
)()( φφ  (5) 

Now ∑
=

′+′=′
n

k
kkct

1
0])([ φφψ  (6) 

Using (4) and (5) in (6), we get 

 ∑
=

++=′
n

k
kkctAtBtAt

1
0 )()()(])([ φφψ  

 )()(
1

0 tBctA
n

k
kk +⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

=

φφ  

Therefore [ψ(t)]' = A(t) ψ(t) + B(t) which shows that ψ(t) is a solution of (1) for 

every choice of c1, c2,……..cn. 

(ii) Let φ be any arbitrary solution of (1). Then 

 φ'(t) = A(t)φ(t) + B(t) (7)  

We shall show that φ - φ0 is a solution of the corresponding homogeneous equation 
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(2). 

Now  
dt

d
dt
d

dt
d 0

0 ][ φφφφ −=−  (8) 

Using (4) and (7) in (8), we get 

 
dt
d [φ - φ0] = A(t)φ(t) + B(t) - [A(t) φ0 + B(t)] 

 = A(t)[φ(t) - φ0] 

which proves that φ - φ0 satisfies the corresponding homogeneous equation (2). Since 

φ1, φ2, ... φn are the basis of solution vectors, there exist constants c1, c2,……..cn such 

that 

∑∑
==

+==−
n

k
kk

n

k
kk corc

1
0

1
0 φφφφφφ  

for a suitable choice of c1, c2,……..cn which completes the proof of the theorem. 

The following theorem helps us to find a particular solution of the non-homogeneous 

system by the method of variation of parameters, once we know the fundamental 

matrix of the given corresponding homogeneous system. 

Theorem 2.2 If ϕ(t) is the fundamental matrix of the homogeneous system 

x'(t) = A (t) x(t), t ∈ 1 (1)  

then ψ defined by 

 ∫ ∈= −
t

t

1

0

I  t,)()()()( dssBstt ϕϕψ  (2) 

is a solution of the initial value problem of the non-homogeneous system 

 x'(t) = A(t)x(t) + B(t), x(t0) = 0 (3) 

Proof  The method of proof is to assume a differentiable vector function u(t) so that 

 0)(  I, t),()()( 0 =∈= ttutt ψϕψ  (4) 

is a solution of the non-homogeneous equation (3). 
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Since ψ(t) is a solution of (3), we have 

 ψ'(t) = A(t)ψ(t) + B(t) 

Substituting for ψ(t) from (4), we get 

 ψ'(t) = A(t)ϕ(t)u(t) + B(t) (5) 

Since ϕ(t) is a fundamental matrix of (1), 

 ϕ'(t) = A(t)ϕ(t) (6)  

Now differentiating (4), we get for any t ∈ I, 

 ψ'(t) = ϕ'(t)u(t) + ϕ(t)u'(t) (7) 

Using (6) in (7), we get 

 ψ'(t) = A(t)ϕ(t)u(t) + ϕ(t)u'(t) (8) 

Equating the expressions for ψ(t) from (5) and (8) 

 A(t)ϕ(t)u(t) + ϕ(t)u'(t) = A(t)ϕ(t)u(t) + B(t) 

which gives  

 ϕ(t)u'(t) = B(t) (9) 

Since ϕ(t) is a fundamental matrix, det ϕ(t) ≠ 0, so that it is non-singular. Hence we 

get on premultiplying (9) by ϕ-1(t), 

                                                 u'(t)  = ϕ-1(t)B(t) (10) 

Integrating equation (10), we obtain 

 ∫ ∈= −
t

t

tdssBstu
0

I  t,,)()()( 0
1ϕ  (11) 

Substituting the above value of u(t) in (4), we get 

   I,   t,)()()()(
0

1 ∈= ∫ −
t

t

dssBstt ϕϕψ  (12) 

 We shall show that (12) is indeed a solution of (3). We do this by direct 

verification 
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   )()()()()()(')('
0

11∫ −− +=
t

t

tBttdssBstt ϕϕϕϕψ  

  = A ϕ(t)u(t) + B(t) = Aψ(t) + B(t),  (using ( 11)) 

which proves that ψ'(t) = Aψ (t) + B, showing that (12) is a solution of (3). 

Note If xh is the vector solution of the corresponding homogeneous equation               

x' = A(t)x, x(t0) = 0, then Theorem 2.1 gives the general solution of (3) as 

  ψ (t) = xh(t) + ∫ ∈−
t

t

ItdssBst
0

,)()()( 1ϕϕ  (13) 

These formulas (12) and (13) are called methods of variation of parameters for non-

homogeneous linear systems.  

 The following example illustrates the above theorem. 

Example 2.2 Obtain the solution ψ(t) of the initial value problem  

  x' = Ax + B(t), ψ(0) = ⎥
⎦

⎤
⎢
⎣

⎡
1
0

 (1) 

where  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

bt
at

tBA
x
x

x
cos
sin

)(  ,
20
01

  ,
2

1  (2) 

To solve the above non-homogeneous matrix equation, first we need the fundamental 

matrix of x'(t) = Ax(t) with the given data. 

The given equation  ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

′

⎥
⎦

⎤
⎢
⎣

⎡

2

1

2

1

20
01

x
x

x
x

 is equivalent to 

  11 xx =′  and 22 2xx =′   (3) 

Solving equation (3), we get 

  x1(t) = et and x2(t) = e2t 

Hence the solution vectors are φ1(t) = ⎥
⎦

⎤
⎢
⎣

⎡

0

te
 and φ2(t) = ⎥

⎦

⎤
⎢
⎣

⎡
te2

0
. 
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Since W[φ1, φ2](t) ≠0 for any t, φ1 and φ2 are linearly independent so that ⎥
⎦

⎤
⎢
⎣

⎡
t

t

e
e

20
0

 is 

a solution matrix ϕ. Since det ϕ(t) ≠ 0, the above solution matrix is a fundamental 

matrix by theorem 1.9. 

To determine ψ(t), we need the inverse of ϕ(t). If ⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

is the inverse of ϕ(t), then 

we have 

  ⎥
⎦

⎤
⎢
⎣

⎡
t

t

e
e

20
0

⎥
⎦

⎤
⎢
⎣

⎡
dc
ba

= ⎥
⎦

⎤
⎢
⎣

⎡
10
01

 

which gives 

  ⎥
⎦

⎤
⎢
⎣

⎡
tt

tt

dece
beae

22
= ⎥

⎦

⎤
⎢
⎣

⎡
10
01

 

Equating the corresponding matrix entries on both sides, we get aet = 1, bet = 0,         

ce2t = 0, de2t = 1 so that we get a = e-t, b = 0, c = 0 and d = e-2t . Hence the inverse 

matrix is ⎥
⎦

⎤
⎢
⎣

⎡
−

−

t

t

e
e

20
0

. 

If ψ(t) is the solution of (2), from Theorem 2.2, we get 

  ∫ −=
t

t

dssBstt
0

)()()()( 1ϕϕψ ,    t, t0 ∈I (4) 

Substituting ϕ(t), ϕ-1(t), B(t) in (4), we get  

  dt
bt
at

e
e

e
e

t t

t

t

t

⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= ∫ −

−

cos
sin

0
0

   
0

0
)( 22ψ  

           ∫ ⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

−

−

dt
bte
ate

e
e

t

t

t

t

cos
sin

   
0

0
22

 

           

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

++−
+

+−−
+⎥

⎦

⎤
⎢
⎣

⎡
= −

−

22

2

12

2

)sincos2(
4

)cossin(
1 

0
0

cbtbbt
b

e

cataat
a

e

e
e

t

t

t

t
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⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

++−
+

+−−
+=

t

t

ecbtbbt
b

ecataat
a

2
22

12

)sincos2(
4

1

)cossin(
1

1

  

Using the initial conditions at t = 0, 

  ⎥
⎦

⎤
⎢
⎣

⎡
1
0

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
+
−

+
+
−

22

12

4
2

1
c

b

c
a
a

 

Equating the corresponding elements, we get 

2

2

2221 1
6

4
21,

1 a
b

b
c

a
ac

+
+

=
+

+=
+

=  

Hence the solution matrix ψ(t) is  

 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
+

++−
+

+
+−−

+=
t

t

e
b
bbtbbt

b

e
a

aataat
at

2
2

2

2

22

)4(
)6()sincos2(

4
1

1
)cossin(

1
1

)(ψ  

which gives the solution ψ(t) as 

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−+++

+−+
−

−

)] cos 2sin()6[()4(
] cos (sin()1(

2212

12

btbtbebb
ataataea

t

t

 

Theorem 2.3 Prove that the solution 

  ∫ ∈ΦΦ= −
t

Itdssbstt
τ

φ ,)()()()( 1  (1) 

of NH system x' = A(t)x + b can be written as  

  ∫ ΨΨ=
−

t

dssbstt
τ

φ )()()()( *1*  (2) 

where Ψ is a fundamental matrix of the adjoint system  

  x' = -A*(t)x (3)  
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Proof We know that if Φ is a fundamental matrix of x' = A(t)x; Then 1*−
Φ is a 

fundamental matrix of x' = -A*(t)x (Adjoint system). 

∴ Ψ and 1*−
Φ are fundamental matrices of same system (3). Therefore, by theorem 

1.10 

   ( ) C1* −
Φ=Ψ ,   for some constant non-singular matrix C.  

⇒   1** −Φ=Ψ C  

⇒   ( ) *1*1 Ψ=Φ
−− C  (4) 

⇒   ( ) ( ) *1*11 C−−− Ψ=Φ  

⇒   ( ) *1* C−
Ψ=Φ  (5) 

Put these values of Φ and Φ-1 from (4) and (5) in (1), we get 

   ( )∫ ΨΨ=
−−

t

dssbsCCtt
τ

φ )()()()( *1**1*  

   ∫ ΨΨ=
−

t

dssbstt
τ

φ )()()()( *1*  as 1** −CC =Identity 

Hence the proof.  

Theorem 2.4 φ(t) can be written as  

  ∫ ΨΦ=
t

dssbstt
τ

φ )()()()( *   

provided Ψ*Φ = E.  

Proof  Proof follows from Theorem 2.3. The result of theorem 2.3 is 

   ∫ ΨΨ=
−

t

dssbstt
τ

φ )()()()( *1*  (1) 

Now we find out )(1* t−
Ψ . 

From given relation  
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   Ψ*Φ = E 

⇒   Ψ* = E Φ-1 

⇒   )(1* t−
Ψ = Φ E-1 = Φ E = Φ 

Use this in equation (1) 

   ∫ ΨΦ=
t

dssbstt
τ

φ )()()()( * . 

Linear Systems with Constant Coefficients 

In this section we shall obtain the solution of the linear homogeneous system  

  x' = Ax, t ∈I (1) 

where A is a constant matrix and I is an interval of R.  

Theorem 2.5 (i) The general solution of (1) is x(t) = etAc where c is an arbitrary 

constant column matrix. 

(ii) If (1) satisfies the initial condition x(t0) = x0, t0 ∈ I, its solution is 

0
)At-(t xe  x(t) 0= . 

(iii) The fundamental matrix ϕ(t) of the system is ϕ(t) = etA. 

Proof  (i) Let x(t) be a solution of (1). Then we have  

   x'(t) = Ax(t)   or    x'(t) – Ax(t) = 0, t ∈I (2) 

Let us define a vector u(t) = e-tA x(t), t ∈I. Then differentiating  

             u'(t) = e-tA (-A)x(t) + e-tA x'(t) (3) 

so that  

   u'(t) = e-tA [ -Ax(t) + x'(t)] 

Using (2) in (3), we get u'(t) = e-tA[0] = 0. Hence u(t) = c is a constant vector for t ∈I. 

Since u(t) = c, we get c= e-tA x(t). 

 Premultiplying both sides by etA, we get  

    x(t) = etA c  (4) 
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(ii) When t = t0, x(t0) = ce At0 so that we get c = )( 0
0 txe At− . Using this value of c in 

(4)  

    0
)At-(t

0
A-ttA 00 e  )x(te .e  x(t) x==  

(iii) If ϕ(t) is a fundamental matrix, it satisfies differential equation (1) and           

det ϕ(t) ≠ 0. We shall show that etA has these twin properties so that etA is a 

fundamental matrix of the system.  

 Let us take ϕ(t) = etA. Then we have 

   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ
−

=
Δ

−
=

Δ

→Δ

Δ+

→Δ tA
eAe

t
eet

tA
tA

t

tAAtt

t  
1limlim)('

0

)(

0
ϕ   

Since    )()(',1
 

1lim
0

tAAet
tA

e tA
tA

t
ϕϕ ===⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
Δ
−Δ

→Δ
 

Thus etA satisfies the given differential equation. Further we note that ϕ(0) = E and 

from Theorem 1.15 

   det ϕ(t) = det ϕ(0) exp [(trA) (t – t0)] ≠ 0 

Hence det ϕ(t) ≠ 0 so that ϕ(t) is a fundamental matrix of the system.  

Corollary  The solution of the system x' = Ax, x(0) = E, t ∈I is x(t) = etA. 

Proof  From (ii), the solution is x(t) = etA x(0) = etA E = etA 

Note 1  The fundamental matrix of the system (1) can be determined by considering 

the linearly independent sets in Rn. We know that e1, e2,…. en is a basis in Rn. Let φ1, 

φ2, … φn be the solutions corresponding to the initial value problem x(t0) = e1,              

x(t0) = e2,…., x(t0) = en. Then if t0 = 0, by (ii) of Theorem 2.1 φ1(t) = etAe1,                

φ2(t) = etAe2 … φn(t) etAen. 

Hence    Eeeeeeet tAtA
n

tA =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

100

0010
0001

],...,[)( 21

Λ
ΛΛΛΛΛ

Λ
Λ

ϕ  

Thus ϕ(t) = etAE is a fundamental matrix of the system.  
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Note 2  We cannot solve the matrix differential equation x'(t) = A(t) x(t) as the first 

order linear differential equation by finding an integrating factor. 

That is x(t) = exp ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫
t

t

dssA
0

)(  can not be a solution of the equation for  

     )()()()(exp)('
0

tAtxtAdssAtx
t

t

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= ∫  

Hence x(t) = exp ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫
t

t

dssA
0

)(  is a solution if and only if exp ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∫
t

t

dssA
0

)( and A(t) 

commute. They commute if A is a constant matrix or a diagonal matrix. Hence the 

above method of solutions is valid only for a constant or a diagonal matrix. 

Example 2.3 Find  the fundamental matrix of x' = Ax, where  

    ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0
a

a
A  

 The fundamental matrix is etA. So we shall find etA for the given matrix A. For 

this we shall find A2, A3, An, … so that  

   ...
!

...
!2!1

1 2
2

+++++= n
n

tA A
n
tAttAe  

Now     ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
= 2

2

2
1

2

1

2

12

0
0

0
0

   
0

0
a

a
a

a
a

a
A  

   ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
== 3

2

3
1

2

1
2
2

2
123

0
0

0
0

   
0

0
.

a
a

a
a

a
a

AAA  

Proceeding similarly, we get   
0

0

2

1
⎥
⎦

⎤
⎢
⎣

⎡
= n

n
n

a
a

A  

Hence    ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
= 2

2

2
1

2

2

1

0
0

2!10
0

   
10
01

a
att

a
a

etA  

   ...
0

0
!

...  
0

0
!3 2

1
3
2

3
1

3

+⎥
⎦

⎤
⎢
⎣

⎡
++⎥

⎦

⎤
⎢
⎣

⎡
+ n

nn

a
a

n
t

a
at  
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⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+++++

+++++
=

...
!

...
!2!1

10

0...
!

...
!2!1

1

2
2
2

2
2

1
2
1

2
1

n
atatta

n
atatta

nn

nn

 

   ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0
ta

ta

e
e

 

Example 2.4  Find the solution and the fundamental matrix of  

    x' = Ax where A = ⎥
⎦

⎤
⎢
⎣

⎡
21
45

 

The characteristic equation of A is det (A - λE) = 0. 

Now   det (A - λE) = 
λ

λ
−

−
21

45
 

which gives    (5 -λ)  (2 -λ) – 4 = 0 

 Hence the characteristic equation is  

    λ2 - 7λ + 6 = 0 

that is    (λ2 - 7λ + 6) = (λ- 6)  (λ - 1) = 0 

Thus the eigenvalues are λ1 = 6  and  λ2 =  1. 

 Now we shall find the eigenvectors corresponding to the distinct eigenvalues. 

If  ⎥
⎦

⎤
⎢
⎣

⎡

2

1

x
x

 is the eigenvector corresponding to the eigvenvalue λ1 = 6, then  

   (A-6E) x = 0. 

Hence   (A – 6E)x = ⎥
⎦

⎤
⎢
⎣

⎡
−

−
621

465
   ⎥

⎦

⎤
⎢
⎣

⎡

2

1

x
x

 

which  is    ⎥
⎦

⎤
⎢
⎣

⎡
−

−
41

41
  ⎥

⎦

⎤
⎢
⎣

⎡

2

1

x
x

  = ⎥
⎦

⎤
⎢
⎣

⎡
0
0

 

Thus we have    =⎥
⎦

⎤
⎢
⎣

⎡
−
+−

21

21

4
4

xx
xx

⎥
⎦

⎤
⎢
⎣

⎡
0
0
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which gives    -x1  + 4x2  = 0  and   x1 – 4x2 = 0  

we can choose x1 = 4 and x2 = 1 so that the eigenvector corresponding to λ1=6 is .
1
4

⎥
⎦

⎤
⎢
⎣

⎡
  

Let us find the eigenvector corresponding to λ2 = 1. 

Now   (A – E) x = ⎥
⎦

⎤
⎢
⎣

⎡
−

+−
121

451
 ⎥

⎦

⎤
⎢
⎣

⎡

2

1

x
x

 = =⎥
⎦

⎤
⎢
⎣

⎡

21

21 44
xx
xx

⎥
⎦

⎤
⎢
⎣

⎡
0
0

 

which gives x1 + x2 = 0. So we can choose x1 = 1 and x2 = -1 

Thus the eigenvector corresponding to λ2 = 1 is ⎥
⎦

⎤
⎢
⎣

⎡
−1
1

  

These eigenvectors ⎥
⎦

⎤
⎢
⎣

⎡
1
4

 and  ⎥
⎦

⎤
⎢
⎣

⎡
−1
1

 are linearly independent. The solution vectors are 

⎥
⎦

⎤
⎢
⎣

⎡
1
46te  and  ⎥

⎦

⎤
⎢
⎣

⎡
−1
1te . 

 Using these, the fundamental matrix ϕ(t) is given by  

     ⎥
⎦

⎤
⎢
⎣

⎡

−
= tt

tt

ee
ee

t 6

64
)(ϕ  

The solution of the matrix equation is  

    x(t)  = α1e6t 
⎥
⎦

⎤
⎢
⎣

⎡
1
4

 +  α2et 
⎥
⎦

⎤
⎢
⎣

⎡
−1
1

 

Linear Systems with Periodic Coefficients 

If x(t) is the solution of the linear system  

    x'  = Ax (1) 

Then the solution x(t) is said to be periodic with period ω if x(t + ω) = x(t). The 

question arises, under what conditions (1) admits a periodic solution. If it admits a 

periodic solution, it is of interest to note the nature of A. Besides answering this 

question about the periodic solution and the nature of A, we will also investigate the 
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case of the solutions when the matrix A is of minimal period, that is, A(t + ω) = A(t), 

ω ≠ 0 and - ∞ < t <  ∞.  

Theorem 2.6  The system (1) admits a non zero periodic solution of period ω if and 

only if E- eAω is singular where E is the identity matrix.  

Proof  According to Theorem 2.5, the solution x(t) of (1) is given by  

    x(t) = eAtc (1) 

where c is an arbitrary non-zero vector. x(t) is periodic with period ω if and only if 

    x(t)  = x (t +  ω) = eA(t+ω)c (2) 

Using (1) in (2), we get  eAtc - eA(t+ω)c = 0  

that  is     eAt [E - eAω] c = 0 

Since eAt ≠ 0, (1) has a solution if and only if [E –eAω] c = 0. Since c is non-zero 

constant vector, the system (1) has a non-zero periodic solution of period ω if and 

only if det [E- eAω] = 0. This implies E - eAω is singular.  

 The next theorem characterizes the non-zero periodic solution of the non-

homogeneous equation  

    x'(t) = A(t)x + f(t) (1) 

where f is a continuous vector valued function on (-∞, ∞).  

Theorem 2.7  Let f(t) be a periodic function with period ω. Then the solution of (1) is 

periodic of period ω if and only if x(0) = x(ω).  

Proof To prove the necessity of the condition, let x(t) be a periodic solution of (1) 

with non-zero period ω. Then x(t + ω) = x(t). Taking t = 0, x(ω) = x(0) which proves 

the necessity of the condition.  

To prove the sufficiency of the condition, let x(t) be a solution of (1) satisfying the 

condition x(0) = x(ω). On this assumption, we shall prove that the solution is periodic.  

 Now    x' (t + ω) = Ax(t + ω) + f(t + ω) (2) 

We make the substitution  
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    u(t) = x (t + ω)  (3) 

so that we have   u'(t) = x' (t + ω) (4) 

Using (4) and (3) in (2), we get  

   u'(t) = Au(t) + f(t), since f(t + ω) = f(t)  

Hence u(t) is a solution of (1) and also u(0) = x(ω) = x(0) by hypothesis. Since the 

solution of (1) is unique it cannot have two different solutions u(t) and x(t). Thus we 

get x(t) = u(t) = x(t + ω) which gives x(t) = x(t + ω), showing that the solution x(t) is 

periodic with period ω.  

 In our previous study, we obtained the solution of a non-homogeneous 

equation with the help of the corresponding homogeneous equation. In connection 

with the solution of the periodic equation, we have the following theorem.  

Theorem 2.8 Let f(t) be a continuous periodic function of period ω on (-∞, ∞). A 

necessary and sufficient condition for the system. 

    x' = Ax + f(t)  (1) 

to have a unique periodic solution of period ω is that the corresponding homogeneous 

system.  

    x' = Ax  (2) 

has no non-zero periodic solution of period ω.  

Proof  We know by Theorem 2.2, a general solution of (1) is  

    x(t) = xh +  ϕ(t) ∫ −
t

dssfs
0

1 )()(ϕ  (3) 

where ϕ is the fundamental matrix of the system.  

 Further  

    xh(t) = eAtc, ϕ(t) = eAt, ϕ-1(s) = e-As (4) 

Substituting (4) in (3), we get  
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   dssfecedssfeecetx
t

stAAt
t

AsAtAt ∫∫ −− +=+=
0

)(

0

)()()(     (5) 

where c is a constant vector. 

 Further from (5), we get  

     x(0) = c  (6) 

 According to the previous theorem, x(t) is non-zero periodic solution of (1) if 

and only if  

     x(0) = x(ω) (7) 

From (6) and (7), we get  

     x(0) = x(ω) = c  (8) 

Now     x(ω) = eAωc + ∫ −
ω

ω

0

)( )( dssfe sA   

Using (8) in the above, we have  

    c = eAωc + ∫ −
ω

ω

0

)( )( dssfe sA  

Hence     (E - eAω)c = ∫ −
ω

ω

0

)( )( dssfe sA  (9) 

 Hence there is a unique, periodic solution for (1) if and only if (9) has a unique 

solution for c for any periodic function f. It has unique solution for c if and only if        

(E-eAω) is non-singular which implies and is implied by Theorem 2.6, the system (2) 

has no non-zero periodic solution of period ω. This completes the proof of the 

theorem.  

 After the study of the system x' = Ax with x(t) as a periodic function of period 

ω, we shall discuss the solution of the same system when it is of minimal period in the 

sense that A(t + ω) = A(t), ω ≠0, t ∈ (-∞, ∞). We shall consider in this section a 

system x' = A(t) x, where A is of minimal period. The next question is, if ϕ(t) is a 
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fundamental matrix what is about ϕ(t +ω)? The following theorem states the ϕ(t + ω) 

is also a fundamental matrix.  

Representation Theorem 

Theorem 2.9  Let ϕ(t) denotes the fundamental matrix of the system 

     x' = Ax  (1) 

where A is of minimal period ω. Then ϕ(t + ω) for t ∈ (- ∞, ∞) is also a fundamental 

matrix of (1), and corresponding to each such ϕ, there exists (i) a periodic non-

singular matrix P such that P(t + w) = P(t) and (ii) a constant matrix B such that           

ϕ(t) = P(t)etB. 

Proof  Since ϕ(t) is a fundamental matrix of (1), it is a solution matrix of (1) so that 

ϕ'(t) = A(t) ϕ(t). 

Now   ϕ'(t + ω) = A(t + ω) ϕ (t + ω)  (2) 

Since A is of minimal period  

    A(t + ω) = A(t) (3) 

Using (3) in (2), we get ϕ' (t + ω) = A(t) ϕ (t + ω) 

Further det ϕ(t + ω) ≠ 0, for if det ϕ(t + ω) = 0 implies det ϕ(t) = 0 for ω = 0 

contradicting that ϕ is a fundamental matrix. Hence ϕ (t + ω) is a fundamental matrix.  

 Since ϕ(t) and ϕ(t + ω) are solution matrices of (1), there exists a non-singular 

matrix C such that ϕ(t + ω) = ϕ(t) C by theorem 1.10. Since C is a constant non-

singular matrix, there exist a matrix B s.t.  

   C = eωB  (by theorem 1.1)  

Hence we can take   ϕ(t + ω) = ϕ(t) eωb (4) 

Let us define   P(t) = ϕ(t)e-tB  

We shall now show that P is a periodic function with period ω and non-singular.  

Now    P(t + ω) = ϕ( t + ω)e-(t + ω)B (5) 

Using (4) in (5) we get P(t + ω) = ϕ(t)eωB. e-(t+ω)B = P(t). Hence P(t + ω) = P(t).  
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Thus P(t) is periodic with period ω.  

ϕ(t) is a fundamental matrix, so det ϕ(t) ≠ 0. 

Hence   det P(t) = det ϕ(t)e-ωB = detϕ(t). det e-ωB ≠ 0 

so that P(t) is a non-singular matrix.  

 From the definition ϕ(t) = P(t)eωB, where P is periodic and non-singular. 

Basic Theory of the nth-order Homogeneous Linear Differential Equation 

A. Fundamental Results 

In this section, we shall be concerned with the single nth order homogeneous linear 

scalar differential equation 

   a0(t) ,0)()(...)( 11

1

1 =++++ −−

−

xta
dt
dxta

dt
xdta

dt
xd

nnn

n

n

n

 (1) 

where a0, a1,…,an-1, an are continuous on an interval a ≤ t ≤ b and a0(t) ≠ 0 on a ≤ t ≤ b. 

Let Ln denote the formal nth – order linear differential operator defined by  

   )()(...
dt
d)(

dt
d(t)aL 11-n

1-n

1n

n

0n ta
dt
dtata nn ++++= −  (2) 

Then differential equation (1) may be written  

    Lnx = 0  (3) 

If we divide through by a0(t) on a ≤ t ≤ b, we obtain the equation  

   0
)(

)(
)(
)(...

)(
)(

00

1
1

0

1
1 =++++ −

−

−

ta
xta

dtta
dxta

dtta
xdta

dt
xd nn

n

n

n

n

 (4) 

This equation, in which the coefficient of  n

n

dt
xd  is 1, is said to be normalized.  

Theorem  2.10 

1. Consider the differential equation 

   a0(t) ,0)()(...)( 11

1

1 =++++ −−

−

xta
dt
dxta

dt
xdta

dt
xd

nnn

n

n

n
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where a0, a1…, an-1, and an are continuous on the interval a ≤ t ≤ b, and a0(t) ≠ 0 on      

a ≤ t ≤ b.  

2. Let t0 be a point of the interval a ≤ t ≤ b, and let c0, c1, … cn-1 be a set of n real 

constants.  

Conclusion  The exists a unique solution  φ of (1) such that  

    φ(t0)  =  c0,  φ'(t0) = c1,…,  φ(n-1) (t0) = cn-1, and this solution is 

defined over the entire interval a ≤ t ≤ b. 

Corollary  

Hypothesis  The function φ is a solution of the homogeneous equation (1) such that  

    φ(t0) = 0, φ'(t0) = 0…., φ(n-1) (t0) = 0   (6) 

where t0 is a point of the interval a ≤ t ≤ b on which the coefficients a0, a1,…., an are 

all continuous and a0(t) ≠ 0.  

Conclusion  φ(t) = 0 for all t such that a ≤ t ≤ b. 

Proof   First note that φ such that φ(t) = 0 for all t ∈ [a, b] is indeed a solution of the 

differential equation (1) which satisfies the initial conditions (6). But by Theorem 

2.10 the initial value problem composed of Equation (1) and conditions (6) has a 

unique solution on a ≤ t ≤ b. Hence the stated conclusion follows. 

We have already studied that a single nth-order differential equation is closely related 

to a certain system of n first order differential equations. We now investigate this 

relationship more carefully in the case of the nth order homogeneous linear scalar 

differential equation. 

   a0(t) 0)()(...)( 11

1

1 =++++ −−

−

xta
dt
dxta

dt
xdta

dt
xd

nnn

n

n

n

 

Let  

   x1 = x ,  x2 = 
dt
dx  

   x3  =  2

2

dt
xd ,  . . . 
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   xn-1 = 2

2

−

−

n

n

dt
xd , xn = 1

1

−

−

n

n

dt
xd  (7) 

Differentiating (7), we have  

   .   ,,...,  , 1
1

1
2

2

2
1

dt
dx

dt
xd

dt
dx

dt
xd

dt
dx

dt
xd

dt
dx

dt
dx n

n

n
n

n

n

==== −
−

−

 (8) 

The first (n -1) equations of (8) and the last (n -1) equations of (7) at once give  

   n
n x

dt
dxx

dt
dxx

dt
dx

=== −1
3

2
2

1    ...,   ,  (9) 

Now assuming a0(t) ≠ 0 on a ≤ t ≤ b, (1) is equivalent to  

   1

1

0

1

0

1

0 )(
)(...

)(
)(  

)(
)(

−

−
− −−−−= n

n
nn

n

n

dt
xd
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ta

dt
dx

ta
tax

ta
ta

dt
xd  

Using both (7) and (8) this becomes  

   n
nnn x

ta
tax

ta
ta

ta
ta

dt
dx

)(
)(...

)(
)(  x

)(
)(

0

1
2

0

1
1

0

−−−−= −  (10) 

Combining (9) and (10) we have   

    2
1 x

dt
dx

=  

    
Μ       

3
2 x

dt
dx

=  

    n
n x

dt
dx

=−1  

    .
)(
)(...

)(
)(

)(
)(

0

1
2

0

1
1

0
n

nnn x
ta
tax

ta
tax

ta
ta

dt
dx

−−−−= −  (11) 

 This is a special homogeneous linear system. In vector notation, it is the 

homogeneous linear vector differential equation  

    xx )(tA
dt
d

=  (12) 

where  
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Now suppose f satisfies the nth-order homogeneous linear differential equation (1). 

Then  

 a0(t)f(n)(t) + a1(t)f(n-1)(t) +…+an-1(t) (t)f ′ + an(t)f(t) = 0, (13) 

for  t ∈ [a, b]. Consider the vector ϕ defined by  

   

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

−

−
−

)(
)(

)(''
)('
)(

)(
)(

)(
)(
)(

)(

)1(

)2(
1

3

2

1

tf
tf

tf
tf
tf

t
t

t
t
t

t

n

n

n

n

ΜΜ

φ
φ

φ
φ
φ

φ  (14) 

From (13) and (14) we see at once that  
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Comparing this with (11), we see that the vector ϕ defined by (14) satisfies the system 

(11).  

 Conversely, suppose  
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satisfies system (11) on [a, b]. Then (15) holds for all t ∈ [a, b]. The first (n -1) 

equations of (15) give  

    )()( '
12 tt φφ =   

    )()()( ''
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'
23 ttt φφφ ==  (16) 

     Μ 
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and so ).()( ][
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n φφ =  These last equation of (15) then becomes  
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Thus φ1 is a solution f of the nth order homogeneous linear differential equation (1) 

and (16) shows that, in fact,  
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We have thus obtained the following fundamental result.  

Theorem 2.11 

Consider the n-th order homogeneous linear differential equation  

   ,0)(...)( ... )()( 11
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10 =+++++ −−
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xta
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and the  corresponding  homogeneous  linear  system (11). If f is a solution of (1) on 

 [a, b], then  
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    ϕ = 

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

− )1(

''
'

nf

f
f
f

Μ
 (17) 

is a solution of (11) on [a, b]. Conversely, if  
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is a solution of (11) on [a, b], then its first component φ1 is a solution of (1) on [a, b] 

and ϕ is, in fact, of the form (17) 

Definition 

 Let f1, f2,…., fn be n real functions, each of which has an (n-1)th derivative on 

a ≤ x ≤ b. The determinant  
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where the primes denote derivatives, is called Wronskian of the n functions f1, 

f2,…,fn. We denote it by W(f1, f2,…,fn) and denote its value at t by W(f1, f2,…,fn)(t).  

 Let f1, f2,…,fn be n solutions of the n-th order homogeneous linear differential 

equation (1) on a ≤ t ≤ b, and let      
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be the corresponding solutions of homogeneous linear system (11) on a ≤ t ≤ b. By 

definition, the Wronskian of the n solutions f1, f2,…fn of (1) is      
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Now note that by definition of the Wronskian of n solutions of (1) this is also the 

Wronskian of the n solution ϕ1, ϕ2, …., ϕn of (1). That is,   

    W(f1, f2,…,fn)(t) = W(ϕ1, ϕ2, …., ϕn)(t)  

for all t ∈ [a, b]. Now we know that, either W(ϕ1, ϕ2, …., ϕn)(t) = 0 for all t ∈ [a, b] 

or W(ϕ1, ϕ2, …., ϕn)(t) = 0 for no t ∈ [a, b]. Thus either W(f1, f2,…,fn)(t) = 0 for all      

t ∈ [a, b] or W(f1, f2,…,fn)(t) = 0 for no t ∈ [a, b].  

Able’s Identity or Abel Liouville formula      

Theorem 2.11  Let x1, x2,…. xn be n linearly independent solutions of 

   L(x) = a0(t) xn
 + a1(t) x(n-1) +...+ an(t) x = 0 

where a0(t) ≠ 0 for any t ∈ I and a0, a1, a2,….an are continuous functions of I and let        

t0 ∈ I. Then  

  W(x1, x2,…. xn)(t) = W(x1, x2,…. xn)(t0) exp
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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t
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sa
sa

0
)(
)(
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Proof  We shall first prove the formula for n = 2 and then give a proof for general n.  

   Now   2
'
1

'
2121 ),( xxxxxxW −=  

     2
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1
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Since x1 and x2 are solutions of   

   a0(t)x'' + a1(t) x' + a2(t) x = 0 (2) 

whe shall get the values of ''
2

''
1     xandx from (2)  
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Using these values, we get  
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satisfies a linear differential equation of the first order  
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Hence the integrating factor is exp 
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where c is a constant. Taking t = t0, we find  
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so that the solution for n = 2 is given by  
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Now, we shall prove the case for any general n, let us denote ),...,( 21 nxxxW by W. 

