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Space of Analytic Functions

The space of continuous functions C(G, Q2)

Definition : If G isan open setin C and (€2, d) is a complete metric space the
set of all continuous functions from G to Q, designated by C(G, Q) is called space of
continuous functions.

Compact set of a metric space

Definition : A subset K of a metric space X is compact if for every collection
¢ ={G: G is open;G c X} of open setsin X,

..(1)

i.e. there is a finite number of sets G,,G,,..,G, in ¢ such that

n

Cover of a compact set %(nC}Gl{GCﬁlé.g}U G,
A collection of set ¢ satisfying (1) is called cover of the compact set K.

If each member of isanopensetthen iscalled open cover of K.

e.g. empty set and all finite sets are compact.

Cauchy sequence : Asequence is called a Cauchy sequence if

for every e>0there is an integer N such that d (x,,x,)<e, ¥Yn,m>N

Complete metric space : Ametric space (X,d) is called complete metric space
if each Cauchy sequence hasa limitin X.

Let G < C, Gisan open subset of C and H(G) the set of all analytic functioins
defined on G, i.e. H(G) = {f : fis analytic function on G} then H(G) be a subset of

space of continuous functons from G to C.



H(G)<=C(G,C)
We denotes the set of analytic function on G by H(G) rather than A(G) because
g continuous function that are analytic in G}
Thus A(G) = H(G)
Theorem: If be a sequence in H(G) and f e C(G,C)such that
thenfisanalyticand f® — f% Vv integer k >1

Proof : To prove that f is analytic, we use Morera’s theorem. If T be a triangle

contained inside adisk D — G, then T is compact, and the sequence { f, } converges

to funiformly over T. Hence by Morera’s theorem
[f=lim [f=0 (1)
T T

sinceeach f  isanalytic.

| W—7 |k+l

27,

Thus f must be analytic in every disk DG
Now we show that
Let D=B(a; r) = G; then there isa number R >r such that B(a, R) = G.

Ifwetakeacircle y=|z —al=R then by Cauchy’s Integral formula

fn(k) (Z) —f © (Z) = £I|: fn (W?Hl - f (W)k+l j|dW vV zeD

27| (W-2) (w=2)

= ..(2)

Since f, — f and f_ arecontinuousinCthen 3 M, >0 where

M, =sup{| f,(w)- f(w)|:|w-al=R} suchthat
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| f,(w)— f(w)|<M,,then from the equation (2)

£9(2)- 1) SEJL | dw|

27zy(R—r)k+l
KIM KIM,
=R W= 2R
2r(R-r)""7 27(R-r)
KIM R
=—27z(R— e for |z-a|<r ..(3)

Since f, — f, and limM, =0 then (3) gives

= £  f® uniformlyon B(a;r).

Now if K is an arbitrary compact subset of G and distance of each element of K
from any of the boundary point of G is greater thanr, i.e.

0<r<d(K,0G) then in K such that
K<|JB(a;;r)
j=1

since £ _ f ® uniformly on eachPSEREHEEN: 2 -al=R

= £ converges uniformly to f® on K

Theorem : Hurwitz’s Theorem
Let G be a region and suppose the sequence {f } converges to f in H(G). If
f£0, B(a;R)cG and f(z)=0 for |z-a|=R thenthereisan integer N such that

for n>N, fandf have the same number of zeros in B(a;R).

Proof : Since for |z-al|=R, therefore we can define a positive
number § as

Butf converges uniformly tofon . Therefore integer N such
that if and then

1£(2) - fn(z)|<§<| t(2)]

ST@ [+ 1. (2]
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Thus from above it follows that fand f  satisfies the condition of Rouche’s
theorem.

Thusfandf have the same number of zeros in B(a;R).

Theorem: Let be a sequence in M(G) and suppose f, — f in
C(G,C,) theneither fismeromorphicor f =«.Ifeach f_  isanalyticthen either
fisanalyticor f =0

Proof : Suppose there isa point ‘a’ in Gwith f(a) =« andlet | f(a)|=M

Now

therefore we can findanumber o > 0 such that

...()
But f, — f sothereisan integer IB<GRRERHIOBE (PO IN@) | v zeB(a;r) and nxn,

d(f.(a); f(a))<§, vn>n,

Also the set IscompactinC(G,C,)
= itisequicontinuous

i.e. 3 anr>0 such that

—  d(f,(2), f(z))<§

—  d(f,(2); fn(a))<§

This givesthat d(f,(z), f (a))< p for|z—al|<r and forn >n,
Now
= ..(2)

In view of the p chosen in (1); the expression (2) can be written as



2| f.(z)- f(2)]
b1t @t @rf
vV zeB(a;r) and nx>n,

s 21 1(2)-T(2)]
{t+am?)a+am?)f”

i d(f.(2), f(2))=

12

vV zeB(a;r) and n>n,
Since d{f,(z), f(2)} >0 uniformly for zeB(a;r) this gives that
| f.(z) - f(z) |~ 0 uniformlyfor ze B(a;r)
From (3)
{f } isbounded on B(a; r)

= f hasnopolesand mustanalyticnearz=a, Vv nxn,.

= fisanalyticinadiscabouta. .. (@)
Now suppose there isa point ‘a’ in G with .Then,if geC(G,C,);

define 1/g as follows:
f(a)=o

1 1
E(Z):ﬁ if g(z)#0 or oo

1

E(Z) =0 if g(2) = »; and
1 .

g(z)— if g(z)=0

1
Then it follows that q eC(G,C))

Also, since f, — f InC(G,C,) then by the property of metric over non zero

complexnumber z and z,,i.e.

d(Zl,Zz)zd(i,ij and d(Z,O)zd(l,ooj
Z; I z

1 1
It follows that f_n_>T inC(G,C,)

1
Now each T is meromorphic on G;
n




1 1
So, 3r>0 andanintegern,such that T and Toare analytic on B(a; r) for
n
n>n,

1 1
= f——>T uniformly on B(a; r).

n

From Hurwitz theorem, either %z 0 or % has isolated zeros in B(a; ).

if f =0 then %;o and f must be meromorphic in B(a; r)

Combining this with the result (4) that f is meromorphic in G if f is not identically
infinite.

Ifeachf isanalytic then fin has no zeros in B(a; r). Then [ corollary : {f }
H(G) converges to fin H(G) and each f never vanishes on G then either f =0or
never vanishes] then either %E 0 or % never vanishes.

Butsince f(a) =00 we have that % %ﬁ%}{?%ﬁ: rzle_ Zang;rt,hHJSefFi zooén B(a;r)

Thus, either f =00 orfisanalytic
Locally bounded set of analytic functions

Definition : Aset F — H(G) islocally bounded if v a<G, thereare

constants M and r >0, such that

| f(z)|<M, for
Alternately

F islocally bounded if there is an r >0 such that

Montel’s Theorem

A family F in H(G) is normal iff is locally bounded

Proof: Toprovethat  isnormali.e.eachsequencein  hasasubsequence
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which converges to a function fin H(G).

Necessary : Suppose is normal but fails to be locally bounded.
then there is a compact set K — G such that
..(1)
[contradiction of locally bounded set]

i.e. thereexistsasequence { f.} in F suchthat

Since F is normal therefore a function and a subsequence such
that
fo, = f
= sup{|f (2)-T(D[:zeK}>0as k 5w
f | f(2)gM for zeK
ne <sup{l f, (2)-f(D)|:zeK}+M
\g Dfze>he F}=ow
when n, — o  righthand side convefges to M which cannot be true (o0 < M )

Hence the assumption taken at start is wrong. Therefore if ~ isnormal itis locally

bounded.

Corollary : isclosedin C(G,C,).
For this we prove the normality of M(G).

For this let us introduce the quality
2| f'(2)| )
L @)F ()

for each meromorphic function.

However if z is a pole of f then has no meaning because derivative
increases the order of the pole. Therefore (1) is meaningless.

This can be rectify by taking limit of (1) as z approaches the pole. Now we show

that the limit of (1) when z tends to pole. Let ‘a’ be a pole of f of order ; then



f(z) can be expressed as

f(2)=g(z) + A

+ot
(z-a)" (z-2)

for z in some disk about a and g(z) analytic in that disk.

