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Lesson 1: Preliminaries

Written by: Dr. Sunita Rani
Vetted by: Prof. Sarva Jit Singh
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1.1 Introduction:

The reader must be familiar with the several notations and certain
functional analysis concepts before studying the partial differential
equations. Here, first we give brief description and then define partial

differential equations.

1.2 Notations
(a) Geometric notations

(i) R"= n-dimensional real Euclidean space
(ii) R! = R = real line

(ii)  ei = unit vector in the ith direction



(iv)

v)

(vi)

(vii)

(viii)

(ix)

(xi)

(xii)

(xiii)

(xiv)

=(0,0,0,...1,... 0)

A point xin Rtis x =(x;,X,,...X,,)

R! ={‘x=(xl, Xy, ... X,)€R"

x, > O}
= open upper half-space.
A point in R**! will be denoted as
(x, t)=(x;, X5, .0, X, t)
where tis time variable.
U, V, Wdenote open subsets of R*. We write

VecU if Ve Ve Uand V is compact
i.e. Vis compactly contained in U.

oU = boundary of U

U =closureof U= U U oU
U, =Ux(0, T|
Iy = UT -U;

= parabolic boundary of U,

B° (x, r)={yeR"

|x - y| < r}
= open ball in R" with centre x and radius r > O

B(x,r)={y e R"

|x—y| < r}

=closed ball in R* with centre x and radius r> 0

a(n)

volume of unit ball B (0, 1) in R»

rn/2

m

na(n) = surface area of unit sphere B (0, 1) in R»

Ifa, be R s.t.



(xv)

(b)

(i1)

(i)

(iv)

" 1/2
(5
i=1

/] denotes n dimensional complex plane.

Notations for functions
If u:U —> R, we write
u(x)=u(x, x,, ..., x, )where x e U .

u is smooth if u is infinitely differentiable.

If u, v are two functions, we write

u =v if u, v agree for all arguments

u :=v means uis equal to v.

The support of a function u is defined as the set of points where the

function is not zero and is denoted by spt u.

sptu={xeX‘f(x)¢O}

In other words, spt u is the closure of the set u where u does not
vanish.

The sign function is defined by

1 ifx>0
sgn x =<0 ifx=0
-1 ifx<O

u" = max(u, 0)
u” =-min(u, 0)

u=u -u



(vii Ifwu:U—>R"

where u = (ul,uz,...,um)
(viij The symbol

[ ras

denotes the integral of f over (n - 1) dimensional surface X in R

(viii) The symbol
[ratl

C
denotes line integral of fover the curve Cin R

(ix) The symbol
J e
\%4

denote the volume integral of S over Ve R" and xeV is an
arbitrary point.
(x) Averages:

1

fdy= - fady
B@r} C(( ) B(v)[,r)
= average of fover ball B (x, 1)
1
fdas= — fdas
oB(n.r) na(n)r oB(n,r)

= average of fover surface of ball B (x, 1)

(xi) A function u : U — R is called Lipschitz continuous if
‘u(x)— u(y)‘ <Clx -yl

for some constant C and all x, y € U .We denote



Lip [u] = sup —‘u(x) _ u(y)‘
x,yeU |x — y|

X#Y

(xii) The convolution of functions f, g is denoted by f * g.

(c) Notations for derivatives

Let u:U > R, xeU

ou(x) o u(x+he;)—u(x)

(1) 8xi h—0 h

provided that the limit exists.We denote S—u by u,
X, l

1

o’u

Similarl by u
u
y X; X - X etC
0x,0x 0%, cITE

(ii) Multi-index Notation

(@) A vector a of the form « = (e, ..., @,) where each ¢; is a non-

negative  integer, is called a multi-index of order
o=, +a, +...+

n

(b) Given multi-index « , define

., 0 u(x
pru()= 500
o ox

(c) If kis a non-negative integer

D*u(x)= {D“u(x)

, |a| =k}

the set of all partial derivatives of order k

e.g. fork=1



Du = (uxl, e uxn)

= grad(u)
fork=2
o*u o*u o*u
D ox}  ox0x, = 0x0x,
u =
o’u o’u u
ox,0x, O0x,0x,  oOx’

is called Hessian Matrix.

1/2
(d) ‘Dku(x)‘ = {Z ‘D“u2}

(i) Au=u,,

= Laplacian of u

= trace of Hessian Matrix.

(iv) Let x,y e R" i.e. x=(x1, ..., Xa), Y = (Y1, -+, Yn)

Then we write

D u= (uxl, e uxn)

Dyu = (uyl, oo uyn)

the subscript x or y denotes the variable w.r.t. differentiation is
being taken
(d) Function Spaces
(i) C(U)={u:U - R | u is continuous}
(ii) C((j) = {u e C(u) | u is uniformly continuous

on bounded subsets of U}



(i)

(iv)

v)

(vi)

(vii)

(viii)

(ix)

ck (U) {u U > R| u is k times continuous differentiable }

C* (U) {u : C*(U) ‘ D“u is uniformly continuous

on bounded subsets of U, for all |a| < k}
C”(U)={u: U - R|u is infinitly differentiable}
C. (U) means C (U) has compact support.
Similarly ,CS (U) means C* (U) has compact support.

The function u:U — R is Lebsegue measurable over L7 if

< 00

Hu| LP(U)

The function u:U — R 1is Lebsegue measurable over L* if

o) ess sup, | u|

L*(U) {u :U->R ‘ u is Lebsegue measurable over Lp}
L*(U)= {u :U->R ‘ u is Lebsegue measurable over L°°}

D

) :H |Du|

P(U LP(U)

Similarly [D%u],, = [

Lr(U)
If u:U —> R™ is a vector
where g:(ul, ul, ..., u’")

then



D*u={D"y,

a| = k}

Similarly other operators follow.
Big Oh (O) order
We say

f=0(g) as x - x,provided there exists a constant C such that

f (x)=Clg ()
for all x sufficiently close to xo
Little Oh (o) order

We say

f=o0(g) as x > x, provided

f (%)
g(x)

It

X—>X,

-0

1.3 Inequalities

There are some fundamental inequalities

(a) Cauchy’s Inequality

a2 2

abS—+b—(a, b e R)
2 2

(b) Holder’s Inequality
Let1<p, g< o ; —+—=1

uel?(u),v el (u)

J'|uv|dx < Hu|
U

IP(U) HU| LY(U)

10



(c) Minkowski’s Inequality
Let 1< p<w, and u, v e L” (U)

Then Hu + 1]

<[

[

’(Uu (U L°(U)

(d) Cauchy Schwartz Inequality

ey <[ |y (v, yeR")

1.4 Calculus

(a) Boundaries
Let U c R" be open and bounded, k ={1, 2, ..., }

Definitions: (i) The boundary oU is C* if for each point x° € U there

exists r> 0 and a Ck function Y : R*' — R such that

UnB(x°r)= {x e B(x°,r) ‘ x, > Y(xl,...,xnfl)}

Similarly, oU is C* if oU is C*(k =1,2,...)

Also ,0U is analytic if Y is analytic.

