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Chapter-1

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS -1

Objectives

This chapter will be devoted to explaining the main concepts of the systems of
linear differential equations. Some theorems concerning the fundamental matrix of
such systems will be proved. Relations between Wronskian and linear

independence/dependence of solutions of such systems will be developed.
Introduction

We have already studied single differential equation of different types and
obtained the existence and uniqueness of solution of initial value problem of first
order equations which are not necessarily linear. But in some practical situations we
have to deal with more than one differential equation with many variables or
depending upon a single variable. Such system of equations arise quite naturally in the
analysis of certain physical situations. There is a very important class of differential
equations known as linear differential equations, for which a general and elaborate
theory is available. Apart from their theoretical importance, these equations are of
great significance in physics and engineering in the problem of oscillation and electric
circuits among others. This chapter extends the theory to a system of linear equations
which give rise to the study of matrix differential equation, which will include both

homogeneous and non-homogeneous type.
Types of Linear Systems

The general linear system of two first-order differential equations in two

unknown functions x and y is of the form

a, (t)%w (t)%w (Hx+a, )y = Fy(b),

bl(t)%+b2<t>%+b3<t>x+b4<t>y “F,() (1)



A solution of system (1) is an ordered pair of real functions (f, g) such that
x = f(t), y = g(t) simultaneously satisfy both equations of the system (1) on some real

interval a<t<b.

The general linear system of three first-order differential equations in three

unknown functions X, y and z is of the form

o b ]
a, (1) o +a,(t) ot +a,(t) o +a,(Ox+as(y +a (t)z =F (1),
b (t)%-i-b (t)ﬂﬁ-b ('[)Eﬁ-b (Ox+b,(1)y+b (1)z=F,(t) (2)
1 dt 2 dt 3 dt 4 5 6 2 ’

cl(t)%+c2<t>‘;—{+c3<t>% o, (0K +cy (DY +¢, (02 = Fy ().

A solution of system (2) is an ordered pair of real functions (f, g, h) such that
x =1(t), y=g(t), z=h(t) simultaneously satisfy all three equations of the system (2)

on some real interval a<t<b.

We shall consider the standard type as a special case of linear system (1),

which is of the form

% =q,,(H)x+a,t)y+F(t),
dt
% =a, (H)x+a,t)y+F(1). &)

This is the so-called normal form in the case of two linear differential
equations in two unknown functions. We shall assume that the functions a;j, a;, Fy,
a1, a, and F, in (3) are all continuous on a real interval a <t < b. If F(t) and F(t)
are zero for all t, then the system (3) is called homogeneous; otherwise, the system is
said to be non-homogeneous. An example of such a system with variable coefficients
1S

dx , 3
—=tX+({t+)y+t°,
it (t+Dy

dy

L —te'x+t'y—e',
dt y

while one with constant coefficients is



dx

— =5X+7y+t?,
dt y
ﬂ:2x—3y+2t.
dt

The normal form in the case of a linear system of three differential equations

in three unknown functions x, y, and z is

dx
E =, (Ox+a, Oy +a;Oz+F(D),
dy
4 = A Oxran®yrayz+ R,
dz

E = a31(t)x+ as, Oy + a3 Hz+ F3 (1)

An example of such a system with constant coefficients is

%:3x+2y+z+t,

dt
ﬂzzx—4y+52—t2,
dt

$:4x+ y—-3z+2t+1.
dt

The normal form in the general case of a linear system of n differential

equations in n unknown functions xj, X....... , Xn 18
dx,
ot a, ()X, +a,t)X, +......... +a,, ()X, + F 1),
dx,
T a,, (DX, +a, ()X, +.ceeee +a,,(t)x, +F, (1),
\}
dx,
T a, ()X +a,O)x, +......... +a,, ()X, +F, ). 4)

An important fundamental property of a normal linear system (4) is its

relationship to a single nth — order linear differential equation in one unknown



function. Consider the so-called normalized (the coefficient of the highest derivative

is one) n-th order linear differential equation.

d"x d"'x dx
a(t)y—+...... a (H—+a (Hx=F(t 5
dtn + l( ) dtn_l + + n—l( )dt + n() () ( )

in the one unknown function x. Let

X1 =X, z_dxa
dt
2 n-2 n-1
d-x d"x « :d x. )

From (6) we have

dx  dx, d’x dx, d"'x dx,., d"x _dx,

—=0 7
" dt! dt ~  dt" dt ™

dt  dt’  dt*  dt’
Then using both (6) and (7), the single n-th order equation (5) can be

transformed into

dx, .y
|

dx,

=X,
a
M

Yot _x ®

dt "

d;(t" ——a ()% —a,_ (X, —..—a, b, +F(t),

which is a special case of the normal linear system (4) of n equations in n unknown

functions.
Homogeneous Linear Systems

We shall now assume that F;(t) and F;(t) in the system (3) are both zero for all
t and consider the basic theory of the resulting homogeneous linear system.

dx

E = a‘ll(t)x+ a, )y,



dy

@ =a, (H)x+a,(t)y, 9)
Theorem 1.1
Hypothesis Let

x = fi(t), x = f(t)
and y = gi(t), y = g2(t), (10)

be two solutions of the homogeneous linear system (9). Let ¢; and ¢, be two arbitrary

constants.

Conclusion Then
x = ¢ifi(t) + cafa(t), (11)
y = cigi(t) + caga(t)

is also a solution of the system (9)

The solution (11) is called a linear combination of the solutions (10).

Definition
Let x = fi(t), x = fa(t),
and y = gi(t), y = (1),

be two solutions of the homogeneous linear system (9). These two solutions are
linearly dependent on the interval a <t <b if there exist constants c; and c;, not both

zero, such that
¢ f () +c,f,(H)=0,
Clgl(t)+ C,g, (t):0> (12)

for all t such thata<t<b.

Definition
Let

x = fi(t), x = (),
and y = gi(t), y = g(b),



be two solutions of the homogeneous linear system (9). These two solutions are
linearly independent on the interval a <t <b if they are not linearly dependent a <t <
b. That is, the solutions x = fi(t), y = gi(t) and x = f5(t), y = ga(t) are linearly

independenton a<t<b if
¢ f () +c,f,(H)=0,
¢,g () +c,8,(1) =0, (13)

for all t suchthata<t<b

c1=c,=0.
Definition
Let
x = fi(t), x = (1),
and y = gi(b), y = ga(b),

be two solutions of the homogeneous linear system (9). The determinant

f®  £,0

14
g g (9

is called the Wronskian of these two solutions. We denote it by W(t). We may now
state the following useful criterion for the linear independence of two solutions of

system (9).
Theorem 1.2
Two solutions
x = fi(t), x = (),

and y = gi(t), y = (1),

of the homogeneous linear system (9) are linearly independent on a interval a <t <b

if and only if their Wronskian determinant.

fi () £,

15
g 2 (>

W(t)=‘




is different from zero for all t such that a <t < b. Concerning the values of W(t), we

also state the following results.

Theorem 1.3

Let W(t) be the Wronskian of two solutions of homogeneous linear system (9) on the

interval a <t <b. Then either W(t) = 0 for all te [a, b] or W(t) =0 forno t € [a, b].
Example

Let us employ theorem 1.2 to verify the linear independence of the solutions

x=e, x=¢e,
and y = -3¢, y=-¢,
of the system
% — 2X —
dt
dy
—=3X+6
dt y
We have
eSt 3t
W) = S =2e" 20
_ t _ eSt

on every closed interval a <t <b. Thus by Theorem 1.2 the two solutions are indeed

linearly independent ona <t <b.

Before proceeding further, we state without proof the following two theorems

from algebra.

Theorem A A system of n homogeneous linear algebraic equations in n unknowns
has a nontrivial solution if and only if the determinant of coefficients of the system is

equal to zero.

Theorem B A system of n linear non-homogeneous algebraic equations in n
unknowns has a unique solution if and only if the determinant of coefficients of the

system is unequal to zero.



Characteristic Values and Characteristic Vectors.

Let A be a given n x n square matrix of real numbers, and let S denote the set

of all n x 1 column vectors of numbers. Now consider the equation
Ax =Ax (14)

in the unknown vector x €S, where A is a number. Clearly the zero vector 0 is a
solution of this equation for every number A. We investigate the possibility of finding

nonzero vectors X €S which are solutions of (14) for some choice of the number A.
Definitions

A characteristic value (or eigenvalue) of the matrix A is a number A for

which the equation Ax = Ax has a nonzero vector solution X.

A characteristic vector (or eigenvector) of A is a nonzero vector x such that

Ax = Ax for some number A.

The Matrix method for homogeneous linear systems with constant coefficients: n

equations in n unknown functions:
We consider a homogeneous linear system of the form

dx,
"y =a, X +a,X, +..+3,X,,

dx,
_dt =8, X, +a,X, +...+3,,X,, (15)

M

dx,
o Ay X, + 8, X, +eF A5 Xy,

where the coefficients ajj, (i=1,2,...,n;j =1, 2,..., n), are real constants.

We will express this system in vector-matrix notation. We introduce the n x n

constant matrix of real numbers

all a'12 A 1n
A af\;[ alz\jI A alz\n/[ 16)
a a, A a

nl n2 nn



and the vector

X = (17)

Then by definition of the derivative of a vector,

i
dt
dx dﬁ
v | dt |
dt M
dx,

dt

and by multiplication of a matrix by a vector, we have

Loa, A oa ) (% a,X, +a,X, +..+a, X,

AX a’21 a22 A aZn XZ — a‘21xl + a22 X2 t.o.t aZan
M M M M M

ay, a, A a,)|x a, X +a,X, +...+a, X,

Comparing the components of dx/dt with the left members of (15) and the
components of Ax with the right members of (15), we see that system (15) can be
expressed as the homogeneous linear vector differential equation

dx

OX _ Ax. 18
at (18)

The real constant matrix A that appears in (18) and is defined by (16) is called

the coefficient matrix of (18).
Definition

By a solution of the system (15), that is, of the vector differential equation (18), we

mean an n X 1 column-vector function



whose components, ¢, ¢,,...,4, each have a continuous derivative on the real

interval a <t <b, and which is such that

d%t(t) =a, 9 M) +a,d M) +...+a,9,(1),
d%t(t) =a,g(H)+a,gt)+...+a,.4, (1),
A

d%}t(t) =a,4 M) +a,0, 1) +...+a,4, (),

for all t such that a <t <b. In other words, the components @, @,....,d,of ¢ are such

that
X, = ¢1 (1)
X, = ¢2 (1)
M
Xn = @ (1)

simultaneously satisfy all n equations of the system (15) identically on a <t <b.
Theorem 1.4

Any linear combination of n solutions of the homogeneous linear system (15)

is itself a solution of the system (15)
Theorem 1.5

There exist sets of n linearly independent solutions of the homogeneous linear
system (15). Every solution of the system can be written as a linear combination of

any n linearly independent solutions of (15).

Definition
Let
¢11 ¢12 ¢ln
(P _ ¢21 (P — ¢22 K (P — ¢2n
1 M SN2 M b ' n M
¢n1 ¢n2 ¢nn

10



be n linearly independent solutions of the homogeneous linear system (15). Let c;,

C2,...,Cn be n arbitrary constants. Then the solution

X=CQ, 1)+ Cz(Pz(t) +K + .o, (1),

that is,

X =¢¢,(t)+Cc,0,(1)+K +c 4, (1),

XZ = C1¢21 (t) + Cz¢22 (t) +K + Cn¢2n (t)a
M

X, =¢¢,(t)+c,d,t)+K +c g, (1),
is called a general solution of the system (15)
Theorem 1.6

n solutions @,, @,,...,¢, of the homogeneous linear system (15) are linearly

independent on an interval a <t <b if and only if
W50 50,9, )(1) #0
forall t € [a, b]
Concerning the values of W(@,,9,,...,¢,), we also state the following result.
Theorem 1.7

Let ¢,, ¢,,...,¢, be n solutions of the homogeneous linear system (15) on
an interval a < t < b. Then either W(@,,9,,...,¢,)t)=0for all t € [a, b] or

W(@,,0,5..,9,)t)=0fornot e [a, b].

Preliminary Definitions and Notations

If A is a matrix of complex numbers (ajj) with n rows and n columns, define

Al,ofAby

the norm,
A= ;\aﬂ-\ (1)

In case x is an n — dimensional vector, represented as a matrix of n rows and
one column, then the vector magnitude coincides with the norm of x as defined by (1).

The norm satisfies the following properties

11



()  |A+B| <|A+|B|
(i)  |AB|<|A]|B|
(i) [AX<|A ||

where A and B are matrices, and x is an n-dimensional vector.

The distance between two matrices A and B is defined by |A— B| , and this

distance satisfies the usual properties of a metric.
The zero matrix will be denoted by 0, and the unit matrix by E. These n-by-n
matrices will be denoted by 0, and E,, respectively. Note that |On| =0, and |En| =n,

and not 1.

The complex conjugate matrix of A = (ajj), denoted by A, is defined by
A= (a;), where a; is the complex conjugate of aj. The transposed matrix of A,
denoted by A', is defined by A' = (a;). The conjugate transposed matrix of A is
A* = A'. Note that |A*| = |A'| = ‘K‘ = |A| Also (AB)* = B* A*. The determinant of A
is denoted by det A.

If det A =0, then A is said to be singular. A nonsingular matrix A possesses

an inverse (or reciprocal), A’', which satisfies
AAT=ATA=E
The polynomial in A of degree n, det (AE-A), is called the characteristic
polynomial of A, and its roots are the characteristic roots of A. If these roots are
denoted by A;,1=1, ..., n, then clearly

det (AE - A) = f[(z—i,)

i=1

Two n-by-n complex matrices A and B are said to be similar if there exists a

nonsingular n-by-n complex matrix P such that
B=PAP'
If A and B are similar, then they have the same characteristic polynomial,

for

12



det (AE - A) det (P (AE - A)P™)

det P det (AE - A) det P!

det (AE - A)

In particular, the coefficients of the powers of A in det (AE - A) are invariant
under similarity transformations. Two of the most important invariants are det A and

tr A, the determinant and trace of A, respectively.

If {An} is a sequence of matrices, this sequence is said to be convergent

if, given any € > 0, there exists a positive integer N¢ such that

‘Aq - Ap‘ <& whenever p, > N¢

The sequence {A} is said to have a limit matrix A if, given any € > 0,

there exists a positive integer N, such that

|Am - A| <& whenever m > N¢

Clearly {An} is convergent if and only if each of the component sequences is
convergent, and this implies that {A,} is convergent if and only if there exists a

limit matrix to which it tends.

The infinite series
is said to be convergent if the sequence of partial sums is convergent, and the

sum of the series is defined to be the limit matrix of the partial sums.

The following fundamental result concerning the canonical form of a

matrix is assumed.

Theorem 1.8 Every complex n - by- n matrix A is similar to a matrix of the

form
J, 0O A O
0 ., 00A 0
J=
0O 0 0 A J

13



where Jo is a diagonal matrix with diagonal A, As,. . ., A, and

Agi 10 A
0 A 1 0 A

J. = A . . (i=1...,9)
0 0 A Ay 1
0 0 O A 0 A

q-+i

The A, j=1,..., q +s, are the characteristic roots of A, which need not all be
distinct. If A; 1s a simple root, then it occurs in Jy, and therefore, if all the roots are

distinct, A is similar to the diagonal matrix.

A 0 0 A 0

0 0 0 K A

n

From Theorem 1.8 it follows immediately that
det A=A, A=Y 4

where the product and sum are taken over all roots, each root counted a number of
times equal to its multiplicity. The J; are of the form
Ji=hgi B + Z;

where J; has r;rows and columns, and

01 00 A OO
0 0 A
Z, = K
0 0O A
0 000A OO

An equally valid form of J; is Aq+i Eri + yZ; where y is any constant not zero.

The matrix Zi2 has its diagonal of 1s moved one element to the right from that of Z;
and all other elements zero. From this it follows that Z;' is a matrix which contains

all zeros except for a single 1 in the first row and last column. Hence Z| is the zero

matrix, and Z; is nilpotent.

14



A particular series which is of great importance for the study of linear

equations is the one defining the exponential of a matrix A, namely,

eA =E+ E (2)
m=l1 .

where A" represents the m-th power of A. The series defining e” is convergent for all

A, since for any positive integers p, q,

m

Pt AM p+q | A|
2 < il
m=p+l1 m' - m=zp:+1 m'

lAl

and the r.h.s. represents the Cauchy difference for the series e which is convergent

for all finite |A | Also
‘eA‘ <(n-1)+e” (3)

For matrices, it is not in general true that e™® = ¢”e®, but this relation is valid

if A and B commute.

Every matrix A satisfies its characteristic equation det (AE — A) = 0 and this

remark is sometimes useful for the actual calculation of e”. As a simple example, if

o

then det (\E — A) = A*= 0, and therefore A? = 0, which implies A™ = 0, m > 1.

0 1
A=E+ A=
00

Using all these observations, we will prove the basic theorem:

Hence,

If B is a nonsingular matrix, then it will be shown that there exists a matrix A
(called a logarithm of B) such that e* = B. Indeed, if B is in the canonical form J of

Theorem 1.8, it is evident that A can be taken as

15



A, 0 0A O
0 A 0 A O
A=
. K
0 0 0 A A,
provided that ¢™ = Ji,j=0,1, ..., s.Itis also easily verified that a suitable Ayis given
by
logh, 0 A
0 logh, A 0
A, = gh,
K .
0 0 A logh,
Clearly

_ 1

where Z; is the nilpotent matrix defined after Theorem 1.8. Since large powers of Z;

all vanish, the series
kz (_1)k+l k—l (ﬂqﬂ- )—k Z:(
=1

has only a finite number of terms, and is thus convergent. Define

1
log |E. +—Z.
( " ;tq*i Jj

to be this series, which is, of course, a polynomial in /1;1+ J.Z ; - Thus

F ([1 .Zj) =exp [log (Eg +4;,,Z ;)]

a+J

is a polynomial in /1; ;Z ;. On the other hand, from

l+x= elog(Hx)

2
TN SRR V20 LS (VR I +A,  |X<1
2 2! 2

16



It follows that, when the right member is rearranged, the coefficients of Xk, k>2,are

all zero, while the coefficient of x is 1. This implies the same result for F, and proves

that

exp [log (E; + A Z)]=E;+ Az

q+] a+iT]

From this follows readily that a suitable A, j=1, . . .,s, is given by

Aj= (log Ag+) E;i + log (Erj +%Zj]

q+]

Using the fact that for any matrix M,

(PMP)* = PM* P! k=1,2,...)
one readily see that

peMp! = ¢ PV

From this it follows that the result just sketched for a canonical matrix B is

valid for any nonsingular matrix B. Indeed, if J = ¢ and B=PJP”, then B = ¢*, where
A = PAP”
Definition

If @ is an n x n matrix of functions defined on a real t-interval I (the functions
may be real or complex), then @ is said to be continuous, differentiable or analytic on

I, if every element of @ is continuous, differentiable or analytic function of t on I.

h® AA ¢,

AN AA AA
o= tel
AN AA AA

@ AN 4,1
If @ is differentiable on I, then @' denotes the matrix of derivatives i.e.
Q' = [¢ ()]
Note: If @ and y are two differentiable n x n matrix functions, then
(Py)' = D'y + Oy

and that @'y # ® y' in general.

17



Remark
If ® is a non-singular matrix and ®'(t) exist, then show that @' is

!/

differentiable at t and find ((D _1) .
Proof AsA' =AdjA/ A

o' = ®
det®d’

where @ = (¢7\“) (1)

and 5,] is the cofactor of ¢;; . Equation (1) shows that @' is differentiable at t as @

1s differentiable at t.

[Adj A = Transpose of matrix of co-factors]

!

Now we find (q)*l) .

We know that ® @' =E

= (@ CD“)’ —E'=0

!

= o) =-2 o

Pre-multiplying both sides by @'

!

= (@) = -0 o o
where det @ = 0
Theorem 1.9
The set of all solutions of the system
X'(t) = A(t) x(V), 1)
x(to) = Xo, t,toel
forms an n-dimensional vector space over the field of complex numbers.
Proof

First we shall show that the set of all solutions forms a vector space and then

establish that it is of dimension n.

Let x; and x, be the two solutions of (1)

18



Then X(t) = A()xX (1), and X, (t) = A(t)X, (t)

Now for any constants ¢; and ¢, we get
d ! !
a[clx1 +C,X,] =CX +C,X; =CA()X, +C,A(t)X,

= A(t) [C1X1 + CzXz]
SO that [C]X] + C]Xz]' = A(t) [C]X] + C2X2]

which proves that if x; and x, are two solutions of (1), then ¢;x; + cx; is also a

solution of (1). This shows that the solutions form a vector space.

We note that each solution is an n-tuple. More precisely it is a column vector
consisting of n components. We shall show that this vector space of solutions is of
dimension n. For this we have to prove that the solution space contains n- linearly

independent vectors which span the space.

Lete; =(0,0, ..., 1, 00...0) where 1 is in the i-th place. We know that {e;,
i=1,2,3,...,n} is the standard basis for R". We shall construct a basis of solutions

with the help of e;’s. By the existence theorem, given toe I, there exist solutions x;,

1=1, 2, 3... such that

x1(to) = e1, X2(to) = €2,....., Xn(to) = €n (2)

We shall show that x;, X5 ..., X, 1s a linearly independent set which spans the

space of solutions.

If x4, Xy, ....., X, are not linearly independent in R, there must exist scalars cj,

Cy,.....Cn, Not all zero, such that

cixi(t) + coxa(t) + ... +cpxp(t) =0, te | 3)
Since (3) is true for all te 1, it is true in particular for t = t; so that we have

c1x1(to) + caXxa(to) + ... T CaXn(to) =0 (4)
Using (2) is (4), we get

cieptcert ... +cpen=0 (5)

which is a contradiction to the hypothesis that ej, e»,... €, is a linearly independent set

in R".

19



This proves that x;’s are linearly independent.

Let x be any solution of (1) on I such that x(tp) = X¢. Since xo € R", there

exists unique scalars ¢;, 1 =1, 2,... n such that

x(t,) = zciei
i1
Since xi(ty) = e, we get X(ty) = zci X (t))
im1

n
Hence, the function Z:Cixi is a solution on I which takes the value x( at t;. By

i=l

uniqueness of solutions, this must be equal to x on I so that we get

>

Therefore every solution x is a unique linear combination of the solution (x;) which

proves the theorem.
Definition

The set of all n linearly independent solutions of (1) is called a fundamental

set of solutions of (1).
Example 1.1

Find the fundamental system of solutions of

RN
= in[0,1]
X, 0 2t]|Xx,

Since t and 2t are continuous in [0, 1], the matrix A(t) is a continuous matrix
in [0, 1]
X[t olix | |
X, |10 2t]]x, | |2t

X; = tx, and X} =2tx,

so that we get

20



Solving these two equations, we gat X; = c1e’/2, Xo = ¢3! . Thus the vector

t% O
space solutions are X, = {e ], X, ={ 2 } Since x;(t) # kx»(t) for any t in [0, 1], the
0 e

two vectors are linearly independent. Further the dimension of the vector space of

solutions is 2.
Wronskian of Vector Functions
Consider the system
x'(t) = A(t) x(t), te 1 (1)

(where A is a continuous matrix) having n linearly independent solutions on I. In any

general situation we can take the solution as a vector function ¢ = (¢1,¢2,...¢n) where

we have
¢ll(t) ¢12(t) ¢1n(t)
_ ¢, () . 9, (1) _ $,n (1)
=" 0= g 0= @
P (D) ) P (D)

in each of the vectors, the first subscript indicates the row and the second shows the

vector solution. For example ¢,,(t) shows the vector component in the second row of
the vector ¢,(t). Since we are concerned with the linear dependence or otherwise of
the vector solutions, we introduce the Wronskian of the vector valued functions ¢,

@,,... ¢, as given in (2).

Definition
Then n x n determinant consisting of components of ¢, ¢,,... @, as
¢11 ¢12 K ¢1n
¢21 ¢22 K ¢2n
M M K
¢n1 ¢n2 K ¢nn

is called the Wronskian of n vector functions ¢,, ¢,,... ¢, and is denoted by W(¢g,,

@,,... @,). Its value at any point ty €l is denoted by W(4,, @,,... 4,) (to). With the
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help of the Wronskian of ¢, ¢,,... ¢,, we shall obtain the condition of the vector

functions for linear dependence and independence and then derive the criterion for
linear dependence or otherwise of the solutions of the homogeneous linear vector

differential equation (1).
Theorem 1.10

The vector functions, ¢, @,,... @, are linearly dependent on I, then the

Wronskian W(g,, @,,... ¢,) (t)=0foreveryt e L.

Proof

If ¢, ¢,,... ¢, are linearly dependent on I, there exist n scalars cy, ca,..., Cn,

not all zero, such that

C1¢1(t) + 02(1)2('[) + ...+ Cn¢n(t) =0 (3)

for all t € 1. Using the components of ¢;, 1 = 1, 2, 3... n and considering an arbitrary
point ty € I, the above single vector equation is equivalent to the following n

equations in n unknowns cj, Ca,...Cy S.t.
cidri(to) + cadia(to) + ... + cudin(to) =0

ci1d21(to) T cabaa(to) + ... + Cabon(to) =0

C1ni(to) + C20n2(to) + ... + Cudrn(to) = 0

Since the scalars c, c,, ..., ¢, are not all zero, the above homogeneous system has a
non-trivial solution. Using theorem A, the determinant of the coefficients of above

system of equations is zero. So we get

dn(ty)  9iu(ty) i (t)

K

Ball) falt) K alt)_,
K
K

K K K
G (ty) P (ty) P (L)

which gives W(¢g,, @,,... 8,)(to) = 0. Since t, is an arbitrary point of I, we must have

W(d, &,,... ¢,) (t)=0forallt e L.
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Note In the above theorem, the vector functions are not the solutions of any linear
homogeneous system. So the theorem is valid for any n-vector functions and in
particular, the theorem is true for the solutions of homogeneous linear vector

differential equations.
Theorem 1.11 If the vector functions ¢,, @,,... ¢, are the solutions of the system x'
= A(t) x on I, and the Wronskian W(¢,, @,,... @,) (to) = 0 for some t; € I, then ¢,

®,,... ¢, are linearly dependent on I.

Proof Consider the system of equations
c1011(to) + c2012(to) + ... + Cudin(to) = 0
c1021(to) + c2022(to) + ... + cudan(to) = 0
(1)
C10n1(to) + C20m2(to) + ... + Cudun(to) = 0
in the n-unknown scalars cj, c;....c,. In the above homogeneous system, the
determinant of the coefficients is W(¢,, ¢,,... ¢,) (t), which is zero by hypothesis.
So the system has non-trivial solution ¢y, c»,...cy, that is, there exist constants cy, cy,...
cn, not all zero, satisfying the above equations, (using theorem A).
If ¢ =(¢;, ¢ ... ¢,),1=1,2,....n, then using the components, the above

system can be written in an equivalent form as a vector equation.

c1i(to) + cada(to) + ... + Cabn(to) =0 (2)

Now consider the vector functions ¢ defined as

dO(t) = c191(t) + cada(t)+...+ codn(t), t € I 3)

Since ¢1, ¢2,... O, are the solutions of the system, their linear combination ¢ is
also a solution of the system. Using (2), we have ¢(ty) = ci¢p(to) + c20(to)...+ cndn(to)
= 0. Hence by using the result that x(t) = 0 is the only solution of the initial value
problem x' = A(t)x, x(t)) = 0, where t, tp € I and A(t) is a continuous matrix on I,
d(t) = 0 for all t € 1. That is, c;¢1(t) + cada(t)+...+ cabn(t) = 0 for all t € I where ¢y,

C2,...,Cn are not all zero. Thus, using the definition, ¢, ¢»,... ¢, are linearly dependent.
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Corollary If ¢1, ¢2, .... ¢nare the solutions of the system x' = A(t)x, t € I. Then either
W(d1, b2, .. ¢n) (t) is zero for all t € I, or W(d1, da,... dn)(t) is never zero on 1.

Proof To prove this let us assume W(¢y, ¢2,... ¢n)(t) = 0 for some t or W(d1, do,...
On) ()20 for any t € L. If W(¢d1, ¢2,... dn)(t) = 0 for some t € 1., then by theorem 1.11
d1, 2,... Oy are linearly dependent on I so that W(¢1, ¢2,... d,)(t) =0 for all t € T or
W(d1, d2,... dn)(t) = 0 for any t € L.

Theorem 1.12 Let the vector functions ¢;, ¢2,... ¢, be n solutions of the
homogeneous linear vector differential equation x' = A(t)x on I. Then the n-solutions

are linearly independent on I if and only if W(¢y, ¢2,... ¢n)(t) =0 forall t € L.

Proof By theorems 1.10 and 1.11, the solutions are linearly dependent on [a, b] if
and only if W(¢1, ¢2,... d,)(t) = 0 for all tel. Therefore the solutions are linearly
independent on I if and only if W(¢y, ¢2,... ¢n)(t) # O for some ty € [a, b]. By the
corollary of the previous theorem W(d1, ¢2,... dn)(t) # 0 for some ty € I if and only if
W(d1, d2,... dn)(t) =0 forall t € L.

Theorem 1.13 There exists a fundamental set of solutions of the homogeneous linear

vector differential equation.
x'=Al)x, tel. (1)

Proof. Since we are concerned with solution vectors in R", let us consider the
standard basis {ej, [ =1, 2, 3...n} where ¢; = (0, 0, ...,1, 0,...0). Here 1 is in the i-th

place and zeros in all other places. Let ¢1, §2,... dn be n vector solutions which satisfy

d1(to) = €1, §2(to) = €2, Pn(to) = enforty € 1

Then
1 00 A 00O
01 0A 00
W(d1, bo,... dn)(to)) = W(er,e2,...60) =M M M M M Nz0
0 00A 10
0 A 0 1

Hence by corollary of Theorem 1.11, W(d1, ¢2,... ¢n)(t) # 0 for any t € I and thus ¢,

®2,... ¢, are linearly independent on I.
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Theorem 1.14 Let ¢y, §2,... ¢, be a fundamental set of solutions of the homogeneous

linear vector differential equation
x'=A(t)xonl (1)

and let ¢ be any arbitrary solution on the interval I. Then there exist unique scalars c;,

C2,...Cy such that

d=ci1+ CoPr+ ... T cudpon

that is, ¢ can be expressed as a suitable linear combination of the fundamental set of

solutions.

Proof Let us suppose d(ty) = ug, where up = (ujo, Uz...Uno) is a constant vector. Now

consider the linear non-homogeneous algebraic system
ci¢11(to) + c2012(to) + ... + Cadin(to) = uio

c1921(to) T cad22(to) + ... + Cad2n(to) = 2o

C1Pn1(to) + C2dna(to) + ... + Cadun(to) = Uno (2)

of n-equations in n-unknowns. Since ¢1, ¢2,... ¢, are linearly independent solutions of
(1), W[o1, d2,... da](te) # 0. But W[d1, d2,... du](to) is the determinant of the
coefficients of the system of equations (2). Since W[y, ¢2,... dn](t) # 0, the system of
equations (2) has a unique solution for ¢y, c,,..., Cn, that is, there exist unique set of

scalars c1, ¢»,...cy such that

c1¢1(to) + cad2(to) + cadu(to) = uo 3)
Hence we have d(t)) =up = anck(ﬁk (t,)
k1

n
Now consider the vector function y(t) = ch;/ﬁk (t). Since any linear
k=1

combination of solutions of (1) is also a solution of (1), we have

W= Yot )

From (3) and (4), we have y(t)) = ¢(to).
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Hence by the uniqueness of solutions wy(t) = ¢(t) for all t € 1. Thus,

o(t) = >, (t) forallt e Iis solution of (1).

k=1
Fundamental Matrix and its Properties
We know that the solutions of the system x'(t) = A(t)x(t), t € I (1)

form a vector space of dimension n. So it has n linearly independent solutions

forming a basis. We can take the independent solutions as a vector ¢ = (¢1y P25ee0 On),

where
¢11(t) ¢12 (1) ¢1n (t)
¢1 ()= ¢21(t) ¢2 1= ¢22 ® ... ¢n t= ¢2n (t) (2)
_¢n1 (t)_ _¢n2 (t)_ _¢nn (t)_

Definition 1 Let ¢ be a matrix whose columns are the solutions (2) of the given
system (1). This matrix y is called a solution matrix, since it satisfies the matrix

equation x'(t) = A(t) x(t), t € |

Definition 2 If the columns of the solution matrix are linearly independent, then the

solution matrix is called a fundamental matrix.

According to Theorem 1.9, the n independent solutions of homogeneous
system exist so that the fundamental matrix exists. We shall derive the differential

equation satisfied by det y.

Definition

n
The trace of an n x n matrix A is given by the formula A= Za j - That is, the
j=1

trace of A is the sum of its main diagonal elements.
Theorem 1.15 Abel-Liouville Formula

Let the functions

P

¢
0, = 1vik ,(k=1,2,..,n

¢nk
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be n solutions of the homogeneous linear vector differential equation

x'=A(t)x

(1)

on the real interval [a, b]; let ty be any point of [a, b]; and let W denotes the

Wronskain of ¢1,. ¢2,... ¢,. Then

for allt e [a, b]

W(t) = W(to)exp {

)

Proof We differentiate the Wronskian determinant

¢11 ¢12 K ¢1n
¢21 ¢22 K ¢2n
M M M M
W =
¢i ¢i K ¢in
M M M M
¢n1 ¢n2 K ¢nn
to obtain
¢1'1 ¢1'2 K ¢1'n ¢1 1
¢21 ¢22 K ¢2n ¢21
M
WM MMM
% ¢, K 4 i
M M M M M
¢n1 ¢n2 K ¢nn ¢nl
¢11 ¢12 K ¢1n ¢11
¢21 ¢22 K ¢2n ¢21
M M M M M
+| , I O
¢ ¢, K 4, b
M M M M M
¢n1 ¢n2 K ¢nn ¢r'11

jtrA(s)ds}

¢12 K ¢1n
¢22 K ¢2n
M M M
¢, K ¢,
M M M
¢n2 K ¢nn
¢12 K ¢1n
¢22 K ¢2n
M M M
¢i2 K ¢in
M M M
b K

(2)

€)

where, primes denote derivatives with respect to t. Thus W' is the sum of n

determinants, in each of which the elements of precisely one row are differentiated.

Since ¢k, (k=1,2...,n), satisfies the vector differential equation (1), we have
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¢ =Ad., (k=1,2,...n),and so g =D a;d,, (i =1,2,..n;j=1,2,...n). Substitute
j=1

these for the indicated derivatives in each of the n determinants in the preceding

expression (3) for W'. Then the i-th determinant, (i=1, 2,....n) in (3) becomes

4, ¢, K @, 8 b K P
¢2 | ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n
M MMM | M M M
b b K gl a2 s, KoY ag,
M MMM [Ty Ty M
b P K b Pl Pna K Pon

Writing out each of the indicated sums in the preceding determinant and using
fundamental properties of determinants, we see that it breaks up into the following

sum of n determinants:

¢1 1 ¢12 K ¢ln ¢l 1 ¢12 K ¢1 n
¢2 1 ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n
M M M M M M
ail + aiz +
¢11 ¢12 K ¢ln ¢21 ¢22 K ¢2n
M M M M M M
¢n 1 ¢n 2 K ¢nn ¢n 1 ¢n 2 K ¢n n
¢1 1 ¢12 K ¢ln ¢1 1 ¢12 K ¢ln
¢2 1 ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n
M M M M M M
+a; +..+a,
¢|1 ¢| K ¢| ¢nl ¢n2 K ¢nn
M M M M M M
¢n 1 ¢n 2 K ¢n n ¢n 1 ¢n 2 K ¢n n

Each of these n determinants has two equal rows, except the ith one, and the
coefficient of this exceptional one is a;. Since a determinant having two equal rows is
zero, this leaves only the single exceptional determinant having the coefficient a;;.