For z+a
mA,, A )
2 -
21 f'(z)| (z—a)”“+1+ +(z—a)2 g(z)‘
E; 2 2
i 1+| An ot A +9(2)
(z-a)" (z-a)
C2)z-al™mA, 4+ A(z-a)" T - g/ (z)(z-a)™ |
S z-alm +| A e+ A(z—2) "+ g(z)(z—a)"
Thusif m>2
zea+ Z
f'(z)=g'(z>—{ e SR T
If m =1 then (z-a) (z-a)
A ,
, 2 > —9'(2)
i =
1+‘ A +9(2)
(z-a)
2t |A-(z-a2g()
I' |Z_a|2
=1m 1
Hau_alzhz—a|2+|A1+g(z>(z—a>|2]
_2lAl_ 2
|A P 1A
) . 2|t ()| |
which shows that for m >1 the limit of > exits.

1+ f(2)]
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Theorem : Riemann Mapping Theorem
Let G be asimply connected region which is not the whole plane and let

Then there is a unique analytic function having the properties.

@ f(@=0and
(b) fisone-one
() f@)={z:zk1}
Proof : First we prove uniqueness of f, let g be a function having the same
properties likef, i.e.
g(a) =0 and g'(a) >0,
g is one-one and o> 0
9(G)={z:|]z<k1} g:G—>D

and D={z:|z|<1} then
1-1
9g:G > D
onto 11
and fog™:D—D and analytic.

onto

Also fog™(0)=f(g™(0)) = f(a)=0

Then by the theorem-

1-1

Let f:G — D analyticand f(a)=03 acomplex number c with |c|=1
onto

I-a
— )=—; i ;
such that f—Cgoa, ?.(2) 1— g z 18 Mobious transformation.
Implies that 3 a constant c; and fogl(z)=cz Wz

= f(z)=cg(2)
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-
Since and cg’'(a) >0
= c¢=1
= f=g

Hence fis unique.

For the existence of f, consider the family F of all analytic function f having
properties (a) and (b) and satisfying forzinG.

The idea is to choose amember of F having property (c).

Suppose {K } is a sequence of compact subsets of G such that

and aeK, vn
Then {f (K,)} is sequence of compact subsets of D ={z:|z|<1}.
Also, as n becomes larger {f (K,)} becomes larger and larger and tries to fill

out the disk.
erBhisn sh (Reeneotpe flidtiof: f'(@ >0, f(G) =D}

which “starts out the fastest” at z =a.

Thus

Lemma : Let G be a region which is not the whole plane and such that every
non vanishing function on G has an analytic square root. If 3 ¢ G
then there is an analytic function fon G such that :

(@ f(a)=0and

(b) fisone-one

() f@G)=D={z:]zk1}

Proof: Let we define F as

Since f(G) < D then
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sup{| f(z)|:zeG}<1for f eF

By Montel theorem F is normal if it is non-empty. Thus first of all it is to be
proved that
(1)

and F =Fu{0] -(2)
Suppose (1) and (2) hold and consider the function

f — f'(a) of H(G) > C
This is a continuous function and since F~ iscompactthereisafin  with

F.

Since (empty set) therefore f €F.

f(G) = D is remains to shows now.

Suppose w e D Such that JHD B RALisE <
1-wf (2)

isanalytic in G and never vanishes.

then by the hypothesis there is an analytic function h : G — ¢ whichisequal to
the square root of a analytic function, i.e.

, f(2)-w
[h(2)] =m ~.(3)

Since the Mobious transformation

-W

3
Te=2—
S 1-we maps D onto D, h(G) <D.

Define g:G —C by

Ih(@)] h(z) - h(a)
h'(a) 1-h(@h(z) (4

9(2) =

Then 19(G) 1= g(G) =D,
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which is obvious from (4)

and g is one-one, as f and hence h both are one-one.

Also
oy |h@)] h(@[L-]h@@) ]
T @ i@ Y
_In@)
(@)
But
Y LR L

T[1-wf(@)| |1-0]
and derivative of (3) gives

2h()h(z) = T D A=W (@) ~(F(2) ~w) (-W {'(2))
L-wf ()]

f'(a) - ww f'(a)
1

2h(a)h’(a) = f'(@)(1- | w|?) §@)=q)

2h(a)h’(a) =

f'@d-lwl) 1

2wl 1-|wl

oS LR

> f'(a)

g'(a)=

This contradict that g isin F and the choice of f. Thus f(G) = D.

Theorem : Let f(z) be analytic in a simply connected region R and suppose that

f(z) has no zeros in R. Then there is a analytic function h(z) such that for
a” Y= R .
Proof : Since inR

f'(2)
then f(2) is also analytic in R and therefore for any two pointsaand z in R the




13

integral
(1)
defines an analytic functionof zinR
Let o be an argument of f(a) then f(a) can be expressed as
f(a)=r e"*and set
p=log| f(a)|+ix
eﬂ _ eIog|f (@)H+ia
_ eI0g| f(a)] eia _ eIog r eia -r eia
Then e = f(a) (2)
and if we consider
(')
h(z)=p+ dg
7o -3
We get h(a) =, then from (2) we ?@é @%F(z) f(2)=0
> S
eh@ _ b = f(a) 3 f(gz ..(4)

= h(z)isanalyticinRforall ;<R

from (3)

Let F(z)=e"®

e fr
ten F@=""(@)=F @)
F'(2) ()
= F@2 f@
=
F'(2)f(2)-F(2)f'(2)
— =0

[F(@)I*

be non vanishing
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d4(1@)_,
=~ dz\F(2))
f@

= F(z)ZK (aconstant) forall ;R

Putting z =a, we obtain

f(z)=F(z)=e"®
The analytic function h(z) defined as above is called logarithm of f(z) in R and
we write h(z)=log f (z).
Clearly, if h(z) is a logarithm of f(z), then (man integer) is also

logarithm of f(z).

Convergence of logarithm series :

) n 2 3
logQ+2) =Y ()" L =z - 2N@3F@NT f(a) _ f(a)
2y Ba) o® fa) -

with radius of convergence 1.

2
1-l1-2+2
2" 3

If|z| <1then

_log(1+2)
z

.

zi_lzz £(£|Z|+1|z|2+' j
2 3 23

1 2

<—(z|+|z|" +.....

2(| [+]z| )

1 |z|

S_

21-|z| 0

1
Further if |z |<§ then

_log(1+72)
z

1
<=

1
| ;
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z—log(1+ 2)
z

<1
2

|Z]

= logl+2)|=z|s=>

N ||og(1+z)|s§|z|

. . 1
Since log (1+2) is converges to 1, then for | z|< o we have

| Z]

3
— < logll+2) <K=z
> |logL+2) | 2| |

Proposition :

Rez, >0 vn>1.Then 12, converges to a non-zero number iff.
n=1

converges.

Proof:letp,=(z,-2,-2;-.... - Z,,)

Bgnie 2=k <6 < n
and In(p,)=log|p,|+i0, , 0-n<0,<0+m
If S,=logz, +logz, +....+log z,
then exp(S,)=exp[logz, +logz, +....+log z,]

=exp[log(z,.2,...2,)] = p,
S, =In(p,) + 27k forsome integerk .
Now suppose
,then
S,-S,,=logz, -0
Also In(p,)-In(p,,)—>0

Hence (k, -k, ;) >0 asn—wo

Since k_isan integer, there exists integers n and k such that

for

(2)

[Tlogz,
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So S, —In(z)+2riK

Corollary :
If Rez, >0 then the product.[]z, converges absolutely iff the series

> (z, —1) converges absolutely.

Lemma:

Let X be a set and f, f,, f, ... be functions from X into C such that
f. (X) = f(x) uniformly for x in X. If there is a constant ‘a’ such that
Re f(x)<a Vxe X then exp f, (x) —exp f(x) uniformly forxin X.