(i) If Uis C', then along 06U, the outward unit normal at any point
x, € 0U is denoted by z(xo) =(Visens V) -

(iii) Let ueC' (U') then normal derivative of u is denoted by

ou

—=v.Du
ov

(b) Gauss- Green Theorem
Let Ube a bounded open subset of R* and 60U bes C'. u:U - R"

also ueC! (U') then

11



J.uxidx = j uv' dS (i=1,2,..,n)
U ou

(c) Integration by parts formula
Let u, v € C! ([7) then

juxiv dx:—.[uvxi dx + I uvv' dS
U U ou

Proof. By Gauss -Green’s theorem

((uv)xi dx = '[ (uwv) vidS

';] U

~

or uxivdx+Juvxi dx = J. (uv)v'dsS

ou

J
U U

or |u,vdx= —j uv, + I (uww)v' dS

xl
ou

Y U

(d) Green’s formulas
Let u, v € C? ((7) then

()  JAudx= MU s
5 9 ov

X

Proof. IAudx = J(uxi) dx
U

Integrating by parts , taking the 2nd function as unity

J- u, v'dS
ou

MU s
ov

ou

Hence the result.

12



ov
oU

(i) J.Du.Dv dx:—J-uAv dx+fa—vu ds
U U

Proof. jDu.Dv dx = —I uAv dx + j uDv.vdS
U U ou

(integrating by parts)

= —IuAvdx+Jua—vdS
Y 9 ov

(i) [ (uAv-vAu)dx = J(ua—”—ua—”] ds
5 ov ov
oU

Proof. _[uAvdx = —J- Du.Dvdx + Ja—vuds
Y Y S ov

Similarly, [vAudx = Du.Dvdx+ f Z—” udsS
1%
U U U

Subtracting, we get the result.
(e) Conversion of n-dimensional integrals into integral
over sphere

(i) Coarea formula

Let u : R —> R be Lipschitz continuous and assume that fora.e. r e R,
the level set

u(x)= r}

is a smooth and n -1 dimensional surface in R". Suppose also

{xeR"

f : R" > R is smooth and summable. Then

jf|Du|dx=J'[ [ r dSJ dr
R {u=r}

—00

13



Cor. Taking u(x) = |x — xo|

Let f : R" > R be continuous and summable then

0

jfdx=H | de] dr
R" 0B(xg,7)

0

for each point x, € R". or we can say

d
4 1 re-

for each r> 0.

[ rds
Xo,T)

oB(

(f) To construct smooth approximations to given
functions

Def IfUc R» isopen, given €> 0. We define
U, :={x eUl|dist(x,0U) >}
Def. Standard Mollifier

Let neC” (R”) such that

1
c exp if (x| <1
n(x):= [|x|21 | |

0 if |x][>1

the constant cis chosen so that '[ ndx =1
Rn

Def. We define

for every €> 0.

Properties. (i) The functions 7_ are C” since 7(x) are C”.

14



i) [nde= 1 [ %]
S c

R

(by definition of n-tuple integral)

Il
—
=S
=
&

(g) Mollification of a function

If f:U — R is locally integrable

We define the mollification of f
fri=n2f in U

= [n.(x-y)f(y) dy

- '[ n.(y) f(x-y)dy (by definition)

B(0,e)
Properties. (i) f~<C” (U,)

(i) f< —> f almost everywhere. (a.e.)as €¢—>0

(ili) If feC(U) then f° — f uniformly on compact subset of U.

almost everywhere.

1.5 Function Analysis Concepts

(i) LP space. Assume U to be a open subset of R" and 1< p<w. If

f :U > R is measurable, we define

/p
B [j|f|" de if 1< p<oo
—)\u

ess supy |f] if p=oo

If

)

Transformation from Ball B(x, r) to unit Ball B(0, 1)

15



Let B(x, r) be a ball with centre x and radius r and B (0, 1) be an

arbitrary point of B(x, r) and z be an arbitrary point of B (0, 1) then

relation between y and zis

y=x+rz.

1.6 Definition and classification of Partial
Differential Equation

Many physical, geometric and probabilistic problems can be modelled by

partial differential equations. In this section, we define the partial

differential equation, system of partial differential equations, their

classifications and the classical and weak solutions etc

Defination: Partial Differential Equation

A partial differential equation is an equation involving an unknown

function of two or more variables and its partial derivatives i.e. Let U be

an open subset of R*. An expression of the type

F(Dku(x),Dk'lu(x),...,Du(x),u(x),x):O (xeU) (1)

is called a kth-order partial differential equation, where

1

F:R" xR" x..R" xRxU — R is given and

u:U —» R is the unknown function.

Note that D*u(x)eR",
D*'u(x)e R™,
Du(x)eR",
u(x)eR

Exp. Let

0=6(x,y,z) where (x,y,2z)eR’

16



then

f[@ 00 30 9 %0 j
ox’ dy’ ox?’ oy’ oxdy
defines a 2nd order Partial Differential Equation over R2, 0 is the unknown
function and fis prescribed

Classification of Partial Differential Equations

Partial Differential Equation can be classified into four categories

(@) Linear (b) Semi-linear (c) Quasi-linear (d) Non-linear.

(a) Linear Partial Differential Equation: A Partial Differential Equation of

kth  order is called linear if it has the form

2 G (x)D*u= f(x) 2)

‘a‘sk
for given functions a, (|a| < k), f-

i.e. coefficient of derivatives are only functions of x.

Exp. (i) u, +b.Du=0

where b € R" is a constant.

(ii)) Au=0

(b) Semi-linear Partial Differential Equation: A Partial Differential Equation
is called semi-linear if it is of the form

Y a,(x)Du+a, (Dk‘1 u,...,Du, u, x)=0 (3)

=k

i.e. coefficient of highest order derivative is a function of x only.

Exp. ¢(x)Au-uu, =0

(c) Quasi-linear Partial Differential Equation: A Partial Differential
Equation is called quasi-linear if it is of the form

> (aaDk_l u,...,Du, u, x)DO’LhLaO (Dk‘l u,...,Du, u,x) =0 (4)

o=k

17



i.e. coefficient of highest order derivative are lower order derivative and
function of x but not same order derivatives.

Exp. u, u +u,u +u=0

is quasi linear partial differential equation.

(d) Non-linear Partial Differential Equation: A Partial Differential Equation
is non-linear in the highest order derivatives.

Exp. u, u,+bDu=0,beR"

is non-linear.

1.7 Definition and classification of system of
Partial Differential Equation

Definition: System of Partial Differential Equations
An expression of the form
E(Dkg(x),Dk‘lg(x),...,Dg(x),x):O, xeU (5)

is called a kth order system of partial differential equations in u where

E:Rmnk xR™ x..R™ xR"xU — R™

is given.and

u= (ul,uQ,...,um) be the unknown function s.t u:U —» R™.
Exp. Navier ‘s equations of equilibrium in linear elasticity.
uAu+(A+u)D divu=0

form a system of partial differential equation in u = (ul, u’, u3) :

Classification of System of Partial Differential Equations
Note: System of partial differential equations are classified in the same

way as partial differential equations are classified.