Since W is a determinant of order n, its derivative W' is the sum of n determinants  

V1, V2,…Vn so that  

     W' = V1 + V2+…+Vn 

where each determinant Vk is obtained by differentiating only one row, keeping the 

other (n-1) rows as they are. Hence we have 
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 (3) 

In the first (n -1 ) determinants, two rows are identical in (3) and therefore they are all 

zero. Hence we are left with the last determinant only. Hence the last determinant in 

(3) is  
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W =  (4) 

Since x1, x2,…, xn are the solutions of L(x) = 0, 
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Now in the determinant (6), let us multiply the first row by an, second row by an-1 and 

so on up to (n-1)-th row by a2 and add these to the last row. Then using (5) in the 

resulting determinant, we get  
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Thus we are led to a differential equation 

      W
a
aW

0

1' −=  (7) 

 Hence the integrating factor of (7) is exp 
⎥
⎥
⎦
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⎢
⎢
⎣
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∫
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sa
sa
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1 . So the solution of (7) is 

W(t) = c exp 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
− ∫

t

t

ds
sa
sa
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1 . Now taking t = t0, we get c = W(t0) so that the solution of 

(7) is W(t) = W(t0) exp 
⎥
⎥
⎦
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⎡
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t

t
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sa
sa
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1  where W(t0)  represents the value of the 

Wronskian at t = t0. This completes the proof the theorem.  

Corollary 1   If a0 and a1 are constants, then from the theorem we get  

       ⎥
⎦

⎤
⎢
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⎡
−−= )(exp)()( 0

0

1
0 tt

a
atWtW  

Corollary 2   Then n solutions x1, x2, …, xn of L(x) = 0 on an interval I are linearly 

independent on I if and only if  W(x1, x2, …, xn)(t0) ≠ 0 for any point t0 ∈ I.  

 The proof follows from the fact the W(x1, x2, …, xn)(t) ≠ 0 implies             

W(x1, x2, …, xn)(t0) ≠ 0 by the theorem.  

Note  Since the calculations of the Wronskian at any pint t ∈ I is difficult, the theorem 

and the Corollary 1 are useful to find it in terms of the Wronskian at t = 0 or t = 1 
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which may be easier to calculate. We shall illustrate this by considering a 

homogeneous equation of order 3. 

Example 2.5 Compute the Wronskian of the three independent solutions of                       

x3 – x'' – x' + x =0 in [0, 1].  

 The roots of the characteristic equation are -1, 1, 1. Hence the three solutions 

are x1(t) = e-t, x2(t) = et and x3(t) = tet. We shall be finding W(x1, x2, x3) on [0, 1]. 

Now 

    W(x1, x2, x3) (t) = 
tttt

tttt

ttt

teeee
teeee

teee

+
+−

−

−

−

2
 

Let us find W(x1, x2, x3) (0), that is, the Wronskian at t = 0.  

     W(x1, x2, x3) (0) = 
211
111
011

−  

Expanding the determinant along the first row, we find W(x1, x2, x3) (0) = 4.  

By the theorem 

   W(x1, x2, x3) (t) = W(x1, x2, x3) (0) exp ⎥
⎦

⎤
⎢
⎣

⎡
−− ∫

t

ds
0

)1(  

which gives W(x1, x2, x3) (t) = 4et. 

 This proves that the solutions are linearly independent.  

Theorem 2.12 (i) The operator L is linear operator on the space of n-times 

differentiable functions.  

(ii) If x1, x2,…,xn are solutions of L(x) = 0 and c1, c2…, cn are arbitrary constants, 

then c1x1 + c2x2+…+cnxn is a solution of L(x) = 0  

Proof  To prove L is linear, let x1 and x2 be any two solutions of L(x) = 0. For any 

two, scalars c1 and c2 we shall show that L(c1x1 + c2x2) = c1L(x1) + c2L(x2). For this let 

us consider  

  L[c1x1 + c2x2](t) 
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   =a0(t) [c1x1
(n)(t) + c2x2

(n)(t)] + a1(t)[c1x1
(n-1)(t) + c2x2

(n-1)(t)] 

     +….+ an(t)[c1x1(t) + c2x2(t)] 

   = c1[a0(t)x1
(n)(t) + a1(t)x1

(n-1)(t) +…+ an(t)x1(t)] 

       + c2[a0(t)x2
(n)(t) + a1(t)x2

(n-1)(t) +…+ an(t)x2(t)] 

    = c1L(x1)(t) + c2L(x2)(t) = [c1L(x1) + c2L(x2)](t) 

Thus we have  

   L[c1x1+ c2x2](t) = [c1L(x1) + c2L(x2)]t for all t ∈ I  

Hence    L(c1x1+ c2x2) = c1L(x1) + c2L(x2) 

which proves that L is a linear operator on the space of n-times differentiable 

functions on I.  

(ii) The given differential equation is 

  L(x) = a0(t)x(n) + a1(t)x(n-1) +…+ an(t)x = 0 (1) 

where a0(t) ≠ 0 for any t ∈ I.  

 Since x1, x2, …,xn are solutions of (1) 

  L(x1)(t) = 0,  L(x2)(t) = 0,…,  L(xn)(t) = 0 for all  t ∈ I (2) 

Let us takes x = c1x1+ c2x2 +…+cnxn where c1, c2,…,cn are arbitrary constants.  

 Since L is linear, wet get  

  L(x) = c1L(x1) + c2L(x2) + …+ cnL(xn) 

which gives  

  L(x) (t) = c1L(x1)(t)+ c2L(x2)(t) +…+ cnL(xn)(t) (3) 

for all t ∈ I. Using (2) in (3) we get L(x)(t) = 0 for all t ∈ I. In other words,  

x = c1x1+ c2x2 +…+cnxn is a solution of (1). 

Note  For non-linear equations, the above theorem is not necessarily true as shown by 

the following example.  

Example 2.6  Consider the differential equation 
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    x'' = - x'2  (1) 

 First note that the given differential equation is not linear because of the 

appearance of x'2, it cannot be written in the linear form. 

 Let us take x' = y so that (1) becomes  

    2y
dt
dy

−=  (2) 

Integrating (2), we get at
y

+=
1  so that .at

dx
dt

+=  Hence the solution is 

x(t)=log(t+a) + b where a and b are arbitrary constants. Thus, we can take the two 

solutions as x1(t) = log(t+a) + b, x2(t) = log (t+a).  

 Let us check whether x = c1x1 + c2x2 can be a solution of (1) for arbitrary 

constants c1 and c2. Choose c1 = 4, c2 = -2. Then we have 

    x(t) = 4 [ log (t + a) + b] - 2log (t + a)  (3) 

 Now from (3), x''(t) = - 
)(

2)('     
)(

2
2 at

txand
at +

=
+

  

 Hence x''(t) ≠ - [x'(t)]2 which shows that this x(t) does not satisfy equation (1). 

This proves that the Theorem 2.12 is not necessarily true for non-linear equations.  

Theorem 2.13  x1, x2, x3,…xn are linearly independent solutions of the homogeneous 

linear differential equation,  

   L(x) = a0(t)x (n)  + a1(t)x (n-1)
 +…+ an(t)x = 0 (1) 

where a0(t) ≠ 0 for any   t ∈ I and a0, a1, a2,…an are continuous functions on I if and 

only if the Wronskian 

   W(x1, x2,…,xn) (t)  ≠ 0 (2) 

for every   t ∈ I . 

Proof  First, we prove the necessity of the condition.  

 Let us suppose that the solutions x1, x2, ....,xn are linearly independent 

solutions of (1) and prove that  
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     W(x1, x2, ....,xn)(t) ≠ 0 for every t ∈ I.  

 If this condition is not satisfied, let us suppose on the contrary that there exists 

a t0 ∈ I such that the Wronskian 

     W(x1, x2, ....,xn)(t0) = 0 (3) 

Hence, (3) implies that the determinant of the coefficients of the following set of 

homogeneous equations in c1, c2,…,cn is zero: 

     c1x1(t0) + c2x2(t0) + …+ cnxn(t0) = 0 

    0  )(txc   )(txc  )(txc 0
'
nn0

'
220

'
11 =+…++  

    … …           …        …           … 

    0  )(txc   )(txc  )(txc 0
1)-(n

nn0
1)-(n

220
1)-(n

11 =+…++  (4) 

 Hence using hypothesis (3), the above system of n linear equations has a non 

trivial solution for the n-unknowns c1, c2,…cn which means that not all the constants 

c1, c2,…cn are zero. Let us take one such solution to be c1, c2,…cn itself. 

 Having determined the non-zero coefficients c1, c2,…cn from the set of n-

equations (4), let us define the function x as follows:  

 x =  c1x1  + c2x2 + …+ cnxn (5) 

Since x1, x2,…xn are the solutions of (1), using (ii) of Theorem 2.12, it follows that x 

is a solution of (1), that is L(x) t = 0 for every t ∈ I.  

 Now using (5) in the set of equations (4), we get 

  x(t0) = 0, x'(t0) = 0, x''(t0) = 0,…,x(n-1)(t0) = 0 (6) 

 The above (6) is nothing but the initial conditions of L(x) = 0 at t = t0 ∈ I. 

Hence L(x) = 0 and (6) together give the initial value problem of (1). Since the 

solution of the initial value problem is unique, we get x(t) = 0 for all t ∈ I. This 

implies  

    c1x1(t) + c2x2(t) + …+ cnxn(t) = 0 for all t ∈ I.  (7) 
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But (7)  contradicts the fact that x1, x2,…xn are linearly independent on I. This 

contradiction proves that our assumption W(x1, x2,…xn)(t) = 0 for some t0 ∈ I is 

wrong. Hence  

    W(x1, x2,…xn) (t) ≠ 0 for all t ∈ I.  

 To prove the converse, let us assume that W(x1, x2,…xn) (t) ≠ 0 for any t ∈ I 

and show that  x1, x2,…xn are linearly independent. If they are not linearly 

independent, let c1, c2,…cn be non zero constants such that  

    c1x1(t) + c2x2(t) + …+ cnxn(t) = 0 for all t ∈ I. (8) 

 Differentiating (8) successively upto order (n – 1), we get  

    0  (t)xc   (t)xc  (t)xc '
nn

'
22

'
11 =+…++  

    0  (t)xc   (t)xc  (t)xc ''
nn

''
22

''
11 =+…++  

    … …           …        …           … 

    0  (t)xc   (t)xc  (t)xc 1)-(n
nn

1)-(n
22

1)-(n
11 =+…++  (9) 

   for all t ∈ I. 

 For a fixed t in I, (9) is a set on n homogeneous linear algebraic equations 

satisfied by c1, c2,…cn. Since the Wronskian of x1, x2,…xn  is not zero by hypothesis, 

the determinant of the coefficients of the above equations in the n unknowns c1, 

c2,…cn  is not zero. Hence there is only one trivial solution to the set of equations (9) 

namely c1 = c2 = c3 =… cn = 0 contradicting that c1, c2…, cn are non-zero. This 

contradiction proves that x1, x2,…xn are linearly independent. This completes the 

proof of the theorem.  

Theorem 2.14   Let x1, x2,…xn be n linearly independent solutions of L(x) = 0. Then 

any solution of the equation  

     L(x) = 0  (1) 

is of the form x = c1x1 + c2x2 + …+ cnxn where c1, c2,…cn  are constants.  
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Proof    Let x be any solution of (1). Let t0 be a point of I such that x(t0) = a1,                

x'(t0) = a2,…,x(n-1)(t0)= an so that L(x) = 0 and these initial conditions form an initial 

value problem for L(x) =  0 having the solution x(t).  

 We shall show that there exist unique constants c1, c2,…,cn such that  

    y =  c1x1 + c2x2 + …+ cnxn (2) 

is solution of L(x) with the initial condition 

    y(t0) = a1,  y'(t0) = a2,…, y(n-1)(t0) = an 

Hence by theorem on the uniqueness of solution of the initial value problem,               

x(t) = y(t) for t ∈ I so that x = c1x1 + c2x2 + …+ cnxn is any solution of L(x) = 0.  

 Hence the proof is complete if we establish the existence of the unique 

constants c1, c2,…cn  satisfying (2). Let us write down the initial conditions for y as a 

solution of (1) 

    c1x1(t0) + c2x2(t0) + …+ cnxn(t0) = a1 

    20
'
nn0

'
220

'
11 a  )(txc   )(txc  )(txc =+…++  

    … …           …        …           … 

    n0
1)-(n

nn0
1)-(n

220
1)-(n

11 a  )(txc   )(txc  )(txc =+…++  (3) 

 We shall show that the constants   c1, c2,…cn  exist uniquely by hypothesis. We 

note that the determinant formed by the coefficients of c1, c2,…cn  in the above system 

of non-homogeneous linear equations is the Wronskian of the functions x1, x2,...xn-1, xn  

at the point t0. Since x1, x2,...xn-1, xn are linearly independent on I, the Wronskian at       

t = t0  is not zero. So the system of non-homogeneous equations (3) has unique 

solution c1, c2,…cn  which completes the proof of the theorem.   

Theorem 2.15 

Hypotheses 

1. Let f1, f2, …., fn be a set of n functions each of which has a continuous n-th 

derivative on a ≤ t ≤ b. 

2. Suppose W(f1, f2, …., fn)(t) ≠ 0 for all t on a ≤ t ≤ b. 
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Conclusion There exists a unique normalized (coefficient of n

n

dt
xd  is unity) 

homogeneous linear differential equation of order n (with continuous coefficients) 

which has f1, f2, …., fn as a fundamental set on a ≤ t ≤ b. This equation is  

   .0
)]().....(),([

]),().....(),([

21

21 =
tftftfW

xtftftfW

n

n                            (1) 

Proof The differential equation (1) is actually 

 .0
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)( )( )( 
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)( )( )( 
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21
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=
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−−− tftftf

tftftf
tftftf
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xtftftf
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n
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n

n

nn
n
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n

n

Λ
ΜΜΜ

Λ
Λ

Λ
ΜΜΜΜ

Κ
Κ

 (2) 

 

The expansion of the numerator W(x, f1, f2, …..,fn) in equation (1) by the last column 

shows that (1) is a differential equation of order n, with the coefficient of x(n) as one. 

Thus, we get an equation of the form  

 ,0)()()( 11

1

1 =++++ −−

−

xtp
dt
dxtp

dt
xdtp

dt
xd

nnn

n

n

n

Λ  

and so is a normalized homogeneous linear differential equation of order n. Also, by 

Hypotheses 1 and 2 the coefficients pi(i = 1, 2,…n) are continuous on a ≤ t ≤ b. If any 

one of f1(t), f2(t),…, fn(t) is substituted for x in equation (2), the resulting determinant 

in the numerator will have two identical columns. Thus each of the functions f1, f2,..fn 

is a solutions of Equation (1) on a ≤ t ≤ b; and by Theorem 2.13 we see from 

Hypothesis 2 that these solution are linearly independent on a ≤ t ≤ b. Thus equation 

(1) is indeed an equation of the required type having f1, f2,..fn as a fundamental set.  
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 We now show that equation (1) is the only normalized n-th order 

homogeneous linear differential equation with continuous coefficients which has this 

property. Suppose there are two such equations       

 

.0)()()(

,0)()()(

11

1

1

11

1

1

=++++

=++++

−−

−

−−

−

xtr
dt
dxtr

dt
xdtr

dt
xd

xtq
dt
dxtq

dt
xdtq

dt
xd

nnn

n

n

n

nnn

n

n

n

Λ

Λ

 (3) 

Then the equation  

 0)]()([)]()([ 1

1

11 =−++− −

−

xtrtq
dt

xdtrtq nnn

n

Λ  (4) 

is a homogeneous linear differential equation of order at most (n-1), and the 

coefficients in equation (4) are continuous on a ≤ t ≤ b. Further, since f1, f2,..fn satisfy 

both the equations (3) these n functions are all solutions of Equation (4) on a ≤ t ≤ b.  

 We shall show that q1(t) – r1(t) = 0 for all t on a ≤ t ≤ b. To do so, let t0 be a 

point of the interval a ≤ t ≤ b and suppose that q1(t0) – r1(t0) ≠ 0. Then there exist a 

subinterval I, α ≤ t ≤ β, of a ≤ t ≤ b containing t0 such that q1(t) – r1(t) ≠ 0 on I. Since 

the n solutions f1, f2,..fn of equation (4) are linearly independent on a ≤ t ≤ b, they are 

also linearly independent on I. Thus on I, equation (4) of order at most (n-1), has a set 

of n linearly independent solutions. But this is a contradiction. Thus there exists no     

t0 ∈ [a, b] such that q1(t0) – r1(t0) ≠ 0. In other words, q1(t) – r1(t) = 0 for all t on          

a ≤ t ≤ b.  

 Similarly one can show that qk(t) – rk(t) = 0, k = 2, 3…,n for all t on a ≤ t ≤ b. 

Thus equation (3) are identical on a ≤ t ≤ b and the uniqueness is proved         

Example 2.7 

Consider the function f1 and f2 defined, respectively by f1(t) = t and f2(t) = tet. We 

note that  

 .0for 0
1

))(,( 2
21 ≠≠=

+
= tet

ete
tet

tffW t
tt

t
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Thus by theorem 2.15 on every closed interval a ≤ t ≤ b not including t = 0 there exists 

a unique normalized second order homogeneous linear differential equation with 

continuous coefficients which has f1 and f2 as a fundamental set. Theorem 2.15 states 

that this equation is   

 .0
],[
],,[

=t

t

tetW
xtetW  

Writing out the two Wronskians involved, this becomes 

 .0

1

20
1

=

+

′′+

′+

tt

t

tt

tt

t

ete
tet

xete
xete
xtet

 

Since 

2
2

2
2

11
)2()2(

20
11 t

t
tt

andxt
dt
dxtt

dt
xdt

xt
xt
xtt

=
+

+++−=
′′+

′+  

we see that this differential equation is 

 022
22

2

=⎟
⎠
⎞

⎜
⎝
⎛ +

+⎟
⎠
⎞

⎜
⎝
⎛ +

− x
t

t
dt
dx

t
t

dt
xd . 

Adjoint Equations 

Let Ln be the nth order linear differential operator given by 

)()()( 1

1

10 ta
dt
dta

dt
dtaL nn

n

n

n

n +++= −

−

Λ    

and the corresponding nth order linear differential equation is 

Ln(x) = 0. 

Then the linear differential operator given by 

)()]([)1(..........)]([)1()]([)1( 1
1

11

1
1

0 tata
dt
dta

dt
dta

dt
dLL nnn

n
n

n

n
n

nn +−++−+−≡= −−

−
−+    
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 is called the Adjoint operator of the operator Ln and the corresponding adjoint 

differential equation is  

0)( =xLn  i.e. 

0)(])([..........])([)1(])([)1( 111

1
1

0 =+−+−+− −−

−
− xtaxta

dt
dxta

dt
dxta

dt
d

nnn

n
n

n

n
n  (1) 

Equation (1) may be written as  

0)(..........])([)1(])([)1( )1(
1

1)(
0 =++−+− −− xtaxtaxta n

nnnn    

The coefficients ak(t) ∈ Cn-k i.e. ak have continuous (n-k)th derivatives on I.  

Definition 

If the adjoint of a differential equation is the equation itself, then the equation is called 

self-adjoint differential equation. 

Definition 

If the adjoint of a differential operator is the operator itself, then the operator is called 

self-adjoint. 

We have already studied that the linear system corresponding to linear differential 

equation  

Lnx = 0 (1)  

is, xtAx ˆ)(ˆ +=′  (2) 

The adjoint system to the LS (2) is 

xtAx ˆ)(ˆ * +−=′  (3) 

where 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
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−
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−
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1

0

*
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a
a

a
a
a
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n
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Λ
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 (4) 
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Consider the special case with a0 = 1. 

Then equation (3) becomes  

⎥
⎥
⎥
⎥
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 (5) 

Theorem 2.14 (Lagrange Identity) 

Let the coefficients ak(t) in the differential operator  

)()()( 1

1

10 ta
dt
dta

dt
dtaL nn

nn

n +++= −

−

Λ   

have continuous (n-k)th derivatives i.e. ak∈Cn-k on I (k = 0, 1, …,n). If u and v be any 

two (complex) continuous functions having nth order derivative on the interval I, then  

)],,([ vuP
dt
dvLuuLv nn =− +   

where .)()1(),(
1 1

)1()(1∑ ∑
= =

−
−

−−
⎥
⎦

⎤
⎢
⎣

⎡
−=

n

k

k

j

j
kn

jkj avuvuP  

This P(u,v) is called bilinear concomitant associated with the operator Ln. 

Proof Consider the expression  

U(k-1)V -  U(k-2)V' + …….+ (-1)k-2 U'V(k-2) + (-1)k-1 UV(k-1),     k = 0,1,….,n. 

Differentiating  

[ ]1)-(k1-k2)-(k2-k2)-(k1)-(k  UV(-1)  V U'(-1) .  V'  U- VU ++……+
dt
d  

= U(k)V +  U(k-1)V' -  U(k-1)V'-  U(k-2)V''+ …….+ (-1)k-2 U''V(k-2) + (-1)k-2 U'V(k-1)  

+ (-1)k-1 U'V(k-1) + (-1)k-1 UV(k) 

Thus  

=VU(k) + (-1)k-1 UV(k) 
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VU(k) =  (-1)k UV(k) + [ ]1)-(k1-k2)-(k2-k2)-(k1)-(k  UV(-1)  V U'(-1) .  V'  U- VU ++……+
dt
d   

 (1) 

  k = 0,1,…..,n   

Now 

⎥
⎦

⎤
⎢
⎣

⎡
++++= −−

−

ua
dt
dua

dt
uda

dt
udavuLv nnn

n
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n 11
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10 Λ  

  uav
dt
duav

dt
udav

dt
udav nnn

n

n

n

++++= −−

−

11

1

10 Λ  (2) 

Now, we shall obtain all the terms in r.h.s. of equation (2). First we put U = u, 

V= 0av and k = n in equation (1), 

 ⎢
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⎡
+′−+−= −

−

−

−

Λ2

2

01

1

0
0

0 )()()1( n
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0
2 )()1()()1( nnnn avuav

dt
du  (3) 

Now put 

U = u, V = 1av and k = n-1 in equation (1) 

⎢
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 ⎥⎦
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1
2)3(

1
3 )()1()()1( nnnn avuav

dt
du  (4) 

and so on. 

Let U = u, V = 1−nav and k = 1  in equation (1) 

][ uav
dt
d

dt
avdu

dt
duav n

n
n 1

11
1

)()1( −
−

− +−=  (5) 

Finally put U = u, V = nav and k = 0, we get 
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nn avuuav =  (6) 

Using (3) – (6) in equation (2), we get 

⎥
⎦

⎤
⎢
⎣

⎡
+−++−+−= −−

−
−

nnn

n
n

n

n
n

n avav
dt
dav

dt
dav

dt
duuLv )()1()()1()()1( 1

1
11

1
1

0 Λ  + 

 +⎥
⎦

⎤
⎢
⎣

⎡
−+⎥

⎦

⎤
⎢
⎣

⎡
− −

−

=

−−−−

=

−− ∑∑ )1(
1

1

1

)1(1)1(
0

1

)(1 )()()1()()()1( j
n

j

jnjj
n

j

jnj avu
dt
davu

dt
d   

 …………………………………………………………………+ 

 ⎥
⎦

⎤
⎢
⎣

⎡
− −

−
=

−−∑ )1(
1

1

1

)1(1 )()()1( j
n

j

jj avu
dt
d  
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where 
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1)(
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where, we have used the definition of adjoint operator as  

,)(])([)1(....])([)1(])([)1( )1(
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1)1(
1

1)(
0 vtavtavtavtavL nn

nnnn
n +−++−+−= −
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proving the result.  

The Lagrange identity (7) holds for all continuous differentiable functions u(t) and 

v(t) defined over some solution domain I = {t| a ≤ t ≤ b}. 

The functions u and v must be differentiable in order that Lnu and vLn
+ exist. This is 

the only restriction we place upon these functions.  

Theorem 2.15 (Green’s Formula) 

If the ak in Ln and u, v are the same as in theorem 2.14, then for any t1, t2, ∈ I,  
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( ) ),)(,())(,(  12

2

1

tvuPtvuPdtvLuuLv
t

t
nn −=−∫ +   

where P(u,v)(t) is the value at t of P(u,v). 

Proof  The integral of Lagrange identity (7) produces 

 ( ) [ ] 2
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1

 ),( t
t

t

t
nn vuPdtvLuuLv =−∫ +  

12
|),(|),( tttt vuPvuP == −=  = ),)(,())(,( 12 tvuPtvuP −  

which is the Green’s formula.  

The nth-order Non-homogeneous Linear Equation 

In this section we consider briefly the nth-order non homogeneous linear scalar 

differential equation  

)()()()()( 11

1

10 tbxta
dt
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=++++ −−
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Λ    (1) 

Using the operator notation already introduced, we may write this as 

Lnx = b(t), (2) 

Where, as before, 

)()()()( 11
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10 ta
dt
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dt
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dtaL nnn
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n

n ++++= −−

−

Λ . 

We now prove the basic theorem dealing with equation (2).  

Theorem 2.16 

Hypothesis  

1. Let v be any solution of the nonhomogeneous equation (2) 

2. Let u be any solution of the corresponding homogeneous equation 

 Lnx = 0. (3) 

Conclusion Then u + v is also a solution of the non homogeneous equation (2). 
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Proof  We have 

.................)]()([)()]()([)()]()([ 1
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10 tvtatv
dt
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dt
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dta nnn

nn

+++++ −−
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Λ  

  = Ln[u(t)] + Ln[v(t)] 

Now by Hypothesis 1, Ln[v(t)] = F(t); and by Hypothesis 2, Ln[u(t)] = 0.  

Thus Ln[u(t) + v(t)] = F(t); that is, u+v is a solution of Equation (2).  

In particular, if f1, f2,…… fn is a fundamental set of the homogeneous equation (3) and 

v is any particular solution of the non homogeneous equation (2) then  

 c1f1 + c2f2 + ……+ cnfn+ v 

is also a solution of the non homogeneous equation (2). If a fundamental set f1, f2,…… 

fn of the corresponding homogeneous equation (3) is known, then a particular solution 

of the non homogeneous equation (2) can always be found by the method of variation 

of parameters.  

Theorem 2.17 

If {φ1, ….φn} is a fundamental set of homogeneous linear differential equation  

Lnx = x(n) + a1x(n-1) + …….+ anx = 0  

ak ∈C on I, where C is set of complex functions. Then (prove that) the solution ψ of 

the non homogeneous equation  

Lnx = b(t) (b∈C on I)   

Satisfying )|ˆ| ,(ˆ)(ˆ ∞<∈= ξτξτψ I  

is given by 
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∫∑
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where ψh is the solution of Lnx = 0 for which ξτψ ˆ)(ˆ =h  and ),......,( 1 nkW φφ is the 

determinant obtained from ),......,( 1 nW φφ by replacing the kth column by (0, 0, ...,0, 1) 

Proof  We know that if ϕ is the fundamental matrix for the LS 

 x' = A(t)x (1) 

then 

∫ −=
t

dssbstt
τ

ϕϕψ )( )()()( 1  (2) 

is the solution of the non homogeneous system. 

 x' = A(t)x + b(t)  (3) 

satisfying ψ(τ) = 0.  (by theorem 2.2)  

Thus, we can say that ψ̂  is the vector solution of the system 

(t)b̂  x̂A(t)  'x̂ +=  (4) 

such that 0)(ˆ =τψ    

then ψ1, the first component of ψ̂  is given by [or general component, just named as 

ψ1] 

∫=
t

dssbstt
τ

γψ )( ),()( ln1  (5) 

where γln(t,s) denotes the (1,n)th element of ϕ(t) ϕ-1(s) i.e. γ1n(t,s) is the element in the 

first row and nth column of the matrix ϕ(t) ϕ-1(s) [i.e. element obtained by 

multiplying the first row of ϕ(t) with the nth column of ϕ-1(s)] 

Now, we know that (I, j)th element of φ(t) is )1( −i
jφ  i.e.  

Then  det ϕ(t) = W(φ1, ……, φn)(t). 

Now, the element in the ith row and nth column of ϕ-1(s) is given by 
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where inφ is the cofactor of (n,i)th element )1( −n
iφ  in ϕ. 
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Thus from equation (7), we get 

)( )(),())(,......,(
1

11 ststsW kn

n

k
knn φφγφφ ∑

=

=  

where 

 

)1()1(
1

)1(
1

)1(
1

111

111

1

0
0

−−
+

−
−

−

+−

+−

′′′′
=

n
n

n
k

n
k

n

nkk

nkk

kn

φφφφ

φφφφ
φφφφ

φ

ΛΛ
ΜΜΜΜΜ

ΛΛ
ΛΛ

 

= Wk(φ1, ……, φn), as defined in the statement of the theorem. 

[Explanation:     As n1φ  = cofactor of (n, 1)th element in ϕ. 
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which is the same as the determinant  
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expanded by column 1, i.e. 
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which is same as equation (a).  

 = W1 (φ1, …,φn) 

 Thus we have written cofactor of  )1(
1

−nφ  as equation (b) instead of equation no. 

(a). Similarly n2φ  = cofactor of (n, 2)th element )1(
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Now expanding this by 2nd column, we get equation (d).  

Thus  

 knφ  = cofactor element in nth row and kth, column i.e. (n, k)th element  
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Using this value of γ1n(t, s) in equation (5), we get  
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Then  ψ1(t) is the solution of Lnx = b(t) 

satisfying  0)(ˆ1 =τψ . (8) 

we know that, 

when ψh(t) is the solution of Lnx = 0  

 s.t.   ξτψ ˆ)(ˆ =h  

Then  

 ψ(t)  =  ψ1(t)   + ψh(t)  is a solution of the non-homogeneous equation                

Lnx = b(t). 

 )(ˆ)(ˆ)(ˆ 1 τψτψτψ h+=  =  0 + ξξ ˆˆ =   
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 is a solution of  
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  Lnx = b(t)  

 satisfying   ξτψ ˆ)(ˆ =   

Thus the variation of constant formula takes this special form (9) for 

nonhomogeneous linear differential equation of order n.   

Summary 

Method of variation of parameters is the tool, which makes it possible to find 

the solution of non-homogeneous system. Also fundamental matrix is found for linear 

system with constant coefficients and representation theorem is proved for linear 

system with periodic coefficients. Abel’s Liouville formula and Lagrange Identity for 

an nth order linear differential equation are presented at the end of chapter.   

Keywords  Non-homogeneous, periodic, constant coefficients, adjoint equation, 

Lagrange   identity.   
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Chapter-3 

NONLINEAR DIFFERENTIAL EQUATIONS - I   
 

 

Objectives 

 Non-linear phenomena are of fundamental importance in various fields of 

science and engineering. In this chapter, attention is devoted to study the basic 

concepts of linear and non-linear autonomous systems. Particular emphasis is placed 

to study the nature of critical points of linear and non linear autonomous systems.  

Introduction 

The mathematical formulation of numerous physical problems results in differential 

equations which are actually nonlinear. In many cases it is possible to replace such as 

a nonlinear equation by a related linear equation which approximates the actual 

nonlinear equation. However, such a “linearization” is not always feasible; and when 

it is not, the original nonlinear equation itself must be considered. In this chapter we 

shall give a brief introduction to certain methods of approximation to study nonlinear 

equation.  

Phase Plane, Paths and Critical Points  

A.  Basic concepts and Definitions 

In this chapter we shall be concerned with second order nonlinear differential 

equations of the form  

   ⎟
⎠
⎞

⎜
⎝
⎛=

dt
dxxF

dt
xd ,2

2

. (1) 

A specific example of such an equation is van der Pol equation  

      0)1( 2
2

2

=+−+ x
dt
dxx

dt
xd μ , (2) 

where μ is a positive constant. Equation (2) may be put in the form (1) where  
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   .)1(, 2 x
dt
dxx

dt
dxxF −−−=⎟

⎠
⎞

⎜
⎝
⎛ μ  

Let us suppose that the differential equation (1) describes a certain dynamical system 

having one degree of freedom. The state of this system at time t is determined by the 

values of x (position) and dx/dt (velocity). The plane of the variables x and dx/dt is 

called a phase plane.  

 If we let y = dx/dt, we can replace the second-order equation (1) by the 

equivalent system 

     ,y
dt
dx

=  

   ).,( yxF
dt
dy

=  (3) 

 We can determine information about equation (1) from a study of the system 

(3). In particular we shall be interested in the configurations formed by the curves 

which the solutions of (3) define. We shall regard t as a parameter so that these curves 

will appear in the xy plane. Since y = dx/dt, this xy plane is simply the x, dx/dt phase 

plane .  

 More generally, we shall consider systems of the form  

   ),( yxP
dt
dx

=  

   ),,( yxQ
dt
dy

=  (4) 

where P and Q have continuous first partial derivatives for all (x, y). Such a system, in 

which the independent variable t appears only in the differentials dt of the left 

members and not explicitly in the functions P and Q on the right, is called an 

autonomous system. We shall now proceed to study the configurations formed in the 

xy phase plane by the curves which are defined by the solutions of (4).  

 From existence and uniqueness theorem, it follows that, given any number t0 

and any pair (x0, y0) of real number, there exists a unique solution 

    x = f(t),  

    y = g(t),  (5) 



  

 95

of the system (4) such that  

    f(t0) = x0 

    g(t0) = y0. 

 If f and g are not both constant functions, then (5) defines a curve in the xy 

plane which we shall call a path (or orbit or trajectory) of the system (4).  

 If the ordered pair of functions defined by (5) is a solution of (4) and t1 is any 

real number, then the ordered pair of functions defined by 

    x = f (t - t1), 

    y = g(t - t1), (6) 

is also a solution of (4). Assuming that f and g in (5) are not both constant functions 

and that t1 ≠ 0, the solutions defined by (5) and (6) are two different solutions of (4). 

These two different solutions are simply different parameterizations of the same path. 

We thus observe that the terms solution and path are not synonymous. On the one 

hand, a solution of (4) is an ordered pair of functions (f, g) such that x = f(t),  y = g(t) 

simultaneously satisfy the two equations of the system (4) identically; on the other 

hand, a path of (4) is a curve in the xy phase plane which may be defined 

parametrically by more than one solution of (4).  

 Eliminating t between the two equations of the system (4), we obtain the 

equation  

     
),(
),(

yxP
yxQ

dx
dy

=    (7) 

 This equation gives the slope of the tangent to the path of (4) passing through 

the point (x, y), provided the functions P and Q are not both zero at this point. The 

one parameter family of solutions of (7) thus provides the one-parameter family of 

paths of (4). However, the description (7) does not indicate the directions associated 

with these paths.  