Proof: For given ¢~ choose such that

whenever |z |< & (1)

Now choose n, such that

1f.00-f(X)]<d ) ek Rl ™ | exp f () [< e

Thus, from (1)

=

exp £ () | ..
exp f(x)

= |exp f, (x)—exp f(x)|<ee™® |exp f(X)|

It follow that forany x e x and
= exp f,(x) > exp f (x)uniformlyfor x e X .
Lemma :

Let (X, d) be acompact metric space and let be a sequence of continuous

function from Xinto C suchthat > g, (x) converges absolutely and uniformly for xin
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Then the product f(X) = lt[1 1+ 9,(x)) converges absolutely and uniformly for

x in X. Also there is an integer n, such that f(x)=0iff g (x)=-1 for some
n,1<n<n,

Proof : Since > g, (x) converges uniformly for x ¢ x therefor their exists an

integer n, such that and n>n,

3
= and |Iog¢+gn(X))IS§|gn(X)l; vnznand xeX

Thus ()= 2. '109(1+ 9n (X)) converges uniformly for x e x
Now
is also continuous.

Hence h(x) is continuous.

-+ X is compact = h(x) must be bou

DRGS0, (0].....[1+ g, (9] exp h(x)
In particular, there is a constantasuch that 2

Then

exph(x) =exp{ Y log(1+ g, (x»}

n=ny+1

0

= []@+9,(x)). converges uniformly forx < x and

n=ng+l
forany xe X .

Now if we take

then

109 =] J0+9,00)
n=l
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converges uniformly for x ¢ x .

Definition : An Elementary factor is one of the following function or

E(z; p)
forp=0,1,2,3,... defined as
E(z;0) or E,(z)=1-z

2
E(z; p) or Ep(z):(l—z)exp(z+%+....+%} p>1

2 p
E(ia p) or Ep(ij :(l—ijexp[i-‘rl(ij + .. i(ij }1 p 21
a a a a 2\a pla

Z .
= Ep(gj has a simple zero at z=a and no other zero.

Alsoifbisapointin C—G then
. (a_bj—(l—a_bjex a-b l(a—bszr +£[a—bjp
P\ Z=p )" 220)%P zF—ptinjz z-b) 7 plz-b

has asimple zero at z=a, and is analytic in G.

Lemma
If |z|<1and p>0 then |1-E (2)|< z|*"
Proof : We restrictfor p>1.
For a fixed p let the power series expansion of E , (z) aboutz =0 is
Ep(z)=1+kilakzk (D)
differentiating (1), we have
E(z)=1+ gk a,z*?

From the definition of Ep (2
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z° zP z? P 5 o
E,(z2)=-1exp z+?+....+— +(@-2z)exp z+7+....+— AQ+z+z°+...+2"7)
p p

z° z” 2 p-1
=exp z+?+....+— [—1+(1—z)(1+z+z +...2 )]
p

On simplifying expressiion in the square bracket only zP remains and all other terms

will cancelled out.

& § 2? zP
Zkakz“:—zpexp(z++ ..... +—
k=1 2

On comparing coefficients of like power of z, we find that
3 =2a,=..=a,=0

22 zP
Also the coefficient of the expression of eXD(Z + X Tt ? are all positive

, therefore a, <0 fork>p+1i, __zpeX;{HZZJr +ZpJ
= 5

Thus |a, |=-a, for k>p+1 P

—~ E,)=0=1+ > a,
k=p+1

or 2lal=-2a-=1

k=p+1 k=p+1

Hence for |z|<1

o0
Zakzk

k=p+1

IE,(2) -1k

| p+1 < k—p-1
=[ z| 2.z
k=p+1

l o0
<[z )l

k=p+1

:|Z|p+1
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Proposition
Let Rez, > -1 then the series > log(l+z,) converges absolutely iff > z,
converges absolutely.
Proof: If ) |z, | convergesthen z, —0
1
= | Z, |<_
1 2 3 1
ince =|z|<|logl+2)|£=]z Zlk=
Slnce2| | < g(1 )| 2| | for |z| 5
Therefore for | z, l<§ the series > |log(l+ z,)| is convergent.

Conversely if, > |log(l+ z,)| convergesthen

1
|Zn |<E

Y|z, | isconverges

Absolute convergence of an infinite product.
[1!z, | converges =] ]z, converges
Example: Let Z =-1V n [1z,
then |z, ]=1 ¥ n
= []lz,| convergesto 1.
However i[lzk is +1 depending on whether n is even or odd,

= does not converges.

Definition : If Re z, >0, vn thenthe infinite product | | z, issaid to converges

absolutely if the series > logz, converges absolutely.

Theorem : Weirestrass factorization theorem
Givenan infinite sequence of complex numbers a, =0, a,,a,,...., a, withnofinite
point of accumulation, the most general entire function having zeros at those points

only (azero a, n>1of multiplicity o. being repeated o times in the sequence) is given
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by

n=1 an
where h(z) isan arbitrary entire function, m> o is the order of multiplicity of a,

F@):e“”sziE(iiﬂgJ (1)

=0,andthek are non negative integers such that the series

(2)

Converges for each finite value of z.
Proof : Arranging the given zeros in increasing order of modulus, so that
0<a l<la, |<a; <.
with |a, |-
The sequence {k,} of non-negative integers can always be found such that the
series (2) is convergent for each z.

We may take k,,, =n, since

n

z

a

n

z

<3 3)
i<

1
Sz_” or

n
assoonas |a, > 2|z | which for any given z holds for sufficiently large value of
n, say n>N
= Ndepends on |z| = pointwise convergence.
Since we are not interested in uniform convergence, only point wise convergence.

From the already proved result that

1
if |Z|SE<1then

. p k+1
logE(z;k)| <—
logE(z k)<~ 12] .(4)

then for p =2
llog E(z;k)|< 2| z|"

provided



22

2)< T
2

We have

log E(i;k] <2
an n
provided /%
0 R 2R
212 K_/
2

= a2z

k+1
z

a

n

Let R be an arbitrary positive number and consider two circles with centres at
the origin and radii R and 2R.
If we take |z| <R and n large enough so that ,wehavela, |>2]|z|

Hence the series

is absolutely and uniformly convergent for g@%@z&]gfaﬂzlﬁﬁj and it follows that the
an

la,[>2R
( / ”J
la,[>2R an

is also absolutely and uniformly convergent for z| <R.

product

Since the product

z
E| — Kk,
e[

contain a finite number of factors each of which is an analytic function, it follows that

t(2)= I E(i:knj

la,|<2R n
is analytic in |z| <R and vanishes in the disc only at those points of the sequence a,, a,,
...whichliein|z|<R.

Then from the theorem : If f,(z); k=12,... are analytic in open set



23

AcC Z| f @1 is uniformly convergent on every compact set K — A, then

n=1
converges absolutely in Ato F(z) which is analytic in A.
We have
z
f,(z) = H E[—; knj
la,|>2R n

is analytic and different from zero in |z| <R.
Hence the product

JORAGIAG =f[E(ai;knj

n
isalso analytic in |z| <R and vanishes in this region only at those points of the sequence
a,,a,.... which lie inthere.
R was arbitrary chosen positive numbexr, so that f(z) is analytic in the whole finite
place. iﬂ(ﬁt éﬁ@))ﬁ(l—%}e””; n#0
= Itisanentire function and has less zero precisely at the points a,, a, ...., a, ...
F(z)=e"Pz"f (2)

is most general entire function with the prescribed zeros.

Factorization of sinmz :
sin nrz IS anentire function with simple zerosat 0, +1, +2,...
Then by Weierstrass factorization theorem the most general form of this entire

function be

NG 1—£Je””[1+£je””
[
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, 0 ZZ
_ e >z1n‘=[1 (1—n—2J (1)

Taking logarithmic differentiation of (1)

meot iz =— d [g(z)+|ogz+H(log(n —2z%)—logn? )}

n=1

SCTEY ) () I @)

But (3

Hence h'(z) =0 and it follows that h(z) = C (a constant)

Let e =, then (1) gives

0 2
sin 7z = Cz[ | (1—2—2]

Z n
sinzz Clﬁ( j
—— =" 2#0
z T
. 1 & 22
Taking z 0 ﬂcotﬂz_;+H g

1 _——
ﬂmmH@ ]

ZZ
Since H (1— _2j is uniformly converges, therefore the order of limit can be

n=1 n
changed
1 —_——
ﬁmmH@ J
& lim H(l)_
T n—)aoK -1
= C,=n
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Gamma function
According to Weierstrass (the weierstrass fact. th) the I" function can be defined

asthe reciprocal of a particular entire function with simple zeros at the points 0, -1, -

2,.. namely

F(z)=ez] ] £1+ EJeZ’”
n=1 n

1 e—;/z = A - z/n
= %zr(z): ; I;I(Hnj e (1)

where the constanty (Euler or Mascheroni constant) is chosen so that I'(1) =1

From (1) we see that isa meromorphic function on C with simple poles at

z=0, -1, -2,...