Thus we have
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¢1 1 ¢1 2 K ¢1 n ¢1 1 ¢1 2 K ¢1 n
¢2 1 ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n

M M M M M ,

, , 1= 8 foreachi=1,2,...n
4 4 K 4 4 b K 4

M M M M M M

¢n 1 ¢n 2 K ¢n n ¢n 1 ¢n 2 K ¢n n

Using this identity with i = 1, 2,....n, we replace each of the n determinants in

(3) accordingly. Thus, (3) takes the form

¢l 1 ¢l 2 K ¢1 n ¢1 1 ¢1 2 K ¢1 n
¢2 1 ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n

' M M M M M M
W'=a,, K +a,, +...
¢t 2 ¢ 4 K 4,

M M M M M M

¢nl ¢n2 K ¢nn ¢nl ¢n2 K ¢nn

¢1 1 ¢12 K ¢1n ¢1 1 ¢12 K ¢1n
¢2 1 ¢22 K ¢2 n ¢2 1 ¢22 K ¢2 n
M M M M M M
+a; +..ta,,
¢ 9 K ¢ ¢ 4 K 4
M M M M M M
¢n 1 ¢n 2 K ¢nn ¢n 1 ¢n 2 K ¢nn

That is, W' = {Zajj}h/, and so

j=1
W'=(tr A) W. 4)
or, W satisfies the first order scalar homogeneous linear differential equation

% ~[trAW (1)

Integrating this, we at once obtain

W(t) =cexp [j-trA(S)dS]

to

Letting t = ty, we find that ¢ = W(ty), and hence we obtain the required Abel-Liouville

formula

29



W(t) = W(to) exp UtrA(s)ds} (5)

to
Note From Abel-Liouville Formula, we can conclude that if det ®(t)# 0 for some
t €l, Thendet ®(t)=0 Vtel
Theorem 1.16 A solution matrix @ of the matrix differential equation
x'=Al)x,tel (D)
is a fundamental matrix if and only if det d(t) # 0 forany t € L.
Proof

First we shall prove the necessary part of the theorem. Assuming that the
given solution matrix @ is a fundamental matrix of (1), we shall prove that det @ (t) #
0 for any t € L. Let the column vectors of @ be ¢; = 1, 2,...n. Let y be any solution of
(1). Since (¢;) forms a basis of solutions, y can be expanded as linear combination of

¢;' s, that is, there exist unique non-zero constants ¢y, Ca,... ¢, such that
n
V= zci¢i = ¢ +C,0, +...+C 4,
i=1

which we can write in the matrix form as
Cl

CZ
v=lg.¢-4] " |=oC 2)

C

n

where C is the unique column vector. Equation (2) gives n-linear equations of the
form
n

Wi :Z¢|]CJ’ i:1,2,...n

i=l

in the unique constants ¢j, cs,... ¢,. Since the above non-homogeneous system has a

unique solution ¢y,ca,...c, for a fix t € I, we get det d(7) # 0for a fixed t € 1. (Using

Theorem B).

From Abel-Liouville formula
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det ©(t) =det O(7) expﬁtrA(s)ds}

Using det ®(7) # 0 in the above integral equation, ®(t) #0 foranyt € I.

To prove the converse, let ®(7)be any solution matrix of the system such that
det d(t)#0 for any t € I. Now we shall prove that ®(t)is a fundamental matrix.

Since det®d(t)#0 for any t € I, its Wronskian W(4,,4,,..4,)(t) #0. Hence by

theorem 1.12, ¢1, ¢2....., ¢n are linearly independent. In other words, the column
vectors of the solution matrix ®(t) are linearly independent. Hence @ is a

fundamental matrix of (1).
Corollary

Two different homogeneous systems cannot have the same fundamental

matrix.

If d(t) is the fundamental matrix of the given homogeneous linear system (1),

we have

O'(t) = AD(Y) (1)
and det®(t) # 0 for any t e I by the theorem so that is inverse, namely, ®~'(t) exists
for every t e 1. Post multiplying both sides of (1) by ®7'(t), we get A(t) = D'(t)

®7'(t). Hence @ determines A uniquely for the system. Therefore, it cannot be a

fundamental matrix for another homogeneous system.

Note The above theorem is true only for the solution matrices as there are matrices @

with linearly independent columns but with det ® = 0. For example, let

t t?
D(t) = (O Oj . The column vectors are linearly independent for

fo

implies ¢t + cot* = 0 which in turn implies ¢; = 0, and ¢, = 0. Further det d(t) = 0.

Thus we have a ®(t) with linearly independent columns for which det ®(t) = 0
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t t?
because ¢ ={Ojand o, =[Oj are not the solutions of any linear homogeneous

system.
Theorem 1.17

(1) If @ is a fundamental matrix of the system x' = Ax and C is constant non-

singular matrix, then ®C is a fundamental matrix.

(i1))  Every fundamental matrix of the system is of this type for some non-singular

matrix.
Proof

(1) Since @ is a fundamental matrix, det @ # 0 by Theorem 1.16 so that it is non-
singular. By hypothesis, C is a non-singular matrix. Since the product of two
non-singular matrices is non-singular, ®C is non-singular so that det ®C = 0.

Hence by Theorem 1.16 ®C is a fundamental matrix.
(i1) Let ®; and @, be two fundamental matrices. Assume that
CDZ = (I)l ) (1)

and we will show that y is a constant non-singular matrix. Now using matrix

differentiation, we get from (1)

D), =Dy + Oy’ ()
Since ®; and @, are solutions of x' = Ax, we get

O, =AD,, D =AD, 3)
With the help of (3) and (1) in the given equation, we have

D, =AD, =Dy +Oy =AD Y +Dy'= AD, + Oy’
Hence we get
AD, = AD, + @, which gives ®,p'=0 4)

Since ®; is non-singular (4) implies y' = 0 or y = C, where C is a constant
matrix. Thus we have @, = ®;C. Hence we get C = ®;'®, . Since both ®; and ®, are

non-singular, C is a constant non-singular matrix.
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Hence, the proof of the theorem
Note

If @ is a fundamental matrix of the system, x' = Ax and C is any constant non-
singular matrix, then C® is not in general a fundamental matrix.
Proof

If possible, let CD be a fundamental matrix of the system x' = Ax. Then it
should satisfy the equation (C ®)' = AC®, that is, CO' = ACD.

Since C is non-singular, premultiplying by C™', we get ®' = C"' AC® which
shows that @ is a fundamental matrix of x' = C"' ACx, but two different homogeneous

systems cannot have the same fundamental matrix. Hence a contradiction.

Example 1.2 Find the fundamental matrix of the system

X, -t t 0
X=|X,|and A= 0 -t O
X, 0 0 t

Now the system x' = Ax is equivalent to the set of differential equations
X(0)=-tx; +1x,, X, () =-tx, , X; (D) = tx,

Solving these three equations, we obtain the solutions as

t? o 2 ;
XIZEe t /2,X2=et/2,X3=et /2
Hence the solution matrix is
e _
Ee t</2 0 0
2
pt)=| 0 et 0
2
0 eI /2

Now let the column vectors of ¢(t) be
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_% —I2/2_ 0 0
a)=| 0 |, a®)=|e"|, 4Mt)=| 0
0 0 eI2/2

2

Since W[d1, 02, 93] (t) = %e‘tz/z # 0, the vectors ¢, ¢, and ¢3 are linearly

independent. Hence the solution matrix ¢ is a fundamental matrix.

1 3 0
Example 1.3 IfA={0 1 0 , find the determinant of the fundamental matrix
1 4 -2

¢ satisfying ¢(0)=E.

We know from Abel Liouville formula
t
det g(t) = det ¢ () exp j trA ds (1)

Now let us choose T = 0. Hence det ¢(0) = det E = 1. For the given matrix A,
trA=1+1-2=0.

Using the above values in (1), we get

t
det o (1) =lexpj0dt=lexp(0)=l

Hence det o(t) = 1.

et 1 0
Example 1.4 Check whether the matrix ¢(t)=| 1 e 0] is a fundamental matrix
0 0 1

for the system x' = Ax,t € L.
We know that ¢ (t) is a fundamental matrix if and only if det ¢(t) # 0.

For the given matrix det ¢(t) = 1 [e'e” — 1] = 0 by expanding ¢(t) along the last row.

Since det ¢(t) = 0, @(t) cannot be a fundamental matrix of given system.
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Definition Adjoint system
If @ is a fundamental matrix of LH system
x'= A(t)x (1)
Then (as proved earlier)
o] =—0 00
o] =—oA @0
[as O satisfies (1), .. <I>! = Ad]
= o] =-0'A

Taking conjugate transpose on both sides

(0] =oa)
SR )

= —A*®"  [(AB)*=B* A%
= (o) = —arle) @)
Also det ((D*)fl is#0asdetd=0.

Therefore (CI)‘1 )* =@ is a fundamental matrix for the system
x'=-A*(t)x 3)
This system (3) is called the adjoint to LH system (1).
Theorem 1.18 If @ is a fundamental matrix for LH system
x'=A(t) x (1)

then vy is a fundamental matrix for its adjoint x' = - A*(t)x, iff ¢ *® =C, where C is

a constant non-singular matrix.

Proof. Given @ is a fundamental matrix of (1)

®*' is a fundamental matrix of adjoint system
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X' = -A*(t)x (2)

Let y be a fundamental matrix of (2). Thus y and @ *'are fundamental matrices of

the same system (2). Therefore, by theorem 1.17

v=(@*)'D (3)
for some constant non-singular matrix D.
Now y*=D* ((CD "‘)_1 )*
- o+fo )] ~0v0
= w* O=D*O'd=D*E=D*
andlet D*=C

Then

w*® =C, where C is a constant non-singular matrix. [as D is non-

singular = D* is non-singular]
Conversely Suppose that

w* ®=C
where C is a constant non-singular matrix.

Claim: If @ is a fundamental matrix of (1) and satisfies condition (4), then y is a

fundamental matrix of (3)

Now given @ is a fundamental matrix, so det ® = 0 = @ 'exists. So from

equation (4)

= y*= C o'

Apply conjugate Transpose operation
)

v o= Jor- (@) e

(co™)
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Since (<I>*)71 is a fundamental matrix of adjoint system (2). Then by Theorem
1.17 (CI)*)_l C* is also a fundamental matrix of ajdoint system (2). Consequently v is
also a fundamental matrix of adjoint system (2). Hence the proof.
Theorem 1.19

Hypothesis. Let f be a nontrivial solution of the nth-order homogeneous linear

differential equation

n-1

d"x d"'x dx
a, (t) 7o +a,(1) T +K +a, (t)a+an (Hx=0. (1)

Conclusion The transformation
x = f(t)v (2)

reduces Equation (1) to an (n-1)th-order homogeneous linear differential equation in

the dependent variable w, where w = dv/dt.
Proof. Let x = f(t)v. Then

dx - f(t)— + (),

d*x d’v dv
-t Y 280 4 e
re ()dt2+ ()dt+ (v,
M
n—l ,2
d’x_ f(t) 4 nf (t) ”(” D f”() fot FO )W

dt"

Substituting these expressions into the differential equation (1), we have

dnl

a (t)[ f(t +fM™ (t)v}

dnl +(n=-1f (t)dn v

+a (t){ f (t) + (t)v}

+K +a, (t){ f (t)% + f ’(t)v} +a,(t)f(tv=0
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or

a,(t) f (t)% +[na, () f'(t) +a, () f (t)] (;t Y

+A

+[na, ) F () +A +a,,)f (t)]%

+a, ) F OO +a,® F VM) +A +a,, 1) F(t)+a,®)f1)]v=0. 3)

Now since f is a solution of Equation (1), the coefficient of v is zero. Then, letting

w=dv/dt, Equation (3) reduces to the (n-1)th-order equation in w,

d n—lW d n—2W
+A ) ——
dtn—l 1( ) dtn—Z

A(®) +A + A, (HW=0, 4)

where
Ao(t)=a0(t)f(t),
As(t)=nag(H)F (t)+as (D), ...,
Ana(t)=nao(t)f ™ O)+........ +an1(Hf(t).

Now suppose that Wi, Wa,.....Wp.1 is a known fundamental set of equation (4). Then vy,

Vy,.....Vp.1 defined by

v, (t) = j w, (t)dt, v, (t) = j W, ()t v, (t)= j w__ (t)dt

is a set of (n-1) solutions of equation (3). Also, the function v, such that v,(t) = 1 for
all t is a solution of Equation (3). These n solutions vi,vs....., v, of Equation (3) are
linearly independent. Then, using (2) we obtain n solutions f;, where fi(t) = f(t)vi(t)
(1 =1,2..,n) of the original nth - order equation. The n solutions f;, so defined are also

linearly independent and thus constitute a fundamental set of equation (1).

One may extend Theorem 1.12 to show that if m (where m < n) linearly
independent solutions of equation (1) are known, then equation (1) may be reduced to

a homogeneous linear equation of order (n-m).
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Reduction of the order of a homogeneous system

If m (0 < m < n) linearly independent solutions of (LH) are known, it is
possible to reduce the order of (LH) by m, and hence a linear system of order n-m

only need be solved.

Suppose @i,..., m are m linearly independent vectors which are solutions of
(LH) on an interval I. Let ¢; have components ¢;j (1 = 1, ...,n). Then the rank of the n-
by-m matrix with elements ¢; (1 =1, ...,n;j = 1,...,m) at every t € I is m, because of
the linear independence of its columns. This means that for each t € I there is an m-
by-m determinant in this matrix which does not vanish there. Take any t, € I and
assume for the moment that the determinant of the matrix ®,, whose elements are @;;
i=1,...m;j=1...m) is not zero at tp. Then, by the continuity of det @, in its
elements @; and the continuity of the functions ;j near ty, one has that det ®(t) # 0 for
t in some interval 1 containing ty. Let I be any such interval; the reduction process

will be outlined for 1 . (The idea behind the process is a modification of the variation

of constants).

Let the matrix U have the vectors o,..., @n for its first m columns and the

vectors €mt+i, ..., €y for its lat n —m columns, where ¢; is the column vector with all
elements 0 except for the j-th which is 1. Clearly U is non-singular on 1. The
substitution.

x =Uy (M

is made in (LH). [ Note that x =¢; =1, ..., m) in (1) corresponds toy =¢; j = 1,...,
m). Thus the substitution (1) may be expected to yield a system in y which will have
ej,J =1, ..., m, as solutions]. Using (1) in (LH) we get

Uy+ Uy =AUy

Writing this out gives

Z(/)"J yj +z¢ijy} =zzaik¢kjyj + Zaik Y (1: 1, ceey l’n)
i=1 j=1 j=1 k=1

k=m-+1

ZCoi'j it yi,+z¢)ijy,j = zaik¢kjyj + Zaikyk (i=m+1,...,n)
= il =1 k=l

k=m+1
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Expressing the fact that the vectors ¢@; with components ;; are solutions of (LH),

?; :kzr;l:aikgokj i=1,..,n,j=1,...,m)
we get
igoijy} :Zn:aikyk (i=1,..,m)
j=1 k=m-+1
y; +i¢ijy} :kznllaikyk (i=m+1,...,n) (2)
- St

Since det @, # 0 on |, the first set of equations in (2) may be solved for

yi (j=L..,m)in terms of ¢y, ai and yx (k = m + 1,...,n), and these values of
y; (j=1,...,n)may then be put into the second set of formulas of (2). This gives a set

of first-order equations satisfied by the y; (1=m + 1, ...,n) of the type

Yi+ D by, (i=m+1,...,n) (3)

k=m+1
that is, a linear system of order n — m.

Now suppose ,,.,,..%,[¥; having components y; (i, j = m+l,...,n)] is a
fundamental set on 1 for the system (3). Let ¥, denote the matrix with elements
w; (i, j=m+1,...,n)]. Clearly detV,_ (t)#0 on I .Foreachj=m+ 1,..., n, let i (i

=1, ...,m) be solved for by quadratures (that is, by integration) from the relations

DOV = D AW (4)
j=1 k=m+1
1=1,...,m p=m+1,...,n

Let y, (p=m+l1, .. ., n) denote the vectors having components y;, (1= 1, .. ., n),

and let

Vp=¢ (p=1,...,m)

Since vy, p = 1,..., n, satisfy (3) and the first set of equations of (2), they must also
satisfy the second set of equations of (2), and therefore y, p = 1,..., n, are solutions

of (2). Thus, if now ¥ is the matrix with columns y,, p=1,..., n, and if
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o=UY%
then @ is a matrix solution of (LH) on T . U is nonsingular. Since det¥ = det ¥ on

I, it follows that @ is nonsingular on I and hence a fundamental solution of (LH) on
T,
The above procedure is summarized in the following theorem.

Theorem 1.20 Let ¢y,...., ¢ (m <n) be m known linearly independent solutions of
(LH) with ¢; G = 1, ...., m) having components ¢; (1 = 1, ...,n). Assume the
determinant of the matrix with elements ¢; (i, j = 1,...,m) is not zero on some
subinterval 1 of I. Then the construction of a set of n linearly independent solutions

of (LH) on T can be reduced to the solution of a linear system (3) of order n — m,

plus quadratures (4), using the substitution (1).

The restriction that the matrix @, should be nonsingular on an interval will
now be removed. It is clear that the n-by-m matrix with elements ¢;; (i =1, ...., n;
j =1, ..., m), has rank m because of the independence of the solutions ¢;, j = 1,...m.
Thus, at any t = to, there is a non-singular m-by-m matrix obtained by taking m rows,

11, ..., 1y, Oof the n-by-m matrix. By continuity, this matrix is nonsingular over some

interval 1 .
Summary

The students are made familiar with some preliminary definitions and
fundamental results of linear homogeneous system. Relation between fundamental
matrix and Wronskian of solution functions have been developed. Lastly procedure

for reduction of order of a homogeneous linear system has been explained in detail.

Keywords Linear systems, fundamental matrix, Wornskian, variation of constant,

reduction of order.
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Chapter-2

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS -1I

Objectives

The main objectives of this chapter include finding out solution of non-homogeneous
linear systems, linear systems with constant coefficients, systems with periodic

coefficients along with the study of linear differential equation of order n.
Non-homogeneous Linear Equations: Variation of Parameters

Consider the second order differential equation

L(t)y = ao(t)y" + as(t)y' + az(t)y = b(t) (1)
Important Fact

If you know the general solution of the associated homogeneous problem
L(t) y = 0 then you can always reduce the construction of the general solution of (1) to
the problem of finding two primitives (antiderivatives). The method for doing this is

called variation of parameters.

We shall first illustrate the method of variation of parameters on second order

equations in the normal form

L®y =y" +p@)y" +a®y = g(. 2)
You can put the general equation (1) into normal form by simply dividing by
ao(t).

Suppose you know that Y(t) and Y,(t) are linearly independent solutions of
the homogeneous problem L(t)y = 0 associated with (2). The general solution of the

homogeneous problem is then given by

Yy = Yh(t) = caYa(t) + caYa(t) 3)
The idea of the method of variation of parameters is to seek solutions of (2) in

the form



y = u(t)Y1(t) + ua(t)Y2(t). 4)

In other words you simply replace the arbitrary constants c¢; and ¢; in (3) with
unknown functions u;(t) and uy(t). These functions are the varying parameters referred
to in the title of the method. These two functions will be governed by a system of two
equations, one of which is derived by requiring that (2) is satisfied, and the other of

which is chosen to simplify the resulting system.
Let us see how this is done. Differentiating (4) yields
y'=w® Y, O+u,®Y, ©+u; OY,0)+u; OY,() S))
We now choose to impose the condition
uy (Y, (0 +uy (OY,(H) =0 (6)
whereby (5) simplifies to
y'=w® Y, O+u,®Y, . (7)
Differentiating (7) then yields
Y =w® Y, O +u,0)Y, O +u Y, O +u, Y0, (8)

Now substituting (4), (7), and (8) into (2) and using the fact that Y(t) and Y,(t) are
solutions of L(t)y = 0, we find that

g = L(vy

= y'+p®y' +q®y

= 1O Y, O+, Y, 0 +u, (0 Y, 0 +u,(0) Y, (1)
+p(Oui(t) Y, (D) + pt)u, () Y, ()
(O Y1(1) + q(OuaA(t) Ya(t)
=u,(OLY, (1) +p(®) Y, (1) +q() Y, (V)] )
+u, (O [Y, (1) +p() Y, () +qt) Y, (1)]

+U (DY, (1) + U, ()Y, (1)

=U(OILOY (D] + ua(O[L) Y(0)]
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+U; (DY, (1) + Uy ()Y, ()

=U, (DY, () + Uy ()Y, ().

Here we have used the fact that L(t)Y1(t) = 0 and L(t)Y2(t)= O to see that many terms
in the expression for L(t)y cancel. The resulting system that governs uy(t) and uy(t) is

thereby given by (6) and (9):
u, (DY, (1) + U, (Y, () =0 (10)
U (DY, (1) +U, (DY, (1) = (1),
This is a linear system of two algebraic equations for u,(t) and u,(t). Because
Y, (OY; ()~ Y, (0, (1) =W (Y,,Y,)(®) %0,
One can always solve this system to find

Y,(H)g(t)
W (Y, Y)()

Y, (1)g(t)

0= LY,

u(t) =

Letting U1(t) and Uy(t) be any primitives of the respective right-hand sides above, one

see that
us(t) = c1 + Uy(t), ua(t) = co + Uy(t),
whereby (4) yields the general solution
y = C1Y1(t) + U (t)Ya(t) + caYo(t) + Ua(t)Ya(t)
Notice that this decomposes as y = Yu(t) + Y,(t) where
Yu(t) =ciYi(t) +c2Ya(t),  Ye(t) = Ui(t)Yi(t) + Ua(t)Y2(t).

The best way to apply this method in practice is not to memorize one of the

various formulas for the final solution given in the book, but rather to construct the
linear system (10), which can then be rather easily solved for u,(t) and u,(t). Given

Y1(t) and Y,(t) a fundamental set of solutions to the associated homogeneous problem,

you proceed as follows.

1) Write the equation in the normal form

y" +p)y +at)y =g
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2)

3)

4)

5)

6)

Write the form of the solution you seek:
y= ul(t)Yl(t) + uZ(t)Yz(t)

Write the algebraic linear system for u,(t) and U, (t)
U (DY, (0 + U (Y, (1) = 0,

u (DY, (O +u,OY, (1) = g(t)
The form of the left hand sides of this system mimics the form of the solution
we seek. The first equation simply replaces u;(t) and uy(t) with u,(t) and

u,(t), while the second also replaces Y(t) and Y,(t) with Y, (t) and Y, (t).

Solve the algebraic system for U, (t) and u,(t). This is always very easy to do,

especially if you start with the first equation.

Integrate to find u;(t) and uy(t). If you cannot find a primitive analytically then
express that primitive in terms of a definite integral. Remember to include the

constants of integration, c¢; and c;.

Substitute the result into the form of the solution you wrote down in step 2. If
the problem is an initial-value problem, you must determine ¢, and c, from the

initial conditions.

Example 2.1 Find the general solution of

y" +y = sec(t)

Before presenting the solution, notice that while this equation has constant

coefficients the driving is not of the form that would allow you to use the method of

undetermined coefficients. You should be able to recognize this right away and

thereby see that the only method you can use to solve this problem is variation of

parameters.

The equation is in normal form. Because this problem has constant

coefficients, it is easily found that

Yn(t) = c1 cos(t) + c; sin(t)
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Hence, we will seek a solution of the form
y = uy(t) cos(t) + uy(t) sin(t),

u, (t)cos(t) + U, (t)sin(t) =0,
—u, (t)sin(t) +u, (t)cos(t) = sec(t).

where

Solving this system by any means you choose, yields

sin(t)
cos(t)’

u () =- u,(t)=1

These can be integrated analytically to obtain
ui(t) =c; + In(|cos(t)|), uwa(t)=cy+t.
Therefore the general solution is
y = c; cos(t) + ¢z sin(t) + In(|cos(t)|) cos(t) + t sin(t).
Non-Homogeneous Linear Systems
Now we shall consider non-homogeneous linear systems of the type
X'=A({t)x+B(),tel (1)

where A is an n x n matrix of continuous functions on I and B is the continuous
vector on I which is not identically zero. As in the case of non-homogeneous linear
equations, we shall first explain how the solution of (1) is closely related to the

solution of the corresponding homogeneous system
x'=Al)x,tel 2)

More precisely, we shall show that any solution of (1) is the sum of a particular
solution of (1) and the solution of (2) given by the solution vectors. Since we can find
the solutions of the homogeneous system, the problem is to find a particular solution
of (1). Once we know the fundamental matrix of the homogeneous system, we can
find a solution of the non-homogeneous system by the method of variation of

parameters. First we shall formulate the theorem giving the general solution of (1).

Theorem 2.1 Let ¢y be any solution of the non-homogeneous system (1) and ¢, ¢,

... ,On be a basis of solutions of the corresponding homogeneous system (2) and let
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Cly Cpunnrnnnn ,Cn be constants. Then

(1) the vector function
n
¢ + z Cy &y 3)
k=1
is also a solution of the non-homogeneous system for every choice of ¢y, ca,........ Cn.

(i1) an arbitrary solution of the non-homogeneous system (1) is of the form (3) for

a suitable choice of ¢y, ca,........ Cn.

Proof (i) Let y(t) = ¢, + Zn:ck(ék .

k=1

We shall show that y(t) is a solution of (1). Since ¢ and chqﬁk are solutions of (1)
k=l

and (2) respectively, we have

4 = At)g, + B®) 0
o) = ADY cd 5)
k=1
Now WOF =g+ Yo ©)

Using (4) and (5) in (6), we get

[y (O] = Att)g, + B() + A1) C 4,
k=1

- A(t){% + icmk} B(1)

Therefore [y(t)]' = A(t) y(t) + B(t) which shows that y(t) is a solution of (1) for
every choice of ¢y, cp,........ Cp.
(i1) Let ¢ be any arbitrary solution of (1). Then

¢'(t) = A(D)(t) + B(t) (7)

We shall show that ¢ - ¢ is a solution of the corresponding homogeneous equation
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2).

9 pp =92 _ 9%
Now lP=hl= (8)

Using (4) and (7) in (8), we get
16 - 001 = AOHO + BO - [A®) o+ BO)

= AM[6(1) - do]

which proves that ¢ - ¢y satisfies the corresponding homogeneous equation (2). Since
d1, ¢2, ... O, are the basis of solution vectors, there exist constants ¢y, c,........ Cn such

that
b-h=3od  oF  p=h+dch

for a suitable choice of ¢y, ¢p,........ cn which completes the proof of the theorem.

The following theorem helps us to find a particular solution of the non-homogeneous
system by the method of variation of parameters, once we know the fundamental

matrix of the given corresponding homogeneous system.
Theorem 2.2 If ¢(t) is the fundamental matrix of the homogeneous system
X'(t)=A (1) x(t),t e 1 (1)

then y defined by

vt =pt)[ o™ (5)B(s)ds. tel 2)

is a solution of the initial value problem of the non-homogeneous system

X'(t) = A(Dx(t) + B(1), x(to) = 0 3)
Proof The method of proof is to assume a differentiable vector function u(t) so that

y () =pu),tel, w(t)=0 4

is a solution of the non-homogeneous equation (3).
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Since y(t) is a solution of (3), we have

V'(©) = A@w() + B()
Substituting for y(t) from (4), we get

V'(t) = A(He(tu(t) + B(t) (5)
Since (t) is a fundamental matrix of (1),

@'(t) = A(Do(t) (6)
Now differentiating (4), we get for any t € I,

V(1) = ¢'(Hu(t) + e(t)u'(t) (7
Using (6) in (7), we get

V') = A(Oe()u(t) + e(tu'(t) (8)
Equating the expressions for y(t) from (5) and (8)

AMe(t)u(t) + e(tu'(t) = A()e(t)u(t) + B(t)
which gives

e(tu'(t) = B(1) 9)

Since @(t) is a fundamental matrix, det ¢(t) # 0, so that it is non-singular. Hence we

get on premultiplying (9) by @™ (t),

u'(t) = ¢ (HB() (10)

Integrating equation (10), we obtain
t
u(t) = j(p’l(s)B(s)ds, t,tel (11)
)
Substituting the above value of u(t) in (4), we get

() =p)[ e (5)B(S)ds, tel, (12)

to

We shall show that (12) is indeed a solution of (3). We do this by direct

verification
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y' () =¢'() I @™ (5)B(s)ds + p(t)p ™ (HB(D)

)
= A o(Hu() + B() = Ay(0) + B(), (using ( 11))
which proves that y'(t) = Ay (t) + B, showing that (12) is a solution of (3).

Note If x, is the vector solution of the corresponding homogeneous equation

x' = A(t)x, X(to) = 0, then Theorem 2.1 gives the general solution of (3) as

v (O =x(0)+ e[ ™ ()B(s)ds, tel (13)

t

These formulas (12) and (13) are called methods of variation of parameters for non-

homogeneous linear systems.
The following example illustrates the above theorem.

Example 2.2 Obtain the solution y(t) of the initial value problem

x' = Ax + B(t), y(0) = m (1)

X, 1 0 sin at
where X = , A= , B(t)= (2)
X, 0 2 cos bt

To solve the above non-homogeneous matrix equation, first we need the fundamental

matrix of x'(t) = Ax(t) with the given data.

) ) X, I 0fx |. )
The given equation = is equivalent to
X, 0 2] x,
X; =X, and X, = 2X, 3)

Solving equation (3), we get

x;(t) = €' and x,(t) = **

e' 0
Hence the solution vectors are ¢(t) = {0 } and ¢a(t) = [ 2t]
e
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et 0
Since W[¢1, ¢2](t) #0 for any t, ¢; and ¢, are linearly independent so that {0 3 Zt} is

a solution matrix ¢. Since det ¢@(t) # 0, the above solution matrix is a fundamental

matrix by theorem 1.9.

a b
To determine y(t), we need the inverse of ¢(t). If L d} is the inverse of ¢(t), then
e o0 fla bl |1 0
0 e*|lc d| |0 1
ae' be' | [1 0
CeZt deZt O 1

Equating the corresponding matrix entries on both sides, we get ae' = 1, be' = 0,

we have

which gives

ce® =0, de* = 1sothat we geta=¢",b=0,c=0and d=e? . Hence the inverse

. |et 0
matrix 1s 0 |
e

If y(t) is the solution of (2), from Theorem 2.2, we get

v®) =09 ()BE)s, 1t €l @)

)

Substituting @(t), @' (t), B(t) in (4), we get
et 0 et 0 |sinat
t) = dt
vt [O ezi J-[ 0 e }[cos bt}

_ et 0 ] J- e 'sinat ot
0 e* e ' cosht
e—t
Mt 7] —sinat—acosat)+c
0] 1522 )*6

2t -2t
L0 e ]| € (—2cosbt +bsinbt) +c,

4+b*
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. (-sinat —acosat) + C,e'
_ +a

;bz(—2 cosbt +bsinbt) +c,e*
+

Using the initial conditions at t =0,

—a

+C
0l | 14+a2
1 -2

4+b’ T

Equating the corresponding elements, we get

a 2 6+b?
—,C =1 2 = 2
4+b 1+a

Hence the solution matrix y(t) is

t

~(—sinat—acosat) + e

1+a 1+a

2
(—2cosbt +bsinbt) +we2t
(4+b%)

2

w(t)=

4+b*
which gives the solution y(t) as

(1+a*)"'(ae' —(sinat +acos at]
(4+b*)'[(6+Db*)e* + (bsinbt —2 cos bt)]

Theorem 2.3 Prove that the solution
t
#(t) = D(t) j ' (s)b(s)ds, tel (1)
of NH system x' = A(t)x + b can be written as
-1 ¢
pO) =" ()] ¥ (s)b(s)ds )

where Y is a fundamental matrix of the adjoint system

x'=-A"(H)x (3)
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Proof We know that if @ is a fundamental matrix of x' = A(t)x; Then @ is a

fundamental matrix of X' = -A*(t)x (Adjoint system).

. ¥ and ® are fundamental matrices of same system (3). Therefore, by theorem

1.10
Y= (CD* )_1 C, for some constant non-singular matrix C.
= ¥ =C'o”'
= o' =(C')'w )
- (q)_l)—l :(‘{l*)-lc*
= o=(w)'c (5)
Put these values of ® and @' from (4) and (5) in (1), we get
-1 ¢ -1
s =" ®C [(C") ¥ (9)b(s)ds
-1 ¢ -1
pO) =¥ (O] ¥ (s)b(s)ds as C'C" =Identity
Hence the proof.
Theorem 2.4 ¢(t) can be written as
t
#(t) = (O [ ¥ (s)b(s)ds
provided ¥Y'®=E.
Proof Proof follows from Theorem 2.3. The result of theorem 2.3 is
-1 L
pt)="F" (O] ¥ (s)b(s)ds (1)

Now we find out ¥ (t).

From given relation
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- ¥ t)=PE'=OE=0

Use this in equation (1)
d(t) = D(t) j ¥ (s)b(s)ds..

Linear Systems with Constant Coefficients
In this section we shall obtain the solution of the linear homogeneous system

X' =Ax,tel (1)
where A is a constant matrix and I is an interval of R.

Theorem 2.5 (i) The general solution of (1) is x(t) = ¢"*c where c is an arbitrary

constant column matrix.
(i1) If (1) satisfies the initial condition x(t)) = x¢, ty € I, its solution is
x(t) =e"%x, .
(ii1))  The fundamental matrix @(t) of the system is @(t) = e,
Proof (i) Let x(t) be a solution of (1). Then we have

x'(t)=Ax(t) or Xx'(t)—Ax(t)=0,tel (2)
Let us define a vector u(t) = ¢™ x(t), t €l. Then differentiating

u'(t) =e™ (-A)x(t) + e x'(t) (3)
so that

u'(t) = ™ [ -Ax(t) + x'(1)]
Using (2) in (3), we get u'(t) = ¢**[0] = 0. Hence u(t) = ¢ is a constant vector for t I.
Since u(t) = c, we get c= ™ x(t).

Premultiplying both sides by e, we get

x(t)=e"c 4)
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(i1) When t = to, X(tp) = €*”c so that we get ¢ = e_t"AX(to). Using this value of ¢ in
“4)

x(t) =e™. e x(t,) =e"x,
(i)  If o(t) is a fundamental matrix, it satisfies differential equation (1) and

det @(t) # 0. We shall show that ¢ has these twin properties so that ¢” is a

fundamental matrix of the system.

Let us take ¢(t) = ¢"*. Then we have

At—0

'  gHADA _ ot ‘ tA e
) (t)—BE})T— lim Ae "

Si fim| €1 1 (1) = Ae* = Ap(t
ince i = |~ b2 O =Aem=Ap()

Thus ¢ satisfies the given differential equation. Further we note that ¢(0) = E and

from Theorem 1.15

det @(t) = det @(0) exp [(trA) (t—to)] =0
Hence det @(t) # 0 so that ¢(t) is a fundamental matrix of the system.
Corollary The solution of the system x' = Ax, x(0) =E, t €l is x(t) = e"*.
Proof From (ii), the solution is x(t) = ¢”* x(0) = ¢ E =¢**

Note 1 The fundamental matrix of the system (1) can be determined by considering
the linearly independent sets in R". We know that ey, e,,.... €, is a basis in R". Let ¢,
d2, ... ¢n be the solutions corresponding to the initial value problem x(tp) = e,
X(t)) = e€a,...., X(to) = en. Then if ty = 0, by (ii) of Theorem 2.1 ¢;(t) = ey,

da(t) = ees ... hu(t) e

h —e"E

-~ > >

Hence pt)=e"[e.e,,..e, ]=¢

n

> > o o
— P o o

0
1
A
0

o - o~

Thus ¢(t) = ¢*E is a fundamental matrix of the system.
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Note 2 We cannot solve the matrix differential equation x'(t) = A(t) x(t) as the first

order linear differential equation by finding an integrating factor.

t
That is x(t) = exp [j- A(S)dSJ can not be a solution of the equation for

)

X'(t) = epr A(s)ds]A(t) = X(H)A(t)

t

j A(s)dsJ and A(t)

t

t
Hence x(t) = exp( I A(S)dsj is a solution if and only if exp[

t

commute. They commute if A is a constant matrix or a diagonal matrix. Hence the

above method of solutions is valid only for a constant or a diagonal matrix.

Example 2.3 Find the fundamental matrix of x' = Ax, where

A a o0
10 a,
The fundamental matrix is e**. So we shall find e* for the given matrix A. For

this we shall find A%, A®, A", ... so that

2 n
SCND LA L S S U S
2! n!
Now A2=al 0 % :alz 0
0 a, | |0 a, 0 a;

tA 10 a 0|t tz af 0
e = + —+— )
0 a |l 2|0 a

Hence
0 1
t*la’ 0 t"|a/
+— s | Fet—= e
30 a ni 0 a;
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Example 2.4 Find the solution and the fundamental matrix of

5 4
x' = AX where A =
1 2
The characteristic equation of A is det (A - AE) = 0.

5-4 4
Now det (A - AE) =

2-4
which gives 5-A) 2-L)-4=0
Hence the characteristic equation is
A -Th+6=0
that is W -TA+6)=(-6) (L-1)=0

Thus the eigenvalues are A; =6 and A, = 1.

Now we shall find the eigenvectors corresponding to the distinct eigenvalues.

X,

(A-6E) x = 0.

5-6 4 X,
Hence (A-6E)x =
1 2-6| |x,
-1 4] [x]| [o
1 =4 (X 0
[—x, +4x,] [0
X, —4x,| |0
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which is

Thus we have

X
If [ 1 } is the eigenvector corresponding to the eigvenvalue A; = 6, then



which gives -X; +4x; =0 and x;—-4x,=0

4
we can choose x; =4 and x; = 1 so that the eigenvector corresponding to A ;=6 is L}

Let us find the eigenvector corresponding to A, = 1.