 At point (x0, y0) at which both P and Q are zero, the slope of the tangent to the 

path, as defined by (7), is indeterminate. Such points are singled out in the following 

definition. 
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Definition  

 Given the autonomous system  

   ),( yxP
dt
dx

=  

   ),( yxQ
dt
dy

=  (4) 

a point (x0, y0) at which both  

   P(x0, y0) = 0 and  Q(x0, y0) = 0 

is called a critical point (equilibrium point or singular point) of (4). 

Example 3.1 

Consider the linear autonomous system      

   ,y
dt
dx

=  

   .x
dt
dy

−=  (8) 

We find the general solution of this system as  

   x = c1 sin t - c2 cos t, 

   y = c1 cos t + c2 sin t, 

where c1 and c2 are arbitrary constants. The solution satisfying the conditions x(0) = 0, 

y(0) = 1 is found to be  

   x = sin t,  

   y = cos t.  (9) 

This solution defines a path C1 in the xy plane. The solution satisfying the condition 

x(0) = - 1, y(0) = 0 is  

   x = sin (t - π/2), 

   y = cos (t - π/2), (10) 

The solution (10) is different from the solution (9), but (10) also defines the same path 

C1. That is, the ordered pairs of functions defined by (9) and (10) are two different 



  

 97

solutions of (8) which are different parameterization of the same path C1. Eliminating 

t from either (9) or (10) we obtain the equation x2 + y2 = 1 of the path C1 in the xy 

phase plane. Thus the path C1 is the circle with centre at (0, 0) and radius 1. From 

either (9) or (10) we can see that the direction associated with C1 is the clockwise 

direction. 

 Eliminating t between the equations of the system (8) we obtain the 

differential equation 

    ,
y
x

dx
dy

−=  (11) 

which gives the slope of the tangent to the path of (8) passing through the point (x, y), 

provided (x, y) ≠ (0, 0).  

 The one –parameter family of solutions  

    x2 + y2 = c2  

of equation (11) gives the one-parameter family of paths in the xy phase plane. 

Several of these are shown in figure 3.1. The path C1 referred to above is, of course, 

that for which c = 1. 

 

 

 

 

 

 

 

Figure 3.1 

 Looking back at the system (8), we see that P(x, y) = y and Q(x, y) = -x. 

Therefore the only critical point of the system is the origin (0, 0). Given any real 

number t0, the solution x = f(t), y = g(t) such that f(t0) = g(t0) = 0 is simply 

    x =  0,  

    y =  0,   for all t  
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 We now introduce certain basic concepts dealing with critical points and paths  

Definition 

 A critical point (x0, y0) of the system (4) is called isolated if there exists a 

circle 

    (x – x0)2 + (y – y0)2 = r2 

about the point (x0 , y0) such that (x0, y0) is the only critical point of (4) within this 

circle. 

In what follows we shall assume that every critical point is isolated.  

Note  For convenience, we shall take the critical point (x0, y0) to be the origin (0, 0). 

There is no loss of generality in doing this, for if (x0, y0) ≠ (0, 0), then the translation 

of coordinates ξ = x –x0, η = y – y0 transforms (x0, y0) into the origin in the ξη plane.  

Definition 

Let C be a path of the system (4), and let x = f(t), y = g(t) be a solution of (4) which 

represents C parametrically. Let (0, 0) be a critical point of (4). We shall say that the 

path C approaches the critical point (0, 0) as t → + ∞ if  

   ,0)(lim =
+∞→

tf
t

    .0)(lim =
+∞→

tg
t

  (12) 

 Thus when we say that a path C defined parametrically by x = f(t), y = g(t) 

approaches the critical point (0, 0) at t → + ∞, we understand the following: a point R 

tracing out C according to the equations x = f(t), y = g(t) will approach the point (0, 0) 

at t → + ∞. This approach of a path C to the critical point (0, 0) is independent of the 

solution actually used to represent C. That is, if C approaches (0, 0) as t → + ∞, then 

(12) is true for all solutions x = f(t), y = g(t) representing C.  

 In like manner, a path C1 approaches the critical point (0, 0) as t → - ∞ if  

              ,0)(lim 1 =
−∞→

tf
t

    .0)(lim 1 =
−∞→

tg
t

 

where x = f1(t), y = g1(t) is a solution defining the path C1. 
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Definition  

Let C be a path of the system (4) which approaches the critical point (0, 0) of (4) as t 

→ +∞, and let x = f(t), y = g(t) be a solution of (4) which represents C parametrically. 

We say that C enters the critical point (0, 0) as t → +∞ if  

 
)(
)(lim

tf
tg

t +∞→
 (13) 

exists or if the quotient in (13) becomes either positively or negatively infinite as        

t → + ∞. 

 We observe that the quotient g(t)/f(t) in (13) represents the slope of the line 

joining critical point (0, 0) and a point R with coordinates [f(t), g(t)] on C. Thus when 

we say that a path C enters the critical point (0, 0) as t → + ∞ we mean that the line 

joining (0, 0) and a point R tracing out C approaches a define “limiting” direction as    

t → + ∞. 

B.  Types of Critical points  

 We shall now discuss certain types of critical points .  

1   Center 

(1) The critical point (0, 0) of Figure 3.2 is called a center. Such a point is 

surrounded by an infinite family of closed paths, members of which are 

arbitrarily close to (0, 0) but is not approached by any path either as t → + ∞ 

or as t → -∞.  

Definition 

 The isolated critical point (0, 0) of (4) is called a center if there exists a 

neighbourhood of (0, 0) which contains a countably infinite number of closed paths 

Pn( n = 1, 2, 3….,), each of which contains (0, 0) in its interior, and which are such 

that the diameters of the paths approach 0 as n → ∞ [but (0, 0) is not approached by 

any path either as t → + ∞ or t → - ∞] 

1. We define a neighbourhood of (0, 0) to be the set of all points (x, y) lying 

within some fixed (positive) distance d of (0, 0).  
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Figure 3.2 

2. An infinite set is called countable if it can be put into one-to-one 

correspondence with the set of all positive integers. An example of a countable 

set is the set of all rational numbers.  

3. An infinite set is uncountable if it is not countable. An example of an 

uncountable set is the set of all real numbers.  

2.    Saddle Point  

The critical point (0, 0) of Figure 3.3 is called a saddle point. Such a point may be 

characterized as follows:  

1. It is approached and entered by two half line paths (AO and BO) t → + ∞, 

these two paths forming the geometric curve AB.  

2. It is approached and entered by two half line paths (CO and DO) as t → - ∞, 

these two paths forming the geometric curve CD.  

3. Between the four half-line paths described in (1) and (2) there are four 

domains R1, R2, R3, R4, each containing an infinite family of semi-hyperbolic 

like paths which do not approach O as t → + ∞ or as t → - ∞, but which 
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become asymptotic to one or another of the four half line paths as t → + ∞ and 

as         t → - ∞.  

 

 

 

 

 

 

 

 

 

 

Figure 3.3 

Definition 

The isolate critical point (0, 0) of (4) is called a saddle point if there exists a 
neighbourhood of (0, 0) in which the following two conditions hold: 

1. There exist two paths which approach and enter (0, 0) from a pair of opposite 

directions as t → + ∞ and there exist two paths which approach and enter      

(0, 0) from a different pair of opposite directions as t → - ∞.   

2. In each of the four domains between any two of the four directions in (1) there 
are infinitely many paths which are arbitrarily close to (0, 0) but which do not 

approach (0, 0) either as t → + ∞ or as t → - ∞. 

3.  Spiral Point 

 The critical point (0, 0) of figure 3.4 is called a spiral point (or focal point). 
Such a point is approached in a spiral-like manner by an infinite family of paths as      

t → + ∞ (or as t → - ∞). Observe that while the paths approach O, they do not enter it. 

That is a point R tracing such a path C approaches O as t → + ∞  (or as t → - ∞), but 
the line OR does not tend to a definite direction, since the path constantly winds about 
O.  
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Definition 
 The isolated critical point (0, 0) of (4) is called a spiral point (or focal point) 

if there exists a neighbourhood of (0, 0) such that every path P in this neighbourhood 

has the following properties:  

1. P is defined for all t > t0 (or for all t < t0) for some number t0; 

 

 

 

 

 

 

 

Figure 3.4 

2. P approaches (0, 0) as t → + ∞  (or as t → - ∞); and  

3. P approaches (0, 0) in a spiral like manner, winding around (0, 0) an infinite 

number of times as t → + ∞  (or as t → - ∞). 

4. Node 

 The critical point (0, 0) of Figure 3.5 is called a node. Such a point is not only 

approached but also entered by an infinite family of paths as t → + ∞  (or as t → - ∞). 

That is a point R tracing such a path not only approaches O but does so in such a way 

that the line OR tends to a definite direction as t → + ∞  (or as t → - ∞). For the node 

shown in Figure 3.5 there are four rectilinear paths, AO, BO, CO, and DO. All other 

paths are like “semiparabolas.” As each of these semiparabolic-like paths approaches 

O, its slope approaches that of the line AB.  

Definition 

The isolated critical point (0, 0) of (4) is called a node if there exists a neighbourhood 

of (0, 0) such that every path P in this neighbourhood has the following properties:  
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1. P is defined for all t > t0 [or for all t < t0] for some number t0 

2. P approaches (0, 0) as  t → + ∞  (or as t → - ∞); and  

3. P enters (0, 0) as  t → + ∞  [or as t → - ∞] 

 

 

 

 

 

 

 

 

 

Figure 3.5 

C. Stability   

We assume that (0, 0) is an isolated critical point of the system 

    ),( yxP
dt
dx

=   

  ),( yxQ
dt
dy

=  (4) 

and proceed to introduce the concepts of stability and asymptotic stability for this 

critical point. 

Definition  

Assume that (0, 0) is an isolated critical point of the system (4). Let C be path of (4); 

let x = f(t), y = g(t) be a solution of (4) defining C parametrically. Let  

  22 )]([)]([)( tgtftD +=  (14) 
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denotes the distance between the critical point (0, 0) and the point R: [f,(t), g(t)] on C. 

The critical point (0, 0) is called stable if for every number ε > 0, there exists a 

number δ > 0 such that the following is true: Every path C for which  

  D(t0) < δ for some value t0  (15) 

is defined for all t ≥ t0 and is such that 

  D(t) < ε   for t0 ≤ t < ∞. (16) 

Let us analyze this definition, making use of Figure 3.6. The critical point (0, 0) is 

said to be stable if, corresponding to every positive number ε, we can find another 

positive number δ which dose “something” for us. Now what is this “something”? To 

answer this we must understand what the inequalities in (15) and (16) mean. 

According to (14), the inequality D(t0) < δ for some value t0 in (15) means that the 

distance between the critical point (0, 0) and the point R on the path C must be less 

than δ at t = t0. This means that at t = t0, R lies within the circle K1 of radius δ   about 

(0, 0) (Figure 3.6). Likewise the inequality D(t) < ε for t0 ≤ t < ∞ in (16) means that 

the distance between (0, 0) and R is less than ε for all t ≥ t0 and hence that for t ≥ t0, R 

lies within the circle K2 of radius ε about (0, 0). Now we can understand the 

“something” which the number δ does for us. If (0, 0) is stable, then every path C 

which is inside the circle K1 of radius δ at t = t0 will remain inside the circle K2 of 

radius t ≥ t0. Roughly speaking, if every path C stays as close to (0, 0) as we want it to 

(that is, within distance ε) after it once gets close enough (that is within distance δ), 

then (0, 0) is stable.  

 

 

 

 

 

 

Figure 3.6 
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Definition 

 Assume that (0, 0) is an isolated critical point of the system (4). Let C be a 

path of (4); and let x = f(t), y = g(t) be a solution of (4) representing C parametrically. 

Let  

  22 )]([)]([)( tgtftD +=  (14) 

denotes the distance between the critical point (0, 0) and the point R: [f(t), g(t)] on C. 

The critical point (0, 0) is called asymptotically stable if (1) it is stable and (2) there 

exists a number δ0 > 0 such that if  

  D(t0) <  δ0 (17) 

for some value t0, then  

  ,0)(lim =
+∞→

tf
t

   ,0)(lim =
+∞→

tg
t

 (18) 

 To analyze this definition, note that condition (1) requires that (0, 0) must be 

stable. That is, every path C will stay as close to (0, 0) as we desire after it once gets 

sufficiently close. But asymptotic stability is a stronger condition than mere stability. 

For, in addition to stability, the condition (2) requires that every path that gets 

sufficiently close to (0, 0) [see 17] ultimately approaches (0, 0) as t → +∞ [see 18]. 

Note that the path C of figure 3.6 has this property.  

Definition 

 A critical point is called unstable if it is not stable.  

 As illustration of stable critical points, we point out that the center in Figure 

3.2, the spiral point in Figure 3.4, and the node in Figure 3.5 are all stable. Of these 

three, the spiral point and the node are asymptotically stable. If the directions of the 

paths in Figures 3.4 and 3.5 have been reversed, the spiral point and the node of these 

respective figures would have both been unstable. The saddle point of Figure 3.3 is 

unstable  

Exercise 3.1 

For the autonomous system in Exercise 1 (a) find the real critical points of the system, 

(b) obtain the differential equation which gives the slope of the tangent to the paths of 
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the system, and (c) solve this differential equation to obtain the one-parameter family 

of paths. 

1. 2yx
dt
dx

−= , 

 .2 yx
dt
dy

−=          

2. Consider the linear autonomous system  

 x
dt
dx

= , 

 .yx
dt
dy

+=          

(a) Find the solution of this system which satisfies the conditions x(0) = 1,               

y(0) = 3. 

(b) Find the solution of this system which satisfies the conditions x(4) = e,               

y(4) = 4e.  

(c) Show that the two different solutions found in (a) and (b) both represent the 

same path.  

(d) Find the differential equation which gives the slope of the tangent to the paths, 

and solve it to obtain the one-parameter family of paths.       

Answers to Exercise 

1. (a)  (0, 0), (1, 1);   (b)   2

2

yx
yx

dx
dy

−
−

= ;  (c) x3 – 3xy + y3 = c  

2. (a)   x = et, y = 3et + tet;  (b)  x = et-3, y =  tet-3;   

 (c)   The equation of the common path is y = x(ln |x| + 3); 

 (d)   The family of paths is y = x(ln |x| + c).  

Critical Points and Paths of Linear Systems 

A. Basic-Theorems 

In this chapter we want to study nonlinear differential equations and the 

corresponding nonlinear autonomous systems of the form (4). We shall be interested 
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in classifying the critical points of such nonlinear systems. We shall see that under 

appropriate circumstances we may replace a given nonlinear system by a related 

linear system and then employ this linear system to determine the nature of the critical 

point of the given system. Thus in this section we shall first investigate the critical 

points of a linear autonomous system. 

We consider the linear system 

 

,

,

dycx
dt
dy

byax
dt
dx

+=

+=

 (19) 

where a, b, c, and d are real constants. The origin (0, 0) is clearly a critical point of 

(19). We assume that 

 ,0≠
dc
ba

 (20) 

and hence (0, 0) is the only critical point of (19). 

We can find solutions of (19) of the form 

 
t

t

Bey

Aex

λ

λ

=

= ,
 (21) 

If (21) is to be a solution of (19), then λ must satisfy the quadratic equation 

 ,0)()(2 =−++− bcadda λλ  (22) 

called the characteristic equation of (19). Note that by condition (20), zero cannot be a 

root of the equation (22) in the problem under discussion. 

Let λ1 and λ2 be the roots of the characteristic equation (22). We shall prove that the 

nature of the critical point (0, 0) of the system (19) depends upon the nature of the 

roots λ1 and λ2 . For this we must consider the following five cases: 

1. λ1 and λ2 are real, unequal, and of the same sign. 

2. λ1 and λ2 are real, unequal, and of opposite sign.  

3. λ1 and λ2 are real and equal. 
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4. λ1 and λ2 are conjugate complex but not pure imaginary. 

5. λ1 and λ2 are pure imaginary. 

Case 1 

Theorem 3.1 

Hypothesis  The roots λ1 and λ2 of the characteristic equation (22) are real, unequal, 

and of the same sign. 

Conclusion  The critical point (0, 0) of the linear system (19) is a node. 

Proof  We first assume that λ1 and λ2 are both negative and take λ1 < λ2  < 0. Then 

the general solution of the system (19) may be written as  

 
,

,

21

21

2211

2211

tt

tt

eBceBcy

eAceAcx

λλ

λλ

+=

+=
 (23) 

where A1, B1, A2 and B2 are definite constants and A1B2 ≠ A2B1, and where c1 and c2 

are arbitrary constants. Choosing c2 = 0 we obtain the solutions 

 
.

,

1

1

11

11

t

t

eBcy

eAcx

λ

λ

=

=
 (24) 

Choosing c1= 0 we obtain the solutions 

 
.

,

2

2

22

22

t

t

eBcy

eAcx

λ

λ

=

=
 (25) 

For any c1> 0, the solution (24) represents a path consisting of "half" of the line         

B1x = A1y of slope B1/A1. For any c1 < 0, they represent a path consisting of the 

"other half" of this line. Since λ1< 0, both of these half-line paths approach (0,0) as     

t → +∞. Also, since y/x = B1/A1, these two paths enter (0, 0) with slope B1/A1. 

Similarly, for any c2 > 0 the solutions (25) represent a path consisting of "half" of the 

line B2x = A2y; while for any c2 < 0, the path consists of the "other half" of this line. 

These two half-line paths also approach (0, 0) as t → +∞ and enter it with slope 

B2/A2. 
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Thus the solutions (24) and (25) provide us with four half-line paths which all 

approach and enter (0, 0) as t → +∞. 

If c1 ≠ 0 and c2 ≠ 0, the general solution (23) represents nonrectilinear paths. Again, 

since  λ1 < λ2 < 0, all of these paths approach (0, 0) as t → +∞. Also, since 

 ( )
( ) ,

/
/

2
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2
)(

211
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tt
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= −

−

λλ
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λλ

 

we have 

 
2

2lim
A
B

x
y

t
=

∞→
 

and so all of these paths enter (0, 0) with limiting slope B2/A2. 

Thus all the paths (both rectilinear and nonrectilinear) enter (0, 0) as t → +∞, and all 

except the two rectilinear ones defined by (24) enter with slope B2/A2. Thus, the 

critical point (0, 0) is a node. Clearly, it is asymptotically stable. A qualitative 

diagram of the paths appears in Figure 3.7. 

 

 

 

 

 

 

 

 

 

Figure 3.7 

If now  λ1 and λ2 are both positive and we take  λ1 > λ2  > 0, we see that the general 
solution of (19) is still of the form (23) and particular solutions of the forms (24) and 
(25) still exist. The situation is the same as before, except all the paths approach and 

enter (0, 0) as t → -∞. The qualitative diagram of Figure 3.7 is unchanged, except that 
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all the arrows now point in the opposite directions. The critical point (0, 0) is still a 
node, but in this case it is clear that it is unstable. 

Theorem 3.2 

Hypothesis  The roots λ1 and λ2  of the characteristic equation (22) are real, unequal, 
and of opposite sign. 

Conclusion  The critical point (0, 0) of the linear system (19) is a saddle point. 

Proof  We assume that λ1 < 0 < λ2. The general solution of the system (19) may again 
be written in the form (23) and particular solutions of the forms (24) and (25) are 
again present. 

For any c1 > 0, the solutions (24) again represent a path consisting of "half" the line 
B1x = A1y; while for any c1 < 0, they again represent a path consisting of the "other 

half" of this line. Also, since λ1 < 0, both of these half-line paths still approach and 

enter (0, 0) as t → +∞. 

Also, for any c2 > 0, the solutions (25) represent a path consisting of "half" the line 
B2x = A2y; and for any c2 < 0, the path which they represent consists of the "other 

half" of this line. But in this case, since λ2 > 0, both of these half-line paths now 

approach and enter (0, 0) as t → -∞. 

Once again, if c1 ≠ 0 and c2 ≠ 0, the general solution (23) represents non-rectilinear 

paths. But here since λ1 < 0 < λ2 , none of these paths can approach (0, 0) as t → +∞ 

or as t → −∞. Further, none of them pass through (0, 0) for any t0 such that                  

−∞ < t0 < +∞. As t → +∞, we see from (23) that each of these non-rectilinear paths 

becomes asymptotic to one of the half-line paths defined by (25). As t → −∞, each of 
them becomes asymptotic to one of the paths defined by (24). 

 

 

 

 

 

 

Figure 3.8 
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Thus there are two half-line paths which approach and enter (0, 0) as t → +∞ and two 

other half-line paths which approach and enter (0, 0) as t → −∞. All other paths are 

non-rectilinear paths which do not approach (0, 0) as t → +∞ or as t → −∞, but which 

become asymptotic to one or another of the four half-line paths as t → +∞ and as t → 

−∞. Thus, the critical point (0, 0) is a saddle point. Clearly, it is unstable. A 

qualitative diagram of the paths appears in Figure 3.8. 

Case 3 

Theorem 3.3 

Hypothesis  The roots λ1 and λ2 of the characteristic equation (22) are real and equal. 

Conclusion  The critical point (0, 0) of the linear system (19) is a node. 

Proof  Let us first assume that λ1= λ2 = λ < 0. We consider two subcases: 

(a)  a = d ≠ 0, b = c = 0  

(b) All other possibilities leading to a double root.  

We consider first the special case (a). The characteristic equation (22) becomes 

 λ2 – 2aλ + a2 = 0 

and hence λ = a = d. The system (19) now becomes 

 

,

,

y
dt
dy

x
dt
dx

λ

λ

=

=

  

The general solution of this system is clearly 

 x = c1eλt, 

 y = c2eλt, (26) 

where c1 and c2 are arbitrary constants. The paths defined by (26) for the various 

values of cl and c2 are half-lines of all possible slopes. Since λ < 0, we see that each of 

these half-lines approaches and enters (0, 0) as t → +∞. That is, all the paths of the 
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system enter (0, 0) as t → +∞. Thus, the critical point (0, 0) is a node. Clearly, it is 

asymptotically stable. A qualitative diagram of the paths appears in Figure 3.9. 

If λ > 0, the situation is the same except that the paths enter (0, 0) as t → -∞, the node 

(0, 0) is unstable, and the arrows in figure 3.9 are all reversed. 

 

 

 

 

 

 

 

Figure 3.9 

This type of node is sometimes called a star-shaped node. 

Let us now consider case (b). Here the characteristic equation has the double root       

λ < 0, but we exclude the special circumstances of case (a). We know that the general 

solution of the system (19) may in this be written  

 x = c1Aeλt + c2(A1t + A2)eλt, 

 y = c1Beλt + c2(B1t + B2)eλt, (27) 

where the A's and B's are definite constants, c1 and c2 are arbitrary constants, and 

B1/A1 = B/A. Choosing c2 = 0 in (27) we obtain solutions 

 x = c1Aeλt, 

 y = c1Beλt. (28) 

For any c1 > 0, the solutions (28) represent a path consisting of “half" of the line          

Bx = Ay of slope B/A; for any c1 < 0, they represent a path which consists of the 

"other half" of this line. Since λ < 0, both of these half-line paths approach (0, 0) as        

t → +∞. Further, since y/x = B/A, both paths enter (0, 0) with slope B/A. 

If c2 ≠ 0, the general solution (27) represents nonrectilinear paths. Since λ < 0, we see 

from (27) that 
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Thus the nonrectilinear paths defined by (27) all approach (0, 0) as t → +∞. Also, 

since 
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we see that  
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t
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+∞→
1

1lim  

Thus all the nonrectilinear paths enter (0, 0) with limiting slope B/A. 

 

 

 

 

 

 

 

 

Figure 3.10 

Thus all the paths (both rectilinear and nonrectilinear) enter (0, 0) as t → +∞ with 

slope B/A. Thus, the critical point (0, 0) is a node. Clearly, it is asymptotically stable. 

A qualitative diagram of the paths appears in Figure 3.10. 

If λ > 0, the situation is again the same except that the paths enter (0, 0) as t → − ∞, 

the node (0, 0) is unstable, and the arrows in Figure 3.10 are reversed. 

Case 4 

Theorem 3.4 

Hypothesis  The roots λ1 and λ2 of the characteristic equation (22) are conjugate 

complex with real part not zero (that is, not pure imaginary). 
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Conclusion  The critical point (0, 0) of the linear system (19) is a spiral point. 

Proof  Since λ1 and λ2 are conjugate complex with real part not zero, we may write 

these roots as α ± iβ, where α and β are both real and unequal to zero. Then the 

general solution of the system (19) may be written as  

 x = eαt[c1(A1 cos βt – A2 sin βt) + c2(A2 cos βt + A1 sin βt)] 

 y = eαt [c1(B1 cos βt – B2 sin βt) + c2(B2 cos βt + B1 sin βt)] (29) 

Where A1, A2, B1 and B2 are definite real constants and c1 and c2 are arbitrary 

constants. 

Let us first assume that α < 0. Then from (29) we see that 

 .0limand0lim ==
+∞→+∞→

yx
tt

 

and hence all paths defined by (29) approach (0, 0) as t → +∞. We may rewrite 

(29) in the form 

 x = eαt[c3 cos βt + c4 sin βt), 

 y = eαt[c5 cos βt + c6 sin βt), (30) 

where c3 = c1A1 + c2A2, c4 = c2A1 – c1A2, c5 = c1B1 + c2B2 and c6 = c2B1 –c1B2. 

Assuming c1 and c2 are real, the solutions (30) represent all paths in the real xy phase 

plane. We may now put these solutions in the form 

 x = K1eαt
 cos (βt + φ1), 

 y = K2eαt
 cos (βt + φ2), (31) 

where ,K  ,K 2
6

2
52

2
4

2
31 cccc +=+=  and φ1 and φ2 are defined by the equations 
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Letting K = K2/K1 and φ3 = φ1-φ2, this becomes 
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  = )],tan(sin[cos 133 φβφφ ++ tK  

provided 0)cos( 1 ≠+ φβt . As trigonometric functions involved in (32) and (33) are 

periodic, we conclude from these expressions that 
x
y

t +∞→
lim  does not exist and so the 

paths do not enter (0, 0). Instead, it follows from (32) and (33) that the paths approach 

(0, 0) in a spiral-like manner, winding around (0, 0) an infinite number of times as  

t→ + ∞. Thus, the critical point (0, 0) is a spiral point. Clearly, it is asymptotically 

stable. A qualitative diagram of the paths appears in Figure 3.11. 

 

 

 

 

 

 

 

Figure 3.11 

If α > 0, the situation is the same except that the paths approach (0, 0) as t → − ∞, 

the spiral point (0, 0) is unstable, and the arrows in Figure 3.11 are reversed. 

Case 5  

Theorem 3.5 

Hypothesis  The roots λ1 and λ2 of the characteristic equation (22) are pure 

imaginary. 

Conclusion  The critical point (0, 0) of the linear system (19) is a center. 
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Proof  Since λ1 and λ2 are pure imaginary we may write them as  α ± iβ, where α = 0 

but β is real and unequal to zero. Then the general solution of the system (19) is of the 

form (29), where α = 0. In the notation of (31) all real solutions may be written in the 

form 

 x = K1 cos (βt + φ1), 

 y = K2 cos (βt + φ2), (34) 

where K1, K2, φ1 and φ2 are defined as before. The solutions (34) define the paths in 

the real xy phase plane. Since the trigonometric functions in (34) oscillate indefinitely 

between ±1 as t → + ∞ and as t → − ∞, the paths do not approach (0, 0) as t → + ∞ or 

as t → − ∞. Rather it is clear from (34) that x and y are periodic functions of t and 

hence the paths are closed curves surrounding (0, 0), members of which are arbitrarily 

close to (0, 0). Indeed they are an infinite family of ellipses with center at (0, 0). Thus, 

the critical point (0, 0) is a center. Clearly, it is stable. However, since the paths do not 

approach (0, 0), the critical point is not asymptotically stable. A qualitative diagram of 

the paths appears in Figure 3.12. 

 

 

 

 

 

 

Figure 3.12 

We summarize our results in Table 3.1. The stability results of column 3 of this table 

lead to Theorem 3.6. 

Theorem 3.6 

Consider the linear system 

 
,

,

dycx
dt
dy

byax
dt
dx

+=

+=
 (19) 
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where ad - bc ≠0, so that (0, 0) is the only critical point of the system. 

1. If both roots of the characteristic equation (22) are real and negative or 

conjugate complex with negative real parts, then the critical point (0, 0) of 

(19) is asymptotically stable. 

2. If the roots of (22) are pure imaginary, then the critical point (0, 0) of (19) is 

stable, but not asymptotically stable. 

3. If either of the roots of (22) is real and positive or if the roots are conjugate 

complex with positive real parts, then the critical point (0, 0) of (19) is 

unstable. 

Table 3.1 

Nature of roots λ1 and λ2 of 
characteristic equation  

λ2 – (a + d) λ + (ad – bc) = 0 

Nature of critical point (0, 0) of 
linear system  

.

.

dycx
dt
dy

byax
dt
dx

+=

+=
 

Stability of critical 
point (0, 0) 

real, unequal, and of same 
sign 

Node asymptotically stable  
if roots are negative, 
unstable if roots are 
positive  

real, unequal, and of opposite 
sign 

Saddle point  Unstable  

real and equal  node  asymptotically stable  
if roots are negative, 
unstable if roots are 
positive 

conjugate complex but not 
pure imaginary  

spiral point  asymptotically stable  
if real part of roots 
are negative, unstable 
if real part of roots 
are positive 

pure imaginary  center  Stable, but not 
asymptotically stable. 
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B.  Examples and Applications 

Example 3.2 

Determine the nature of the critical point (0, 0) of the system 

 

,83

,72

yx
dt
dy

yx
dt
dx

−=

−=

 (35) 

and determine whether or not the point is stable. 

Solution  The system (35) is of the form (19) where a = 2, b = - 7, c = 3, and                  

d = - 8. The characteristic equation (22) is 

 λ2 + 6λ + 5 = 0. 

Hence the roots of the characteristic equation are λ1 = -5, λ2 = -1. Since the roots 

are real, unequal, and of the same sign (both negative), we conclude that the critical 

point (0, 0) of (35) is a node. Since the roots are real and negative the path is 

asymptotically stable.  

Example 3.3   

Determine the nature of critical point (0, 0) of the system 

 
,62

,42

yx
dt
dy

yx
dt
dx

+−=

−=
 (36) 

and determine whether or not the point is stable. 

Solution  Here a = 2,  b = 4,   c = -2,   and d = 6. The characteristic equation is  

 λ2 - 8λ + 20 = 0. 

and its roots are 4 ± 2i. Since these roots are conjugate complex but not pure 

imaginary, we conclude that the critical point (0, 0) of (36) is a spiral point. Since the 

real part of the conjugate complex roots is positive, the point is unstable. 
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Application to Dynamics. 

 The differential equation for the free vibrations of mass on a coil spring is  

  02

2

=++ kx
dt
dx

dt
xdm α   (37) 

where m > 0,  α ≥ 0. and k > 0 are constants denoting the mass, damping coefficient, 

and spring constant, respectively. 

The dynamical equation (37) is equivalent to the system 

 

y
m

x
m
k

dt
dy

y
dt
dx

α
−−=

= ,

 (38) 

The solutions of the system (38) define the paths (phase trajectories) associated with 

the dynamical equation (37) in the xy phase plane. From (38) the differential equation 

of these paths is 

 
my

ykx
dx
dy α+

−=   

We observe that (0, 0) is the only critical point of the system (38). The auxiliary 

equation of the differential equation (37) is 

 mr2 + αr + k = 0, (39) 

while the characteristic equation of the system (38) is 

 02 =++
m
k

m
λαλ  (40) 

The two equations (39) and (40) clearly have the same roots λ1 and λ1. Table 3.2, 

gives the form of the solution of the dynamical equation, the phase plane analysis of 

the critical point, and a brief interpretation. 
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Table 3.2 

Damping 
factor α 

Nature of 
roots of 
auxiliary and 
characteristic 
equation 

Form of solution of 
dynamical equation  

mm
k

2
, αβω ==  

Nature of 
critical point 
(0, 0) in xy 
phase plane 

Interpretation  

α = 0 (no 
damping)  

pure 
imaginary  

x = c cos (ωt + φ) (stable) center Oscillatory motion. 
Displacement and 
velocity are 
periodic functions 
of time  

km2<α  
under-
damped) 

conjugate 
complex with 
negative real 
parts  

x  = ce -βt cos (ω1t + 
φ), where  

.22
1 βωω −=   

asymptotically 
stable spiral 
point  

Damped oscillatory 
motion. 
Displacement and 
velocity → 0 
through smaller 
and smaller 
oscillations  

km2=α  
(critically 
damped) 

real, equal, 
and negative  

x = (c1 + c2t)e -βt asymptotically 
stable node  

displacement and 
velocity → 0 
without oscillating  

km2>α  
(over 
damped) 

real, unequal, 
and negative  

,21
21

trtr ececx +=  

where  

,

,
22

2

22
1

ωββ

ωββ

−−−=

−+−=

r

r

asymptotically 
stable node  

displacement and 
velocity → 0 
without oscillating  

 

Exercises 3.2 

Determine the nature of the critical point (0, 0) of each of the linear autonomous 

systems   in Exercises 1-4. Also, determine whether or not the critical point is stable. 

1. .3      ,3 yx
dt
dyyx

dt
dx

+=+=  2. .23      ,43 yx
dt
dyyx

dt
dx

+=+=  

3. .22      ,42 yx
dt
dyyx

dt
dx

−=−=  4. .5      , yx
dt
dyyx

dt
dx

+=−=  

Answers to Exercise 

1. Saddle point, unstable ; 2. Saddle point, unstable;  

3. Center, stable;   4. Node, unstable  
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Critical Points and Paths of Nonlinear Systems 

A. Basic Theorems on Nonlinear Systems  

We now consider the nonlinear real autonomous system     

 ),,( yxP
dt
dx

=  

 ).,( yxQ
dt
dy

=  (4) 

We assume that the system (4) has an isolated critical point which we shall choose to 

be the origin (0, 0). We now assume further that the functions P and Q in the right 

members of (4) are such the P(x, y) and Q(x, y) can be written in the form  

 P(x, y) = ax + by + P1 (x, y), 

 Q(x, y) = cx + dy + Q1 (x, y),  (41) 

where  

1. a, b, c, and d, are real constanst, and  

   ,0≠
dc
ba

 

and  

2. P1 and Q1 have continuous first partial derivatives for all (x, y), and are such 

that 

  0),(lim),(lim
22

1

)0,0(),(22
1

)0,0(),(
=

+
=

+ →→ yx
yxQ

yx
yxP

yxyx
  (42) 

Thus the system under consideration may be written in the form  

   
),,(

),,(

1

1

yxQdycx
dt
dy

yxPbyax
dt
dx

++=

++=
 (43) 

where a, b, c, d, P1, and Q1 satisfy the requirements (1) and (2) above. 

If P(x, y) and Q(x, y) in (4) can be expanded in power series about (0, 0), the system 

(4) takes the form 
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Q
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dy  (44) 

This system is of the form (43), where P1(x, y) and Q1(x, y) are the terms of higher 

degree in the right members of the equations. The requirements (1) and (2) will be 

met, provided the Jacobian. 

