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Space of Analytic Functions

The space of continuous functions C(G, ΩΩΩΩΩ)

Definition : If G is an open set in C and (Ω, d) is a complete metric space the

set of all continuous functions from G to Ω, designated by C(G, Ω) is called space of

continuous functions.

Compact set of a metric space

Definition : A subset K of a metric space X is compact if for every collection

}open;is:{ XGGG ⊂=ς  of open sets in X,

}:{ ς∈⊂ GGUK

....(1)

i.e. there is a finite number of sets nGGG ,...,, 21  in ς  such that

nGGGK UUU ....21⊂Cover of a compact set

A collection of set ς  satisfying (1) is called cover of the compact set K.

If each member of 

ς

 is an open set then 

ς

 is called open cover of K.

e.g. empty set and all finite sets are compact.

Cauchy sequence : A sequence  

{ }nx

is called a Cauchy sequence if

for every ε>0 there is  an integer N such that Nmnxxd mn ≥∀ε< ,,),(

Complete metric space : A metric space (X,d) is called complete metric space

if each  Cauchy sequence has a limit in X.

Let G ⊂ C, G is an open subset of C and H(G) the set of all analytic functioins

defined on G, i.e. H(G) = {f : f is analytic function on G} then H(G) be a subset of

space of continuous functons from G to C.
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),()( CGCGH ⊂

We denotes the set of analytic function on G by H(G) rather than A(G)  because

;:{)( CGgGA ⊂= −

 g continuous function that are analytic in G}

Thus )()( GHGA ≠

Theorem: If  

}{ nf

 be a sequence in H(G) and ),( CGCf ∈ such that

ffn →

   then f is analytic and  1integer)()( ≥∀→ kff kk
n

Proof : To prove that f is analytic, we use Morera’s theorem. If T  be a triangle

contained inside a disk D ⊂ G, then T is compact, and  the sequence }{ nf  converges

to f uniformly over T. Hence by Morera’s theorem

∫∫ ==
TT

ff 0lim ...(1)

 since each nf  is analytic.

a
r

R
D

γ G

T

Thus f must be analytic in every disk  GD ⊂ .

Now we show that 

,)()( kk
n ff →

Let ;);( GraBD ⊂=  then there is a number R > r such that .),( GRaB ⊂

If we take a circle Raz =−≡γ ||  then by Cauchy’s Integral formula

∫ ⎥
⎦

⎤
⎢
⎣

⎡
−

−
−

=− ++
γπ

dw
zw
wf

zw
wf

i
kzfzf kk

nkk
n 11

)()(

)(
)(

)(
)(

2
!)()( Dz ∈∀

⇒

∫ +−
−

≤−
γπ

||
||

|)()(|
2

!)()( 1
)()( dw

zw
wfwfkzfzf k

nkk
n

   ...(2)

Since ffn →  and nf  are continuous in C then 0>∃ nM  where

}||:|)()(sup{| RawwfwfM nn =−−=  such that
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nn Mwfwf ≤− |)()(| , then from the equation (2)

∴ ∫ +−
≤−

γπ
||

)(2
!)()( 1

)()( dw
rR

Mkzfzf k
nkk

n

                           R
rR

Mkdw
rR

Mk
k

n
k

n π
ππ γ

2.
)(2

!||
)(2

!
11 ++ −

=
−

= ∫

           1)(2
!

+−
= k

n

rR
RMk

π           for |z-a|<r              ...(3)

Since ,ffn → and 0lim =nM  then (3) gives

⇒ )()( kk
n ff →  uniformly on ).;( raB

Now if K is an arbitrary compact subset of G and distance of each element of K

from any of the boundary point of G is greater than r, i.e.

),(0 GKdr ∂<<    then  

naaa ,....,, 21∃

 in K such that

U
n

j
j raBK

1

);(
=

⊂

Since )()( kk
n ff →  uniformly on each );( raB j

⇒ )(k
nf  converges uniformly to f(k) on K

Theorem : Hurwitz’s Theorem

Let G be a region and suppose the sequence {fn} converges to f in H(G). If

GRaBf ⊂≡/ );(,0   and 0)( ≠zf  for  Raz =− ||  then there is an integer N such that

for Nn ≥ ,  f and fn have the same number of zeros in B(a;R).

Proof : Since  

0)( ≠zf

 for  Raz =− || , therefore we can define a positive

number δ as

0}||:|)({|inf >=−= Razzfδ

But fn converges uniformly to f on 

}||:{ Razz =−

. Therefore

∃

 integer N such

that  if 

Nn ≥

  and 

Raz =− ||

 then

|)(|
2

|)()(| zfzfzf n <
δ

<−

                       |)(||)(| zfzf n+≤

K

∂G
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Thus from above it follows that f and fn  satisfies the condition of Rouche’s

theorem.

Thus f and fn have the same number of zeros in B(a;R).

Theorem: Let

}{ nf

 be a sequence in M(G) and suppose ff n →  in

),( ∞CGC then either f is meromorphic or ∞≡f . If each nf  is analytic then either

f is analytic or ∞≡f

Proof : Suppose there is a point ‘a’ in G with ∞≠)(af  and let Maf =|)(|

a 
f a( )

G C∞

Now 

∞∈C)(af

therefore we can find a number 0>ρ such that

));(());(( MafBafB ⊂∞ ρ

....(1)

But ff n →   so there is an integer n0 such that

0,
2

))();(( nnafafd n ≥∀<
ρ

Also the set 

,....},,{ 21 fff

 is compact in ),( ∞CGC

⇒ it is equicontinuous

i.e. ∃   an r > 0   such that  

raz <− ||

⇒ 2
))(),(( ρ

<zfzfd n

⇒ 2
))();(( ρ

<afzfd nn

This gives that ( ) ρ≤)(),( afzfd n  for raz ≤− ||  and for 0nn ≥

Now

|)()(||)(||)(| afzfafzf nn −≤−

⇒

|)(||)()(||)(| afafzfzf nn +−≤

                                                                   ...(2)

In view of the ρ chosen in (1); the expression (2) can be written as

0);(2|)(||)()(||)(| nnandraBzMafafzfzf nn ≥∈∀≤+−≤

.....(3)
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But ( ) [ ][ ]{ } 2/122 |)(|1|)(|1
|)()(|2)(,)(

zfzf
zfzfzfzfd

n

n
n

++

−
=

0);( nnandraBz ≥∈∀

                                         { } 2/122 )41)(41(
|)()(|2

MM
zfzfn

++

−
≥

0);( nnandraBz ≥∈∀

Since 0)}(),({ →zfzfd n  uniformly for );( raBz ∈  this gives that

0|)()(| →− zfzfn  uniformly for );( raBz ∈

From (3)

{fn} is bounded on B(a; r)

⇒ fn has no poles and must analytic near z =a,    ∀ 0nn ≥ .

⇒ f is analytic in a disc about a. .....(4)

Now suppose there is a  point ‘a’ in G with  

∞=)(af

. Then, if  ),( ∞∈ CGCg ;

define 1/g  as follows:

)(
1)(1
zg

z
g

=  if ;0)( ∞≠ orzg

0)(1
=z

g   if ;)( ∞=zg  and

∞=)(1 z
g  if 0)( =zg

Then it follows that ),(1
∞∈ CGC

g

Also, since ff n →  in ),( ∞CGC  then by the property of metric over non zero

complex number   z1 and  z2 , i.e.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

21
21

1,1),(
zz

dzzd  and ⎟
⎠
⎞

⎜
⎝
⎛ ∞= ,1)0,(

z
dzd

It follows that ffn

11
→  in ),( ∞CGC

Now each 
nf

1
 is meromorphic on G;
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So, 0>∃ r  and an integer n0 such that  f
1

 and 
nf

1
 are analytic on B(a; r) for

0nn ≥

⇒ ffn

11
→   uniformly on B(a; r).

From Hurwitz theorem, either 01
≡

f
 or  

f
1  has isolated zeros in B(a; r).

∴ if ∞≡/f  then 01
≡/

f
 and f must be meromorphic in B(a; r)

Combining this with the result (4) that f is meromorphic in G if f is not identically

infinite.

If each fn is analytic then 
nf

1
 has no zeros in B(a; r). Then [ corollary : {fn} ⊂

H(G) converges  to f in H(G) and each fn never vanishes on G then either 0≡f or

never vanishes] then either 01
≡

f  or f
1

 never vanishes.

But since ∞=)(af  we have that f
1

 has at least one zero; thus ∞≡f  in B(a;r)

Thus, either ∞≡f  or f is analytic

Locally bounded set of analytic functions

Definition : A set )(GH⊂F   is locally bounded if  ,Ga ∈∀  there are

constants M and r >0, such that 

,F∈∀ f

,|)(| Mzf ≤  for 

raz <− ||

Alternately

F is locally bounded if there is an r >0 such that

∞<∈<− },||:|)({|sup Ffrazzf

Montel’s Theorem

A family F in H(G) is normal iff  

F

 is locally bounded

Proof : To prove that 

F

 is normal i.e. each sequence in 

F

has a subsequence
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which converges to a function f in H(G).

Necessary : Suppose 

F

is normal but fails to be locally bounded.

then there is a compact set K ⊂ G such that

∞=∈∈ },:|)({|sup FfKzzf

....(1)

[contradiction of locally bounded set]

i.e.  there exists a sequence }{ nf  in F such that

nKzzfn ≥∈ }:|)(sup{|

Since F is normal therefore a function 

)(Gf ∈

  and a subsequence 

{ }
kn

f

such

that

ff
kn →

⇒ 0}|:)()(sup{| →∈− Kzzfzf
Rn  as ∞→k

If KzforMzf ∈≤|)(|

MKzzfzfn
knk +∈−≤ }|:)()(sup{|

when ∞→kn right hand side converges to M which cannot be true ( M≤∞ )

Hence the assumption taken at start is wrong. Therefore if 

F

is normal it is locally

bounded.

Corollary :  

}{)( ∞UGH

 is closed in ),( ∞CGC .

For this we prove the normality of M(G).

For this let us introduce the quality

2|)(|1
|)(|2

zf
zf

+
′

....(1)

for each meromorphic function.

However if z is a pole of f then 

)(zf ′

    has no meaning because derivative

increases the order of the pole. Therefore (1) is meaningless.

This can be rectify by taking limit of (1) as z approaches the pole. Now we show

that the limit  of (1) when z tends to pole.  Let ‘a’ be a pole of f of order 

1≥m

; then
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f(z) can be expressed as

)(
....