Existence of y

Now we show that there exists suchy. - M
g
- n A n
substituting z =1 in the infinite product! B , We get

= 1Ty, T
H(“Fj e'"=C a finite positive number (2)

n=1

Let y=1logC thenon substitutingz=1in (1), we get

From (2), we see that the constant y satisfies the equation

)

Hence the existance of y is acertained.
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Lemma:
1 1 1 .
Let H,=1+=+=+..= then ¥ =lim(H, —logn)
2 3 n n—oo

Proof : Taking logarithm on both sides of

~lim| " flogk —log(k s} D = | o

n—c N 1zK1(z+2) ..... (z+n)

n

terms will cancelled out except

log(n+1)

k=1 {|Ogl—0and all int ermediate

=lim| —log(n +1)+[1+%+...+%ﬂ

= lim|logn—log(n +1)+(1+%+...+lj—logn}
n

nN—oo

= lim (1+1+...+£j— logn - Iog(Mﬂ
n—wo| 2 n n

- 7= rI]i_r)r;K1+%+...+%j— Iogn—O} { r!i_r)r;log((nrrl)jzo}

— y=Ilim(H, —logn)
n—oo

Euler’s formula for I'(z) or Gauss formula

From the definition of T'(z)
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B !‘LTH(Z—FK)

k=1
e”(1.2.3....n).exp(z+Z+Z+....+Zj
~ lim 2.3 _ o’
n—o 2(z+1)(z+2)....(z+n)
e ?(H7%9 nl expd z 1eisli 41
. 2 3 n
=lim
N0 2(z+)(z+2)......z+n)
n! e—an e7zlogn ean

now 2(242)(2+2).....(2+N)

T'(z) = lim nt.n‘
oo 7(z4+1)(z+2)

Functional equation [(2+1) =zI1(2)

Replacing z by (z+1) in the equation (5)

z

nn

~lim ne
0 7(2+D(z2+2).....€+n) (z+n+1)

z

. n'n -
=lim lim
0 2(Z+1)(Z+2).....(2 +n) 1> (L+1+1)

=I(z).z
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Reflection formula

Proof : Using Euler’s formula

. (nh)?.n }
= lim
oo z(1-2%)(2% = 2%)...(n? = 2°)(n+1-2)

=lim

n—>w 2(1_22)[1_ Zz] ..... [1_22](n+1—zj
2 n n
zm{(l—zz)(l—;j ..... (1—512}}.1

slogy . T L .0, +A8M0) : nl.
Z;z ﬁ’l&)‘frﬁ& )}734"5@{2(2-7:1)(2+2) (z+n)}!m{(l—z)(2—z

Ordinary Dirichlet Series
Definition : The series of the form

n

s (1)

M

>
Il

called ordinary Dirichlet series, where the a_are given constants, s=c +it isa

complex variable and
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Zeta function of Riemann

If a, =1, vn thenthe series (1) becomes

g(s)=2%, Res=o>1

n=1L

represents Zeta function of Riemann.

Theorem : Theseries 2N converges absolutely and uniformly for ¢ >1+ ¢
n=1

(e > O arbitrary)

Proof : We have

1

nS

1 1

1
o+it = o it <
In”" ] [n?][n"]

1
n_a - n1+g

and the series Zl v CONVerges, by Weiestrass M-test
n=.

Theorem : FOr Res>1

0

r(s) 5(s) = | etts dt

0

s-1

Proof: The integral f o 1dt converges at both the lower and upper limits
el =

whenever Res>1

Since

. t
lim

=1
t—0+ et -1

so that by the definition of limit there isa & >0 such that for g<t< s the
inequality

‘.Da—'
I ~—+
H
|
I
N
™
Il
N |~
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=

3
o1 <§ holds.

Hence for 0<5, <8 and c=Re s>1
f
4
oot
:>J. t

516_

ﬁt“zdt < gjtazdt - %i(a“ ~50)

-1

o o-1
730 a5, 0
20-1

on the other hand, we have

tm
lim
t—+0 e _1

=0

m

Sothatthere isab,, such that for t > b, the meuqallty

< 5 is satisfied

Hence for 0<h, <b and choosing m> o we get

Q-{\ j’@*&u@jptc M-t ( m _pm)

——b“ mash—oow

Now in ['(s) = [e't*dt
0

which isvalid for ¢ > 0, we make the substitution t =nu to obtain

N 1 © N
rs)Y, =] de™ |udu
d n=1n 0 n=1
%,_/
(sum of G.P)

:T[eu(il—e_um)jus—ldu
0 —-e

u s—1 © u s—le—Nu
. du — u—du
e -1 e -1

0

Il
o t—38
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Now it is required to prove that

s-1.,—Nu

que du —0asN-—>ow
, € -1

0 us—le—Nu du_fus—le—Nu d 0 us—le—Nu
, €1 ; €-1

o sl

u Nu

o o-1 o o-1
u _ u
<I ——du+e N‘SI ——du
€ -1 e -1

.

- du
e -1

=

0
Fora given >0, we choose 6 sufficiently small so as to make the first integral
on right hand side less than %
Fixing that & we can now take N large enough so as to make the second termon

the right less than

for N 5>
o us—l
[(s) (s) = [ 5—au valid for Re s >1
0
Note:B(E) denotes a closed algebrag;ﬁgﬂ@) H‘)at contains every rational
functionwithapolein E 2

Lemma
If acC—k then (z—a)*eB(E)
Proof: Casel: w¢E
Let and let
V={aeC:(z—a)"e B(E)}
SO EcVcU
If and then (1)
= Visopen
= anumber such that

|b-al<r|z-al; VzeK (2)
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But

4 b-al™
=(Z-1) {1—2_6‘} -(3)

From (2)

|b—a||z—a|*r<1; VvzeK whichimpliesthat

[1_b—a]l:i(b—aj” )

z-a ~lz-a

By the Weirestrass M-Test series on right hand side of (4) converges uniformly

on K.

If Qn(2)=zn:(b_—:j then

k=0 -

(z-a)"Q,(z) € B(E)
Since a ev and B(E) isan algebra (3) shows that B(E) is closed and uniformly

convergence of (4) implies that ??ﬂ:@gﬁ € F(E) a)—(b-a) T( z-a)t
z-a

= beVv
Then (1) implies that V is open
If then let be a sequence in V with

b=Iima,

n— oo

Since b ¢V thenfrom (1) it follows that
|b-a, [>d(a,,K) thenfor n—»w; a,—>b; weget
0=d(b,K) or beK
Thus oV NU = ¢ (null set)
If Hisacomponentof Uy = Cc — K then HNK =¢
So HNV =4
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HcV
But H was arbitrary so orV=U
Case 2 :
Let d = the metric on

Leta, is in the unbounded components of y = ¢ - K suchthat
d(ay, ) S%d(oo, K)
and |a, [>2max{|z|: zeK} ..(5)

Let so E, meets each components of

If  aeC—K thencase-lgivesthat (z—a)™ e B(E,)

1
NowIZ/aOISE; VzeK [from (5)]
Therefore
1 1 1 )
———Z(z/ao)

z7-a, -a,(1-z2/a,) SEEY-))U {2}
Converges uniformly on K.

Then

1 n
Q,(2)=-=2(z/a,)" isapolynomial

0 k=0

and (z-a,)"=u-limQ, on K.

Since Q_hasiits only pole at «,

Thus (z-a,)" € B(E)

= B(E,)cB(E)

= (z-a)'eB(E)foreachaeC-K

Definition : Function element is a pair (f,G) where G isaregionand fisan
analytic functionon G.

Definition : Germ of fata : [f],.

For a given function element (f, G) the germ of fat a, denoted by [f],, isthe
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collection of all function elements (g, D) suchthat 3 < p and ina
neighbourhood of a.