  .0
),(
),(

)0,0(

≠
∂
∂

yx
QP  

Observe that the constant terms are missing in the expansions in the right members of 

(44), since P(0, 0) = Q(0, 0) = 0  

Example 3.4 

The system 

   22 xyx
dt
dx

++=  

   2243 yyx
dt
dy

+−−=   

is of the form (43) and satisfies the requirements (1) and (2). Here a = 1,  b = 2, c = -3,  

d = - 4, and   

  ,02 ≠=
dc
ba

 

Further P1(x, y) = x2,  Q1(x, y) = 2y2, and hence  

 0lim),(lim
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2
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and   
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 By the requirement (2) the nonlinear terms P1(x, y) and Q1(x, y) in (43) tend to 
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zero more rapidly than the linear terms ax + by and cx + dy. Hence one can say that 

the behaviour of the paths of the system (43) near (0, 0) would be similar to that of the 

paths of the related linear system 

   byax
dt
dx

+=   

   dycx
dt
dy

+=   (19) 

obtained from (43) by neglecting the nonlinear terms. In other words, it would seem 

that the nature of the critical point (0, 0) of the nonlinear system (43) should be 

similar to that of the linear system (19). In general this is actually the case. We now 

state without proof the main theorem regarding this relation.  

Theorem 3.7 

Hypothesis  Consider the non linear system 

   
),(

),,(

1

1

yxQdycx
dt
dy

yxPbyax
dt
dx

++=

++=
 (43) 

where a, b, c, d, P1, and Q1 satisfy the requirements (1) and (2) above. Consider also 

the corresponding linear system 

  
,

,

dycx
dt
dy

byax
dt
dx

+=

+=
  (19) 

obtained from (43) by neglecting the nonlinear terms P1(x, y) and Q1(x, y). Both 

systems have an isolated critical point at (0, 0). Let λ1 and λ2 be the roots of the 

characteristic equation.  

    λ2
 – (a + d) λ + (ad – bc) = 0 (22) 

of the linear system (19).  

Conclusions 

(1) The critical point (0, 0) of the nonlinear system (43) is of the same type as that 

of the linear system (19) in the following cases: 
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(i) If λ1 and λ2 are real, unequal, and of the same sign, then not only is (0, 0) a 

node of (19), but also (0, 0) is a node of (43).  

(ii) If λ1 and λ2 are real, unequal, and of the opposite sign, then not only is (0, 0) a 

saddle point of (19), but also (0, 0) is a saddle point of (43).  

(iii) If λ1 and λ2 are real and equal and the system (19) is not such that a = d ≠ 0,       

b = c = 0, then not only is (0, 0) a node of (19), but also (0, 0) is a node of 

(43).  

(iv) If λ1 and λ2 are conjugate complex with real part not zero, then not only is (0, 

0) a spiral point of (19), but also (0, 0) is a spiral point of (43).  

2. The critical point (0, 0) of the nonlinear system (43) is not necessarily of the 

same type as that of the linear system (19) in the following cases: 

(v)  If λ1 and λ2 are real and equal and the system (19) is such that a = d ≠ 0 ,        

b = c = 0, then although (0, 0) is a node of (19), the point (0, 0) may be either a 

node or a spiral point of (43). 

(vi) If λ1 and λ2 are pure imaginary, then although (0, 0) is a center of (19), the 

point (0, 0) may be either a center or a spiral point of (43). 
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Although the critical point (0, 0) of the nonlinear system (43) is of the same type as 

that of the linear system (19) in cases (i), (ii), (iii) and (iv) of the conclusion, the 

actual appearance of the paths is somewhat different. For example, if (0, 0) is a saddle 

point of the linear system (19), then we know that there are four half-line paths 

entering (0, 0), two for t → + ∞ and two for t → -∞. However, at the saddle point of 

the nonlinear system (43), in general we have four nonrectilinear curves entering (0, 

0), two for        t → + ∞ and two for t → -∞ in place of the half-line paths of the linear 

case (see Figure 3.13). 

 Theorem 3.7 deals with the type of the critical point (0, 0) of the nonlinear 

system (43). Concerning the stability of this point, we state without proof the 

following theorem of Liapunov.  

Theorem 3.8 

 Hypothesis is same as in Theorem 3.7. 

Conclusion 

1. If both roots of the characteristic equation (22) of the linear system (19) are 

real and negative or conjugate complex with negative real parts, then not only 

is (0, 0) an asymptotically stable critical point of (19) but also (0, 0) is an 

asymptotically stable critical point of (43). 

2. If the roots of (22) are pure imaginary, then although (0, 0) is a stable critical 

point of (19), it is not necessarily a stable critical point of (43). Indeed, the 

critical point (0, 0) of (43) may be asymptotically stable, stable but not 

asymptotically stable or unstable.  

3. If either of the roots of (22) is real and positive or if the roots are conjugate 

complex with positive real parts, then not only is (0, 0) an unstable critical 

point of (19) but also (0, 0) is an unstable critical point of (43).  

Example 3.5 

Consider   
xyyx

dt
dy

xyx
dt
dx

26

,4 2

+−=

−+=
 (45) 

This is of  the form (43), where P1(x, y) = -x2 and Q1(x, y) = 2xy. We see at once that 
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the hypothesis of Theorems 3.7 and 3.8 are satisfied. Hence to investigate the critical 

point (0, 0) of (45), we consider the linear system. 

    
yx

dt
dy

yx
dt
dx

−=

+=

6

,4
 (46) 

of the form (19). The characteristic equation (22) of this system is  

   λ2 – 25 = 0. 

 Hence the roots are λ1 = 5; λ2 = - 5. Since the roots are real, unequal, and of 

opposite sign, we see from conclusion (ii) of Theorem 3.7 that the critical point (0, 0) 

of the nonlinear system (45) is a saddle point. From Conclusion (3) of Theorem 3.8 

we further conclude that the point is unstable.  

 Eliminating dt from equations (45), we obtain the differential equation  

   ,
4

26
2xyx
xyyx

dx
dy

−+
+−

=  (47) 

which gives the slope of the paths in the xy phase plane defined by the solutions of 

(45). The first order equation (47) is exact. Its general solution is readily found to be 

   x2y + 3x2 – xy – 2y2 + c = 0 (48) 

where c is an arbitrary constant. Equation (48) is the equation of the family of paths in 

the xy phase plane. Several of these are shown in Figure (3.14). 

 

 

 

 

 

 

     

 

               Figure 3.14 
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Example 3.6 

Consider the nonlinear system  

   
,52 sin

,4sin

yx
dt
dy

yx
dt
dx

−=

−=
 (49) 

Using the expansion  

   ,
!5!3

sin
53

Λ−+−=
xxxx  

we write this system in the form  

   

....
15
4

3
452

...,
1206

4

53

53

++−−=

++−−=

xxyx
dt
dy

xxyx
dt
dx

 (50) 

The hypotheses of Theorems 3.7 and 3.8 are satisfied. Thus to investigate the critical 

point (0, 0) of (49) [ or 50], we consider the linear system   

  ,4yx
dt
dx

−=   

  ,52 yx
dt
dx

−=   (51) 

The characteristic equation of this system is  

   λ2 +  4λ + 3 = 0. 

Thus the roots are λ1 = - 3,  λ2 = - 1. Since the roots are real, unequal and of the same 

sign, we see from conclusion (i) of Theorem 3.7 that the critical point (0,0) of the 

nonlinear system (49) is a node. From conclusion (1) of Theorem 3.8 we conclude 

that this node is asymptotically stable.  

Example 3.7 

In this example we shall find all the real critical points of the nonlinear system  
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   ,8 2yx
dt
dx

−=  

   ,66 2xy
dt
dy

+−=  (52) 

and determine the type and stability of each of these critical points.  

 Clearly (0, 0) is one critical point of system (52). Also (52) is of the form (43) 

and the hypotheses of Theorems 3.7 and 3.8 are satisfied. To determine the type of 

critical point (0, 0), we consider the linear system.  

   
,6

,8

y
dt
dy

x
dt
dx

−=

=
 

of the form (19). The characteristic equation of this linear system is 

   λ2 -  2λ - 48 = 0, 

and thus the roots are λ1 = 8,  λ2 = - 6. Since the roots are real, unequal and of 

opposite sign, we see from conclusion (ii) of Theorem 3.7 that the critical point (0, 0) 

of the given nonlinear system (52) is a saddle point. From conclusion (3) of Theorem 

3.8 we conclude that this critical point is unstable.  

 We now proceed to find all other critical points of (52). By definition, the 

critical points of this system must simultaneously satisfy the system of algebraic 

equations.  

    8x -  y2  = 0, 

   - 6y + 6x2 = 0 (53) 

From the second equation of this pair, y = x2. Then substituting this into the first 

equation of the pair, we obtain 

   8x -  x4  = 0, 

which factors into  

  x(2 – x) (4 + 2x + x2) = 0. 

This equation has only two real roots, x = 0 and x = 2. These are the abscissas of the 
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real critical points of (52); the corresponding ordinates are determined from y = x2. 

Thus we obtain the two real critical points (0 ,0) and (2, 4).  

 Since we have already considered the critical point (0, 0) and found that it is 

an (unstable) saddle point of the given system (52), we now investigate the type and 

stability of the other critical point (2, 4). To do this, we make the translation of 

coordinates  

   ξ = x – 2,  

   η = y – 4,  (54) 

which transforms the critical point x = 2,  y = 4 into the origin ξ = η = 0 in the ξη 

plane. We now transform the given system (52) into (ξ,η) coordinates. From (54), we 

have  

   x = ξ + 2,     y = η + 4; 

and substituting these into (52) and simplifying, we obtain  

   
.6624

,88

2

2

ξηξη

ηηξξ

+−=

−−=

dt
d
dt
d

 (55) 

which is (52) in (ξ, η) coordinates. The system (55) is of the form (43) and the 

hypothesis of Theorem 3.7 and 3.8 are satisfied in these coordinates. To determine the 

type of the critical point ξ = η= 0 of (55), we consider the linear system.      

   
.624

,88

ηξη

ηξξ

−=

−=

dt
d
dt
d

 

The characteristic equation of this linear system is  

   λ2 -  2λ + 144 = 0. 

The roots of this system are   1431 ι± ,which are conjugate complex with real part 

not zero. Thus by conclusion (iv) of Theorem 3.7, the critical point ξ = η = 0 of the 

nonlinear system (55) is a spiral point. From conclusion (3) of Theorem 3.8, we 
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conclude that this critical point is unstable. But this critical point is the critical point    

x = 2, y = 4 of the given system (52). Thus the critical point (2, 4) of the given system 

(52) is an unstable spiral point. 

 In conclusion, the given system (52) has two real critical points, namely:  

1. Critical point (0, 0); a saddle point; unstable;  

2. Critical point (2, 4); a spiral point; unstable. 

Example 3.8 

Consider the two nonlinear systems  

     
x

dt
dy

xy
dt
dx

=

−−= ,2

 (56) 

and  

  
x

dt
dy

xy
dt
dx

=

−−= ,3

 (57) 

The point (0, 0) is a critical point for each of these systems. The hypotheses of 

Theorem 3.7 are satisfied in each case, and in each case the corresponding linear 

system to be investigated is  

  
.

,

x
dt
dy

y
dt
dx

=

−=
 (58) 

The characteristic equation of the system (58) is  

  λ2 + 1 = 0 

with the pure imaginary roots ±i. Thus the critical point (0, 0) of the linear system 

(58) is a center. However, Theorem 3.7 does not give us definite information 

concerning the nature of this point for either of the nonlinear system (56) or (57). 

Conclusion (vi) of Theorem 3.7 tells us that in each case (0, 0) is either a center or a 
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spiral point; but this is all that this theorem tells us concerning the two systems under 

consideration.  

Summary 

 This chapter includes some basic definitions of non-linear systems to 

understand the desired concept in detail. The nature of critical points of various types 

is explained in detail with the help of five theorem and some suitable examples. The 

relationship between linear and non linear system is emphasized at the end of chapter.   

Keywords   Non-linear, critical point, stability, phase plane, path.  
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Chapter-4 

NON-LINEAR DIFFERENTIAL EQUATION -II   
 

 

Objectives 

 This chapter provides an introduction to a method for studying the stability of 

more general autonomous systems. The student is made familiar with the methods to 

check stability and asymptotical stability of general autonomous system.   

Dependence on a Parameter We briefly consider the differential equation of a 

conservative dynamical system in which the force F depends not only on the 

displacement x but also on a parameter λ. Specifically, we consider a differential 

equation of the form 

 ).,(2

2

λxF
dt

xd
=  (1) 

where F is analytic for all values of x and λ. The differential equation (1) is equivalent 

to the nonlinear autonomous system 

 ,y
dt
dx

=   

 ),( λxF
dt
dy

=   (2) 

For each fixed value of the parameter λ, the critical points of (2) are the points with 

coordinates (xc, 0), where the abscissas xc are the roots of the equation F(x, λ) = 0, 

considered as an equation in the unknown x. In general, as λ varies continuously 

through a given range of values, the corresponding xc vary and hence so do the 

corresponding critical points, paths, and solutions of (2). A value of the parameter λ at 

which two or more critical points coalesce into less than their previous number (or, 

vice versa, where one or more split up into more than their previous number) is called 

a critical value (or bifurcation value) of the parameter. At such a value the nature of 

the corresponding paths changes abruptly.  
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Example 4.1 

Consider the differential equation 

 λ+−= xx
dt

xd 42
2

2

 (3) 

of the form (1), where 

 λλ +−= xxxF 4),( 2  

and λ is a parameter. The equivalent nonlinear system of the form (2) is  

 

λ+−=

=

xx
dt
dy

y
dt
dx

4

,

2

 (4) 

The critical points of this system are the points (x1, 0) and (x2 , 0), where x1 and x2 are 

the roots of the quadratic equation F(x, λ)=0; that is, 

 x2 – 4x + λ = 0, (5) 

in the unknown x. We find 

 .42
2

4164 λλ
−±=

−±
=x   

Thus the critical points of (4) are 

 ( ) ( )0,42and0,42 λλ −−−+ . (6) 

For λ < 4, the roots , of the quadratic equation are real and distinct, for          λ = 4, the 

roots are real and equal, the common value being 2; and for λ > 4, they are conjugate 

complex. Thus for λ < 4, the critical points (6) are real and distinct. As         λ→ 4−, 

the two critical points approach each other; and at λ = 4, they coalesce into the one 

single critical point (2, 0). For λ > 4, there simply are no real critical points. Thus we 

see that λ = 4 is the critical value of the parameter. 

Liapunov’s Direct Method 

Russian Mathematician Liapunov obtained a method for studying the stability of more 

general autonomous systems. The procedure is known as Liapunov’s direct (or 
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second) method.  

Consider the nonlinear autonomous system 

 

).,(

),,(

yxQ
dt
dy

yxP
dt
dx

=

=

 (7) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and 

Q have continuous first partial derivatives for all (x, y). 

Definitions 

Let E(x, y) have continuous first partial derivatives at all points (x, y) in a domain D 

containing the origin (0, 0). 

1. The function E is called positive definite in D if E(0, 0) = 0 and E(x, y) > 0 for 

all other points (x, y) in D. 

2. The function E is called positive semidefinite in D if E(0, 0) = 0 and E(x, y)≥0 

for all other points (x, y) in D. 

3. The function E is called negative definite in D if E(0, 0) = 0 and E(x, y) < 0 

for all other points in D. 

4. The function E is called negative semidefinite in D if E(0, 0) = 0 and E(x, y)≤0 

for all other points (x, y) in D. 

Example 4.2 

The function E defined by E(x, y) = x2 + y2 is positive definite in every domain D 

containing (0, 0). Clearly, E(0, 0) = 0 and E(x, y) > 0 for all (x, y) ≠ (0, 0). 

The function E defined by E(x, y) = x2 is positive semidefinite in every domain D 

containing (0, 0). Note that E(0, 0) = 0, E(0, y) = 0 for all (0, y) such that y ≠ 0 in D, 

and E(x, y) > 0 for all (x, y) such that x ≠ 0 in D. There are no other points in D, and 

so we see that E(0, 0) = 0 and E(x, y) ≥ 0 for all other points in D. 

Similarly, we see that the function E defined by E(x, y) = -x2 - y2 is negative definite 

in D and that defined by E(x, y) = - x2 is negative semidefinite in D. 
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Definition 

Let E(x, y) have continuous first partial derivatives at all points (x, y) in a domain D 

containing the origin (0, 0). The derivative of E with respect to the system (7) is the 

function E& defined by 

 ),(),(),(),(),( yxQ
y

yxEyxP
x

yxEyxE
∂

∂
+

∂
∂

=&  (8) 

Example 4.3  

Consider the system 

 

,

,

2

2

xy
dt
dy

yx
dt
dx

+−=

+−=

 (9) 

and the function E defined by 

 E(x, y) = x2 + y2. (10) 

For the system (9), P(x, y) = –x + y2 , Q(x, y) = –y + x2; and for the function E 

defined by (10), 

 .2),(,2),( y
y

yxEx
x

yxE
=

∂
∂

=
∂

∂  

Thus the derivative of E defined by (10) with respect to the system (9) is given by 

 E&(x, y) = 2x(–x + y2) + 2y(–y + x2) = –2(x2 + y2) + 2(x2y + xy2). (11) 

Now let C be a path of system (7); let x = f (t), y = g(t) be an arbitrary solution of (7) 

defining C parametrically; and let E(x, y) have continuous first partial derivatives for 

all (x, y) in a domain containing C. Then E is a composite function of t along C; and 

using the chain rule, we find that the derivative of E with respect to t along C is 

 
dt

tdgtgtfE
dt

tdftgtfE
dt

tgtfdE
yx

)()](),([)()](),([)](),([
+=  

 = )](),([)](),([)](),([)](),([ tgtfQtgtfEtgtfPtgtfE yx +  

 = )].(),([ tgtfE&  (12) 

Thus we see that the derivative of E[f(t), g(t)] with respect to t along the path C is 
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equal to the derivative of E with respect to the system (7) evaluated at x = f (t),              

y = g(t). 

Definition 

Consider the system 

 

).,(

),,(

yxQ
dt
dy

yxP
dt
dx

=

=

 (7) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and 

Q have continuous first partial derivatives for all (x, y). Let E(x, y) be positive 

definite for all (x, y) in a domain D containing the origin and such that the derivative 

E&(x, y) of E with respect to the system (7) is negative semidefinite for all (x, y)∈ D. 

Then E is called a Liapunov function for the system (7) in D. 

Example 4.4  

Consider the system 

 

,

,

2

2

xy
dt
dy

yx
dt
dx

+−=

+−=

 (9) 

and the function E defined by 

 E(x, y) = x2 + y2. (10) 

introduced in Example 4.3. Obviously the system (9) satisfies all the requirements of 

the immediately preceding definition in every domain containing the critical point         

(0, 0). Also, in Example 4.2 we observed that the function E defined by (10) is 

positive definite in every such domain. In Example 4.3, we found the derivative of E 

with respect to the system (9) as  

  E&(x, y) =  –2(x2 + y2) + 2(x2y + xy2). (11) 

for all (x, y). If this is negative semidefinite for all (x, y) in some domain D containing  

(0,0), then E defined by (10) is a Liapunov function for the system (9). 
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Clearly E&(0, 0) = 0. Now observe the following: If x < 1 and y ≠ 0, then xy2 < y2; if       

y < 1 and x ≠ 0, then x2y < x2. Thus if x < 1, y < 1, and (x, y) ≠ (0, 0), x2y + xy2 < x2 + 

y2 and hence 

- (x2 + y2) + (x2y + xy2) < 0. 

Thus in every domain D containing (0, 0) and such that x < 1 and y < 1, E&(x, y) given 

by (11) is negative definite and hence negative semidefinite. Thus E defined by (10) is 

a Liapunov function for the system (9). 

We now state and prove two theorems on the stability of the critical point (0, 0) 

of system (7). 

Theorem 4.1 

Consider the system 

 

).,(

),,(

yxQ
dt
dy

yxP
dt
dx

=

=

 (7) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and 

Q have continuous first partial derivatives for all (x, y). If there exists a Liapunov 

function E for the system (7) in some domain D containing (0, 0), then the critical 

point (0, 0) of (7) is stable. 

Proof  Let K∈ be a circle of radius ∈ > 0 with center at the critical point (0, 0) where 

∈ > 0 is small enough so that this circle K∈ lies entirely in the domain D (see Fig. 

4.1). From a theorem of real analysis, we know that a real valued fuction which is 

continuous on a closed bounded set assumes both a maximum and a minimum value 

on that set. Since the circle K∈ is a closed bounded set in the plane and E is 

continuous in D and hence on K∈, the real analysis theorem referred to in the 

preceding sentence applies to E on K∈ and so, in particular, E assumes a minimum 

value on K∈. Further, since E is also positive definite in D, this minimum value must 

be positive. Thus E assumes a positive minimum m on the circle K∈. Next observe 

that since E is continuous at (0, 0) and E(0, 0) = 0, there exists a positive number δ 

satisfying δ < ∈ such that E(x, y) < m for all (x, y) within or on the circle Kδ of radius 

δ and center at (0, 0). (see Figure 4.1). 
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Figure 4.1 

Now let C be any path of (7); let x = f(t), y = g(t) be an arbitrary solution of (7) 

defining C parametrically; and suppose C defined by [f(t), g(t)] is at a point within the 

"inner" circle Kδ at t = t0. Then 

 E[f(t0), g(t0)] < m. 

Since E& is negative semidefinite in D we have 

 0)](),([
≤

dt
tgtfdE   

for [f(t), g(t)] ∈ D. Thus E[f(t), g(t)] is a nonincreasing function of t along C. Hence 

 E[f(t), g(t)] ≤ E[f(t0), g(t0)] < m 

for all t > t0. Since E[f(t), g(t)] would have to be ≥ m on the "outer" circle K∈, we see 

that the path C defined by x = f (t), y = g(t) must remain within K∈ for all t > t0. Thus, 

from the definition of stability of the critical point (0, 0), we see that the critical point 

(0, 0) of (7) is stable. 

Theorem 4.2 

Consider the system 

 

).,(

),,(

yxQ
dt
dy

yxP
dt
dx

=

=

 (7) 

Assume that this system has an isolated critical point at the origin (0, 0) and that P and 
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Q have continuous first partial derivatives for all (x, y). If there exists a Liapunov 

function E for the system (7) in some domain D containing (0,0) such that E also has 

the property that E& defined by (8) is negative definite in D, then the critical point 

(0,0) of (7) is asymptotically stable. 

Proof  As in the proof of the previous theorem, let K∈ be a circle of radius ∈ > 0 with 

center at the critical point (0, 0) and lying entirely in D. Also, let C be any path of (7); 

let x = f(t), y = g(t) be an arbitrary solution of (7) defining C parametrically; and 

suppose C defined by [f (t), g(t)] is at a point within K∈ at t = t0 (see Figure 4.2). 

Now since E& is negative definite in D, using (12), we have 

 
dt

tgtfdE )](),([ < 0 

for [f(t), g(t)] ∈ D. Thus E[f(t), g(t)] is a strictly decreasing function of t along C. 

Since E is positive definite in D, E[f(t),g(t)] ≥ 0 for [f(t), g(t)] ∈ D. Thus 

 g(t)] E[f(t),lim
∞→t

exists and is some number L ≥ 0. We shall show that L = 0. 

 

 

 

 

 

 

 

Figure 4.2 

On the contrary assume that L > 0. Since E is positive definite, there exists a positive 

number γ satisfying γ < ∈ such that E(x, y)< L for all (x, y) within the circle K of 

radius γ and center at (0,0). Now we can apply the same real analysis theorem on 

maximum and minimum values that we used in the proof of the preceding theorem to 

the continuous function E& on the closed region R between and on the two circles K∈ 

and Kγ. Doing so, since E& is negative definite in D and hence in this region R which 

does not include (0, 0), we see that E& assumes a negative maximum - k on R. Since 
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E[f(t), g(t)] is a strictly decreasing function of t along C and 

  g(t)] E[f(t),lim
∞→t

= L, 

the path C defined by x = f(t), y = g(t) cannot enter the domain within Kγ for any t > t0 

and so remains in R for all t ≥ t0. Thus we have E&[f(t). g(t)] ≤ - k for all t ≥ t0. Then 

by (12) we have 

 ktgtfE
dt

tgtfdE
−≤= )](),([)](),([ &  (13) 

for all t ≥ t0. Now consider the identity 

 dt
t

∫=
0t

00 dt
g(t)] dE[f(t), )]g(t ),E[f(t - g(t)] E[f(t), . (14) 

Then (13) gives 

 dt
t

∫−≤
0t

00 k  )]g(t ),E[f(t - g(t)] E[f(t), . 

and hence 

 E[f(t), g(t)] ≤ E[f(t0), g(t0)] – k(t – t0) 

for all t ≥ t0. Now let t → ∞. Since - k < 0, this gives  

  g(t)] E[f(t),lim
∞→t

= - ∞. 

But this contradicts the hypothesis that E is positive definite in D and the assumption 

that 

  g(t)] E[f(t),lim
∞→t

= L > 0 

Thus L = 0; that is, 

  g(t)] E[f(t),lim
∞→t

= 0. 

Since E is positive definite in D, E(x, y) = 0 if and only if (x, y) = (0, 0). Thus, 

  g(t)] E[f(t),lim
∞→t

= 0, 

if and only if 
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 . 0  g(t)lim and0  f(t)lim ==
∞→∞→ tt

 

But, from the definition of asymptotic stability of the critical point (0, 0), we see that 

the critical point (0, 0) of (7) is asymptotically stable. 

Example 4.5 

Consider the system 

 

,

,

2

2

xy
dt
dy

yx
dt
dx

+−=

+−=

 (9) 

and the function E defined by 

 E(x, y) = x2 + y2. (10) 

previously studied in Examples 4.3 and 4.4. Before that, in Example 4.2, we 

noticed that the function E defined by (10) is positive definite in every domain 

containing (0, 0). In Example 4.3, we found the derivative of E with respect to the 

system (9) is given by 

 E&(x, y) =  –2(x2 + y2) + 2(x2y + xy2). (11) 

Then, in Example 4.4, we found that E& defined by (11) is negative semidefinite in 

every domain containing (0,0) and hence that E defined by (10) is a Liapunov 

function for the system (9) in every such domain. Now, applying Theorem 4.1,we see 

that the critical point (0, 0) of (9) is stable. 

However, in Example 4.4, we actually showed that E& defined by (11) is negative 

definite in every domain D containing (0, 0). Thus by Theorem 4.2, we see that the 

critical point (0, 0) of (9) is asymptotically stable. 

Note  

Liapunov's direct method is indeed "direct" in the sense that it does not require any 

previous knowledge about the solutions of the system (7) or the type of its critical 

point (0,0). Instead, if one can construct a Liapunov function for (7), then one can 

"directly" obtain information about the stability of the critical point (0, 0). However, 

there is no general method for constructing a Liapunov function, although methods 
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for doing so are available for certain classes of equations. 

Exercise  

Determine the type and stability of the critical point (0, 0) of each of the nonlinear 

autonomous systems in questions 1-4. 

1. 22 32,3 yyx
dt
dyxyxx

dt
dx

++−=−+=  

2. 32 23, xyyx
dt
dyyxyx

dt
dx

+−=++=  

3. )sin(,cos)1( 2 yx
dt
dyxy

dt
dx

+=−+=  

4. Consider the autonomous system 

 
.1

,

−=

=

x

x

e
dt
dy

ye
dt
dx

 

(a) Determine the type of the critical point (0, 0). 

(b) Obtain the differential equation of the paths and find its general solution.   

Answers 

1. Node, unstable  

2. Saddle point, unstable 

3. Saddle point, unstable 

4(a) Saddle point  (b) y2 = 2(x + e-x + c) 

 

Limit Cycles and Periodic Solutions  

A. Limit Cycles 

We have already studied autonomous systems having closed paths. For example, in 

the neighborhood of center there is an infinite family of closed paths resembling 

ellipses. The closed paths about (0, 0) form a continuous family in the sense that 

arbitrarily near to any one of the closed paths of this family there is always another 
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closed path of the family. Now we shall consider systems having closed paths which 

are isolated in the sense that there are no other closed paths of the system arbitrarily 

near to a given closed path of the system.  

Now suppose the system (7) has a closed path C. Further, suppose (7) possesses a 

nonclosed path Cl defined by a solution x = f(t), y = g(t) of (7) and having the 

following property: As a point R traces out C1 according to the equations x = f(t),          

y = g(t), the path C1 spirals and the distance between R and the nearest point on the 

closed path C approaches zero either as t → +∞ or as t → −∞. In other words, the 

nonclosed path C1 spirals closer and closer around the closed path C either from the 

inside of C or from the outside either as t → +∞ or as t → −∞  (see Figure 4.3 where 

C1 approaches C from the outside). 

In such a case we call the closed path C a limit cycle, according to the following 

definition: 

Definition 

A closed path C of the system (7) which is approached spirally from either the inside 

or the outside by a nonclosed path Cl of (7) either as t → +∞ or as t → −∞ is called a 

limit cycle of (7). 

 

 

 

 

 

 

 

 

 

Figure 4.3 
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Example 4.6 

The following example of a system having a limit cycle will illustrate the above 

discussion and definition. 

 ),1( 22 yxxy
dt
dx

−−+=   

 )1( 22 yxyx
dt
dy

−−+−=   (15) 

To study this system we shall introduce polar coordinates (r, θ), where 

 x = r cos θ, 

 y = r sin θ. (16) 

From these relations we find that 

 ,
dt
drr

dt
dyy

dt
dxx =+   

 .2

dt
dr

dt
dxy

dt
dyx θ

=−   (17) 

Now, multiplying the first equation of (15) by x and the second by y and adding, we 

obtain 

 ).1)(( 2222 yxyx
dt
dyy

dt
dxx −−+=+  

Introducing the polar coordinates defined by (16) and making use of (17), this 

becomes 

 ).1( 22 rr
dt
drr −=  

For r ≠ 0, we may thus write 

 ).1( 2rr
dt
dr

−=  

Now multiplying the first equation of (15) by y and the second by x and subtracting, 

we obtain 

 .22 xy
dt
dyx

dt
dxy +=−  
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Again using (17), this becomes 

 ,22 r
dt
dr =−
θ  

and so for r ≠ 0 we may write 

 .1−=
dt
dθ  

Thus in polar coordinates the system (15) becomes 

 

.1

),1( 2

−=

−=

dt
d

rr
dt
dr

θ
 (18) 

From the second of these equations we find at once that 

 θ = − t + t0, 

where t0 is an arbitrary constant. The first of the equations (18) is separable. 

Separating variables, we have 

 ,
)1( 2 dt

rr
dr

=
−

 

and an integration using partial fractions yields 

 ln r2 – ln |1 – r2| = 2t + ln |c0|. 

After some calculations we obtain 

 .
1 2

0

2
02

t

t

ec
ecr

+
=  

Thus we may write  

 
0

2 c
1c  where,

1
1

=
+

=
− tce

r . 

Thus, the solution of the system (18) may be written as 

 ,
1

1
2tce

r
−+

=  
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 θ = − t + t0, 

where c and t0 are arbitrary constants. We may choose t0 = 0, then θ = − t; using 

(16) the solution of the system (15) becomes 

 ,
1

 tcos
2tce

x
−+

=   

 .
1

in t
2tce

sy
−+

−
=   (19) 

The solutions (19) of (15) define the paths of (15) in the xy plane. Examining these 

paths for various values of c, we note the following conclusions: 

1. If c = 0. the path defined by (19) is the circle x2 + y2 = 1, described in the 

clockwise direction. 

2. If c ≠ 0, the paths defined by (19) are not closed paths but rather paths having 

a spiral behavior. If c > 0, the paths are spirals lying inside the circle x2 + y2 

=1. As t → +∞, they approach this circle; while as t → −∞, they approach the 

critical point (0, 0) of (15). If c < 0, the paths lie outside the circle x2 + y2 = 1. 

These "outer" paths also approach this circle as t → +∞; while as                       

t → ||ln c , both |x| and |y| become infinite. 

Since the closed path x2 + y2 = 1 is approached spirally from both the inside and the 

outside by nonclosed paths as t → +∞, we conclude that this circle is a limit cycle of 

the system (15). (See Figure 4.4). 

 

 

 

 

 

 

 

Figure 4.4 
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B.  Existence and Nonexistence of Limit cycles 

In Example 4.6 the existence of a limit cycle was ascertained by actually finding this 

limit cycle. In general such a procedure is, of course, impossible. Given the 

autonomous system (7) we need a theorem giving sufficient conditions for the 

existence of a limit cycle of (7). One of the few general theorems of this nature is the 

Poincare-Bendixson theorem, which we shall state below (Theorem 4.4). First, we 

shall state and prove a theorem on the nonexistence of closed paths of the system (7). 

Theorem 4.3  Bendixson's Nonexistence Criterion 

Hypothesis. Let D be a domain in the xy plane. Consider the autonomous system  

 ),,( yxP
dt
dx

=   

 ),,( yxQ
dt
dy

=  (7) 

where P and Q have continuous first partial derivatives in D. Suppose that 

y
yxQ

x
yxP

∂
∂

+
∂

∂ ),(),(  has the same sign throughout D. 

Conclusion  The system has no closed path in the domain D. 

Proof  Let C be a closed curve in D; let R be the region bounded by C; and apply 

Green’s Theorem in the plane. We have 

 ∫∫∫ ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

=−
RC

ds
y

yxQ
x

yxPdxyxQdyyxP ,),(),(]),(),([  

where the line integral is taken in the positive sense. Now assume that C is a closed 

path of (7); let x = f(t), y = g(t) be an arbitrary solution of (7) defining C 

parametrically; and let T denotes the period of this solution. Then 

  )],(),([)( tgtfP
dt

tdf
=  

  )],(),([)( tgtfQ
dt

tdg
=  

along C and we have 
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 ∫ −
C

dxyxQdyyxP ]),(),([  

  = ∫ ⎭
⎬
⎫

⎩
⎨
⎧ −

T

o

dt
dt

tdftgtfQ
dt

tdgtgtfP )()](),([)()](),([  

  = { }∫ −
T

o

dttgtfPtgtfQtgtfQtgtfP )](),([ )](),([)](),([ )](),([  

  = 0 

Thus  .0),(),(
=⎥

⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

∫∫
R

ds
y

yxQ
x

yxP  

But this double integral can be zero only if 
y

yxQ
x

yxP
∂

∂
+

∂
∂ ),(),( changes sign. This is a 

contradiction. Thus C is not a path of (7) and hence (7) possesses no closed path in D. 

Example 4.7 

 ,2 3xyx
dt
dx

++=   

 .3 3yyx
dt
dy

+−=   (20) 

Here P(x, y) = 2x + y + x3, 

 Q(x, y) = 3x − y + y3, 

and .1)(3),(),( 22 ++=
∂

∂
+

∂
∂ yx

y
yxQ

x
yxP  

Since this expression is positive throughout every domain D in the xy plane, the 

system (20) has no closed path in any such domain. In particular, then, the system 

(20) has no limit cycles and hence no periodic solutions. 