)(
)()( 1

az
A

az
A

zgzf m
m

−
++

−
+=

for z in some disk about a and g(z) analytic in that disk.

For az ≠

⎥
⎦

⎤
⎢
⎣

⎡

−
++

−
−′=′

+ 2
1

1 )(
....

)(
)()(

az
A

az
mA

zgzf m
m

∴ 2
1

2
1

1

2

)(
)(

....
)(

1

)(
)(

....
)(

2

|)(|1
|)(|2

zg
az

A
az

A

zg
az

A
az

mA

zf
zf

m
m

m
m

+
−

++
−

+

′−
−

++
−

=
+

′ +

                21
1

2

11
1

1

|))(()(.....|||
|))(()(.....|||2

mm
m

m

mm
m

m

azzgazAAaz
azzgazAmAaz

−+−+++−

−′−−++−
=

−

+−−

Thus if 2≥m

0
|)(|1
|)(|2lim 2 =

+

′
→ zf

zf
az

If m = 1 then

2
1

2
1

2

)(
)(

1

)(
)(

2
lim

|)(|1
|)(|2lim

zg
az

A

zg
az

A

zf
zf

azaz
+

−
+

′−
−

=
+

′
→→

[ ]2
1

2
2

2
12

|))((|||
||

1

)()(
||

12
lim

azzgAaz
az

zgazA
az

az
−++−

−

′−−
−

=
→

||
2

||
||2

1
2

1

1

AA
A

==

which shows that for 1≥m  the limit of 2|)(|1
|)(|2

zf
zf

+

′
 exits.
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Theorem : Riemann Mapping Theorem

Let G be a simply connected region which is not the whole plane and let 

Ga ∈

Then there is a unique analytic function 

CGf →:

 having the properties.

G

f

C

D

f(G)

(a) f(a) = 0 and  

0)( =′ af

(b) f is one-one

(c) }1|:|{)( <= zzGf

Proof : First we prove uniqueness of  f,  let g be a function having the same

properties like f, i.e.

g(a) =0 and g'(a) >0,

g is one-one and

}1|:|{)( <= zzGg   DGg →:

and }1|:|{ <= zzD  then

DGg
11

onto
:

−
→

and DDfog
11

onto

1:
−

− →   and analytic.

Also ))0(()0( 11 −− = gffog 0)( == af

Then by the theorem-

Let DGf
11

onto
:

−
→  analytic and ∃= 0)(af  a complex number c with 1|| =c

such that  αϕcf = , z
zz

α
αϕα −

−
=

1
)(  is Mobious transformation.

Implies that ∃  a constant c; 

1|| =c

 and  zczzfog ∀=− )(1

⇒ )()( zcgzf =
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⇒

);()(0 agcaf ′=′<

Since 

0)( >′ ag

 and 0)( >′ agc

⇒ c =1

⇒ f = g

Hence f is unique.

For the existence of f, consider the family F  of all analytic function f having

properties (a) and (b) and satisfying 

1|)(| <zf

 for z in G.

The idea is to choose a member of F  having property (c).

Suppose {Kn} is a sequence of compact subsets of G such that

GK
n

n =
∞

=
U

1

 and nKa n ∀∈

Then )}({ nKf  is sequence of compact subsets of }1|:|{ <= zzD .

 Also, as n becomes larger  )}({ nKf  becomes larger and larger and tries to fill

out the disk.

Choosing ∈f  F with the largest possible derivative at a, we choose the function

which “starts out the fastest” at z =a.

Thus

DKf
n

n =
∞

=
U

1
)(

Lemma : Let G be a region which is not the whole plane and such that every

non vanishing function on G has an analytic square root. If Ga ∈

then there is an analytic function f on G such that :

(a) f(a) = 0 and 

0)( >′ af

(b) f is one-one

(c) }1|:|{)( <== zzDGf

Proof : Let we define F  as

})(,0)(,0)(one,oneis:)({ DGfafaffGHf ⊂>′=−∈=F

Since  DGf ⊂)(  then
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1}:|)(sup{| ≤∈Gzzf  for F∈f

By Montel theorem F is normal if it is non-empty. Thus first of all it is to be

proved that

φ≠F

 ....(1)

and { }0∪=− FF ...(2)

Suppose (1) and (2) hold and consider the function

)(aff ′→  of C→)(GH

This is a continuous function and since −F is compact there is a f in

−F

with

∈∀′≥′ gagaf )()(

F .

Since

φ≠F

 (empty set) therefore F∈f .

f(G) = D is remains to shows now.

Suppose Dw ∈  such that )(Gfw∉, then the function
)(1

)(
zfw
wzf

−
−

 is analytic in G and never vanishes.

then by the hypothesis there is an analytic function C→Gh :  which is equal to

the square root of a analytic function, i.e.

)(1
)()]([ 2

zfw
wzfzh

−
−

= ....(3)

Since the Mobious transformation

ς
ςς

w
wT

−
−

=
1   maps D onto D, h(G) ⊂ D.

Define CGg →:   by

)()(1
)()(.

)(
|)(|)(

zhah
ahzh

ah
ahzg

−

−
′
′

= ....(4)

Then  1|)(| ≤Gg ⇒ ,)( DGg ⊂
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0)( =ag

which is obvious from (4)

and g is one-one, as f and hence h both are one-one.

Also

22

2

]|)(|1[
]|)(|1)[(.

)(
|)(|)(

ah
ahah

ah
ahag

−
−′

′
′

=′

2|)(|1
|)(|

ah
ah

−

′
=

But

||||
01

0
)(1

)(|)(| 2 www
afw
wafah =−=

−
−

=
−

−
=

and derivative of (3) gives

[ ]2)(1
))(())(())(1()()()(2

zfw
zfwwzfzfwzfzhzh

−

′−−−−′
=′

1
)()()()(2 afwwafahah

′−′
=′

)||1)(()()(2 2wafahah −′=′

∴ ||1
1.

||2
)||1)(()(

2

ww
wafag

−
−′

=′

        ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +′=
||2
|)|1()(

w
waf

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
>

+ 1
||2
||1

w
w

Q

       )(af ′>

This contradict that g is in F and the choice of f. Thus f(G) = D.

Theorem : Let f(z) be analytic in a simply connected region R and suppose that

f(z) has no zeros in R. Then there is a analytic function h(z) such that  

)()( zfe zh =

 for

all   Rz ∈ .

Proof : Since 

0)( ≠zf

 in R

then )(
)(

zf
zf ′

 is also analytic in R and therefore for any two points a and z in R the
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integral

ς
ς
ς d

f
fI

z

a
∫

′
=

)(
)(

....(1)

defines an analytic function of  z in R

Let α be an argument of f(a) then f(a) can be expressed as
αieraf =)( and set

αβ iaf += |)(|log

αβ iafee += |)(log|

      ααα iiriaf ereeee === log|)(log|

Then )(afe =β ...(2)

and if we consider

ς
ς
ςβ d

f
fzh

z

a
∫

′
+=

)(
)()( ....(3)

We get  β=)(ah , then from (2) we have

)()( afee ah == β ...(4)

⇒ h(z) is analytic in R for all  Rz ∈

from (3)

)(
)()(

zf
zfzh

′
=′

Let )()( zhezF =

then )(
)()()()( )(

zf
zfzFzhezF zh ′

=′=′

⇒ )(
)(

)(
)(

zf
zf

zF
zF ′

=
′

⇒

0)()()()( =′−′ zfzFzfzF

⇒ 0
)]([

)()()()(
2 =

′−′

zF
zfzFzfzF

Q

)()( zhezF =

 be non vanishing
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⇒ 0
)(
)(

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
zF
zf

dz
d

⇒ κ=
)(
)(

zF
zf

   (a constant )  for all Rz ∈

Putting z =a, we obtain

1
)(
)()(

)(
)(

)( ====
af
af

e
af

aF
af

ahκ

∴ )()()( zhezFzf ==

The analytic function h(z) defined as above is called logarithm of f(z) in R and

we write  )(log)( zfzh = .

Clearly, if h(z) is a logarithm of f(z), then  

imzh π+ 2)(

 (m an integer) is also

logarithm of f(z).

Convergence of logarithm series :

......
32

)1()1log(
32

1

1 −+−=−=+ ∑
∞

=

− zzz
n
zz

n

n
n

with radius of convergence 1.

If |z| < 1 then

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−=

+
− ...

32
11)1log(1

2zz
z

z

....
3
1

2
2 +−= zz

 ⎟
⎠
⎞

⎜
⎝
⎛ ++≤ ....||

3
1||

2
1 2zz

.....)|||(|
2
1 2 ++≤ zz

||1
||

2
1

z
z

−
≤ ....(1)

Further if  
2
1|| <z  then

2
1)1log(1 ≤

+
−

z
z



15

⇒ 2
1)1log(

≤
+−

z
zz

⇒
2

|||||)1log(| zzz ≤−+

⇒ ||
2
3|)1log(| zz ≤+

Since log (1+z) is converges to 1, then for 
2
1|| <z , we have

||
2
3|)1log(|

2
|| zzz

≤+≤ ....(2)

Proposition :

10Re ≥∀> nzn . Then ∏
∞

=1n
nz  converges to a non-zero number iff.∏

∞

=1
log

n
nz

converges.

Proof : Let )....( 321 nn zzzzp ⋅⋅⋅⋅=

π<θ<π−= θirez

and nnn ipp θ+= ||log)ln(  , π+θ<θ<π−θ n

If nn zzzS log.....loglog 21 +++=

then ]log.....logexp[log)exp( 21 nn zzzS +++=

nn pzzz == )].....exp[log( 21

∴ nnn ikpS π2)ln( +=  for some integer kn.

Now suppose

zpnn
=

∞→
lim

, then

0log1 →=− − nnn zSS

Also 0)ln()ln( 1 →− −nn pp

Hence 0)( 1 →− −nn kk   as ∞→n

Since kn is an integer, there exists integers n0 and k such that

kkk nm ==

 for 

0, nnm ≥
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So iKzSn π+→ 2)ln(

Corollary :

If 0Re >nz  then the product. ∏ nz  converges absolutely iff the series

∑ − )1( nz  converges absolutely.

Lemma :

Let X be a set and f1, f2, f3 ... be functions from X into C  such that

)()( xfxfn →  uniformly for x in X. If there is a constant ‘a’ such that

Xxaxf ∈∀≤)(Re  then  )(exp)(exp xfxf n →  uniformly for x in X.