-1+5 4 X, 4x,  4x, 0
Now (A-E)x= = =
1 2-111x, X, X 0
which gives x; + x; = 0. So we can choose x; = 1 and x, = -1

1
Thus the eigenvector corresponding to A, = 1 is [ J

4 1
These eigenvectors L} and { J are linearly independent. The solution vectors are

4 1
eﬁ{ } and et[ }
1 -1

Using these, the fundamental matrix ¢(t) is given by

oft) = |:4e6t el t}

e —e

The solution of the matrix equation is

Linear Systems with Periodic Coefficients
If x(t) is the solution of the linear system
x' = Ax (1)

Then the solution x(t) is said to be periodic with period ® if x(t + ®) = x(t). The
question arises, under what conditions (1) admits a periodic solution. If it admits a
periodic solution, it is of interest to note the nature of A. Besides answering this

question about the periodic solution and the nature of A, we will also investigate the
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case of the solutions when the matrix A is of minimal period, that is, A(t + ®) = A(t),

wo#0and -0 <t< oo,

Theorem 2.6 The system (1) admits a non zero periodic solution of period o if and

only if E- ¢"® is singular where E is the identity matrix.
Proof According to Theorem 2.5, the solution x(t) of (1) is given by
x(t) = e™c (1)

where c is an arbitrary non-zero vector. x(t) is periodic with period o if and only if

x(t) =x (t+ )= )
Using (1) in (2), we get e - e =0
that is eM[E-e¢*]c=0

Since ¢ # 0, (1) has a solution if and only if [E —¢*“] ¢ = 0. Since ¢ is non-zero
constant vector, the system (1) has a non-zero periodic solution of period o if and

only if det [E- ¢*“] = 0. This implies E - ¢"® is singular.

The next theorem characterizes the non-zero periodic solution of the non-

homogeneous equation
x'(t) = A(t)x + f(t) (1)
where f'is a continuous vector valued function on (-co, o).

Theorem 2.7 Let f{(t) be a periodic function with period . Then the solution of (1) is

periodic of period w if and only if x(0) = x().

Proof To prove the necessity of the condition, let x(t) be a periodic solution of (1)
with non-zero period ®. Then x(t + ) = x(t). Taking t = 0, x(®) = x(0) which proves

the necessity of the condition.

To prove the sufficiency of the condition, let x(t) be a solution of (1) satisfying the

condition x(0) = x(®). On this assumption, we shall prove that the solution is periodic.
Now X' (t+m)=Ax(t+ o) + f(t + ) (2)

We make the substitution
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u(t) = x (t + o) 3)
so that we have u'(t) =x' (t + o) (4)
Using (4) and (3) in (2), we get
u'(t) = Au(t) + f(t), since f(t + o) = f(t)

Hence u(t) is a solution of (1) and also u(0) = x(®w) = x(0) by hypothesis. Since the
solution of (1) is unique it cannot have two different solutions u(t) and x(t). Thus we
get x(t) = u(t) = x(t + o) which gives x(t) = x(t + ®), showing that the solution x(t) is

periodic with period .

In our previous study, we obtained the solution of a non-homogeneous
equation with the help of the corresponding homogeneous equation. In connection

with the solution of the periodic equation, we have the following theorem.

Theorem 2.8 Let f(t) be a continuous periodic function of period ® on (-0, ). A

necessary and sufficient condition for the system.
X' = Ax + f(t) (1)

to have a unique periodic solution of period o is that the corresponding homogeneous

system.
x'=Ax (2)
has no non-zero periodic solution of period .

Proof We know by Theorem 2.2, a general solution of (1) is
t
x(0)=xn+ o) [¢7(s)F(s)ds 3)
0

where ¢ is the fundamental matrix of the system.

Further
xn(t) = eV, p(t) =™, 97l(s) =™ 4)

Substituting (4) in (3), we get
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t t
x(t)=e™c+ Ie‘“e‘AS f(s)ds=e™c+ IeA(“S) f(s)ds (5)
0 0

where c is a constant vector.

Further from (5), we get
x(0)=c (6)
According to the previous theorem, x(t) is non-zero periodic solution of (1) if
and only if
x(0) = x(®) (7)
From (6) and (7), we get
x(0) =x(0) =c¢ (8)
Now x(m) = e + TeA(”S) f(s)ds

0

Using (8) in the above, we have

[0
c=e "+ jeA(”‘s) f(s)ds
0

Hence (E - ") = IeA(”‘S) f(s)ds 9)
0

Hence there is a unique, periodic solution for (1) if and only if (9) has a unique
solution for ¢ for any periodic function f. It has unique solution for c if and only if
(E-e"®) is non-singular which implies and is implied by Theorem 2.6, the system (2)
has no non-zero periodic solution of period ®. This completes the proof of the

theorem.

After the study of the system x' = Ax with x(t) as a periodic function of period
o, we shall discuss the solution of the same system when it is of minimal period in the
sense that A(t + ®) = A(t), ® #0, t € (-0, ). We shall consider in this section a

system x' = A(t) x, where A is of minimal period. The next question is, if @(t) is a
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fundamental matrix what is about ¢@(t +®)? The following theorem states the ¢(t + ®)

is also a fundamental matrix.
Representation Theorem
Theorem 2.9 Let ¢(t) denotes the fundamental matrix of the system
x'= Ax (D)

where A is of minimal period ®. Then ¢@(t + ®) for t € (- o, =) is also a fundamental
matrix of (1), and corresponding to each such ¢, there exists (i) a periodic non-

singular matrix P such that P(t + w) = P(t) and (i1) a constant matrix B such that
o(t) = P(t)e™.
Proof Since ¢(t) is a fundamental matrix of (1), it is a solution matrix of (1) so that
9'(t) = A(t) (1).
Now o't+m)=At+ o) o (t+ m) (2)
Since A is of minimal period

A(t+ o) =A(t) 3)
Using (3) in (2), we get @' (t + ®) = A(t) ¢ (t + ®)

Further det @(t + ®) # 0, for if det o(t + ®) = 0 implies det @(t) = 0 for ® = 0

contradicting that ¢ is a fundamental matrix. Hence ¢ (t + ®) is a fundamental matrix.

Since @(t) and @(t + m) are solution matrices of (1), there exists a non-singular
matrix C such that @(t + ®) = ¢(t) C by theorem 1.10. Since C is a constant non-

singular matrix, there exist a matrix B s.t.
C =¢”® (by theorem 1.1)
Hence we can take o(t+ o) = @(t) e 4)
Let us define P(t) = p(t)e™
We shall now show that P is a periodic function with period ® and non-singular.
Now P(t+ w) = o(t+ @) " (5)

Using (4) in (5) we get P(t + o) = @(t)e”®. ¢ " = P(t). Hence P(t + ®) = P(t).
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Thus P(t) is periodic with period .
¢(t) is a fundamental matrix, so det ¢(t) # 0.
Hence det P(t) = det @(t)e ™ = detp(t). det e®® £ 0
so that P(t) is a non-singular matrix.

From the definition ¢(t) = P(t)e®®, where P is periodic and non-singular.
Basic Theory of the nth-order Homogeneous Linear Differential Equation
A. Fundamental Results

In this section, we shall be concerned with the single nth order homogeneous linear

scalar differential equation

d”x dnl

dx
ao(t) —+a(t)— e +an_1(t)a+an(t)x—0, (1)

where ay, ai,...,a,.1, a, are continuous on an interval a <t <b and ap(t) #0 ona <t <b.

Let L, denote the formal nth — order linear differential operator defined by

n n-1

L=, 4+ a0, O+, @)

Then differential equation (1) may be written
Lxx=0 3)

If we divide through by a(t) on a <t <b, we obtain the equation

n—l
d" X, a (Hd X an_l(t)dx+ a,(Hx _

dtn n-1 (4)
a,(H)dt a,(Hdt  a,(t)

n
X . . . .
o is 1, is said to be normalized.

This equation, in which the coefficient of

Theorem 2.10

1. Consider the differential equation

d"'x
dtn—l

+..+4a, (t)%+ a,(H)x=0,
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where ao, a;..., a,.1, and a, are continuous on the interval a <t <b, and ay(t) # 0 on

a<t<b.

2. Let to be a point of the interval a <t <b, and let c, ci, ... c,.; be a set of n real

constants.
Conclusion The exists a unique solution ¢ of (1) such that

d(to) = co, §'(to) =cpye.., O™V (to) = cn1, and this solution is
defined over the entire interval a <t <b.

Corollary

Hypothesis The function ¢ is a solution of the homogeneous equation (1) such that

O(to) = 0, §'(to) = 0...., 6"V (o) = 0 (6)

where tj is a point of the interval a <t < b on which the coefficients ay, aj,...., a, are

all continuous and a(t) # 0.
Conclusion ¢(t) =0 for all t such thata <t <b.

Proof First note that ¢ such that ¢(t) = O for all t € [a, b] is indeed a solution of the
differential equation (1) which satisfies the initial conditions (6). But by Theorem
2.10 the initial value problem composed of Equation (1) and conditions (6) has a

unique solution on a <t <b. Hence the stated conclusion follows.

We have already studied that a single nth-order differential equation is closely related
to a certain system of n first order differential equations. We now investigate this
relationship more carefully in the case of the nth order homogeneous linear scalar

differential equation.
d"x d"'x dx
a(t) —+a,(t)——+...+a,,(t)—+a,(t)x=0
o(t) i ‘()dt“‘l n—l()dt 2 (D)

Let
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3 dn—2X dn—lx

Xn-1 = W > Xn = gt (7)
Differentiating (7), we have
dx _dx, d’x _dx, d"'x_dx,, d"x_dx, ®)
dt dt’ dt* dt " Tdt™ dt  odt" dt
The first (n -1) equations of (8) and the last (n -1) equations of (7) at once give
dx, dx, dx,
— =X, ——=Xgo0., ——=X, 9
d¢ " odt dt ®)
Now assuming ay(t) #0 ona<t<b, (1) is equivalent to
d'x _ a, ) . a,,(Hdx  a() d"'x
dt"  a,(t) a,(t) dt  a,(t) dt™
Using both (7) and (8) this becomes
an :_a‘n(t) Xl _an—l(t) Xz__ al(t) Xn (10)
it a® | a,(t)
Combining (9) and (10) we have
dt 7’
dt
M
dxn—l —
dt )
an =_an(t)x _anfl(t)x _.“_al(t)x (11)

dt a,t) " at) a,(t) "

This is a special homogeneous linear system. In vector notation, it is the

homogeneous linear vector differential equation

dx
4 = AOx (12)

where
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0 1 0O A 0 0

X, 0 0 I A 0 0

o ®lda| M M M A M M
0 0 0 0 1

X; T R Y

aO aO aO a'0 aO

Now suppose f satisfies the nth-order homogeneous linear differential equation (1).

Then
ao()F(t) + a ()™ (1) +... a1 (t) F(1) + an()f(t) = 0, (13)

for t € [a, b]. Consider the vector ¢ defined by

A1) f(®)
(1) f'(t)
@O || 'O
*O= " 7| ™ (14)
fa® | | T770
¢ () FO0()

From (13) and (14) we see at once that

¢1¥ (t) = ¢2 (t)a
(1) = 4, (0),
M

i (D) = ¢, (1),

(15)

RO X B L

hO= o a,(t) a, (1)

(V)

Comparing this with (11), we see that the vector ¢ defined by (14) satisfies the system
(11).

Conversely, suppose

40
t
oy | 2O

(1)
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satisfies system (11) on [a, b]. Then (15) holds for all t € [a, b]. The first (n -1)

equations of (15) give
$ (1) =4, (1)
81 =g O =41 (16)
\
HO =610 =41 =A =4""(),

and so ¢, (t) = #" (t). These last equation of (15) then becomes

mgy -~ & B ® s Al
#"(t) = ao(t)¢l(t) e ¢ (t)—... ao(t)cél (t)
or a, (" () +a, (g () +A +a,, (D (1) +a, (D) () =0

Thus ¢; is a solution f of the nth order homogeneous linear differential equation (1)

and (16) shows that, in fact,

f(t)

f'(t)

o) =| f 1)
M

f (n—l)(t)

We have thus obtained the following fundamental result.
Theorem 2.11

Consider the n-th order homogeneous linear differential equation

d"x d""'x dx
at)—+a,(t)—+..+a_ () —+...+a,()x=0,
o()Oltn ‘()dt”-l n_l()(JIt 2 ()

and the corresponding homogeneous linear system (11). If fis a solution of (1) on

[a, b], then
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f
f!
o=| f" (17)

M
f (D

is a solution of (11) on [a, b]. Conversely, if

is a solution of (11) on [a, b], then its first component ¢, is a solution of (1) on [a, b]

and o is, in fact, of the form (17)
Definition

Let f, f3,...., fy be n real functions, each of which has an (n-1)th derivative on

a < x <b. The determinant

f, f, . f
. f, .
M M M

(n-1) (n-1) (n-1)
f, DA

where the primes denote derivatives, is called Wronskian of the n functions fj,

f,...,fh. We denote it by W(f}, f2,...,f,) and denote its value at t by W(f}, f,...,1)(¢).

Let 1, f3,...,f, be n solutions of the n-th order homogeneous linear differential

equation (1) ona <t<b, and let

f, f, f,

| | f |
(I)l M ’ (pz M ’ ’ (pn - M
f1(n_l) fz(n—l) f (n-1)

be the corresponding solutions of homogeneous linear system (11) on a <t <b. By

definition, the Wronskian of the n solutions fj, f;,...f,0f (1) is
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£ f, ..
£ f i

n

M M M
fO0 gD A fOD

Now note that by definition of the Wronskian of n solutions of (1) this is also the

Wronskian of the n solution ¢, @2, ...., @y of (1). That is,

W(f1, 2,...,f)(t) = W(@1, 02y «vees On)(t)

for all t € [a, b]. Now we know that, either W(®1, @2, ...., n)(t) = 0 for all t € [a, b]
or W(Q1, ®2, «..., Pn)(t) =0 for no t € [a, b]. Thus either W(fi, f3,....f,)(t) = 0 for all
t € [a, b] or W(fy, f,....f))(t) =0 forno t € [a, b].

Able’s Identity or Abel Liouville formula
Theorem 2.11 Let xy, X,.... X, be n linearly independent solutions of
L(x) = ap(t) X"+ a;(t) X"V +..+ ay(t) x=0

where a(t) # 0 for any t € I and ay, a;, a,....a, are continuous functions of I and let

to € 1. Then

t

WK1, o . Xa)(6) = WK1, o, X0)(t0) exp[—j%ds} 1)

Proof We shall first prove the formula for n = 2 and then give a proof for general n.
Now W (X, X,) =X, X, = X, X,
W' (X, %) = XX, — X, X,
Since x; and X, are solutions of
ap(t)x" + a;(t) x' + ax(t) x =0 ()
whe shall get the values of X, and x; from (2)
a,X =—a,X —a,X,

a‘OX; = _alxvz —aX,
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Using these values, we get

X . X .
W'(Xl’ Xz) = —1(—a1X2 - azxz) __2(_a1X1 - ale)
a, a,

Thus ag W'(X,, X,) = —a, (XX, — X,X,) = —a, W(X,,X,). Thus the Wronskian W(x;, x2)

satisfies a linear differential equation of the first order

a
W'(XI’XZ) = _a_IW(Xsz)

0

or we have W'(XI,X2)+iW(X1,X2)=O
aO

t

Hence the integrating factor is exp l: I i(s; dSZl . Therefore its solution is
a, (S
t, %o

t

W (X, %)) =c exp{— [ wds}

i 3 (S)
where c is a constant. Taking t =ty we find
WX, x,)(t,)=¢

so that the solution for n =2 is given by
t

WX, X,)(1) =W (X, X,)(t,) exp{— I& dS}

to aO (S)

Now, we shall prove the case for any general n, let us denote W (X, X,,...X,) by W.

Since W is a determinant of order n, its derivative W' is the sum of n determinants

Vi1, Va,...Vy so that
W'=V|+ Vo+.. . +V,

where each determinant Vi is obtained by differentiating only one row, keeping the

other (n-1) rows as they are. Hence we have
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Xl X2 Xn
XX X,
W'=| x X, X,
(=) (D) (n-1)
Xl XZ Xn
Xl X2
Xl X2

My
Xl X2

(m
Xn

XZ Xn
X, X
X, X

€)

In the first (n -1 ) determinants, two rows are identical in (3) and therefore they are all

zero. Hence we are left with the last determinant only. Hence the last determinant in

(3) is

X3 Xn
X3 Xn
(n

Xn

Since X, Xa,..., X, are the solutions of L(x) =0,

a X" =—ax"" —..—
a, XV =—ax" -~

M _ (n-1)
a, XV =—ax" —...—

a, X" =—ax"" —..—

Using the set of equations (5), we can eliminate X\, x{",..., x\"

a, X,

n

a, X,

n

a, X,

n

a X

n’'n

Xl X2
X X,
wio L X, X
a,
Xl(n—z) Xén_z)
(—ax" " —..—a,%x) (—ax""-..—ax,)
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(4)

(5)

in the determinant (4)

) ©

(n-2)
XI']

-1
(=a,x"" —..-a,x,)

n=n



Now in the determinant (6), let us multiply the first row by a,, second row by a,; and
so on up to (n-1)-th row by a, and add these to the last row. Then using (5) in the

resulting determinant, we get

X, X, Xy X X, Xy
X, X, X, a X X, X
W'= — - __1
a, a,
(n-1) (n-1) (n-1) (n-1) (n-1) (n=1)
—aX —aX; —aX, X| X, X,

wi=—2rw 7
a

t
Hence the integrating factor of (7) is exp {[i(s; ds] . So the solution of (7) is
a, (S

t, o
[a(s)
W(t)=cexp — J‘ﬁ ds |. Now taking t = to, we get ¢ = W(to) so that the solution of
L 8y(s
[
(7) is W(t) = W(ty) exp — Iﬁds where W(ty) represents the value of the
1 (s
Wronskian at t = to. This completes the proof the theorem.

Corollary 1 If ap and a; are constants, then from the theorem we get

W (t) =W<t0>exp{—i(t —m}
a‘O
Corollary 2 Then n solutions X, X, ..., X, of L(x) = 0 on an interval I are linearly
independent on I if and only if W(xy, Xz, ..., Xa)(to) # 0 for any point ty € 1.

The proof follows from the fact the W(x;, xz, ..., xp)(t) # 0 implies
W(x1, X2, ..., Xp)(to) # 0 by the theorem.

Note Since the calculations of the Wronskian at any pint t € I is difficult, the theorem

and the Corollary 1 are useful to find it in terms of the Wronskian at t = 0 or t = 1
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which may be easier to calculate. We shall illustrate this by considering a

homogeneous equation of order 3.

Example 2.5 Compute the Wronskian of the three independent solutions of

X —x"—x'+x=0in [0, 1].

The roots of the characteristic equation are -1, 1, 1. Hence the three solutions

are x;(t) = e”, Xo(t) = €' and x3(t) = te'. We shall be finding W(x,, X2, x3) on [0, 1].

Now
et g te'
W(xy, X2, x3) (1) = |- e'  e' +te'
et ' 2e'+te

Let us find W(xy, X2, X3) (0), that is, the Wronskian at t = 0.

1
W(x1, X2, x3) (0) = |-1
1

—
N = O

Expanding the determinant along the first row, we find W(x;, X2, X3) (0) = 4.

By the theorem
t
W(x1, X2, X3) (£) = W(x1, X2, X3) (0) exp{—j(—l)ds}
0

which gives W(x1, X, X3) (t) = 4e'.
This proves that the solutions are linearly independent.

Theorem 2.12 (i) The operator L is linear operator on the space of n-times

differentiable functions.

(i1) If x4, Xa,...,X, are solutions of L(x) = 0 and ¢, c;..., ¢, are arbitrary constants,

then ¢1x; + coXy+...+¢nX, 18 a solution of L(x) = 0

Proof To prove L is linear, let x; and x, be any two solutions of L(x) = 0. For any
two, scalars ¢; and ¢, we shall show that L(c;x; + ¢c2x;) = ¢;L(x;) + c,L(x2). For this let

us consider

L[C]X] + C2X2](t)
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=ay(t) [e1x1 () + e2x™(O] + ar®)erx) V() + ex™ (V)]
+....Fan(t)[c1x1(t) + caxa(t)]
= c1[ao(t)x1™(t) + a1()x; " (@) +...+ an(t)x ()]
+ colao(t)x2™(t) + a1()x" (1) +...+ an(t)xa(t)]
= ciL(x1)(1) + c2L(x2)(t) = [e1L(x1) + c2L(x2)](t)
Thus we have
Llcixi+ c2x2](t) = [e1L(x1) + caL(x2)]t for all t € I
Hence L(c1x;+ cax2) = ¢ L(x1) + coL(x2)

which proves that L is a linear operator on the space of n-times differentiable

functions on I.
(1))  The given differential equation is
L(x) = ag(t)x™ + a;()x"P+.. .+ ay(t)x =0 (1)
where ay(t) # 0 forany t € L.
Since X1, X2, ...,X;, are solutions of (1)
L(x1)(t) =0, L(x2)(t) =0,..., L(xp)(t)=0forall tel (2)
Let us takes x = ¢1x;+ ¢oXp +...+cpx, Where ¢y, Ca,...,c, are arbitrary constants.
Since L is linear, wet get
L(x) = ¢iL(x1) + coL(x2) + ...+ ¢cuL(Xn)
which gives
L(x) (t) = ciL(x1)(t)+ coL(x2)(t) +...+ cal(xn)(t) 3)
forallt € I. Using (2) in (3) we get L(x)(t) =0 for all t € . In other words,
X = C1X1t+ ¢Xp +...+CpXy 1S a solution of (1).

Note For non-linear equations, the above theorem is not necessarily true as shown by

the following example.

Example 2.6 Consider the differential equation
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X" =-x" (1)

First note that the given differential equation is not linear because of the

appearance of x”, it cannot be written in the linear form.

Let us take x' =y so that (1) becomes

dy 2
—_— 2
i 2)

Integrating (2), we get l=t+a so that %=t+a. Hence the solution is
Yy X

x(t)=log(t+a) + b where a and b are arbitrary constants. Thus, we can take the two

solutions as x;(t) = log(t+a) + b, x,(t) = log (t+a).

Let us check whether x = ¢;x; + ¢;X, can be a solution of (1) for arbitrary

constants ¢; and ¢,. Choose ¢; =4, ¢, = -2. Then we have

x(t)=4[log (t+a)+Db]-2log(t+a) 3)

"y — _ 2 '(t) = 2
Now from (3), x"(t) (t+a) and Xx'(t) (t+a)

Hence x"(t) # - [x'(t)]* which shows that this x(t) does not satisfy equation (1).

This proves that the Theorem 2.12 is not necessarily true for non-linear equations.

Theorem 2.13 X, x,, X3,...X, are linearly independent solutions of the homogeneous

linear differential equation,
L(x) =ao(t)x ™ +a;(t)x "V +..+ a(t)x = 0 (1)

where ay(t) # 0 for any t € I and ay, a;, a,,...a, are continuous functions on I if and

only if the Wronskian

W(x1, X2,...,Xp) (t) #0 (2)
forevery tel.
Proof First, we prove the necessity of the condition.

Let us suppose that the solutions x;, X», ....,X; are linearly independent

solutions of (1) and prove that
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W(x1, X2, ....,.Xn)(t) # 0 for every t € L.

If this condition is not satisfied, let us suppose on the contrary that there exists

a ty € I such that the Wronskian

W(X], X2, ....,Xn)(to) = 0 (3)

Hence, (3) implies that the determinant of the coefficients of the following set of

homogeneous equations in ¢y, cy,...,Cp 1S Z€r0:
ciXi(to) + caXa(to) + ...+ cuXn(to) =0

c X, (ty) + ¢, X5 (ty) +...+ ¢ x, (t,)=0

cxim (ty)+ ¢, x (ty)+...+ c x (t,)=0 (4)

Hence using hypothesis (3), the above system of n linear equations has a non
trivial solution for the n-unknowns ci, cs,...c, which means that not all the constants

C1, C2,...Cqare zero. Let us take one such solution to be ¢y, ¢y,...cpitself.

Having determined the non-zero coefficients ¢, c»,...c, from the set of n-

equations (4), let us define the function x as follows:
X = C1X; T CXo+ ...+ ChXp (5)

Since x1, Xa,...X;, are the solutions of (1), using (ii) of Theorem 2.12, it follows that x

is a solution of (1), that is L(x) t =0 for every t € L.
Now using (5) in the set of equations (4), we get
X(to) = 0, X'(to) = 0, x"(to) = 0,....x"(t) = 0 (6)

The above (6) is nothing but the initial conditions of L(x) = 0 att =ty € L
Hence L(x) = 0 and (6) together give the initial value problem of (1). Since the
solution of the initial value problem is unique, we get x(t) = 0 for all t € I. This

implies

cixi(t) + coxa(t) + ...+ cpxp(t) =0 forall t € L. (7)
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But (7) contradicts the fact that x;, X»,...x, are linearly independent on I. This
contradiction proves that our assumption W(Xi, Xp,...Xy)(t) = 0 for some ty € I is

wrong. Hence
W(x1, X2,...Xp) (t) #0 for all t € 1.

To prove the converse, let us assume that W(x;, x,...X,) (t) # 0 forany t € |
and show that X, Xp,...x, are linearly independent. If they are not linearly

independent, let ¢y, c,,...c, be non zero constants such that
ciXi(t) + coxa(t) + ...+ coxp(t) =0 forall t € 1. (®)
Differentiating (8) successively upto order (n — 1), we get
¢, X, () + x5 () +...+¢,x,(t)=0

cx;()+c,x,()+...+¢ X, (t)=0

¢ X"V () + ¢, x V(0 +...+ ¢, x"V (1) =0 )
forallt e I

For a fixed t in I, (9) is a set on n homogeneous linear algebraic equations
satisfied by c, c,...cy. Since the Wronskian of X, X,,...X;, is not zero by hypothesis,
the determinant of the coefficients of the above equations in the n unknowns cj,
C2,...Cn 18 not zero. Hence there is only one trivial solution to the set of equations (9)
namely ¢; = ¢; = ¢3 =... ¢, = 0 contradicting that ¢, c;..., ¢, are non-zero. This
contradiction proves that x;, Xp,...X, are linearly independent. This completes the

proof of the theorem.

Theorem 2.14 Let x,, X,...X, be n linearly independent solutions of L(x) = 0. Then

any solution of the equation
L(x)=0 (1)

is of the form x = ¢1X; + ¢2Xo + ...+ ¢cuXy Where ¢4, C3,...Cq are constants.
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Proof Let x be any solution of (1). Let ty be a point of I such that x(ty) = a,
x'(to) = az,...,x(“'l)(t0)= a, so that L(x) = 0 and these initial conditions form an initial

value problem for L(x) = 0 having the solution x(t).
We shall show that there exist unique constants ¢, c,...,c, such that
y = CiX] T CoXat+ ... CnXy (2)
is solution of L(x) with the initial condition
y(to) = a1, y'(to) = as,..., y"(to) = a

Hence by theorem on the uniqueness of solution of the initial value problem,

x(t) =y(t) for t € [ so that x = ¢1X; + cXp + ...+ cpXy 18 any solution of L(x) = 0.

Hence the proof is complete if we establish the existence of the unique
constants cj, Cy,...C, satisfying (2). Let us write down the initial conditions for y as a

solution of (1)
C]X](to) + CzXz(to) + ...+ Can(to) =a

clx'l(to) + czx'z(to) +...+cnx'n(t0)=a2

X () +€,x5 7 (tg) +..+ e, xy (ty) =4, €)

We shall show that the constants cj, ¢,,...c, exist uniquely by hypothesis. We
note that the determinant formed by the coefficients of ¢, cs,...c, in the above system
of non-homogeneous linear equations is the Wronskian of the functions X, Xa,...Xp-1, Xn
at the point ty. Since X;, X,...Xn.1, Xy are linearly independent on I, the Wronskian at
t = to is not zero. So the system of non-homogeneous equations (3) has unique

solution ¢y, Cy,...c, which completes the proof of the theorem.
Theorem 2.15
Hypotheses

1. Let f}, f5, ...., f, be a set of n functions each of which has a continuous n-th

derivative ona <t <b.

2. Suppose W(f}, f3, ...., f)(t) #0 foralltona <t <b.
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n

Conclusion There exists a unique normalized (coefficient of

is unity)

homogeneous linear differential equation of order n (with continuous coefficients)

which has f, f, ...., f, as a fundamental set on a <t <b. This equation is

WI T, (1), f,(t).....T (), X] 0

=0. (1)
WL, @), , (O (O]
Proof The differential equation (1) is actually
i Lo K f@® x
) f® K fi® X
M M M M
im0 A 7 x| )
fi(t) f, A f®
f' (1) fy® A 1O
M M M
M 5700 A T
The expansion of the numerator W(Xx, fj, 2, ......f;,) in equation (1) by the last column

shows that (1) is a differential equation of order n, with the coefficient of x™ as one.

Thus, we get an equation of the form

d"x d"'x dx
FJF pl(t)W-FA + pn—l(t)a-i_ P, (HXx=0,

and so is a normalized homogeneous linear differential equation of order n. Also, by
Hypotheses 1 and 2 the coefficients pi(i = 1, 2,...n) are continuous on a < t < b. If any
one of fi(t), f2(t),..., fu(t) is substituted for x in equation (2), the resulting determinant
in the numerator will have two identical columns. Thus each of the functions fj, f,..f,
is a solutions of Equation (1) on a <t < b; and by Theorem 2.13 we see from
Hypothesis 2 that these solution are linearly independent on a <t < b. Thus equation

(1) is indeed an equation of the required type having f, f,,..f, as a fundamental set.
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We now show that equation (1) is the only normalized n-th order
homogeneous linear differential equation with continuous coefficients which has this

property. Suppose there are two such equations

d"x d"'x dx
F‘*‘ %(UW +A + qn—l(t)a—’_ q,t)x=0,
(3)
d"x d"'x dx
F-ﬁ* rl(t)W-i‘A + I’n_l (t)a+ I’n(t)X = 0
Then the equation
d""x
[0, (D) -1, (t)]W +A +[q,(O)-r,(D]x=0 (4)

is a homogeneous linear differential equation of order at most (n-1), and the
coefficients in equation (4) are continuous on a < t < b. Further, since f}, f3,..f, satisfy

both the equations (3) these n functions are all solutions of Equation (4) ona<t<b.

We shall show that q;(t) — ri(t) = 0 for all t on a <t <b. To do so, let ty be a
point of the interval a <t < b and suppose that q;(ty) — ri(to) # 0. Then there exist a
subinterval I, a <t < 3, of a <t <b containing ty such that q;(t) — r;(t) # 0 on I. Since
the n solutions fj, f3,..f, of equation (4) are linearly independent on a <t < b, they are
also linearly independent on I. Thus on I, equation (4) of order at most (n-1), has a set
of n linearly independent solutions. But this is a contradiction. Thus there exists no
to € [a, b] such that q;(ty) — ri(to) # 0. In other words, q;(t) — ri(t) = 0 for all t on

a<t<b.

Similarly one can show that qx(t) — 1 (t) =0, k=2, 3....nforalltona <t<b.

Thus equation (3) are identical on a <t < b and the uniqueness is proved
Example 2.7

Consider the function f; and f, defined, respectively by fi(t) = t and fa(t) = te'. We

note that

t

t =t’e'#0 fort=0.

t
W(f, )=
( 1 2)() ‘1 tet+e
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Thus by theorem 2.15 on every closed interval a <t < b not including t = 0 there exists
a unique normalized second order homogeneous linear differential equation with
continuous coefficients which has f; and f, as a fundamental set. Theorem 2.15 states
that this equation is

W(t,te', x] o
W(t,te'] ’

Writing out the two Wronskians involved, this becomes

t te' X

1 te'+e' X
0 te'+2e' X"

= 0.

t  te'

1 te'+e
Since
t t X 42 d ¢ ¢
Iot+l x| =t S Xt 2) s g+ 2)x and e

) dt 1 t+1

0 t+2 x”

we see that this differential equation is

d?x (t+2]dx (t+2j
| == =2+ x=0.
dt? t )dt t?

Adjoint Equations

Let L, be the nth order linear differential operator given by

dn dn—l
dtn + al(t)w'FA + an(t)

L, =a,(t)

and the corresponding nth order linear differential equation is
Luy(x)=0.
Then the linear differential operator given by

n-1

=L = Gelm O

— li — —
el CTQI Lo D' A, 01+ 3,0
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is called the Adjoint operator of the operator L, and the corresponding adjoint

differential equation is

L(x)=0 e
(=1)" d’ (@, (H)x]+ (=)™ d [@ ()] + “93 (x1+E (Hx=0 (1)
] el CUTI L. i ]

Equation (1) may be written as
(-D"[@®X]™ +(=D""[@ ®)x]" " +.......... +a,(Hx=0
The coefficients ak(t) € C™*i.e. a; have continuous (n-k)th derivatives on I.

Definition

If the adjoint of a differential equation is the equation itself, then the equation is called

self-adjoint differential equation.
Definition

If the adjoint of a differential operator is the operator itself, then the operator is called

self-adjoint.

We have already studied that the linear system corresponding to linear differential

equation
Lx=0 (1)
is, X'=A(t) + X (2)

The adjoint system to the LS (2) is
X =—A"(t)+ X (3)

where

1
I

' o

o

o o

> >

o o
Pl o | |
'|_‘ (=) =S

A ()= (4)

o
L
>
>

o
o
>
I
—_

<
<
<
<
2| z >

T
L
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Consider the special case with ag= 1.

Then equation (3) becomes

[0 0o A 0 7
X - X
"I1-1 0 A 0 a,
X, - X,
=10 -1 A 0 &, (5)
M M
T IM MMM M
X, _ X,
0 0 A -1 7

Theorem 2.14 (Lagrange Identity)

Let the coefficients ai(t) in the differential operator

d n d n-1
Ln = ao(t)E'Fal (t)w+/\ +an (t)

have continuous (n-k)th derivatives i.e. a,eC™  onI(k=0, 1, ...,n). If u and v be any

two (complex) continuous functions having nth order derivative on the interval I, then

VL.u-uLyv= i[P(u,v)],
dt

n K ) ) .
where P(u,v)=>| > (-)"'u“(va, )" |

k=1 | j=l
This P(u,v) is called bilinear concomitant associated with the operator L,,.
Proof Consider the expression
Uty o g*dy 4 + (D UVED + CcptuvED) k=0,1,....0

Differentiating
%[U(k‘”v SUSIV 4+ (D UVED 4 (D) UV ]

— U(k)V + U(k-l)vl - U(k-l)vv_ U(k-z)VH+ ...... + (_1)k-2 Unv(k-z) + (_l)k-Z Ulv(k-l)
n (_1)1(-1 UvED 4 (_l)k-l uv®
Thus

=vU® + (- uv®
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vu= ) uvh+ %[U“"”V- UVt (D)2 UVED 4 () oy e ]

(1)
k=0,1,.....n
Now
_ | du _d"u du
VLu=vVjia,—+a,——+A +a,_,——+a,u
dt dt dt
n n-1
=Va, d :]J+\7a1 d n_? +A +\7an_1d—u+\7anu (2)
dt dt dt

Now, we shall obtain all the terms in r.h.s. of equation (2). First we put U = u,

V=vVa, and k = n in equation (1),

_d"u d"va,) d|__ d"u __ ,d"u
va =(-D)"u———"+ — —— —(Va,) ——+A
v - Y T dt{ o V) g
_ n—2d_u —a \(N-2) N\ e \(0-D
+(=D dt(vaO) +(=D " u(va,) 3)
Now put
U=u, V= Va, and k =n-1 in equation (1)
_d"u L,dwa,) d|__ d"u __ ,d™"u
Va,——=(-)"'u———2 4+ —| V —(Va,)'——+A
't D dt™ dt| ' dt"? va,) dt"
_ n—3d_U Fa V(=3 | 1\-2 e \(1-2)
+(=1) G|t(Vr’il) +(=1)""u(va,) 4)
and so on.
LetU=u,V=Va,_ andk=1 inequation (1)
_du . d(va,,) d_
va, ,—=(-) u—>=+—|va__u 5
g = DU van] (5)

Finally put U=u, V = Va, and k = 0, we get
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Va,u=uva, (6)

Using (3) — (6) in equation (2), we get

n n-1

VLu= u[(—l)n (;jtn (Va,) + (—l)n_1 d

—(Va)) +A +(- 1! (Van ) +va, }

|:Z( I)J l(u)(n J)(Va )(J l):|+ {Z( l)l l(u)(n 1- l)(va )(l l)i|+

........................................................................... +

dld i O

—{Z(—l)’ )" (va,,)" )}

dt| 4=
Thus one obtains
VLnu_um_ i{Z( l)l l(u)(k J)(Va'n k)(J 1):|

k
d
= [PUV)] 7

where

L'v = (=1)"[a,OV]™ + (=D""[a,OV]"™" +...+ (=1)'[a, ,(O)V]" +a, (t)V
where, we have used the definition of adjoint operator as

L'v = (=D)"[a,)V]™ + (=D& W] +...+ (=D'[a,_, V" + &, (t)v,
proving the result.