Having considered this nonexistence result, we now turn to the Poincare-Bendixson 

existence theorem. We shall merely state the theorem and indicate its significance.  

Definition 

Let C be a path of the system (7) and let x = f(t), y = g(t) be a solution of (7) defining 

C. Then we shall call the set of all points of C for t ≥ t0, where t0 is some value of t, a 
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half-path of (7). In other words, by a half-path of (7) we mean the set of all 

points with coordinates [f(t), g(t)] for t0 ≤ t < + ∞. We denote a half-path of (7) by C+. 

Definition 

Let C+ be a half path of (7) defined by x = f(t), y = g(t) for t ≥ t0. Let (x1, y1) be a point 

in the xy plane. If there exists a sequence of real numbers {tn}, n=1,2,…….. such that 

tn → +∞ and [f(tn), g(tn)] → (x1, y1) as n → +∞,  then we call (x1, y1) a limit point 

of C+. The set of all limit points of a half-path C+ will be called the limit set of C+ and 

will be denoted by L(C+). 

Theorem 4.4   Poincare-Bendixson Theorem  

Hypothesis 

1.  Consider the autonomous system 

 

),,(

),,(

yxQ
dt
dy

yxP
dt
dx

=

=

 (7) 

where P and Q have continuous first partial derivatives in a domain D of the xy plane. 

Let D1 be a bounded subdomain of D, and let R denote D1 plus its boundary. 

2.  Let C+ defined by x = f(t), y = g(t), t ≥ t0, be a half-path of (7) contained 

entirely in R. Suppose the limit set L(C+) of C+ contains no critical points of 

(7). 

Conclusion  Either (1) the half-path is itself a closed path [in this case C+ and L(C+) 

are identical] or (2) L(C+) is a closed path which C+ approaches spirally from either 

the inside or the outside [in this case L(C+) is a limit cycle]. Thus in either case, there 

exists a closed path of (7) in R. 

C. The Index of a Critical Point 

We again consider the system (7), where P and Q have continuous first partial 

derivatives for all (x, y), and assume that all of the critical points of (7) are isolated. 

Now consider a simple closed curve (By a simple closed curve we mean, a closed 

curve having no double points; for example, a circle is a simple closed curve, but a 

figure of digit eight is not) [not necessarily a path of (7)] which passes through no 
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critical points of (7). Consider a point (x1, y1) on C and the vector [P(x1, y1), Q(x1, y1)] 

defined by (7) at the point (x1, y1). Let θ denotes the angle from the positive x 

direction to this vector (see Figure 4.5). 

 

 

 

 

 

 

 

Figure 4.5 

Now let (x1, y1) describes the curve C once in the counterclockwise direction and 

returns to its original position. As (x1, y1) describes C, the vector [P(x1, y1), Q(x1, y1)] 

changes continuously, and consequently the angle θ also varies continuously. When 

(x1, y1) reaches its original position, the angle θ will have changed by an amount Δθ. 

We will now define the index of the curve C. 

Definition 

Let θ denotes the angle from the positive x direction to the vector [P(x1, y1), Q(x1, y1)] 

defined by (7) at (x1, y1). Let Δθ denote the total change in θ as (x1, y1) describes the 

simple closed curve C once in the counterclockwise direction. We call the number 

π
θ

2
Δ

=I  

the index of the curve C with respect to the system (7). 

Clearly Δθ is either equal to zero or a positive or negative integral multiple of 2π and 

hence I is either zero or a positive or negative integer. If [P(x1, y1), Q(x1, y1)] merely 

oscillates but does not make a complete rotation as (x1, y1) describes C, then I is zero. 

If the net change Δθ in θ is a decrease, then I is negative.  

Now let (x0, y0) be an isolated critical point of (7). It can be shown that all simple 

closed curves enclosing (x0, y0) but containing no other critical point of (7) have the 
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same index. This leads us to make the following definition.  

Definition 

By the index of an isolated critical point (x0, y0) of (7) we mean the index of a simple 

closed curve C which encloses (x0, y0) but no other critical points of (7). 

From an examination of Figure 4.6 we may reach the following conclusion intuitively: 

The index of a node, a center, or a spiral point is + 1, while the index of a saddle point 

is -1.  

 

 

 

 

 

 

 

 

 

 

Figure 4.6 

We now list some interesting results concerning the index of a simple closed curve C 

and then point out several important consequences of these results. In each case when 

we say index we shall mean the index with respect to the system (7) where P(x, y) and 

Q(x, y) have continuous first partial derivatives for all (x, y) and (7) has only isolated 

critical points. 

1. The index of a simple closed curve which neither passes through a critical 

point of (7) nor has a critical point of (7) in its interior is zero. 

2. The index of a simple closed curve which surrounds a finite number of critical 

points of (7) is equal to the sum of the indices of these critical points. 

3. The index of a closed path of (7) is + 1. 
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From these results the following conclusions follow at once. 

(a)  A closed path of (7) contains at least one critical point of (7) in its interior [for 

otherwise, by (1), the index of such a closed path would be zero; and this 

would contradict (3)]. 

(b) A closed path of (7) may contain in its interior a finite number of critical points 

of (7), the sum of the indices of which is + 1 [this follows at once from (2) and 

(3)]. 

Summary 

 Topic discussed in this chapter includes Liapunov’s direct method to check the 

stability of general autonomous systems and some theorems to check stability and 

asymptotical stability of such systems. Pioncare Bendixson theorem giving the 

sufficient condition for the existence of limit cycle of general autonomous systems is 

stated. A theorem on nonexistence of limit cycles along with the index of critical 

points are presented at the end of the chapter.    

Keywords  Liapunov direct method, limit cycle, index, Bendixson non-existence 

criterion.   
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Chapter-5 

CALCULUS OF VARIATIONS -I  
 

Objectives 

 In this chapter, it is shown that the variational problems give rise to a system 

of differential equations, the Euler-Lagrange equations. Furthermore, the minimizing 

principle that underlies these equations leads to direct methods for analyzing the 

solutions to these equations. These methods have far reaching applications and will 

help students in developing problem solving techniques. Student will be able to 

formulate variational problems and analyze them to deduce key properties of system 

behaviour.  

Introduction  

The calculus of variations is one of the oldest subjects of mathematics, yet it remains 

very active and is still evolving fast. Besides its mathematical importance and its links 

to other branches of mathematics including geometry and partial differential 

equations, it is widely used in engineering, physics, economics and biology.  

 The calculus of variations concerns problems in which one wishes to find the 

minima or extrema of some quantity over a system that has functional degrees of 

freedom. Many important problems arise in this way across pure and applied 

mathematics and physics. They range from the problem in geometry of finding the 

shape of a soap bubble, a surface that minimizes its surface area, to finding the 

configuration of a piece of elastic that minimises its energy. Perhaps most 

importantly, the principle of least action is now the standard way to formulate the 

laws of mechanics and basic physics. These days, calculus of variations attracts 

attention of mathematics and provides new tools to find the best possible solution, and 

to understand the essence of optimality. 

The calculus of variations seeks to optimize (often minimize) a special class of 

functions called functionals. Its aim is to explore methods for finding maximum or 
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minimum of a functional defined over a class of functions. The usual form of 

functional is  

 I[y] = ∫ ′
b

a

dxyyxF ),,( .  (1) 

Here I[y] is not a function of x because x disappears when definite integral is 

evaluated. The argument y of I[y] is not a simple variable but a function y = y(x). The 

square bracket in I[y] emphasize this fact. A functional can be thought of function of 

functions. The value of r.h.s. of equation (1) will change as the function y(x) is varied, 

but when y(x) is fixed, it evaluates to a scalar quantity (a constant). We seek the y(x) 

that minimizes I[y].  

Function  

 By a function we mean a correspondence between the elements of sets A and 

B s.t. to each element of A there corresponds exactly one element of set B.  

Functional  

 Let A be a class of functions. A correspondence between the functions of class 

A and the set of real numbers s.t. to each function belonging to A, there corresponds 

exactly one real number, is called a functional. Its input is vector and output is scalar.  

or 

A functional is a correspondence which assigns a unique real number to each 

function belonging to some class. We can say that a functional is a kind of function, 

where the independent variable is itself a function (or curve).  

 A functional is denoted by capital letter I or [J]. If y(x) represents the function 

in the class of functions of a functional J, then we write J = J[y(x)].  

Domain  

 The class of functions y(x) on which the functional J[y(x)] is defined is called 

the domain of the functional J, rather than a region of coordinate space.  
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Some examples of functionals 

1. A simple example of a functional is the arc length λ between two given points 

A(x1, y1) and B(x2, y2) on a curve y = y(x). 

 

 

 

 

 

 

 

Figure 5.1 

 (ds)2 = (dx)2 + (dy)2 

 
dx
dyyxydx
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dydxds =+=⎟
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⎛+= '       ,)('(11 2
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This length is given by  

 λ[y(x)] = dxxy
x

x

   )]('[1 2
2

1

+∫  

or λ[y(x)] = ( )dxxyxyxf
x

x

)('),(,(
2

1

∫   . 

Here functional is the integral of the distance along any of these curves, as in 

figure 5.1. We are to choose among y1(x),  y2(x),  y3(x) which makes I[y] minimum. 

 Thus a definite number is associated with each such curve, namely, its length. 

Thus, the length of a curve is a functional defined on set of such curves as length of 

the arc is determined by the choice of functions.  
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2. Another example is the area S of a surface bounced by a given curve C 

because this area is determined by the choice of the surface z = z(x, y)  

  S [z(x,y)] = dxdy
y
z

x
z

D

2
1

22

1 ∫∫
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+  . 

Here D is the projection of the area bounded by the curve C on the xy-plane.  

3. Let y(x) be an arbitrary continuously differentiable function, defined on the 

interval [a, b].  

Then the formula  

 ∫=
b

a

dxxyyJ )('][ 2  defines a functional on the set of all such functions y(x).  

4. As a more general example, let F(x, y, z) be a continuous function of three 

variables. Then the expression 

 ∫=
b

a

dxxyxyxFyJ )]('),(,(][    (1) 

where y(x) ranges over the set of all continuously differentiable functions defined on 

the interval [a, b], defines a functional. By choosing different values of F(x, y, z), we 

obtain different functionals e.g. if F(x, y, z) = 21 z+ .  

 Then J[y] is the length of the curve y = y(x), as in the first example, while if  

   F(x, y, z) = z2 , case (3) is obtained. Further, we shall be 

concerned mainly with functionals of the form (1) 

Note  What types of functions are allowed in the domain of functional? 

 The integral ∫=
1

0

))('),(,(][
x

x

dxxyxyxFyI   (1) 

is well defined real number if (i) the integrand is a continuous function of x and for 

this it is sufficient to assume that y'(x) is continuous. Thus first, we will always 

assume that the function F(x, y, y') has continuous partial derivatives of second order 
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w.r.t. x, y and y' and satisfy the given boundary conditions y(x0) = y0,   y(x1) = y1. 

Functions of this kind will be called admissible functions.  

Some typical examples of variational problems i.e. problems involving the 

determination of maxima and minima of functionals.  

 Besides Brachistochrone problem (details will be provided later on), three 

other problems which exerted great influence on the subject, are  

(i) In the problem of geodesics, if is required to determine the line of shortest 

length connecting two given points (x0, y0, z0) and (x1, y1, z1) on a surface S 

given by φ(x, y, z) = 0. This is a typical variational problem with a constraint, 

since here we are required to minimize the arc length λ joining the two points 

on S given by the functional 

   dx
dx
dy

dx
dyx

x

2/1221
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1∫
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⎞

⎜
⎝
⎛+=λ    

subject to the constraint φ(x, y, z) = 0.  This problem was first solved by Jacob 

Bernoulli in 1698, but a general method of solving such problems was given by Euler.  

(ii) In the problem of minimal surface of revolution, a curve y = y(x) ≥ 0 is 

rotated about the x-axis through an angle 2π. The resulting surface bounded by 

the planes x = a and x = b has the area  

   S = 2π dx
dx
dyy

b

a

2/12

1 ∫
⎥
⎥
⎦
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⎣

⎡
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⎝
⎛+ . 

Clearly, determination of the particular curve y = y(x) which minimizes S constitutes 

a variational problem.  

(iii) In the isoperimetric problem, it is required to find a closed line of given 

length which encloses a maximum area S. The solution of this problem is the circle. 

The problem consists of the maximization of the area A bounded by the closed curve          
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r = r(θ) of given length λ. This mean that the functional A given by ∫=
π

θ
2

0

2 
2
1 drA  is 

maximum subject to ∫
⎥
⎥
⎦
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2 d

d
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Thus in calculus of variations we consider some quantity (arc length, surface area, 

time of descent) that depends upon the entire curve, and we seek the curve that 

minimizes the quantity in question. In following part, emphasis will be given to the 

maxima or minima of the following functionals  

   dxxyxyxF
x

x

 ])('),(,[
1

0
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   dxxyxyxyxF n
x

x

 )]()....('),(,[ )(
1

0
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121

1
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∫  

in which function F is given, and the functions y(x), y1(x), .., yn(x) are the arguments 

of the functionals.   ( ' ⇒ derivative w.r.t. x)  

Maximum and Minimum values of functionals 

 A functional J [y(x)] is said to have a maximum value on y = y0(x) if the value 

of the functional on any curve close to y = y0(x) is not greater that J [y0(x)] i.e. 

J[y(x)]≤ J [y0(x)] ∀  curves y(x) close to y0(x). [i.e.   ΔJ = J[y(x)] – J[y0(x)] ≤ 0]. A 

functional J[y(x)] is said to have a minimum value on y = y0(x) if the values of the 

functional on any curve close to y= y0(x) is not less than J[y0(x)] i.e. J[y(x)] ≥ J[y0(x)] 

∀  curves y(x) close to y0(x).  

The maximum and minimum values of a functional are called its extremum values. 

Definition   

 Extremal is the value of y(x) from which the value of I(y) is either maximum 

or minimum in the field of calculus of variations.  
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Definition  

 The definite integral  I(y) = ∫
b

a

dxxy )(  is a functional defined on a class of 

continuous functions on the interval [a, b]  

Definition  

 If ))('),(,( xyxyxF  is a continuous function with respect to all its arguments, 

then the integral  

  I (y) =  ∫
b

a

dxxyxyxF ))('),(,(  

defines a functional on a set of continuous differentiable functions defined on the 

closed interval [a, b]. 

Theorem 5.1  

 If a functional I [y(x)] attains a maximum or minimum on y = y0(x), where the 

domain of definition belongs to certain class, then at y = y0(x),    δI = 0, 

where [ ] 0  at   y(x))( =+
∂
∂

= ααδ
α

δ xyII  for fixed y and δy and different values of 

parameter, is variation of the functional I[y(x)]. 

Proof  For fixed y0(x) and δy, y0(x)+ αδy defines class of functions.  

For α = 0, we get a function y0(x)  

Clearly I[y0(x) + αδy] = ψ(α) (say) is a function of  α, which attains the maximum or 

minimum value at y0(x) (i.e. at α = 0 ).  

Then   ψ'(α) = 0 at  y0(x) 

   ψ'(α) = 0  for   α = 0 [α = 0 gives y0(x)] 

or  [ ] 0        0)(0 ==+
∂
∂ ααδ
α

atyxyI . 
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⇒ δI = 0. Thus the variation of a functional is zero on curves on which an 

extermum of the functional is achieved.  

The Simplest Variational Problem 

Euler’s Equation 

Euler’s equation for functionals containing first order derivative and one independent 

variable. 

Theorem 5.2: Obtain the necessary condition for  

   I(y) = ∫
b

a

dxxyxyxF ))('),(,(   (1) 

to be extremum, satisfying the boundary conditions y(x) = A, y(b) = B . 

or 

Let  I(y) = ∫
b

a

dxxyxyxF ))('),(,(  be a functional defined on the set of functions y(x) 

which has continuous first order derivative in the interval [a, b] and satisfies the 

boundary conditions y(a) = A,    y(b)  = B, where A and B are prescribed at the fixed 

boundary points a and b. Also, F is differentiable three times w.r.t. all its arguments. 

Then a necessary condition for I[(y, x)] to be an extremum (for a given function y(x)] 

is that 0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F  i.e. if the functional I[y(x)] has an extremum on a function 

y(x), then y(x) satisfies the differential equation  

          0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F  

Note  Brachistochrone problem and example of shortest distance between two points 

are variational problems of this type. 

Proof 

Let  y = y(x) be the curve which extremizes (i.e. maximizing or minimizing) the 

functional  
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   I[y(x)] = ∫
b

a

dxxyxyxF  ))('),(,(   (1) 

and satisfying the boundary conditions  

    
B  y(b)
A  y(a)

⎭
⎬
⎫

=
=

    (2) 

 

 

 

 

 

 

 

Figure 5.2 

 [How we find this function y(x)? We shall obtain a differential equation for 

y(x) by comparing the values of I that correspond to neighbouring admissible 

functions. Since y(x) gives a minimum value to I, I will increase if we ‘disturb’ y(x) 

slightly. These disturbed functions are constructed as follows]. 

Here we assume that extremizing curve admits continuous first order derivatives and 

is differentiable twice.  

 Let  η' (x) be any continuous, differentiable, arbitrary (but fixed) function s.t. 

η''(x)  is continuous and  

   η(a) = η(b) = 0  .   (3) 

If α is a small parameter,  

then   [y(x, α)]  = )( )()( xxyxy ηα+=   (4) 
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(represents a one parameter family of admissible functions) and will satisfy the same 

boundary conditions (2) as satisfied by y(x).  

 The vertical deviation of a curve in this family from the minimizing curve y(x) 

is αη(x), as shown in fig. 5.2. The significance of (4) lies in the fact that for each 

family of this type, i.e., for each choice of the function η(x), the minimizing function 

y(x) belongs to the family and corresponds to the value of parameter α = 0. The 

difference  αη   =− yy  is called variation of the function y denoted by δy. 

 Now, with η(x) fixed, we substitute  

  )(  )()( xxyxy ηα+=  and  

  )(  )()( xxyxy ηα ′+′=′  into functional (1) and get a function of  α, i.e.  

dxxyxyxIIxyI
b

a

 )],('),,(,[)()]([ ααα ∫==       

  = dxxxyxxyxF
b

a

)](')('    ),()(,[ αηαη ++∫    . (5) 

When α =0, (4) yields );()( xyxy = and since y(x) minimizes the integral, ∴I(α) must 

have a minimum when α = 0. By elementary calculus, we known that a necessary 

condition for the extremum of a functional is that its variation must be zero i.e.        

I'(α) = 0  when α = 0   i.e.  I'(0) = 0 

i.e.    [ ]      0  0 =
∂
∂

=αα
α

I  [ ] ⎥⎦
⎤

⎢⎣
⎡ =+

∂
∂

= 0)()( i.e.  0ααη
α

xxyI  

or    0      0 == α
α

at
d
dI   . 

The derivative I'(α) can be computed by differentiating (5) under the integral sign, i.e.  

i.e.  [ ]dxyyxF
d
dI b

a

 ',,
αα ∂
∂

= ∫    as ⎥⎦
⎤

⎢⎣
⎡ == 0,0

αα d
da

d
db   (6) 
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[Leibnitz’s Rule for differentiation under the integral sign 

  ⎥⎦
⎤−+

∂
∂

= ∫ α
α

α
αα

αα
φ

d
daaf

d
dbbfdxxf

d
d b

a

),(),(),(   

Now, by the chain rule for differentiating functions of several variables, we have  

   [ ]
αααα ∂

∂
∂
∂

+
∂
∂

∂
∂

+
∂
∂

∂
∂

=′
∂
∂ '

'
.,, y

y
Fy

y
Fx

x
FyyxF  , 

x being independent of α  ∴ 0=
∂
∂
α
x  . 

Also  )('      )( xyandxy η
α

η
α

=
∂

′∂
=

∂
∂  . 

So from (6) , we have 

 dxx
y
Fx

y
FI

d
dI b

a

 )('
'

)()(' ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

== ∫ ηηα
α

 .  (7) 

Now I' (0) = 0. Putting α = 0 in (7) yields 0 )('
'

)( =⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

∫ dxx
y
Fx

y
Fb

a

ηη  (8) 

    [ ]yyfor ==      0αΘ  

 [In this equation the derivative η'(x) appears along with the function η(x).] we can 

eliminate η'(x) by integrating the 2nd term by parts, which gives,  

  dx
y
F

dx
dx

y
Fxdxx

y
F b

a

b

a

b

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

=
∂
∂

∫∫ '
  )(

'
)()('

'
ηηη  

  = [ ]0(b))(                              
'

)( ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

− ∫ ηηη adx
y
F

dx
dx

b

a

Θ  . 

We can therefore write (8) in the form  

  0
'

)( =⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

∫ dx
y
F

dx
d

y
Fx

b

a

η  . (9) 
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Now our reasoning upto this point is based on a fixed choice of the function η(x). 

However, since the integral in (9) must vanish for every such function, ∴ the 

expression in brackets must also vanish. (The integrand being a continuous function 

on [a, b]).  or  

Using fundamental lemma of calculus of variations, which states that if  

 0)()( 
b

a

=∫ dxxHxη for any sufficiently differentiable function η(x) within the 

integration range, that vanishes at the end points of the interval, then it follows that 

H(x) is identically zero on its domain i.e.  H(x) ≡ 0 .  

This yields  

  0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F   (10) 

which is known as Euler’s equation.  

Conclusion  If y(x) is an admissible function that minimizes the integral (1), then y 

satisfies Euler’s equation but converse is not necessarily true i.e. if y can be found that 

satisfies this equation, y need not minimize I  

Second term in equation (10) can be written in expanded form as  

  
dx
dy

y
F

ydx
dy

y
F

yy
F

xy
F

dx
d '  

'
  
'

  
'

  
'

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
′∂

∂  

∴ Euler’s equation (10) becomes   

  ( ) 0''2

2

'' =−++ yxyyyyy FF
dx
dyF

dx
ydF  (11) 

which is a second order differential equation unless Fy'y' = 0. 

Special Cases  These particular cases can be obtained either directly from some 

identity or from Euler’s equation.  

Case A  If x and y are missing from function F,  
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then (11) reduces to  

   2

2

'' dx
ydF yy  = 0 

and if   Fy'y'  ≠ 0, we have 02

2

=
dx

yd and so y = c1x + c2. ⇒ extremals are all straight 

lines.  

Case B   If y is missing from the function F, 

 then Euler’s equation becomes  

   0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂
y
F

dx
d  

  1'
    c

y
F

=
∂
∂

⇒    which is a first order equation for the extremals. This 

differential  equation is solved to get extremals.  

Case C   If  x is missing from the function F, then Euler’s equation can be integrated 

to  

   1'  
'

 cFy
y
F

=−
∂
∂  . 

This follows from the identity  

 ,-  
'

''
' x

F
y
F

y
F

dx
dyFy

y
F

dx
d

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂  since 0=

∂
∂

x
F  and expression in 

brackets on right is zero by Euler’s equation.  

  .cF  y'  
'

          0'
' 1=−

∂
∂

⇒=⎥
⎦

⎤
⎢
⎣

⎡
−

∂
∂

⇒
y
FFy

y
F

dx
d  

This case is also called Beltrami identity. 

Note  The solutions of Euler’s equation satisfying the boundary conditions are called 

stationary functions. The value of the functional at a stationary function is called a 

stationary value of the functional.  
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Case D  If y' is missing from the function F i.e. functional is of the form  

   dxyxF
b

a

),(∫ . 

Then Euler’s equation reduces to  

  0)0( =−
dx
dFy   

⇒ Fy = 0,  this is not a differential equation but a finite equation. This finite equation 

when solved for y, does not involve any arbitrary constant. Thus, in general it is not 

possible to find y satisfying the boundary conditions y(x1) = y1 and y(x2) = y2   and as 

such this variatonal problem does not in general, admit a solution.  

Case E  When the functional is of the form  

  I(y) = dxyxf
b

a

2y'1  ),( +∫  . 

Here  F(x, y, y') =   f(x, y) 2y'1+  

 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−+

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

2

2

'1
'2.

2
1),('1

' y
yyxf

dx
dy

y
f

y
F

dx
d

y
F  

= 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
−+

22

2

'1
'),(

'1
''1

y
y

dx
dyxf

y
yfyf xy  

= ( ) n
xy yyyy

y
yyxf

y
yfyf '2'1

2
1'

'1
'' ),(

'1
''1 2/32

22

2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛−+

+
−

+
−+

−  

= ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−

+
−

+
−+

− 2/322

22

2 '1'''
'1

''),(
'1

''1 yyy
y

yyxf
y

yfyf xy  

= 
( ) ( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
−

+
−+ 2/32

2

2/122

2

'1
'''

'1
''),(

'1
''1

y
yy

y
yyxf

y
yfyf xy  
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= ( )
( ) ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡

+

−+
−

+
−+ 2/32

22

2

2

'1
''''''1),(

'1
''1

y
yyyyyxf

y
yfyf xy  

= 
( ) 2/322

2

'1
''),(

'1

' '1
y
yyxf

y

yfyf x
y

+
−

+
−+  

= ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−−+
+

2
2

2 '1
''),(' )'1( 

'1
1

y
yyxfyfyf

y
xy  . 

So Euler equation   ,0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F  becomes as  

 ( ) ⎥
⎦

⎤
⎢
⎣

⎡
+

−−+
+

2
2

2 '1
''),(' )'1( 

'1
1

y
yyxfyfyf

y
xy  = 0 

⇒ ( ) 0
'1

''),(' )'1( 2
2 =

+
−−+

y
yyxfyfyf xy  . 

Applications 

Example 5.1  Find the plane curve of shortest length joining the two points A (a1, b1) 

and B (a2, b2).   or   

Show that shortest distance between two points in a plane is a straight line.  

Let y(x) be a function whose curve passes through A (a1, b1) and B(a2, b2). The length 

of the arc between A and B is given by dsyI
a

a
∫=

2

1

][ . Now, as (ds)2 = dx2 + dy2 

 2
2

'11 ydx
dx
dydxds +=⎟

⎠
⎞

⎜
⎝
⎛+=⇒  

dxyyI
a

a

2'1][
2

1

+=∴ ∫  . 

Comparing it with ; ]',,[][ dxyyxFyI
b

a
∫=  

  y(a) =A,      y(b)   = B , 
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we have  

  F[x, y, y'] = [1 + y'2]1/2  (1) 

Let then length of the curve between given points be minimum for the curve y(x). 

∴ the functional  dxyyxF
a

a

 ]',,[
2

1

∫ has a minimum value at the function y(x).  

∴ y(x) satisfies Euler’s equation,  

  0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F   (2) 

As from (1), F is independent of y  

∴  0=
∂
∂

y
F    (3)  

and  
2'1

'
' y

y
y
F

+
=

∂
∂  .  (4) 

∴ equation (2) becomes  

  0
'1

'0
2

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
−

y
y

dx
d  

 2
2

2

12 '1
'        

'1
'     c

y
yc

y
y

=
+

⇒=
+

⇒  

  2'y (1-c2) = c2      ⇒   y'2 =   )(
1

2
2

2

sayD
c

c
=

−
 

 ⇒ y'2  = D2
 
     ⇒   y = Dx  + E  (5) 

[OR    x and y variables are missing in case A,   ⇒ This problem falls under case A.  

Because  

  fy' y'  = [ ] 0
)'(1

1
' 2/322

2

≠
+

=
∂
∂

yy
f  
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so,  according to case A, we have ⇒= 02

2

dx
yd  extermals are the two parameter family 

of straight lines y = c1x + c2]. 

This is the equation of extremals. We are to find that extremal which passes through 

the points (a1, b1) and (a2, b2). 

∴ from (5)   y(a1) = Da1 + E 

 ⇒ b1 = Da1 + E    (6) 

Now  

 y(a2)  = Da2 + E  ⇒ b2 = Da2 + E (7) 

Subtracting (6) and (7) 

 b1 – b2 = D (a1 – a2)  

 ⇒ D  =  (b1 – b2) /(a1 – a2)   (8) 

Substituting this in (6) , we have 

  b1  =  Ea
aa
bb

+
−
−

1
21

21  

 ⇒ E =  b1 – a1 
21

1221

21

21

aa
baba

aa
bb

−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−  (9) 

Substituting (8) and (9) in (5) , 

 y =  
21

1221

21

21     
aa

babax
aa
bb

−
−

+
−
−  .   (10) 

This is a first degree equation and is of course the straight line joining the two points 

A and B.  

[This analysis shows only that if I has a stationary value, then the corresponding 

stationary curve must be the straight line (10). Also, it is clear from the geometry that 

I has no maximizing curve but does have a minimizing curve. Thus we conclude that 

(10) actually is the shortest curve joining our two points. A more interesting problem 
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is that of finding the shortest curve joining two fixed points on a given surface and 

lying entirely on that surface. These curves are called geodesics. In this case solution 

is less obvious and possibly many solutions may exist.]  

Example 5.2  Find the extremum (extremals) of the functional 

 I[y]  = dx
x
y 22

1

1 
′+

∫      (1) 

where y(1) = 0,   y(2) = 1.  

Proof  We know that  the necessary condition for the functional                                   

  I[y] = dx )y'y,(x,F
b

a
∫    (2)  

to be extremum is that 

 0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F    (Euler’s equation)  (3) 

satisfying the conditions y(a) =A,    y(b) = B.  

 [It may be noticed that the given functional I may be named as t[y(x)] i.e. as 

the time spent on translation along the curve y = y(x) from one point to another, if the 

rate of motion v = (ds/dt) is equal to x. As ds = (1+ y'2)1/2 dx  

and   x
dt
ds

=   then  dt  = 
x
ds  

and   t  = .
x

 y'1
    

21

0

dx
x
dsx

x
∫∫

+
=  

Comparing (1) and (2) , we have 

 F(x, y, y')   =   ( )
x
y 2/12'1+   .  (4) 

Since it is independent of y  ⇒   0=
∂
∂

y
F   (5) 
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and  
'y

F
∂
∂  = 

2'1
'
yx

y
+

 .    (6) 

Making use of (5) and (6) in (3) , we find 

 0 - 0
'1

'
2

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+ yx
y

dx
d  

⇒ 0
'1

'
2

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+ yx
y

dx
d      

⇒ c
yx

y
=

+ 2'1
'      (7) 

⇒ y'2   = c2x2 (1+y'2) 

⇒     (1- c2x2) y'2 = c2x2  

 ⇒ 22

22
2

1
'

xc
xcy

−
=  

⇒ 
221

'
xc

cxy
−

=  

⇒ 
22

2

1
)2(     

2c
1-       

xc
xc

dx
dy

−

−
=  . 

Integrating , we get  

 y =  

2
1

)1(     
2c
1- 12/122 +−− xc  + D 

   =  ,1     
c
1 22 Dxc +−−   where D is the constant of integration.  

y(x)  - D =   221    
c
1 xc−− . 

⇒ (y(x) –D)2   =  ( )22
2 1  

c
1 xc−  
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 [y(x) – D]2 + x2  = 2

1
c

 

 i.e.  x2 + [y(x) – D]2 = 2

1
c

    (8) 

which is a family of circles, with centers on the axis of co-ordinates i.e. centres (0,D). 

[2nd method of solving equation (7) is by introducing a parameter y' = tan t then  

  t
cy

y
c

x sin1
'1

'  1
2

=
+

=  

or  x  = c  sin t ,   where  
c

c 1
=  

 ,   tantan dxtdyt
dx
dy

=⇒=  

⇒   dy  = tan t  c  cos t dt  = c  sin dt, 

 ⇒   y = - c  cos t + c1 

Thus x  = c  sin t and y – c1 = - c  cos t  . 

Eliminating  t  ⇒ x2 + (y – c1)2 = c 2, which is a family of circles]. 

Now using boundary conditions  

y(1) = 0,      y(2) = 1, we get 

[y(1) – D]2  + 12  = 2

1
c

 

⇒ D2 + 1 =  2

1
c

, and     (9) 

[y(2) – D]2  + 22  = 2

1
c

 ⇒  [1- D]2 + 4  =  2

1
c

 (10) 

Equating (9) and (10)  

 D2 + 1 = D2 -  2D + 5 ⇒   D = 2 
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B(x1, y1) 
A(x0, y0)

Now (10)   ⇒   c2  =  
5
1  ⇒    c  =  ±  

5
1  

So the final solution is  

 [y(x) – 2]2   + x2  = 5. 

Minimal Surface of Revolution  

Example 5.3   Find the curve with fixed boundary points such that its rotation about 

the axis of abscissa gives rise to a surface of revolution of minimum surface area.  

OR 

Find the curve passing through (x0, y0) and (x1, y1) which generates the surface of 

minimum area when rotated about x-axis.  

Proof  Let A(x0, y0) and B (x1, y1) be two given points on the same side of x-axis. Let      

y = y(x) be any continuous curve joining these two points.  

i.e.   y(x0) = y0 and    y (x1) = y1   (1) 

 

 

 

 

Figure 5.3 

 We know that, the area of surface of revolution generated by rotating the curve 

y = y(x) about the x-axis is  

  I(y) = ∫
1

0

 2
x

x

ydsπ  

where (ds)2  = (dx)2 + (dy)2 = (dx)2 (1+y'2) . 

⇒ ds = dx (1+y'2)1/2 . 
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∴ I(y)  = 2π dxyy
x

x

2/12 )'1(
1

0

+∫  .   (2) 

Comparing it with  

 I(y) = dxyyxF
x

x

)',,(
1

0

∫  .   (3) 

Now, I has to be minimum.  

Also, necessary condition for this functional to be extremum satisfying the condition  

 y(a) = A and    y(b) = B is that  

   0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F  . (4) 

Here   F(x, y, y')  = y [1 + y'2]1/2   (5) 

Since the integrand F does not depend explicitly an x, so Euler’s equation (4) reduces 

to (Using Case C)  

   c
y
FyF =

∂
∂

−
'

'   i.e. 

⇒ y(1+y'2)1/2 – y y'2  (1+y'2) -1/2
  = c , 

⇒ y(1+y'2) - y y'2   = c  (1+y'2)1/2 , 

⇒ y = c  (1+y'2)1/2  . 

Squaring, we get  

y2 = c2 (1+y'2)  ⇒   y2 – c2 = c2 y'2 

⇒ 2
2

22

'y
c

cy
=

−    ⇒   
c

cy
y

22

'
−

=  

⇒ 
c

cy
dx
dy 22 −

=  . Separating variables  

⇒ dx  = 
22

 

cy

dyc

−
 . 



 175

Integrating , we get  

 x + c1   =  c  cosh-1  
c
y

  

⇒ =
+
c

cx 1   cosh-1 
c
y

 

⇒ cosh
c
y

c
cx

=⎟
⎠

⎞
⎜
⎝

⎛ + 1  

⇒ y =  c  cosh ⎟
⎠

⎞
⎜
⎝

⎛ +
c

cx 1 ,    (6)  

which constitutes a two parameters family of catenaries. The constants c and c1 are 

determined by the conditions y(x0) = y0,   y(x1) = y1. Thus (6) is a catenary passing 

through two given points. The surface generated by rotation of the catenary is called a 

catenoid.      