Proof : For given  0>ε  choose 

0>δ

 such that

az ee −<− ε|1|

 whenever δ<|| z ....(1)

Now choose n0 such that

Xxxfxf n ∈∀δ<− |)()(|    whenever 0nn ≥

Thus, from (1)

a
n exfxf −ε<−− |1)]()(exp[|

⇒
an e

xf
xf −ε<−1
)(exp
)(exp

⇒ |)(exp||)(exp)(exp| xfexfxf a
n

−ε<−

It follow that for any  Xx ∈  and 

0nn ≥ ε≤ε<− − |)(exp||)(exp)(exp| xfexfxf a
n

⇒ )(exp)(exp xfxf n → uniformly for Xx ∈ .

Lemma :

Let (X, d) be a compact metric space and let 

}{ ng

  be a sequence of continuous

function from X into C such that ∑ )(xgn  converges absolutely and uniformly for x in
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X.

Then the product ∏
∞

=
+=

1
))(1()(

n
n xgxf  converges absolutely and uniformly for

x in X. Also there is an integer n0 such that 1)(0)( −== xgiffxf n  for some

01, nnn ≤≤

Proof : Since ∑ )(xg n  converges uniformly for Xx ∈ therefor their exists an

integer n0 such that 

Xxxgn ∈∀<
2
1|)(|

 and 0nn ≥

⇒

0)](1Re[ >+ xg n

 and Xxnnxgxg nn ∈≥∀≤+ and;|)(|
2
3|))(1log(| 0

Thus ∑
∞

+=
+=

10

))(1log()(
nn

n xgxh  converges uniformly for  Xx ∈

Now 

),()( CXCxg n ∈

∴

))(1log( xg n+

  is also continuous.

Hence h(x) is continuous.

Q X is compact ⇒ h(x) must be bounded.

In particular, there is a constant a such that 
Xxaxh ∈∀<)(Re

Then

⎥
⎦

⎤
⎢
⎣

⎡
+= ∑

∞

+= 10

))(1log(exp)(exp
nn

n xgxh

        ,))(1(
10

∏
∞

+=

+=
nn

n xg  converges uniformly for Xx ∈  and 

0)(exp ≠xh

                     for any Xx ∈ .

Now if we take

)(exp)].(1)]......[(1)][(1[)( 21 xhxgxgxgxf n+++=

then

,))(1()(
1

∏
∞

=

+=
n

n xgxf
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converges uniformly for Xx ∈ .

Definition : An Elementary factor is one of the following function 

)(zE p

or

);( pzE

for p = 0, 1, 2, 3,...  defined as

)0;(zE  or zzE −= 1)(0

);( pzE  or 1,....
2

exp)1()(
2

≥⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−= p

p
zzzzzE

p

p

);( p
a
zE  or 1,1......

2
1exp1

2

≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛+⎟

⎠
⎞

⎜
⎝
⎛ −=⎟

⎠
⎞

⎜
⎝
⎛ p

a
z

pa
z

a
z

a
z

a
zE

p

p

⇒ ⎟
⎠
⎞

⎜
⎝
⎛

a
zE p  has a simple zero at z =a  and no other zero.

Also if b is a point in G−C  then

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
−

++⎟
⎠
⎞

⎜
⎝
⎛

−
−

+
−
−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

−=⎟
⎠
⎞

⎜
⎝
⎛

−
− p

p bz
ba

pbz
ba

bz
ba

bz
ba

bz
baE 1....

2
1exp1

2

has a simple zero at z =a, and is analytic in G.

Lemma

If 1|| ≤z  and 0≥p  then 1|||)(1| +≤− p
p zzE

Proof : We restrict for 1≥p .

For a fixed p let the power series expansion of )(zE p about z =0 is

∑
∞

=
+=

1
1)(

k

k
kp zazE ....(1)

differentiating  (1), we have

∑
∞

=

−+=′
1

11)(
k

k
kp zakzE

From the definition of Ep (z)
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)....1(....
2

exp)1(....
2

exp1)( 12
22

−++++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+++−=′ p

pp

p zzz
p

zzzz
p

zzzzE

[ ]).....1)(1(1....
2

exp 12
2

−+++−+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++= p

p

zzzz
p

zzz

On simplifying expressiion in the square bracket only pz  remains and all other terms

will cancelled out.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−=′

p
zzzzE

p
p

p ....
2

exp
2

∴ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++−=∑

∞

=

−

p
zzzzzak

p
p

k

k
k .....

2
exp

2

1

1

On comparing coefficients of like power of z, we find that

0....21 ==== paaa

Also the coefficient of the expression of  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++

p
zzz

p

.....
2

exp
2

 are all positive

, therefore 0≤ka  for 1+≥ pk

Thus kk aa −=||   for  1+≥ pk

⇒ ∑
∞

+=

+==
1

10)1(
pk

np aE

or 1||
11

=−= ∑∑
∞

+=

∞

+= pk
k

pk
k aa

Hence for   1|| ≤z

∑
∞

+=
=−

1
|1)(|

pk

k
kp zazE

                 ∑
∞

+=

−−+=
1

11||
pk

pk
k

p zaz

∑
∞

+=

+≤
1

1 ||||
pk

k
p az

1|| += pz
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Proposition

Let 1Re −>nz  then the series ∑ + )1log( nz  converges absolutely iff ∑ nz

converges absolutely.

Proof : If ∑ || nz  converges then 0→nz

⇒
2
1|| <nz

Since ||
2
3|)1log(|||

2
1 zzz ≤+≤   for 

2
1|| <z

Therefore for 
2
1|| <nz  the series ∑ + |)1log(| nz  is convergent.

Conversely if, ∑ + |)1log(| nz  converges then

2
1|| <nz

∴ ∑ || nz  is converges

Absolute convergence of an infinite product.

convergeszconvergesz nn ∏∏ ⇒/||

Example: Let nZ n ∀−= 1

then     nzn ∀= 1||

⇒ ∏ || nz     converges to 1.

However  ∏
=

n

k
kz

1
 is  1±  depending on whether n is even or odd,

⇒

∏ nz

 does not converges.

Definition : If nzn ∀> ,0Re  then the infinite product ∏ nz  is said to converges

absolutely if the series  ∑ nzlog  converges absolutely.

Theorem : Weirestrass factorization theorem

Given an infinite sequence of complex numbers naaaa ,....,,,0 210 =  with no finite

point of accumulation, the most general entire function having zeros at those points

only (a zero 1≥nan  of multiplicity α being repeated α times in the sequence) is given
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by

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

)( ;)(
n

n
n

mzh k
a
zEzezF ...(1)

where h(z) is an arbitrary entire function,  0≥m  is the order of multiplicity of a0

=0, and the kn are non negative integers such that the series

∑
∞

=

+

1

1

n

k

n

n

a
z

...(2)

Converges for each finite value of z.

Proof : Arranging the given zeros in increasing order of modulus, so that

....||||||0 321 ≤≤≤< aaa

with ∞→|| na

The sequence  }{ nk of non-negative integers can always be found such that the

series (2) is  convergent for each z.

We may take nkn =+1 ,  since

n

n

na
z

2
1

≤          or    2
1

≤
na

z
...(3)

as soon as ||2|| zan ≥  which for any given z holds for sufficiently large value of

n , say n>N

⇒ N depends on |z| ⇒ pointwise convergence.

Since we are not interested in uniform convergence, only point wise convergence.

From the already proved result that

if 11|| <≤
p

z  then

1||
1

);(log +

−
≤ kz

p
pkzE ...(4)

then for p =2
1||2);(log +≤ kzkzE

provided
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2
1|| ≤z

We have
1

2;log
+

≤⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
k

nn a
zk

a
zE

provided

2
1

≤
na

z

⇒ ||2|| zan ≥

Let R be an arbitrary positive number and consider two circles with centres at

the origin and radii R and 2R.

If we take |z| < R and n large enough so that  

Ran 2|| >

, we have ||2|| zan >

Hence the series

∑
>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ra
n

nn

k
a
zE

2||

;logis absolutely and uniformly convergent for all z, such that |z| < R, and it follows that the

product

∏
>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ra
n

nn

k
a
zE

2||

;

is also absolutely and uniformly convergent for |z| < R.

Since the product

∏
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

Ra
n

nn

k
a
zE

2||

;

contain a finite number of factors each of which is an analytic function, it follows that

∏
≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Ra
n

nn

k
a
zEzf

2||
1 ;)(

is analytic in |z| < R and vanishes in the disc only at those points of the sequence a1, a2,

... which lie in |z| < R.

Then from the theorem : If ,...2,1);( =kzfk  are analytic in open set

y

xO
Z

R

an

2R
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∑
∞

=

⊂
1

|)(|,
n

k zfA C  is uniformly convergent on every compact set AK ⊂ ,  then

( )∏
∞

=

+
1

)(1
k

k zf

 converges absolutely in A to F(z) which is analytic in A.

We have

∏
>

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

Ra
n

nn

k
a
zEzf

2||
2 ;)(

is analytic and different from zero in |z| < R.

Hence the product

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

1
21 ;)()()(

n
n

n

k
a
zEzfzfzf

is also analytic in |z| <R and vanishes in this region only at those points of the sequence

...., 21 aa  which lie in there.

R was arbitrary chosen positive number, so that f(z) is analytic in the whole finite

place.

⇒ It is an entire function and has less zero precisely at the points .......,, 21 naaa

∴ )()( )( zfzezF mzh=

is most general entire function with the prescribed zeros.