= [ f], = collection of function elements and it is not a function element itself.
Note: The equivalence of two germs of fi.e. [f], =[], ismeaning less untila =b.
Definition : Analytic continuation along a path.

Let v:[0,1] — C be a path and suppose that for each t in [0,1] there is a function
element (f,, D,) suchthat

@ +v@®eD

(b) foreachtin[0,1] thereisad>0suchthat |s—t|<&

= y(s)eD, and [f] ) =[], (i.e.germoff andf aty(s) are equal)

Then (f, D) is the analytic continuous of (f,,D,) alongthe pathy; or (f,,D,) is
obtained from (f,,D,) by analytic continuationalongy.

Power series method of analytic continuation

Lemma : Let y:[0.1] - C beapath®fRTE %, "B,):0 <t <13 bean analytic
continuation alongy. For g <t <1 let R(t) be the radius of convergence of the power
series expansion of f about z =y(t). Then either or R:[0,1] = (0,) is
continuous.

Proof': If R(t) =0 forsome value of t then itis possible to extend f to an entire
function.

Since

f,(z2)=f,(z) VzeD,

= R(s)=w Vse[0]]
e, R(s)=w
Suppose that R(t) <o VWt

Foraparticular t e[0,1] let T=y(t)
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let

be the power series expansion of f about t.
Let 5, >0 besuchthat |[s—t|<§,

= y(s)e D, NB(%;R(t))

and [f], =[],

Now let o =y(s) forafixs;

Now f.can be extended to an analytic function on B(z;R(t)) .

Since f_agrees with f on a neighbourhood of  (by definition germs), f_ can be
extended so that it is also analytic on

If f_has a power series expansion
f{(2)=2 0,(2-0)" about z=0o
n=0

then the radius of convergence R(S) must be at Ieast as big as the distance from

1RO = RO~ <o

o tothecircle

i.e.
= RA)=R(s)<y(t) —v(s)|

Similarly it can be shown that

Hence for

Since y:[0,1] —» C is continuous.

=  Rmustbe continuous at t.
Rung’s Theorem : Let K be a compact subset of C and let E be a subset of C_, — K
that meets each componentof C_ — K . Iffisanalytic in an open set containing K and
€>0 then there is a rational function R(Z) whose only poles lie in E and such that

| f(z)-R(z)lke VzeK
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Proof : By the fact that if K be a compact subset of the region G, then there are
straight line segments y,,,,.....y,, in G—Ksuch that for every function f in H(G).

)=Zn: Imdw VzeK

The line segments form a finite number of closed polygons.
Also Ify be arectifiable curve and let K be compact set such that K N {y}=¢.
If fis continuous function on {y} and £>0 then there is a rational function R(z) having

allitspoleson  and such that

Definition : Unrestricted analytic continuation :
Let (f, D) be a function element and let G be a region which contains D: then (f,

D) admits unrestricted analytic continuation in G if for any path y in G with initial point

VzeK

in D there is an analytic continuation of (f,
w R(z)

Fixed-End-Point (FEP) homotopic
Definition : If y,,vy,:[0,1]] > G are two rectifiable course in G such that

v,(0)=7v,(0)=0 and y,(0) =v,(0)=b then y, and y, are FEP homotopic if there is
acontinuous map

I':12 - G suchthat

I'(5.0)=7,(s)

[(s1)=7,(s)

r(t)=a

rLt)=b

for0<s, t<1

2 =[01]x[0]]
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Theorem : Monodromy : Let (f, D) be a function element and let G be a
region containing D such that (f, D) having unrestricted continuation in G. Let
aeD,beG andlet y, and y, be pathsin G fromatob; let {(f,,D,):0<t<1} and
{(g,,D,):0<t<1}beanalytic continuation of (f, D) along vy, and y, respectively. If
v, and y, are fixed-end-point homotrpic in G then

[f.o =[9:];

Proof : Since y, and vy, are FEP homotopicin G

= thereisacontinuous function
I':[0,1]x[0,1] - G such that
Lt0)=yo(t) I(t1)=y,(t)
rOu)y=a; T@Qu)=b

foralltanduin|[O, 1]

Let v, (t)=I'(t,u) forafixu, 0 <u {HhiherHibatlp. (1)

By hypothesis there is an analytic continuation {(h, ,, D, ,):0<t <1} of (f, D)
along y,

By the result that if y:[0.1] - C beapathfromatoband {(f,,D,):0<t<1}
and {(g,,B,):0 <t <1} beanalytic continuationsalongysuchthat [ f,], =[g,], - Then

[f.o =[9:];
Then it follows that
[9:], =[h,,], and
Now it is sufficient to show that
(2
To show this
Let U ={ue[0]:[h,], =[]} .(3)

and we show that U is non-empty open and closed subset of [0,1].
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Since
Now it is remains to show that U is both open and closed.
Let us consider for

uel01] 3ad>0suchthatif |ju-v|<d

then [h,], =[h,, ], ..(4)

For a fixed there is an &€ > 0 such that if  is any path fromato b

with|y, (t)-o(t) < ¢, vt andif to any continuation of (f,D) along o,
then

[hyu 1o =[K1s ....(5)

Now I" is a uniformly continuous function, so there is 6 >0
such that if then

17, ® - v, O FITEG W) -TE V) <& V. ..(6)

Suppose y cu and let 5 > 0 be the number given in (4). By definition of U,

, this implies U is open. (MR I8 s Ho0sen above, then
ja such that
But form (4)
[hy 1o =[], 5 and
since
=

= Uisclosed
Mean Value Theorem: Let be a harmonic functionand let B(a;r) be
aclosed disk contained in G. If y is the circle centred ataand of radiusri.e. y ;| z—al=r
then
1 2n .
u(a)=— fu(a+re*)do
21 §

Proof: Let D be adisk such that
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B(a;r)c DcG, and
Let f be analytic on D such that u = Ref

Then by Cauchy integral formula

1@
f@ =5l a

|z—al=r
z=a+re"
dz =ir®

27 i0
:ijf(afre )de
2ny  re®

1 2n .
=—[f(a+re®)do
27
1 2n .
fa)=— [ f(a+re®)do
21 §

1 2n .
Re f(a)=— [Re f(a+re")do
Then Re 1(2) 2n£ ( )A={ZeG:u(z):u(a)}
1 2n .
— u(@)=—[u(a+re”)do
21 §
Mean Value Property (MVP)

Definition : A continuous functionu:G — R has the MV/P if whenever

B(a;r)cG
u(a) = izfu(a +re)de
2m
Maximum Principle : Let G be aregion and let u is a continuous real valued
function on G with the MV/P. If there isa pointa in G such that u(a) >u(z) vzeG,

then u is constant function.

Proof : Let the set A be defined by

Since u is continuous, the set Ais closed in G.
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If let r be chosen such that B(Z,;r) = G.
Suppose b e B(z,;r) suchthat u(b)=u(a); then
By continuity in the neighbouhood of b
f |zo-bl=p and b=z,+pe® 0<0<2r

then there is a proper interval | of [0, 2n] such that g<| and

Hence by MVVP
1 2n .
u(z,) =0 J-U(ZO +pe")dd <u(zy)
To

which is a contradiction.
So  B(z,;r) < A and Ais also open.

by connectedness of G, A=G.

Harmonic function on a disk : d & & %@)Eﬁg@»ju bel1_r?
|z

Study of harmonic function on a dlsk open unit dlisk2 ;)|z| k3 pr cos + r?

Definition : Poisson Kernel : The function

P.(8)= 3 rMe™

foro<r <1 and — o <@ <w iscalled the Poisson kernel.

Theorem :

Let z=re 0<r<1then

1+re® 14z L
—=——=(1+2)1-2)"
1-re® 1-z t+2)d-2)

=(A+2)A+z+2%+..)