Theorem 5.3  

 Find out the necessary condition for a functional I(y) = dxyyxF
b

a

)',,(∫  (1) 

to have an extremum, when y is not prescribed at the ends.  

OR 

 Given the functional I[y] = dxyyxF
b

a

)',,(∫  where the value of the unknown 

function y(x) is not assigned at one or both the ends at x = a &  x = b. Then find the 

continuous differentiable curve for which the given functional attains extremum 

values.  

Proof 

 The given functional is  

  I[y] =  dxyyxF
b

a

)',,(∫  .  (1) 
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Let y(x) be the actual extremal of (1) and let η(x) is a function defined on [a, b] with 

its continuous first order derivatives, then for assigned y(x) and η(x), the functional  

 I[y + αη] = [ ]dxxxyxxyxF
b

a

 )(')('),()(, αηαη ++∫  is a function of α (a real 

no.) which attains extremum at α = 0. 

∴ 
αd

dI  = 0   when   α  = 0 

[ ]dxxxyxxyxF
d
d

d
dI b

a

 )(')('),()(,( αηαη
αα

++= ∫  

 = dxxxyxxyxF
b

a

)](')('   ),()(,[ αηαη
α

++
∂
∂

∫  

 + 
α

αηαη
d
dbxxyxxyxF bx=++ )](')('),()(,[  

 -
α

αηαη
d
daxxyxxyxF ax=++ )](')('),()(,[  

 

⎥
⎦

⎤
⎢
⎣

⎡
+

∂
∂

+
∂
∂

+
∂
∂

= ∫ ,neglected are sorder termhigher 
'

)(')( ))(' ),(,(
y
Fx

y
FxxyxyxF

b

a

αηαη
α

 

 ⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+
∂
∂

∂
∂

= ∫ '
)(')(

y
Fx

y
Fx

b

a

αηαη
α

dx 

 dx
y
F

dx
dx

y
Fxdx

y
Fx

b

a

b
a

b

a
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
∂
∂

= ∫∫ '
)(

'
)()( ηηη  

 dxx
y
F

dx
da

y
Fb

y
Fdx

y
Fx

b

aax

b

a

)(
'

)(
'

)(  
'

)(
bx

ηηηη ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

= ∫∫
==

 

    )(
'

)(
'

)(
'

)(
ax==

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

= ∫∫ x
y
Fx

y
Fdxx

y
F

dx
ddx

y
Fx

bx

b

a

b

a

ηηηη . (2) 
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Here η(x) does not necessarily vanishes at the end points.  

The equation (2) must be satisfied by all permissible values of η(x) 

 0)(
'

=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

⇒ ∫ dxx
y
F

dx
d

y
Fb

a

η  

 0)( 
'

)(
'

=⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

−⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

== axbx

x
y
Fx

y
F ηη  

 ∴ 0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F   

(Second order diff equation will consist of two arbitrary constants which will be 

determined by using natural boundary conditions). 

Also  0)(
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=bx

x
y
F η  

 and 0)(
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=ax

x
y
F η   

⇒ 0
'

  and          0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

== axbx y
F

y
F  

are two conditions.    [as η(b) ≠ 0,   η(a) ≠ 0]. 

Case I  Suppose that the value of y(x) at one point is given i.e. y(x)|x=a is given,  

⇒   η(a)=0. 

Then calculate 0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=bxy
F  (from natural boundary condition).   

Case II  When the value of y(x) at upper end is given i.e. bxy(x) = is given,   

  ⇒  η(b)  = 0 

Then calculate 0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=axy
F  (from natural boundary condition). 
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Case III   When neither y(x)⏐x=b nor  y(x)⏐x=a is given, Then use the natural boundary 

conditions  0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=axy
F  and   0

'
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=bxy
F . 

Example 5.4 Test for extremal the functional  

   I [y(x)] = dxyy  )'( 22
2/

0

−∫
π

 (1) 

when  

(i) y is defined at the end points by  

  y(0) = 0,    y(π/2) = 1. 

(ii) y is not prescribed at the end points.  

Solution  We know that the necessary condition for the functional  

  I[y] = dxyyxF
b

a

)',,(∫    (2) 

to have extremal is that y should satisfy the Euler’s equation 

   0
'

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F  .  (3) 

Comparing (1) and (2), we get  

  F(x, y, y') = y'2 - y2    (4) 

  '2
'

     ,2 y
y
Fy

y
F

=
∂
∂

−=
∂
∂    (5) 

Making use of (5) in (3), we get  

  -2y  - 0)'2( =y
dx
d  

   y  + 0)'( =y
dx
d  
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 ⇒ 02

2

=+ y
dx

yd  

The Auxiliary equation is  

  D2 + 1 = 0 ∴ D2 = -1,  where 
dx
dD =  

⇒ D = ± i  = 0 ± i  

∴ solution is given by  

 y = e0x (c1 cos 1.x + c2 sin 1.x)  

i.e.  y = c1 cos x  + c2 sin x     (6) 

This is the equation of the extremals.    

Case I   y(0) = 0,   1
2

y =⎟
⎠
⎞

⎜
⎝
⎛ π  are the boundary conditions.  

 y(0)  = c1 cos 0 + c2 sin = 0 

⇒ c1 = 0 

and  1
2

in 
2

cos  
2

y 21 =+=⎟
⎠
⎞

⎜
⎝
⎛ πππ scc   ⇒  c2 = 1 

 Thus we find c1 = 0,  c2 =1 

Thus the extremum can be achieved only on the curves y = sin x. 

Case II When y is not prescribed at the end points. Then  

  0
'

  and        0
'

2
0

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

==
πxx y

F
y
F  

Now,  

  ( ) 0 )(y'           0'2     
' 0x0

0

=⇒==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

==
=

x
x

y
y
F  . 

As y = c1 cos x + c2 sin x 
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⇒ y' = - c1   sin x + c2 cos x 

0' 0 ==xy  ⇒ - c1 . 0  + c2 .1 = 0    c2 = 0 

and    0)(2y'             0 
' 2/2/ =⇒=

∂
∂

== ππ xxy
F  

0)'(
2

=⇒
=

πx
y  

⇒ (- c1 sin x + c2 cos x) x =π/2  =  0  

⇒  00.  
2

sin  c - 21 =+ cπ  

 ⇒  - c1 = 0  ⇒  c1 = 0  (8) 

∴ solution is y(x) = 0  

Ex(i)   If value of y at one end point is given y(0) =0   ,  0
' 2/

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=πxy
F  

(ii) ( ) 12/ =πy  , 0
' 0  

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=xy
F  

(iii) If value at both end points is not given. Then  

 0
' 0  

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=xy
F ,      &    0

' /2  

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= πxy
F  

Brachistochrone Problem   

Theorem 5.4 

State the Brachistochrone problem and solve it.  

Proof  The Brachistochrone problem was passed by John Bernoulli in 1696, in which 

he advanced the problem of the line of quickest descent. The name ‘Brachistochrone’ 

is derived from the Greek words ‘brachisto’ meaning shortest and ‘chrone’ meaning 

time.  
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Let A and B be two fixed points. In this problem, it is required to find the curve (line) 

connecting two given points A and B, that does not lie on a vertical line, such that a 

particle sliding down this curve (line) under gravity (in the absence of any resistance 

or friction) from the point A reaches point B in the shortest time. This time depends 

upon the choice of the path (curve) and hence is a functional. This curve s.t. the 

particle takes the least time to go from A to B is called the brachistochrone.  

 [It is easy to see that the line of quickest descent will not be the straight line 

connecting A and B, though this is the shortest distance between the two points. The 

reason is that, the velocity of motion in a straight line will build up rather 

(comparatively) slowly. However, if we imagine a curve that is steeper near A, even 

though the path becomes longer, a considerable portion of the path will be covered at 

a greater speed. It turns out that the required path i.e. the line of quickest descent is a 

cycloid.] 

 Fix the origin at A with x-axis horizontal and y-axis vertically downwards, so 

that the point B is in the xy plane.  

 

 

 

 

 

 

Figure 5.4 

 Let (h, k) be the co-ordinates of B. Let the particle is traversed from A to B 

along the curve C. let m be the mass of the particle. Let velocity of the particle be v 

when the particle is at the point P(x, y) on C and at A(origin) its velocity be zero.  

By the principle of work and energy , 

K. E. at P – K.E. at A = work done in moving particle from A to P 
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 mgymmv =− 22 )0(
2
1

2
1   

⇒ gyv 2=  .    (1) 

Let Q(x + δx, y +  δy) be a neighbouring point on C r.t. sQP δ=
)

  

∴ dxyx
x
yyxs 2

2
22 '11)()( +=⎟

⎠
⎞

⎜
⎝
⎛+=+= δ

δ
δδδδ  . 

∴ time of descent from P to Q  

 =  
v
sδ    ( distance travelled/velocity) 

= x
y
y

g
x

gy
y

δδ
22 '1

  .
2
1

2
'1 +

=
+

 

∴ total time of taken by the particle from A(0, 0) to B (h, k) is  

 t[y(x)]  =  dx
y
y

g

h 2

0

'1
 

2
1 +

∫ ,  (2) 

with  y(0) = 0 and   y(h)  = k .   

∴  in order to find the shortest time of descent, we have to minimize the functional 

dx
y
y 2h

0

'1
 

+
∫ , subject to the fixed boundaries y(0) = 0, y(h) =k.  

(From physical considerations,  the functional has no maximum value)  

 Let  F(x, y, y') = 
y
y 2'1

 
+

 . 

Since the integrand is independent of x, the Euler’s equation reduces to  

  F - Fy' C
dx
dy

=  



 183

⇒  
y
y 2'1

 
+

   -  Cy
y

y
=

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
'

'12
'2.

y
1 

2
 

⇒ ( ) C
y

=+
+

22

2
y' - y'1        

'1
1    

y
1   

⇒ (say) C
C
1 )y'1( 12

2 ==+y     (3) 

I method 

Introducing the parameter t by putting  

   y' = cot t in (3)  

⇒  y  = C1  sin2t =  ( )tC 2cos1
2

1 −    (4) 

Now dx = dy/y' 

= dttC
t

)2 sin2(
2

   
 cot

1 1   (using y from (4) find dy)  

= 2 C1  sin2 t dt. 

= C1 (1 – cos 2t) dt 

 ( )∫ +−= 21 2cos1 CdttCx  

 ( ) 2
1 2sin2

2
CttCx +−= . 

∴ The equation of the extremals i.e. the equation of the desired line in parametric 

form is  

 ( ) 2
1 sin

2
CuuCx +−=  

and  ( )uCy  cos1
2

1 −=  .  (putting u = 2t) (5) 

The boundary conditions are  
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 y(0) = 0,   y(h) = k.  

⇒  ( ) arbitrary. is        0cos1
2 1

1 CuC
⇒=−  

00)0sin0(
2

   22
1 =⇒=+−⇒ CCC  

∴ The required curve is  

 ( ) ( )uCuuCx cos1
2

y       ,sin
2

11 −=−=  

which is the standard form of cyclic curve and is called cycloid curve. 

Thus we get a family of cycloids with  
2

1C  as the radius of the rolling circle. The 

value of C1 is found by the fact that the cycloid passes through B (h, k) i.e. y(h) = k.  

Thus, the brachistochrone is a cycloid. 

II method   

Equation (3) is y(1+y'2) = C 

 yyC
y
Cy /)(12 −=−=′⇒  

 y' = 
y

yC
y

yC −
=

−
dx
dy   i.e.       

Separating the variables and integrating  

  dxdy
yC

y xy

∫∫ =
− 00

 

On L.H.S. put y = Csin2 θ   ⇒ 

  dy = 2C cos θ sin θ dθ   

xC
CC

C
=

−
∴∫ θθ

θ

θθ

sincos2
sin

sin 
2

2

0
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or θθθθ
θθ

dCdCx ⎟
⎠
⎞

⎜
⎝
⎛ −

== ∫∫ 2
2cos1 2   sin2

0

2

0

    

   [ ]θθθθ 2sin2
22

2sin
2

2
−=⎥⎦

⎤
⎢⎣
⎡ −=

CC
 

 x = b [ ]θθ 2sin2 −  , 

and  y =  C sin2θ   = 
2
C  [ ] ]2cos1[2cos1 θθ −=− b  . 

 Taking  2θ = φ,   we have  

    x = b [φ - sin φ] , 

   y = b  (1- cosφ) , 

which is the cycloid. The value of b can be found from the fact that curve passes 

through (h, k).  

Exercise 

1. Show that the curve of shortest distance between any two points on a circular 

cylinder of radius a is a helix.  

2. Find the  extremal  of the functional dxyx∫ +
1

0

2 )'(  that satisfies the boundary 

conditions y(0) = 1,  y(1) = 2 . 

3. Show that the Euler’s equation for the functional  

 dxyxcyyxbyxa
x

x

))(')(2')(( 22
2

1

++∫  is a second order linear differential equation.  

4. Find the extremals and the stationary function of the functional dxyy )'( 22

0

−∫
π

 

that satisfy the boundary conditions y(0) = 1,     y(π) = -1. 
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Answers 

2. y = x + 1   3. a(x)y'' + a'(x)y' + (b'(x) – c (x)) y = 0 

4. y = C1  cos x  + C2 sin x, where C1 and C2 are arbitrary constants ;  

 y = cos x + C2 sin x, where C2 is an arbitrary constant.    

The Fundamental Lemma of the Calculus of Variations 

Theorem 5.5 

 If a function )(xΦ is continuous on the closed interval [x0, x1] and if  

  ∫ =Φ
1

0x

0, dx   )()(
x

xx η    (1) 

for an arbitrary continuous function η(x) subject to some conditions of general 

character only then ] x,[xon    0 )( 10≡Φ x  . 

Note  The conditions such as (i) η(x) should be a first or higher order differentiable 

function (ii)  η(x) should vanish at the end points i.e. η(x0) = η(x1) = 0, η(x) ∈ Ck and            

(iii)(⎜η(x) ⎜< ε and ⎜η'(x) ⎜< ε. 

are called the conditions of general character. 

Proof  Assume that Φ (x) ≠ 0 (say positive) at a point x = x  in x0 ≤ x ≤ x1. (By 

assuming this we will arrive at a contradiction). 

 

 

 

 

 

 

 

Figure 5.5  A continuous function which is positive in an interval but vanishes 
outside. 
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Since Φ(x) is continuous and Φ(x) ≠ 0 it follows that Φ(x) maintains positive sign in a 

certain neighbourhood )( 10 xxx ≤≤ of the point x . Since η(x) is an arbitrary 

continuous function, we might choose η(x) s.t. η(x) remains positive in 10 xxx ≤≤  

but vanishes outside this interval  

 Then, from equation (1) it follows that  

∫∫∫∫ Φ+Φ+Φ=Φ
1

1

1

0

1

0

1

0

)()()()( )()()()(
x

x

x

x

x

x

x

x

dxxxdxxxdxxxdxxx ηηηη   

  = ,0)()(
1

0

>Φ∫ dxxx
x

x

η     (2)  

since the product Φ (x) η(x) remains positive everywhere in [ ]10 , xx  and vanishes 

outside this interval. This contradiction between (1) and (2) shows that our original 

assumption Φ(x) ≠ 0 at some point x must be wrong and hence  ],[0)( baxx ∈∀≡Φ  . 

[For example η(x) = k nxx 2
0 )( − nxx 2

1)( −  on the interval ( )10 xxx ≤≤ , where n is a 

positive integer and k is a constant number. It is obvious that the function η(x) 

satisfies the above condition i.e. η(x) vanishes at the end points and may be made 

arbitrarily small in absolute values together with its derivatives by reducing the 

absolute values of the constant k. Also η(x) is continuous and has continuous 

derivative upto order 2n-1.] 

 Euler’s equation for functionals of the form  

 I[y1,……, yn] = dxyyyyyxF nn

b

a

)......,,,,...,,( ''
2

'
11∫  i.e.  

Euler’s equation for n dependent functions.  

Theorem 5.6 A necessary condition for the curve yi = yi(x) (i = 1, …n) to be an 

extremal of the functional 
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 dxyyyyyxF nn

b

a

)....,,,,...,,( ''
2

'
11∫  is that the function yi(x) satisfy the Euler 

equation. 
iyF  -  n)..., 1  (i        0' ==

iyF
dx
d . 

or 

A necessary condition for the functional  dxyyyyyxF nn

b

a

)......,,,,...,,( ''
2

'
11∫  to be an 

extremum is that  

  n  ..., 1,i  ,0'
1

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

y
F

dx
d

y
F

i

 

Proof  Consider the functional  

 I[y1, ...... yn] = ∫
b

a
nn dyyyyyxF ).......,,,,...,,( ''

2
'
11  (1) 

(depending upon one independent and several (n) dependent variables and their first 

derivatives when ends are fixed), where  

x is one independent variable; y1, …, yn are n dependent variables depending on x and 

satisfying the conditions 

  yi(a) = Ai    and yi(b) = Bi,  i = 1,......n   

Ai and Bi are constants.  

 [In other words, we are looking for an extremum of the functional (1) defined 

on the set of smooth curves joining two fixed points in (n+1) dimensional Euclidean 

space. The problem of finding geodesics i.e. shortest curve joining two points of some 

mainfold is of this type].  

We know that a necessary condition for a functional (1) to attain extremal is that              

δI = 0, 

i.e.     0)......,,,,...,,( ''
2

'
11 =∫ dxyyyyyxF nn

b

a

δ   
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i.e.   0  =∫ dxF
b

a

δ  

or   +
∂
∂

++
∂
∂

⎢
⎣

⎡
+

∂
∂

∫ n
n

b

a

y
y
Fy

y
Fy

y
F δδδ ....2

2
1

1

 

     0.... '
'

'
2'

2

'
1'

1

=⎥
⎦

⎤
∂
∂

++
∂
∂

+
∂
∂ dxy

y
Fy

y
Fy

y
F

n
n

δδδ  (2) 

Taking the general term  

  dxy
y
F

i
i

b

a

 '' δ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∫  and  integrating it by parts, we have  

  = ∫ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
∂
∂ b

'

b

a
'     

dx
d - 

a
i

i
i

i

dxy
y
Fy

y
F δδ  (3) 

Thus, using (3) in equation (2), we get  

⇒  dx n terms upto .2'
22

1'
11 ⎥

⎥
⎦

⎤
…+

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

+
⎢
⎢
⎣

⎡

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

∫ y
y
F

dx
d

y
Fy

y
F

dx
d

y
Fb

a

δδ  

    0
1

' =⎥
⎦

⎤
⎢
⎣

⎡
∂
∂

+ ∑
=

b

a

n

i
i

i

y
y
F δ  

Now variation of yi at the end points must vanish i.e. δyi = 0 at the ends. Therefore 

second term in above is zero, ..,.....,2,....1 ni =∀  

∴  the necessary condition implies that  

  0dx y  i =
⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

∫ δ
ii

b

a y
F

dx
d

y
F    for every i  = 1, …., n  

Also 
iyδ   are arbitrary  

 ⇒ ...n  1,  i     ,0 ==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′∂

∂
−

∂
∂

ii y
F

dx
d

y
F , (4) 
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which forms system of n second order differential equations called Euler’s equations 

(one for each function involved in functional). Its general solution contains 2n 

arbitrary constants, which are determined from the given boundary conditions.  

A problem for optics 

Example 5.5  Propagation of light in an inhomogeneous medium. 

OR 

Find the differential equation of the lines of propagation of light in an optically 

nonhomogenous medium in which the speed of light is v(x, y, z) . 

Solution  [This is an illustration of above principle].  

Suppose that three-dimensional space is filled with an optically inhomogenous 

medium s.t. the velocity of propagation of light at each point is some function               

v(x, y, z) of the co-ordinates of the point.  

According to well known Fermat’s law, light propagates from one point A(x0, y0) to 

another B(x1, y1) along the curve, for which, the time T of passage of light will be 

least.  

If the equation of the desired curve i.e. equation of the path of light ray be y = y(x) 

and z = z(x), then the time taken by the light to traverse the curve equals  

 dx
zyxv
zy

T
x

x
∫

++
=

1

0
),,(
''1 22

  i.e. 
v
dsT

x

x
∫=

1

0

 

where ds is a line element on the path.  

Writing Euler’s equations for this functional i.e.  

  2

22 ''1
v

zy ++
   0

''1
'

22
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+

∂
∂

zyv
y

dx
d

y
v , 

  2

22 ''1
v

zy ++
   0

''1
'

22
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
+

∂
∂

zyv
z

dx
d

z
v  . 
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These differential equations determine the path of the light  propagation.  

Example 5.6  Use calculus of variation to find the curve joining points (0, 0, 0) &     

(1, 2, 4) of shortest length. Also find the distance between these two points.  

Solution Given  points  are (0, 0, 0) and (1, 2, 4). Suppose C be the curve y = y(x) and 

I[y, z] = length of the curve joining (0, 0, 0) & (1, 2, 3)  

In this case, length of small segment is 

  222 )()()( dzdydx ++=  . 

So total length = 222
)4,2,1(

)0,0,0(

)()()( dzdydx ++∫  , 

 = .1
221

0

dx
dx
dz

dx
dy

⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+∫  

Hence   I [y, z] = .  ''1 22
1

0

dxzy ++∫  

Boundary conditions are  

  y(0)  = 0,  y(1) = 2 , 

  z(0) = 0 ,  z(1) =4 . 

Now, we know that if  

I [y1, …., yn] = dxyyyyyxF nn

x

x

)......,,,,...,,( ''
2

'
11

1

0

∫  , 

then the condition for this functional to be extermal is that 

  0' =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

ii y
F

dx
d

y
F  . 

Here  I [y, z] = dxzy    ''1 22
1

0

++∫ , 
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  22 ''1 zyF ++= , 

 0     ,0 =
∂
∂

=
∂
∂

z
F

y
F  . 

∴ The Euler’s equations  

 0
'

    &   0
'

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

z
F

dx
d

z
F

y
F

dx
d

y
F  

now become  

 0
'

-    &   0
'

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
z
F

dx
d

y
F

dx
d  

The first Euler’s equation is  

 A
y
F

y
F

dx
d

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⇒=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

'
          0, 

'
   (1) 

Second  Euler’s equation is  B
z
F

z
F

dx
d

=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

⇒=⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

'
       0

'
 (2) 

Now  

 A
y
F

=
++

=
∂
∂

22 z'y'1
y'    

'
   and (3) 

 B
z
F

=
++

=
∂
∂

22 z'y'1
z'    

'
  .  (4) 

Dividing (3) and (4), we get 

 Cz
B
A

B
A

z
y '  z'    y'        
'
'

==⇒=  . 

Putting value of y' in (3) 

 A
zy

Cz
=

++ 22 ''1
'  

or  z'2 C2 = A2 (1+ y'2 + z'2), where y' = z'C  . 
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⇒ z'2  =  2222

2

ACAC
A

−−
 

⇒ z'  = D (say)   ⇒  z  =   Dx + E . 

Similarly y = D'x + E' . 

Now given conditions are  

 y(0) = 0,      z(0)  = 0 , 

 y(1)  = 2,    z(1) = 4 . 

⇒ E' = 0,    E = 0 ;    D = 4,  D' = 2 . 

⇒ z = 4x,     y = 2x  . 

These are two surfaces and  

⇒ 
124
xyz

==  

which are the equations of a straight line.  

Now using geometry , equation of a straight line passing through (0, 0, 0),  (1, 2, 4) is 

 
12

1

12

1

12

1

zz
zz

yy
yy

xx
xx

−
−

=
−
−

=
−
− , 

 
04
0

02
0

01
0

−
−

=
−
−

=
−
− zyx  , 

or 
421
zyx

==  . 

Distance = 211641 =++  

Using variation = dxzy 22
1

0

''1 ++∫  

 = =++∫ dx22
1

0

421  =∫ dx  21
1

0

 Ans       21  . 
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Hence result is verified.  

Example 5.7  Test for extremum the functional  

 I[y,z] = ( )dxzy  '' 22
1

0

−∫     (1) 

 y(0) = 0,  y(1) = 1,   z(0) = 0,   z(1) = 2 . (2) 

Solution System of Euler’s equations for (1) is y'' = 0,    z'' = 0. 

Their solutions are  

 y(x) = C1 + C2x  , 

 z(x)  = C3 + C4x ,    (3) 

C1, C2, C3 and C4 are arbitrary constants . 

⇒ C1 = 0,     C2 = 1,    C3 = 0,    C4 = 2 . 

    (By using (2) in (3))  

Therefore, desired solutions are  

 y(x) = x , z(x) = 2x , 

i.e.    2y = 2x = z, which is a straight line passing through origin. 

Example 5.8   Find the extremals of the functional  

 [ ] , 2'')](),([ 22
2/

0

dxyzzyxzxyv ++= ∫
π

  subject to boundary conditions  

  y(0) = 0,     1
2

=⎟
⎠
⎞

⎜
⎝
⎛ πy ,      z(0) = 0,     1

2
−=⎟

⎠
⎞

⎜
⎝
⎛ πz  . 

Solution  The system of Euler’s differential equations is of the form  

  0)'2(- 2z      ..   0
'

==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂ y

dx
dei

y
F

dx
d

y
F  

  ⇒ y'' – z = 0 . 
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Similarly  ⇒ z'' – y = 0. 

Eliminating one of the unknown functions say z we get y(iv) - y = 0  ⇒ (D4 -1) y = 0 

Solution of  this differential equation can be written as  

  y = C1ex + C2 e-x   + C3 Cos x + C4 sin x . 

Now  z = y''       ⇒  z =  C1ex + C2 e -x   - C3 Cos x - C4 sin x . 

Using the boundary conditions, we find  

 C1 = 0,   C2 = 0,   C3 = 0,   C4 = 1; 

Hence 

 y = sin x ,  z = - sin x are the required extremals.  

Example 5.9  Show that the functional dt
dt
dy

dt
dxx

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+∫

221

0

2 such that x(0) = 1, 

y(0) =1, x(1) = 1.5,  y(1) = 1 is stationary for 1,
2

2 2

=
+

= ytx  . 

Solution Given functional is  )dt y'x'(2x ..    2 22
1

0

221

0

++⎟
⎟
⎠

⎞
⎟
⎠
⎞

⎜
⎝
⎛+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎜
⎝
⎛+ ∫∫ eidt

dt
dy

dt
dxx  

Let  F(t, x, y, x', y') = 2x + x'2 + y'2 . 

The Euler’s equations are  

     0' =− xx F
dt
dF   (1) 

and      0' =− yy F
dt
dF  . (2) 

 Here Fx =2,   Fy = 0, ,'2' xFx =  '2' yFy =  . 

∴ (1) ⇒ 0)'2(- 2 =x
dt
d  ⇒ ⇒=     12

2

dt
xd    1ct

dt
dx

+=  
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      ⇒ 21

2

2
ctctx ++=   .  (3) 

 (2) ⇒ 0)'2(0 =− y
dt
d  ⇒ ⇒=     0'

dt
dy    3' cy =  

      ⇒ 43 ctcy +=    . (4) 

∴ (3) and (4) are the equations of the extremals.  

The boundary conditions are x(0) = 1,   y(0)  = 1,   x(1) = 1.5,  y(1) = 1 . 

  y(0) = 1  ⇒ 0 +c1(0) + c2 = 1 ⇒ c2 = 1 . 

  y(0) = 1  ⇒ c3(0) +c4 = 1  ⇒ c4 = 1 . 

  x(1) = 1.5  ⇒ 5.1)1(
2
1

21 =++ cc  ⇒ 5.11
2
1

1 =++ c  ⇒ c1 = 0 . 

  y(1) = 1 ⇒ c3(1) + c4 = 1  ⇒ c3 + 1 = 1 ⇒ c3 = 0 . 

∴  c1 = 0,   c2 = 1, c3 = 0, c4 = 1 . 

∴ (3)  ⇒ 
2

2   .,.     1.0
2

22 txeittx +
=++=  . 

 (4)  ⇒ y = 0.t + 1   i.e.,   y = 1 . 

∴  The stationary functions are 1,
2

2 2

=
+

= ytx . 

Remark  Since, the function 2x + x'2 + y'2 is not a homogeneous functions of x' and y', 

we have treated the given functional as dependent on two functions.  

Example 5.10  Find the extremals of the functionals  

   J[y(x), z(x)] = )''22( 222

0

zyyyz −+−∫
π

dx.  

Also find that extermal which satisfies the boundary conditions 

     y(0) = 0, y(π) =1,  z(0) =0,  z(π) = 1. 



 197

Solution We have  J[y(x), z(x)] = dxzyyyz )''22( 222

0

−+−∫
π

 

Let  F(x, y, z, y', z') = 2yz – 2y2 + y'2 –z'2  

The Euler’s equations are  

     0' =− yy F
dx
dF    (1) 

and      0' =− zz F
dx
dF  . (2) 

Here    Fy = 2z - 4y,   Fz= 2y, '2' yFy =   '2' zFz −=  .    

∴ (1) ⇒ 0)'2(42 =−− y
dx
dyz  ⇒ 022

2

=−+ zy
dx

yd  .  (3) 

 (2) ⇒ 0)'2(2 =−− z
dx
dy   ⇒ 0   2

2

=+ y
dx

zd  . (4) 

 (3) ⇒  (D2 + 2) y – z = 0 .  (5) 

 (4) ⇒   y + D2z = 0 .  (6) 

Operating (5) by D2 and adding to (6), we get  

     D2(D2 + 2) y + y = 0 . 

  ⇒  (D4 + 2D2 + 1) y = 0   ⇒     (D2 + 1)2 y = 0 . 

The A.E. is      (D2+1)2 = 0  .    ∴     D = ± i, ± i   

     y = e0x(c1 + c2x) cos 1.x + (c3 + c4x) sin 1.x). 

     y = (c1 + c2x) cos x + (c3 + c4x) sin x  . (7) 

(3)  ⇒  y
dx

ydz 22

2

+=    (8) 

(7)  ⇒  xxccxcxxccxc
dx
dy cos)(sinsin)(cos 434212 ++++−=   
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     = (c2 + c3 + c4x) cos x + (c4 – c1 – c2x) sin x  

∴    xxcccxcxxcccxc
dx

yd cos)(sinsin)(cos 214243242

2

−−+−++−=  

     = (2c4 – c1 – c2x) cos x – (2c2 + c3 + c4x) sin x  . 

∴ (8)  ⇒ z  =  (2c4 – c1 – c2x) cos x – (2c2 + c3 + c4x) sin x  

           + 2(c1 + c2x) cos x + 2(c3 + c4x) sin x 

     =  (2c4 + c1 + c2x) cos x + (c3 - 2c2 + c4x) sin x . 

∴ The family of extremals is  

     y = (c1 + c2x) cos x + (c3 + c4x) sin x , 

     z = (2c4 + c1 + c2x) cos x + (c3 – 2c2 + c4x) sin x, 

where c1, c2, c3, c4 are arbitrary constants. 

 The boundary conditions are:  

    y(0) = 0,  y(π) = 1,  z(0) = 0,  z(π) = 1 . 

    y(0) = 0 ⇒ (c1 + c2.0) cos 0 + (c3 + c4.0) sin 0 = 0 ⇒ c1 = 0 . 

    y(π) = 1 ⇒ (c1 + πc2) cos π + (c3 + πc4) sin π = 1 . 

      ⇒ (0 + πc2)(-1) = 1 ⇒ c2 = - 1/π . 

    z(0) = 0 ⇒ (2c4 + c1 + c2.0) cos 0 + (c3 – 2c2 + c4.0) sin 0 = 0 

      ⇒  (2c4 + 0 + 0) .1 + 00002
43 =⇒=⎟

⎠
⎞

⎜
⎝
⎛ ++ cc

π
 . 

    z(π) = 1 ⇒  (2(0) + 0 + π (-1/π)) cos π+(c3 -2(-1/π)+0.π) sin π=1 

 ⇒   (-1) (-1) =1, which is true.  

 ∴   c1 =0, c2 = -1/π,  c4 = 0 

 ∴   xxxcxxcxxy cossinsin)0(cos0 33 ππ
−=++⎟

⎠
⎞

⎜
⎝
⎛ −=  . 
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    xxcxxz sin.012cos0)0(2 3 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛−−+⎟

⎠
⎞

⎜
⎝
⎛ −+=

ππ
 

      =  c3 sin )cossin2(1 xxxx −+
π

 . 

 ∴ The required extremals are y = c3 sin xxx  cos
π

−  

     z = c3 sin ), cos sin2(1 xxxx −+
π

  

where c3 is any arbitrary constant. 

Example 5.11  Find the extremals of the functional dxzy 22
1

0

''1 ++∫  that satisfy the 

boundary conditions y(0) = 0, y(1) = 2, z(0) = 0, z(1) =4.  

Sol. Given functional is   dxzy 22
1

0

''1 ++∫  

Let  F(x, y, z, y', z') = 22 ''1 zy ++  . 

The Euler’s equations are 0' =− yy F
dx
dF    (1) 

and       0' =− zz F
dx
dF  .  (2) 

Here Fy = 0,  Fz = 0,  Fy' =  
22'22 ''1

',
''1

'
zy

zF
zy

y
z

++
=

++
 . 

∴ (1) ⇒ 0
''1

'0
22

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−

zy
y

dx
d  , 

  ⇒ 122 ''1
' c

zy
y

=
++

 .    (3) 
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 (2) ⇒ 0
''1

'0
22

=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

++
−

zy
z

dx
d  , 

  ⇒ 222 ''1
' c

zy
z

=
++

 .    (4) 

Dividing (3) by (4), we get sayc
c
c

z
y    
'
'

3
2

1 ==  

 ∴    y'  = c3z'  . 

Putting the value of y' in (4), we get  222
3 ')1(1

' c
zc

z
=

++
 

  ⇒  sayc
ccc

czzccz ,
  1

''))1(1(' 42
3

2
2

2
2

222
3

2
2

2 =
−−

=⇒++=  

  ⇒ z = c4x + c5 .    (5) 

 ∴  y' = c3z'   ⇒   y' = c3c4 = c6,  say    

 ⇒     y = c6x + c7      (6) 

 ∴  The extremals are given by (5) and (6)  

 The boundary conditions are  

   y(0) = 0,   y(1) = 2,   z(0) = 0,   z(1) = 4 . 

 ∴  c6(0)  + c7 = 0,  c6(1) + c7 = 2, c4(0) + c5 = 0,  c4(1) + c5 = 4 . 

 Solving these equations, we get  

   c6 = 2,  c7 = 0, c4 = 4, c5 = 0 . 

(6) ⇒ y = 2.x + 0  ⇒  y = 2x . 

(5) ⇒ z = 4.x + 0  ⇒  z = 4x . 

 ∴ The required extremals are y = 2x, z = 4x.  
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Exercise 

1. Find the Euler-Ostrogradsky equation for the functional                       

J[z(x,y)] = dxdy
x
z

x
z

D ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∫∫
22

 where the values of z are prescribed on 

the boundary of the domain D.  