Factorization of sinπππππz :

zπsin  is an entire function with simple zeros at  ,...2,1,0 ±±

Then by Weierstrass factorization theorem the most general form of this entire

function be

∴

0;1.sin /)( ≠⎟
⎠
⎞

⎜
⎝
⎛ −= ∏

∞

−∞=

ne
n
zzez

n

nzzgπ

∏
∞

=

−
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +⎟

⎠
⎞

⎜
⎝
⎛ −=

1

//)( 11.
n

nznzzg e
n
ze

n
zze
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∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
2

2
)( 1

n

zg

n
zze ...(1)

Taking logarithmic differentiation  of (1)

( )⎥
⎦

⎤
⎢
⎣

⎡
−−++= ∏

∞

=1

222 log)log(log)(cot
n

nznzzg
dz
dzππ

            ∏
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

−
++′=

1
22

21)(
n nz

z
z

zh             nz ±≠ ...(2)

But

∏
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

−
+=

1
22

21cot
n nz

z
z

zππ

...(3)

Hence  0)( =′ zh  and it follows that h(z) = C (a constant)

Let 1CeC =  then (1) gives

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
2

2

1 1sin
n n

zzCzπ

0;1sin
1

2

2
1 ≠⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−= ∏

∞

=

z
n
zC

z
z

nππ
π

Taking 0→z

∏
=

∞→→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

knz n
kC

1
2

2

0

1 1limlim1
π

Since ∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

1
2

2

1
n n

z
 is uniformly converges, therefore the order of limit can be

changed

∏
=

→∞→ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

n

kzn k
zC

1
2

2

0

1 1limlim
π

∴ 1 π
=

π
= ∏

=∞→

1

1

1 )1(lim
CC n

Kn

⇒ π=1C

⇒ ∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
2

2

1sin
n n

zzz ππ
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Gamma function

According to Weierstrass (the weierstrass fact. th) the Γ function can be defined

as the reciprocal of  a particular entire function with simple zeros at the points 0, -1, -

2,.. namely

nz

n

z e
n
zzezF /

1

1)( −
∞

=
∏ ⎟

⎠
⎞

⎜
⎝
⎛ += γ

⇒ nz

n

z

e
n
z

z
ez

zF
/

1

1

1)(
)(

1 ∏
∞

=

−−

⎟
⎠
⎞

⎜
⎝
⎛ +=Γ=

γ

...(1)

where the constant γ (Euler or Mascheroni constant) is chosen so that 1)1( =Γ

From (1) we see that 

)(zΓ

 is a meromorphic function on C with simple poles at

z =0, -1, -2,...

Existence of γγγγγ

Now we show that there exists such γ.

substituting z =1 in the infinite product 

nz

n

e
n
z /

1

1

1∏
∞

=

−

⎟
⎠
⎞

⎜
⎝
⎛ +

, we get

Ce
n

n

n
=⎟

⎠
⎞

⎜
⎝
⎛ +∏

∞

=

−
/1

1

111     a finite positive number ...(2)

Let  Clog=γ  then on substituting z =1 in (1), we get

n

n

C

e
n

e /1

1

1log1 11.
1

)1( ∏
∞

=

−−

⎟
⎠
⎞

⎜
⎝
⎛ +=Γ

        1.1
== C

C

∴

1)1( =Γ

From (2), we see that the constant γ satisfies the equation

n

n
e

n
e /1

1

111∏
∞

=

−
γ ⎟

⎠
⎞

⎜
⎝
⎛ +=

...(3)

Hence the existance of  γ is acertained.
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Lemma :

Let 
n

H n
1...

3
1

2
11 +++=  then )log(lim nH nn

−=γ
∞→

Proof : Taking logarithm on both sides of

k

k
e

k
e /1

1

111∏
∞

=

−
γ ⎟

⎠
⎞

⎜
⎝
⎛ +=

We have

∑
∞

=

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +=γ

1

/1
111log

k

ke
k

∑
∞

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

+
=

1

/1

1
log

k

ke
k

k

∑
=

∞→ ⎥⎦
⎤

⎢⎣
⎡ ++−=

n

kn k
kk

1

1)1log(loglim

{ }

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

++−= ∑∑
==

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

=
∞→

n

k

n

k

(n

n k
kk

exceptoutcancelledwillterms
ermediatealland

11

)1log

01log

1)1log(loglim
int

444 3444 21

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +++++−=

∞→ n
n

n

1...
2
11)1log(lim

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛ +++++−=

∞→
n

n
nn

n
log1...

2
11)1log(loglim

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +

−−⎟
⎠
⎞

⎜
⎝
⎛ +++=

∞→ n
nn

nn

)1(loglog1...
2
11lim

⇒ ⎥
⎦

⎤
⎢
⎣

⎡
−−⎟

⎠
⎞

⎜
⎝
⎛ +++=γ

∞→
0log1...

2
11lim n

nn ⎥
⎦

⎤
⎢
⎣

⎡
=⎟

⎠
⎞

⎜
⎝
⎛ +

∞→
0)1(loglim

n
n

n
Q

⇒ )log(lim nH nn
−=γ

∞→

Euler’s formula for )( zΓ  or Gauss formula  

)).....(2)(1(
.!lim)(

nzzzz
nnz

z

n +++
=Γ

∞→

From the definition of  )( zΓ
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nz

n

z

e
n
z

z
ez /

1

1

1)( ∏
∞

=

−−

⎟
⎠
⎞

⎜
⎝
⎛ +=Γ

γ

kz
n

kn

z

e
k
z

z
e /

1

1

1lim∏
=

−

∞→

−

⎟
⎠
⎞

⎜
⎝
⎛ +=

γ

∏
=

∞→

−

+
=

n

k

kz

n

z

kz
ke

z
e

1

/

)(
lim

γ

)).....(2)(1(

....
32

exp).....3.2.1(
lim

nzzzz
n
zzzzne z

n +++

⎟
⎠
⎞

⎜
⎝
⎛ ++++

=

−

∞→

γ

)).....(2)(1(

1....
3
1

2
11exp!..

lim

)log(

nzzzz
n

zne nHz

n

n

+++
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛ ++++

=

−−

∞→

)).....(2)(1(
..!.lim

log

nzzzz
eeen nn zHnzzH

n +++
=

−−

∞→

)).....(2)(1(
.!lim)(

nzzzz
nnz

z

n +++
=Γ

∞→
...(5)

Functional equation )()1( zzz Γ=+Γ

Replacing z by (z+1) in the equation (5)

)1).....(2)(1(
.!lim)(

1

++++
=Γ

+

∞→ nzzz
nnz

z

n

)1()).....(2)(1(
!lim

+++++
=

∞→ nz
zn

nzzzz
nn z

n

)11(
lim

)).....(2)(1(
!lim

+++++
=

∞→∞→

n
z

z
nzzzz

nn
n

z

n

zz .)(Γ=
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Reflection formula

,...2,1,0;
sin

)1()( ±±≠=−ΓΓ z
z

zz
π

π

Proof : Using Euler’s formula

⎢
⎣

⎡
−−⎥

⎦

⎤
⎢
⎣

⎡
+++

=−ΓΓ
∞→∞→ 2)(1(

.!lim.
)).....(2)(1(

.!lim)1()(
zz
nn

nzzzz
nnzz

n

z

n

⎥
⎦

⎤
⎢
⎣

⎡
−+−−−

=
∞→ )1)().....(2)(1(

.)!(lim 22222

2

znznzzz
nn

n

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛ −+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=
∞→

n
zn

n
zzzz

n 11.....
2

1)1(

1
lim

2

2

2

2
2

1.1.....
2

1)1(lim

1

2

2

2

2
2

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

=

∞→ n
zzzz

n

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

1
2

2

1

1

k n
zz

 
z

zz
π

πsin.

1
=

zπ
π

sin
=

Ordinary Dirichlet Series

Definition : The series of the form

∑
∞

=1n
s
n

n
a

....(1)

called ordinary Dirichlet series, where the an are given constants,  its +σ=  is a

complex variable and 

ns
s e

n
log1 −=

.
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Zeta function of Riemann

If nan ∀= ,1  then the series (1) becomes

1Re,1)(
1

>== ∑
∞

=

σς s
n

s
n

s

represents Zeta function of Riemann.

Theorem :  The series ∑
∞

=

−

1n

sn  converges absolutely and uniformly for ε+≥σ 1

(ε > 0 arbitrary)

Proof : We have

εσσσ ++ ≤=== 1

11
||||

1
||

11
nnnnnn itits

and the series ∑
∞

=
ε+

1
1
1

n n  converges, by Weiestrass M-test

Theorem : For 1Re >s

∫
∞ −

−
=Γ

0

1

1
)()( dt

e
tss t

s

ς

Proof : The integral ∫
∞ −

−0

1

1
dt

e
t
t

s

 converges at both the lower and upper limits

whenever 1Re >s

Since

1
1

lim
0

=
−+→ tt e
t

so that by the definition of limit there is a  δ > 0  such that for  δ≤< t0  the

inequality

2
11

1
=<−

−
εte

t

⇒ 2
11

1
<−

−te
t
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⇒ 2
3

1
<

−te
t

 holds.

Hence for δ<δ< 10  and 1Re >=σ s

( )1
1

122

1
1

2
3

2
3

1
11

−−−− −
−

=≤
− ∫∫ σσ

δ

δ

σ
δ

δ

σ δδ
σ

dttdtt
e

t
t

⇒ ∫ −

−

δ

δ

σ

1

2

1
dtt

e
t

t 0
12

3
1

1

→δ
−σ

δ
→

−σ

as

on the other hand, we have

0
1

lim =
−+∞→ t

m

t e
t

So that there is a b1, such that for 1bt ≥  the ineuqality 2
1

1
<

−t

m

e
t

 is satisfied

Hence for bb << 10  and choosing  σ>m  we get

( )mm
b

b

m
b

b

m
t

m

bb
m

dttdtt
e

t −σ−σ−−σ−−σ −
−σ

=≤
− ∫∫ 1

11 1
2
1

2
1

1
11∞→

σ−
→ −σ basb

m
m

1
1

2
1

Now in ∫
∞

−−=Γ
0

1)( dttes st

which is valid for 0>σ ,  we make the  substitution  t =nu to obtain

∫
∞

−−=Γ
0

1)( duuens snus

and ∫ ∑∑
∞

−

=

−

= ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=Γ
0

1

).(

11

1)( duue
n

s s

PGofsum

N

n

nu
N

n
s

321

∫
∞

−
−

−−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=
0

1

1(
)1( duu

e
ee s

u

Nuu

∫∫
∞ −−∞ −

−
−

−
=

0

1

0

1

11
du

e
eudu

e
u

u

Nus

u

s
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Now it is required to prove that

∞→→
−∫

∞ −−

Nasdu
e

eu
u

Nus

0
10

1

0;
111

1

0

1

0

1

>
−

+
−

=
− ∫∫∫

∞ −−−−∞ −−

δ
δ

δ

du
e

eudu
e

eudu
e

eu
u

Nus

u

Nus

u

Nus

⇒ ∫∫∫
∞ −

−
−∞ −−

−
+

−
<

− δ

σ
δ

δ σ

du
e
uedu

e
udu

e
eu

u
N

uu

Nus

111

1

0

1

0

1

For a  given  ε >0, we choose  δ sufficiently small so as to make the first integral

on right hand side less than 
2
ε

.