The Lagrange identity (7) holds for all continuous differentiable functions u(t) and

v(t) defined over some solution domain [ = {t| a <t < b}.

The functions u and v must be differentiable in order that Lyu and L,vexist. This is

the only restriction we place upon these functions.
Theorem 2.15 (Green’s Formula)

If the ax in L, and u, v are the same as in theorem 2.14, then for any t;, t;, € I,
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tj(‘ﬂ-nu —u LFV) dt = P(u,v)(t,) - P(u,v)(t,),

4
where P(u,v)(t) is the value at t of P(u,v).

Proof The integral of Lagrange identity (7) produces

t
I(VLnu —u L;v)dt =[P(u,v)]?

= P(U’V) ‘t:tz _P(U’V) |t:tl = P(U,V)(tz)— P(U’V)(tl)a

which is the Green’s formula.
The nth-order Non-homogeneous Linear Equation

In this section we consider briefly the nth-order non homogeneous linear scalar

differential equation

d"'x
dtn—l

a,(t) fjtx ta () YA ta (t)% +a (t)x =b(t) )

Using the operator notation already introduced, we may write this as
Lnx = b(t), (2)
Where, as before,

dn dn—l d
Ln = ao(t)ﬁ‘f- al (t)w +A + an_l (t)a“r an(t) .

We now prove the basic theorem dealing with equation (2).

Theorem 2.16

Hypothesis
1. Let v be any solution of the nonhomogeneous equation (2)
2. Let u be any solution of the corresponding homogeneous equation
L.x = 0. 3)

Conclusion Then u + v is also a solution of the non homogeneous equation (2).
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Proof We have

n—l

L, [u(t) +v(t)] = a(t)—[u(t)+v(t)]+a(t) nl[u(t)+v(t)]+ ................. .

+a,, (t)%[u(t)w(tman O + V()]

n-1

= ao(t)d uct)+a, (t) d u(t)+A +a,_ l(t) u(t)+an(t)u(t)

n n-1

+a, (t) d v(t)+a (t) d VO +A +a,_ 1(t) v(t)+an (tv()

= La[u(t)] + La[v(t)]
Now by Hypothesis 1, L,[v(t)] = F(t); and by Hypothesis 2, L,[u(t)] =0
Thus Ly[u(t) + v(t)] = F(t); that is, u+v is a solution of Equation (2).

In particular, if f, fp,...... f, is a fundamental set of the homogeneous equation (3) and

v is any particular solution of the non homogeneous equation (2) then
Cifi +Cofp + ..., + Cpfnt v

is also a solution of the non homogeneous equation (2). If a fundamental set fy, fo,......
f, of the corresponding homogeneous equation (3) is known, then a particular solution
of the non homogeneous equation (2) can always be found by the method of variation

of parameters.
Theorem 2.17

If {1, ....¢n} 1s a fundamental set of homogeneous linear differential equation

ax €C on I, where C is set of complex functions. Then (prove that) the solution y of

the non homogeneous equation

Lx=b(t) (beConl)

Satisfying y/(7) = & (rel,|él<o)

is given by
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w(t) =y, )+ Zn:(ﬁk (t) j {Vv\\//k ((;51 ...... : Zn))((;)}b(s)ds
o ) e

where vy, is the solution of L,x = 0 for which 7, (7) =92 and W, (4,.,.......4,) 1s the

determinant obtained from W (4,.,......, 4, ) by replacing the kth column by (0, 0, ...,0, 1)

Proof We know that if ¢ is the fundamental matrix for the LS
x'=A(t)x (1)

then
w(t) =] ¢ (5)b(s)ds 2)

is the solution of the non homogeneous system.

x' = A(t)x + b(t) 3)
satisfying y(t) =0. (by theorem 2.2)
Thus, we can say that 7 is the vector solution of the system
R'=A(DX + b(t) (4)
such that ¥ (7)=0
then v, the first component of 7 is given by [or general component, just named as

Wil
v (®) = [ 71, (6,5)b(s)ds (5)

where yn(t,s) denotes the (1,n)th element of (t) ¢'(s) i.e. yin(t,s) is the element in the
first row and nth column of the matrix o(t) ¢'(s) [ie. element obtained by

multiplying the first row of @(t) with the nth column of ¢™'(s)]

Now, we know that (I, j)th element of ¢(t) is ¢ i.e.

Then det @(t) = W(dy, ...... , On)(1).

Now, the element in the ith row and nth column of ¢™'(s) is given by
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= , 6
W(d,,.......4,)(S) (©)

As A = A|\C,|i\|A’ similarly

0 Adj ¢
detp =W(4g,,.......0,)

+4, (D)

=a A
71 (L,8) ¢1()W(¢1, ...... ,8,)(S) W(4,,..... ,¢n)(s)+

+4,()

7
W(d,,....... #,)(S) @)

Thus from equation (7), we get

where

A by 0 by A4
A by 0 by A4
M M M M M
AN AT TGN A g

b =

= Wik(oy, ...... , bn), as defined in the statement of the theorem.

[Explanation: ~ As @, = cofactor of (n, 1)th element in o.

4 A A4
E I R (@)

(n-2) (n-2)
2 A A ¢n

which is the same as the determinant
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0 ¢ A 4
0 ¢ A 4
— M A (b)
0 2(n—2) ¢(n—2)
1 Z(n—l) A ¢(n—1)
9, A A 9
A A ,
expanded by column 1,i.e. =(-1)"" s, h (c)

M
2(n—z) A A ¢r§n—2)

which is same as equation (a).

=Wi(d1, ...,0n)

(n-1)

Thus we have written cofactor of ¢, as equation (b) instead of equation no.

(a). Similarly @,, = cofactor of (n, 2)th element ¢\""

6 s A4
— (_ 1) n+2 ¢1 ¢3 A ¢n (d)
M M A M
¢l(n—2) 3(n—2) A ¢r$n—2)
or
6 0 4 . 4
¢ 0 4 A 4
= M M M A M
¢1(n—2) 0 3(n—2) i ¢(n—2)
¢l(n—l) 1 3(n—1) . ¢rgn—l)

Now expanding this by 2" column, we get equation (d).

Thus

., = cofactor element in nth row and kth, column i.e. (n, k)th element
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6 A ba 0 b A
A br 0 B A
=M M M M M A

z:‘,%:;%~

A

W((I)l" ) ¢n) (S) Yin (t, S)
= 3 4 OW, (s 4 )OD)

Using this value of y;,(t, s) in equation (5), we get

(< W, (4,A ¢,)(5)
D=3 4 DG hisyd
nO=[3 AOF TN O

_ X 0 W, (8.A 4)(s)
2 A0 Wi g O

Then wy(t) is the solution of L,x = b(t)
satisfying w,(r)=0. (8)
we know that,
when yy(t) is the solution of L,x =0
st. y,(r)=¢

Then

y(t) = wyi(t) + yp(t) is a solution of the non-homogeneous equation

L.x = b(t).

P () =9,(0)+,(r) = 0+ E=¢

S0 = )+ 3 o T b ©)
k=1 T 1° n

is a solution of
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L.x = b(t)

A

satisfying w(r)=¢&
Thus the wvariation of constant formula takes this special form (9) for
nonhomogeneous linear differential equation of order n.

Summary

Method of variation of parameters is the tool, which makes it possible to find
the solution of non-homogeneous system. Also fundamental matrix is found for linear
system with constant coefficients and representation theorem is proved for linear
system with periodic coefficients. Abel’s Liouville formula and Lagrange Identity for

an nth order linear differential equation are presented at the end of chapter.

Keywords Non-homogeneous, periodic, constant coefficients, adjoint equation,

Lagrange identity.
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Chapter-3

NONLINEAR DIFFERENTIAL EQUATIONS - |

Objectives

Non-linear phenomena are of fundamental importance in various fields of
science and engineering. In this chapter, attention is devoted to study the basic
concepts of linear and non-linear autonomous systems. Particular emphasis is placed

to study the nature of critical points of linear and non linear autonomous systems.
Introduction

The mathematical formulation of numerous physical problems results in differential
equations which are actually nonlinear. In many cases it is possible to replace such as
a nonlinear equation by a related linear equation which approximates the actual
nonlinear equation. However, such a “linearization” is not always feasible; and when
it is not, the original nonlinear equation itself must be considered. In this chapter we
shall give a brief introduction to certain methods of approximation to study nonlinear

equation.
Phase Plane, Paths and Critical Points
A. Basic concepts and Definitions

In this chapter we shall be concerned with second order nonlinear differential

equations of the form

d*x dx
=F| x,— |. 1
at? (X dtj @)

A specific example of such an equation is van der Pol equation

d?x
dt?

+y(x2—1)%+x:0, (2)

where p is a positive constant. Equation (2) may be put in the form (1) where



dx ) dx
Fl X,— |=—u(X" -1)——X.
( dtj AN

Let us suppose that the differential equation (1) describes a certain dynamical system
having one degree of freedom. The state of this system at time t is determined by the
values of x (position) and dx/dt (velocity). The plane of the variables x and dx/dt is
called a phase plane.

If we let y = dx/dt, we can replace the second-order equation (1) by the

equivalent system

ey

dt 7’

dy

-2 =F(x,Y). 3
ot (X,y) 3)

We can determine information about equation (1) from a study of the system
(3). In particular we shall be interested in the configurations formed by the curves
which the solutions of (3) define. We shall regard t as a parameter so that these curves
will appear in the xy plane. Since y = dx/dt, this xy plane is simply the x, dx/dt phase

plane .

More generally, we shall consider systems of the form

dx
P P(x,y)
dy _

where P and Q have continuous first partial derivatives for all (x, y). Such a system, in
which the independent variable t appears only in the differentials dt of the left
members and not explicitly in the functions P and Q on the right, is called an
autonomous system. We shall now proceed to study the configurations formed in the

Xy phase plane by the curves which are defined by the solutions of (4).

From existence and uniqueness theorem, it follows that, given any number tp

and any pair (Xo, Yo) of real number, there exists a unique solution
x = f(t),

y =90, ()
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of the system (4) such that
f(to) = %o
g(to) = Yo.

If f and g are not both constant functions, then (5) defines a curve in the xy

plane which we shall call a path (or orbit or trajectory) of the system (4).

If the ordered pair of functions defined by (5) is a solution of (4) and t; is any

real number, then the ordered pair of functions defined by
x=f(t-ty),

y=g(t-t), (6)
is also a solution of (4). Assuming that f and g in (5) are not both constant functions
and that t; = 0, the solutions defined by (5) and (6) are two different solutions of (4).
These two different solutions are simply different parameterizations of the same path.
We thus observe that the terms solution and path are not synonymous. On the one
hand, a solution of (4) is an ordered pair of functions (f, g) such that x = f(t), y = g(t)
simultaneously satisfy the two equations of the system (4) identically; on the other
hand, a path of (4) is a curve in the xy phase plane which may be defined

parametrically by more than one solution of (4).

Eliminating t between the two equations of the system (4), we obtain the
equation

dy _Q(x.y)

dx P(x,y) (7

This equation gives the slope of the tangent to the path of (4) passing through
the point (x, y), provided the functions P and Q are not both zero at this point. The
one parameter family of solutions of (7) thus provides the one-parameter family of
paths of (4). However, the description (7) does not indicate the directions associated

with these paths.

At point (X, Yo) at which both P and Q are zero, the slope of the tangent to the
path, as defined by (7), is indeterminate. Such points are singled out in the following

definition.
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Definition

Given the autonomous system

dx

E = P(X! y)

dy _

E =Q(x,y) (4)

a point (Xo, Yo) at which both

P(Xo, Yo) =0and Q(xo, o) =0
is called a critical point (equilibrium point or singular point) of (4).
Example 3.1

Consider the linear autonomous system

dy =—X. 8)

We find the general solution of this system as

X =CySint-CyCoSt,

y=cC;cost+cysint,
where c; and c; are arbitrary constants. The solution satisfying the conditions x(0) = 0,
y(0) = 1 is found to be

X =sint,

y =cost. 9)

This solution defines a path C; in the xy plane. The solution satisfying the condition
x(0)=-1,y(0)=0is

X =sin (t - ©/2),
y = cos (t - /2), (10)

The solution (10) is different from the solution (9), but (10) also defines the same path
C;. That is, the ordered pairs of functions defined by (9) and (10) are two different
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solutions of (8) which are different parameterization of the same path C;. Eliminating
t from either (9) or (10) we obtain the equation x* + y* = 1 of the path C; in the xy
phase plane. Thus the path C; is the circle with centre at (0, 0) and radius 1. From
either (9) or (10) we can see that the direction associated with C; is the clockwise

direction.

Eliminating t between the equations of the system (8) we obtain the

differential equation

y__x (11)
dx y

which gives the slope of the tangent to the path of (8) passing through the point (x, y),
provided (X, y) = (0, 0).
The one —parameter family of solutions
X2 + y2 — C2

of equation (11) gives the one-parameter family of paths in the xy phase plane.
Several of these are shown in figure 3.1. The path C; referred to above is, of course,

that for which c = 1.

e
N

N

Figure 3.1

Looking back at the system (8), we see that P(x, y) =y and Q(X, y) = -X.
Therefore the only critical point of the system is the origin (0, 0). Given any real

number to, the solution x = f(t), y = g(t) such that f(to) = g(to) = 0 is simply
x=0,

y= 0, forallt
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We now introduce certain basic concepts dealing with critical points and paths
Definition

A critical point (Xo, Yo) of the system (4) is called isolated if there exists a

circle
(X =Xo)* + (Y = Yo)* = 1°

about the point (X0 , Yo) such that (xo, Yo) is the only critical point of (4) within this

circle.
In what follows we shall assume that every critical point is isolated.

Note For convenience, we shall take the critical point (X, Yo) to be the origin (0, 0).
There is no loss of generality in doing this, for if (Xo, Yo) # (0, 0), then the translation

of coordinates & = X —Xo, = Y — Yo transforms (Xo, Yo) into the origin in the &n plane.
Definition

Let C be a path of the system (4), and let x = f(t), y = g(t) be a solution of (4) which
represents C parametrically. Let (0, 0) be a critical point of (4). We shall say that the

path C approaches the critical point (0, 0) ast — + « if

lim f(©)=0,  limg(t)=0, (12)

t—>+0

Thus when we say that a path C defined parametrically by x = f(t), y = g(t)
approaches the critical point (0, 0) at t — + oo, we understand the following: a point R
tracing out C according to the equations x = f(t), y = g(t) will approach the point (0, 0)
att — + oo, This approach of a path C to the critical point (0, 0) is independent of the
solution actually used to represent C. That is, if C approaches (0, 0) ast — + oo, then

(12) is true for all solutions x = f(t), y = g(t) representing C.
In like manner, a path C; approaches the critical point (0, 0) ast — - wo if

lim f,())=0,  limg,(t)=0.

where x = fi(t), y = g1(t) is a solution defining the path C;.

98



Definition

Let C be a path of the system (4) which approaches the critical point (0, 0) of (4) as t
— +oo, and let x = f(t), y = g(t) be a solution of (4) which represents C parametrically.
We say that C enters the critical point (0, 0) ast — +oo if

exists or if the quotient in (13) becomes either positively or negatively infinite as

t—> + 0.

We observe that the quotient g(t)/f(t) in (13) represents the slope of the line
joining critical point (0, 0) and a point R with coordinates [f(t), g(t)] on C. Thus when
we say that a path C enters the critical point (0, 0) as t — + oo we mean that the line
joining (0, 0) and a point R tracing out C approaches a define “limiting” direction as

t— + 0.
B. Types of Critical points

We shall now discuss certain types of critical points .
1 Center

1) The critical point (0, 0) of Figure 3.2 is called a center. Such a point is
surrounded by an infinite family of closed paths, members of which are
arbitrarily close to (0, 0) but is not approached by any path either ast — + o

orast— -oo.
Definition

The isolated critical point (0, 0) of (4) is called a center if there exists a
neighbourhood of (0, 0) which contains a countably infinite number of closed paths
Po(n=1, 2, 3....,), each of which contains (0, 0) in its interior, and which are such
that the diameters of the paths approach 0 as n — « [but (0, 0) is not approached by

any path eitherast — + oo ort — - o]

1. We define a neighbourhood of (0, 0) to be the set of all points (X, y) lying

within some fixed (positive) distance d of (0, 0).
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2.

Figure 3.2

An infinite set is called countable if it can be put into one-to-one
correspondence with the set of all positive integers. An example of a countable

set is the set of all rational numbers.

An infinite set is uncountable if it is not countable. An example of an

uncountable set is the set of all real numbers.

Saddle Point

The critical point (0, 0) of Figure 3.3 is called a saddle point. Such a point may be

characterized as follows:

1.

It is approached and entered by two half line paths (AO and BO) t — + oo,

these two paths forming the geometric curve AB.

It is approached and entered by two half line paths (CO and DO) as t — - oo,

these two paths forming the geometric curve CD.

Between the four half-line paths described in (1) and (2) there are four
domains R, Ry, R3, R4, €ach containing an infinite family of semi-hyperbolic

like paths which do not approach O ast — + o or as t — - oo, but which
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become asymptotic to one or another of the four half line paths as t — + o and

as t—> -oo0.

Figure 3.3

Definition

The isolate critical point (0, 0) of (4) is called a saddle point if there exists a
neighbourhood of (0, 0) in which the following two conditions hold:

1. There exist two paths which approach and enter (0, 0) from a pair of opposite
directions as t —» + o and there exist two paths which approach and enter

(0, 0) from a different pair of opposite directionsast — - .

2. In each of the four domains between any two of the four directions in (1) there
are infinitely many paths which are arbitrarily close to (0, 0) but which do not

approach (0, 0) eitherast — + w orast — - .
3. Spiral Point

The critical point (0, 0) of figure 3.4 is called a spiral point (or focal point).
Such a point is approached in a spiral-like manner by an infinite family of paths as
t — + oo (or as t —» - o). Observe that while the paths approach O, they do not enter it.
That is a point R tracing such a path C approaches O ast — + o« (or ast — - o), but
the line OR does not tend to a definite direction, since the path constantly winds about
0.
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Definition
The isolated critical point (0, 0) of (4) is called a spiral point (or focal point)
if there exists a neighbourhood of (0, 0) such that every path P in this neighbourhood

has the following properties:

1. P is defined for all t > t, (or for all t < t;) for some number to;

Figure 3.4
2. P approaches (0, 0) ast — + o (orast — - ); and
3. P approaches (0, 0) in a spiral like manner, winding around (0, 0) an infinite

number of timesast — + o (orast— - «).
4. Node

The critical point (0, 0) of Figure 3.5 is called a node. Such a point is not only
approached but also entered by an infinite family of pathsast — + o (orast — - ).
That is a point R tracing such a path not only approaches O but does so in such a way
that the line OR tends to a definite directionast — + oo (or ast — - o). For the node
shown in Figure 3.5 there are four rectilinear paths, AO, BO, CO, and DO. All other
paths are like “semiparabolas.” As each of these semiparabolic-like paths approaches

O, its slope approaches that of the line AB.
Definition

The isolated critical point (0, 0) of (4) is called a node if there exists a neighbourhood
of (0, 0) such that every path P in this neighbourhood has the following properties:
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1. P is defined for all t > t, [or for all t < ty] for some number t,
2. P approaches (0,0)as t >+« (orast— - ); and

3. Penters (0,0)as t —> + oo [orast — - o]

\

Figure 3.5

C. Stability
We assume that (0, 0) is an isolated critical point of the system

dx

E = P(X, y)
dy _
i Q(x,Y) 4)

and proceed to introduce the concepts of stability and asymptotic stability for this

critical point.
Definition

Assume that (0, 0) is an isolated critical point of the system (4). Let C be path of (4);
let x = f(t), y = g(t) be a solution of (4) defining C parametrically. Let

D(t) = [ f (OF +[g(®T (14)
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denotes the distance between the critical point (0, 0) and the point R: [f,(t), g(t)] on C.
The critical point (0, 0) is called stable if for every number ¢ > 0, there exists a

number & > 0 such that the following is true: Every path C for which

D(to) < & for some value tp (15)
is defined for all t > to and is such that

D(t)<e fortp<t<oo. (16)

Let us analyze this definition, making use of Figure 3.6. The critical point (0, 0) is
said to be stable if, corresponding to every positive number &, we can find another
positive number & which dose “something” for us. Now what is this “something”? To
answer this we must understand what the inequalities in (15) and (16) mean.
According to (14), the inequality D(ty) < & for some value tp in (15) means that the
distance between the critical point (0, 0) and the point R on the path C must be less
than & at t = to. This means that at t = tp, R lies within the circle K; of radius 6 about
(0, 0) (Figure 3.6). Likewise the inequality D(t) < € for ty <t < o in (16) means that
the distance between (0, 0) and R is less than ¢ for all t > t, and hence that for t > to, R
lies within the circle K, of radius ¢ about (0, 0). Now we can understand the
“something” which the number & does for us. If (0, 0) is stable, then every path C
which is inside the circle K; of radius o at t = to will remain inside the circle K; of
radius t > to. Roughly speaking, if every path C stays as close to (0, 0) as we want it to
(that is, within distance ¢) after it once gets close enough (that is within distance o),

then (0, 0) is stable.

Figure 3.6
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Definition

Assume that (0, 0) is an isolated critical point of the system (4). Let C be a
path of (4); and let x = f(t), y = g(t) be a solution of (4) representing C parametrically.
Let

D(t) = [ f (O +[g(®T (14)

denotes the distance between the critical point (0, 0) and the point R: [f(t), g(t)] on C.
The critical point (0, 0) is called asymptotically stable if (1) it is stable and (2) there

exists a number d¢ > 0 such that if

D(to) < & (17)
for some value ty, then
tIim f(t)=0, tIim g(t) =0, (18)

To analyze this definition, note that condition (1) requires that (0, 0) must be
stable. That is, every path C will stay as close to (0, 0) as we desire after it once gets
sufficiently close. But asymptotic stability is a stronger condition than mere stability.
For, in addition to stability, the condition (2) requires that every path that gets
sufficiently close to (0, 0) [see 17] ultimately approaches (0, 0) as t — +oo [see 18].

Note that the path C of figure 3.6 has this property.
Definition
A critical point is called unstable if it is not stable.

As illustration of stable critical points, we point out that the center in Figure
3.2, the spiral point in Figure 3.4, and the node in Figure 3.5 are all stable. Of these
three, the spiral point and the node are asymptotically stable. If the directions of the
paths in Figures 3.4 and 3.5 have been reversed, the spiral point and the node of these
respective figures would have both been unstable. The saddle point of Figure 3.3 is

unstable
Exercise 3.1

For the autonomous system in Exercise 1 (a) find the real critical points of the system,

(b) obtain the differential equation which gives the slope of the tangent to the paths of
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the system, and (c) solve this differential equation to obtain the one-parameter family

of paths.
L Yoy
dt
dy .
——=X"-V.
dt y
2. Consider the linear autonomous system
o _
da
dy
—= =X+Y.
a0
@ Find the solution of this system which satisfies the conditions x(0) = 1,
y(0) = 3.
(b) Find the solution of this system which satisfies the conditions x(4) = e,
y(4) = 4e.

(© Show that the two different solutions found in (a) and (b) both represent the

same path.

(d) Find the differential equation which gives the slope of the tangent to the paths,

and solve it to obtain the one-parameter family of paths.

Answers to Exercise

X2

2 ©X -3y +y =

1 (@ (0,0)(L1; () %:

2. (@) x=e' y=3e'+te" (b) x=e"3 y= te;
(c) The equation of the common path isy = x(In |x| + 3);
(d) The family of paths isy = x(In |X| + c).

Critical Points and Paths of Linear Systems

A. Basic-Theorems

In this chapter we want to study nonlinear differential equations and the

corresponding nonlinear autonomous systems of the form (4). We shall be interested
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in classifying the critical points of such nonlinear systems. We shall see that under
appropriate circumstances we may replace a given nonlinear system by a related
linear system and then employ this linear system to determine the nature of the critical
point of the given system. Thus in this section we shall first investigate the critical

points of a linear autonomous system.

We consider the linear system

dx
— =ax+hy,
dt y
(19)
dy
—Z =X +dy,
dt y

where a, b, ¢, and d are real constants. The origin (0, 0) is clearly a critical point of
(19). We assume that

a b

0, 20
c d* (20)

and hence (0, 0) is the only critical point of (19).

We can find solutions of (19) of the form

X = Ae*,
(21)
y — Beﬂt
If (21) is to be a solution of (19), then A must satisfy the quadratic equation
A —(a+d)A+(ad —bc) =0, (22)

called the characteristic equation of (19). Note that by condition (20), zero cannot be a

root of the equation (22) in the problem under discussion.

Let A, and A, be the roots of the characteristic equation (22). We shall prove that the
nature of the critical point (0, 0) of the system (19) depends upon the nature of the

roots A, and A, . For this we must consider the following five cases:

1. A1 and A, are real, unequal, and of the same sign.
2. A1 and A, are real, unequal, and of opposite sign.
3. A1 and A are real and equal.

107



4, A1 and A, are conjugate complex but not pure imaginary.
5. A1 and A, are pure imaginary.

Case 1

Theorem 3.1

Hypothesis The roots A; and A, of the characteristic equation (22) are real, unequal,

and of the same sign.
Conclusion The critical point (0, 0) of the linear system (19) is a node.

Proof We first assume that A; and A, are both negative and take A; < A, < 0. Then

the general solution of the system (19) may be written as

x=cAe"" +c,Ae"",
(23)

y =c,Be™" +c,Be”",

where A4, By, A, and B, are definite constants and A;B, = A,B4, and where c; and ¢,

are arbitrary constants. Choosing ¢, = 0 we obtain the solutions

x=c,Ae™,
(24)
y =c,Be™.
Choosing ¢;= 0 we obtain the solutions
X=c,Ae",
(25)
y=c,B,e™.

For any c;> 0, the solution (24) represents a path consisting of "half" of the line
Bix = Ayy of slope Bi/A;. For any ¢; < 0, they represent a path consisting of the
"other half" of this line. Since A1< 0, both of these half-line paths approach (0,0) as
t — +oo. Also, since y/x = B3/A;, these two paths enter (0, 0) with slope Bi/A;.

Similarly, for any c, > 0 the solutions (25) represent a path consisting of "half" of the
line Byx = Ayy; while for any ¢, < 0, the path consists of the "other half" of this line.
These two half-line paths also approach (0, 0) as t — +o and enter it with slope
Bo/A;.
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Thus the solutions (24) and (25) provide us with four half-line paths which all

approach and enter (0, 0) as t — +oo.

If c; # 0 and ¢, # 0, the general solution (23) represents nonrectilinear paths. Again,

since A1< A, <0, all of these paths approach (0, 0) as t — +o0. Also, since

y cBe*+c,Be” (cB/c,)e" ™ +B,

x cAe™+c,Ae?  (cAlc,)en A’

we have

lim= y_ B
t—w X /A2

and so all of these paths enter (0, 0) with limiting slope B,/A..

Thus all the paths (both rectilinear and nonrectilinear) enter (0, 0) as t — +oo, and all
except the two rectilinear ones defined by (24) enter with slope B,/A,. Thus, the
critical point (0, 0) is a node. Clearly, it is asymptotically stable. A qualitative
diagram of the paths appears in Figure 3.7.

Bix= Ay
‘ / Byx = Agy
—.
— \' x
Figure 3.7

If now A;and A, are both positive and we take A; > A, > 0, we see that the general
solution of (19) is still of the form (23) and particular solutions of the forms (24) and
(25) still exist. The situation is the same as before, except all the paths approach and

enter (0, 0) as t — -o0. The qualitative diagram of Figure 3.7 is unchanged, except that
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all the arrows now point in the opposite directions. The critical point (0, 0) is still a
node, but in this case it is clear that it is unstable.

Theorem 3.2

Hypothesis The roots A, and A, of the characteristic equation (22) are real, unequal,
and of opposite sign.

Conclusion The critical point (0, 0) of the linear system (19) is a saddle point.

Proof We assume that A; < 0 < A,. The general solution of the system (19) may again
be written in the form (23) and particular solutions of the forms (24) and (25) are
again present.

For any c; > 0, the solutions (24) again represent a path consisting of "half" the line
B1x = Ayy; while for any c; < 0, they again represent a path consisting of the "other
half" of this line. Also, since A; < 0, both of these half-line paths still approach and

enter (0, 0) as t — +oo.

Also, for any c, > 0, the solutions (25) represent a path consisting of "half" the line
Box = Azy; and for any c; < 0, the path which they represent consists of the "other
half" of this line. But in this case, since A, > 0, both of these half-line paths now

approach and enter (0, 0) as t — -oo.

Once again, if ¢; # 0 and ¢, # 0, the general solution (23) represents non-rectilinear
paths. But here since A, < 0 < A, none of these paths can approach (0, 0) ast — +w
or as t —» —oo. Further, none of them pass through (0, 0) for any ty, such that
—0 < tp < +o0. As t — +oo, we see from (23) that each of these non-rectilinear paths
becomes asymptotic to one of the half-line paths defined by (25). As t — —o, each of
them becomes asymptotic to one of the paths defined by (24).

N=—7

u
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Thus there are two half-line paths which approach and enter (0, 0) as t —» +o and two
other half-line paths which approach and enter (0, 0) as t — —o. All other paths are
non-rectilinear paths which do not approach (0, 0) as t — +o0 or as t — —oo, but which
become asymptotic to one or another of the four half-line paths ast — +w and as t —
—o0, Thus, the critical point (0, 0) is a saddle point. Clearly, it is unstable. A

qualitative diagram of the paths appears in Figure 3.8.
Case 3
Theorem 3.3
Hypothesis The roots A; and A, of the characteristic equation (22) are real and equal.
Conclusion The critical point (0, 0) of the linear system (19) is a node.
Proof Let us first assume that A;= A, = A < 0. We consider two subcases:
@ a=d=#0,b=c=0
(b) All other possibilities leading to a double root.
We consider first the special case (a). The characteristic equation (22) becomes
A2 —2ah+a°=0

and hence A = a = d. The system (19) now becomes

%:ﬂx,
dt
dy
—~ =y,
a7

The general solution of this system is clearly
x = cie™,
y = coe™, (26)

where ¢; and c; are arbitrary constants. The paths defined by (26) for the various
values of ¢, and c; are half-lines of all possible slopes. Since A <0, we see that each of

these half-lines approaches and enters (0, 0) as t — +co. That is, all the paths of the
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system enter (0, 0) as t — +co. Thus, the critical point (0, 0) is a node. Clearly, it is

asymptotically stable. A qualitative diagram of the paths appears in Figure 3.9.

If X > 0, the situation is the same except that the paths enter (0, 0) as t — -oo, the node

(0, 0) is unstable, and the arrows in figure 3.9 are all reversed.

Figure 3.9

This type of node is sometimes called a star-shaped node.

Let us now consider case (b). Here the characteristic equation has the double root
A <0, but we exclude the special circumstances of case (a). We know that the general

solution of the system (19) may in this be written
X = c;Ae™ + Co(Aqt + Az)em,
y = c1Be™ + cy(Bit + By)e™, (27)

where the A's and B's are definite constants, ¢, and c, are arbitrary constants, and
B1/A; = B/A. Choosing ¢, = 0 in (27) we obtain solutions

X = c;Ae™,
y = c1Be™. (28)

For any c; > 0, the solutions (28) represent a path consisting of “half" of the line
Bx = Ay of slope B/A; for any ¢; < 0, they represent a path which consists of the
"other half" of this line. Since A < 0, both of these half-line paths approach (0, 0) as
t — +oo. Further, since y/x = B/A, both paths enter (0, 0) with slope B/A.

If ¢, = 0, the general solution (27) represents nonrectilinear paths. Since A <0, we see
from (27) that
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lim x =0, limy=0.

t—>+00 t—+oo

Thus the nonrectilinear paths defined by (27) all approach (0, 0) as t — +. Also,

since
Yy _cBe" +c,(Bit+B,)e" (c,B/c,)+B, +Bit
X cAe™ +c,(At+A)e™  (c,Alc,)+A, +At
we see that
lim 5B
to+0 X A1 A

Thus all the nonrectilinear paths enter (0, 0) with limiting slope B/A.

%

Bx = Ay

4

Figure 3.10

Thus all the paths (both rectilinear and nonrectilinear) enter (0, 0) as t — +oo with
slope B/A. Thus, the critical point (0, 0) is a node. Clearly, it is asymptotically stable.
A qualitative diagram of the paths appears in Figure 3.10.

If A > 0, the situation is again the same except that the paths enter (0, 0) ast — — oo,

the node (0, 0) is unstable, and the arrows in Figure 3.10 are reversed.
Case 4
Theorem 3.4

Hypothesis The roots A; and A, of the characteristic equation (22) are conjugate

complex with real part not zero (that is, not pure imaginary).
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Conclusion The critical point (0, 0) of the linear system (19) is a spiral point.

Proof Since A, and A, are conjugate complex with real part not zero, we may write
these roots as a * if3, where o and [ are both real and unequal to zero. Then the

general solution of the system (19) may be written as
x = e*'[cy(A1 cos Bt — A, sin Bt) + co(A; cos Bt + Ay sin Bt)]
y = e [c1(By cos Bt — By sin Bt) + c2(B2 cos Bt + By sin pt)] (29)

Where A;, A;, B; and B, are definite real constants and c; and c, are arbitrary

constants.
Let us first assume that o < 0. Then from (29) we see that

limx=0 and limy=0.

t—>+0 t—>+0

and hence all paths defined by (29) approach (0, 0) as t — +o0. We may rewrite
(29) in the form

x = e*'[czcos Pt + c45in Bt),
y = e™[cs cos Pt + s sin Pt), (30)

where ¢3 = ¢c1A; + CA,, €1 = CAL — C1A,, Cs = ¢1B1 + ¢,B, and ¢ = ¢,B; —¢1Bs.
Assuming c; and c; are real, the solutions (30) represent all paths in the real xy phase

plane. We may now put these solutions in the form
x = Kie* cos (Bt + d1),

y = Ko™ cos (Bt + d2), (31)

where K, =,/cZ +c, K, =+/cZ+cZ, and ¢; and ¢ are defined by the equations

c c
COS@, =—>, COS¢p, = —>,
'K K
1 2

. C, . Ce
sing, =——=2, sing, = ——>.
& K, ?, K,
Let us consider
at
Yy _ K" cos(ft+4,) (32)

x Ke®cos(ft+g,)
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Letting K = Ky/K; and ¢3 = ¢1-¢2, this becomes

y _ KCOS(,BH—¢1 _¢3)

X cos(ft +¢,)

K cos(ft + ¢,) cos @, +sin( St + ¢, ) sin ¢,
cos(St +¢,)

} (33)

K[cos ¢, +sin ¢, tan(ft + ¢,)],

provided cos(ft+¢,) = 0. As trigonometric functions involved in (32) and (33) are

periodic, we conclude from these expressions that lim Y does not exist and so the

t—>+0 X
paths do not enter (0, 0). Instead, it follows from (32) and (33) that the paths approach
(0, 0) in a spiral-like manner, winding around (0, 0) an infinite number of times as
t— + oo. Thus, the critical point (0, 0) is a spiral point. Clearly, it is asymptotically

stable. A qualitative diagram of the paths appears in Figure 3.11.

/
.

77
4

Figure 3.11

If o > 0, the situation is the same except that the paths approach (0, 0) as t —> — oo,

the spiral point (0, 0) is unstable, and the arrows in Figure 3.11 are reversed.
Case 5
Theorem 3.5

Hypothesis The roots A; and A, of the characteristic equation (22) are pure

imaginary.

Conclusion The critical point (0, 0) of the linear system (19) is a center.
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Proof Since A, and A, are pure imaginary we may write them as o + i§, where o =0
but B is real and unequal to zero. Then the general solution of the system (19) is of the
form (29), where o = 0. In the notation of (31) all real solutions may be written in the

form
x = Ky cos (Bt + ¢1),
y = Kzcos (Bt + ¢2), (34)

where Ki, Ky, ¢1 and ¢, are defined as before. The solutions (34) define the paths in
the real xy phase plane. Since the trigonometric functions in (34) oscillate indefinitely
between +1 ast — + oo and as t — — oo, the paths do not approach (0, 0) ast — + « or
as t — — co. Rather it is clear from (34) that x and y are periodic functions of t and
hence the paths are closed curves surrounding (0, 0), members of which are arbitrarily
close to (0, 0). Indeed they are an infinite family of ellipses with center at (0, 0). Thus,
the critical point (0, 0) is a center. Clearly, it is stable. However, since the paths do not
approach (0, 0), the critical point is not asymptotically stable. A qualitative diagram of
the paths appears in Figure 3.12.