Examples of Linear Partial Differential Equations

18



There are some well-known linear equations
(i) Laplace’s equation

Au=0 or Zux’x=0

(i) Linear transport equation

u,+b.Du=0,beR"
Du:(uxl,...,uxn)

(iii Heat (Diffusion) equation
u,—-Au=0

(iv) ~Wave equation
u,-Au=0

These will be studied in detail later on.

1.8 Solutions of Partial Differential Equation

Solution. An expression of u which satisfies the given PDE is called a
solution of the Partial Differential Equation.

Well posed problem. A given problem in Partial Differential Equation is
well posed if

(i) the problem has a solution

(i) solution is unique

(iii  solution depends continuously on the data given problem.
Classical Solution. If a solution of a given problem satisfies the above
three conditions i.e. the solution of kth order partial differential equation
exists, is unique and is at least k times differentiable, then the solution
is called classical solution. Solution of wave equation, Lalpace equation

etc. are classical solutions.

19



Weak Solution. If a solution of a given problem exists and is unique but
does not satisfy the conditions of differentiability, such solution is called
weak solution.

Exp. The gas conservation equation

u, +F(u) =0

models a shock wave in particular situation. So solutions exists, is
unique, but not continuous. Such solution is known as weak solution.
Remark. There are several physical phenomenon in which the problem
has a wunique solution, but does not satisfy the condition of
differentiability. In such cases, we cannot claim that we are not able to

find the solution rather such solutions are called weak solutions.

1.9 Suggested References

1. L.C. Evans, “Partial  Differential  Equations,” American
Mathematical Society, Rhade.
2. Duchateau and D.W. Zachmann, “Partial Differential Equations,”

Schaum Outline Series, McGraw Hill Series.
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Lesson 2

Solution of Linear Partial Differential Equations
Written by: Dr. Sunita Rani
Vetted by: Prof. Sarva Jit Singh

Structure
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2.2.1 Homogeneous problem
2.2.2 Initial value problem

2.2.3 Non-homogeneous problem
2.3 Laplace equation

2.3.1 Fundamental solution
2.3.2 Mean value formula
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2.5.4 Liouville’ s theorem
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2.5.6 Harnack’s Inequality

2.6 Suggested References

2.1 Introduction

In this lesson, we shall consider the solution of single

linear equations ,namely, Transport equation,Laplace equation
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and Poisson Equation. Also,we discuss the properties of harmonic

functions, such as Strong Maximum principle , estimates of derivatives,

Harnack’s Inequality etc.

2.2 Transport equation

2.2.1 Homogeneous problem

The simplest partial differential equation is the transport equation

with constant coefficient, which is

u,+b.Du=0 in R" x(0, =) (1)
where b is a fixed vector in R" )i.e.

b=(b, b,,...,b,) and

u:R"x[0,©) >R

is the unknown function such that u =u(x, t).

denotes a spatial variable and ¢t >0 is the time variable.To solve (1), we

observe the L.H.S. of equation (1) carefully, we find that it denotes the dot

product of (uxl, Uy ooer Uy ut) with (b,,..., b,,1). So, L.H.S. of equation

(1) tells that the derivative of u in the direction of (b, 1) is zero in R™"

dimensional space. So ,if (x, t) e R" x (0, »), we define the parametric
equation of line in the direction (b, 1)

z(s):=u(x+sh, t+s) (2)
where s € R, is the parameter.

Or z(s)=u(6, ¢)

where § =x+sb, ¢=t+s

22



Differentiating w.r.t. s
z(s)=ub+u,.1
=0 (using eqn 1)
= z(s) = constant for each s, i.e., uis constant on the line through (x, 1)
in the direction of (b, 1).

Hence, we conclude that if we know the value of u(x, t) at any point on

each such line, we know u(x, t) everywhere in R" x[0, =).

2.2.2 Initial value problem

Consider the initial value problem
u, +b.Du=0 in R" x(0, ), (3a)
u=gon R"x{t =0} (3b)

where b e R" and g is the prescribed function.

Solution. As above, L.H.S. of eq. (3a) represents the directional
derivative of wu in the direction of (b,1)e R" x(0, ). Hence, the
parametric equation of line through (x, ¢ in the direction of (b, 1) is given
by

z(s): =u(x+sb, t+s)

where sis the parameter.

Also, z(s)=0 (using 3a)

Therefore, z (s) is constant on this line i.e. u (x, f) is constant on the line
through (x, f) in the direction of (b, 1). This line touches the plane
R"x{t = 0} for s=-t i.e. the point (x—tb, 0)

where

u(x, t)=g (x—tb) (using 3b)

23



Since u is constant on this line, so
u(x,t)=g (x—tb) forall xeR", t>0 (4)

is required solution of initial value problem.

Note. If the function g (x) is C' then Eq. (4) gives the classical solution of

problem.

2.2.3 Non-homogenous problem

Consider the non-homogeneous case of transport equation
u, +b.Du = f (x,t) in R" x(0, =) (5)
with initial condition
u=g on R" x{t =0} (6)
Solution. Fix a point (x, t) e R"", as discussed before, the equation of
line passing through (x, t) in the direction of (b, 1) is given by
z(s)=u (x+sb, t+s) (7)

where s is the parameter.

Differentiating w.r.t. s
z(s)=u, (0, ¢).b + u, (6, ¢)
where 0 =x+sb,g=t+s
z(s)=f(x+sh, t+s) (using 5)

Integrating w.r.t. s from -t to O
0 0
_[z'(s)ds: jf (x+sb, t+s)ds
—t -t

‘z(s)‘i = Tf (x+sb, t+s)ds

~t

Substitute t+s =y, ds=dy

24



z(O)—z(—t)zj[f (x+b (w—t), 1//) dy
u(x,t)-u(x-bt,0 :j.f x+b(s-t), )ds (using 7)
= u(x, t)=u(x-bt, O)+;[f (x+b(s—t),s) ds

=g (x-bt +j‘f x+b x—t),s) ds (8)

Equation (8) gives the solution for each x e R" and t>0. It is the
required solution of initial value problem for non-homogeneous
Transport equation.
2.3 Laplace’s Equation

Let Ube an open subset of R" and u : U — R, then the equation

Au=0 xeU

defines the Laplace’s equation in u.

Harmonic function

A C? function satisfying the Laplace’s equation is called Harmonic

function.

Physical occurrence

We get the Laplace’s equation in several physical phenomenon
such as irrotational flow of incompressible fluid, diffusion problem

,conduction problem etc.

25



2.3.1 Fundamental solution

Consider the equation
Au:Zuxixi =0 (1)

where, u:U—->R, UcR"',xeU.

Eq. (1) is a linear partial differential equation. To solve (1), we rotate the

original coordinate system Ox: ... xa to Ox;x,...x, at angle # about O (Fig.
1).