Fixing that δ we can now take N large enough so as to make the second term on

the right less than

2
ε

∴ for ∞→N

∫
∞ −

−
=Γ

0

1

1
)()( du

e
uss u

s

ς valid for Re s >1

Note:B(E) denotes a closed algebra of C(K, D) that contains every rational

function with a pole in E

Lemma

If ka −∈C  then )()( 1 EBaz ∈− −

Proof :  Case I : E∉∞

Let  

KU −= C

and let

)}()(:{ 1 EBazaV ∈−∈= −C

so UVE ⊂⊂

If

Va ∈

 and 

),(|| Kadab <−

 then 

Vb∈

...(1)

⇒ V is open

⇒

∃

 a number  

10, <<rr

 such that

.;|||| Kzazrab ∈∀−<− ...(2)
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But

1
1

1 )()()()( −
−

− −⎥⎦
⎤

⎢⎣
⎡

−
−−−

=− az
az

abazbz

1
1 1)1(

−
−

⎥⎦
⎤

⎢⎣
⎡

−
−

−−=
aZ
abZ ...(3)

From (2)

.;1|||| 1 Kzrazab ∈∀<<−− −   which implies that

∑
∞

=

−

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=⎥⎦
⎤

⎢⎣
⎡

−
−

−
0

1

1
n

n

az
ab

az
ab

...(4)

By the Weirestrass M-Test series on right hand side of (4) converges uniformly

on K.

If ∑
=

⎟
⎠
⎞

⎜
⎝
⎛

−
−

=
n

k

k

n az
abzQ

0
)(  then

)()()( 1 EBzQaz n ∈− −

Since Va ∈  and B(E) is an algebra (3) shows that B(E) is closed and uniformly

convergence  of (4) implies that )()( 1 EBbz ∈− −

⇒ Vb∈

Then (1) implies that V is open

If 

Vb ∂∈

 then let 

}{ na

 be a sequence in V with

nn
ab

∞→
= lim

Since Vb∈/  then from (1) it follows that

),(|| Kadab nn ≥−    then for  ban n →∞→ ; ;   we get

KborKbd ∈= ),(0

Thus )( setnullUV φ=∂ I

If H is a component of KU −= C  then φ≠KHI

So φ≠VH I
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∴ VH ⊂

But H was arbitrary so 

VU ⊂

 or V = U

Case 2 :  

E∈∞

Let d = the metric on  

∞C

Let a0 is in the unbounded components of KU −= C   such that

),(
2
1),( 0 Kdad ∞≤∞

and }:|max{|2|| 0 Kzza ∈> ...(5)

Let 

}{}){( 00 aUEE ∞−=

 so E0 meets each components of 

K−∞C

If Ka −∈C  then case-I gives that )()( 0
1 EBaz ∈− −

Now Kzaz ∈∀≤ ;
2
1|/| 0 [from (5)]

Therefore

∑
∞

=

−=
−−

=
− 0

0
0000

)/(1
)/1(

11
n

naz
aazaaz

Converges uniformly on K.

Then

∑
=

−=
n

k

k
n az

a
zQ

0
0

0

)/(1)(  is a polynomial

and nQuaz lim)( 1
0 −=− − on K.

Since Qn has its only pole at ∞ , 

)(EBQn ∈

Thus )()( 1
0 EBaz ∈− −

⇒ )()( 0 EBEB ⊂

⇒ )()( 1 EBaz ∈− − for each Ka −∈ C

Definition : Function element  is a pair (f,G) where G is a region and f is an

analytic function on G.

Definition : Germ of f at a  : af ][ .

For a given function element (f, G) the germ of f at a, denoted by af ][ , is the
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collection of all function elements (g, D) such that Da ∈  and 

zzgzf ∀= )()(

 in a

neighbourhood of a.

⇒ af ][  = collection of function elements and it is not a function element itself.

Note: The equivalence of two germs of f i.e. ba ff ][][ =  is meaning less until a = b.

Definition : Analytic continuation along a path.

Let C→γ ]1,0[:  be a path and suppose that for each t in [0,1] there is a function

element ),( tt Df  such that

(a) Dt ∈γ )(

(b) for each t in [0,1] there is a δ > 0 such that δ<− || ts

⇒ tDs ∈γ )(  and )()( ][][ stss ff γγ =  (i.e. germ of fs and ft at γ(s) are equal)

Then (f, D) is the analytic continuous of  ),( 00 Df  along the path γ; or ),( 11 Df  is

obtained from  ),( 00 Df  by analytic continuation along γ.

Power series method of analytic continuation

Lemma  :  Let C→γ ]1,0[:  be a path and let  }10:),{( ≤≤ tDf tt  be an analytic

continuation along γ. For 10 ≤≤ t  let R(t) be the radius of convergence of the power

series expansion of ft about ).(tz γ=  Then either 

∞≡)(tR

 or ),0(]1,0[: ∞→R  is

continuous.

Proof : If  ∞=)(tR  for some value of t then it is possible to extend ft to an entire

function.

Since

sts Dzzfzf ∈∀= )()(

⇒ ]1,0[)( ∈∀∞= ssR

i.e. ∞≡)(sR

Suppose that ttR ∀∞<)(

For a particular ]1,0[∈t  let )(tγ=τ
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let 

∑
∞

=
τ−τ=

0
)()(

n

n
nt zzf

be the power series expansion of ft about τ.

Let  01 >δ  be such that 1|| δ<− ts

⇒ ))(;()( tRBDs t τ∈γ I

and )()( ][][ stss ff γγ =

Now let )(sγ=σ  for a fix s; 

1|| δ<− ts

Now ft can be extended to an analytic function on ))(;( tRB τ .

Since fs agrees with ft on a neighbourhood of σ (by definition germs), fs can be

extended so that it is also analytic on  

sDtRB U))(;(τ

.

If  fs has a power series expansion

∑
∞

=
σ−σ=

0
)()(

n

n
ns zzf   about σ=z

then the radius of convergence R(s) must be at least as big as the distance from

σ to the circle 
)(|| tRz =τ−

 i.e.

||)()})(|:|{,()( σ−τ−≥=τ−σ≥ tRtRzzdsR

⇒ |)()(|)()( stsRtR γ−γ≤−

Similarly it can be shown that

|)()(|)()( sttRsR γ−γ≤−

Hence

|)()(||)()(| sttRsR γ−γ≤−

 for 

1|| δ<− ts

Since C→γ ]1,0[:  is continuous.

⇒ R must be continuous at t.

Rung’s Theorem : Let K be a compact subset of C and let E be a subset of K−∞C

that meets each component of  K−∞C . If f is analytic in an open set containing K and

ε>0 then there is a rational function R(Z) whose only poles lie in E and such that

KzzRzf ∈∀ε<− |)()(|



36

Proof : By the fact that if K be a compact subset of the region G, then there are

straight line segments nγγγ ,....., 21  in G – Ksuch that for every function f in H(G).

Kzdw
zw

wf
i

zf
k

n

K
∈∀

−π
= ∫∑

γ=

)(
2
1)(

1

The line segments form a finite number of closed polygons.

Also If γ be a rectifiable curve and let K be compact set such that φ=γ}{IK .

If f is continuous function on  }{γ  and ε>0 then there is a rational function R(z) having

all its poles on 

}{γ

 and such that

KzzRdw
zw

wf
∈∀−

−∫
γ

;)()(

Definition : Unrestricted analytic continuation :

Let (f, D) be a function element and let G be a region which contains D: then (f,

D) admits unrestricted analytic continuation in G if for any path γ in G with initial point

in D there is an analytic continuation of (f, D) along γ.

Fixed-End-Point (FEP) homotopic

Definition : If G→γγ ]1,0[:, 10  are two rectifiable course in G such that

0)0()0( 10 =γ=γ  and b=γ=γ )0()0( 10  then 0γ  and 1γ   are FEP homotopic if there is

a continuous map

GI →Γ 2:  such that

)()0,( 0 ss γ=Γ

)()1,( 1 ss γ=Γ

at =Γ ),0(

bt =Γ ),1(

for 1,0 ≤≤ ts

]1,0[]1,0[2 ×=I
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Theorem : Monodromy : Let (f, D) be a function element and let G be a

region containing D such that (f, D) having  unrestricted continuation in G. Let

GbDa ∈∈ ,  and let 0γ  and 1γ  be paths in G from a to b; let }10:),{( ≤≤ tDf tt  and

}10:),{( ≤≤ tDg tt be analytic continuation of ( f, D) along  0γ  and 1γ  respectively. If

0γ  and 1γ  are fixed-end-point homotrpic in G then

bb gf ][][ 11 =

Proof : Since  0γ  and 1γ  are FEP homotopic in G

⇒ there is a continuous function

G→×Γ ]1,0[]1,0[:  such that

)()1,()()0,( 10 tttt γ=Γγ=Γ

buau =Γ=Γ ),1(;),0(

for all t and u in [0, 1]

Let ),()( uttu Γ=γ  for a fix u, ,10 ≤≤ u from a to b. ....(1)

By hypothesis there is an analytic continuation }10:),{( ,, ≤≤ tDh utut  of (f, D)

along uγ

By the result that if  C→γ ]1.0[:  be a path from a to b and }10:),{( ≤≤ tDf tt

and }10:),{( ≤≤ tBg tt  be analytic continuations along γ such that aa gf ][][ 00 = . Then

bb gf ][][ 11 =

Then it follows that

bb hg ][][ 1,11 =  and 

bb hf ][][ 0,11 =

Now it is sufficient to show that

pb hh ][][ 1,10,1 =

...(2)

To show this

Let }][][:]1,0[{ 0,1,1 bbu hhuU =∈= ...(3)

and we show that U is non-empty open and closed subset of [0,1].
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Since

≠∈ UU ,0

Now it is remains to show that U is both open and closed.