Figure 3.12

We summarize our results in Table 3.1. The stability results of column 3 of this table
lead to Theorem 3.6.

Theorem 3.6

Consider the linear system

(19)
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where ad - bc #0, so that (0, 0) is the only critical point of the system.

1. If both roots of the characteristic equation (22) are real and negative or

conjugate complex with negative real parts, then the critical point (0, 0) of

(19) is asymptotically stable.

2. If the roots of (22) are pure imaginary, then the critical point (0, 0) of (19) is

stable, but not asymptotically stable.

3. If either of the roots of (22) is real and positive or if the roots are conjugate

complex with positive real parts, then the critical point (0, 0) of (19) is

unstable.

Table 3.1

Nature of roots A; and A, of
characteristic equation

Nature of critical point (0, 0) of
linear system

Stability of critical
point (0, 0)

2 —
A —(a+d)A+(ad—bc)=0 %zax+by.
dt
dy
—=cX+dy.
dt Y
real, unequal, and of same | Node asymptotically stable
sign if roots are negative,
unstable if roots are
positive
real, unequal, and of opposite | Saddle point Unstable
sign
real and equal node asymptotically stable
if roots are negative,
unstable if roots are
positive
conjugate complex but not | spiral point asymptotically stable
pure imaginary if real part of roots
are negative, unstable
if real part of roots
are positive
pure imaginary center Stable, but  not

asymptotically stable.
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B. Examples and Applications
Example 3.2
Determine the nature of the critical point (0, 0) of the system

dx
2 _2x—Ty,
dt y
(35)

dy
Y _3x-_8y,
dt y

and determine whether or not the point is stable.

Solution The system (35) is of the form (19) where a =2, b =-7, ¢ = 3, and

d = - 8. The characteristic equation (22) is
A?+6L+5=0.

Hence the roots of the characteristic equation are A; = -5, A, = -1. Since the roots
are real, unequal, and of the same sign (both negative), we conclude that the critical
point (0, 0) of (35) is a node. Since the roots are real and negative the path is

asymptotically stable.
Example 3.3

Determine the nature of critical point (0, 0) of the system

o =2X -4y,

& (36)
Y —2X+6Y,

dt

and determine whether or not the point is stable.
Solution Herea=2, b=4, c=-2, andd = 6. The characteristic equation is
AZ-8L+20=0.

and its roots are 4 + 2i. Since these roots are conjugate complex but not pure
imaginary, we conclude that the critical point (0, 0) of (36) is a spiral point. Since the

real part of the conjugate complex roots is positive, the point is unstable.
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Application to Dynamics.

The differential equation for the free vibrations of mass on a coil spring is

2
md §+a%+kx:0 (37)
dt dt

where m >0, a > 0. and k > 0 are constants denoting the mass, damping coefficient,

and spring constant, respectively.
The dynamical equation (37) is equivalent to the system

ax
E— )

(38)
dy k@«

__X__
dt m my

The solutions of the system (38) define the paths (phase trajectories) associated with
the dynamical equation (37) in the xy phase plane. From (38) the differential equation
of these paths is

dy  kx+ay
dx my

We observe that (0, 0) is the only critical point of the system (38). The auxiliary

equation of the differential equation (37) is
mr? + ar+k =0, (39)
while the characteristic equation of the system (38) is

2+24+% (40)
m m

The two equations (39) and (40) clearly have the same roots A; and A;. Table 3.2,
gives the form of the solution of the dynamical equation, the phase plane analysis of

the critical point, and a brief interpretation.
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Table 3.2

Damping Nature of | Form of solution of | Nature of | Interpretation
factor o roots of | dynamical equation | critical point
auxiliary and (0, 0) in xy
characteristic a,:\/zug:i phase plane
equation m 2m
o = 0 (no|pure X = ¢ cos (ot + ¢) (stable) center | Oscillatory motion.
damping) imaginary Displacement and
velocity are
periodic functions
of time
a <2+km | conjugate x = ce P cos (wit + | asymptotically | Damped oscillatory
under- complex with | ¢), where stable  spiral | motion.
damped) negative real T point Displacement and
parts o =o = f". velocity — 0
through smaller
and smaller
oscillations
a =2-/km real,  equal, | x = (c; + cot)e ™ asymptotically | displacement and
(critically and negative stable node velocity — 0
damped) without oscillating
a > 2+/km real, unequal, x =ce™ +c,e?, asymptotically | displacement and
(over and negative stable node velocity — 0
damped) where without oscillating

rlz_/B+V162_a)2’
r=—f—\f o,

Exercises 3.2

Determine the nature of the critical point (0, 0) of each of the linear autonomous

systems in Exercises 1-4. Also, determine whether or not the critical point is stable.

%:x+3y, %:3x+y. 2. %:3x+4y, %=3x+2y.
3. %:2x—4y, ﬂ:2x—2y. 4. %: -V, ﬂ X+5Y.
dt dt dt dt
Answers to Exercise
1. Saddle point, unstable ; 2. Saddle point, unstable;
3. Center, stable; 4. Node, unstable
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Critical Points and Paths of Nonlinear Systems
A. Basic Theorems on Nonlinear Systems

We now consider the nonlinear real autonomous system

dx

E = P(X, y)!

dy _

E—Q(X,Y)- (4)

We assume that the system (4) has an isolated critical point which we shall choose to
be the origin (0, 0). We now assume further that the functions P and Q in the right

members of (4) are such the P(X, y) and Q(X, y) can be written in the form

P(X! y) =ax+ by + Pl (X, y)’

Q(X! y) =CX+ dy + Ql (X! y)! (41)
where
1. a, b, ¢, and d, are real constanst, and

a b

#0,

c d
and
2. P1 and Q; have continuous first partial derivatives for all (x, y), and are such

that

Pl(x! y) — lim Ql(x’ y) =0 (42)

lim =
(x,y)—(0,0) /X2+y2 (x,y)—(0,0) [X2+y2

Thus the system under consideration may be written in the form

%:ax+by+ P.(x,y),

(43)

%:cx+dy+Ql(x, y),

where a, b, ¢, d, P1, and Q; satisfy the requirements (1) and (2) above.

If P(X, y) and Q(X, y) in (4) can be expanded in power series about (0, 0), the system
(4) takes the form
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dx

[ap} oP | , ,
—= X+|— Y+a, X +a,pXy+a,y +..,
dt 00)

OX oy ooy

dy GQ} aQ | . 2
== X+ — +b, X +b,,xy+b +..., (44
at {GX . {@_(o,o)y 12 2 XY +05Y (44)
This system is of the form (43), where P1(X, y) and Qi(x, y) are the terms of higher
degree in the right members of the equations. The requirements (1) and (2) will be

met, provided the Jacobian.

o(P,Q)
o(x,y)

(0,0)

Observe that the constant terms are missing in the expansions in the right members of
(44), since P(0,0) =Q(0,0)=0

Example 3.4

The system

dx
= X4+2y+Xx?
dt y

ﬂ:—Sx—4y+2y2

dt

is of the form (43) and satisfies the requirements (1) and (2). Herea=1, b=2, ¢ =-3,
d=-4, and

a b‘
=2=%0,
c d

Further P1(x, y) = X4, Qi(x, y) = 2y?, and hence

ROY iy X g

lim
(x,y)—(0,0) /X2+y2 (x,y)—(0,0) [X2+y2

and

2

Q(x,y) lim

lim = —_—
(x,y)—(0,0) /x2+y2 (x,¥)—(0,0) /X2+y2

By the requirement (2) the nonlinear terms P1(X, y) and Q1(X, y) in (43) tend to

=0
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zero more rapidly than the linear terms ax + by and cx + dy. Hence one can say that
the behaviour of the paths of the system (43) near (0, 0) would be similar to that of the

paths of the related linear system

dx

—=ax+b

dt y

dy

—~ =cx+d 19
ot y (19)

obtained from (43) by neglecting the nonlinear terms. In other words, it would seem
that the nature of the critical point (0, 0) of the nonlinear system (43) should be
similar to that of the linear system (19). In general this is actually the case. We now

state without proof the main theorem regarding this relation.
Theorem 3.7

Hypothesis Consider the non linear system

% =ax+by+P(x,y),
‘ (43)
dy

—=cx+d X,
ot +dy +Q,(X,Y)

where a, b, ¢, d, P1, and Q; satisfy the requirements (1) and (2) above. Consider also

the corresponding linear system

dx
pm = ax + by,
(19)
Y _ CX +dy
dt ’

obtained from (43) by neglecting the nonlinear terms Pi(x, y) and Qi(X, y). Both
systems have an isolated critical point at (0, 0). Let A; and A, be the roots of the

characteristic equation.

A2—(a+d)A+(ad-bc)=0 (22)
of the linear system (19).
Conclusions

1) The critical point (0, 0) of the nonlinear system (43) is of the same type as that
of the linear system (19) in the following cases:
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Q) If A; and A, are real, unequal, and of the same sign, then not only is (0, 0) a
node of (19), but also (0, 0) is a node of (43).

(i) If A; and A are real, unequal, and of the opposite sign, then not only is (0, 0) a
saddle point of (19), but also (0, 0) is a saddle point of (43).

(i) If A1 and A, are real and equal and the system (19) is not such thata =d = 0,
b = c =0, then not only is (0, 0) a node of (19), but also (0, 0) is a node of
(43).

(iv)  If A1 and A, are conjugate complex with real part not zero, then not only is (O,

0) a spiral point of (19), but also (0, 0) is a spiral point of (43).

2. The critical point (0, 0) of the nonlinear system (43) is not necessarily of the

same type as that of the linear system (19) in the following cases:

(V) If A1 and A, are real and equal and the system (19) is such thata =d = 0,
b = ¢ =0, then although (0, 0) is a node of (19), the point (0, 0) may be either a

node or a spiral point of (43).

(vi)  If Ay and A, are pure imaginary, then although (0, 0) is a center of (19), the
point (0, 0) may be either a center or a spiral point of (43).

7

7) —
X

RN

AL 2N

Figure 3.13a Linear System Fgure 3.13b Nonlinear System
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Although the critical point (0, 0) of the nonlinear system (43) is of the same type as
that of the linear system (19) in cases (i), (ii), (iii) and (iv) of the conclusion, the
actual appearance of the paths is somewhat different. For example, if (0, 0) is a saddle
point of the linear system (19), then we know that there are four half-line paths
entering (0, 0), two for t — + o0 and two for t — -00. However, at the saddle point of
the nonlinear system (43), in general we have four nonrectilinear curves entering (0,
0), two for t — + oo and two for t — -0 in place of the half-line paths of the linear

case (see Figure 3.13).

Theorem 3.7 deals with the type of the critical point (0, 0) of the nonlinear
system (43). Concerning the stability of this point, we state without proof the

following theorem of Liapunov.
Theorem 3.8

Hypothesis is same as in Theorem 3.7.
Conclusion

1. If both roots of the characteristic equation (22) of the linear system (19) are
real and negative or conjugate complex with negative real parts, then not only
is (0, 0) an asymptotically stable critical point of (19) but also (0, 0) is an
asymptotically stable critical point of (43).

2. If the roots of (22) are pure imaginary, then although (0, 0) is a stable critical
point of (19), it is not necessarily a stable critical point of (43). Indeed, the
critical point (0, 0) of (43) may be asymptotically stable, stable but not

asymptotically stable or unstable.

3. If either of the roots of (22) is real and positive or if the roots are conjugate
complex with positive real parts, then not only is (0, 0) an unstable critical

point of (19) but also (0, 0) is an unstable critical point of (43).

Example 3.5
% =X+4y—x?,

Consider t (45)
ﬂ =6X—Yy+2Xy
dt

This is of the form (43), where P1(x, y) = -x?and Qi(X, y) = 2xy. We see at once that
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the hypothesis of Theorems 3.7 and 3.8 are satisfied. Hence to investigate the critical
point (0, 0) of (45), we consider the linear system.

%=x+4y,
dy =6X-Yy
dt

of the form (19). The characteristic equation (22) of this system is
A?-25=0.
Hence the roots are A; = 5; A, = - 5. Since the roots are real, unequal, and of
opposite sign, we see from conclusion (ii) of Theorem 3.7 that the critical point (0, 0)

of the nonlinear system (45) is a saddle point. From Conclusion (3) of Theorem 3.8

we further conclude that the point is unstable.
Eliminating dt from equations (45), we obtain the differential equation

dy _ 6x—y+2xy

47
dx  x+4y-x° (47)

which gives the slope of the paths in the xy phase plane defined by the solutions of

(45). The first order equation (47) is exact. Its general solution is readily found to be
X2y +3x2—xy —2y*+¢=0 (48)

where c is an arbitrary constant. Equation (48) is the equation of the family of paths in
the xy phase plane. Several of these are shown in Figure (3.14).

}/\//// x

_21
Figure 3.14

V

\
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Example 3.6

Consider the nonlinear system

%:sinx—4y,
by (49)
—y:sin 2X—5Y,
dt
Using the expansion
3 5
sinx=x-—+X _A :
3 o
we write this system in the form
dx x* x°
—=X—-4dy——+—+..,
dt 6 120
(50)
3 5
ﬂ=2x—5y—4i+4i+
dt 3 15

The hypotheses of Theorems 3.7 and 3.8 are satisfied. Thus to investigate the critical

point (0, 0) of (49) [ or 50], we consider the linear system

dx

—— =x-4y,

dt y

dx

— =2X-5y, 51
ot y (51)

The characteristic equation of this system is
A+ 4L +3=0.

Thus the roots are A; = - 3, A, = - 1. Since the roots are real, unequal and of the same
sign, we see from conclusion (i) of Theorem 3.7 that the critical point (0,0) of the
nonlinear system (49) is a node. From conclusion (1) of Theorem 3.8 we conclude

that this node is asymptotically stable.
Example 3.7

In this example we shall find all the real critical points of the nonlinear system

127



dx

= =8x—y?,

dt y

dy 2

— =-6Yy+6X°, 52
ot y (52)

and determine the type and stability of each of these critical points.

Clearly (0, 0) is one critical point of system (52). Also (52) is of the form (43)
and the hypotheses of Theorems 3.7 and 3.8 are satisfied. To determine the type of

critical point (0, 0), we consider the linear system.

%:8)(’
dt

dy

—~ =By,
a

of the form (19). The characteristic equation of this linear system is
AZ- 20 -48=0,

and thus the roots are A, = 8, A, = - 6. Since the roots are real, unequal and of
opposite sign, we see from conclusion (ii) of Theorem 3.7 that the critical point (0, 0)
of the given nonlinear system (52) is a saddle point. From conclusion (3) of Theorem

3.8 we conclude that this critical point is unstable.

We now proceed to find all other critical points of (52). By definition, the
critical points of this system must simultaneously satisfy the system of algebraic

equations.
8x - y* =0,
- By +6x°=0 (53)

From the second equation of this pair, y = x°. Then substituting this into the first

equation of the pair, we obtain
8x - x* =0,
which factors into
X(2-X) (4 +2x +x?) = 0.

This equation has only two real roots, x = 0 and x = 2. These are the abscissas of the
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real critical points of (52); the corresponding ordinates are determined from y = x2.

Thus we obtain the two real critical points (0 ,0) and (2, 4).

Since we have already considered the critical point (0, 0) and found that it is
an (unstable) saddle point of the given system (52), we now investigate the type and
stability of the other critical point (2, 4). To do this, we make the translation of

coordinates

n=y-4, (54)

which transforms the critical point X = 2, y = 4 into the origin § = n = 0 in the &n
plane. We now transform the given system (52) into (§,n) coordinates. From (54), we

have
X=E+2, y=n+4
and substituting these into (52) and simplifying, we obtain

de

=85 -8n-1°,
y (55)
d—?:24§—677+6§2.

which is (52) in (&, n) coordinates. The system (55) is of the form (43) and the
hypothesis of Theorem 3.7 and 3.8 are satisfied in these coordinates. To determine the

type of the critical point § = n= 0 of (55), we consider the linear system.

dé

—2 —8£-8n,

it ¢ —8n

dn

—L = 24¢£ —6n.
ot & —6n

The characteristic equation of this linear system is
A%~ 20+ 144 = 0.

The roots of this system are 1+:+/143 ,which are conjugate complex with real part

not zero. Thus by conclusion (iv) of Theorem 3.7, the critical point § = n = 0 of the

nonlinear system (55) is a spiral point. From conclusion (3) of Theorem 3.8, we
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conclude that this critical point is unstable. But this critical point is the critical point
X =2,y = 4 of the given system (52). Thus the critical point (2, 4) of the given system

(52) is an unstable spiral point.

In conclusion, the given system (52) has two real critical points, namely:

1. Critical point (0, 0); a saddle point; unstable;
2. Critical point (2, 4); a spiral point; unstable.
Example 3.8

Consider the two nonlinear systems

ax_
dt

&,

dt

(56)

and

ax s
dt

&,

dt

(57)

The point (0, 0) is a critical point for each of these systems. The hypotheses of
Theorem 3.7 are satisfied in each case, and in each case the corresponding linear
system to be investigated is
de
dt
W _y
dt

(58)

The characteristic equation of the system (58) is

A2+1=0
with the pure imaginary roots +i. Thus the critical point (0, 0) of the linear system
(58) is a center. However, Theorem 3.7 does not give us definite information

concerning the nature of this point for either of the nonlinear system (56) or (57).

Conclusion (vi) of Theorem 3.7 tells us that in each case (0, 0) is either a center or a
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spiral point; but this is all that this theorem tells us concerning the two systems under

consideration.
Summary

This chapter includes some basic definitions of non-linear systems to
understand the desired concept in detail. The nature of critical points of various types
is explained in detail with the help of five theorem and some suitable examples. The

relationship between linear and non linear system is emphasized at the end of chapter.

Keywords Non-linear, critical point, stability, phase plane, path.
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Chapter-4

NON-LINEAR DIFFERENTIAL EQUATION -1l

Objectives

This chapter provides an introduction to a method for studying the stability of
more general autonomous systems. The student is made familiar with the methods to

check stability and asymptotical stability of general autonomous system.

Dependence on a Parameter We briefly consider the differential equation of a
conservative dynamical system in which the force F depends not only on the
displacement x but also on a parameter A. Specifically, we consider a differential
equation of the form

d?x
dt?

F(x, A). (1)

where F is analytic for all values of x and A. The differential equation (1) is equivalent
to the nonlinear autonomous system

o _
dt

dy
s F(x, 1) )

For each fixed value of the parameter A, the critical points of (2) are the points with
coordinates (X, 0), where the abscissas x. are the roots of the equation F(x, A) = 0,
considered as an equation in the unknown X. In general, as A varies continuously
through a given range of values, the corresponding X, vary and hence so do the
corresponding critical points, paths, and solutions of (2). A value of the parameter A at
which two or more critical points coalesce into less than their previous number (or,
vice versa, where one or more split up into more than their previous number) is called
a critical value (or bifurcation value) of the parameter. At such a value the nature of

the corresponding paths changes abruptly.



Example 4.1

Consider the differential equation

2
i§=x2—4x+ﬂ 3)

of the form (1), where
F(x,A)=x*—4x+ 1

and A is a parameter. The equivalent nonlinear system of the form (2) is

ey
dt 7’
(4)
ﬂ:xz —4X+ A
dt

The critical points of this system are the points (x1, 0) and (x2, 0), where x; and x; are

the roots of the quadratic equation F(x, A)=0; that is,

X —4x+ =0, (5)
in the unknown x. We find
+ -
xzﬂ;i%L££:2i -y

Thus the critical points of (4) are

(2++va-2,0)and (2-+2-2,0). (6)
For A < 4, the roots , of the quadratic equation are real and distinct, for A =4, the

roots are real and equal, the common value being 2; and for A > 4, they are conjugate
complex. Thus for A < 4, the critical points (6) are real and distinct. As A— 4—,
the two critical points approach each other; and at A = 4, they coalesce into the one
single critical point (2, 0). For A > 4, there simply are no real critical points. Thus we

see that A = 4 is the critical value of the parameter.
Liapunov’s Direct Method

Russian Mathematician Liapunov obtained a method for studying the stability of more

general autonomous systems. The procedure is known as Liapunov’s direct (or
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second) method.

Consider the nonlinear autonomous system

dx
E = P(X! y)!
(7)
dy _
E =Q(x,y).

Assume that this system has an isolated critical point at the origin (0, 0) and that P and

Q have continuous first partial derivatives for all (x, y).
Definitions

Let E(X, y) have continuous first partial derivatives at all points (x, y) in a domain D

containing the origin (0, 0).

1. The function E is called positive definite in D if E(0, 0) = 0 and E(x, y) > 0 for
all other points (x, y) in D.

2. The function E is called positive semidefinite in D if E(0, 0) = 0 and E(X, y)>0
for all other points (X, y) in D.

3. The function E is called negative definite in D if E(0, 0) =0 and E(X, y) <0

for all other points in D.

4, The function E is called negative semidefinite in D if E(0, 0) = 0 and E(x, y)<0
for all other points (x, y) in D.

Example 4.2

The function E defined by E(x, y) = x* + y? is positive definite in every domain D

containing (0, 0). Clearly, E(0, 0) = 0 and E(X, y) > 0 for all (x, y) = (0, 0).

The function E defined by E(x, y) = x* is positive semidefinite in every domain D
containing (0, 0). Note that E(0, 0) = 0, E(0, y) = 0 for all (0, y) such thaty = 0 in D,
and E(x, y) > 0 for all (x, y) such that x = 0 in D. There are no other points in D, and
so we see that E(0, 0) = 0 and E(X, y) > 0 for all other points in D.

Similarly, we see that the function E defined by E(x, y) = -x* - y? is negative definite

in D and that defined by E(x, y) = - X* is negative semidefinite in D.
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Definition

Let E(x, y) have continuous first partial derivatives at all points (x, y) in a domain D

containing the origin (0, 0). The derivative of E with respect to the system (7) is the

function B defined by

OE(X, OE(X,
Bx,y) = W py y)  EEA ) ©®)
OX oy
Example 4.3
Consider the system
ax_ —X+Yy°
dt ’
(9)
dy 2
—— =—y+X°,
a )
and the function E defined by
E(x,y) =x* +Y° (10)

For the system (9), P(x, y) = —x + y*, Q(x, y) = =y + x% and for the function E
defined by (10),

E(XY) _,, OE(X.Y) _ 2y
Fore ’ oy '

Thus the derivative of E defined by (10) with respect to the system (9) is given by

B(x, y) = 2x(—x +y?) + 2y(=y +x7) = =20 + y°) + 20y + xy’). (11)
Now let C be a path of system (7); let x = f (1), y = g(t) be an arbitrary solution of (7)
defining C parametrically; and let E(X, y) have continuous first partial derivatives for
all (x, y) in a domain containing C. Then E is a composite function of t along C; and
using the chain rule, we find that the derivative of E with respect to t along C is

dE[f (©),9(V)] dg(®)
dt dt

df (t)

=ELT 0,901 +E, [T 0,00

=E,[f (), gOIPLf (©), 9]+ E, [T (1), 9(®IQLT (1), g(1)]
= B (), 9] (12)

Thus we see that the derivative of E[f(t), g(t)] with respect to t along the path C is
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equal to the derivative of E with respect to the system (7) evaluated at x = f (t),
y=9(b).
Definition

Consider the system

dx
E =P(x,y),
(7)
dy _
E =Q(X,Y).

Assume that this system has an isolated critical point at the origin (0, 0) and that P and
Q have continuous first partial derivatives for all (x, y). Let E(X, y) be positive

definite for all (x, y) in a domain D containing the origin and such that the derivative

B(x, y) of E with respect to the system (7) is negative semidefinite for all (x, y)e D.

Then E is called a Liapunov function for the system (7) in D.
Example 4.4

Consider the system

LS y’
dt ’
©)
dy 2
L =—y+X
a
and the function E defined by
E(X, y) =X +y° (10)

introduced in Example 4.3. Obviously the system (9) satisfies all the requirements of
the immediately preceding definition in every domain containing the critical point
(0, 0). Also, in Example 4.2 we observed that the function E defined by (10) is
positive definite in every such domain. In Example 4.3, we found the derivative of E

with respect to the system (9) as
B(x, y) = =20¢ +y) + 2(¢y + xy?). (11)

for all (x, y). If this is negative semidefinite for all (x, y) in some domain D containing
(0,0), then E defined by (10) is a Liapunov function for the system (9).
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Clearly (0, 0) = 0. Now observe the following: If x < 1 and y = 0, then xy? < y?; if
y<landx=0,thenx’y <x% Thusifx <1,y <1, and (x,y) = (0, 0), X’y + xy? < x* +

y? and hence
- (¢ +y%) + (X°y + xy?) <0

Thus in every domain D containing (0, 0) and such that x < 1 and y < 1, B(x, y) given
by (11) is negative definite and hence negative semidefinite. Thus E defined by (10) is
a Liapunov function for the system (9).

We now state and prove two theorems on the stability of the critical point (0, 0)
of system (7).
Theorem 4.1

Consider the system

dx
E = P(X1 y)!
(7)
dy _
E =Q(X,Y).

Assume that this system has an isolated critical point at the origin (0, 0) and that P and
Q have continuous first partial derivatives for all (X, y). If there exists a Liapunov
function E for the system (7) in some domain D containing (0, 0), then the critical
point (0, 0) of (7) is stable.

Proof Let K. be a circle of radius € > 0 with center at the critical point (0, 0) where
e > 0 is small enough so that this circle K¢ lies entirely in the domain D (see Fig.
4.1). From a theorem of real analysis, we know that a real valued fuction which is
continuous on a closed bounded set assumes both a maximum and a minimum value
on that set. Since the circle K. is a closed bounded set in the plane and E is
continuous in D and hence on K, the real analysis theorem referred to in the
preceding sentence applies to E on K. and so, in particular, E assumes a minimum
value on Kc. Further, since E is also positive definite in D, this minimum value must
be positive. Thus E assumes a positive minimum m on the circle K.. Next observe
that since E is continuous at (0, 0) and E(O, 0) = 0, there exists a positive number &
satisfying 6 < e such that E(x, y) < m for all (x, y) within or on the circle K; of radius

d and center at (0, 0). (see Figure 4.1).
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Figure 4.1

Now let C be any path of (7); let x = f(t), y = g(t) be an arbitrary solution of (7)
defining C parametrically; and suppose C defined by [f(t), g(t)] is at a point within the

"inner" circle Ks at t = to. Then
E[f(to), 9(to)] <m.

Since K is negative semidefinite in D we have

dE[f (t), g(t)] <0
dt B

for [f(t), g(t)] € D. Thus E[f(t), g(t)] is a nonincreasing function of t along C. Hence

E[f(t), 9(V] < E[f(to), 9(to)] <m

for all t > to. Since E[f(t), g(t)] would have to be > m on the "outer" circle K., we see
that the path C defined by x = f (t), y = g(t) must remain within K for all t > to. Thus,
from the definition of stability of the critical point (0, 0), we see that the critical point
(0, 0) of (7) is stable.

Theorem 4.2

Consider the system

dx
E = P(X! y):

(7)
dy

E = Q(X’ y)

Assume that this system has an isolated critical point at the origin (0, 0) and that P and
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Q have continuous first partial derivatives for all (x, y). If there exists a Liapunov
function E for the system (7) in some domain D containing (0,0) such that E also has

the property that B defined by (8) is negative definite in D, then the critical point
(0,0) of (7) is asymptotically stable.

Proof As in the proof of the previous theorem, let K. be a circle of radius € > 0 with
center at the critical point (0, 0) and lying entirely in D. Also, let C be any path of (7);
let x = f(t), y = g(t) be an arbitrary solution of (7) defining C parametrically; and
suppose C defined by [f (t), g(t)] is at a point within K. at t =t (See Figure 4.2).

Now since B is negative definite in D, using (12), we have

dE[T(t).9M] _
dt

for [f(t), g(t)] € D. Thus E[f(t), g(t)] is a strictly decreasing function of t along C.
Since E is positive definite in D, E[f(t),g(t)] > 0 for [f(t), g(t)] € D. Thus
!im E[f(t), g(t)] exists and is some number L > 0. We shall show that L = 0.

el=1

NI

Figure 4.2

On the contrary assume that L > 0. Since E is positive definite, there exists a positive
number vy satisfying y < e such that E(x, y)< L for all (x, y) within the circle K of
radius y and center at (0,0). Now we can apply the same real analysis theorem on

maximum and minimum values that we used in the proof of the preceding theorem to
the continuous function & on the closed region R between and on the two circles K.
and K,. Doing so, since B is negative definite in D and hence in this region R which

does not include (0, 0), we see that B assumes a negative maximum - k on R. Since

139



E[f(t), g(t)] is a strictly decreasing function of t along C and
limE[f(t), g()] = L

the path C defined by x = f(t), y = g(t) cannot enter the domain within K, for any t > to
and so remains in R for all t > to. Thus we have E[f(t). g(t)] < - k for all t > t,. Then

by (12) we have
L0 gy ), g(01< (19
for all t > to. Now consider the identity
=110, 9001 €11, o)1= | 2EL0. 900y, (14)

Then (13) gives
ELf(t), 9(0)]- E[f(t,). 9(to)] < —fk dt.

and hence

E[f(t), 9(V] < E[f(to), 9(to)] — K(t — to)
for all t > ty. Now let t — 0. Since - k < 0, this gives

limEf(0), (0] = - <o.

But this contradicts the hypothesis that E is positive definite in D and the assumption
that

limE[f(t), o] =L >0
Thus L = 0; that is,
limE[f(t), g()] = 0.
Since E is positive definite in D, E(X, y) = 0 if and only if (x, y) = (0, 0). Thus,

limE[f(t), g()] =0,

if and only if
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limf(t)=0 and !img(t)=0.

tow

But, from the definition of asymptotic stability of the critical point (0, 0), we see that

the critical point (0, 0) of (7) is asymptotically stable.
Example 4.5

Consider the system

LS y’
dt ’
(9)
dy 2
— =—y+X°,
a )
and the function E defined by
E(x,y) =x*+Y’. (10)

previously studied in Examples 4.3 and 4.4. Before that, in Example 4.2, we
noticed that the function E defined by (10) is positive definite in every domain
containing (0, 0). In Example 4.3, we found the derivative of E with respect to the

system (9) is given by
B(x, y) = =20¢ +y?) + 20y + xy?). (11)

Then, in Example 4.4, we found that B defined by (11) is negative semidefinite in
every domain containing (0,0) and hence that E defined by (10) is a Liapunov
function for the system (9) in every such domain. Now, applying Theorem 4.1,we see
that the critical point (0, 0) of (9) is stable.

However, in Example 4.4, we actually showed that B defined by (11) is negative
definite in every domain D containing (0, 0). Thus by Theorem 4.2, we see that the
critical point (0, 0) of (9) is asymptotically stable.

Note

Liapunov's direct method is indeed "direct” in the sense that it does not require any
previous knowledge about the solutions of the system (7) or the type of its critical
point (0,0). Instead, if one can construct a Liapunov function for (7), then one can

"directly” obtain information about the stability of the critical point (0, 0). However,

there is no general method for constructing a Liapunov function, although methods
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for doing so are available for certain classes of equations.
Exercise

Determine the type and stability of the critical point (0, 0) of each of the nonlinear

autonomous systems in questions 1-4.

dx dy

1. — =xX+Xx*-3xy, E:—ijty4r3y2
dx dy
2. — =X+ Yy+x%y, 2 =3x—y+2xy*
at y y at y y
dx 2 dy .
3. —=(y+1)° —-cosx, —=sin(x+
5 D gt = Sn(x+y)
4. Consider the autonomous system
%—yex
dt ’
W _e g
dt

@ Determine the type of the critical point (0, 0).

(b) Obtain the differential equation of the paths and find its general solution.
Answers

1. Node, unstable

2. Saddle point, unstable

3. Saddle point, unstable

4(a)  Saddle point (b) Yy’ =2(x+e*+c)

Limit Cycles and Periodic Solutions
A. Limit Cycles

We have already studied autonomous systems having closed paths. For example, in
the neighborhood of center there is an infinite family of closed paths resembling
ellipses. The closed paths about (0, 0) form a continuous family in the sense that

arbitrarily near to any one of the closed paths of this family there is always another
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closed path of the family. Now we shall consider systems having closed paths which
are isolated in the sense that there are no other closed paths of the system arbitrarily

near to a given closed path of the system.

Now suppose the system (7) has a closed path C. Further, suppose (7) possesses a
nonclosed path C; defined by a solution x = f(t), y = g(t) of (7) and having the
following property: As a point R traces out C; according to the equations x = f(t),
y = g(t), the path C; spirals and the distance between R and the nearest point on the
closed path C approaches zero either as t — +oo or as t — —oo. In other words, the
nonclosed path C; spirals closer and closer around the closed path C either from the
inside of C or from the outside either ast — +o or ast — —oo (see Figure 4.3 where

C, approaches C from the outside).

In such a case we call the closed path C a limit cycle, according to the following

definition:
Definition

A closed path C of the system (7) which is approached spirally from either the inside
or the outside by a nonclosed path C, of (7) either ast — +oo or ast — —o is called a

limit cycle of (7).

Yy A

C

Figure 4.3
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Example 4.6

The following example of a system having a limit cycle will illustrate the above

discussion and definition.

dx 2 2

—=y+X(1-x"-y°),

pranl ( y°)

dy 2 2

Ez—x+y(1—x -vy9) (15)

To study this system we shall introduce polar coordinates (r, 8), where
X =T C0S 0,
y =rsin 0. (16)

From these relations we find that

dx ~dy _dr
X—+y—=r—,
dt dt dt
ﬂ_ %:er_e (17)

X .
a Jat

Now, multiplying the first equation of (15) by x and the second by y and adding, we

obtain

dX dy 2 2 2 2
X—+y—=(X"+ 1-x"—-y°).
m ydt ( Yo y°)

Introducing the polar coordinates defined by (16) and making use of (17), this

becomes

d )
r—=r-(1-r°).
ot @-r7)

For r = 0, we may thus write

dr 2
—=r(1-r).
5 4=

Now multiplying the first equation of (15) by y and the second by x and subtracting,
we obtain

dx dy 2
X2 =y? + X,
Yot Yt Y
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Again using (17), this becomes

dt

and so for r = 0 we may write

do_
dt

Thus in polar coordinates the system (15) becomes

dr )
—=r(1-r°),
o @-r)

(18)
a9 __
dt
From the second of these equations we find at once that
0=—1t+1,

where tp is an arbitrary constant. The first of the equations (18) is separable.

Separating variables, we have

dr
— 5 = dt,
r(l—r°)
and an integration using partial fractions yields
Inr>=In|1-r?=2t+In|cy.

After some calculations we obtain

2t

2 Cge
r<= o
l+ce

Thus we may write

r:; where c:i.

Vl+ce?' Co

Thus, the solution of the system (18) may be written as
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0=—1t+t,

where ¢ and t, are arbitrary constants. We may choose t, = 0, then 6 = —t; using

(16) the solution of the system (15) becomes

cost

Vi+ce?

—sint
y=—— (19)

Vi+ce?

The solutions (19) of (15) define the paths of (15) in the xy plane. Examining these

paths for various values of ¢, we note the following conclusions:

1. If ¢ = 0. the path defined by (19) is the circle x> + y? = 1, described in the

clockwise direction.

2. If ¢ # 0, the paths defined by (19) are not closed paths but rather paths having
a spiral behavior. If ¢ > 0, the paths are spirals lying inside the circle x* + y?
=1. As t — +oo, they approach this circle; while as t — —oo, they approach the
critical point (0, 0) of (15). If ¢ < 0, the paths lie outside the circle x* + y* = 1.

These "outer" paths also approach this circle as t — +o0; while as

t — In,/|c|, both |x| and |y| become infinite.

Since the closed path x* + y? = 1 is approached spirally from both the inside and the
outside by nonclosed paths as t — +o0, we conclude that this circle is a limit cycle of
the system (15). (See Figure 4.4).

Figure 4.4



B. Existence and Nonexistence of Limit cycles

In Example 4.6 the existence of a limit cycle was ascertained by actually finding this
limit cycle. In general such a procedure is, of course, impossible. Given the
autonomous system (7) we need a theorem giving sufficient conditions for the
existence of a limit cycle of (7). One of the few general theorems of this nature is the
Poincare-Bendixson theorem, which we shall state below (Theorem 4.4). First, we

shall state and prove a theorem on the nonexistence of closed paths of the system (7).
Theorem 4.3 Bendixson's Nonexistence Criterion

Hypothesis. Let D be a domain in the xy plane. Consider the autonomous system

ax

E_ P(X, y)v

dy _

E_Q(X’ y), (7)

where P and Q have continuous first partial derivatives in D. Suppose that

aP(ax, ) + Q. Y) has the same sign throughout D.
X

Conclusion The system has no closed path in the domain D.