Let I, = cos(x;, x;)

We have  x,' =) x;
J

Similarly, x,=) 1. X'

Table of direction cosines

X1 X, Xn
x, 1 li2 lin
X, b1 bo bn
xn' lnl ln2 lnn
u=u(x, x,, ..., x,)
ou Ou dx, ou ox, . ou ox,
0x, 0x; 0%, ox, Ox.  ax Ox
= (%f lli+8—bflm+...+a—lflm.
ox, 0x, ox,
o’u | du N o’u - o’u
oxox; |ox? " exioxy YT ox) ox)

26



o*u o*u o*u
+1,,; , - llj+ > 12j+...+flnj
0x; 0x, 0Xx, 0x, 0x,

2 2 2
+ln{ ou L.+ ou 12A+.+aulnj1

ox| ox., "V oxy oxi YT ox?
Taking i = j
o’u o’u  ’u  du o’u
et et — .t
dx; ox, O0x;~ 0x, 0x;

This shows that Laplace’s equation remains invariant w.r.t. the
transformation of coordinate axes. To find a solution of eq. (1) in R», we

seek a radial solution, i.e.

u(x):=v(r)

where
r:|x|=\/xf+x§+...+xfl (2)
izl(xf+...+xﬁ)_l/22xi=ﬁ x #0
ox, 2 r
v )xixj N )51'1 V' (r)xx,
= r r)—2L -
uxixj rQ r r3
Taking i = j
" xixi i 5ii V’ r xlxl
Uy, =V (T)r—g 4 (r)T - (rs)
pu=v (r)+ By
r
n n 1 !
v Py 2o (3)
r
vl n-1
v r

Integrating w.r.t. r

logV' =—(n-1)logr +log a

27



where log a is a constant, or

a

n-1

V' =

Again integrating

+b n=3

rn72

where a’' and b are constants.

Hence if r > O, the solution of Laplace’s equation (1) is

a'log|x|+b x=2
u(x)= L_Qer x>3
[

Without loss of generality we take b = 0. To find a’', we normalize the

solution, i.e.

J.u(x)dle

R

which yields a’'.Thus

1
—Zlog |x] n=2
u(x)= ) (4)
n(n-2)a(n)|x"™

foreach x e R", x#0.
The solution (4) is known as Fundamental solution of Laplace equation.
We denote it by ®(x).
1
——1Ilog |x n=2
57108 [x]

D (x)=
n=3 x#0

28



Remark. The solution (4) is not valid for x = O, since u (x) is singular for

x=0.

2.3.2 Mean value theorem
Theorem. If u € C? (U) is harmonic then

u(x)= [ﬁ uds = Djudy

0B(x,r) B(x,r)
for each ball B(x,r)cU.

Proof.

#(r):= [f| uly)ds(y)

0B(x,r)

(1)

(2)

Shifting the integral to unit ball, if z is an arbitrary point of unit ball then

g(r): = [ﬁ u(x+rz) ds(z)

0B(x,r)

Differentiating w.r.t. r

¢ (r)= m Du(x+rz).z ds(z)

8B(0,1)

0B(x,r) r
= m Du(y).v ds(y)
OB(x,r)

OB(x,r) a v
1 ou
= —d
na(x)r"! J ov s(y)
0B(x,r)
=T Au dy (by Green’s formula)
n B(x,r)
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=0 since u is harmonic.

Hence ¢(r) is independent of .

So  $(r)=limit [f] u(y)dsly)

=0 5B(x,t)
= u(x) (3)
From (2) and (3)

u(x)= [f] uly)ds(y) (4)

6B(x,r)

For the second equality,

J- udy= j u ds |dt (using coarea formula)
B(x,r) 0B(x,t)

= j.u(x) na(n)t** dt (using 4)

(5)

Combining (4) and (5), we get the result.

Note. The above formula is known as mean value theorem. Converse of

this result is also true.

Converse of Mean Value Theorem
If ue C*(U) satisfies the relation

u(x)= m uds
oB(x,r)

for each ball B(x,r) = U. Then, uis harmonic in U.
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Proof. Suppose that u is not harmonic, so

Au=0.
Hence there exists a ball B(x,r) c U such that Au >0 within B(x,r)
Preceeding ,as above,

¢ (r)= D.] Audy >0
(x,

)
Also ¢(r)=u(x)
#(r)=0

which is contrary to ¢'(r)> 0. So u is harmonic.

2.4 Poisson’s equation

We observe that the solution of Laplace’s equation Au=0, (D(x) is
harmonic for x = 0. Shifting the origin to a new point y, the Laplace
equation remains unchanged. So ®(x —y) is harmonic for x = y .

If f:R" >R
is harmonic;then ®(x-y) f(y) is harmonic for each y € R" and x#y.

If we take the sum of all different points y over R",then,

[o(x-y) f(y) dy

RrR"

is harmonic.No, since Au(x)= j AD(x-y) f(y)dy

RTL
is not valid near the singularity x = y. We must proceed more carefully.

Theorem. Suppose f e C? (R") i.e. fis twice differentiable with compact

support. Let

u(x)= [ ®(x-y) f(y) dy

R
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) 1 f(y) . (1)
n(n-2)a(n) i dy =3

is a solution of Poisson’s equation

Au=—-f in Rn (2)
Proof. To show that, u (x) represented by eq. (1), is a solution of eq. (2),
we need to prove

(i) ueC® (R

(ii) —Au = f in R"
(i) We have

u(x)= [@(x-y)f(y) dy

RrR"

By change of variable x—y =z

= [o(y) f (x-y)dy )

Rfl
Let us calculate u, . By definition

u(x+hi;)—u(x) _ J(D(y)[f(erhei—z)—f(x—y)] dy

RrR"

where h#0 and e, =(0, 0, ..., 1, ..., 0) (in ith place)
Taking the limit h — 0, since f € C’ (R”) SO

1t f(x+he —y)-f(x-y) N of
h—0 h O0X.

1

(x-y)

Hence
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au(x) _ of )
ox, Jcp(y) ox, (x-y) dy (i=12,..,n)
R
< o0
Similarly
u(x) Of (x-y) .
=|QY)—F 4 ~1,2,...
0x; 0X; J () Ox,0X; Y (6j=12,..,n)

o
is continuous.So u e C? (R").
(i) By part (i)

Au(x)= J.CD(y)Axf(x—y) dy

Rn
Since ®(y) is singular at y = 0 ,so we include it in small ball B(O0, €),

where > 0.

Hence
Au(x)= _[ Q(y)A, f(x—y)dy+ j Q(y) A f(x-y)dy
B(0, €) R"-B(0,¢)
=1 +dJ. (4)
where
L:= [ ©(y)A.f(x-y)dy (5)
B(0, <)
Joi= [ @(y)AS(x-y)dy (6)
R"-B(0,€)
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I|< 7
- C nlfg " n>3 7)
€
since fe C; (R"), so fis bounded.
Now
J.o= [ o(y)Aaf(x-y)dy
R" B(O,e)
= | 4y)Af(x-y)dy ( i=—i,Ax=Ayl
R"-B(0, €) ox oy
Integrating by parts
of
J = - J D®(y).D, f(x-y)dy + J q)(y)g(x—y) ds(y)
R B(00) B(0,€)
=: K_+L_ (8)
0
L= f ®(y) %(x—y) ds(y)
B(0,€)
= HDf L“(R”) @(y)‘ .[ ds(y)
B(0,€)
C e.loge forn=2
< 9
C ,1172 e for n>3 ©)
(S
K_=- J. D®(y) D, f(x-y) dy
R"-B(0,¢)
Integrating by parts
oD
K. = J' AD(y) f(x-y) dy- J f(x—y)gds(y)
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_ Jf(x—y)gds (since A® =0) (10)

But %:DCD.U

ov
-1 %1 (since normal is in opposite direction)
na(n) |y* |yl
1 e
= 0B (0
na(n) en+1 on ( ’ E)
_ 1
na (n)e"’
Substituting in equation (10)
1
K=-——7—- f(x-y)ds(y
na(x)e a,;(jo,e) (x-y)ds(y)
= - [[| flx-y)dsly)

8B(0,¢)

Shifting the centre of B(0,€)to B(x,¢)

K. =- [f| fly)dsly)

8B(0,¢)

-f(x) as €->0 (11)
Using eq. (4), (7), (8), (9) and (11), and taking the limit as € >0

Au(x) = ~F (x)
Hence the result.