 Let us consider for

0a]1,0[ >δ∃∈u  such that if δ≤− || vu

then bvbu hh ][][ ,1,1 = ....(4)

For a fixed 

]1,0[∈u

 there is an ε > 0 such that if σ is any path from a to b

with tttu ∀<− ,|)()(| εσγ  and if 

)},{( tt EK

 to any continuation of (f,D) along σ,

then

bbu Kh ][][ 1,1 = ....(5)

Now Γ is a uniformly continuous function, so there is δ >0

such that if 

δ<− || vu

 then

.|),(),(||)()(| tvtuttt vu ∀ε<Γ−Γ=γ−γ ....(6)

Suppose Uu ∈  and let δ > 0 be the number given in (4). By definition of U,

Uuu ∈+− ),( δδ, this implies U is open. If −∈Uu  and δ is as choosen above, then

∃  a  

Uv ∈

 such that

δ<− || vu

But form (4)

bvbu hh ][][ ,1,1 =  ;   and

since 

bbv hhUv ][][, 0,1,1 =∈

⇒

;][][ 0,1,1 Uuhh bbu ∈⇒=

⇒ U is closed

Mean Value Theorem:  Let  

R→Gu :

 be a harmonic function and let  );( raB  be

a closed disk contained in G. If γ is the circle centred at a and of radius r i.e. raz =−γ ||:

then

∫
π

θ θ+
π

=
2

0
)(

2
1)( dreauau i

Proof : Let D be a disk such that
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,);( GDraB ⊂⊂  and

Let f be analytic on D such that  u = Ref

Then by Cauchy integral formula

∫
γ −π

= dz
az

zf
i

af )(
2
1)(

raz =− ||
θ+= ireaz

θ= iirdz

    = ∫
π

θ

θ

θ
+

π

2

0

)(
2
1 d

re
reaf

i

i

∫
π

θ θ+
π

=
2

0
)(

2
1 dreaf i

∫
π

θ θ+
π

=
2

0
)(

2
1)( dreafaf i

Then ∫
π

θ θ+
π

=
2

0
)(Re

2
1)(Re dreafaf i

⇒ ∫
π

θ θ+
π

=
2

0
)(

2
1)( dreauau i

Mean Value Property (MVP)

Definition : A continuous function RGu →:  has the MVP if whenever

GraB ⊂);(

∫
π

θ θ+
π

=
2

0
)(

2
1)( dreauau i

Maximum Principle : Let G be a region and let u is a continuous real valued

function on G with the MVP. If there is a point a in G such that ,)()( Gzzuau ∈∀≥

then u is constant function.

Proof : Let the set A be defined by

)}()(:{ auzuGZA =∈=

Since u is continuous, the set A is closed in G.
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If  

Az ∈0

 let r be chosen such that GrZB ⊂);( 0 .

Suppose  );( 0 rzBb∈  such that )()( aubu ≠ ; then 

)()( aubu <

.

∴ By continuity 

zzuauzu ∀=< )()()( 0

 in the neighbouhood of b

If ρ=− || 0 bz  and   π≤θ≤ρ+= θ 200
iezb

then there is a proper interval I of [0, 2π] such that I∈θ  and

Izuezu i ∈φ∀<ρ+ φ )()( 00

Hence by MVP

)()(
2
1)( 0

2

0
00 zudezuzu i <φρ+

π
= ∫

π
φ

which is a contradiction.

So ArzB ⊂);( 0  and A is also open.

by connectedness of G, A = G.

Harmonic function on a disk  :

Study of harmonic function on a disk, open unit disk {z : |z| <1}

Definition : Poisson Kernel :  The function

∑
∞

−∞=

θ=θ
n

inn
r erP ||)(

for 10 <≤ r  and  ∞<θ<∞−  is called the Poisson kernel.

Theorem :

2

2

cos21
1

1
1Re)(

rr
r

re
reP i

i

r +θ−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

=θ
θ

θ

Let 10, <≤= θ rrez i  then

⇒ 1)1)(1(
1
1

1
1 −

θ

θ

−+=
−
+

=
−
+ zz

z
z

re
re

i

i

           ....)1)(1( 2 ++++= zzz

∑
∞

=
+=

1
21

n

nz
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∑
∞

=

θ+=
1

21
n

inner

⇒ ∑
∞

=
θ

θ

θ+=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

1
cos21

1
1Re

n

n
i

i

nr
re
re

2
)(21

1

θ−θ∞

=

+
+= ∑

inin

n

n eer

θ
∞

−∞=
∑= in

n

n er ||

)(θ= rP ....(1)

Also

2

2

2 |1|
1

|1|
)1)(1(

1
1

θ

θ−θ

θ

θ−θ

θ

θ

−
−−+

=
−

−+
=

−
+

i

ii

i

ii

i

i

re
rrere

re
rere

re
re

2

2

|1|
)sin2()1(

θ−
θ+−

= ire
irr

⇒ 2

2

cos21
1

1
1Re

rr
r

re
re

i

i

+θ−
−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
+

θ

θ

....(2)

]cos21|1|[ 22 rrrei +θ−=− θQ

Combining (1) and (2), we get the result.

Prop. 2.3

(a) ∫
π

π−

=θθ
π

1)(
2
1 dPr

(b) )()(,0)( θ=θ−θ∀>θ rrr PPP  and Pr is periodic in θ with period 2π.

Theorem : Let }1||:{ <= zzD  and suppose that RDf →∂:  is a continuous

function. Then there is a continuous function  RDu →−:  such that

(a) Dzzfzu ∂∈∀= )()(

(b) u is harmonic in D.

Moreover u is unique and is defined by the formula

∫
π

π−

θ −θ
π

= dteftPreu it
r

i )()(
2
1)( for π≤θ≤<≤ 20,10 r



42

Proof : Define RDu →:  as

∫
π

π−

θ −θ
π

= dteftPreu it
r

i )()(
2
1)(   for  10 <≤ r ...(1)

and let )()( θθ = ii efeu ...(2)

Then u satisfies part (a).

Now we have to show that u is continuous on D and harmonic in D.

(i) Proving u is harmonic in D.

If 10 <≤ r  then from (1)

∫
π

π−

θ

−θ

−θ
θ

⎥
⎦

⎤
⎢
⎣

⎡

−
+

π
= dtef

re
rereu it

P

ti

ti
i

r

)(
1
1Re

2
1)(

)(ofdefinitionby

)(

)(

44 344 21

            ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

−
+

π
= ∫

π

π−
−θ

−θ

dt
re
reef ti

ti
it

)(

)(

1
1)(

2
1Re

             ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎦

⎤
⎢
⎣

⎡

−
+

π
= ∫

π

π−
θ

θ

dt
ree
reeef iit

iit
it )(

2
1Re ...(3)

Let us define C→Dg :  by

∫
π

π−
⎥
⎦

⎤
⎢
⎣

⎡

−
+

π
= dt

ze
zeefzg it

it
it )(

2
1)( ...(4)

Then g is analytic and

Re g = u ...(5)

∴ 02 =∇ u   ⇒ u is harmonic.

(ii) Continuity of u on D–

Since u is harmonic on D therefore it remains to prove that u is continuous at

each point of the boundary of D.

If  ],[ ππ−∈α  and 

10,a0 <ρ<ρ∃>ε

 and an arc A of  

D∂

 about 

αie

 such that for

1<<ρ r  and θie  in A

ε<− αθ |)((| ii efreu ....(6)



43

for particular α =0 we show that (6) holds.

Since f is continuous at 0a1 >δ∃=z  such that

3
|)1()(| ε
<−θ fef i    if δ<θ || ...(7)

Let { }π≤θ= θ ||:|)(|max iefM

Then from the result on Poisson kernel )()( δ<θ rr PP  if  π≤θ<δ< ||0

There  exists a 10, <ρ<ρ  such that

M
Pr 3

)( ε
<θ

...(8)

for 1<<ρ r  and 
2

|| δ
≥θ

Let A be the arc 
⎭
⎬
⎫

⎩
⎨
⎧ δ

<θθ

2
||:ie  then if

Aei ∈θ and  1<<ρ r

∫
π

π−

θ −−θ
π

=− )1()()(
2
1)1()( fdteftPfreu it

r
i

     ∫
δ<

−−θ
π

=
||

)]1()()[(
2
1

t

it
r dtfeftP ∫

δ≥

−−θ
π

+
||

)]1()()[(
2
1

t

it
r dtfeftP

if δ≥|| t  and 
2

|| δ
≤θ  then 

2
|| δ
≥θ−t

∫∫
δ≥δ<

θ −−θ
π

+−−θ
π

≤−
||||

|)1()(|)(
2
1|)1()(|)(

2
1|)1()(|

t

it
r

t

it
r

i dtfeftPdtfeftPfreu

M
M

3
.2

3
ε

+
ε

≤ [from (7) and (8)]

⇒ ε<−θ |)1()(| freu i

Hence for general value of α.

ε<− αθ |)()(| ii efreu ...(9)

Show that u is continuous on D–.

(iii) For u is unique
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Suppose −∈ Dv  which is harmonic on D and  θ∀= θθ )()( ii efev .

then (u-v) is harmonic is D and Dzzvu ∂∈∀=− .0))((

⇒ u - v = 0

⇒ u is unique.

Harnack inequality

If RRaBu →);(:  is continuous, harmonic in B(a; R) and  0≥u  then for Rr <≤0

and all θ

)()()( au
rR
rRreauau

rR
rR i

−
+

≤+≤
+
− θ

Harnack’s theorem : Let G be a region with

(a) The metric space Har(G) is complete.

(b) If  }{ nu  is a sequence in Har(G) such that ....21 ≤≤ uu  then  either

∞→)(zun  uniformly on compact subset of G or  }{ nu  converges in Har(G) to a

harmonic function.

Proof : (a) Har(G) is complete

Let }{ nu  be a sequence in Har(G) such that

uun → in ),( RGC

Then u has the MVP

⇒ u is harmonic

[by the theorem if  RGu →:  which has MVP then u is harmonic.]

(b) Assuming 01 ≥u

Let Gznzuzu n ∈∀≥= };1:)(sup{()(

⇒ Either ∞=)(zu  or R∈)(zu  and Gzzuzun ∈∀→ ),()(

Define

})(:{ ∞=∈= zuGzA ....(1)
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})(:{ ∞<∈= zuGzB ...(2)

Then GBA =U  and φ=BAI

Now we show that both A and B are open

If ,Ga∈  and  R be chosen such that  

GRaB ⊂);(

Then by Harnack’s inequality

.1and);(;)(
||
||)()(

||
||

≥∀∈∀
−−
−+

≤≤
−+
−− nRaBzau

azR
azRzuau

azR
azR

nnn

...(3)

If Aa ∈  then

∞→)(aun

 so that from (3)

);(,)( RaBzzun ∈∀∞→ [left half of (3)]

⇒ ARaB ⊂);(

⇒ A is open.

Similarly : If  Ba ∈  then right half of (3) gives that∞<)(zu

 for Raz <− ||

⇒ ∞<)(zun );( RaBz ∈∀

⇒

BRaB ⊂);(

⇒ B is open

Since G is connected, either A =G or B =G

Suppose A = G; that is  ∞≡u

If

GRaB ⊂);(

 and R<ρ<0  then

0)(
>

+
ρ−

=
PR

RM  and

(3) gives that

)()( zuaMu nn ≤   for ρ≤− || az

⇒ ∞→)(zun  uniformly for );( ρ∈ aBz

⇒ 0a >ρ∃∈∀ Ga  such that ∞→)(zun  uniformly for ρ≤− || az



46

⇒ ∞→)(zun  uniformly for z in any compact set.