2. Find the Euler-Ostrogradsky equation for the functional                       

J[z(x,y)] = dxdyyxzf
y
z

x
z

D ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∫∫ ),(12
44

, where the values of z are 

prescribed on the boundary of the domain D.  

3. Find the stationary function of functional ( ) 0,22
)0,1(

)0,1(

>−+∫
−

kdtyxyxk &&&    

4. Find the extremals of the functional ( )dxzy  '' 22
1

0

+∫ that satisfy the boundary 

conditions y(0) =0, z(0)= 0, y(1) =1, z(1) = 2. 

5. Find the extremals of the functional ( )dxyzzy  2'' 22
2/

0

++∫
π

 that satisfy the 

boundary conditions y(0) = 0,  y(π/2) = -1, z(0) = 0, z(π/2) = 1. 

Answers 

1. 02

2

2

2

=
∂
∂

−
∂
∂

y
z

x
z   2.    ),(     2

22

2

22

yxf
y
z

y
z

x
z

x
z

=
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂  

3. Arc of circle joining (-1, 0) to (1, 0) and of radius k. 

4. y = x, z = 2x.  5. y = - sin x,   z = sin x.  



 202

Summary 

 The calculus of variations, which plays an important role in both pure and 

applied mathematics, dates from the time of Newton. Development of the subject 

started mainly with the work of Euler and Lagrange in the eighteenth century and still 

continues. This chapter develops the theory of the calculus of variations and its 

application to various practical problems. Many of the simple applications of calculus 

of variations are described and, where possible, the historical context of these 

problems is discussed. 

Keywords   Calculus of variations, Euler equation, brachistochrone problem, shortest 

length.  

   



Written by: Sunita Pannu 
Vetted by: Kapil Kumar 

Chapter-6 

CALCULUS OF VARIATIONS -II   
          

Objectives 

 This course introduces clear and elegant methods of calculus of variations to 

solve large number of problems in Science and Engineering. In these problems, the 

extremal property is attributed to an entire curve (function). A group of methods 

aimed to find ‘optimal’ functions is called calculus of variations. Theory originated by 

Bernoulli, Newton and Euler has been used to study Isoperimetric problems and 

problems with some integral constraints. This theory still attracts attention of 

mathematicians and it helps scientists and engineers.  

Functionals dependent on higher order derivatives (Euler’s equation).  

Theorem 6.1 

A necessary condition for the extremum of a functional of the form 

   [ ] , )(),.......,('),(,)]([ )( dxxyxyxyxFxyI n
b

a
∫=    

where we assume F to be differentiable n+2 times w.r.t. all its arguments, is  

0  )1(....        2

2

=








∂
∂

−++








′′∂
∂

+








′∂
∂

−
∂
∂

nn

n
n

y
F

dx
d

y
F

dx
d

y
F

dx
d

y
F

 

[This is a variational problem depending upon one independent variable, one 

dependent variable, and its derivatives upto order of n] 

Proof    Let  y = y(x) be the curve which extremizes the functional  

    [ ] [ ] , )(),....,('),(,)( )( dxxyxyxyxFxyI n
b

a
∫=  (1) 

satisfying the boundary conditions  
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. B(b) y   ,A(a) y

...........................................

..........................................

 B'  (b) y'      ,A'   (a)y'

 B  y(b)       ,)(

1-n1)-(n1-n1)-(n ==

==

== Aay

 (2) 

Since at the boundary points the values of y together with all their derivatives upto the 

order (n-1) (inclusive) are given, we assume that, extremizing curve is differentiable 

2n times.  

The curve y = y(x) is extremal of (1). Then y(x) satisfies δI = 0     

i.e. [ ] 0 ,.......,',, )( =∫ dxyyyxF n
b

a

δ    

⇒ ∫ =








∂
∂

++′
′∂

∂
+

∂
∂b

a

n
n dxy
y
F

y
y
F

y
y
F

0    ..........         δδδ  (3) 

Integrating the second term on the right once term-by-term, we have 

 [ ] ∫∫ ′′′ −=′
b

a
y

b

a

b

ayy ydxF
dx
d

FyF δδδ  y    

Integrating the third term twice 

 [ ] ∫∫ ′′′′′′′′ +




−′=′′
b

a
y

b

a
y

b

a

b

ayy ydxF
dx
d

F
dx
d

FyF δδδδ  y y dx  2

2

 

and so forth, the last term n times 

 [ ]
b

a

n
y

b

a

b

a

n
y

n
y

yF
dx
d

yFyF nnn 




−= −−∫ )2()1()(   dx  )()()( δδδ  

   ∫−++
b

a
yn

n
n ydxF

dx
d

n δ )1(....... )(  

Now taking into account the boundary conditions, according to which the variations 

 δy = δy' = δy'' = ……..= δy(n-1) = 0 for x = a and for x = b, 
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we get  from equation (3)  

 0 )1(...... )(2

2

=







−+++−= ∫ ′′′

b

a
yn

n
n

yyy dxyF
dx
d

F
dx
d

F
dx
d

FI n δδ   (4) 

Now since δy is arbitrary and the first factor under the integral sign is a continuous 

function of x on the same curve y = y(x), therefore by the fundamental lemma, the 

first factor is identically zero. 

∴ 0)1(..... )(2

2

=








∂
∂

−++








′′∂
∂

+








′∂
∂

−
∂
∂

nn

n
n

y
F

dx
d

y
F

dx
d

y
F

dx
d

y
F

   

or 0)1(.....)1()1( )(2

2
2 =









∂
∂

−++








′′∂
∂

−+








′∂
∂

−+
∂
∂

nn

n
n

y
F

dx
d

y
F

dx
d

y
F

dx
d

y
F

 (5) 

Thus the function y = y(x), which extremizes the functional  

  [ ] [ ] , ,....,',,)( )( dxyyyxFxyI n
b

a
∫=  

must be a solution of the equation (5). 

This differential equation of order 2n is called the Euler-Poisson equation. The 

general solution of this equation contains 2n arbitrary constants, which may be 

determined from 2n boundary conditions and hence we get the solutions called 

extremals.  

Example 6.1. Find the extremal of the functional    

  ∫ ′′+=
1

0

2 ;)1(][ dxyyI  

  y(0) = 0,  y'(0) = 1,  y(1) = 1,  y'(1) = 1. 

Solution   Let F(x, y, y', y'') = (1 + y''2) 

Here    2  ,0  ,0 y
y
F

y
F

y
F ′′=

′′∂
∂

=
′∂

∂
=

∂
∂

  

∴ Corresponding Euler’s equation is  
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  00)2(2

2

=⇒=′′ IVyy
dx
d

 

Integrating four times, we obtain  

     yIII = A   yII = Ax + B,  

 CBx
x

Ay I ++=
2

2

 

 DCx
x

B
x

Ay +++=
26

23

,   (1) 

which is the general solution. 

Now using the boundary conditions 

 y(0) = 0 ⇒ D = 0,    

 y'(0) = 1 ⇒ C = 1,    

 y'(1) = 1 ⇒ CB
A

++=
2

1  ⇒ 1 = 
2
A

 + B + 1  ⇒ B = - 
2
A

  

  ⇒ A + 2B = 0 

 y(1) = 1 ⇒ 1 = 
6
A

+ 
2
B

+C + D ⇒ 1 = 
6
A

+ 
2
B

+1 ⇒  
6
A

= - 
2
B

 

  ⇒ A + 3B = 0 ⇒ A = B = 0 

∴ equation (1) becomes y = x. Thus the extremum can be attained only on the 

straight line y = x.   

Example 6.2   Find the extremal of the functional    

  ( )∫ +−′′
2

0

222

π

dxxyy  that satisfies the conditions  

  y(0) = 1,  y'(0) = 0,  y 







2
π

 = 0,  y' 







2
π

 = - 1 
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Solution   Euler’s Poisson equation is  

  0        2

2

=








′′∂
∂

+








′∂
∂

−
∂
∂

y
f

dx
d

y
f

dx
d

y
f

 (1) 

Here f = y''2 – y2 + x2 

∴   2  ,0  ,2 y
y
f

y
f

y
y
f ′′=

′′∂
∂

=
′∂

∂
−=

∂
∂

  

∴ equation (1) becomes 

 0)2(2 2

2

=′′+− y
dx
d

y    

 0)1(0 4
4

4

=−⇒=+− yDy
dx
d

y    

Auxiliary equation is m4 – 1 = 0     ⇒  (m2 – 1)( m2 + 1) = 0 

⇒ m = ±1, ± i  

Its solution is  

 y(x) = c1ex + c2e-x + c3 cos x + c4 sin x  (2) 

 y'(x) = c1ex - c2e-x - c3 sin x + c4 cos x  (3) 

To find c1, c2, c3, c4 use boundary conditions 

As  y (0) = 1 ∴  1 = c1 + c2 + c3  (4) 

As  y'(0) = 0 ⇒  0 =  c1 - c2 + c4 (5) 

As  y 







2
π

= 0  ⇒  4
2

2
2

10 cecec ++= −ππ   (6) 

As  y' 







2
π

= -1  ⇒  3
2

2
2

11 cecec −−=− −ππ   (7) 

Solving (4) – (7), we get 

 c1 = c2 = c4 = 0 and c3 = 1 
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Hence solution is y(x) = cos x. So the extremum can be achieved only on the curve         

y = cos x.  

Example  6.3   Find the extremal of the functional    

  ∫
−








 ′′+
a

a

dxyy 2 
2
1 µρ  which satisfies the boundary conditions  

  y(-a) = 0,  y'(-a) = 0,  y(a) = 0,  y' (a) = 0 

Solution   Euler’s Poisson equation is  

  0
 

      
 

  2

2

=








′′∂
∂

+








′∂
∂

−
∂
∂

y
f

dx
d

y
f

dx
d

y
f

 (1) 

Here 2 
2
1

yyf ′′+= µρ   

This is the variational problem to which is reduced the problem of finding the axis of 

a flexible bent cylindrical beam fixed at the ends. If the beam is homogeneous, then ρ 

and µ are constants.     

Now  y
y
f

y
f

y
f ′′=

′′∂
∂

=
′∂

∂
=

∂
∂ µρ    ,0,   

∴   Equation (1) reduces to  

  0)(
2

2

=′′+ y
dx
d µρ       or   04

4

=+ ρµ
dx

yd
 

or  04

4

=+
µ
ρ

dx
yd

 ⇒ 
µ
ρ

−=4

4

dx
yd

  

Integrating   

 13

3

cx
dx

yd
+−=

µ
ρ

 

Integrating again and again  
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 21
2

2

2

2
cxcx

dx
yd

++−=
µ
ρ

 

⇒ 32

2
1

3

232
cxc

xcx
dx
dy

+++−=
µ
ρ

   (2) 

⇒ 43

2
2

3
14

2624
cxc

xcxc
xy ++++−=

µ
ρ

   (3) 

Now applying  the boundary conditions, we have 

 y(-a) = 0 ⇒  43

2
2

3
14

2624
0 cac

acac
a +−+−−=

µ
ρ

  (4) 

 y'(-a) = 0 ⇒ 32

2
13

26
0 cac

ac
a +−+=

µ
ρ

   (5) 

 y(a) = 0 ⇒ 43

2
2

3
14

2624
0 cac

acac
a ++++−=

µ
ρ

   (6) 

 y' (a) = 0 ⇒ 32

2
13

26
0 cac

ac
a +++−=

µ
ρ

 (7) 

Subtracting (4) from (6), we get 

 02
3 3

31 =+ aca
c

   (8) 

Subtracting (7) from (5), we get 

 02
6
2

2
3 =− aca

µ
ρ

 ⇒ 2
2 6

ac
µ
ρ

=  

Putting the value of c2 in (5), we have  

 3
3

2
13

626
0 ca

ac
a +−+=

µ
ρ

µ
ρ

   

or 3

2
1

2
0 c

ac
+=  ⇒ 

2

2
1

3

ac
c −=  (9) 

Putting the value of c2 and c3 in (4) and (6), we have  
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 4

2
14

3
14

212624
0 c

ac
a

ac
a +++−−=

µ
ρ

µ
ρ

 (10) 

and 4

3
14

3
14

212624
0 c

ac
a

ac
a +−++−=

µ
ρ

µ
ρ

 (11) 

Adding (10) and (11), 

 4
44 2

612
0 caa ++−=

µ
ρ

µ
ρ

 

or 4
4 12

2 ac
µ
ρ

−=  ⇒ 4
4 24

ac
µ
ρ

−=  

solving further we have 

 c1 = 0, c3= 0 

Thus the solution is  

 4
224

224
cx

c
xy ++−=

µ
ρ

 

 
µ

ρ
µ

ρ
µ
ρ

241224

4
2

2
4 a

x
a

xy −+−=  

or )2(
24

4224 axaxy +−−=
µ
ρ

 

or 222 )(
24

axy −−=
µ
ρ

 

Example 6.4  Find the extremal and the stationary function of the functional 

( )∫ ′′
1

0

2

2
1

dxy . The boundary conditions are y(0) = 0,  y(1) = 
2
1

, y'(0) = 0 and  y'(1) = 1. 

Solution   Let F = (x, y, y', y'') = 
2
1

 y''2 

∴ Euler’s Poisson equation is  
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 02

2

=+− ′′′ yyy F
dx
d

F
dx
d

F    (1) 

Here Fy = Fy' = 0, Fy'' = y'' 

∴ (1)  ⇒    0)()0(0 2

2

=′′+− y
dx
d

dx
d

 ⇒ 04

4

=
dx

yd
 

Integrating again and again, we get 

 13

3

c
dx

yd
=  

⇒  212

2

cxc
dx

yd
+= , 32

2

1 2
cxc

x
c

dx
dy

++= , 

⇒  43

2

2

3

1 26
cxc

x
c

x
cy +++= . 

⇒  43
2

6
3

5 cxcxcxcy +++=  (putting 6
2

5
1

2
  ,

6
c

c
c

c
== ) (2) 

This is the equation of extermals . 

The boundary conditions are 

 y(0) = 0,  y(1) = 
2
1

, y'(0) = 0,  y'(1) = 1 

(2) ⇒ 36
2

5 23 cxcxcy ++=′     (3) 

 y(0) = 0 ⇒ c4 = 0      (4) 

 y(1) = 
2
1

 ⇒ c5 + c6 + c3 + c4 = 
2
1

    (5) 

 y'(0) = 0 ⇒ c3 = 0    (6) 

 y'(1) = 1 ⇒ 3c5 + 2c6 + c3 = 1   (7) 

∴ (5) ⇒ c5 + c6 = 
2
1

     (8) 
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    (7) ⇒ 3c5 + 2c6 = 1     (9) 

Solving (8) and (9), we get 

 c5 = 0,  c6 = 
2
1

      

∴ (2) ⇒ y = 0x3 + 
2
1

 x2 + 0 x + 0 

i.e. y = 
2
1

 x2 

This is the equation of stationary function.  

Example 6.5  Find the extremal of the functional ( )∫ ′′+
b

a

dxyy  that satisfies the 

boundary conditions y(a) = y0,  y(b) = y1, y'(a) = y0
' and  y'(b) = y1

'. 

Solution  Given functional is ( )∫ ′′+
b

a

dxyy  

Let  F = (x, y, y', y'') = y + y'' 

The Euler’s Poisson equation is 02

2

=+− ′′′ yyy F
dx
d

F
dx
d

F  (1) 

Here Fy = 1, Fy' = 0, Fy'' = 1 

∴ (1)  ⇒    0)1()0(1 2

2

=+−
dx
d

dx
d

  

⇒  1 – 0 + 0 = 1 = 0, which is impossible.  

∴ The problem has no solution, because it does not admit of extremals.  

Example 6.6  Find the extremal of the functional ( )∫
−

′′′+=
0

1

2  240)]([ dxyyxyJ  subject 

to the conditions y(-1) = 1,  y(0) = 0, y'(-1) = - 4.5,  y'(0) = 0, y''(-1)=16, y''(0)=0. 
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Solution  We have ( )∫
−

′′′+=
0

1

2  240)]([ dxyyxyJ  

Let  F (x, y, y', y'', y''') = 2240 yy ′′′+  

The Euler’s Poisson equation is 03

3

2

2

=−+− ′′′′′′ yyyy F
dx
d

F
dx
d

F
dx
d

F  (1) 

Here Fy = 240, Fy' = 0, Fy'' = 0, Fy'''= 2y'''  

∴ (1)  ⇒    1200)2()0()0(240 6

6

3

3

2

2

=⇒=′′′−+−
dx

yd
y

dx
d

dx
d

dx
d

  

⇒ 15

5

120 cx
dx

yd
+=  ⇒ 21

2
4

4

60 cxcx
dx

yd
++=  

⇒ 32

2

1
3

3

3

2
20 cxc

x
cx

dx
yd

+++=  

⇒ 43

2

2

3

1
4

2

2

26
5 cxc

x
c

x
cx

dx
yd

++++=  

⇒ 54

2

3

3

2

4

1
5

2624
cxc

x
c

x
c

x
cx

dx
dy

+++++=  

⇒ 65

2

4

3

3

4

2

5

1

6

26241206
cxc

x
c

x
c

x
c

x
c

x
y ++++++=  

∴ 65
2345

6

6
cxcdxcxbxax

x
y ++++++=    (2) 

(Putting 
2

,
6

,
24

,
120

4321 c
d

c
c

c
b

c
a ==== ) 

This is the equation of extremals. 

The boundary conditions are  

 y(-1) = 1,  y(0) = 0, y'(-1) = - 4.5,  y'(0) = 0, y''(-1)=16, y''(0)=0. 

(2) ⇒  y' = x5 + 5ax4 +4bx3 + 3cx2 + 2dx + c5 
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⇒ y'' = 5x4 + 20ax3 + 12bx2 + 6cx + 2d 

 y(-1) = 1  ⇒ 
6
1

- a + b – c + d – c5 + c6 = 1 (3) 

 y(0) = 0  ⇒ 0 + a.0 + b.0 + c.0 + d.0 + c5.0 + c6 = 0 ⇒ c6 = 0 (4) 

 y'(-1) = - 4.5 ⇒   -1 + 5a – 4b + 3c – 2d + c5 = - 
2
9

   (5) 

 y'(0) = 0 ⇒  0 + 5a.0 + 4b.0 + 3c.0 + 2d.0 + c5 = 0 ⇒ c5 = 0 (6) 

 y''(-1) =16 ⇒  5 - 20a + 12b - 6c + 2d = 16 (7)  

 y''(0) = 0 ⇒ 5(0) + 20a.0 + 12b.0 - 6c.0 + 2d = 0 ⇒ d = 0 (8) 

∴ c6 = 0, c5 = 0, d = 0. 

∴ (3) ⇒ a – b + c = 
6
5

−     (9) 

(5) ⇒ 5a – 4b + 3c = 
2
7

−     (10) 

(7) ⇒ 20a – 12b + 6c = -11    (11) 

Solving (9), (10), (11), we get a = 0, b = 1, c = 1/6 

∴ (2) ⇒ 0.0.0
6
1

.1.0
6

2345
6

++++++= xxxxx
x

y    

or  ).16(
666

3
33

4
6

++=++= xx
x

yor
x

x
x

y   

This is the equation of the required extremal.  

Isoperimetric Problems  

Such type of problems involve one or more constraint conditions.  

Definition  Isoperimetric problems/problems with constraints of integral type 

Here the problem is of finding the closed plane curve of given length l  and enclosing 

(bounding) the largest area. This is (obviously) a circle. Thus if the curve is expressed 
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in perimetric form by x = x(t), y = y(t) and is traversed once counterclockwise as t 

increases from t1 to t2,  then the enclosed area is known to be 

         dt
dt
dx

y
dt
dy

xS
t

t

 
2
1 2

1

∫ 






 −= ,   (1) 

which is an integral depending upon two unknown functions. In this problem one has 

to find the extremum of the functional S with the auxiliary condition that the length of 

the curve must be constant; i.e. the functional  

 dt
dt
dy

dt
dxt

t
∫ 







+






=
2

1

22

l     (2) 

retains a constant value. Conditions of this type are called Isoperimetric. Euler 

elaborated the general methods for solving problems with Isoperimetric conditions.  

Length of the curve is given by (2). The problem is to maximize (1) subject to the side 

condition that (2) must have a constant value.  

Theorem 6.2  If y(x) is the extremal of the functional  

 I[y] = ∫ ′
b

a

dxyyxF ),,(     (1) 

subject to the conditions 

 y(a) = A, y(b) = B, J[y] = l=′∫
b

a

dxyyxG ),,(   (2) 

where J[y] is another functional. Then, if y = y(x)  is not an extremal of J[y], there 

exists a constant λ such that y = y(x) is an extremal of the functional  

 ∫ +
b

a

dxGF ,)( λ   

i.e. y = y(x) satisfies the differential equation  

 0)( =−+− ′′ yyyy G
dx
d

GF
dx
d

F λ   (3) 
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or 0)()( =







+

′∂
∂

−+
∂
∂

GF
ydx

d
GF

y
λλ  

 (F + λG is called the Auxiliary function) 

Proof Suppose that y(x) is the actual extremising (stationary) function of the 

functional (1) subject to the conditions (2). 

Consider the variation in y as  

 δy = ε1η1(x) + ε2η2(x), 

where ε1 and ε2 are scalars, η1 and η2 are arbitrary functions, but fixed choosen in 

such a way that η1(a) = 0, η1(b)=0, η2(a) = 0, η2(b) = 0 and have continuous second 

derivatives, so that y + δy also satisfies the same conditions as satisfied by y. Thus 

)( yyy δ+= is a two parameter family of neighbouring functions. 

( )∫ ′+′+′++=++
b

a

dxxxyxxyxFxxyI  )()(),()(,)]()([ 221122112211 ηεηεηεηεηεηε  

   = ∫ ′
b

a

dxyyxF ),,(  

which for assigned η1, η2 and y behaves as a function of ε1 and ε2. 

  ( )∫ ′+′+′++=
b

a

dxxxyxxyxFI  )()(),()(,],[ 2211221121 ηεηεηεηεεε  (4) 

Similarly 

 ( ) l=′+′+′++= ∫
b

a

dxyyxGJ  ,,],[ 2211221121 ηεηεηεηεεε  (5)  

Now we want to find the necessary conditions for the function (4) to have a stationary 

value at ε1 = ε2 = 0, where ε1 and ε2 satisfy equation (5). Using the method of 

Lagrange’s multiplier, we introduce the function  

  K(ε1, ε2, λ) = I(ε1, ε2) + λJ(ε1, ε2) = dxyyxF
b

a

),,( ′∫  
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where GFF λ+=  . 

The necessary condition for the given functional to have an extremum is that  

 0)(
11

=+
∂
∂

=
∂
∂

JI
K λ

εε
 at ε1=0, ε2 = 0 

 0)(
22

=+
∂
∂

=
∂
∂

JI
K λ

εε
 at ε1=0, ε2 = 0 

 ∫ =
















′

′∂
∂

+
∂
∂

+







′

′∂
∂

+
∂
∂b

a

dx
y
G

y
G

y
F

y
F

01111 ηηληη  (6) 

Similarly 

 02222 =
















′

′∂
∂

+
∂
∂

+







′

′∂
∂

+
∂
∂

∫
b

a

dx
y
G

y
G

y
F

y
F ηηληη  (7) 

Integrating by parts equation (6), we get 

01111 =
















∂
∂

−








′∂
∂

−
′∂

∂
+

















∂
∂

−








′∂
∂

−
′∂

∂
∫∫
b

a

b

a

b

a

b

a

dx
y
G

y
G

dx
d

y
G

dx
y
F

y
F

dx
d

y
F ηληληη    

⇒ ∫ =















+

∂
∂

−







+

′∂
∂b

a

dxGF
y

GF
ydx

d
0)()( 1ηλλ  [as η1(a) = η1 (b) = 0] 

or ∫ =














 −+






 − ′′

b

a
yyyy dxG

dx
d

GF
dx
d

F 01ηλ  (8) 

Similarly integrating equation (7) by parts, we get 

 ∫ =







+

∂
∂

−







+

′∂
∂b

a

dxGF
y

GF
ydx

d
0)()( 2ηλλ  (9) 

Taking η2 in such a way that  

 ∫ ≠








∂
∂

−′
b

a
y dx

y
G

G
dx
d

0 2η  

we can take from (9) 
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∫

∫










∂
∂

−
′∂

∂










∂
∂

−
′∂

∂

= b

a

b

a

dx
y
G

y
G

dx
d

dx
y
F

y
F

dx
d

2

2

   

   

η

η
λ  

This equation ensures the existence of λ.  

As η1 and η2 are arbitrary, two conditions (8) and (9) are embodied in (10) as only 

one condition 

  )()( GF
y

GF
ydx

d λλ +
∂
∂

−







+

′∂
∂

=0  (10) 

⇒ (8) is the extremal of F+λG, which proves the theorem.  

Note  To use above theorem, i.e. to solve a given isoperimetric problem, we first write 

general solution of (10), which will contain two arbitrary constants in addition to the 

parameter λ. We then determine these three quantities from the boundary conditions 

y(a) = A, y(b) = B and the subsidiary condition J[y]= l .  

Everything said above generalizes immediately to the case of functionals depending 

on several functions y1,…..,yn and subject to subsidiary conditions of the form        

J[y] = ∫ ′
b

a

dxyyxG ),,( . Suppose we are looking for an extremum of the functional  

 J[y1,…..,yn] = ∫ ′…′…
b

a

dxxF )y..,,y ,y..,,y,( n1n1  (1) 

subject to the conditions  

 yi(a) = Ai,  yi(b)=Bi (i = 1, ….., n)   (2) 

and ),....,1()y..,,y ,y..,,y,( n1n1 kjdxxG j

b

a
j ==′…′…∫ l   (3) 

where k < n. In this case a necessary condition for an extremum is that  

 0
11

=






















+

′∂
∂

−








+

∂
∂

∑∑
==

n

j
jj

i

n

j
jj

i

GF
ydx

d
GF

y
λλ  (4) 
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The 2n arbitrary constants appearing in the solution of (4) and the values of k 

parameters λ1, ….,λk sometimes called Lagrange’s multipliers are determined from 

the boundary conditions (2) and the subsidiary conditions (3). The proof of above 

theorem is exactly on same lines.  

Note  The solutions of the equation (10) above (the extremals of our problem) involve 

three undetermined parameters, two constants of integration and the Lagrange 

multiplier λ. The stationary function is then selected from these extremals by 

imposing the two boundary conditions and giving the integral J its prescribed value l .  

In the case of integrals that depend upon two or more functions, this result can be 

extended in the same way as in the previous chapter. For example, if  

 I = ∫ ′′
2

1

),,,,(
x

x

dxzyzyxf      

has a stationary value subject to the side condition 

 J = l=′′∫
2

1

),,,,(
x

x

dxzyzyxg   

Then the stationary function y(x) and z(x) must satisfy the system of equations  

 0=
∂
∂

−








′∂
∂

y
F

y
F

dx
d

 and 0=
∂
∂

−







′∂

∂
z
F

z
F

dx
d

 

where F = f + λg. Reasoning is similar.  

Lagrange’s Multiplier 

Some problems in elementary calculus are quite similar to isoperimetric problems. 

For example, suppose we want to find the point (x, y) that yields stationary values for 

a function  

  z = f(x, y)     (1)  

where the variables x and y are not independent but are constrained by a side 

condition 
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  g(x, y) = 0    (2) 

The usual procedure is to arbitrarily designate one of the variable x and y in (2) as 

independent say x, and other as dependent on it, so that dy/dx can be found out from 

  0=
∂
∂

+
∂
∂

dx
dy

y
g

x
g

    (3) 

Also, since z is now a function of x alone, 0=
dx
dz

 is a necessary condition for z to 

have a stationary value, so 

  0=
∂
∂

+
∂
∂

=
dx
dy

y
f

x
f

dx
dz

  

or  0
/
/

=
∂∂
∂∂

∂
∂

−
∂
∂

yg
xg

y
f

x
f

   (4) 

On solving (2) and (4) simultaneously, we obtain the required points (x, y). 

One drawback of this approach is that the variables x and y occur symmetrically but 

are treated unsymmetrically. It is possible to solve the same problem by a different 

and more elegant method that also has many practical advantages. We form the 

function  

  F(x, y, λ) = f(x, y) + λ g(x, y) 

and investigate its unconstrained stationary values by means of the necessary 

conditions 

  

0),(

0

0

==
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

=
∂
∂

+
∂
∂

=
∂
∂

yxg
F

y
g

y
f

y
F

x
g

x
f

x
F

λ

λ

λ

     (5) 

If λ is eliminated from the first two of these equations, then the system clearly reduces 

to  
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      0
/
/

=
∂∂
∂∂

∂
∂

−
∂
∂

yg
xg

y
f

x
f

 and g(x, y) = 0 

and this is the system obtained in above paragraph. This technique (solving (5) for x 

and y) does not disturb the symmetry of the problem by making an arbitrary choice of 

independent variable and it remains the side condition by introducing λ as another 

variable. The parameter λ is called Lagrange multiplier and this method is known as 

the method of Lagrange multiplier.  

Note  In theorem 6.2, we consider a two parameter family of neighboring functions  

  )()()()( 2211 xxxyxy ηεηε ++= , 

as by considering one parameter family of function )()()( xxyxy αη+= , these will 

not maintain the second integral J at the constant value c or l . 

Example 6.7  Find the plane curve of fixed perimeter so that the area covered by the 

curve, ordinates and x-axis is maximum. OR  

Given two points x1 and x2 on the x-axis and an arc length l . Find the shape of curve 

of length l  joining the given points which with the x-axis encloses with largest area.    

Solution  Let y = y(x) be a curve of given length l  between given points A(x1, y1) 

and B(x2, y2) 

∴  l  = dxy
x

x
∫ ′+

2

1

21  

 

 

 

 

 

 

Figure 6.1 
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Also, area enclosed by the curve, ordinate and x-axis is dxy
x

x
∫

2

1

. We want to maximize 

the functional dxy
x

x
∫

2

1

under the condition 

   dxy
x

x
∫ ′+

2

1

21 = l  

  F(x, y, y') = y,  G(x, y, y') = 21 y′+  

The Euler equation is  

  0=






 −+− ′′ yyyy G
dx
d

GF
dx
d

F λ  (1) 

Here Fy = 1, Fy' = 0, Gy = 0, Gy' = 
21 y

y

′+

′
 

∴ (1) ⇒ 0
1

0)0(1
2

=




























′+

′
−+−

y

y
dx
d

dx
d λ  

⇒  1
1

 
2

=














′+

′

y

y
dx
d λ

 

⇒  121
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y

y
+=

′+

′λ
 

⇒  )1()( 22
1

22 ycxy ′++=′λ  

⇒  ( )2
1

22
1

2 )()( cxcxy +−+=′ λ  

  
2

1
2

1

)( cx

cx
y

dx
dy

+−

+
=′=

λ
 

  dx
cx

cx
dy

2
1

2

1

)(

)(2
2
1

+−

+−
−=

λ
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⇒  
( )

2
1

)(
2
1 2

1
2

1
2 cx

y
+−

−=
λ

 -c2 

⇒  2
1

22
2 )()( cxcy +−=+ λ  

⇒  22
2

2
1 )()( λ=+++ cycx   (2) 

Now  l  = dxy
x

x
∫ ′+

2

1

21 = dx
cx

cxx

x
∫ +−

+
+

2

1

2
1

2

2
1

)(
)(

1
λ

 

      = 
2

1

2

1

11

2
1

2
sin

)(

x

x

x

x

cx
dx

cx λ
λ

λ

λ +
=

+−
−∫  

∴  l=




 +
−

+ −−

λλ
λ 111121 sinsin

cxcx
 (3) 

 (since dxy
x

x
∫ ′+

2

1

21 = l ) 

Equation (3) is solved to find the value of λ. 

∴ The required curve is an arc of the circle (2), with centre (-c1, -c2) and radius λ. The 

values of c1 and c2 are  found by using the fact that A and B are on this arc. The 

position of the arc is shown in the figure 6.1. 

Example 6.8  Prove that sphere is a solid figure of revolution, which for a given 

surface area, has a maximum volume.  

Sol. Let curve OPA rotates about x-axis as shown in the figure. Let coordinates of A 

be (a, 0). Let S be the surface area of the solid figure of revolution. 

∴  ∫ =
a

Sdsy
0

  2π   

⇒  ∫ =+
a

Sdxy
0

2    y'1 2π  



  

 

The volume of the solid figure of revolution is ∫
a

dxy
0

2  π . 

 

 

 

 

∴ We have the maximize

y(0) = y(a) = 0 and under the

 Let   F(x, y, y') = π

The Euler’s equation is        

Here x is missing from both 

∴  The Euler’s equatio

    (FGF y−+ λ

Here ''
'1

'2
     ,0

y

yy
GF yy

+
==

π

∴ (1) ⇒ πy2 +  2πλy

  ⇒   πy2
  
224

Figure 6.2 

 the functional dxy
a

  2

0
π∫  with boundary conditions               

 condition  ∫ =+
a

Sdxy
0

2    y'1 2π . 

y2   and   G(x, y, y') = 2πy .y'1 2+  

0'' =






 −+− yyyy G
dx
d

GF
dx
d

F λ  

functions F and G.  

n reduces to  

) c
dx
dy

Gy =+ '' λ    (1) 

2
 

2'1 y+  -  cy
y

yy
=















+
+ '

'1

'2
0

2

πλ
 

 +  c
y

yyyy
=















+

−+
2

22

'1

'2)'1(2 πλπλ
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 ⇒      πy2 + c
y

y
=

+ 2'1

2πλ
 (2) 

Since the curve passes through (0, 0) we have 0 + 0 = c    i.e.  c = 0 

 

 ⇒  πy2 +  0
'1

2
2
=

+ y

yπλ
         ⇒ y  + 0

'1

2
2
=

+ y

λ
 

 ⇒  
y

y
λ2

'1 2 −=+        ⇒ y' 2 = 2

22

2

2 4
1

4
y

y
y

−
=−

λλ
 

 ⇒  
y

y
y

224
'

−
=

λ
       ⇒ dxdy

y

y
=

− 224λ
 

 ⇒  
( )

1

2/122

2/1
4

.
2
1

cx
y

+=
−

−
λ

      ⇒ 1
224 cxy +=−− λ  (3) 

(3) passes through (0, 0)   ∴  -2λ = c1 

∴ λλ 24 22 −=−− xy  

 ⇒  222 )2(4 λλ −=− xy  ⇒  222 4)2( λλ =+− yx  (4) 

(4) passes through (a, 0)  

∴ 22 40)2( λλ =+−a  

 ⇒  222 444 λλλ =−+ aa  

 ⇒   
4

042 a
aa =⇒=− λλ      

∴ (4) ⇒    
42

2
2

2
a

y
a

x =+






 −      (5) 

(5) represents a circle with centre at (a/2, 0) and radius a/2. 

∴  The curve OPA is a semi-circle  
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∴ The solved figure of revolution is a sphere.  