2.5 Properties of Harmonic Functions
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2.5.1 Strong Maximum principle

Suppose U c R" is open and bounded. Let ueC? (U)mC(U’) is

harmonic within U. Also U is connected and there exists a point x, e U

such that

u(x,)=maxu
then u is constant within U.

Proof. Let u(x,)= m[?x =M

Take O<r<dist(x,, oU),
since u is harmonic,, for the ball B(x,,r)

M=u(x,)= Uj udy (By Mean Value theorem)

B(xo,r)

<M.
Equality holds only if u = M within B(x,,r).
Hence u(y)=M for all y € B(x,,r).
To show that this result holds for the set U, consider the set
Xz{xe U‘ u(x)=M}
We prove that X is both open and closed.
X is closed since if x is the limit point of set X, then 3 a sequence {x,}
in X such that {x,} - x
Since u is continuous so {u(xn )} — u(x)
So u(x)=M
= xe X

= X is closed.
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To show that X is open, i.e. X is neighbourhood of each of its points .Let

x € X , there exists a ball B(x,r)cU such that

u(x)= m u dy

B(x,r)
So xeB(x,r)cX

Hence X is open.
But U is connected. The only set which is both open and closed in U is

U. So U= X. Hence u(x)=M V x € U.So uis constant in U.

Maximum Principle

Suppose U c R" is open and bounded. Let ueC?(u)n C(ﬁ) is

harmonic within U then

maxu max u

U ou

Proof. Suppose there exists a point x, e U such that u(x,) = max u=M

So u(y)<u(x,) for some y and suppose x, ¢ 0U since U is harmonic, so

by mean value theorem, there exists a ball B(xo,r) c U such that

u(x,)= m u dS(y)

0B(xo, 1)
1
MmO asw)
< ‘u(y)‘

Maximum value is less than ‘u(y)‘ which is a contradiction. Hence
x, € 0U . Hence the result.

Cor. If Uis connected and u e C? (U)n C((j) satisfies
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Au=0in U
u=gonoU

where g >0 then u is positive everywhere in U.

Uniqueness of solution

There exists a unique solution of C*(U) N C((j) of the boundary

value problem
-Au=f inU
u=g on oU (1)
where ge C(oU), feC(U)
Proof. Let u and u be two solutions of problem (1) then
-Au=finU
u=gonoU

-Au=finU

Let w:=*(u-u)

w=0onoU
i.e. w is harmonic in U and w attains maximum value on boundary
which is zero. If Uis connected then wis constant. So w=0in U

So u=u in U
2.5.2 Regularity property

Regularity property states that if ueC?*U) is harmonic then

ueCw(U) i.e. Harmonic functions are regular function or smooth

functions.
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Theorem. If u e C(U ) satisfies the mean value property

u(x)= m udy= Lﬁ udsS (1)

B(x,r) OB(x,r)

for every ball B(x,r)cU then ueC”(U).
Proof. Consider the set
U_= {x eU |dist(x, 8u) >e} and 7 be the standard mollifier.
u“:=n_*u in U_ (2)
We first show that u® e C*(U.)
Fix x eU_ where x=(x,,%,,...,x,).

Let h be very small such that x + he, e U_

:_%Jn(x_yjugﬁdy @)

ue(x+hei)=injn(m]u(y) dy (4)

Subtracting (3) and (4)

u®(x+he;)—u(x)

1
h e h

UE

Taking the limitas h - 0

on(*—Y)
ou’ 1 on_(x—

4

U
U. ©

since neC” (R”)
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€

SO exists.

0X.;

Similarly D“u® exists for each multiindex o
So u®eC”(U.)
We now show that u=u® on U_

Let x eU_ then

uE(X)=KJ]m (x-y)u(y) dy

(x.r)

-1 j n(éjna(n)r”"lu(x) dr
_ na(r;lu(wjn@rn_l o
_ux) [ (y

o B(O,E)U(EJ dy

u (%)

So us=uin U_ and so ue C”(U,) for each € > 0.

(by definition)

- %JU(LJ( I u(y) dSJ dr (using the cor. of coarea formula)
OB

(by 1)

(by definition)

Remark. The above property holds for each € > 0. It may happen u may

not be smooth or even continuous upto to oU .
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2.5.3 Estimates of derivatives

Theorem. Assume that u is harmonic in U then

C
Dau(xo )‘ < nfk

r

(1)

|uHL1(B(xO,r)]

for each ball B(x,,r)c U and each multiindex « of order k where

1
C, =
" oa(n)
(2n+1nk)k
C, = k=1,2, .. (2)

a(n)

Proof. We prove it by induction .For k=0 ,a =0.

1
ra(n) Hu”Ll(B(x,r))

To show ‘u(xo)‘ <

By mean value theorem

u(x,)= m u(y) dy for each ball B(x,,r)cU

B(xg,r)
l,l,(xo) — 1 — I U,(y) dy
a(n)r B(xy,7)
1
u(x)| < a(n)r" 4 L(B(xor)) ?
C
‘Dou(x0 )‘ < r—,? [ul L (B(xo.7))
Hence the result.
k=1
To show
C
‘D u(xo )‘ < rnil |u LI(B(xo’r))
n+l
where C = 2

a(n)
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Consider

0° 0
Au, = o2 (uxi)+ ..... + o (ux )
= Gixl(Au) =0

So u, is harmonic. By Mean Value theorem

u, (%, )‘ =

[ﬁ u, dx‘

r
Blxo,7)

= [ w, ax

7)ol

R
—~~
=

/N
[~

= |l I uv,dS (By Guass -Green Theorem)

aln) (5] =3

- |2n Uj uv, dS
" ()
2n
< S Il onf ) )

If xe 8B(xo,%j then B[x,%jcB(xo,r)cU

By eq. (3)
271
0N oy ()
27’1
¢ Pl
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Hence

itz = 20 o) 14 s s)
Combining (4) and (5)

4, () % g Il
or

Du(x,) £ o [l

Hence result is true for k= 1.
Assume that result is true for each multiindex of order less than or equal
to k-1 for all balls in U.
Fix B(x,,r)cU and a be multiindex with |a|=k
Du = (Dﬂ u)

_ for some i={1, 2, ..., n)

X

where |ﬂ| =k-1

Consider the ball B(xo,ij ,

Xi

D*u(x, )‘ = ‘(D”u)

Proceeding as in eq. (4)

< kn HD”u
r

) 6
(o8 ) ©

If xe 8B(xo,%j then

B(x,klzlrjcB(xo,r)cU

Also by assumption, in the ball B(x, k}: 1 rj
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-1

[2n+1 (k 1)]
n+k-1 H HLl
a(n)(k 1) (=)

k

‘Dﬁu(x0 )‘ <

ik Cl)
a(n) (kklr)

Combining eq. (6) and (7)

<

(7)

L1 B(x,, ))

kn 27 n(k-1)]"
Du(x, )| < Tn [ k( 1 )'l"‘l J Z(B(x0.r))
() (517)
k

(2n+1 nk) kY
e (1) 77 P
(2n+1 nk)

< W H LY(B(xo.))