=1+2iz”
n=1
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i0 0
— Re(%} =1+2> r"cosnd

n=1
_1+2§:rn (eine +e—in6)
1 2
_ ir|n|eine
N=—o0
_P.(6) ()

Also

1+re®  (Q+re®)d-re™) 1+re® —re™ —r?
1-re®  [1-re®2  |1-re®p

_@- r?)+r(i2sin0)

|1_ reie |2
Rel 1 re) 1-r2
= 1-re® ) 1-2rcos@+r? +(2)

[]1-re®® P=1—2rcos0 +r?]
Combining (1) and (2), we get the result.
Prop.2.3
@ Zl—n_fnpr (0)do =1
(b) P.(6)>0 V0, P,(-0)= P, (0) and Pris periodic in 6 with period 2.
Theorem : Let D={z:|z|<1} and suppose that f:0D — R is a continuous
function. Then there is a continuous function u:D~ — R such that
@ u(2)=f(z) VzedD
(b) uis harmonicinD.

Moreover u is unique and is defined by the formula

i 17 i
U(re°)=EJPr(6—t)f(et)dt for 0<r<1,0<0<2n



42

Proof : Define u:D — R as
i 1 K i
u(ree)zszr(e—t)f(et)dt for 0<r<1

andlet u(e) = f (")

Then u satisfies part (a).

Now we have to show that u is continuous on D and harmonic in D.

(i) Proving u is harmonic in D.
If 0<r <1 thenfrom (1)

. 1 n
u(re®)=—[R
(re™) ZnI

—T

1+ re'®Y ,
e{—l_ Iy f (e")dt

%,—J
by definition of P, (6)

_ Re{ J' f( it )|:1+ re:z: I; :|dt}

b ) it i0
~Re| = [ f(e") £ gt
2m =, e" g@ed’§ a p,0<p<l

Letusdefine g: D — C by

g(z)——ff( "){e ”}

z

Then g isanalytic and
Reg=u
v2y=0 = Uuisharmonic.

(ii) Continuity of U on D~

(1)
(2)

)

(4

.(5)

Since u is harmonic on D therefore it remains to prove that u is continuous at

each point of the boundary of D.

If ae[-n, =] and and an arc A of about

p<r<lande®inA

lu(re® — f(e'*)|<e

such that for

...(6)
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for particular o. =0 we show that (6) holds.

Sincefiscontinuousat z=1 3 a &> 0 such that
RICRERO) |<§ if |0]<5 (7

Let M =max{f(e”)|:|0/<x]
Then from the result on Poisson kernel P, () < P, (8) iIf 0<8<|0|<n

There existsa p, 0< p <1 such that
..(8)
o
for p<r<land |6|2E
i0. 0 .
LetAbethearc {e 101« E} then if
e ca and p<r<l

u(re®)— f(1)=2—1n [P (0-f(E"dt- Q)

€
O
1 it 1 "
:ZMLSR (0-1)[f(e") - f(D)]dt +5|t|£sp' O-1[f(e")- f@]dt

i |tpdand |6l then [t-0F>

u(re®) = F @)= [PO-1)] (") = T@)]dt+— [P,(0-1)]f(e")— f@]dt

T iti<s T ti>5

<Ziom =
3 M

[from (7) and (8)]
= Ju(re®)-f( ke
Hence for general value of a..
lu(re®) - f(e")|<e ..(9)
Show that u is continuous on D~

(iii) For U is unique
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Suppose y ¢ p- whichisharmoniconDand v(e") = f (e°) v 0.

then (u-v) isharmonicisDand (u -v)(z)=0. VzedD

= Uu-v=0

= uisunique.
Harnack inequality

If u:B(a; R) - R iscontinuous, harmonicinB(a; R)and y >0 thenforo<r <R
andall ©

R-r
R+r

u(a)<u(a+re") sﬂu(a)
R—r

Harnack’s theorem : Let G be a region with

(@) The metric space Har(G) is complete.

(b) If {u,} is asequence in Har(G) such that u, <u, <.... then either
u,(z) —» o« uniformly on compact subset of G or {u,} converges in Har(G) to a
harmonic function.

Proof : (a) Har(G) is complete

Let {u,} be asequence in Har(G) such that

u,—>u IinC(G,R)

Then u has the MVP

= uisharmonic

[by the theorem if u:G — R which has MVP then u is harmonic.]

(b) Assumingu, >0

Let u(z)=sup{(u,(z):n>1}; VzeG

= Eitheru(z)=w oru(z)eR and u,(z) > u(z), VzeG

Define

A={zeG:u(z) =} (1)
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B={zeG:u(z) <} (2)
Then AUB=G and ANB=¢
Now we show that both Aand B are open
If acG, and R be chosen such that

Then by Harnack’s inequality

wun(a)s%(z)gwun(a); VzeB(a;R) and Vn>1.
R+|z-a] R-|z—a]|
(3)
If ae Athen
so that from (3)
u,(z) >, VzeB(a;R) [left half of (3)]

= B(aR)cA

= Aisopen.

Similarly : If a < B thenright halfof%' S that
for|z-akR

= U, (z2)<omo VzeB(a;R)

=

= Bisopen

Since G is connected, either A=G or B =G

Suppose A=G; thatis u=w

If and 0<p<R then
(R-p)
M=—772=>0
R+P >0 and
(3) gives that

Mu,(a)<u,(z) for|z-al<p
= u,(z) - uniformly for z e B(a; p)

= VaeG 3 a p>0suchthat u,(z) -« uniformlyfor|z-al<p
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= u,(z) - o uniformly for z inany compact set.
Now suppose B=G
ie. u(z)<o VzeG
If p<R then thereisaconstant N, which depends only on a and p such that
for|z—al<p and V n

Soif

<Clu,(a)-uy(a)l
for some constant C.
= {u,(2)} isauniformly Cauchy sequence on B(a;p)
= {u,} isaCauchy sequence in Har(G) and must converge to a harmonic
function [by part (a)]

Since u, (z) > u(z)
—  uisthe required harmonic funcRERREEI0H (A2 1Ny (43) - Mu,, (a)

Definition :
Subrarmonic function- If @ be a continuous function and if

such that
1 2 )
pa)<— I(p(a+ re'?)do
2r

Definition:
Superharmonic- If @ be acontinuous function and if

such that

2z
o(a) > 1 I(p(a+ re'’)dé
2r
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Definition :
If Gisaregionandf bea continuous function f:5_G — R thenthe Parron

family denoted by P(f,G)consists of all subharmonic function ¢:G — R such

that

Dirichlet Problem : It consists in determining all regions G such that for any
continuous  function there is a continuous function u:G~ — R such that
u(z) = f(z) for and u is harmonicin G.

Definition : Barrier for G ata
Let G be aregionand . Abarrier for Gataisafamily {y, :r > 0} of
functions such that
(@ v, isdefined and superharmonic on G(a; r) with 0 <y (z) <1;
(b) limy, (z2)=0 @Bk DVHal-1} vaco,G
() for
Ifwe define , by letting
Ve =y, onG(a;r)
w . (z) =1 for
then is superharmonic.
=\, approaches the function which is one everywhere butatz=a, v, is
zero.
Theorem : Let G bearegionandlet aco,G suchthat there is a barrier for G
ata.
If f:0,G — R iscontinuous and u is the Perron function associated with f then
limu(2) = f (a)

Proof: Let {y, :r >0} be abarrier for G at a. Assuming a =« and
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(otherwise consider the function f- f(a)}
Let e >0 and choose & > 0 such that
| f (w)|<e whenever we d_G and
|w—al< 26;
Let y=y;
Let :G — R defined by
w(z)=w(z) for zeG(a;s) and
for ze G-B(a;9) (1)
Then issuperharmonic.
if | f(w)|<M forallwin o, G -(2)
then

— My —¢ issubharmonic.

Consider — My —¢ in P(f,G) ..(3)

If we oG —B(a;5) then from (1) SHEEFD-C)<u(z) | VzeG
limsup[-My (2) —e]=-M —¢ < f(w) .(4)

Because

—  limsup[-My/(2)-¢]<-¢ VYV wed,G ...(5)

If particular if we 6,G N B(a; 5) then
limsup[-My(2) -] < —& < f(W) by the choice of .
= theconsideration (3) is valid.
Hence
..(6)
Similarly
liminf(Myi(2) +£] > limsup(p(2)) and win

By the Maximum principle for subharmonic ~ and superharmonic
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we have
Ve in and ze G
Hence
(7)
(6)and (7)
= —My(2)-e<u(2)<My(2)+&e VzeG ...(8)
But ( isParron function)

Since g is arbitrary (8) implies

limu(z) =0= f (a)

Harmonic function
Definition : Let G be an open setand G=C, u:G—R is harmonic if u has

continuous partial derivatives and satisfying the Laplace equation, i.e.
TTho0 o oo SRR
Harmonic conjugate
Definition : Let f be an analytic funcion definedas f:G - C thenu=Re f
and are called harmonic conjugates.