Hence the result holds.  

Remark  In particular, if 






=
2
AB

l π , then AB would be a diameter of the 

maximizing circle.  

Example 6.9  Among all the curves of length = l (>2a) in the upper half plane passing 

through the points (-a, 0) and (a, 0), find the one which together with interval [-a, a] 

encloses the largest area. 

or 

Solve the problem I[y] = ∫
−

a

a

ydx  = maximum,  

subject to the conditions 

 y(-a) = y(a) = 0  and    J[y] = ∫
−

=′+
a

a

dxy l21   

Solution   Let y = y(x) be a curve of length l  between the points (-a, 0) and (a, 0). 

 

 

 

 

       Fig. 6.3 

∴  ∫
−

′+=
a

a

dxy 21l  

Also the area enclosed by the curve and x-axis is ∫
−

a

a

ydx . 

We are to maximize the functional ∫
−

a

a

ydx  under the condition ∫
−

=′+
a

a

dxy l21 . 

Let F(x, y, y') = y  and  G(x, y, y') = 21 y′+  (1) 

Exactly same as in example 6.7, we get equation (2) as 
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  (x + c1)2 + (y + c2)2 = λ2  (2) 

The boundary conditions are  

  y(-a) = 0,  y(a) = 0 

∴  (a + c1)2 + 2
2c = λ2  (3) 

  (-a + c1)2 + 2
2c = λ2  (4) 

(3) – (4) ⇒ (a + c1)2 – (-a + c1)2 = 0 

⇒ 2ac1 + 2ac1 = 0 ⇒ 4ac1 = 0 ⇒ c1 = 0 

∴ (3) ⇒ a2 + 2
2c = λ2 ⇒  c2 = 22 a−λ  

∴ (2) ⇒ (x - 0)2 + (y + 22 a−λ )2 = λ2  

i.e.  x2 + (y + 22 a−λ )2 = λ2  (5) 
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1
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1

)( x

x
y

cx
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y

−
=′⇒

+−

+
=′

λλ
 

∴ dx
x

dx
x

x
dxy

a

a

aa

∫ ∫∫
− −

=
−

+=′+=
0

22
0

22

2
2 2121

λ

λ
λ

l  

  =
a

x

0

1sin2
λ

λ −     = 2λ ( λ
a1sin−

 - sin-10) = 2λ λ
a1sin−

  

∴  l=−

λ
λ a1sin 2  

⇒  λ2
 sin
l

=
λ
a

 . 

let λ = λ0 be a solution of this transcendental equation. 

∴ (5) ⇒ x2 + (y + 22
0 a−λ )2 = 2

0λ  
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Therefore, the required curve is an arc of the circle  

  x2 + (y + 22
0 a−λ )2 = 2

0λ  

This is the circle with centre at (0, - 22
0 a−λ ) and radius λ0.  

Remark  In particular if aπ=l then l > 2a and  λ2
 sin
l

=
λ
a

 reduces to 







λ

π a
2

 sin =
λ
a

. 

This equation yields λ = λ0 = a. 

 

 

 

      Fig. 6.4 

∴ In this case, the required arc is a part of the circle x2 + y2 = a2. 

Example 6.10  Find a curve C having a given length, which encloses a maximum 

area.    

Solution  Area bounded by the curve C is   

  ∫ −= )(
2
1

ydxxdyA    

     = dxyyxdx
dx
dx

y
dx
dy

x )(
2
1

2
1

−′=






 − ∫∫  (1) 

The length of C is given.  

∴  dxy∫ ′+= 21l   (2) 

Using Lagrange’s multiplier 

  I = A + λ l    

  ∫ ∫ ′++−′=
C C

dxydxyyx 21)(
2
1

λ  
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  ∫ 






 ′++−′= dxyyyx 21)(
2
1

λ  

  H = 21)(
2
1

yyyx ′++−′ λ  

∴  ,
2
1

−=
∂
∂
y
H

 
22 12

2
1

1
.

22
1

y

yx
y

y
x

y
H

′+

′
+=′

′+
+=

′∂
∂ λλ

. 

By the Euler’s equation  

  0=








′∂
∂

−
∂
∂

y
H

dx
d

y
H

  

i.e.  0
122

1
2

=














′+

′
+−−

y

yx
dx
d λ

  

or  0
2
1

12 2
=+















′+

′
+

y

yx
dx
d λ

 

  0
2
1

12
1

2
=+















′+

′
+

y

y
dx
d λ

 

  1
1 2

−=














′+

′

y

y
dx
d λ

. 

Integrating this we obtain 

  121
cx

y

y
+−=

′+

′λ
, c1 is constant of integration.  

  22
1

2
1

222
12

22

)()()(
1

ycxcxycx
y
y ′−+−=′⇒−=
′+

′
λ

λ
 

or  2
1

2
1

22 )(])([ cxcxy −=−−′ λ  

  
2

1
2

2
12

)(
)(
cx

cx
y

−−
−

=′
λ
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2

1
2

1

2
1

2

1

)(

)(

)(

)(

cx

cx
dx
dy

or
cx

cx
y

−−

−
=

−−

−
=′

λλ
  

Integration gives 

  
2/1

)(

2
1 2

1
2

2

cx
cy

−−







−±=−
λ

 (-c2 is the constant of integration) 

or  (y – c2)2 = λ2 – (x – c1)2   

or  (x – c1)2  + (y – c2)2 = λ2 .  

This equation represents a circle. 

The area enclosed will be maximum if within the given length we form the circles. 

Exercise 

1. Find the extremal of the functional ∫ ′
1

0

2dxy , y(0) = 1, y(1) = 6 subject to the 

condition ∫
1

0

 dxy = 3. 

2. Find the extremal of the functional ( )∫ −′
π

0

22 dxyy under the boundary 

conditions y(0) = 0, y(π) = 1 and subject to additional condition ∫
π

0

ydx = 1. 

3. Find the extremal of the functional ( )∫ ′+
1

0

22  dxyx , y(0) = 0, y(1) = 0, subject 

to the condition ∫
1

0

2dxy = 2. 

4. Find the extremal of the functional ∫
1

0

2' dxy , y(0) = 0, y(1) = 
4
1

, subject to the 

condition ( )∫ =′−
1

0

2

12
1

 dxyy . 
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Answers 

1. y = 3x2 + 2x + 1 

2. 
2
1

sin
4

2
cos

2
1

+
−

+−= xxy
π

 

3. y = ± 2 sin nπ x 

4. 
24

2 xx
y +−=  

Variational Problems with Geometric Constraints   

We now consider a problem of different type like: Find the functions yi(x) for which 

the functional 

  J[y1,…..,yn] = ∫ ′…′…
b

a

dxxF )y..,,y ,y..,,y,( n1n1 . (1) 

has an extremum where the admissible functions satisfy the boundary conditions  

 yi(a) = Ai, yi(b)=Bi (i = 1, ….., n)    (2) 

and k finite subsidiary conditions ( k < n)   

  gj(x, y1, ……, yn) = 0 (j = 1, …., k)    (3) 

In other words, the functional (1) is not considered for all curves satisfying the 

boundary conditions (2), but only for those which lie in the (n – k) dimensional 

manifold defined by the system (3).  

Theorem 6.3   Consider the functional  

  I[y, z] = ∫ ′′
b

a

dxzxF ) ,y  z, y,,(   (1) 

subject to the boundary conditions 

  y(a) = A1,   y(b) = B1 

  z(a) = A2,   z(b) = B2   (2) 
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and which lies on the surface 

  g(x, y, z) = 0    (3) 

If   y = y(x) and z = z(x)    (4) 

are the extremals of (1) and if gy and gz do not vanish simultaneously at any point of 

the surface (3); there exists a function λ(x) s.t. (4) is an  extremal of the functional   

  [ ]∫ +
b

a

dxgxF )(λ  i.e. satisfy the differential equations  

  

constant). bemay  (λ            ,0

,0

=−+

=−+

′

′

zzz

yyy

F
dx
d

gF

F
dx
d

gF

λ

λ

 (5) 

Proof  Let y(x) and z(x) are the extremals of (1), subjected to the conditions (2) and 

(3). For variations δy and δz respectively in y and z, we must have 

  δI[y, z] = ∫ ′′
b

a

dxzxF ) ,y  z, y,,(δ   = 0  

  0=







′

′∂
∂

+
∂
∂

+′
′∂

∂
+

∂
∂

∫
b

a

dxz
z
F

z
z
F

y
y
F

y
y
F δδδδ  

  0=′
′∂

∂
+

∂
∂

+′
′∂

∂
+

∂
∂

∫∫∫∫
b

a

b

a

b

a

b

a

dxz
z
F

zdx
z
F

dxy
y
F

ydx
y
F δδδδ  

  

0 

 

=







′∂

∂
−





′∂

∂
+

∂
∂

+








′∂
∂

−








′∂
∂

+
∂
∂

∫

∫ ∫∫

b

a

b

a

b

a

b

a

b

a

b

a

dxz
z
F

dx
d

z
z
F

zdx
z
F

dxy
y
F

dx
d

y
y
F

ydx
y
F

δδ

δδδδ

 

⇒  0=















′∂

∂
−

∂
∂

+
















′∂
∂

−
∂
∂

∫∫
b

a

b

a

zdx
z
F

dx
d

z
F

ydx
y
F

dx
d

y
F δδ . (6) 

 Also, g(x, y, z) = 0, 
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⇒  gyδy + gzδz = 0 (relation between δy and δz)  

⇒  λgyδy + λgzδz = 0,  

where we assume here λ as a scalar λ = λ(x) continuous, differentiable function on  

[a, b] but arbitrary.  

⇒  ( ) 0=+∫
b

a
zy dxzgyg δλδλ  

  0=+∫ ∫
b

a

b

a
zy zdxgydxg δλδλ   (7) 

Adding (6) and (7), 

  0=




 +−+




 +− ∫∫ ′′

b

a
zzz

b

a
yyy zdxgF

dx
d

FydxgF
dx
d

F δλδλ .  

Select λ so that  

  yyy gF
dx
d

F λ+− ′ = 0 

and  zzz gF
dx
d

F λ+− ′  = 0 

This completes the proof of the theorem.   

Example 6.11  Find the extremal in the isoperimetric problem 

  dxzzxzyxzxyI )44()](),([
1

0

22 −′−′+′= ∫  (1) 

 when  y(0) = z(0) = 0 

  y(1) =  z(1) = 1  (2) 

and  2)(
1

0

22 =′−′−′∫ dxzyxy   (3) 

Solution  )44( 22 zzxzyf −′−′+′= ; 22 zyxyg ′−′−′=   

Then two Euler’s equations are  
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  0=
∂
∂

−








′∂
∂

y
F

y
F

dx
d

  (4) 

and 

  0=
∂
∂

−







′∂

∂
z
F

z
F

dx
d

  (5) 

where   F = f + λg. 

Here  F = f + λg = )(44 2222 zyxyzzxzy ′−′−′+−′−′+′ λ  

Then (4) and (5) become as  

  0]22[ =−′+′ xyy
dx
d λλ   and (6) 

  04]242[ =+′−−′ zxz
dx
d λ  (7) 

Integrating (6) 

  2y' (1 + λ) = c1 + λx 

  
)2(1

x  c
   y' 1

λ
λ
+
+

=  

Again integrating 

  2

2
1

)4(1
 x

)2(1
 c

 y   cx +
+

+
+

=
λ

λ
λ

 (8) 

Similarly from (7) (by integrating) 

  2z' – 4x - 2λz' + 4x = c3 

  2z' (1-λ) = c3 

Integrating again  

  4
3

)2(1
x c

cz +
−

=
λ

  (9) 

Using the boundary conditions (2) , we have 
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  0 = c2 ,  
)4(1

 
)2(1

 c
   1 1

λ
λ

λ +
+

+
= , 

 ⇒ 
2

 34
   c 1

λ+
=  , 

  
)2(1

 c
1 3

λ−
= , c4 = 0 

  c3 = 2(1 - λ) 

Using these values of c1, c2, c3 and c4 in (8) and (9) 

  
)4(1

 x
)4(1
 )3(4

 y   
2

λ
λ

λ
λ

+
+

+
+

= x  (10)

   

     ]x)34[(
)4(1

 1
    2λλ

λ
++

+
= x   

and    x zx
)2(1
 )-2(1

=⇒
−

=
λ
λ

z  

Now we find λ. 

Differentiating (10),    

   ]x234[
)4(1

 1
   y λλ

λ
++

+
=′  

⇒  2
2

2 ]x234[
)16(1

 1
   y λλ

λ
++

+
=′  

and  z' = 1 

Putting the values of y′  and z′ in (3), we get 

  ∫ =







−++

+
−++

+

1

0

2
2 21]x234[

)4(1
 

]x234[
)16(1

 1
dx

x
λλ

λ
λλ

λ
 

⇒  xxxxx λλλλλλ
λ

16162412164916[
)16(1

 1 2
1

0

222
2

−−+++++
+∫  
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 ∫ =−−−−−
1

0

2222 21]881212 dxdxxxxx λλλλ  

⇒ [ ]∫ =−+++−−+−−
+

1

0

222
2

2192416)1612()84(
)16(1

 1
dxxx λλλλλ

λ
 

⇒ 392416
2

1612
3

84
)16(1

 1 2
2

2
=








+++







 −−
+

−−
+

λλ
λλλ

λ
 

⇒ 22
2

)16)(1(39241686
3

84 λλλλλλ
+=+++−−

−−
 

⇒ -4λ2 – 8λ  – 18λ - 24 + 48 + 72λ+27λ2 = 48(3) (1+λ)2 

⇒ 23λ2 +46λ + 24 – 144 – 144λ2 – 288λ = 0 

⇒ 121λ2 + 242λ + 120 = 0     

 
)121(2

)120)(121(4)242(242 2 −±−
=λ  

 
242

5808058564242 −±−
=  

 .0909.19090.
242

22242
−−=

±−
= or  

Example 6.12   Among all curves lying on the sphere x2 + y2 + z2 = a2 and passing 

through two given points (x0, y0, z0) and (x1, y1, z1), find the one which has the least 

length.     

Solution   The length of the curve y = y(x) and z = z(x) is given by the integral    

  ∫ ′+′+
1

0

221
x

x

dxzy  

Using theorem 6.3, we form the auxiliary functional  
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  [ ]dxzyxxzy
x

x

 ))((1
1

0

22222∫ +++′+′+ λ  

Then the corresponding auxiliary equations are 

  0
1

)(2
22
=

′+′+

′
−

zy

y
dx
d

xyλ   

  0
1

)(2
22
=

′+′+

′
−

zy

z
dx
d

xzλ  

Solving these equations, we obtain a family of curves depending on four constants, 

whose values are determined from the boundary conditions 

  y(x0) = y0, y(x1) = y1 

  z(x0) = z0, z(x1) = z1 

Example 6.13  Find the shortest distance between the points A(1, -1, 0) and B(2,1, -1) 

lying on the surface 15x – 7y + z – 22 = 0.     

Solution   Formulation     

  I[y] = ∫ ′+′+
2

1

221 dxzy  

  y(1) = -1,  z(1) = 0 

  y(2) = 1,  z(2) = -1 

Curve lies on the surface 15x – 7y + z – 22 = 0. Consider the Auxiliary function  

  F = f + λg =   221 zy ′+′+  + λ(x) (15x – 7y + z – 22) (1) 

Extremal will be the solution of  

  0=








′∂
∂

−
∂
∂

y
F

dx
d

y
F

   (2) 

  0
'
=








∂
∂

−
∂
∂

z
F

dx
d

z
F

   (3) 

  
221

),(7
zy

y
y
F

x
y
F

′+′+

′
=
′∂

∂
−=

∂
∂ λ , 
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221

'
'

),(
zy

z
z
F

x
z
F

′+′+
=

∂
∂

=
∂
∂ λ  

 

The corresponding Euler’s equations (2) and (3) become as   

  0
1

)(7
22

=














′+′+

′
−−

zy

y
dx
d

xλ  (4) 

  0
1

)(
22

=














′+′+

′
−

zy

z
dx
d

xλ  (5) 

[Now we determine three functions y, z and λ]  

Using value of λ(x) from (5) in (4), we get   

  0
11

7
2222

=














′+′+

′
−














′+′+

′
−

zy

y
dx
d

zy

z
dx
d

 

  0
1

7
22

=














′+′+

′+′

zy

zy
dx
d

  

  
221

7

zy

zy

′+′+

′+′
= c   (6) 

Now from equation of surface, differentiating, we get  

  15 – 7y' + z' = 0  ⇒ z' = 7y' – 15  

Using this value of z' in equation (6) , we get 

  (y' + 49y' – 105)2 = c2[1 + y'2 + (7y' – 15)2]   (7) 

Solving this equation (7) for y' 

  (constant)  (say) B
2

42

=
−±−

=′
a

acbb
y  

⇒  y = Bx + C 

Now   z' = 7B – 15 = B' 
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  z = B'x + C' 

Using the given boundary conditions,   

  -1 = B + C;  0 = B' + C' ; 1 = 2B + C ; -1 = 2B' + C'   

⇒  B = 2;  C = -3;  B' = -1;  C' = 1 

∴   y(x) = 2x – 3  &   z(x) = -x + 1. 

Put y and z in equation (4)  

⇒  -7λ(x) – 0 = 0  ⇒  7λ(x) = 0  ⇒  λ(x) = 0 

Now we are giving a name to such type of problems.  

Geodesic      

In the problems of geodesics, it is required to find the shortest curve connecting two 

given (fixed) points (x0, y0, z0) and (x1, y1, z1) on a given surface S given by                

φ(x, y, z) = 0, and lying entirely on that surface. This is a typical variational problem 

with a constraint since here we are required to minimize the arc length l  joining the 

two fixed points on S given by the functional  

  ∫


















+






+=
1

0

2/122

1 
x

x

dx
dx
dz

dx
dy

l     

subject to the constraint φ(x, y, z) = 0. This problem was first solved by Jacob 

Bernoulli in 1698, but a general method of solving such problem was given by Euler. 

(The study of properties of geodesics is one of the focal points of the branch of 

mathematics known as differential geometry). 

Thus a geodesic on a surface is a curve along which the distance between any two 

points of a surface is minimum.  

To solve problems on geodesics, we must first study invariance of Euler’s equation. 

Invariance of Euler’s Equation  

Consider the function  
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  I[y(x)] = ∫ ′
b

a

dxyyxF ),,(     (1) 

Let u and v be two variables. Suppose the equation is transformed by the replacement 

of the independent variable and the function y(x) as  

  x = x(u, v) and y = y(u, v) 

where  0≠
vu

vu

yy

xx
   

xu, xv, yu and yv denotes the partial derivatives of x w.r.t. u, v and partial derivatives 

of y w.r.t. u, v.  

Then the curve given by the equation y = y(x) in the xy-plane corresponds to the 

curve v = v(u) in the uv-plane. 

Now  
du
dv

xx
du
dv

v
x

u
x

du
dx

vu +=
∂
∂

+
∂
∂

=  

  
du
dv

yy
du
dv

v
y

u
y

du
dy

vu +=
∂
∂

+
∂
∂

=  

⇒  
vxx
vyy

dudx
dudy

dx
dy

vu

vu

′+

′+
==

/
/

   

Thus the functional (1), changes into the functional  

  duvxx
vxx
vyy

vuyvuxFvuJ vu

u

u vu

vu )( ),,(),,()]([
2

1

1 ′+








′+
′+

= ∫  

which can be written as  

  duvvuGvuJ
u

u

 ),,()]([
2

1

1 ∫ ′=  (say) (2) 

Now extremal of (1) can be obtained from (2). If y = y(x) satisfies the Euler’s 

equation 0=− ′yy F
dx
d

F  corresponding to the original functional J[y(x)], then it can 

be proved that the functional v = v(u) satisfies the Euler’s equation 0' =− vu G
dx
d

G   
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corresponding to the new functional J1[v(u)] or v(u) is an extremal of J1[v(u)] if y(x) 

is an extremal of J[y(x)]. Therefore, the extremals of functional I[y(x)] can be found 

by solving Euler’s equation of the transformed functional J1[v(u)]. This is called the 

Principle of Invariance of Euler’s equation under coordinates transformations.     

Example 6.14  Find the extremals of  

  I[y(x)] = ∫ −′−
2log

0

22 )( dxyeye xx   

Solution  If we write Euler’s equation as such it may not be simple to solve it. 

Therefore we make use of the substitution  

  x = log u  and y = v      

We have 

  
u
1

 e e u log-x - ==  

  u==  e e u logx   

  y2 = v2 

  vu

u

v

du
dv

v
x

u
x

du
dv

v
y

u
y

du
dx
du
dy

dx
dy ′=

+

′+
=

∂
∂

+
∂
∂

∂
∂

+
∂
∂

==
0

1
10

.

.
 [we denote 

du
dv

 by v'] 

Also  du
u

du
du
dv

v
x

u
x

dx
1

. =







∂
∂

+
∂
∂

=    

∴ Given functional reduces to  

  ∫ 






 −=
2

1

222 1
'

1
][ du

u
uvvu

u
vI  

         = ∫ −′
2

1

22 )( duvv    (1) 

∴ Extremal can be found from equation (1) 

Its Euler equation is  
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  0=







′∂

∂
−

∂
∂

v
f

du
d

v
f

 

or  ( ) 0'22 =−− v
du
d

v  

or  022 2

2

=+
du

vd
v  

or  02

2

=+ v
du

vd
 

or  (D2 + 1)v = 0 

Auxiliary equation is D2 + 1 = 0  ⇒  D = ± i 

Thus the solution is  

  v = c1 cos u + c2 sin u 

or  y = c1 cos(ex) + c2 sin(ex) [since x = log u and u = ex] 

which is the required extremal.  

Values of c1 and c2 can be determined from the boundary conditions.  

Example 6.15  Find the extremals of the functional   

  ∫ ′+
2

1

)( 22
θ

θ

θdrr   where r = r(θ). 

Solution   Let I[r(θ)]= ∫ ′+
2

1

)( 22
θ

θ

θdrr   (1) 

Let x = r cosθ, y = r sinθ 

∴  r2 = x2 + y2 

i.e.   22 yxr +=    

and  tan θ = 
x
y
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Now  θ
θ

θ
θ

cossin
d
dr

r
d
dx

+−=  

and  θ
θ

θ
θ

sincos
d
dr

r
d
dy

+=  

Squaring and adding, we have 

  22
2

2
22

rr
d
dr

r
d
dy

d
dx ′+=







+=






+







θθθ

 

 ∴ θ
θθ

θ d
d
dy

d
dx

drr ∫∫ 






+






=′+
22

22  

   = ∫ + 22 )()( dydx  

   = dx
dx
dy

∫ 






+
2

1  

   = dxy∫ ′+ 21  

Suppose at  θ = θ1, x = x1 

and at θ = θ2, x = x2 

∴  dxydrr
x

x
∫∫ ′+=′+

2

1

2

1

222 1θ
θ

θ

 

∴  I[r(θ)] = I[y(x)] = dxy
x

x
∫ ′+

2

1

21  

The Euler equation is 

  0
1

0
2

=














′+

′
−

y

y
dx
d

  

∴  c
y

y
=

′+

′
21

  

or  y'2 = c2  (1+ y'2) [Squaring] 
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or  y'2(1- c2) = c2 

or  121
c

c

c
y =

−
=′  (say) 

∴  1cdx
dy

=  

Integrating, y = c1x + c2 

∴ Extremals are r sinθ = c1 r cos θ + c2. 

Exercise  Find the extremal of the functional ∫ ′+
2

1

)(sin 22
θ

θ

θθ drrr  by using the 

transformation x = r cosθ, y = r sinθ. 

Answer  21
2
1

222 cos]sinsinlog[ crccrr +=−+ θθθ . 

Differential equation governing the Geodesic on a surface  

Geodesics 

Suppose we have a surface σ (with coordinates u and v) specified by a vector equation  

  ),( vurr
rr

=     (1) 

The shortest curve lying on σ and connecting two points of σ is called the geodesics. 

Clearly the equations for the geodesics of σ are the Euler equations of the 

corresponding variational problem i.e. the problem of finding the minimum distance 

(measured along σ) between two points of σ. 

A curve lying on the surface (1) is specified by the equations 

  u = u(t), v = v(t) 

The arc length between the points corresponding to the values t1 and t2 of the 

parameter t equals 

  ,2],[
2

1

22 dtvGvuFuEvuI
t

t
∫ ′+′′+′=   (2) 
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where E, F and G are the coefficients of the first quadratic (fundamental) form of (1), 

given by  

  ,  . uu rrE
rr

=  ( ur
r

= partial derivative of r
r

w.r.t. u) 

  ,  . vu rrF
rr

=  

  vv rrG
rr

  .=  

Let  L = ,2 22 dtvGvuFuE ′+′′+′  

The Euler’s equations are   

  0=







′∂

∂
−

∂
∂

u
L

dt
d

u
L

 

  0=







′∂

∂
−

∂
∂

v
L

dt
d

v
L

 

  
22

22

22

2

vGvuFuE

vGvuFuE
u
L uuu

′+′′+′

′+′′+′
=

∂
∂

 

  
22 22

22

vGvuFuE

vFuE
u
L

′+′′+′

′+′
=
′∂

∂
 

Similarly, we can find   
v
L
∂
∂

and 
v
L
′∂

∂
. 

∴ Euler’s equations are  

  0
2

)(2

2

2
2222

22

=








′+′′+′

′+′
−

′+′′+′

′+′′+′

vGvuFuE

vFuE
dt
d

vGvuFuE

vGvuFuE uuu  

and  0
2

)(2

2

2
2222

22

=








′+′′+′

′+′
−

′+′′+′

′+′′+′

vGvuFuE

vGuF
dt
d

vGvuFuE

vGvuFuE vvv . 

These are differential equations governing the geodesics. 

Example 6.16  Find the geodesics on a right circular cylinder of radius a. 

Solution   Let the axis of the cylinder be taken along z-axis. Let A and B be any two 

points on the given cylinder and let (a, θ1, z1) and  (a, θ2, z2) be their cylindrical 



  

 

coordinates respectively. Let z(θ) be a function where curve passes through A and B 

and lying itself on the surface of the given cylinder.  

 

The length of the arc betw

θ, z and r = a, where a is r

The element of arc on a cy

  (ds)2 = (dx

          = (dr)

          = 0 + 

  22)( ads =

  ads 2 +=

  ∫ +=
2

1

2
θ

θ

as

The variational problem, 

is a line element of curve 

∴ Variational problem be

  ∫ 


+
2

1

2
θ

θ d
d

a
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een A and B is ∫
2

1

θ

θ

ds .We use cylindrical polar coordinates r, 

adius of cylinder which is constant. 

linder of radius a is given by  

)2 + (dy)2 + (dz)2 

2 + (a dθ)2 + (dz)2   

(a dθ)2 + dz2   )0( =⇒= drarQ

2222
2

2 ))(()()( θθ
θ

θ dzad
d
dz

d ′+=






+  

θdz 2′   

′2 θdz    (1) 

here, associated with geodesics is ∫ds = minimal, where ds 

on surface of a right circular cylinder.  

comes  





2

θ
θ

d
z

= min.   (2) 
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For extremal, Euler’s equation is satisfied by z(θ). 

  0=







′∂

∂
−

∂
∂

z
f

d
d

z
f

θ
   (3) 

The integrand here does not depend upon z = z(θ). 

∴ Euler’s equation is  

  0=







′∂

∂
z
f

d
d
θ

    (4) 

i.e.   (constant) c
z
f
=
′∂

∂
   (5) 

and   
2222

2
1

2
1

za

z
z

zaz
f

′+

′
=′

′+
=
′∂

∂
 

∴ equation (5) becomes 

  c
za

z
=

′+

′
22

    or )( 2222 zacz ′+=′  

or  2222 )1( cacz =−′    

  
21 c

ac
z

d
dz

−
=′=

θ
 

or  c
c

ac
z ′+

−
= θ

21
 

or  c
ac

c
ac

cz ′−
−

−
=

22 11.
θ  

∴ θ = mz + b form, which is a circular helix, 

or  z = c2θ + c3. The values of c2 and c3 are found by using the fact that this curve is to 

pass through A and B. This curve is called a Helix.  

Example 6.17   Find the geodesics on the surface of a sphere.  OR  

Among all curves on a sphere of radius R that joins the two points, find the shortest 

curve.   OR 
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 Show that the geodesics on a sphere of radius a are its great circles.   

Solution    Spherical co-ordinates are 

 x = r sinθ cosφ, y = r sinθ sinφ, z = r cosθ , where 

r ≥ 0, 0≤ θ ≤ π, 0≤ φ ≤ 2π. Let A and B be any two points on the given sphere and let 

(a, θ1, φ1) and  (a, θ2, φ2) be their spherical coordinates respectively. Let φ(θ) be a 

function whose curve passes through A and B and lying itself on the surface of the 

given sphere.     

∴ The length of the arc between A and B is ∫
2

1

θ

θ

ds . 

In spherical co-ordinates, we have 

  (ds)2 = 2
1h (dr)2 + 2

2h  (dθ)2 + 2
3h  (dφ)2 

  h1 = 1, h2 = r, h3 = r sinθ   

  (ds)2 = 12.0 + r2dθ2 + r2 sin2θ dφ2 (since r = a, dr = 0) 

          = a2dθ2 + a2 sin2θ dφ2  

  22222  θin φθ dsadads +=  

        = 22sin1 φθθ ′+da  

  θφφ daI ∫ ′+= 22  θsin1][  

Let  F(θ, φ,φ' ) = 22  θin1 φ ′+ sa   

Let the length of the curve between A and B has a minimum value for this curve or let 

φ(θ) be a geodesic between A and B.  

∴ The functional ∫ ′
2

1

),,F(
θ

θ

θφφθ d has a minimum value on the function φ(θ).  

∴ φ(θ) satisfies the Euler’s equation.   

The Euler’s equation is  
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  0=− ′φφ θ
F

d
d

F    (1) 

Here   
θφ

θφ
φφ 22

2

sin1

sin
,0

′+

′
== ′

a
FF  

∴ (1) ⇒ 0
sin1

sin
0

22

2

=














′+

′
−

θφ

θφ
θ

a
d
d

 

⇒  0
sin1

sin
22

2

=














′+

′

θφ

θφ
θd
d

  

⇒  122

2

sin1

sin
c=

′+

′

θφ

θφ
  

⇒  )sin1(sin 222
1

42 θφθφ ′+=′ c  

⇒  
( ) θ

θ

θθθθ
φ

22
1

2
1

1
2

22
1

2

1

2
1

2

1

cot1

 )(cos

cos1sinsinsin cc

cec

ecc

c

c

c

−−
=

−
=

−
=′  

      
θ

θ
22

1
2
1

1

cot)1(

)cot(

cc

cd

−−

−
=  

Integrating, we get 

  
( ) 22

1

11

1

cot
cos c

c

c
+

−
= − θφ   

⇒  φ(θ) = cos-1(c3 cotθ) + c2, say 

  c3 cotθ = cos(φ(θ) – c2)  

⇒  c3 cotθ = cos φ(θ) cos c2 + sin φ(θ) sin c2 

⇒  )(sin
 sin

)(cos
 cos

cot
3

2

3

2 θφθφθ
c
c

c
c

+= , 

⇒  cotθ = c4 cos φ(θ) + c5 sin φ(θ), say 

Multiplying by a sinθ, we get 
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  a cosθ = c4 (a cos φ(θ) sinθ) + c5 a(sin φ(θ) sinθ) 

  z = c4 x + c5 y  (using cartesian coordinates) 

The values of c4 and c5 are found by using the fact that this plane is to pass through A 

and B. z = c4 x + c5 y represents a plane passing through the centre (0, 0, 0) of the 

sphere (definition of great circle). 

∴ The geodesics is the arc of the great circle passing through given point. 

Example 6.18  Find the geodesics on a right circular cone of semi-vertical angle α. 

Solution   Let  the vertex of the cone be at the origin and its axis along z-axis.  

Let A and B be any two points on the given cone and let (r1, α, φ1) and (r2, α, φ2) be 

their spherical coordinates respectively. Let r(φ) be a function whose curve passes 

through A and B and lying itself on the surface of the given cone.  

 

 

 

 

        Figure 6.6 

∴ The length of the arc between A and B is given by ∫
2

1

φ

φ

ds . 

Since we are dealing with spherical coordinates, we have  

 222 ) sin()()( φθθ drrddrds ++=     

⇒ 22222 )( sin0.)( φα drrdrds ++=     ( 0=⇒= θαθ dQ ) 

  φα drr  sin 222 +′=  

∴  Length of arc ∫ +′=
2

1

 sin 222
φ

φ

φα drr  
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Let  sin),,( 222 αφ rrrrF +′=′  

Let the length of the curve between A and B has a minimum value for this curve i.e. 

r(φ) is a geodesic between A and B.  

∴ The functional ∫ ′
2

1

 ),,(
φ

φ

φφ drrF  has a minimum value on the function r(φ). 

∴ r(φ) satisfies the Euler’s equation.  

The Euler’s equation is 0=− ′rr F
d
d

F
φ

  (1) 

Since φ is missing from the function F, the Euler equation reduces to  

 c
d
dr

FF r =− ′ φ
   (2) 

⇒ cr
rr

r
rr =′

+′

′
−+′ .

 sin
 sin

222

222

α
α  

⇒  sinsin 2222222 αα rrcrrr +′=′−+′  

⇒ )sin(sin 222244 αα rrcr +′=  

⇒ 222 sin
sin

cr
c

r
r −=′ αα

⇒ φ
αα

d
crr

cdr
=

− 222 sinsin
 

⇒ 1222 sinsin

)sin(
sin

c
crr

rdc
+=

−
∫ φ

αα

α
α

 

⇒ 122sin
c

ctt

dtc
+=

−
∫ φ

α
, where t = r sinα 

⇒ 1222 secsec

tansec
sin

c
cucur

uduucc
+=

−
∫ φ

α
, where t = c sec u 

⇒ ααφφ
α

sinsin
sin

1
11 cucdu +=⇒+=∫  

⇒ u = φ sinα + c2, say 
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⇒ sec u = sec (φsinα+c2)  ⇒   
c
t

= sec(φsinα+c2)  

⇒ 
c

r αsin
= sec (φsinα+c2) ⇒  c3r = sec (φsinα+c2) 

The value of c2 and c3 are found by using the fact that this curve is to pass through A 

and B. 

∴ The required curve is c3r = sec (φsinα+c2).  

Summary 

 From ancient times, geometers noticed extremel properties of symmetric 

figures and bodies. The circle has maximum area among all figures with fixed 

perimeter, the right triangular and square have maximal area among all triangles and 

quadrangles with fixed perimeters, respectively, etc. Extremal problems are attractive 

due to human’s natural desire to find perfect solutions, they also root in natural laws 

of physics. This chapter covers classical techniques of calculus of variations, 

discusses natural variational principles in classical and continuum mechanics and 

introduces modern applications.       

Keywords  Euler-Poisson equation, isoperimetric problems, integral constraints, 

geodesics.     
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