SincelL <1 forVk=>2
2 2(k—1)

Hence result holds for |a| =

2.5.4 Liouville’s theorem

Suppose u : R" - R is harmonic and bounded. Then u is constant.

Proof. Fix x, € R", r >0 then by mean value theorem

‘Du(xo)‘= . (%) ‘— m u, dx

B(xp, )

I uvdS (By Guass Green’s theorem)
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< QTn Hu”ﬂ”[aB(xo,;)j
If xe 8B(xo,2] then B( 2] < B(x,,7)
()= 5 (2 e

Hence ‘uxi (%, )‘ < 2n[ j H H

Ll(B(xo,r))

2n+1 ‘ ‘

n+1

n 2n+1
<

L”(R")

-0 as r—> w

r

Hence Du = 0 so u is constant.

Representation formula. For n >3

Let feC} (R”), then every bounded solution of Poisson’s equation
—Au=f in R"

has the form

= J;CD(x—y)f(y)dyjtc (xeR")

where Cis a constant and CD(x) is the solution of Laplace equation.

Proof. For n>3

O (x)= 1 —0 as |x|—>oo

na(n) (n-2)[d""

= ®(x) is bounded.

Let u be a solution of eq. (1) so

u= J-(D(x—y)f(y) dy

R"
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is bounded. Since f e C® (R”) and @ (x) is bounded for n > 3.

Let u be bounded solution of eq. (1)
Define w=u-u
Aw=0
and wis bounded. (Difference of two bounded functions)
By Liouville’s theorem
w = constant
or u-u=-C
u=u+C
Hence the result.

Remark. The above results does not hold for n = 2. Since

O (x)= —ilog|x| is not bounded as |x| - .

2.5.5 Analyticity property

Theorem. Let u is harmonic in U c R" then u is analytic.
Proof. Let x, be any point in U. We now show that u can be represented

by a convergent power series in the neighbourhood of x, . The Taylor

series of u about x,

D u(x,) (x—x,)"

Za: o (1)
converges.
Let r: :%dist(xo,aU)
Let M:o— - |u” (2)
a(n) " L'(B(xo,2r))
<
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For each x € B(x,,r), B(x,r)c B(x,,2r)cU

By estimates of derivatives

Du(x, )‘ < S

r'”k |u LI(B(xO,r))
(2n+1 nk)k
where C, =——— for each |a| =k
a(n)
SO
(2n+1 nk)k
‘D u(XO) L*(B(xo.1)) < W Hu”l’l(B(xoyr))
2n+1 n \a\
< M(—j |a|‘a‘ (using 1)
r
By Sterling’s formula
k+l
» k2 1
k-0 | ek N \/5 T
=3 k¥ < C k! e* where Cis a constant

or || <Clafte”

Also by Multinomial theorem

n* = @
% ol
|a|! <n" q!

Using (4) and (5) in equation (3)

n+1 lof
<M 27 n C e’ n” a1
L*(B(xo,7)) r

n+l 2 \a\
SMC(2 n e] al
r

Du(x,)

We claim that the power series in (1) converges provided
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|x_xo|<%
2" n’e

The remainder term after N term is

R, (x) - gv D u(x, +t(x;!xo)) (x—x,)

for some O<t<l1.

Hence series is convergent. So u (x) is analytic in neighbourhood of x,.

But x, is arbitrary point of U. So u is analytic in U.

2.5.6 Harnack’s Inequality

Harnack’s inequality shows that the values of non-negative harmonic
functions within open connected subset of U, are comparable.

Statement For each connected open set VccU, there exists a positive
constant C, depending upon V, such that

supu < C infu (1)
v 14

for all non-negative harmonic function u in U.

The equation (1) is equivalent to

% u(y)<u(x)<Cu(y) VxyeV

Proof. Let r: :% dist (V,0U)
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Choose x,yeV , |x-y|<r

Then
1
u(x)= udz= udz
L ey
1
> u dz ( B(x,2r)> B(x,r))
a(n) (2r B<£r>
1
=— udz
2 B([gr)
— - u(y)
or
2" u(x) =z u(y) (2)
Interchanging the role of x and y
2"u(y) = u(x) (3)
Combining (2) and (3)
2" u(y) = u(x)22in u(y) x,yeV

Since Vis connected, V is compact, so V can be covered by a chain of

finite number of balls {Bi}il such that B,n B, # ¢ for i # j each of radius

N
u(x) > (QL”J u(y) (Since x,y €V so x,y € ball B;)

u(x) > % u(y)
Similarly, C u(y) > u(x)

or
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Eu(y) <u(x)<Cu(y)

forall x,yeV.

Consider the inequality

u(x)<Cu(y)

Let {u(xi)};_c1 e U be a sequence in n.b.d. of u (x).

So

or  sup u(x)<C u(y)

= C u(y) = sup u(x)

xeV

k
Let {u (yj)}. e U be sequence in the n.b.d. u (y)

J=1

or
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Hence the result.

2.6 Suggested References

1. L.C. Evans, “Partial  Differential  Equations,” American
Mathematical Society, Rhade.
2. Duchateau and D.W. Zachmann, “Partial Differential Equations,”

Schaum Outline Series, McGraw Hill Series.
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Lesson 3

Green’s Function

Written by: Dr. Sunita Rani
Vetted by: Prof. Sarva Jit Singh

Structure

3.1 Introduction

3.2 Derivation of Green’s function

3.3 Characteristics of Green’s function
3.4 Energy methods

3.5 Heat equation
3.5.1 Fundamental solution
3.5.2 Solution of Initial Value Problem
3.5.3 Non-homogeneous heat equation
3.6 Self -Assessment Questions
3.7 Suggested References
3.1 Introduction
We now consider an important tool to solve the boundary value
problem
-Au=f inU
u=g on oU
where U c R" is open and bounded and oU is C!, which is; Green’s
function. We obtain the derivation of Green’s function and discuss its

characteristics .Later on , we find the solution of heat equation.
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3.2 Derivation of Green’s function

Consider the boundary value problem
~Au=f inU (1)
u=g on oU (2)
Solution Let wueC? (U) and fix xeU, choose e>0 such that
B (x, e) cU.
In the region V_=U-B(x,e), applying Green’s formula to
u(y) and @ (y - x)