Now suppose B= G

i.e. Gzzu ∈∀∞<)(

If R<ρ   then there is a constant N, which depends only on a and ρ such that

)()()( auNzuaMu nnn ≤≤

 for ρ≤− || az  and n∀

So if 

nm ≤ )()()()(0 aMuaNuzuzu mnmn −≤−≤

                          )]()([ auauC mn −≤

for some constant C.

⇒ )}({ zun  is a uniformly Cauchy sequence on );( ρaB

⇒ }{ nu  is a Cauchy sequence in Har(G) and must converge to a harmonic

function [by part (a)]

Since )()( zuzun →

⇒ u is the required harmonic function.

Definition :

Subrarmonic function- If ϕ be a continuous function 

R→G:ϕ

 and if

,);( GraB ⊂

  such that

∫ +≤
π

θ θϕ
π

ϕ
2

0

)(
2
1)( dreaa i

Definition:

Superharmonic- If ϕ be a continuous function 

R→G:ϕ

 and if 

,);( GraB ⊂

 such that

∫ +≥
π

θ θϕ
π

ϕ
2

0

)(
2
1)( dreaa i
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Definition :

If G is a region and f  be a continuous function RGf →∂ ∞:  then the Parron

family denoted by  ),( GfΡ consists of all subharmonic function R→G:ϕ  such

that

Gaafz
az ∞→

∂∈∀≤ )()(suplim ϕ

Dirichlet Problem : It consists in determining all regions G such that for any

continuous  function 

RGf →∂:

 there is a continuous function RGu →−:  such that

)()( zfzu =  for  

Gz ∂∈

 and u is harmonic in G.

Definition : Barrier for G at a

Let G be a region and 

Ga ∞∂∈

.  A barrier for G at a is a family }0:{ >ψ rr  of

functions such  that

(a) rψ  is defined and superharmonic on G(a; r) with ;1)(0 ≤≤ zrψ

(b) 0)(lim =
→

zraz
ψ

(c)

1)(lim =
→

zrwz
ψ

 for 

}||:{ rawwGw =−∈ I

If we define rψ̂  by letting

rr ψ=ψ̂   on G(a; r)

1)(ˆ =zrψ for 

);( raBGz −∈

then  

rψ̂

 is superharmonic.

⇒ rψ̂  approaches the function which is one everywhere but at z=a,  rψ̂   is

zero.

Theorem : Let G be a region and let Ga ∞∂∈  such that  there is a barrier for G

at a.

If R→∂∞Gf :  is continuous and u is the Perron function associated with f then

)()(lim afzu
az

=
→

Proof : Let }0:{ >ψ rr  be a barrier for G at a. Assuming ∞≠a  and 

0)( =af
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(otherwise consider the function f- f(a)}

Let ε > 0 and choose δ > 0 such that

ε<|)(| wf   whenever  Gw ∞∂∈  and

;2|| δ<− aw

Let δψ=ψ

Let RG →ψ :ˆ  defined by

)()(ˆ zz ψψ =   for );( δaGz ∈  and

1)(ˆ =zψ

 for );( δaBGz −∈ ...(1)

Then  

ψ̂

 is superharmonic.

If Mwf ≤|)(|  for all w in G∞∂ ...(2)

then

ε−ψ− ˆM is subharmonic.

Consider ε−ψ− ˆM  in ),( GfΡ ....(3)

If );( δaBGw −∂∈ ∞  then from (1) and (2)

)(])(ˆsup[lim wfMzM
wz

<−−=−−
→

εεψ ...(4)

Because  

0)(ˆ ≥zψ

⇒ GwzM
wz ∞→

∂∈∀−≤−− εεψ ])(ˆsup[lim ....(5)

If particular if );( δaBGw I∞∂∈  then

)(])(ˆsup[lim wfzM
wz

<−≤−−
→

εεψ  by the choice of δ.

⇒ the consideration (3) is valid.

Hence

GzzuzM ∈∀≤−− ;)()(ˆ εψ

...(6)

Similarly

))(sup(lim])(ˆinf[lim zzM
wzwz

ϕεψ
→→

≥+

),( GfΡ∈∀ϕ

 and w in 

G∞∂

.

By the Maximum principle for subharmonic 

ϕ

and superharmonic

ψ
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ψϕ inflimsuplim
wzwz →→

≤

we have

;)(ˆ)( εψϕ +≤ zMz

ϕ∀  in 

),( GfΡ

  and  Gz ∈

Hence

εψ +≤ )(ˆ)( zMzu

....(7)

(6) and (7)

⇒ εψεψ +≤≤−− )(ˆ)()(ˆ zMzuzM    Gz ∈∀ ....(8)

But  

)(lim)(ˆlim zz
azaz
ψψ

→→
=

    ( 

ψ̂

 is Parron function)

Since ε is arbitrary (8) implies

)(0)(lim afzu
aZ

==
→

Harmonic function

Definition : Let G be an open set and R→⊂ GuCG :,  is harmonic if u has

continuous partial  derivatives and satisfying the Laplace equation, i.e.

.02

2

2

2

=
∂
∂

+
∂
∂

y
u

x
u

     or     02 =∇ u

Harmonic conjugate

Definition : Let f be an analytic funcion defined as C→Gf :   then fu Re=

and 

fIv m=

 are called harmonic conjugates.

Theorem : If 11|| <≤
p

z  then 
1||

1
|);(log| +

−
≤ kz

p
pkzE .

Proof : Let k > 0

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++++−=

k
zzzzLogkzE

k

.....
2

)1();(log
2

....
1

1
2

)1( !
2

+

+
−−−−=− k

k

z
kk

zzzzLog

for 1|| <z

∴ .....
2

1
1

1);(log 21 −
+

−
+

−= ++ kk z
k

z
k

kzE for 11|| <≤
p

z
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∴ ⎟
⎠
⎞

⎜
⎝
⎛ +

+
+

+
≤≤ + ...||

2
1

1
1|||);(log||);(| 1 z

kk
zkzEkzELog k

.....)||||1(|| 21 +++≤ + zzz k ]0[ >kQ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++≤ + ...111|| 2

1

pp
z k

1||
1

+

−
= kz

p
p

for k =0

⎟
⎠
⎞

⎜
⎝
⎛ ++≤−= ...

2
||1|||)1log(||)0;(log| zzzzE

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++≤ ...111|| 2pp

z

||
1

|)0;(log| z
p

pzE
−

=

for p =2

11 ||2||
12

2|);(| ++ =
−

≤ kk zzkzELog

provided  
2
1|| ≤z

Example : construct an entire function with simple zeros  at the point

)1(...,,...,3,2,1,0 >pnppp

Solution : We may take kn = 0 for every n. The series

∑∑
∞

=

∞

=
=

11

1||
n

p
n

p n
z

n
z

converges for  z∀  when p >1

∴ by Weierstrass factorization  Theorem
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∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

)( ;)(
n

n
n

mzh k
a
zEzezF

m=1 (simple zero at z=0), pnn n
ak 1,0 ==

⇒ ∏
∞

=
⎟
⎠
⎞

⎜
⎝
⎛ −=

1

)( 1)(
n

p
zh

n
zzezF

Example : Express   zπsin  as an infinite product.

Solution : since  zπsin  is an entire function with simple zeros at ,....3,2,1,0 ±±±

Then by Weierstrass factorization  Theorem

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1

1)( ;sin
n

n
n

zh k
a
zEzezπ

....(1)

provided ∑
∞

=

+

1

1

n

k

n

n

a
z

converges  for  ∀z  where 1, ≥nan are zeros.

since 0,0;
1

>∀≠∞<∑
∞

−∞=

+

rn
a
r

n

k

n

n

Then it is sufficient to choose ,,1 nkn ∀=

then ⎟
⎠
⎞

⎜
⎝
⎛ ++++=∑

∞

≠
−∞=

....
2
1

2
1

1
1

1
1|| 2222

2

0

2

z
a
z

n
n n

∑
∞

=
=

1
2

2 1||2
n n

z    that conveyes for each z

∴ in (1) we may put  1, =±= nn kna  to get

∏
∞

=
⎟
⎠
⎞

⎜
⎝
⎛

±
=

1

)( 1;sin
n

zh

n
zEzezπ

∏
∞

=
⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ +=

1

)( expexp11sin
n

zh

n
z

n
z

n
z

n
zzezπ
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∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

1
2

2
)( 1sin

n

zh

n
zzezπ

Example : Construct an entire function with simple zero at the point 0, -1, -2,

...., -n.

Solution : Given that  an = -n then the series

∑
∞

=

+

1

1

n

k

n

n

a
z

 be convergent if  kn =1

i.e. ∑∑∑
∞

=

∞

=

∞

=

+

=
−

=
1

2
2

1
2

2

1

1
1||

||
1||

nnn

k

n n
z

n
z

a
z n

Then Weierstrass factorization  Theorem gives

∏
∞

=

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−=
1

)(

)(
1)(

n

n
z

zh e
n
zzezF

        ∏
∞

=

−
⎟
⎠
⎞

⎜
⎝
⎛ +=

1

)( 1
n

n
z

zh e
n
zze

Definition : Rank of infinite product

The smallest non negative integer k for which the series ∑
∞

=
+

1
1||

1
n

k
na  converges

is said to be rank of the infinite product. ∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1
;

n
n

n
k

a
zE

Definition Canonical (or regular) product :

If k denotes the rank of infinite product and if we take nkkn ∀= , then the

infinite product

∏
∞

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

1
;

n n
k

a
zE  is called canonical product.

If no such integer k exists, the infinite product is said to be of infinite rank.

Definition : Exponent of convegence of zeros of an entire function
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If )(.)( )( zPzezF mzh= ...(1)

where P(z) is canonical product of rank k and  A a non-empty set of non negative

real members α such that

∑
∞

=
α

1 ||
1

n na

 converges.

Then the number ρ = glb A is called the exponent of convegence of the zeros of

the entire function given by (1)

Theorem : Theorem for the computation of the exponent of convegence.

Let )....;...0(|| 21 ∞→≤≤≤≤<= nnnn rrrrra  then the exponent of convergence

is given by

n
rn

nc log
loglim1

∞→
=

ρ

Example : If (i) 
nn na log|| 2

1

=   (ii) 1||,|||| >= aaa n
n  then find ρc.