Proof Let C be a closed curve in D; let R be the region bounded by C; and apply

Green’s Theorem in the plane. We have

_[f| P(x.y) , 9Q(xY)
l[P(x,y)dy—Q(x,y)dx]-Lj{ oy }ds,

where the line integral is taken in the positive sense. Now assume that C is a closed
path of (7); let x = f(t), y = g(t) be an arbitrary solution of (7) defining C

parametrically; and let T denotes the period of this solution. Then

df (t)
“a = P[f(t),g(t)],
dg(t)
T =Q[f(t), g(t)],

along C and we have
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[IPOx y)dy —Q(x, y)dx]

dg()

-Q[f (1), g(t)]

= | { PLT (), 9122 a “)}

= [{PL (1), 9®1QLF (), g()]-QLF (1), a1 PLf (1), g(t)] et

o'—,—i

=0

Thus _” {aP(x y) 6Qé>)<, y)}ds =

oP(x,y)  9Q(x.y)
OX oy

contradiction. Thus C is not a path of (7) and hence (7) possesses no closed path in D.

But this double integral can be zero only if changes sign. This is a

Example 4.7
L3 2X+ Yy + %%,
dt
dy 3
—=3X-y+VY". 20
™ y+y (20)
Here P(X,y) =2x +y + X,
Qx,y) =3x -y +y’,
and Ply)  QY) 3(x* +y?)+1.

OX oy

Since this expression is positive throughout every domain D in the xy plane, the
system (20) has no closed path in any such domain. In particular, then, the system

(20) has no limit cycles and hence no periodic solutions.

Having considered this nonexistence result, we now turn to the Poincare-Bendixson

existence theorem. We shall merely state the theorem and indicate its significance.
Definition

Let C be a path of the system (7) and let x = f(t), y = g(t) be a solution of (7) defining

C. Then we shall call the set of all points of C for t > t, where to is some value of t, a
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half-path of (7). In other words, by a half-path of (7) we mean the set of all
points with coordinates [f(t), g(t)] for to < t < + oo. We denote a half-path of (7) by C".

Definition

Let C* be a half path of (7) defined by x = f(t), y = g(t) for t > to. Let (X1, y1) be a point
in the xy plane. If there exists a sequence of real numbers {t,}, n=1,2,........ such that
th — +oo and [f(t,), g(tn)] — (X1, y1) as n — +oo, then we call (x;, y1) a limit point

of C*. The set of all limit points of a half-path C* will be called the limit set of C* and
will be denoted by L(C™).

Theorem 4.4 Poincare-Bendixson Theorem
Hypothesis
1. Consider the autonomous system
dx
- = P Xl y
ot (X, Y)
(7)
dy
— = Xl ]
ot Q(x,Y)

where P and Q have continuous first partial derivatives in a domain D of the xy plane.

Let D, be a bounded subdomain of D, and let R denote D, plus its boundary.

2. Let C* defined by x = f(t), y = g(t), t > to, be a half-path of (7) contained
entirely in R. Suppose the limit set L(C") of C* contains no critical points of
(7).

Conclusion Either (1) the half-path is itself a closed path [in this case C* and L(C")

are identical] or (2) L(C") is a closed path which C* approaches spirally from either

the inside or the outside [in this case L(C") is a limit cycle]. Thus in either case, there

exists a closed path of (7) in R.
C. The Index of a Critical Point

We again consider the system (7), where P and Q have continuous first partial
derivatives for all (x, y), and assume that all of the critical points of (7) are isolated.
Now consider a simple closed curve (By a simple closed curve we mean, a closed
curve having no double points; for example, a circle is a simple closed curve, but a

figure of digit eight is not) [not necessarily a path of (7)] which passes through no
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critical points of (7). Consider a point (x;, y1) on C and the vector [P(X1, Y1), Q(X1, Y1)]
defined by (7) at the point (X;, y1). Let 6 denotes the angle from the positive x

direction to this vector (see Figure 4.5).

c Q(xy, »1)
P(xloyl)
Figure 4.5

Now let (xi, y1) describes the curve C once in the counterclockwise direction and
returns to its original position. As (X1, y1) describes C, the vector [P(X1, Y1), Q(X1, Y1)]
changes continuously, and consequently the angle 6 also varies continuously. When
(x1, y1) reaches its original position, the angle 6 will have changed by an amount A6.

We will now define the index of the curve C.
Definition

Let 6 denotes the angle from the positive x direction to the vector [P(X1, Y1), Q(X1, Y1)]

defined by (7) at (X1, y1). Let AB denote the total change in 6 as (xi, y1) describes the
simple closed curve C once in the counterclockwise direction. We call the number

_Af

| =27
27

the index of the curve C with respect to the system (7).

Clearly A6 is either equal to zero or a positive or negative integral multiple of 2z and
hence | is either zero or a positive or negative integer. If [P(x1, Y1), Q(X1, y1)] merely
oscillates but does not make a complete rotation as (x1, y1) describes C, then I is zero.

If the net change A6 in 0 is a decrease, then I is negative.

Now let (Xo, Yo) be an isolated critical point of (7). It can be shown that all simple

closed curves enclosing (Xo, Yo) but containing no other critical point of (7) have the
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same index. This leads us to make the following definition.
Definition
By the index of an isolated critical point (Xo, Yo) of (7) we mean the index of a simple

closed curve C which encloses (Xo, Yo) but no other critical points of (7).

From an examination of Figure 4.6 we may reach the following conclusion intuitively:
The index of a node, a center, or a spiral point is + 1, while the index of a saddle point
is -1.

Nodes

Center Spiral Point Saddle

Figure 4.6

We now list some interesting results concerning the index of a simple closed curve C
and then point out several important consequences of these results. In each case when
we say index we shall mean the index with respect to the system (7) where P(X, y) and
Q(X, y) have continuous first partial derivatives for all (x, y) and (7) has only isolated
critical points.

1. The index of a simple closed curve which neither passes through a critical

point of (7) nor has a critical point of (7) in its interior is zero.

2. The index of a simple closed curve which surrounds a finite number of critical

points of (7) is equal to the sum of the indices of these critical points.

3. The index of a closed path of (7) is + 1.
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From these results the following conclusions follow at once.

@ A closed path of (7) contains at least one critical point of (7) in its interior [for
otherwise, by (1), the index of such a closed path would be zero; and this

would contradict (3)].

(b) A closed path of (7) may contain in its interior a finite number of critical points
of (7), the sum of the indices of which is + 1 [this follows at once from (2) and

3)].
Summary

Topic discussed in this chapter includes Liapunov’s direct method to check the
stability of general autonomous systems and some theorems to check stability and
asymptotical stability of such systems. Pioncare Bendixson theorem giving the
sufficient condition for the existence of limit cycle of general autonomous systems is
stated. A theorem on nonexistence of limit cycles along with the index of critical

points are presented at the end of the chapter.

Keywords Liapunov direct method, limit cycle, index, Bendixson non-existence

criterion.
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Chapter-5

CALCULUS OF VARIATIONS -1

Objectives

In this chapter, it is shown that the variational problems give rise to a system
of differential equations, the Euler-Lagrange equations. Furthermore, the minimizing
principle that underlies these equations leads to direct methods for analyzing the
solutions to these equations. These methods have far reaching applications and will
help students in developing problem solving techniques. Student will be able to
formulate variational problems and analyze them to deduce key properties of system

behaviour.
Introduction

The calculus of variations is one of the oldest subjects of mathematics, yet it remains
very active and is still evolving fast. Besides its mathematical importance and its links
to other branches of mathematics including geometry and partial differential

equations, it is widely used in engineering, physics, economics and biology.

The calculus of variations concerns problems in which one wishes to find the
minima or extrema of some quantity over a system that has functional degrees of
freedom. Many important problems arise in this way across pure and applied
mathematics and physics. They range from the problem in geometry of finding the
shape of a soap bubble, a surface that minimizes its surface area, to finding the
configuration of a piece of elastic that minimises its energy. Perhaps most
importantly, the principle of least action is now the standard way to formulate the
laws of mechanics and basic physics. These days, calculus of variations attracts
attention of mathematics and provides new tools to find the best possible solution, and

to understand the essence of optimality.

The calculus of variations seeks to optimize (often minimize) a special class of

functions called functionals. Its aim is to explore methods for finding maximum or



minimum of a functional defined over a class of functions. The usual form of

functional is
b
Iyl = [F(x,y, y)dx. (1)

Here I[y] is not a function of x because x disappears when definite integral is
evaluated. The argument y of I[y] is not a simple variable but a function y = y(x). The
square bracket in I[y] emphasize this fact. A functional can be thought of function of
functions. The value of r.h.s. of equation (1) will change as the function y(x) is varied,
but when y(x) is fixed, it evaluates to a scalar quantity (a constant). We seek the y(x)

that minimizes I[y].
Function

By a function we mean a correspondence between the elements of sets A and

B s.t. to each element of A there corresponds exactly one element of set B.
Functional

Let A be a class of functions. A correspondence between the functions of class
A and the set of real numbers s.t. to each function belonging to A, there corresponds

exactly one real number, is called a functional. Its input is vector and output is scalar.
or

A functional is a correspondence which assigns a unique real number to each
function belonging to some class. We can say that a functional is a kind of function,

where the independent variable is itself a function (or curve).

A functional is denoted by capital letter I or [J]. If y(x) represents the function

in the class of functions of a functional J, then we write J = J[y(x)].
Domain

The class of functions y(x) on which the functional J[y(x)] is defined is called

the domain of the functional J, rather than a region of coordinate space.
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Some examples of functionals

1. A simple example of a functional is the arc length A between two given points

A(xi, y1) and B(x,, y2) on a curve y = y(x).

YA y = y(x)
{B(le Y2)
A(Xq, Y1)
O]l *i o L
Figure 5.1

(ds)” = (dx)* + (dy)’

2
ds = dx 1+(?] —oe o0, y=2
X

This length is given by

Myl = [ JI+[y (0F  dx

!

or My()]= [ (0% y00,y'(0)dx .

X

Here functional is the integral of the distance along any of these curves, as in

figure 5.1. We are to choose among y;(x), y2(X), y3(x) which makes I[y] minimum.

Thus a definite number is associated with each such curve, namely, its length.
Thus, the length of a curve is a functional defined on set of such curves as length of

the arc is determined by the choice of functions.
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2. Another example is the area S of a surface bounced by a given curve C

because this area is determined by the choice of the surface z = z(x, y)

aY (oY %
S [z(x,y)] = ” [1+(&j +[a—yJ ] dxdy .

Here D is the projection of the area bounded by the curve C on the xy-plane.

3. Let y(x) be an arbitrary continuously differentiable function, defined on the

interval [a, b].

Then the formula

b
J[y]= j y” (x)dx defines a functional on the set of all such functions y(x).

4. As a more general example, let F(x, y, z) be a continuous function of three

variables. Then the expression
b
J[yl= [ FO6y(0, y' (0l (1)

where y(x) ranges over the set of all continuously differentiable functions defined on

the interval [a, b], defines a functional. By choosing different values of F(x, y, z), we

obtain different functionals e.g. if F(x, y, z) = V1+ 2> .
Then J[y] is the length of the curve y = y(x), as in the first example, while if

F(x, y, z) = z* , case (3) is obtained. Further, we shall be

concerned mainly with functionals of the form (1)

Note What types of functions are allowed in the domain of functional?

The integral I[y]= TF(X, y(X), y'(x))dx (1)

Xy

is well defined real number if (i) the integrand is a continuous function of x and for
this it is sufficient to assume that y'(x) is continuous. Thus first, we will always

assume that the function F(x, y, y') has continuous partial derivatives of second order
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w.r.t. X, y and y' and satisfy the given boundary conditions y(x¢) = yo, Vy(X1) = yi.

Functions of this kind will be called admissible functions.

Some typical examples of variational problems i.e. problems involving the

determination of maxima and minima of functionals.

Besides Brachistochrone problem (details will be provided later on), three

other problems which exerted great influence on the subject, are

(1) In the problem of geodesics, if is required to determine the line of shortest
length connecting two given points (Xo, Yo, Zo) and (X1, yi1, z1) on a surface S
given by (X, y, z) = 0. This is a typical variational problem with a constraint,
since here we are required to minimize the arc length A joining the two points

on S given by the functional

% g ) 5,172
k:'[ 1+ Y 4 gy dx
% dx dx

subject to the constraint ¢(x, y, z) = 0. This problem was first solved by Jacob

Bernoulli in 1698, but a general method of solving such problems was given by Euler.

(i)  In the problem of minimal surface of revolution, a curve y = y(x) > 0 is
rotated about the x-axis through an angle 2r. The resulting surface bounded by

the planes x = a and x = b has the area

b d ) 1/2
S=2n jy{u(d—yj } dx.
" X

Clearly, determination of the particular curve y = y(x) which minimizes S constitutes

a variational problem.

(iii)  In the isoperimetric problem, it is required to find a closed line of given
length which encloses a maximum area S. The solution of this problem is the circle.

The problem consists of the maximization of the area A bounded by the closed curve
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2z
r =1(0) of given length A. This mean that the functional A given by A= % J. r’de is
0

1/2

27 2
maximum subject to A= .[ r’+ (ij do
I ae

Thus in calculus of variations we consider some quantity (arc length, surface area,
time of descent) that depends upon the entire curve, and we seek the curve that
minimizes the quantity in question. In following part, emphasis will be given to the

maxima or minima of the following functionals

X,

—

FIX, y(x), y'(X)] dx

Xo

X

FIX, y(X), y'(X)....y"™ (x)] dx

X —y

Xo

in which function F is given, and the functions y(x), yi(X), .., ya(X) are the arguments

of the functionals. (' = derivative w.r.t. X)
Maximum and Minimum values of functionals

A functional J [y(x)] is said to have a maximum value on y = y(x) if the value
of the functional on any curve close to y = yo(x) is not greater that J [yo(x)] i.e.
Jly(x)]£ J [yo(x)] V¥ curves y(x) close to yo(x). [i.e. AJ=J[y(x)] —J[yo(x)] £0]. A
functional J[y(x)] is said to have a minimum value on y = y(x) if the values of the
functional on any curve close to y= yo(X) is not less than J[yo(x)] i.e. J[y(x)] = J[yo(x)]

V curves y(x) close to yo(x).
The maximum and minimum values of a functional are called its extremum values.

Definition
Extremal is the value of y(x) from which the value of I(y) is either maximum

or minimum in the field of calculus of variations.

158



Definition
b
The definite integral I(y) = Jy(x)dx is a functional defined on a class of

continuous functions on the interval [a, b]

Definition
If F(x,y(x),Y'(X)) is a continuous function with respect to all its arguments,

then the integral
b
Ty = [FOLy,y'(0)dx

defines a functional on a set of continuous differentiable functions defined on the

closed interval [a, b].
Theorem 5.1

If a functional I [y(x)] attains a maximum or minimum on y = yo(X), where the

domain of definition belongs to certain class, then at y = yo(x), 0I=0,

where ol :% I [y(X) +a5y(x)] ata =0 for fixed y and dy and different values of
parameter, is variation of the functional I[y(x)].

Proof For fixed yo(x) and 8y, yo(x)+ ady defines class of functions.

For a = 0, we get a function y(x)

Clearly I[yo(x) + ady] = y(a) (say) is a function of a, which attains the maximum or

minimum value at yo(x) (i.e. ata =0).
Then y'(a) =0 at yo(x)

y'(a)=0 for a=0 [a =0 gives yo(x)]

or il[yo(x)+a5y]:0 at ¢ =0.
oa
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= 0l = 0. Thus the variation of a functional is zero on curves on which an

extermum of the functional is achieved.
The Simplest Variational Problem
Euler’s Equation

Euler’s equation for functionals containing first order derivative and one independent

variable.

Theorem 5.2: Obtain the necessary condition for
b
1(y) = [ F(x Y00,y (X)) dx (1)

to be extremum, satisfying the boundary conditions y(x) = A, y(b) =B..

or

b
Let I(y) = IF(X, y(X), y'(x))dx be a functional defined on the set of functions y(x)

which has continuous first order derivative in the interval [a, b] and satisfies the
boundary conditions y(a)=A, y(b) =B, where A and B are prescribed at the fixed
boundary points a and b. Also, F is differentiable three times w.r.t. all its arguments.

Then a necessary condition for I[(y, x)] to be an extremum (for a given function y(x)]

is that F_ i[a—FJ =0 i.e. if the functional I[y(x)] has an extremum on a function

dx\ oy’

y(x), then y(x) satisfies the differential equation

oF_dfoF)_,

oy dx\ oy’
Note Brachistochrone problem and example of shortest distance between two points
are variational problems of this type.

Proof

Let y = y(x) be the curve which extremizes (i.e. maximizing or minimizing) the

functional
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b
Iy(OT = [ F (% Y(0),y'(x)) dx (1)

and satisfying the boundary conditions

y(@=A
2
y(b)zB} @
YA
/
B (X5 ¥,)
+
o
(o) X, ey s
Figure 5.2

[How we find this function y(x)? We shall obtain a differential equation for
y(x) by comparing the values of I that correspond to neighbouring admissible
functions. Since y(x) gives a minimum value to I, I will increase if we ‘disturb’ y(x)

slightly. These disturbed functions are constructed as follows].

Here we assume that extremizing curve admits continuous first order derivatives and

1s differentiable twice.

Let n' (x) be any continuous, differentiable, arbitrary (but fixed) function s.t.

Nn"(x) is continuous and

n@=nb)=0 . (3)

If a is a small parameter,

then [y(x, a)] = y(X) = y() +a n(x) 4)
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(represents a one parameter family of admissible functions) and will satisfy the same

boundary conditions (2) as satisfied by y(x).

The vertical deviation of a curve in this family from the minimizing curve y(x)
is an(x), as shown in fig. 5.2. The significance of (4) lies in the fact that for each
family of this type, i.e., for each choice of the function n(x), the minimizing function
y(x) belongs to the family and corresponds to the value of parameter oo = 0. The

difference Y-y =an is called variation of the function y denoted by dy.

Now, with n(x) fixed, we substitute
y(X)=y(x)+a n(x) and
V'(X)=Yy'(X)+a n'(x) into functional (1) and get a function of «, i.e.
b

I[y(0] = I(a) :J' I[X, y(x, @), y' (X, a)] dx

=I FIX, y(X) +an(x), y'(x)+an'()]dx . ()

When a =0, (4) yields Y(X) = y(X); and since y(x) minimizes the integral, .. I(o) must
have a minimum when a = 0. By elementary calculus, we known that a necessary

condition for the extremum of a functional is that its variation must be zero 1i.e.

I'(@)=0 whena=0 1ie. I'0)=0

ie. i lal,., =0 [i.e.—8 I[y(X)+m7(X)]ao=0}
oo oa

or d—|=0 at =0 .
da

The derivative I'(a) can be computed by differentiating (5) under the integral sign, i.e.

2 F[xy,y]dx as [ﬁ _oda_ o} 6)
da da
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[Leibnitz’s Rule for differentiation under the integral sign

d I—f(xa)dx+f(ba)——f(a )—}
o

a
Now, by the chain rule for differentiating functions of several variables, we have

Kl oOF x Fy Fauy

da [ yy] ox 8a 8780{ ' oa
o OX
x being independent of o ... —=0 .
oa

Also g:n(x) and i’=77'(X) .
oa oa

So from (6) , we have

-, oF F ]
1= @= j {En(xwgn (x)_ dx . (7)
b
Now I' (0) = 0. Putting oo = 0 in (7) yields I ﬁ nx)+— oF n (X)} dx=0 (8)
> Loy oy'

© fora=0 y=y]

[In this equation the derivative n'(x) appears along with the function n(x).] we can

eliminate 1'(x) by integrating the 2™ term by parts, which gives,

b b p
oF d (oF
J. 7' (X)dx = {U(X)wl j! U(X)& [5}1)(

a

_f o dfoF o
= J 7(x) dx(ay,]dx © 7(2) = n(b)=0] .

We can therefore write (8) in the form

¢ oF d(oF
{ n(x){g—&{a—y'ﬂdx_o . (9)
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Now our reasoning upto this point is based on a fixed choice of the function n(x).
However, since the integral in (9) must vanish for every such function, .. the
expression in brackets must also vanish. (The integrand being a continuous function
on [a, b]). or
Using fundamental lemma of calculus of variations, which states that if

b

J n(x)H (x)dx = 0 for any sufficiently differentiable function n(x) within the

integration range, that vanishes at the end points of the interval, then it follows that

H(x) is identically zero on its domain i.e. H(x)=0.

This yields

ﬁ_i(ﬁjzo (10)
gy dx\ oy’

which is known as Euler’s equation.

Conclusion If y(x) is an admissible function that minimizes the integral (1), then y
satisfies Euler’s equation but converse is not necessarily true i.e. if y can be found that

satisfies this equation, y need not minimize I

Second term in equation (10) can be written in expanded form as

d|oF|_0 [0k} 0 [oF)dy 0 [OF)dy
dx|oy'| ox \oy') oy \oy' ) dx oy (oy') dx

.. Euler’s equation (10) becomes

2
£ 9V e Yo

YA Y dx —Fy):O (11)

y'x

which is a second order differential equation unless Fyy = 0.

Special Cases These particular cases can be obtained either directly from some

identity or from Euler’s equation.

Case A Ifx and y are missing from function F,
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then (11) reduces to

d’y
Fy ™ =0
d’y
and if Fyy # 0, we have v =0and so y = ¢;x + c;, = extremals are all straight
X

lines.
Case B Ify is missing from the function F,

then Euler’s equation becomes

i{@jjzo
dx{ oy’

oF o . .
——=C, which is a first order equation for the extremals. This

differential equation is solved to get extremals.

Case C If x is missing from the function F, then Euler’s equation can be integrated

to

% y-F=c, .

This follows from the identity

d|oF | d{oF | oF | oF . oF L
—|—Vy-F|=Yy'|—|—|-—| -—, since — =0 and expression in
oy' dx\ oy ) oy'| ox OX

brackets on right is zero by Euler’s equation.

31 8_Fy'_|: =0 :>6—F y'-F=c,.
dx| oy' oy'

This case is also called Beltrami identity.

Note The solutions of Euler’s equation satisfying the boundary conditions are called
stationary functions. The value of the functional at a stationary function is called a

stationary value of the functional.
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Case D Ify'is missing from the function F i.e. functional is of the form
b

J. F(x,y)dx.

a

Then Euler’s equation reduces to
d
F,——(©0)=0
Tl

= Fy =0, this is not a differential equation but a finite equation. This finite equation
when solved for y, does not involve any arbitrary constant. Thus, in general it is not
possible to find y satisfying the boundary conditions y(x;) = y; and y(x2) =y» and as

such this variatonal problem does not in general, admit a solution.

Case E When the functional is of the form
b

y)= | fxy) J1+ydx.

a

Here F(x,y,y)= f(x,y) y1+y"

= ()2 2 s 2

oy dxlay) oy dx Jixy?

= f1+y? —f, y —f(x,y)i[ y ]
dx

= f1+y? —f

yl

= fo1+y? —f

y

_ : y' [ y" y'y
= fy1+y? —f, —f(xy) - }
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O PRVl S AT y){(lw by y}

ey (+y)”

— 1+ v2 fx y' y”

- f(x Y)—m
Ji+y” (1+y?)

= 1 |:fy (1+yv2)_ fx yv_ f(X, y)y”:| .

ooy iy

So Euler equation oF _dfok =0, becomes as
oy dx{oy'

fx9)y”
f, A+y?)—f, y- =0
{y(ﬂ/ )-tey ey )

1

= fy(1+yv2)_fx yv_f(x’y)zy :0'
1+y'

Applications

Example 5.1 Find the plane curve of shortest length joining the two points A (a;, by)
and B (a, by). or

Show that shortest distance between two points in a plane is a straight line.

Let y(x) be a function whose curve passes through A (a;, b;) and B(a, by). The length

of the arc between A and B is given by I[y]= J. ds . Now, as (ds)*= dx* + dy2

q

2
= ds = dx IJ{%j = dx/1+ y"”
X

I[y]:J- 1+ y”dx .

b
Comparing it with 1[y]= J. FIx,y,y']dx;

y(@)=A, y(b) =B,
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we have

Flx,y,y1=[1+y"]" (1)
Let then length of the curve between given points be minimum for the curve y(x).
.". the functional I F[X,V,y']dx has a minimum value at the function y(x).
.. y(x) satisfies Euler’s equation,
F_d(F)_, o
gy dx{ oy’
As from (1), F is independent of y
F _) 3)
oy
and 6_F' - . “4)
AN l+y?
. equation (2) becomes
o-d|_ Y 1o
dX /1_+_ y12
' 12
— y _ c, y = 2
1+y” I+y'
CZ
y|2(1_c2):C2 — y|2: 1 - — DZ(Say)
—C
= y’=D" = y=Dx +E )

[OR x andy variables are missing in case A, = This problem falls under case A.

Because

:azf 1

fyy 8y'2 - [1+(y')2]3/2 %0

168



. d’ :
so, according to case A, we have q 2/ =0 = extermals are the two parameter family
X

of straight lines y = ¢1x + ¢;].

This is the equation of extremals. We are to find that extremal which passes through

the points (a;, b;) and (az, by).

- from (5) y(a;))=Da; +E

= b;=Da; +E (6)
Now

y(az) =Da;+E = by=Da,+E (7)
Subtracting (6) and (7)

by —by =D (a; —ay)
= D = (bj-by)/(a; —a) (8)

Substituting this in (6) , we have

b = bl_bz al+E
a, -,
:>E=bl—al(bl_sz:albz_azbl (9)
a —-a, a -,
Substituting (8) and (9) in (5) ,
y= b1 _bz X + albz _azbl ) (10)

a —a, a—a,

This is a first degree equation and is of course the straight line joining the two points

A and B.

[This analysis shows only that if I has a stationary value, then the corresponding
stationary curve must be the straight line (10). Also, it is clear from the geometry that
I has no maximizing curve but does have a minimizing curve. Thus we conclude that

(10) actually is the shortest curve joining our two points. A more interesting problem
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is that of finding the shortest curve joining two fixed points on a given surface and
lying entirely on that surface. These curves are called geodesics. In this case solution

is less obvious and possibly many solutions may exist.|

Example 5.2 Find the extremum (extremals) of the functional

M) = |y (1)

where y(1) =0, y(2)=1.

Proof We know that the necessary condition for the functional

b

Iyl= [ F(xy,y)dx 2)

a

to be extremum is that

% - %[%) =0 (Euler’s equation) 3)

satisfying the conditions y(a) =A, y(b) =B.

[It may be noticed that the given functional I may be named as t[y(x)] i.e. as
the time spent on translation along the curve y = y(x) from one point to another, if the

rate of motion v = (ds/dt) is equal to x. As ds = (1+ y'*)"*dx

dS—X then dt :E

and —=
dt X

and t = T E: J‘4d“1+y'zx

X X
Xo

Comparing (1) and (2) , we have

(1+ Y2 1/2
X

Fx,y,y) = (4)

Since it is independent of y = aa—F =0 (5)
y
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and G_F: y

' xyley?

Making use of (5) and (6) in (3) , we find

(6)

0- 41 Y |
dX | xy/1+ y”

S N S
dX | x4/1+ y"

S (. (7)

X1+ y"”

=y? =X (14y")

= (1- ¢*x%) y*? = ¢*x?

. y,z B C2X2
1-c*x?
cX
=

dy -1 (=2¢%%)

= = —_—.
dx 2c  1-c%x?
Integrating , we get

_1 (1_C2X2)—1/2+1
2 1

2

y= +D

1 . . .
= —— 41-¢*x* + D, where D is the constant of integration.
c

y(x) -D= 1 1-¢°x°.
c

= (y(x) D) = — (1-¢*x)
C
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1
¢’

[y(x) - DI +x* =

1
¢

ie. x*+[y(x)-DJ*= (8)

which is a family of circles, with centers on the axis of co-ordinates i.e. centres (0,D).

[2™ method of solving equation (7) is by introducing a parameter y' = tan t then

y —lsint

1
X=—
c

_ . _ 1
or X =C sint, where C=—
C

dy =tant = dy =tant dXx,
dx

= dy =tant C costdt = C sindt,

= y=-C cost+c

Thusx =C sintandy—c;=-C cost .

Eliminating t = x” + (y —¢;)* = € %, which is a family of circles].
Now using boundary conditions

y(1)=0, y(2)=1, we get

1

[y(1)-DJ* + 1> = —
C

=D*+1= Ciz,and 9)

iz = [I-D)*+4 = RS (10)

[y(2)-D]* +2° = .
C C

Equating (9) and (10)

D’+1=D?-2D+5 = D=2

172



Now (10) = ¢* =

ol

[

So the final solution is
[y(x)-2]* +x* =5.
Minimal Surface of Revolution

Example 5.3 Find the curve with fixed boundary points such that its rotation about

the axis of abscissa gives rise to a surface of revolution of minimum surface area.
OR

Find the curve passing through (xo, yo) and (X;, y;) which generates the surface of

minimum area when rotated about x-axis.

Proof Let A(xo, yo) and B (xi, y1) be two given points on the same side of x-axis. Let

y = y(x) be any continuous curve joining these two points.

1.€. y(X0) = Yo and y (x1)=Yy (1)
YA
ry = y(x)
A(Xo, yo) ‘1‘ B(X1, Y1)
\
1
'
o Lo
!
]
yl

Figure 5.3

We know that, the area of surface of revolution generated by rotating the curve

y = y(x) about the x-axis is

I(y) = _[27: yds

where (ds)’ = (dx)* + (dy)? = (dx)* (1+y?) .

= ds=dx (1+y?H)"?.
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X

= I(y) =2n j y(1+y?)2dx . )

X

Comparing it with
)= [ FOGy,ydx . (3)
Now, I has to be minimum.

Also, necessary condition for this functional to be extremum satisfying the condition

y(a)=A and y(b) =B is that

oF _dfoF)_, @)
oy dx| ay' '
Here Fx,y,y) =y[l+y7" (5)

Since the integrand F does not depend explicitly an x, so Euler’s equation (4) reduces

to (Using Case C)

F- y'a—F' =C ie.
oy
= y(1+yv2)1/2 —y y|2 (1+y|2) -2 _ c,

=y -yy? =c (1+yH",

= y=c (1+yv2)1/2 ]

Squaring, we get

y2 — CZ (1+y|2) — y2 _ c2 — C2 yv2

— —-C
= y 2C = y'2 = y': J
C C
[\,2 _c?
= dy e . Separating variables
dx c
= dx = (:2dy =
y-—-¢C
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Integrating , we get

x+¢; = ¢ cosh’ °
X +C, Y
= = cosh™ .
C
X+C
= cosh .
C C
X+C
= y=c cosh( lj, (6)
C

which constitutes a two parameters family of catenaries. The constants ¢ and c; are
determined by the conditions y(xo) = yo, Vy(X1) =yi. Thus (6) is a catenary passing
through two given points. The surface generated by rotation of the catenary is called a

catenoid.

Theorem 5.3

b
Find out the necessary condition for a functional I(y) = j F(x,y,y")dx (1)

a
to have an extremum, when y is not prescribed at the ends.

OR

b
Given the functional I[y] = J F(x,y,Yy")dx where the value of the unknown

a
function y(x) is not assigned at one or both the ends at x =a & x =b. Then find the
continuous differentiable curve for which the given functional attains extremum

values.
Proof

The given functional is
b

Iyl= [ FOoy,y)dx (1)

a
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Let y(x) be the actual extremal of (1) and let n(x) is a function defined on [a, b] with

its continuous first order derivatives, then for assigned y(x) and 1 (x), the functional

b
I[[y + an] = J. F[X, y(X) +an(X), y'(X) +0n7'(x)]dx is a function of a (a real

no.) which attains extremum at oo = 0.

d—l =0 when o =0

a
dld°® ' '
—=— F[x, y(x) +an(x), y'(x) + an'(x)] dx
da da

a

% FIX, y(x) +an(x), y'(x)+an'(x)ldx

Il
D —y T

+ FIXY00+ (0,00 + (0], <

da

-FI% Y0 +an(x),y' (0 +ar (.

b
= J. 9 F(X, y(X), Y' (X)) +an (x)ﬁ + 0577'(X)ﬁ + higher order terms are neglected,
2 Oa oy o'

oF oF oF “ d(6oF
j n(x)—dx+( ay]x b n(b)—(ﬁl_an(a)— | &( j (x)dx

a

oF oF
— J n(x) & F ix— de(é’yj (X)dx{(ay'jn()()lb_tﬁn(){)la .
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Here n(x) does not necessarily vanishes at the end points.

The equation (2) must be satisfied by all permissible values of n(x)

“1oF d(6oF
=5 a5 frovse=e

(Second order diff equation will consist of two arbitrary constants which will be

determined by using natural boundary conditions).

oF
Also | = =0
” (ay' U(X)Lb

oF
d - =0
an ( ' n(x)j

X=a

(ﬁJ =0 and (ﬁj =0
ay' x=b ay' X=a

are two conditions. [as (b) #0, n(a) #0].
Case | Suppose that the value of y(x) at one point is given i.e. y(X)|x=a IS given,

= n(a)=0.

Then calculate (%} =0 (from natural boundary condition).
x=b

Case Il When the value of y(x) at upper end is given i.e. y(X)

o 1S given,

= n(b) =0

Then calculate (G—F'j =0 (from natural boundary condition).

X=a
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Case 11l When neither y(x) | x=b NOT y(X) | x=a 18 given, Then use the natural boundary

conditions [i) =0 and (8_F'J =0.
8y X=a 8y x=b

Example 5.4 Test for extremal the functional

/2
Iyeol= [ (y?-y*)dx
0
when
(1) y is defined at the end points by
y(0)=0, y(mp)=1.

(1))  yis not prescribed at the end points.

Solution We know that the necessary condition for the functional

b

Iyl= [ F(ty,y)dx

a

to have extremal is that y should satisfy the Euler’s equation

oF _dfoF)_,
oy dx\ oy

Comparing (1) and (2), we get
Fx,y,y)=y?-y*

ﬁ:_zy, ﬁ:

2'
oy YA

Making use of (5) in (3), we get

d
2y - - (2y)=0
X

d
+ —(y")=0
y dX(y)
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d’y
dx?

+y=0
The Auxiliary equation is

D*+1=0 .. D*=-1, where D:i
dx

= D=+i=0+i
.. solution is given by
y=¢e"(c; cos 1.x + ¢, sin 1.x)
1.e. y=cjcosX +¢psinX (6)

This is the equation of the extremals.

Case | y(0) =0, y(%) =1 are the boundary conditions.

y(0) =cjcos0+cysin=0

= 01:0
and y(gjzcl cosgﬁtc2 Sin%zl = =1

Thus we find ¢; =0, ¢, =1
Thus the extremum can be achieved only on the curves y = sin x.

Case 11 When y is not prescribed at the end points. Then

(ﬁ) =0 and [ﬁJ =0
8y' x=0 ay' X=

z
2
Now,

(%10 = (2y')x:0 =0 = ¥)=0.

Asy=cjcosX+cpsinx
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= y'=-¢; sinX+¢;cos x

Y0eo=0=-¢.0 +tc.1=0 =0
oF '

and @L@:/z =0 = (2Y)yern =0
=(y) ,=0

=
= (-cpsinxX + ¢ oS X) x=p2 = 0
= -¢ sin%+ c,.0=0

= -¢c;1=0 = ¢ =0 (8)

.. solution is y(x) =0

Ex(i) If value of'y at one end point is given y(0) =0 , [%J =0
X=m/2

, oF
/2)=1 =] =0
1 yer2) (W]x_o

(iti)  If value at both end points is not given. Then

)« (5],
ay' x=0 ay' X=m?2

Brachistochrone Problem
Theorem 5.4
State the Brachistochrone problem and solve it.

Proof The Brachistochrone problem was passed by John Bernoulli in 1696, in which
he advanced the problem of the line of quickest descent. The name ‘Brachistochrone’
is derived from the Greek words ‘brachisto’ meaning shortest and ‘chrone’ meaning

time.
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Let A and B be two fixed points. In this problem, it is required to find the curve (line)
connecting two given points A and B, that does not lie on a vertical line, such that a
particle sliding down this curve (line) under gravity (in the absence of any resistance
or friction) from the point A reaches point B in the shortest time. This time depends
upon the choice of the path (curve) and hence is a functional. This curve s.t. the

particle takes the least time to go from A to B is called the brachistochrone.