[[u(y)ae(y-x)-o(y-x)Au(y) dy]

oD ou(y)

_ J {u(y)g(y—X)—q’(y—x) 5, }ds(y)

where v is the outward unit normal to 0V_.Hence

—J. O (y—x) Au(y) dy =

[ 200002 asty 9

ov

( AD(y—x)=0 for x ;ty)

Now
oul(y
| o 09) ) < Dul 0 [ (5 ) [l (5
6B(x,e)
<C e ne(n) e
-0 as €-0. (4)
Again
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oD ()]
| v w-ndse)= | w0 (y) ds(y)
0B(x,€) B(0,¢)
Using
_ 1 'y
DW= YO
LY
Yl
v = J u(y+x)rm(n)€n_1 ds(y)
6B(O,E)
1
= — u(y)dsly
na(n) e 168([676) (y) ds(y)
= [ w(y)ds(y)
0B(x,¢€)
— u(x) as €0 (5)

Using (4) and (5) in equation (3) and making €— 0O

—ICD(y—x)A(y) dy

- [ #5200 (y-0) 3 ()t
(y=x)
Hence
u(x)= [ |00 2 u(w) S y-x)| ds(w)
—£®(y—X)Au(y) dy )

Equation (6) is valid for any point x €U and any function ueC?(u).

Equ. (6) gives the solution of problem defined by equ. (1) and (2) provided
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that u(y), Z_u are known on the boundary 6U and the value of Au in U.
v

But g_u is unknown to us along the boundary. For it, we define a
1%

correction term formula. ¢* ( y) given by the solution of

Ag* =0 in U

¢* =®(y—x) on U (7)
Applying Green’s theorem to ¢ (y)

[[u(y)ag* - ¢*au(y) ]| dy

U
= ‘[{u(y)aaiv—gﬁx 2—5} ds

ouU
Thus
[ 4* _ 0F” _ x0u
ljj¢ Au(y) dy—“u(y) P av}d" (by equ. 7) (8)

ou

Adding equ. (6) and (8)

u(x)=-[[@(y-x)-¢*(y)]| Au(y) dy

U

[ oy -x)-¢* (9)]uly) dy g

ou

We define the Green’s function G(x,y)

G(x,y):=0(y-x)-¢*(y) x,yeU, x#y (10)
for the region U.

From equ. (9) and (10)

u(x)= —'[G(x,y) Au(y) dy - J u(y)%(x,y) dsS(y) (11)
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where

% (x,y)=D,G (%) (y)

is normal derivative of G w.r.t. y.

Equ. (11) is independent of Z—u
v

Hence the boundary value problem given by equ. (1) and (2) can be solved
in term of Green’s function and the solution is given by equ. (11).

Equ. (11) is known as Representation Formula for Green’s function.

Remark: (i) By definition of Green’s function G(x,y), for given x,
-AG(x,y)=6(x) in U
G=0 on oU

where & (x) is Dirac Delta function.

(i) It is not so easy to construct G (x, y) for arbitrary region. We can

construct for simple geometries.

3.3 Characteristics of Green’s function

Theorem. Show that for all x,yeU, x#y G(x,y) is symmetric i.e.
G(x,y)=G(y,x)

Proof. Fix x, y eU (x=y).

Define v(z): = G(x,2)

=d(z-x)-¢*(2) zeU,z#x

=d(z-y)-¢Y(2) zeU,z#y (1)

So Av(z)=0inU
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Similarly Aw(z)=0 inU (z#x,y).

On 00U
v(z)=0
w(z)=0

Applying Green’s formula on the region

V=U- [B(x,e) v B(y,e)] for sufficiently small € > O

‘j;(wAv—vAw) dz = J[wa_v_vé_wj ds(z)

ov ov
oV
( v is outward drawn normal.)
= J (wg—s—v??—bvuj ds(z) xyeU, x#y
oU +B(x,e)+0B(y,e)
= J (wa—v—va—w]dz+ J (wa—v—va—wj ds(z)=0
ov ov ov ov
0B(x,¢€) 0B(y,e)
or
ow ov ov ow
——w—|ds(z)= ——-v— | ds
J ( ov 81/) ( ) J ( ov vj (y)
0B(y,e) 0B(x,¢€)

Let us compute
J (wa—v—va—wj ds
ov ov
0B(x,¢e)
As wis smooth near x, so
ow
—ds(z) SHDw”aB(x’E) Uds‘

ov
0B(x,€)

<Cett!

—>0as e>0
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oB(x€) Y
= : w(z)%[@(z - x) A (Z)] ds(Z)
0B(x,e
- [ e Dasn) [ win) P ) aso
oBxe) 2B(x,<)

0B(x,€) v B(x¢)
- J w(z) oo (621/_ *) ds(z)-0 ( ¢* is smooth in U)
GB(x,e)
(6)
Now
J w(z) oo (62 —%) ds(z) = J w(z+x) 00 (2) ds(z)
0B(x,¢€) Y 0B(0,€) Y
1
e — w(z)ds(z
na(n) e aB([c,e) (=) ds(2)
= [ﬁ w(z)ds(z)
0B(x,€)
— w(x) as €0 (7)

Combining equ. (5), (6) and (7) and taking limit €e—> O

It J (w%—vz—wj ds(z) > w(x)

e—0 1%
0B(x1€1)
ow ov
Similarly, It v—-w—|ds(z)—>v
Y €0 J ( ov 6‘/) () (y)
0B(y,e)

Hence equation (4) gives
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w(x)=v(y)
= G(x,y)=G(y,x).
Hence the result.
Def. Let x € R, then the reflection of a point x w.r.t. R} is the point
X = (2, Xgy eeey Xy, — Xy, )
Example. Solve the boundary value problem
Au=0 in R}
u=g ondR"
with the help of Green’s function.
Sol. Let x,ye R, x#y.
By definition, G(x,y)=®(y—-x)-¢"(y)
We choose the corrector term
¢*(y)=2(y-x) (1)
where x is reflection of x w.r.t. R .

Clearly A¢g* =0 in R}

_ 1
Now, ®(y—Xx)= >

( ) n(n-2)a(n) |y—)_cn72

oo = Y1-%
- y_x [ -
6y1( ) na(n)ly-x

9 2
oD _ 1 N (Y1 —x1)
i na(n)ly-x" a(n)ly-x""
0D 1 (Yn + %)

2 - _ _n-2
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Adding

AD(y-x)=0.

On oR} |y-x|=(y-X)

So @(y-x)=d(y—x)

Hence both conditions are satisfied.

So, Green’s function
G(x,y)=0(y-x)-0(y-x)
is well defined.

So using the representation formula

u(x)=0- [ g(u) 5 (xy) ds(y)

ORI}

— [ Yn —Xn _ Yn +Xn
na(n)ly-x" na(n)ly-x
2 n
- *n ~ (on oRY, ly— x| = |y—x|)
na(n)|x-y|
2x 9(y) "
= _%%n R
u(x) nr () J ool ds(y) x e R}
ORI

This is the required solution and is known as Poisson’s formula.

Def. Let x € R" —{0}

The point x = LQ
[
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is called the dual point of x w.r.t. dB(0,1).