 Ans. (i) 2 (ii) 0

Definition : Genus and Exponential degree of an entire function :

If )()( )( zPzezF mzh=   is an entire function with canonical product P(z) of rank k

and h(z) is a polynomial of degre 0≥q  then non-negative integer  ),max( qkp = is

called the genus of the entire function and q is said to be the exponential degree of F.

If P(z) is not of finite rank k, or if h(z) is not a polynomial, then F is said be of infinite

genus.

Example : Find genus of the entire function 

22)( zezzF =

)()( 22
zPzezF z=

2)( zzh =   is a polynomial of degree 2.

1)( =zP

∴ 0== kkn

∴ 2)2,0max(),max( ==qk  is the genus of F(z).
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Definition : Order of an entire function

If F(z) be an entire function and A is a positive constant such that
Ar

rz
erMzF <=

=
)(|)(|max

||

for all sufficiently large value of r = |z|, then F(z) is caled an entire function of

finite order.

Alternatively

F(z) is of finite orer if 0>∃ A  such that

)(0|)(|
ArezF =

or AreKzF <|)(| ;      0>K

Definition : Order ρ of an entire function of finite order :

Let },|)(|:{ 0rrezFAS
Ar ><=  then the order ρ of an entire function F of finite

order is defined by }|)(|:inf{
ArezfA <=ρ

If there is not a positive constant A such that

∀<
ArezF |)(|  r   large enough

F(z) is said be of infinite order, ∞=ρ .

Definition : Type of  entire function:

If F(z) is an entire function of finite order ρ and there exists a constant B >0 such

that

∀<
ρBrerM )(

 r large enough

then F(z) is said to be of finite type and

},)(:inf{ RrerMB Br ><=
ρ

σ

is called the type of F.

If σ > 0 , F is said to be of normal type.

If  σ = 0, F is called minimum type.
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If there is no B such that ρ

< BrerM )( , then F is called of infinite type (or

maximum type).

exponential type σσσσσ : An entire function F is said to be of expontial type )( ∞<σσ

if either the function is of order ρ =1 and type 

σ≤

, or the function is of order less

then 1.

Theorem : The order ρ of an entire function is given by the formula

|)|(
log

)(logloglim zr
r

rM
r

==ρ
∞→

Proof : Suppose ∞<ρ  then

ρ

< rerM )(

 ∀ r   large enough ...(1)

then for given ε >0 we have
ε+ρ

< rerM )( ∀ r   large enough ...(2)

Also, there are some z with arbitrary modulus for which
ε−ρ

< rerM )( ..(3)

Then (2) implies

rrM log)()(loglog ε+ρ<

i.e.

ε+ρ<
r

rM
log

)(loglog

 Re<∀r ...(4)

and (3)  implies

ε−ρ>
r

rM
log

)(loglog
...(5)

∴ ε+ρ<<ε−ρ
r

rM
log

)(loglog

⇒ r
rM

r log
)(logloglim

∞→
=ρ

Theorem : The type σ of an entire function of finite order ρ is given by
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pr r
rM )(loglim

∞→
=σ

Proof : Since the entire function f(z) of finite order ρ is of type σ

Therefore
ρσ< rerM )( ...(1)

then for given ε > 0, we have
ρε+σ< rerM )()(          ∀ r large enough ...(2)

and ρε−σ> rerM )()( ...(3)

for infinity many values of r

Then (2) implies

ε+σ<pr
rM )(log

...(4)

and (3) implies

ε−σ>pr
rM )(log

....(5)

⇒ ε+σ<<ε−σ pr
rM )(log

⇒ pr r
rM )(loglim

∞→
=σ

Theorem : Jensen Formula

If f(z) is analytic in the disc Rz ≤||  and if 0≠ka  )1( nk ≤≤  are the zero of f(z)

in  

Rz ≤||

 those zeros being repeated according to their multiplicities, then

∑∫
=

π
θ +=θ

π

n

k k

i

a
Rfdf

1

2

0 ||
log|)0(|log|)(Re|log

2
1

Proof : Since f(z) is analytic in ∃≤ ,|| Rz  an open disc )0(|| >δδ+=′< RRz ,

where f(z) is analytic and has no other zero than the ak

Then if the function

)0())...()((
)(...

)(
21

21

fzazaza
zfaaa

zg
n

n

−−−
= ...(1)
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is  dfined at the point  naaa ,...,, 21  then it becomes analytic in Rz ′<||  and does

not vanish  analytic in this disc. Then there exists  a function h(z) analytic in R'such that

)()( zge zh =  an analytic branch h(z) of  log g(z) in the disc R'.

From (1) g(0) =1, we may coose h(0) =0 [from (2)]

Then
z
zh )(

 can be made analytic in Rz ′<||

If we consider π≤θ≤= θ 20,Re: izC  then by the Cauchy-Gousrat theorem

0
Re

)(Re
2
1)(

2
1 2

0

== ∫∫
+

π
θ

θ

θ

θ
ππ

dRieh
i

dz
z
zh

i
i

i

i

C

     0)(Re
2
1 2

0

== ∫
π

θ θ
π

dh i
...(3)

But |)(|log)(Re zgzh =

Taking real part of (3)

0
)0()Re)...(Re(

)(Re.......
log

2
1 2

0 1

21 =θ
−−π ∫

π

θθ

θ

d
faa

faaa
i

n
i

i
n

⇒ ∑ ∫∫∫
=

πππ
θ θ

π
+θ

π
−θ

π

n

k
k

i dadfdf
1

2

0

2

0

2

0

||log
2
1|)0(|log

2
1|)(Re|log

2
1

0|Re|log
2
1

1

2

0

=θ−
π

− ∑ ∫
=

π
θ

n

k

i
k da

⇒ ∑∫
=

π
θ π×

π
+−θ

π

n

k
k

i afdf
1

2

0

2||log
2
1|)0(|log|)(Re|log

2
1

0
|Re|

1log
2
1

1

2

0

=θ
−π

+ ∑ ∫
=

π

θ

n

k
i

k

d
a

⇒ ∑∫
=

π
θ π×

π
+−θ

π

n

k
k

i afdf
1

2

0

2||log
2
1|)0(|log|)(Re|log

2
1
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0

1|Re|

1log
2
1

1

2

0

=

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
+ ∑∫

=
−

n

k
i

ki

d

R
ea

π

θ
θ

θ
π

⇒ ∑∫
=

π
θ π×

π
+−θ

π

n

k
k

i afdf
1

2

0

2||log
2
1|)0(|log|)(Re|log

2
1

01log||log
2
1

1

2

0

=⎥
⎦

⎤
⎢
⎣

⎡
−−−+ ∑ ∫

=

−n

k

i
k d
R
eaR

π θ

θ
π

⇒ ∑∫
=

π
θ π×

π
+−θ

π

n

k
k

i afdf
1

2

0

2||log
2
1|)0(|log|)(Re|log

2
1

01log
2
1)log(2

2
1

1

2

01
=−−−+ ∑ ∫∑

=

−

=

n

k

i
k

n

k
d

R
eaR

π θ

θ
π

π
π

⇒ ∑∫
=

π
θ π×

π
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Corollary : If n(r) denotes the number of zeros of the entire function F(z) in the

disc rz ≤|| , and ,0)0( ≠F  then
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Then by Jesens formula
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Theorem : (Hadamard ) The exponent of convergence of the zeros of an entire

function of finite order 

cρ

 is no greater then ρ. i.e. ρρ ≤c

Proof : ∞}{ na  sequence of zeros of F(z),   |||| 1+≤ kk aa  and  real fucntion n(t) is

monotonic increasing with t

∴ 2log)()()()( 222
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For given 0∈>  we have 

})2exp{()2( 3/ε+ρ< rrM

. For r large enough
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or 3/23/)2()2(log ε+ρε+ρ << rrrM ...(2)

Replacing R by 2r in last result of the corollary and using (2)
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Now we show that
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for all r large enough
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n
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⇒ Exponent of convergence  cρ  of zeros is  δ+ρ

⇒

ρ≤ρc

Theorem : Suppose that about each zero ,1||, >nn aa  of a cononical product
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P(z), a dix of radius p
nr
1

 is described where || nn ar =  and 

ρ>p

= order P(z). Then in

the region R complementary to the union of all those discs, the inequality
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ερrezP

 holds an infinitely many circles of radii arbitrarily large.
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[on using triangle inequally  |||||| 2121 zzzz −≥+ ]

For |z| =r and rrn 2≤ , we obtain

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛++⎟

⎠
⎞

⎜
⎝
⎛

−
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−− 112

....
1

111.....
2
1 k

n
k

n

k

n

k

nnn z
a

z
a

kka
z

a
z

ka
z

a
z

44 344 21
)ondependnotdoeswhich(

1

1

....1

rA

k
n

k

n z
a

kr
r

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤

−

k

nr
rA ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1 ....(3)



62

∴ ∑∑
≤≤

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≤⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++

rr

k

nrr

k

nn nn
r
rA

a
z

ka
z

2
1

2

1.......

∑
≤

ε+ρ−ε+ρ

+ε+ρ−ε+ρ

=
rr

k
n

k

kk

n rr
rA

2
2/2/

2/2/

1 )(.2
.2

∑
≤

−ε+ρ

ε+ρ−ε+ρ

=
rr

k
n

k

k

n rr
rA

2
2/

2/2/

1 ).()2(
.2

∑
≤

−ε+ρ
ε+ρ−ε+ρ=

rr
k

n
k

n

k

n rr
rA

2
2/

2/2/
1 ).()(

1.2

444 3444 21
)ondependnotdoeswhich(

1
2/

2/
1

2/

2

12

rA

n n

k

r
Ar ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= ∑

=
+

−++
ερ

ερερ

2/
2

ε+ρ= rA ....(4)

If k =0 the sum in (4) does not appear in (2).  For z outside every circle p
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Hadanard’s Factorization theorem

If F(z) is an entire function of finite order ρ, then the factorization

)()( )( zPzezF mzh=  is always possible where h(z) is a polynomial of degree om≥≤ ,ρ

is the multiplicity of z =0 and P(z) is a canonical product of rank 

ρ≤

.

Proof : According to Weierstrass factorization theorem an entire function F(z)

can be factorize in the following from

)()( )( zPzezF mzh=

...(1)

When h(z) is an entire function and P(z) a product which may or may not be

canonical.

By the previous theorem ,ρρ ≤c  so that P(z) is of finite rank ρ≤k .

Also since ε+ρ−> rezP |)(|
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⇒ h(z) is a polynomial of degree not greater then ρ.
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But according to Hadamard Factorization  theorem, h(z) must be a  polynomial
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