[It is easy to see that the line of quickest descent will not be the straight line
connecting A and B, though this is the shortest distance between the two points. The
reason is that, the velocity of motion in a straight line will build up rather
(comparatively) slowly. However, if we imagine a curve that is steeper near A, even
though the path becomes longer, a considerable portion of the path will be covered at
a greater speed. It turns out that the required path i.e. the line of quickest descent is a

cycloid.]

Fix the origin at A with x-axis horizontal and y-axis vertically downwards, so

that the point B is in the xy plane.

A(0, 0) ’x

P(x,y) y

L L

O(x+:8x,y+8y)

I

B(h, k)
Curve C

Yv

Figure 5.4

Let (h, k) be the co-ordinates of B. Let the particle is traversed from A to B
along the curve C. let m be the mass of the particle. Let velocity of the particle be v

when the particle is at the point P(x, y) on C and at A(origin) its velocity be zero.
By the principle of work and energy ,

K. E. at P-K.E. at A = work done in moving particle from A to P
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1, 1 >
—mv-——m(0) " =m
2 > (0) ay

Let Q(x + 8x, y + dy) be a neighbouring point on C r.t. IﬂQ =5

B =4/(X) + () :1f1+(%j HX=+/1+y7dx .

.. time of descent from P to Q

&
v

Jloy? o1 ey
oy 290 Wy

.. total time of taken by the particle from A(0, 0) to B (h, k) is

y(0)] = \/— i “”yy' @

with y(0)=0and y(h) =k

( distance travelled/velocity)

*. in order to find the shortest time of descent, we have to minimize the functional

h [1 + 12
_[ Y dx , subject to the fixed boundaries y(0) = 0, y(h) =k.
0

VY

(From physical considerations, the functional has no maximum value)

Let F(X: Y: Y') = \/y

Since the integrand is independent of x, the Euler’s equation reduces to

F-Fy %:c
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12 '
L Ay _(Lz_vjy.c

Jy Jy 2ley?

1 1 2 2
= e I+y"-y")=C
5 e ( )
12 1
= y(l+y ):F:CI (say) (3)
I method

Introducing the parameter t by putting
y'=cottin (3)

C

= y=C sin’t= 71(1—0052'[) 4)
Now dx = dy/y'
= LS oginont (using y from (4) find dy)
cott 2
= 2C sin® t dt.

=  Cy(1—cos2t)dt

X= Clj(l —cos2t)dt +C,
X =%(2t —sin2t)+C,.

. The equation of the extremals i.e. the equation of the desired line in parametric

form is

X =%(u —sinu)+C,

and y= %(l —Cos u) . (putting u = 2t) (5)

The boundary conditions are
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y(0)=0, y(h)=k.

C
= ?‘(l —cosu)=0 = C, is arbitrary.

= %(O—SinO)JrC2 =0=>0C,=0
The required curve is
C . C
X:?‘(u—smu), y:?‘(l—cosu)

which is the standard form of cyclic curve and is called cycloid curve.

Thus we get a family of cycloids with & as the radius of the rolling circle. The

value of C, is found by the fact that the cycloid passes through B (h, k) i.e. y(h) = k.
Thus, the brachistochrone is a cycloid.
Il method

Equation (3) is y(1+y'*) = C

»_C
=yi=1=C-n/ly

. dy C-y
y'= Le. —=
y dx \/V

Separating the variables and integrating

On L.H.S. puty=Csin’0 =

dy =2C cos 0 sin 0 dO

j- JC sin? @

C-Csin’ 4

2Ccosfsin@ = x
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0 0
or X:I 2Csin’ @ d@#=2C (%jd@
0 0

}:%[29—511129]

:g{g_sin29
2

x=b [260-sin26] ,

and y= Csin’0 = = [I-cos26]|=b[1-cos26] .

O

Taking 20 =¢, we have
x=b[¢-sing],

y=b (I-cosp),

which is the cycloid. The value of b can be found from the fact that curve passes

through (h, k).

Exercise
1. Show that the curve of shortest distance between any two points on a circular
cylinder of radius a is a helix.
1
2. Find the extremal of the functional j (x+ Yy )dx that satisfies the boundary
0
conditions y(0) =1, y(1)=2.
3. Show that the Euler’s equation for the functional

.[ (a(x)y"” +2b(x)yy'+c(x)y*)dx is a second order linear differential equation.

X

4. Find the extremals and the stationary function of the functional J- (y?—y*)dx
0

that satisfy the boundary conditions y(0) =1, y(mw)=-1.
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Answers

2. y=x+1 3.ax)y"'+a'x)y' + (b'(x)—c (X)) y=0
4. y=C; cosx + C;sinx, where C; and C, are arbitrary constants ;

y = cos X + C; sin x, where C, is an arbitrary constant.
The Fundamental Lemma of the Calculus of Variations
Theorem 5.5

If a function ®(X) is continuous on the closed interval [xy, x;] and if
JlCD(x)n(x) dx =0, (1)

for an arbitrary continuous function m(x) subject to some conditions of general

character only then ®(X)=0 on [x,,X,] .

Note The conditions such as (i) n(x) should be a first or higher order differentiable
function (ii) m(x) should vanish at the end points i.e. n(Xo) = n(x;) =0, N(x) € C*and
(i) n(x) [ <eand In'(x) | <e.

are called the conditions of general character.

Proof Assume that @ (x) # 0 (say positive) at a point x = X in Xo < X < x;. (By

assuming this we will arrive at a contradiction).

Figure 5.5 A continuous function which is positive in an interval but vanishes
outside.
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Since ®(x) is continuous and D (x) # 0 it follows that d(x) maintains positive sign in a

certain neighbourhood (X, < X<X,)of the pointX. Since m(x) is an arbitrary
continuous function, we might choose 1n(x) s.t. n(x) remains positive in X, < X< X,

but vanishes outside this interval

Then, from equation (1) it follows that

X

I D(X)n(x)dx = fCD(x)n(x)dx + .fCD(x)n(x)dx + fd)(x)n(x)dx

Xo

:]1 Dd(X)n(x)dx > 0, (2)

Xo

since the product @ (x) m(x) remains positive everywhere in [YO,YI] and vanishes

outside this interval. This contradiction between (1) and (2) shows that our original

assumption ®(x) # 0 at some point X must be wrong and hence ®(x)=0Vx e[a,b] .

[For example n(x) = k(x—X,)*" (x—X,)*" on the interval (X, < X< X,), where n is a

positive integer and k is a constant number. It is obvious that the function n(x)
satisfies the above condition i.e. n(x) vanishes at the end points and may be made
arbitrarily small in absolute values together with its derivatives by reducing the
absolute values of the constant k. Also m(x) is continuous and has continuous

derivative upto order 2n-1.]

Euler’s equation for functionals of the form
b

Iys,...... , Yol = J' F(X, Yoeens Yoo Yoo Yourrenns Yy )X 0.E.

a
Euler’s equation for n dependent functions.

Theorem 5.6 A necessary condition for the curve y; = yi(x) (i = 1, ...n) to be an

extremal of the functional
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b
_[ F(X,Yyseer Yo Yis Yoo Y, )X is that the function yi(x) satisfy the Euler

a

equation. Fy_ - diFy,_ =0 (i=1..,n) .
I X 1

or

b
A necessary condition for the functional I F (X, Yoeees Yo Vis Yaoonenns ¥, )X to be an

extremum is that

oF d|oF :
———|—1=0, i=1,...,n
oy; dx{ oy,

Proof Consider the functional

b
I e Y] = [F Y10 Yoo V1o Yoo Yo ) (1)

(depending upon one independent and several (n) dependent variables and their first

derivatives when ends are fixed), where

X is one independent variable; yy, ..., y, are n dependent variables depending on x and

satisfying the conditions
yi(a)=A; andyi(b)=B;, i=1,.....n
A; and B; are constants.

[In other words, we are looking for an extremum of the functional (1) defined
on the set of smooth curves joining two fixed points in (n+1) dimensional Euclidean
space. The problem of finding geodesics i.e. shortest curve joining two points of some

mainfold is of this type].

We know that a necessary condition for a functional (1) to attain extremal is that

dl =0,
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ie. jl OF dx=0

a

b
oF oF oF
or — W, +—, +ect—, +
! oy, oy, oY,
oF .. oF _. oF ..
T, Ay + ek ——Y, [dX =0 ()
o o, oy,

Taking the general term

b
J (;’—Fj@/, dx and integrating it by parts, we have

a 1

I e e N
—bgéyi}a !dx(ﬁyJa‘yi dx 3)
Thus, using (3) in equation (2), we get
“|JoF d(oF oF d(oF
— ! Ha _&(a}éyl + {52 - &(WJ}CM +....upton terms} dx

b

Ha)

a

Now variation of y; at the end points must vanish i.e. dy; = 0 at the ends. Therefore

second term in above is zero, Vi =1,....2.,.....,N.

. the necessary condition implies that

b
I oF _dfoF oy,dx=0 foreveryi =1,....,n
2 (i x(oy

Also 6, are arbitrary

f_i[szo, i=1,.n, 4
oy; dx\ oy
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which forms system of n second order differential equations called Euler’s equations
(one for each function involved in functional). Its general solution contains 2n

arbitrary constants, which are determined from the given boundary conditions.
A problem for optics
Example 5.5 Propagation of light in an inhomogeneous medium.

OR

Find the differential equation of the lines of propagation of light in an optically

nonhomogenous medium in which the speed of light is v(x, y, z) .
Solution [This is an illustration of above principle].

Suppose that three-dimensional space is filled with an optically inhomogenous
medium s.t. the velocity of propagation of light at each point is some function

v(X, y, z) of the co-ordinates of the point.

According to well known Fermat’s law, light propagates from one point A(Xo, yo) to
another B(x;, y;) along the curve, for which, the time T of passage of light will be

least.

If the equation of the desired curve i.e. equation of the path of light ray be y = y(x)

and z = z(x), then the time taken by the light to traverse the curve equals

T=T4dm X i.e.T=T as

Xy V(X7 y7 Z) XO V
where ds is a line element on the path.

Writing Euler’s equations for this functional i.e.

1+y?+2"7 av+ dl y' __0
v? oy OX|vy1+y?+2% ’

1+y?+2"? v, d I 7' __0
v 0z dX| vy1+y”?+2” | '
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These differential equations determine the path of the light propagation.

Example 5.6 Use calculus of variation to find the curve joining points (0, 0, 0) &

(1, 2, 4) of shortest length. Also find the distance between these two points.
Solution Given points are (0, 0, 0) and (1, 2, 4). Suppose C be the curve y = y(x) and
I[y, z] = length of the curve joining (0, 0, 0) & (1, 2, 3)

In this case, length of small segment is

= \/(dx)z +(dy)* +(dz)* .
(1,2,4)

So total length = | V(@) +(dy)? +(dz) |

(0,0,0)

SRGECE

1
Hence 1y, z] = j 1+y2+2” dx.

0

Boundary conditions are
y(0) =0, y()=2,
z(0)=0, z(1)=4.
Now, we know that if

X

I[y1, ..., Yol = j F(X, Yyoeees Yoo Yis Yoeorons Yy )AX

Xo

then the condition for this functional to be extermal is that
oF _dfoF)_,
oy, dx| oy,

1
Here 1y, z] = J. 1+y“+z° dx,
0

191



F_o F_,
oy 0z

The Euler’s equations

F_d(F)_) o @1@:0
oy dx\ oy oz dx\ oz

now become

_4d[F ) & _i(ﬁjzo
dx{ oy' dx\ oz'

The first Euler’s equation is

e - ()
dx{ oy’ oy'

Second Euler’s equation is d(ok =0 = o* =B
dx\ oz' oz'
Now
8_F' = ———=A and
oy 1+y2+2"
oF z _B

oz' 1+ y?+z7

Dividing (3) and (4), we get
lzé = y'= z'ézz'C.
B B

Putting value of y' in (3)

z7'C

> _A
1+ y?+z7
or 22 C* =A% (1+y? + 27%), where y' = 2'C .
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2 _ A?
C?-A’C? - A?

= z' =D (say) =z = Dx+E.
Similarly y=D'x + E'.
Now given conditions are
y(0)=0, z0) =0,
y(1) =2, z(1)=4.
= E'=0, E=0; D=4, D'=2.
= z=4x, y=2x.

These are two surfaces and
z
4
which are the equations of a straight line.

Now using geometry , equation of a straight line passing through (0, 0, 0), (1, 2, 4) is

X=X _ Y-y _ Z—1,
- - )

X, =X Y=Y, Z, -1

x-0 y-0_ z-0

1-0 2-0 4-0~
or X-Y_Z.

1 2 4

Distance = 4/1+4 +16 =\/ﬁ

1
Using variation = I 1+ y"”+2"dx
0

S S——

1
V1422 +4%dx = '[«/21 dx= /21  Ans.
0
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Hence result is verified.

Example 5.7 Test for extremum the functional

1

Ify.z] = | (y*-22)dx (1)

0
y(0)=0, y(O)=1, z0)=0, z(1)=2. (2)
Solution  System of Euler’s equations for (1) isy"=0, z"=0.
Their solutions are
y(x)=C; +Cox ,
z(x) =C;5+Cyx, 3)
Ci, Cy, Cs and C4 are arbitrary constants .
= Ci=0, C=1, C=0, C=2.
(By using (2) in (3))
Therefore, desired solutions are
Yo =x 7(x) = 2x ,
ie. 2y = 2x = z, which is a straight line passing through origin.

Example 5.8 Find the extremals of the functional

/2
V[Y(X),z(X)] = J [y'2+z'2 +2yz]dx, subject to boundary conditions

0

V4 Vs
0)=0, —|=1, z0)=0, z—|=-1.
y(0) y( 5 j (0) ( 2j
Solution The system of Euler’s differential equations is of the form

F_AIF ) g e 22-L2y)=0
oy dx\ oy’ dx

= y'-z=0.
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Similarly = Zz"-y=0.
Eliminating one of the unknown functions say z we get y(iv) -y=0 =>D*'-1)y=0
Solution of this differential equation can be written as
y=Cie"+Cre™ +C3Cosx+Cysinx.
Now z=y" = z=Ce*"+Cre™ -C3Cosx-Cysinx.
Using the boundary conditions, we find
Ci =0, C;=0, C3=0, Cs=1;

Hence

y =sin X, z = - sin x are the required extremals.

1 2 2
Example 5.9 Show that the functional J- [ZX + (%j + (%} Jdt such that x(0) =1,
0

2
y(0) =1, x(1) = 1.5, y(1) =1 is stationary for X = 2? ,y=1.

. 2 2 1
Solution Given functional is J‘ (2X + (%) + (%) ]dt i.e.j (2x + x'2 +y'2 )dt
0 0

Let Ft, x,y,x,y)=2x+ x"? + y'2 .

The Euler’s equations are

d
F,——F,=0 1
X dt X ( )
d
and Fy —E Fy, =0 . (2)

X

Here Fx =2, Fy=0, F, =2x', F,=2y".

d?x
dt?

d dx
1 2-—(2x"Y =0 =1 —=t+cC
nH = Olt( ) = = it |

195



2
= x:%+clt+c2 . (3)

d dy'
2 0——2 ! =0 =0 V=C
2 = OIt( y') = 4 = Y=G

= y=ct+c, . “4)

(3) and (4) are the equations of the extremals.
The boundary conditions are x(0) =1, y(0) =1, x(1)=1.5, y(1)=1.
y0O)=1 = O0+ci(0)+cx=1 = c=1.

y0)=1 = c3(0)+cs=1 = =1,

x()=15= %+cl(l)+c2=1.5 :%+Cl+1:1.5 = =0.

y(H)=1 = c(l)+ca=1 = c+t1l=1=c¢c3=0.
C1:0, szl, C3:0, C4:1.
2 2
S0) > x=Liot+l e, x=2"1
2 2
4 = y=0t+1 ie, y=1.
. : 2+t?
.. The stationary functions are X = S y=1.

Remark Since, the function 2x + x”+ y‘2 is not a homogeneous functions of x' and y',

we have treated the given functional as dependent on two functions.

Example 5.10 Find the extremals of the functionals

Iy, 2] = [ @2yz-2y* +y*~27) dx.

0

Also find that extermal which satisfies the boundary conditions

y(0) =0, y(rn) =1, z(0) =0, z(r)=1.
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Solution We have J[y(x), z(x)] = I (2yz —2y* +y”—2"")dx

0

Let F(XJ YJ Z) y', Z') = 2yZ — 2y2 + y'2 7212

The Euler’s equations are

d

Fy _&Fy' :0
and FZ—iFZ, =0
dx

Here F,=2z-4y, F~=2y, F, =2y F,=-27".

1) = 22-4y-Yy=0 = Yoy 50
dx dx
d , d’z
2) = 2y——(22)=0 = - +y=0
dx dx
3) = (D*+2)y—-z=0.
@4 = y+D’z=0
Operating (5) by D* and adding to (6), we get
D*(D*+2)y+y=0.
= D*+2D*+1)y=0 = (D*+1)Y>y=0.
The A.E. is (D*+1)*=0 . .. D=+i,+i

y=¢e™(c; + c2x) cos 1.x + (c3 + ¢4x) sin 1.x).

y=(c; +c2x) cos X + (€3 + c4X) SIN X .

2
(3) = z:(;le+2y
dy . .
(7 = d—:02 cos X—(C, +C,X)sin X+ C, sin X+ (C; +C,X)cos X
X
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€)
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=(cy + c3+c4X) cos X + (cq — €] — C2X) Sin X

d’y . .
ch“ cosX—(C, +C; +C,X)sin X —C, sin X+ (C, —C, —C,X)cos X

=(2c4—c1—cx)cos x —(2¢cy +¢c3+ ¢4x) Sin X .
~ (8) = z = (2c4—c;—cox) cos X —(2¢c2 + ¢3+ ¢4X) sin X
+ 2(c; + ¢2x) cos X + 2(c3 + ¢4X) sin X
= (2c4 + ¢+ cx) cos x + (c3 - 2¢, +¢c4X) SIn X .
The family of extremals is
y =(c; +c2X) cos X + (¢3 + ¢4X) sin x ,
z=(2c4 + ¢1 + ¢X) cos X + (c3 — 2¢; + €4X) sin X,
where ¢, ¢, C3, C4 are arbitrary constants.
The boundary conditions are:
y(0)=0, y(mr)=1, z(0)=0, z(n)=1.
y(0)=0 = (c;+c2.0)cos0+(c3+¢4.0)sin0=0=c¢;=0.
y(m)=1 = (¢c;+mcy)cosm+(cs+mey)sint=1.
= 0+mnc)(-1)=1=cr=-1/m.

72(0)=0 = (2cstc;+¢2.0)cos 0+ (c3—2¢cr,+¢4.0)sin0=0
2
= (2¢4+0+0).1+ (C3+—+0}0:0:>C4=0 .
T

z(n)=1 = (2(0) + 0+ =t (-1/m)) cos m+(c3 -2(-1/m)+0.7) sin =1
= (-1) (-1) =1, which is true.

Ci1 :O, Cr = -l/TE, Cq4 = 0

X . . X
=] 0—— [cosX+(C, +0X)sInX=C,sin X——cosX .
3 3
T T
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= (2(0) +O—ijcosx+(c3 —2[—lj+0.xjsin X
V4 T

. 1 ..
= ¢38in X+—(2sinX—XcosX) .
/4

. . X
.. The required extremals are y = ¢3 sin X ——cos X

T

. 1 )
Z=c3 sin X+—(2sin X — X cos X),
V4

where c; is any arbitrary constant.

1
Example 5.11 Find the extremals of the functional J- 1+ y”+z"dx that satisfy the
0

boundary conditions y(0) =0, y(1) =2, z(0) =0, z(1) =4.

1
Sol. Given functional is J. 1+ y”+z2"dx
0

Let F(X,y,zYy,Z)=1+y*+2"7 .

The Euler’s equations are F, _di F, =0
X

and F-——F, . =0.

dx

Here Fy, =0, F,=0, Fy =

d y'
1) =» 0-————|=0,
dx(41+y”+zﬂj
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sy =
1+y?+2"

1+y?+2"

(1)

(2)

3)



d z'

2 = o0-2|__Z ___|_o,
dx [1/1 +y?+z" J

I S—— @)
J1+y?+z7?
o y' ¢ _
Dividing (3) by (4), we get —=—=c¢, say
' ¢,
y' =c37' .
Putting the value of y' in (4), we get : =C,

JI+(1+c))z”

= "=c;(+(+c))"=17'= =c,,say
1-c; —c; c;
= z=cx+cs ()
y'=c3z' = y' =c3c4=Cg, Say
= Yy =C¢X + C7 (6)

The extremals are given by (5) and (6)
The boundary conditions are
y(0)=0, y(1)=2, z(0)=0, z(1)=4.
c6(0) +¢c7=0, co(1) +c7=2,¢c4(0)+cs=0, ca(l)+cs=4.
Solving these equations, we get
c6=2,¢7=0,c4=4,¢c5=0.
(6) = y=2x+0 = y=2x.
(%) = z=4x+0 = z=4x.

The required extremals are y = 2x, z = 4x.
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Exercise

Find  the  Euler-Ostrogradsky = equation  for  the  functional

Jz(x,y)] = J.J. {( GXJ (Z)Z(j }dxdy where the values of z are prescribed on

the boundary of the domain D.

Find  the Euler-Ostrogradsky ~ equation  for  the functional

Jz(x,y)] = ” H ) (—j +122f (X, y)}dxdy, where the values of z are

prescribed on the boundary of the domain D.

(1,0)
Find the stationary function of functional J. (kw/ &+ W — )&)dt, k>0
(-1,0)

1
Find the extremals of the functional .[ (y'2+z'2)dx that satisfy the boundary
0

conditions y(0) =0, z(0)= 0, y(1) =1, z(1) = 2.

/2

Find the extremals of the functional .[ (y'2 +Z'2+2yz)dx that satisfy the
0

boundary conditions y(0) =0, y(n/2)=-1,z(0) =0, z(w/2) = 1.

Answers

2 2 2 a2 2 2
8__8_ =0 2. (@] OZJ{Q] 0z =f(x,y)

ox> oy’ ox) ox* \oy) oy®
Arc of circle joining (-1, 0) to (1, 0) and of radius k.

y=X,z=2X. 5. y=-sinx, z=sinXx.
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Summary

The calculus of variations, which plays an important role in both pure and
applied mathematics, dates from the time of Newton. Development of the subject
started mainly with the work of Euler and Lagrange in the eighteenth century and still
continues. This chapter develops the theory of the calculus of variations and its
application to various practical problems. Many of the simple applications of calculus
of variations are described and, where possible, the historical context of these

problems is discussed.

Keywords Calculus of variations, Euler equation, brachistochrone problem, shortest

length.
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Chapter-6

CALCULUS OF VARIATIONS -11

Objectives

This course introduces clear and elegant methods of calculus of variations to
solve large number of problems in Science and Engineering. In these problems, the
extremal property is attributed to an entire curve (function). A group of methods
aimed to find ‘optimal’ functions is called calculus of variations. Theory originated by
Bernoulli, Newton and Euler has been used to study Isoperimetric problems and
problems with some integral constraints. This theory still attracts attention of

mathematicians and it helps scientists and engineers.

Functionals dependent on higher order derivatives (Euler’s equation).

Theorem 6.1

A necessary condition for the extremum of a functional of the form

where we assume F to be differentiable n+2 times w.r.t. all its arguments, is

oF d (oF d* ( oF ,d" [ OF
— | | * 5 —l+..+(=)"— | —|=0
oy dx \ oy dx”\ oy dx oy

[This is a variational problem depending upon one independent variable, one

dependent variable, and its derivatives upto order of n]

Proof Let y=y(x) be the curve which extremizes the functional
b
1] = [ Flry (0.0 (). ™ ) i, (1)

satisfying the boundary conditions



ya)=4, yb)=B
y(@= A, y(b)=B
.......................................... )

y(n—l) (a) — An—I’ y(n—l) (b) — Bn—l .

Since at the boundary points the values of y together with all their derivatives upto the
order (n-1) (inclusive) are given, we assume that, extremizing curve is differentiable

2n times.

The curve y = y(x) is extremal of (1). Then y(x) satisfies 6l = 0

ie. j§F[x,y,y‘, ....... ,y(")]dx:O

a

tloF . OF _, OF oul o _
Hgaw ay,5y e + y@}dx—O 3)

Integrating the second term on the right once term-by-term, we have
b . b d
IFy'éy =[Fy'§y]a_IEFy'éydx

Integrating the third term twice

b d b b dz
J‘ F.o"dx= [Fy” 5y']i {a F, 5y} + j I F,. oydx
and so forth, the last term n times

0 b | d b
[h0 0 0=l 60 4 r, 50

Now taking into account the boundary conditions, according to which the variations

=%y"=........ =8y" " =0 for x =a and for x =D,

204



we get from equation (3)

2
Sl = J.[F ——F +j—F - (l@/dx 0 (4)
Now since dy is arbitrary and the first factor under the integral sign is a continuous

function of x on the same curve y = y(x), therefore by the fundamental lemma, the

first factor is identically zero.

OF d(oF) d’(oF . d" ( OF
_— | |t D | o | =
oy dx 8y dx\ oy dx" \ oy

, d* [ OF ,d" [ OF ) _
or +(— 1)—(-} (=D (ay j+ ..... +(— I (WJ—O (5)

Thus the function y = y(x), which extremizes the functional

I[y(x)] = J.F[x, y,y',....,y(”)]dx,

must be a solution of the equation (5).

This differential equation of order 2n is called the Euler-Poisson equation. The
general solution of this equation contains 2n arbitrary constants, which may be
determined from 2n boundary conditions and hence we get the solutions called

extremals.

Example 6.1. Find the extremal of the functional
1
1y]=[ 1+ y")dsx;
0

y(0)=0, y'(0)=1, y(1)=1, y'(1)=1.
Solution Let F(x,y,y,y") =(l+y")

Here 6_F:0’8_F:0’8_F:2y,,
6y ay! ay"

Corresponding Euler’s equation is
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d2
W@)’"):O = »=0

Integrating four times, we obtain

Y= A y'=Ax +B,

3 2

y:A%+B%+Cx+D,

which is the general solution.

Now using the boundary conditions

y(0)=0= D=0,
y0)=1=C=1,
y'(1)=1:>1:£+B+C21=£+B+1:>B=-£
2 2 2
=A+2B=0
y(1)=1:>1=£+£+C+D:>1=£+£+1:> A4__8
6 2 6 2 6 2

=A+3B=0=A=B=0

equation (1) becomes y = x. Thus the extremum can be attained only on the

straight line y = x.

Example 6.2 Find the extremal of the functional

7
I (y"2 —y +x )dx that satisfies the conditions
0

_ ' — ﬁ = ! ﬁ = .-
y(0)=1, y'(0)=0, y(zj O’Y(zj
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Solution Euler’s Poisson equation is

155 (9
oy dx \ oy dx’ ay”_

Here f= y"z—y2 +x?

I,

of _ 0 of _ 2
oy oy

' > ayn

equation (1) becomes

d2
-2y+——5(2y") =0
dx
4
—y+—5r=0 =  (D'-Dy=0
dx

Auxiliary equation is m-1=0 = (m2 — 1) m’ + 1)=0
= m==1,%i
Its solution is

y(x) = c1e* + ce™ + c3 cos X + ¢4 sin x

y'(X) = c1e” - coe™ - ¢38in X + ¢4 COS X

To find ¢y, ¢, ¢3, ¢4 use boundary conditions

As y(O):l I=ci+tcytecs
As y'(0)=0 = 0=rci-crtey
A T — O 0 _ 7/2 -z/2
S y > = =ce”’" +c,e" +c,
As Y (%j =- = —l=ce™? —c,e™? —c,

Solving (4) — (7), we get

ci=cr=cs4=0 and c3=1
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Hence solution is y(x) = cos X. So the extremum can be achieved only on the curve

y = COS X.

Example 6.3 Find the extremal of the functional

1 . . "
J. ( oy + 5 uy"” jdx which satisfies the boundary conditions

—a

y(-a)=0, y'(-a)=0, y(a)=0, y' (a)=0

Solution Euler’s Poisson equation is

¥ (o), d (o), 0
oy dx \ o dx’ "

Here f=py+%yy"2

This is the variational problem to which is reduced the problem of finding the axis of
a flexible bent cylindrical beam fixed at the ends. If the beam is homogeneous, then p

and p are constants.

Now @=p, of _o, of "
oy oy’ oy

144

Equation (1) reduces to

d2 4y
+ =0 or +p=0
P+ (w") HoTtp
4 4
or d i}+£=0 = d i/:—ﬁ
dx* u dx Y7,
Integrating
3
z—{:—ﬁercl
X H

Integrating again and again
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d2
f =— P ¥ iex+e,
dx 2u

L @ pXad

dx 2u 3 2

+c,x+ ¢

3 2

+cx+e,

Now applying the boundary conditions, we have

3 2
P4 _Gd  a

-a)=0= 0=-— a —ca+c
y(-a) 24y 6 > 3 4
oo\ — p 5 cd
y'(-a)=0= O=6—a + —c,a+c,
U
B p 4 ca ca’
y(a)=0= 0=—24 a’ + p + 5 +ca+c,
)7,
Vi) — p 5 cd
y(@)=0=> O=—6—a + +c,a+c,
U
Subtracting (4) from (6), we get
;—1a3 +2c,a=0
Subtracting (7) from (5), we get
2—’0a3—2czcz:0 = czzia2
6u 6u
Putting the value of ¢, in (5), we have
c,a’
0=Lg?+9% P p + ¢4
6u 2 6u
2 2
or 0=94 + ¢4 = c -
2 2

Putting the value of ¢, and c3 in (4) and (6), we have
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0=—_ 1% a4_c1a P 1, Ga (10)

+ a’ + +c,
24u 6 12u 2
ca’ c,a’

and 0=-FL g+ 99 | P 44 G +e, (11)

24u 6 12u 2
Adding (10) and (11),

=L gty Py +2c,

121 6u

or 2¢, =—L-a* = ¢, =——+La*
12u 24u

solving further we have
C1 = 0, C3= 0
Thus the solution is

P

c
y=—="x"+2x*+c
2 4

1% 4 2.2 4
or =———(x"=-2a"x" " +a
y 24ﬂ( )
1% 2 252
or =———(x*-a
y 24}1( )

Example 6.4 Find the extremal and the stationary function of the functional

1
% [ ()" dx. The boundary conditions are y(0) =0, y(1)= % y'(0)=0and y'(1)=1.
0

yH2

Solution LetF=(x,y,y,y")= %

Euler’s Poisson equation is
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d d’
Fy —a 3 +WF'}/' =O

Here F,=F;=0,Fy=y"

d d’* d*y
() = 0——(0)+—5 (") =0 = —=5=0
(M SO0+ e
Integrating again and again, we get
3
d y:C1
dx’
2 dy P
= dx2 =cx+c,, E:CI_+CZX+C3a
x3 2
= yzclz+cz?+c3x+c4.
— 3 2 . ¢ Cy
= Y=c5X" +cx” +c;x+c, (putting E‘cs’ 2 =c,)

This is the equation of extermals .

The boundary conditions are
1 1
y(0)=0, y(1)= 5,y’(0)= 0, y(1)=1

Q)= y' =3cx’ +2cx+c,

y(0)=0=>cs=0
1
2

y(l)= % = CstCetC3tey=

v(0)=0=c3=0

y(1)=1=3cs+2cc+c3=1

(5):>C5+C6:%
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(7) = 3cs+2c6=1 )

Solving (8) and (9), we get

1
C = 0’ C = —
5 6= 5

(2):>y=0x3+%xz+0x+0

1.e yzlx2
€. 5

This is the equation of stationary function.

b
Example 6.5 Find the extremal of the functional j(y+ y")dx that satisfies the

boundary conditions y(a) = yo, y(b) =y, y'(a) =yo and y'(b)=1y;.
b

Solution Given functional is .[ (y+y")dx

a

Let F=xyy,y)=y+y"

2
The Euler’s Poisson equation is F, — diFy, + 5 > F.=0 (1)
X X

Here Fy=1,Fy=0,Fy=1

. _d s gy
) = 1O+ () =0

= 1-0+0=1=0, which is impossible.

The problem has no solution, because it does not admit of extremals.

0
Example 6.6 Find the extremal of the functional J[y(x)] = J (240 V+ y"’z)dx subject

-1

to the conditions y(-1) = 1, y(0) =0, y'(-1) =-4.5, y(0) = 0, y"(-1)=16, y"(0)=0.

212



0

Solution We have J[y(x)] = [(240y + " )dx

-1

m2

Let  F(Xyy,y",y")=240y+y

The Euler’s Poi ionis F dF sz d3F
e Euler’s Poisson equation is VT y'+ﬁ v~ b

Here Fy=240,F,=0,Fy =0, Fy=2y"

(1) = 24O—i(0)+d—2(0)—d—3(2 =0 =
a dx dx’ dx’ 4
5 4
d
= dy=120x+c = Y —60x? +cx+c
dx’ ] dx* ] 2
3 2
= %:20x3+clx?+c2x+c3
X
dzy ) 3 2
= I =5x +clz+cz7+c3x+c4
dy s 4 3 2
= d—:x +¢—+c,—+c—+c,x+c
x
x6 x5 x4 3 2
= y= e c, c;—+c,—+ex+cg

X
=" tax’ +bx*+ex’ +dx’ +ex+c
y 5 6
6

G

(Putting a =—-,b

120
This is the equation of extremals.

The boundary conditions are

=0

d6y

=

dx

y(-D =1, y(0)=0,y'(-1) =-4.5, y'(0) = 0, y"(-1)=16, y"(0)=0.

2)= y'= x> + 5ax* +4bx> + 3cx? + 2dx + Cs
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= y"=5x"+20ax’ + 12bx’ + 6¢cx + 2d

y(-1)=1 :%-a+b—c+d—cs+cé=l 3)

y(0)=0 =0+a0+b.0+c0+d0+cs.0+ce=0=cs=0 4)
9

y'(-1)=-45=> -1+5a—4b+3c—2d+cs=-5 (5)

v(0)=0= 0+52.0+4b.0+3c.0+2d.0+cs=0=c5=0 (6)

y'(-1)=16 = 5-20a+ 12b-6¢c+2d =16 (7)

y"(0)=0= 5(0) +20a.0 + 12b.0 - 6¢.0 +2d=0=d =0 (8)

c6=0,c5=0,d=0.

5

(3):a—b+c=—g )
(5)= S5a—4b+3c= —% (10)
(7) = 20a—12b+ 6¢c=-11 (11)

Solving (9), (10), (11), wegeta=0,b=1,c=1/6

6

(2= y:%+0.x5+1.x4+%x3+0.x2+0.x+0
6 3 3
X 4 X X 3
or =—+x +— or =—(x"+6x+1).
Y= 5 y 6( )

This is the equation of the required extremal.

Isoperimetric Problems

Such type of problems involve one or more constraint conditions.

Definition Isoperimetric problems/problems with constraints of integral type

Here the problem is of finding the closed plane curve of given length ¢ and enclosing

(bounding) the largest area. This is (obviously) a circle. Thus if the curve is expressed
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in perimetric form by x = x(t), y = y(t) and is traversed once counterclockwise as t

increases from t; to t,, then the enclosed area is known to be

1% dy dx
S==[[x2 %= \a, 1
ZI(xdt ydtj M

h

which is an integral depending upon two unknown functions. In this problem one has
to find the extremum of the functional S with the auxiliary condition that the length of

the curve must be constant; i.e. the functional

_t2 @2 QZ
L{\/(dzj {dzj “ @

retains a constant value. Conditions of this type are called Isoperimetric. Euler

elaborated the general methods for solving problems with Isoperimetric conditions.

Length of the curve is given by (2). The problem is to maximize (1) subject to the side

condition that (2) must have a constant value.

Theorem 6.2 If y(x) is the extremal of the functional
b
Iyl = [ F(x,p,y')dx (1)
subject to the conditions
b
y(@)=A, y(b) =B, Iyl = [ G(x, 7, )dx = 2)

where J[y] is another functional. Then, if y = y(x) is not an extremal of J[y], there

exists a constant A such that y = y(x) is an extremal of the functional
b

j (F + AG)dx,

1.e. y = y(x) satisfies the differential equation

d d
Fy=— Fy+2(G,=—-G)=0 ()
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or i(F+/1G)—i i(F+/1G) =0
oy dx\ 0y

(F + AG is called the Auxiliary function)

Proof Suppose that y(x) is the actual extremising (stationary) function of the

functional (1) subject to the conditions (2).
Consider the variation in y as
Oy = emi(x) + &xma(X),

where €, and ¢, are scalars, m; and m; are arbitrary functions, but fixed choosen in
such a way that n;(a) = 0, 1n1(b)=0, n2(a) = 0, n2(b) = 0 and have continuous second
derivatives, so that y + Oy also satisfies the same conditions as satisfied by y. Thus

v =(y+9p)is atwo parameter family of neighbouring functions.

b
Iy +éen, (x)+ &1, x)]= IF(X, y+eéen (x)+ &, (x), y' + 51771'()6) + 5277; (x))dx

b
= [ F(x,,5")dx

which for assigned n;, n2 and y behaves as a function of €; and &;.

b
1z, 8,1 = [ Flox,y +&m,(0) + £,0,(x), ' + &7, (x) + £}, (x)) dx )
Similarly
b
Je,8,]1= IG(XJJF@]’?] +&0,, Y + e +5277£)dx =4 (5)

Now we want to find the necessary conditions for the function (4) to have a stationary
value at g = g = 0, where ¢ and &, satisfy equation (5). Using the method of

Lagrange’s multiplier, we introduce the function

b
K1, &,0) = 1(81, &) + M(er, 2) = [ F(x, 7,7")dx
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where F = F+ AG .