1 .
Theorem : If | Z|§E<1 then 1109 E(z;k) |Sﬁ| z|

Proof: Letk>0

7? z
log E(z;k) =Log (1—z)+(z+?+ ..... +?j

A |
Log(l-2)=-7———-"__ Skt
9i-2) 2 k k+1
for|z<1
|OgE(Z'k):— 1 Zk+1_ 1 Zk+2 _ f0r|Z|S£<1
’ k+1 k+2 7 D
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1 1
Log E(z:kK) [<[log E(z;: k) [<| z [ | —— +———| z| +...
lg()llg()lll(k+lk+2|| j

KLz +] 2+ [k >0]

<|z | [1+£+i2+...]
P p

< z|

p |Z|k+l
p-1
fork =0

[log E(z;0)|H log(l—2) |<| z| [1+%+ J

<|z |(1+£+i2+...j
p P

llog E(z;0) |= ——| z
p-1

forp=2

2
Log E(z:k) |<K ——| z[“?=2] z [*
| Log E(z;k) | 2_1| | |z]

. 1
provided |Z|S§
Example : construct an entire function with simple zeros at the point
0,1,2°,3% ...,n" ..(p>])
Solution : We may take k=0 for every n. The series

&1
={Z _—
| |nZ:1np

o0

2.

n=1

z
np
converges for vz whenp>1

by Weierstrass factorization Theorem
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. 1
m=1 (simple zero at z=0), K, =0, a, :F

z - Z
— F(z)=e" )ZH(l_FJ
n=1

Example : Express sin nz asan infinite product.
Solution : since sin z isan entire function with simple zeros at 0,+1,+2,+3, ...

Then by Weierstrass factorization Theorem

(1)

Kn+1

converges for vz where a,, n>1are zeros.

z
an
2 iy | E%k;z - J
since Z <oo; n#0, Vr >m67)k m( d, "a

Thenitis sufficientto choose k,, =1, v n,

’ 2(1 1 1 1 j
—| =z | 5+ 5+ 5+

provided Z
n=1

k,+1

r
an

21
=2|z|° Zn—z that conveyes for each z
-1

in (1) we may put a, =+n, k, =1 to get

o h@) = E i'l
sinz=e ZH (in’)

n=1

s eflfaes oo et
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0 2
. YA
— ah(2)
Sinzz=e¢ z| | (1——2)
n=1 n
Example : Construct an entire function with simple zero at the point 0, -1, -2,
1

Solution : Given that a =-n then the series

Z

0 z _

=e"W7] |(1+—je "
n

n=1

Definition : Rank of infinite product

= 1
The smallest non negative integer k for which the series 2

k+1 converges
n=l| an |

> [z
is said to be rank of the infinite product. q E[a—i knj

Definition Canonical (or regular) product:
If k denotes the rank of infinite product and if we take k, =k Vv n, then the

infinite product

> [z
I1 E(a_; kj is called canonical product.

n=1 n
If no such integer k exists, the infinite product is said to be of infinite rank.

Definition : Exponent of convegence of zeros of an entire function
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f F(2)=e"?.2"P(2) (1)
where P(z) is canonical product of rank k and Aa non-empty set of non negative

real members ¢y such that

converges.

Then the number p = glb Aiis called the exponent of convegence of the zeros of
the entire function given by (1)

Theorem : Theorem for the computation of the exponent of convegence.

Let|a,|=r,(0<r <1, <...<1, <51, — o) then the exponent of convergence

isgiven by

Example: 1f (1) |5 |- n21og, (i) |a, [-1al", |aj>1 thenfind p,
Ans. (i) 2 (i)0 AL g%e?

Definition : Genus and Exponential 88¢jegd0f an entire function :

If F(z)=e"@z"P(z) isanentire function with canonical product P(z) of rank k
and h(z) is a polynomial of degre q >0 then non-negative integer p = max(k, q) is
called the genus of the entire function and g is said to be the exponential degree of F.
If P(2) is not of finite rank k, or if h(z) is not a polynomial, then F is said be of infinite
genus.

Example : Find genus of the entire function

F(z)=e” 2°P(2)
h(z) =z? isapolynomial of degree 2.
P(z)=1

k,=k=0

n

max(k, q) = max(0,2) = 2 is the genus of F(z).
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Definition : Order of an entire function
If F(z) be an entire function and A is a positive constant such that

rlnlax| F(2)|=M(r)<e"
Z|=r

for all sufficiently large value of r = |z|, then F(z) is caled an entire function of
finite order.
Alternatively
F(2) is of finite orer if 3 A >0 such that
|F(2)=0(")

or |F(z)kKe™; K>0

Definition : Order p of an entire function of finite order :
Let s ={A:|F(z)|<e",r>r} thenthe order p of an entire function F of finite
order is defined by p =inf{A:| f (z)|<e"" M (r)<e®™ v
If there is not a positive constant A such that
|F(z)<e™ v r largeenough
F(z) is said be of infinite order, p =
Definition : Type of entire function:
If F(z) is an entire function of finite order p and there exists a constant B >0 such
that
r large enough
then F(z) is said to be of finite type and
o=inf{B:M(r)<e®™, r>R}
is called the type of F.
If >0, Fissaid to be of normal type.

If o=0, Fis called minimum type.
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If there is no B such that M (r)<e®" , then F is called of infinite type (or
maximum type).
exponential type o : An entire function F is said to be of expontial type o(c < )
if either the functionis of order p=1andtype , orthe function is of order less
then 1.

Theorem : The order p of an entire function is given by the formula

Proof : Suppose p < then
v r large enough (1)
then for given € >0 we have
M(r)<e™" v r large enough (2
Also, there are some z with arbitrary modulus for which
M©O<e @ﬁg_@uﬂmpg Y D) )
Then (2) implies tegr logr

loglogM (r)<(p+¢)logr

ie. Yr < Re (4)
and (3) implies

loglogM (r)

T>P—S ..(5)

o< IoglogM(r)<

pt+e
logr

——loglog M (r)

p=Ilim
= r—o |og r

Theorem : The type o of an entire function of finite order p is given by
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szlogM(r)

oo P

Proof : Since the entire function f(z) of finite order pis of type o
Therefore

M (r) <e°” (1)
then for given & > 0, we have

M (r) < e+’ v r large enough (2)

and M (r) > e -(3)
for infinity many values of r
Then (2) implies

logM (r) -

v Cc+e ..(4)
and (3) implies
logM (r
_grp< )soe - (5)

|zI<KR
L ooe< MO,
I"p

. o=limigM)

r—o rP

Theorem : Jensen Formula
Iff(z) isanalyticinthedisc | z|<R andif a, #0 (L<k <n) arethe zero of f(z)

in those zeros being repeated according to their multiplicities, then

2n . n
iJ'Iog| f(Re")|do=log| f(O)|+ZIogl
21 a o lay

Proof : Since f(z) isanalyticin | z|<R, 3 anopendisc |z|<R'=R + 8 (5> 0),
where f(z) is analytic and has no other zero than the a,
Then if the function

aa,..8, f(2)
(&, —2)(a, - 2)...(a, —2) f(0) (1)

9(2) =
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is dfined atthe point a,,a,,...,a, thenitbecomesanalyticin |z |< R’ and does
not vanish analytic in this disc. Then there exists a function h(z) analytic in R'such that
e"@ = g(z) ananalytic branch h(z) of log g(z) inthe disc R".
From (1) g(0) =1, we may coose h(0) =0 [from (2)]
( )

Then can be made analyticin | z|< R’

If we consider C:z =Re", 0< 6 < 2x then by the Cauchy-Gousrat theorem

1 (h(@) g, 2”h(Re“") :
2721 Z ij Re'? Rie""d6 =0
1 2r
_ = io _
= j h(Re'’)do =0 .(3)