The necessary condition for the given functional to have an extremum is that

a_K:i(jJr,U):o at £,=0, & =0
og, 0g
a_Kzi(]+M)=O atg;=0, =0
oe, O,
b
oF oF oG oG ,
I{(_nl +_,771j+ﬂ{_771 T UIJ}dX =0 (6)
* Loy oy oy y
Similarly
b
oF oF oG oG
j — Mt |+ A —n,+—1; |pdx=0 (7
° Loy oy Oy y

Integrating by parts equation (6), we get

b p b b
oF d [ OF oF oG d (oG oG
7 Th _I - T AL ﬂldx+/1—,771 _ZJ. FRrY e 771dx=0
o', dx\ oy oy o', ° | dx\ Oy oy

a

i(i,(F + /”LG)j - (Q(F + lG)ﬂnldx =0 [as ni(a) =m; (b) =0]
| dx\ Oy oy

U
2 C—

or
X

d d
(7)o Ja-o v

Qe >
[ 1

Similarly integrating equation (7) by parts, we get

tldfoe 0
! [5(5(1? + ﬁG)j —5(F + /”LG)}nzdx =0 )

Taking 1, in such a way that

b
jiG,—a—G nydx # 0
dc ’ 0Oy

a

we can take from (9)
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222
) \dx oy Oy ?
i(d&G_&Gj p
> \dx oy’ Oy 2

This equation ensures the existence of A.

As m; and n; are arbitrary, two conditions (8) and (9) are embodied in (10) as only

one condition

!

i( 2 (F+/1G)j—i(F+/1G)=O (10)
dx oy

= (8) is the extremal of F+AG, which proves the theorem.

Note To use above theorem, i.e. to solve a given isoperimetric problem, we first write
general solution of (10), which will contain two arbitrary constants in addition to the
parameter A. We then determine these three quantities from the boundary conditions

y(a) = A, y(b) = B and the subsidiary condition J[y]= /.

Everything said above generalizes immediately to the case of functionals depending

on several functions yy,......,yn and subject to subsidiary conditions of the form

b
Iyl = IG(x, v, ¥ )dx . Suppose we are looking for an extremum of the functional

b
JViseneinYn] = J.F(x,yl,.....,yn,y;,.....,y;)dx (1)

subject to the conditions

yi(a) = Ai, yi(b):Bi (1 = 1, ceeeny n) (2)
b
and  [G,(5,Y Y Yoo V)= (=1, K) 3)

where k <n. In this case a necessary condition for an extremum is that

0 : d]a :
—|F+Y 4,6, |-——{ | F+X.4,G, [t=0 4
6y,( ,Z‘ ' -’J dx{ay{( jZ‘ ' ’]} @
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The 2n arbitrary constants appearing in the solution of (4) and the values of k
parameters A, ....,Ax sometimes called Lagrange’s multipliers are determined from
the boundary conditions (2) and the subsidiary conditions (3). The proof of above

theorem is exactly on same lines.

Note The solutions of the equation (10) above (the extremals of our problem) involve
three undetermined parameters, two constants of integration and the Lagrange
multiplier A. The stationary function is then selected from these extremals by

imposing the two boundary conditions and giving the integral J its prescribed value /.

In the case of integrals that depend upon two or more functions, this result can be

extended in the same way as in the previous chapter. For example, if

1= [ f(x,.2.,2)dx
has a stationary value subject to the side condition
J= jg(x,y,z,y',z')dx =/

X1

Then the stationary function y(x) and z(x) must satisfy the system of equations

d (oF )| OF d (0F ) OoF
— -—=0 and —| —|-—=0
dx\oy') oy dx\oz') oz

where F = f+ Ag. Reasoning is similar.
Lagrange’s Multiplier

Some problems in elementary calculus are quite similar to isoperimetric problems.
For example, suppose we want to find the point (x, y) that yields stationary values for

a function

z=1(x,y) (D

where the variables x and y are not independent but are constrained by a side

condition
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g(x,y)=0 )
The usual procedure is to arbitrarily designate one of the variable x and y in (2) as
independent say x, and other as dependent on it, so that dy/dx can be found out from

o2 %Zdy_ (3)
ox Oy dx

: . : dz . .
Also, since z is now a function of x alone, d_= 0 is a necessary condition for z to
X

have a stationary value, so

a_o S
dx Ox Oydx

g_gag/ax_o
Ox Oy O0g/oy

or

(4)

On solving (2) and (4) simultaneously, we obtain the required points (X, y).

One drawback of this approach is that the variables x and y occur symmetrically but
are treated unsymmetrically. It is possible to solve the same problem by a different
and more elegant method that also has many practical advantages. We form the

function

Fx,y, M) =1(x,y) + A g(x,y)

and investigate its unconstrained stationary values by means of the necessary

conditions

oF_ T 3% g

E Ox Oox

A0k, o
oy 0oy 0Oy

OF

- ,1)=0

Y] g(x,y)

If A is eliminated from the first two of these equations, then the system clearly reduces

to
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I _F I and gx.y)=0
Ox Oy O0g/oy

and this is the system obtained in above paragraph. This technique (solving (5) for x
and y) does not disturb the symmetry of the problem by making an arbitrary choice of
independent variable and it remains the side condition by introducing A as another
variable. The parameter A is called Lagrange multiplier and this method is known as

the method of Lagrange multiplier.

Note In theorem 6.2, we consider a two parameter family of neighboring functions
Y(x) = y(x) + 77, (X) + £,77, (%) ,

as by considering one parameter family of function y(x) = y(x)+ an(x), these will

not maintain the second integral J at the constant value c or /.

Example 6.7 Find the plane curve of fixed perimeter so that the area covered by the

curve, ordinates and x-axis is maximum. OR

Given two points x; and x; on the x-axis and an arc length /. Find the shape of curve
of length ¢ joining the given points which with the x-axis encloses with largest area.
Solution Let y = y(x) be a curve of given length / between given points A(X, Y1)

and B(x2, y2)

(= J. 1+ y"dx
atcdd‘de _
B ; B
l
A A
o] * X, % X, Xa %
Figure 6.1
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Xy
Also, area enclosed by the curve, ordinate and x-axis is j ydx. We want to maximize

X

X2
the functional I ydxunder the condition

X

T 1+ydx=1¢

X

F(x,y,y) =Y, G(x, y,y) = y1+)"

The Euler equation is

d d
F,=—F, +/1(Gy ——Gy,j 0

dx

Here F, = 1, Fy =0, Gy =0, Gy = —2

: _d _dl_ Y|
(D)= 1 dx(0)+/1[0 dx(mﬂ 0

= 4 Ay =1
dx ’1+y!2

= 2y =x+c,
J1+y”

= Ay =(x+c) (1+y"?)

= y'2=(x+cl)2/(/12—(x+cl)2)
dy x+c,
_=y - 2 2
dx A2 =(x+¢)
dy=—l —2(x+c) i

22 —(x+¢)’
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= y——E l -Co
2

= (y+cz)2 :/12—(x+c1)2
= (x+c])2+(y+cz)2:/12 (2)

X, Xy 2
Now (= J. 1+ dx= f 1+%dx

5 5 A =(x+¢)

:J' 4 dx = ﬁ,sin’lu
WA —(x+c)’ x
i[sinl e Tk N el Bk } y 3)
A A

(since J‘ 1+ydx= 1)

X

Equation (3) is solved to find the value of A.

.. The required curve is an arc of the circle (2), with centre (-ci, -¢;) and radius A. The
values of ¢; and c¢; are found by using the fact that A and B are on this arc. The

position of the arc is shown in the figure 6.1.

Example 6.8 Prove that sphere is a solid figure of revolution, which for a given

surface area, has a maximum volume.

Sol. Let curve OPA rotates about x-axis as shown in the figure. Let coordinates of A

be (a, 0). Let S be the surface area of the solid figure of revolution.

j27zy ds=S8
0

= [eryyi+y® de=s
0
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The volume of the solid figure of revolution is I Ty dx.

Figure 6.2

We have the maximize the functional J: ny® dx with boundary conditions

y(0) = y(a) = 0 and under the condition .[ 2y 1+y” dx=S.
0

Let F(x,y,y)=ny’ and G(x,y,Yy')=2my 1+y">.
he Euler’ . d d B
The Euler’s equation is Fy_EFy'+l Gy_EGy' =0

Here x is missing from both functions F and G.

The Euler’s equation reduces to

F41G-(F,+1G,)% =¢

1
i (1)
Here F), =0, Gy. = 2ny
1/1+y'2
L) =

ny’ + 2nhy1+y” - [0+—21ﬂ/1yy2 Jy'c
JI+)

12 _ 12
- ny + 272Ay(L+ y™ ) = 2722y" | _ c
J1+y”
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27y

1/1+y'2

Since the curve passes through (0, 0) we have 0+ 0=c 1i.e. c=0

= Tcy2+ =c

) 27Ay 22
= ny + ———==0 = y+ =0
4/1 +y'2 4/1 +y'2
42 402 _ 2
— 1+ |2__% 12 _ ﬁ;-l: A 2y
Yy y Yy
4% — y?
= y'= Y = Y dy =dx

1 (422 -y2)"
= ——.g—yL:x+c1 = = J4r -y’ =x+c

2 1/2
(3) passes through (0, 0) .. -2A =¢,
Ay —x-2
= A -y =(x-24)° = (x=24)° +y* =41
(4) passes through (a, 0)
(@=24)" +0=4x

= @41 —dad =47

= a2—4aﬁ=O:>/1=%
L= x—£2+y2:£
2 4

(5) represents a circle with centre at (a/2, 0) and radius a/2.

The curve OPA is a semi-circle
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The solved figure of revolution is a sphere.

Hence the result holds.

Remark In particular, if / :7{%}, then AB would be a diameter of the
maximizing circle.

Example 6.9 Among all the curves of length =/ (>2a) in the upper half plane passing
through the points (-a, 0) and (a, 0), find the one which together with interval [-a, a]
encloses the largest area.

or

Solve the problem I[y] = j ydx =maximum,

—a

subject to the conditions

y(-a) =y(a)=0 and J[y]ZT 1+y?dx=1/

Solution Let y = y(x) be a curve of length ¢ between the points (-a, 0) and (a, 0).

fz]i 1+ "% dx

Also the area enclosed by the curve and x-axis is j vdx .

—a

We are to maximize the functional J ydx under the condition j 1+y%de=1.

—-a —a

Let F(x,y,y)=y and G(x,y, y) = y1+y" (1)

Exactly same as in example 6.7, we get equation (2) as
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(x+e) +(y+e) =27
The boundary conditions are

y(-a)=0,  y(@)=0

(a+c)+ =)\

((atc)+ 2=\
B)-@= (@a+c)—(a+tc) =0

= 2aci t2aci=0=4ac;=0=¢; =0

L) = a?+tci=)\ = o=Vl -d’

Q)= (x-012+(y+ VA2 —a® =27

ie. X+ (y+ VA —a® P =\?

, X+

re VB -(x+c)

=

(= J\/l+y'2dx 2j1/1+ =
a . 44a
=2ﬂsin“% = (S 7
0
2Asin” —=/
sini—ﬁ
= 20 A

2.[4dx

. a
-sin0) =23 5"

let A = A be a solution of this transcendental equation.

(3= XA (y+ A2 —a’ Y= 2
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Therefore, the required curve is an arc of the circle
Xt R-a V=%

This is the circle with centre at (0, -/A; —a’ ) and radius Aq.

e

; a . T(a
Remark In particular if ¢ =7 then ¢>2aand ™ 21 4 reduces to sin E[zj

This equation yields A = Ao = a.

(-a,0) o (o *

Fig. 6.4
In this case, the required arc is a part of the circle x* + y* = a’.

Example 6.10 Find a curve C having a given length, which encloses a maximum

arca.

Solution Area bounded by the curve C is

— [y~ yao

1
—— 2 - "—)d 1
j( XY jx 2j(xy y)dx (1)
The length of C is given.
0= [1+y" dx )

Using Lagrange’s multiplier

I=A+A/

_1 4 12
—E‘l(xy —y)dx+/1£ 1+ y'“dx
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:J'(%(xy'—y)+ﬂ,\/l+y'2 jdx
H= %(xy'—y)+/7,1/1+y'2

oH 1 oH 1 A 1 , X Ay’
—=——, =—x+—.———=2y —_—
ay 2 6y' 2 2 1+y'2 2 1+y’2

By the Euler’s equation

oy dx\ oy

oH d GHJ

liLLz]:o

or e

al A 1,
dx }1 + y12
Integrating this we obtain
Ay’

J1+p7

12 12
1+yy,2=(x—cl)2 = 2y =(x-¢) +(x—c)y"

=—x+c¢,, c; is constant of integration.

or yrz[/lz_(x_cl)z]:(x_cl)z

r2: (x_cl)2
x _(x_cl)2
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y'= ()C—Cl) or d_y= (X—Cl)

VA = (x=¢))? &P —(xc)

Integration gives

e :J{_lj,mz —(x—¢,)’

(-c2 1s the constant of integration)

2 1/2
or (- =2 —(x—c1)
or (x—c))’ +(y—c)? =2

This equation represents a circle.
The area enclosed will be maximum if within the given length we form the circles.

Exercise

1
1. Find the extremal of the functional J ydx, y(0) = 1, y(1) = 6 subject to the
0

1
condition '[ ydx=3.
0
2. Find the extremal of the functional j(y'z - yz)dx under the boundary
0

conditions y(0) = 0, y(n) = 1 and subject to additional condition J- ydx=1.
0

1
3. Find the extremal of the functional I(xz + y'z)dx, y(0) = 0, y(1) = 0, subject
0

1
to the condition J yidx=2.
0

1
4. Find the extremal of the functional _[ Y dx, y(0)=0, y(1) = %, subject to the
0

1

1
diti -y )dx=—.
COIlllOIlE[(y y)x 0
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Answers

1. y=3x>+2x +1

1 2—-1m . 1
2. y=——COoSX+ sin x + —
2 2
3. y=%2sinnw X
2
X x
4 =—"+=
d 2

Variational Problems with Geometric Constraints

We now consider a problem of different type like: Find the functions yi(x) for which

the functional

b
JVisenoinYn] = J.F(x,yl,.....,yn,y{,.....,y;)dx. (1)

has an extremum where the admissible functions satisfy the boundary conditions
yi(a) = Ai, yi(b):Bi (1 =1,...., n) (2)
and k finite subsidiary conditions ( k <n)

(X, Y1y oeenen ,¥n) =0 g=1,....k 3)

In other words, the functional (1) is not considered for all curves satisfying the
boundary conditions (2), but only for those which lie in the (n — k) dimensional

manifold defined by the system (3).

Theorem 6.3 Consider the functional
b
Iy, 71 = [ FCry, 7, ¥, 2)d ()

subject to the boundary conditions

y@=A1,  y(b)=B

z(a) = A,, z(b) =B, (2)
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and which lies on the surface
g(x,y,2)=0 (3)
If y =y(x) and z = z(x) 4)

are the extremals of (1) and if g, and g, do not vanish simultaneously at any point of

the surface (3); there exists a function A(x) s.t. (4) is an extremal of the functional

b
HF + A(x) g]dx 1.e. satisfy the differential equations

a

d
F, +4g, _EFV =0,
()
d
F +Ag. — d—FZ, =0, (A may be constant).
x

Proof Let y(x) and z(x) are the extremals of (1), subjected to the conditions (2) and

(3). For variations dy and 0z respectively in y and z, we must have

b
dlly, z] = 5j F(x,y,z, y',z)dx =0

b
ja—Fay+aF§y' P 5+ lan=0
oy oy’ 0z oz'

ja—Féj/dx+Iz—)I;@/'dx+I%—Z&dx !Zjé‘z’dx 0

b
| 9 e +| L
2 Oy Oy

"t oF
Ll e

b
R f OF 4L e+ | a_F_i(aF) Seddx =0 (6)
oy dx\ oy ' 0z dx\ oz
Also, g(x,y,z)=0,
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= g,0y + g,0z = 0 (relation between 8y and 6z)
= AgyOy +Ag,0z =0,

where we assume here A as a scalar A = A(x) continuous, differentiable function on

[a, b] but arbitrary.

(1g, 8 + Ag.c)dx =0

U
R C—

b b
[ Ag,dvdx + [ Ag.czdx = 0 (7)

Adding (6) and (7),

b b
d d
J‘{Fy —F +/1gy}@’dx+ﬂFz b +/1gz}5zdx:0-

a

Select A so that

d
Fy —EF)/ +ﬂgy:O

and F —iFZ, +4g.=0
dx

This completes the proof of the theorem.

Example 6.11 Find the extremal in the isoperimetric problem
1
I[y(x),z(x)]:J.(y'2 +2'% —4xz' —4z)dx (1)
0

when y(0) =2(0) =0

y() = z(1)=1 ()

1
and [ =2y =2)dx =2 3)

0
Solution F=0"+z27—4xz'—4z); g=y"—-xy' 2"

Then two Euler’s equations are
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dfor) oF_
dx\oy') oy

and
aer) or
dx\oz') Oz
where F=f+\g.
Here F=f+ig= y?+z"° —dxz'—4z+ A" —xy'—2"%)

Then (4) and (5) become as

i[2y' +24y"'—=Ax]=0 and
dx

1[22' —4x-24z"1+4=0
dx

Integrating (6)

2y' (1 + 1) = ¢ + Ax

.+ AX
Y T+
Again integrating
o Ax’
y = x+ +c,
2(1+ 1) 41+ 4)

Similarly from (7) (by integrating)
27' —4x - 20Z' + 4x =3
27' (1-0) =c3
Integrating again

C,X

2(1-2)

+C,

Using the boundary conditions (2) , we have
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e 4
2(1+4) 4(1+1)°

Cq4 =

T21-2)°
=2(1-2)
Using these values of ¢y, ¢;, ¢3 and ¢4 in (8) and (9)

_@+3n
S 4(1+A) T 41+ A)

(10)

1

Ty [(4+32)x + Ax*]

and Z=MX = z=X
2(1-1)

Now we find A.
Differentiating (10),

L1
Y T4+

[4+34+24x]

I
N oL 44324 2xF
Y =6 Ay x

and z7z'=1

Putting the values of ' and z'in (3), we get

j{ (4434424 —— [4+3l+2lx]—l}dx:2
oL 16(1+4)° 4(1+ 1)

1
j—2[16+9,12 +42°x% +16x +124°x + 242 —16x — 16Ax
5 16(1+ 1)
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1
—124x —122%x — 8.2x> —Sﬂzxz]dx—fldx =2
0

1
N 16(11_/1)2”)(2(_4/12_8,1)”(—121—16)+16+24/1+9,12]dx—1=2
+ 0
—_— 2_ - B
_ 1 : 44 8’%( 124 16j+16+24/1+9/12 =3
16(1+A) 3 ’
2
= w—m-mmumﬂ%z=3(16)(1+/1)2

—  4AZ— 8L — 18\ - 24 + 48 + T2A+270% = 48(3) (1+1)
= 2302 +46) + 24 — 144 — 144)°> — 288\ =0

= 12102+ 2420 + 120 =0

P 242 +/(242)7 - 4(121)(120)
B 2(121)

— 242 + /58564 — 58080
242

—242+22
242

=-9090 or -1.0909.

Example 6.12 Among all curves lying on the sphere x> + y* + z” = a” and passing
through two given points (X, Yo, Zo) and (X1, y1, z1), find the one which has the least

length.

Solution The length of the curve y = y(x) and z = z(x) is given by the integral
J.w/1+y'2 +z"dx

Using theorem 6.3, we form the auxiliary functional
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J.[w/l + 2 427 + A0+ Y7 +22)|dx

Then the corresponding auxiliary equations are

d y'
7 Te) P —
dx \[1+y"? + 2"
2Zﬂ(x)_iz— =0

dx 14y +2"

Solving these equations, we obtain a family of curves depending on four constants,

whose values are determined from the boundary conditions
y(Xo) =Yyo,  Y(X1)=yi
z(xo0) = 2o, z(x1) =z

Example 6.13 Find the shortest distance between the points A(1, -1, 0) and B(2,1, -1)
lying on the surface 15x — 7y +z—-22 =0.

Solution Formulation
2

I[y]= J}/l +y"7? +2%dx
1

y(1)=-1, z(1)=0
y(2)=1, z(2)=-1

Curve lies on the surface 15x — 7y + z — 22 = 0. Consider the Auxiliary function

F=f+Ag= 1+y?+z7 +Mx)(15x - Ty +2z-22) (1)

Extremal will be the solution of

or _d(ar)_, "
oy dx\oy

oF_d(oF)_, 5
Oz dx\oz'

oF oF y'

—=-TA(x), - =

y o' J1+y? +2"7 ’
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L i, xr_

62 62' ’1+y12 +Z’2

The corresponding Euler’s equations (2) and (3) become as

— ——d —y’ =

TA(x) dx[ TR J 0 4)

a-L 2 | (5)
| Jiry2ez? |

[Now we determine three functions y, z and A]

Using value of A(x) from (5) in (4), we get

i y'+7Z _0
dx ’1+y!2 +Z!2
y'+77

N+ Y7 +27
Yy

Now from equation of surface, differentiating, we get

=c (6)

15-7y'+7'=0 = z'=7y'-15
Using this value of Z' in equation (6) , we get
(v +49y = 105) = {1 +y? + 7y~ 15)?] )

Solving this equation (7) for y'

, —bx+b*—4ac

y' = =B (say) (constant)
2a
= y=Bx+C
Now zZ’=7B—-15=B'
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z=Bx+(C
Using the given boundary conditions,
-1=B+C; 0=B'+C';1=2B+C;-1=2B'+ ('
= B=2;, C=-3; B'=-1; C'=1
yx)=2x-3 & z(x)=-x+1.
Put y and z in equation (4)
= TMx)-0=0 = 7Ax)=0 = Mx)=0
Now we are giving a name to such type of problems.
Geodesic

In the problems of geodesics, it is required to find the shortest curve connecting two
given (fixed) points (Xo, Yo, Zo) and (X;, yi, z;) on a given surface S given by
d(x, y, z) = 0, and lying entirely on that surface. This is a typical variational problem
with a constraint since here we are required to minimize the arc length / joining the

two fixed points on S given by the functional

X, d 2 d 2 172
= 1+(—yj +(—Zj dx
5 dx dx
subject to the constraint ¢(x, y, z) = 0. This problem was first solved by Jacob
Bernoulli in 1698, but a general method of solving such problem was given by Euler.

(The study of properties of geodesics is one of the focal points of the branch of

mathematics known as differential geometry).

Thus a geodesic on a surface is a curve along which the distance between any two

points of a surface is minimum.
To solve problems on geodesics, we must first study invariance of Euler’s equation.
Invariance of Euler’s Equation

Consider the function
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Iyl = [ F(x,y,y')dx (1)

Let u and v be two variables. Suppose the equation is transformed by the replacement

of the independent variable and the function y(x) as

x =x(u, v) and y=y(u, v)
xu xv

where #0
Yu Wy

Xy, Xy, Yu and yy denotes the partial derivatives of x w.r.t. u, v and partial derivatives

ofyw.r.t.u,v.

Then the curve given by the equation y = y(xX) in the xy-plane corresponds to the

curve v = v(u) in the uv-plane.

dc Ox Oxdv dv
Now — =t ——=x,+x,—

du oOu Ovdu du

du ou Ovdu du
N d_y:dy/du:yu+yvv

dx dx/du x,+x)V

Thus the functional (1), changes into the functional

J[u(v)]= IF{x(u,v), y(u,v),%} (x, +x,V")du

u u v

which can be written as

Ju(v)]= TG(u, v,V)du (say) ()

Now extremal of (1) can be obtained from (2). If y = y(x) satisfies the Euler’s

: d . .. : .
equation F —d—F =0 corresponding to the original functional J[y(x)], then it can
X

be proved that the functional v = v(u) satisfies the Euler’s equation G, —din, =0
X
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corresponding to the new functional J;[v(u)] or v(u) is an extremal of J;[v(u)] if y(x)
is an extremal of J[y(x)]. Therefore, the extremals of functional I[y(x)] can be found
by solving Euler’s equation of the transformed functional J[v(u)]. This is called the

Principle of Invariance of Euler’s equation under coordinates transformations.

Example 6.14 Find the extremals of
log2

[y(ol = [(ey"? —e'y)dx

0

Solution If we write Euler’s equation as such it may not be simple to solve it.

Therefore we make use of the substitution

x=logu andy=v

We have
e X =e—10gu —
u
ex :elogu =u
22
Yy =v
dy Oy Oy dv
Y _du_ou ovidu O+ _ [we denote L4 by v']
dc dx oOx Ox dv 1 du
— —+_—— —+40
du oOu Ov du u
Also dx = (@ + a—xﬂjdu = la’u
ou Ov du u
Given functional reduces to
2
I[v]= I(luzv'z—uvzjldu
"\ u u
2
= J‘(v'2 —v*)du (1)

1
Extremal can be found from equation (1)

Its Euler equation is
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ov dulov
or —2v—i(2v')=o
du
2
or w29 2
du
2
or d‘;+v=0
u
or D>+ 1)v=0

Auxiliary equationis D*+1=0 = D=x
Thus the solution is
V=cjcosu+cysinu
or y = ¢y cos(e”) + ¢, sin(e*) [since x =log u and u = €"]

which is the required extremal.

Values of ¢ and ¢, can be determined from the boundary conditions.

Example 6.15 Find the extremals of the functional

6,
jw/(rz +7r'*)do where r = 1(0).
6

0,
Solution Let I[r(0)]= j JF +7)do
91
Let x =1 cosO, y =1 sin0
=2+ y?

ie. F=qx’ 4+’

and tan 0 = Y

X
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Now ﬂ:—rsin@—i—ﬂcosﬁ
do do

and ﬂ:rcosé’—i-ﬂsinﬁ

do

Squaring and adding, we have

2 2 2
(]3] (5
do do do

de@:j\/(j—’;jz +(d_yj2d9

do

= [0y +(dyy’

= J. 1+ "% dx

Supposeat 6=0,,x=Xx

and at 0=0,x=%x;

[ P :xz + y"dx
ej\/ 20 = [1+y"d
6 M

11(O)] = I[y001 = [ 1+ dx

X

The Euler equation is

0- 4Ll _|_g
dx 1+y!2

or yr=c (1+y%) [Squaring]
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or y'z(l- %) =¢?
or y'= =c, (say)
1-c¢
Y_e
dx

Integrating, y=cix+c;

.. Extremals are r sin@ = ¢; r cos 0 + c,.

62
Exercise Find the extremal of the functional .[ rsin@/(r* +r'*)d6 by using the
0,

transformation X =r cos0, y = r sin6.

Answer log[r’sin@+/r’sin’@—c?]=c,rcos+c,.
g 1 1 2

Differential equation governing the Geodesic on a surface

Geodesics

Suppose we have a surface ¢ (with coordinates u and v) specified by a vector equation
r=r(u,v) (1)

The shortest curve lying on ¢ and connecting two points of o is called the geodesics.
Clearly the equations for the geodesics of o are the Euler equations of the
corresponding variational problem i.e. the problem of finding the minimum distance

(measured along o) between two points of G.
A curve lying on the surface (1) is specified by the equations
u=u(t), v =v(t)

The arc length between the points corresponding to the values t; and t, of the

parameter t equals

5}
I[u,v]:j\/Eu'2 +2Fu'V +Gv'* dt, ()

f

244



where E, F and G are the coefficients of the first quadratic (fundamental) form of (1),

given by
E=7r.7r, (7 =partial derivative of 7 w.r.t. u)
F=F.7,
G=r,.T,

Let L= \/Eu'2 +2Fu'v' + Gv'* dt,

The Euler’s equations are

a_L_i(a_Lj_o
ou dt\ou'

o dfe

ov dt\ oV

oL _ Eu” +2Fu'vV +G)"*
ou  2EW? +2FuV + GV

8_L_ 2Eu'+2FV
ou' 2\/Eu'2 +2Fu'v' + Gv'*

Similarly, we can find a—Land oL

ov o'

.. Euler’s equations are

Eu" +2Fuv' + Gy d ( 2(Eu' + Fv) ]_ 0
\/Eu'2 +2FuY + Gy'? o dt \/Eu'2 +2Fu'v' + Gv'?

and

Evu'2 +2Fu'v' + va'z B i 2(Fu'+ GV) 0
x/Eu'2 +2FuV + Gy'? o dt \/Eu'2 +2Fuv + GV'"*? '

These are differential equations governing the geodesics.
Example 6.16 Find the geodesics on a right circular cylinder of radius a.

Solution Let the axis of the cylinder be taken along z-axis. Let A and B be any two

points on the given cylinder and let (a, 0;, z;) and (a, 03, z) be their cylindrical
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coordinates respectively. Let z(0) be a function where curve passes through A and B

and lying itself on the surface of the given cylinder.

W' P(x,y2)

Fig. 6.5

0,
The length of the arc between A and B is J ds .We use cylindrical polar coordinates r,
6

0, z and r = a, where a is radius of cylinder which is constant.
The element of arc on a cylinder of radius a is given by
(ds)* = (dx)* + (dy)* + (dz)’
= (dr)’ + (a d0)* + (dz)’

=0+ (a dO)* + dz* (cr=a=dr=0)
2 2 2 dz ’ 2 2 %) 2
(ds)* =a*(db) +(%j (d0)* = (a* +2"*)(d6)

ds=+a’*+z'*do

(1

The variational problem, here, associated with geodesics is jds = minimal, where ds

is a line element of curve on surface of a right circular cylinder.

.. Variational problem becomes

0, J 2
|1’ +(—ZJ d6 = min. )
; do
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For extremal, Euler’s equation is satisfied by z(0).

o413, 5
oz do\ oz

The integrand here does not depend upon z = z(0).

.. Euler’s equation is

d (o) _

do (az'j =0 )

ie. i = ¢ (constant) (5)
0z

and i: | !

'
z

AR S Y . —

62 2 /a2+2r2 /a2+212

.". equation (5) becomes

=c or z? =c*(a’ +z")
2 12
a +z
or z?(1-c*)=a’c’
dz , ac
—:Z:
do 1-¢?
ac
or z= 0+c
2
I-c
z.\/l—c2 \/1—02 ,
or 0= - c
ac ac

.. 0 =mz + b form, which is a circular helix,

or z=c,0 + c3. The values of ¢, and c¢3 are found by using the fact that this curve is to

pass through A and B. This curve is called a Helix.

Example 6.17 Find the geodesics on the surface of a sphere. OR

Among all curves on a sphere of radius R that joins the two points, find the shortest

curve. OR
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Show that the geodesics on a sphere of radius a are its great circles.
Solution Spherical co-ordinates are
X =1 sin0 cos¢, y = r sin0 sind, z =r cosO , where

r>0,0<0<m 0< ¢ <2m. Let A and B be any two points on the given sphere and let
(a, 01, ¢1) and (a, 02, o) be their spherical coordinates respectively. Let ¢p(0) be a
function whose curve passes through A and B and lying itself on the surface of the

given sphere.

62
.. The length of the arc between A and B is Ids .

0
In spherical co-ordinates, we have
(ds)* = A (dr)* + hZ (d0)* + h? (do)*
hi=1,hy=r, h3=rsind
(ds)* = 12.0 + r*d®? + 1 sin’0 d¢’ (since r = a, dr = 0)

=a’d0” + a’ sin’0 d¢°

ds =\a’d6® + a’sin*0 dg’
= adf./1+sin 8¢
141 = [ a1 +5in°0 a0
Let F(0, .9 ) =ay/1+sin’0 ¢

Let the length of the curve between A and B has a minimum value for this curve or let

d(0) be a geodesic between A and B.

6,
.. The functional I F(0,¢,¢")d6 has a minimum value on the function ¢(6).

6

.. ¢(0) satisfies the Euler’s equation.

The Euler’s equation is
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F,———F,=0
¢ do ¢
I qin 2
Here F, =0, F, =490

d| a¢sin’6

! 0-—| ———1|=0
= d9(1/1+¢'zsin2¢9J

N d ¢ sin’ 6 0
dO| |1+ ¢ sin> 6
P ia2
N _ gm0
J1+¢%sin’ 0
= ¢ sin* @ =cl(1+¢'" sin® 0)
G G

= ¢

(cosec’d)

(M

—d(c, cot0)
\/(l—cf)—cf cot’ @

Integrating, we get

a ¢ cotd
$=cos ——=+c¢,

1-¢f
= 0(0) = cos™(c3 coth) + ¢, say

c3 cotd = cos(P(0) — c2)

= c3 cotd = cos ¢(0) cos ¢, + sin (0) sin ¢,

= cotd = 2 cosg(0) + 2 5in ¢(6)
G G

= cotd = c4 cos ¢p(0) + cssin ¢p(0), say

Multiplying by a sin6, we get
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a cosO = c4 (a cos ¢p(0) sinB) + cs a(sin G(0) sinO)
Z=c4X tcsy (using cartesian coordinates)

The values of ¢4 and c¢s are found by using the fact that this plane is to pass through A
and B. z = ¢4 X + ¢s y represents a plane passing through the centre (0, 0, 0) of the

sphere (definition of great circle).

.. The geodesics is the arc of the great circle passing through given point.
Example 6.18 Find the geodesics on a right circular cone of semi-vertical angle a.
Solution Let the vertex of the cone be at the origin and its axis along z-axis.

Let A and B be any two points on the given cone and let (ri, a, ¢;) and (12, o, ¢,) be
their spherical coordinates respectively. Let r(¢) be a function whose curve passes

through A and B and lying itself on the surface of the given cone.

. ”/ y

-Kigurs 6.6-.

#
The length of the arc between A and B is given by .[ ds.
4

Since we are dealing with spherical coordinates, we have

ds =+J(dr)} +(rd0)’ + (rsin 0 dg)’

= a’s:\/(dr)z+r2.0+r2sin205(d¢)2 (rO0=a=d0=0)
=~Nr? +r’sin’ a d¢
4
Length of arc = j\/r'z +r’sin’ a d¢
2
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Let  F(g,r,r)=~r" +r’sin’ a

Let the length of the curve between A and B has a minimum value for this curve i.e.

r(¢) is a geodesic between A and B.

#
The functional IF (¢,r,r") d¢ has a minimum value on the function r(¢).
é

r(¢) satisfies the Euler’s equation.

The Euler’s equation is F, —a%Fr, =0

Since ¢ is missing from the function F, the Euler equation reduces to

F—F,ﬂ=c

r d¢

2 .2 r
= NP+ rtsint a — r=c

Jr? +rsin a

= FP4risinfa—rt =cdr’? +risin‘ a

= rtsin® o =’ (" +r*sin’ a)

rsina : cdr
= r = Vrisinfa—c’ = — —=d¢
c rsinaVr sin“ o —c

N c d(rsin ) —g+ec

1 . 2 .2 2
sSin & rsma\/r s o —c

c dt .
= - _[ = ¢ +c,, where t =1 sina
sin @ t\/ﬁ_cz
c csecu tan udu
= - — - =¢+c,, wheret=csecu
SIN&* rsecuvc”sec”u—c
1 . .
= , ‘[du:¢+cl = u=¢sina+c sina
sin o
= u = ¢ sina + ¢y, say
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. t .
= sec u = sec (psinot+cy) = —=sec(Psina+cy)
c

rsino

= sec (¢psinatcy) = csr = sec (dpsinat+cy)

The value of ¢, and c; are found by using the fact that this curve is to pass through A

and B.
The required curve is csr = sec (psina+cy).

Summary

From ancient times, geometers noticed extremel properties of symmetric
figures and bodies. The circle has maximum area among all figures with fixed
perimeter, the right triangular and square have maximal area among all triangles and
quadrangles with fixed perimeters, respectively, etc. Extremal problems are attractive
due to human’s natural desire to find perfect solutions, they also root in natural laws
of physics. This chapter covers classical techniques of calculus of variations,
discusses natural variational principles in classical and continuum mechanics and

introduces modern applications.

Keywords Euler-Poisson equation, isoperimetric problems, integral constraints,

geodesics.
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