But Reh(z)=log|g(z)|
Taking real part of (3)

i2n|09| a,8,...a, f(Re®) |
L2 2 (3, -Re®),(a, —Re)f(0)|
— —jlog|f(Re'9)|de——j|og|f(0)|de+—zj|og|ak|de
klo

1

27

Zn:j'log|ak —Re"|do=0
k=10

2n

N ijlog|f(Re'9)|de Iog|f(O)|+—ZIog|ak |x27

1 0% 1
+—Y [log——=——do=0
2nkz=1£ g|ak—Re'9|

121‘[ . 1 n
— [log| f(Re")|dO—log]| f (0)]|+-— > log|a, |x2
- angl( )| gl f(0)] anz:l gla, [x2n
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n27[ 1

zjlo —— [d6=0
)

Ty |Re‘9|ake

2n n
— L log] f(Re")|d0—log]| f (0) | +——"log|a |x2n
2m 21 ia

n2ﬂ

+2iz'[{ log| R|-log

7Z-k10

1——Hd¢9 0

2n

N ijlog|f(Re'9)|de Iog|f(O)|+—ZIog|ak |x27

do=0

n 2z
+—22ﬁ( |ogR)—2i | |o41—ake

k=1 o

2n . n
N ijlog|f(Re'9)|de—|og|f(0)|+iz|og|ak|x2n
27‘5 0 27'[ k=1

+ (- n)IogR—Z—Zn:JIog

_10

i0
1——‘d9 =0
R

[N —
(=0 when |a, /R|<1)
1 27 : n n
— EJ‘Iog| f(Re')|d@ =log| f(O)|—ZIog|ak |+kZ‘IIogR
y =

=log| f(O)|+ZI09(| J
k

k=1
Corollary : If n(r) denotes the number of zeros of the entire function F(z) in the

disc |z|<r,and F(0) =0, then

T@dts logM (R) —log | F(0) |

0
Proof:Leta,a,,..,a, arezerosof F(z) in|z| <R suchthat | a, [<| a, < ....<| &, |

Then

Zlog(l |]—nlogR—Zloglak |
k k=1
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n-1
=nlogR +> kllog|a,, |-log|a, [[-nlog|a, |
k=1

n-1 3l

| kidt+n(|ogR log|a, |

k+1|k
- af Tdt+nj—dt (D)

nt)=0 for 0<t<|a|
nt)=k for |a, [<t<|a, |, k=12,...,(n-1)

n(t)=n when |a, |<t<R

We have (from 1)
n lag| g gl lay|
Slog e [ 2dte [ Zdts [ e+ [ OBy o[ Lat
A lad gyt gy ol ¢ i |an|t
R
o t
Then by Jesens formula WL(2r) < exp{(2r)*/3}

R 2n
(20 gt~ L Tiog | F(Re™)do - log| F(0)|
t 21

0

<log M (R) — log F(0)

Theorem : (Hadamard ) The exponent of convergence of the zeros of an entire
function of finiteorder  isnogreaterthen p.i.e. p, < p
Proof: {a, }” sequence of zeros of F(z), |a, I<|a,,, | and real fucntionn(t) is

monotonic increasing with t

2f@dt > T@ dt > n(r)T% =n(r)log2

0

1 ()
— (s ioa2 !Tdt (1)

For given <> 0 we have . Forr large enough
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or  logM (2r) < (2r)P+e/3 < pr2e/3 ..(2)

Replacing R by 2r in last result of the corollary and using (2)

T@dt <P _jog | F(0) < 1P (3
0
(1)and (3)
1 e
n(r)<@r (4)

= n(r)=o(r’*) as r >«

Now we show that

converges whateverbe §>0

Let & be such that and r=r,
n=n(r,) < e
log2 %«ﬂ; 8 ©)
forall r large enough =
from (5)
1 1 1
r’™ nlog2
(p+3)(p+e)
1 1 1
<A - = —
and [ (o) A (Iog 2]
(p+9) 1

>1 ; -
(0+¢) , the series ng,n(pm)/(m) converges

Hence 2.1, ™

n=1
=  Exponent of convergence p_ of zerosis p + &
=

Theorem : Suppose that about each zero a, ,|a, [>1, of acononical product
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P(2), adix of radius is described where r, =| a, | and =order P(z). Thenin

rp

the region R complementary to the union of all those discs, the inequality

holds an infinitely many circles of radii arbitrarily large.

Proof : Itis obivious that the sum 2n§l (P infiniteas (p >p=p,.) the unionof

the intervals ULt ="+t +1°1 on the real axis each of length 2r - does not cover
n

the entire positive real axis.
There are infinitely many circles with center at the origin and radii arbitrarily large
whichlieinR.

k =rank of P(z), then

[P()>e""" (¢>0)
— log|P(2)| = D log E[ai;kj-i- > log|E ai;kJr

- log

r>2r

-2

r<2r

> " log

r<2r

7 Z “ 1 Z
a_ﬁ“"*[a_n] 2z E[a_n'k]‘ -2

[onusing triangleinequally |z, +z, 2|z, | -]z, |]
2Y[1 1 a, “ a, “
— | = | 4|
a, ) |k k-1{z z
k _
r 1 a, -
<| — —+ ...+
r, K z
(A; which does notzpend onr)

r k
= A{Ej ..(3)

Lz
a

n

For |z =rand r, <2r, we obtain

z 1 z ’ 1( z ‘
—+ = — | Fen | — | |<
a, 2\a, kla,
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wale]

r,<2r I’.n

Z 1( z ‘
_+ ....... +_ —_—
a, kia,

=A
;r 2p+s/2—k.rp+s/2 (rn)k

2p+z/2—k r p+el2+k

p+el2-k .p+el2
2 r

=AY

Hoor (Zr)p+s/2—k .(rn)k

1
12—k +e/2
= A12p+8 xrP z —
rL<2r (rn)pﬂl2 k'(rn)k

_ r,0+g/2 A12p+g/2—kz 1
- r ptel2
n=1

n

(A, which does\ﬁot depend on r)

:Azerra/Z (4)

If k =0 the sum in (4) does not appear in (2). For zoutside everycircle |z—a, |=r, "

with r, <2r.
We have
_ -p
‘1_i zlan Zl — rn zrn—p—12(2r)—p—l
a,| la,l Iy

Hence for all circles |z| =r in the region R, with r sufficiently large,

log| P(z) [> -1 =|P(2)[>e™"
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Hadanard’s Factorization theorem

If F(z) is an entire function of finite order p, then the factorization
F(2)= eh(z)sz(z) isalways possible where h(z) is a polynomial of degree <p, m>o
is the multiplicity of z=0and P(z) is a canonical product of rank

Proof : According to Weierstrass factorization theorem an entire function F(z)
can be factorize in the following from

(1)

When h(z) is an entire function and P(z) a product which may or may not be
canonical.

By the previous theorem p, < p, so that P(z) is of finite rank k <p.

Also since |P(z)[>e™""

replacing & by  wehave

h(z,)p mb(z)
on infinitely many circles |z| =r of arbltzarﬂy large radius.

Aslo |F(z2)|<e™" is satisfied for all values of r sufficiently large, since F is

suppose to be of order p. Then it follows that

rp+ &/2

F(z
eReh(z) | h(z) |_ | ( )l < —
|2"P(2)| e

2™ gt on circles of arbitrarily large radius.

Hence on such circles
Reh(z) <rf*
= h(z) isapolynomial of degree not greater then p.

. = z°
Example : Show SIN7Z = ﬂZH(l— Fj by Hadaward Factorization Theorem.

n=1

sm;r\/_

. 7z_ZnZn
Solution : Let F(2) = Z( 1)

(2n+1)! (1)
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PR

3l

when F(2)=2.¢,z" then by the formula
n=0

1. logl/fc, | 2
p n>> nlogn
1 1

Z=2 ; _ =

0 Le. p=7 .(3)

Since zeros of F(z) are z=1, 4, ..., n?, ... we have
sinzvz .,
F@)=>""2 = “”H[l —j )

Butaccording to Hadamard Factorization theorem, h(z) mustbea polynomial

of degee < order of F(z) i.e. degree of

=  h(z) =C (constant)

F(2) = ecﬁ(l—n—zzj

Since F(0)=1

1
hz) <

= C=0

sinzvz 11l 2
S aCa G

Replacing z by 72

)
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