Example. Solve the boundary value problem

Au=0 in B(0,1)
u=g ondB(0,1)
Sol. Fix any point x € B°(0,1) and y # x

The Green’s function is given by
G(xy)=0(y-x)-¢"(y)
We choose ¢*(y)=®(|x| (y-X)).
where X dual of x w.r.t. dB(0,1)
As we know @ (y - x) is harmonic. So is ®(y—Xx) for y # x
Similarly |x|2_n d (y —X) is harmonic for y # x
or CD(|x| (y- )_c)) is harmonic for y # x
So, A¢g* =0 in B (0, 1)
On 0B(0,1):

¢(x) = (x| (y-x))

2 2
I |y - % =] {(yl _|’C_12J bt [yn _x_nQJ }
x| |l
=l + =T
" |

= ‘xQ +1- 2x.y‘ (~ |y =1)

But

= |x|2 +|y|2 -2xy
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=[x -y’

So ¢(x) = 0 (lx|(y - ©)) - 0(y - x)

Hence both conditions of ¢* (y) are satisfied.

So

G(x,y)=0(y-x)-o(|x|(y - X))

is well defined.

Hence solution of problem (*) is given by

ux)=- [ (v ds()

2B(0,1)
Now on 0B(0,1)

9G _aG
ov oy

v,

v being the unit normal.

_9G y
oy |yl
aG .. J—
- : ayl l ( |y|_ )
oag _ X —Y; 4 Y; |)C|2 - X

oY na(n)|x-y|" na(n)|x-y|°

o (-1

v na(n)lx-yl'

So equation (4) gives

62

(3)

(4)



1 =[x’

ds
(g

This is the required solution.

3.4 Energy methods
Uniqueness of solution

There exists at most one solution u e C? (U ) of
-Au=f inU

u=g ondu

where Uis a open, bounded set.

Proof. Let u be another solution of problem (*)

Let w=u-u

Consider

.[wAw dx=fw(wxl.) dx
U U i
Integrating by parts

:—J.wxl.wxl. dx + _[ w,, wv ds,
U ou

(v being the unit normal).

=~ [|Dwf* dx+0
U

:>|Dw|2:0 inU
= Dw=0 in U

= w=Constant in U
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But w=0o0n oU
Hence w=0in U
= u=u
Hence uniqueness of solution.

Def. We define the energy functional for Poisson’s equation Au=-f by
the expression

] = | | 31Duf’ - ur | ax

U

where w e A and A is the admissible set
A:{weCQ(ﬁ) lw=g on GU}
Theorem. Let u e C? ((7 ) be a solution of Poisson’s equation. Then
I[u] =min I[w] (1)
weA

Conversely if ue A satisfies (1) then u is a solution of boundary value
problem.

-Au=f inU

u=g onoU (2)
Proof. Let we A and u be a solution of Poisson’s equation. So

-Au=finU

O=.[(—Au—f) (u-w) dx

Integrating by parts

O:J-Du.D(u—w) dx — I (u-w)Du.v dS—J.f(u—w) dx
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= I(Du.Du—fu) dx—O—_[(Du.Dw—f w) dx

= [ (|Duf* - £ u) @x = [ (Du.Dw- fw) dx

U

= [ (1Duf - fu) dx < j Ewuf e Lpuft - fw} dix
U

(By Cauchy- Schwatz’s inequality)

ie. B|Du|2 - fu} dx < JB Dwf’ fw}
Iu] < I[w)]
Since ue A, so

I[u]=minI[w)]

weA

Conversely

Suppose  I[u]= min I[w]

For any v e CJ (U)

define i(7r) =I{u+v] 7eR

So i(r) attains minimum for 7 =0

'(r)=0for r=0

i(r)= J |Du+rDv| u+rv)f}dx

U

= J{é(wuf +172 |Dv|2)+z'Du Dv—(u+rv)f} dx
U

j Du Dv - vf
U

Integrating by parts
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O:—IvAu dx+IDu.v dS—jvfdx
U
0=[[-Au-flv dx+0 (wvecz(v))
U

This is true for each function v € C7 (U)
So Au=-f in U

So u is a solution of Poisson’s equation.

3.5 Heat Equation

The linear partial differential equation

—-Au=0
where
xeUcR"

u:Ux[—,0) >R
is known as homogeneous Heat equation or Diffusion equation.

The equation

—Au= f(x,t)
where f:Ux[0,0) > R

is known as non-homogeneous heat equation.

3.5.1 Fundamental solution

Consider the homogeneous heat equation
-Au=0 (1)

We seek a solution of equation (1) of the form

u(x,t)_tiu(:;j

where «, f are to be determined.
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u(x,t)= 2o (y) 2)

where y = x / t* (3)
Differentiating w.r.t. ¢, x

a v(y)—’By Dv

ut = ta+l ta+].
1
Au = tOH-—Qﬂ AU

Using in equation (1) and simplifying

1
av(y)+ By Dv+t2’ﬁAv:O (4)

To make equation (4) independent of t, we put f=1/2, so that
av(y)+By.Dv+Av=0 (5)
We seek a radial solution of equation (5) as
v(y): =w(r) where r =|y| (6)

From equations (5) and (6)

soy)=w'+ ol (1) "2

r

Using in equation (6),

I (7‘ n_lJ '
w'+| —+ w+aw=0
2 r

To make it exact differential, we put a« =n /2 and multiply by r"'.This

gives

Integrating

¢
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where c is a constant.
Assuming r >0, w, w' -0, ¢ >0

wr

Hence w+—=0
2
w' r
= —=——
w 2
Integrating
w=b e/

where b is a constant.
“lyf /4
So v(y) =be

b xPra

Hence u(x,t)= 2

is solution of equation (1).

To find b, we normalize the solution.

ju(x,t) dx =1
RN
b —x2/4t
tnT J. e ‘ ‘ dx=1
R4

tﬂ%(%/ﬁ)" _1

1

or b=——
(472)n/2

Hence fundamental solution is

_ 1 P
u(x,t) =1 (4rt)"’?
0 t<O

t>0 x e R"

Note: The fundamental solution of equation (1) is singular at (O, 0).

3.5.2 Solution of Initial Value Problem
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Assume that g e C(R”) NL” (R”)

and define
. ~|x-yf?
u(’“FwJe o g(y) dy (1)
Rn
= [ @(x-y)g(y) dy
Rn

where @ (x) is fundamental solution of heat equation.
Then
i) uecC” (R” x (O,oo))

()  w(xt)-Au(x,t)=0 xeR", t>0

(iii) It u(x,t)= g(xo) for each x° € R"
(x,t)—)(xO,O)
xeR", t>0
Proof.
,
(i) Since the function /€ 4t is infinitely differentiable with uniform
t

bounded derivatives of all order on R" x[§,») fors >0
So ueC” (R” X (O,oo))

(M) w =[P (x-yt)g(y) dy
Rn

Au = .f AD(x-y,t) g(y) dy

Therefore, u, —Au=0 since ®(x-y) is a solution of heat

equation.
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(i)

Fix x° e R". Since g is continuous ,given e> 0, there exists a >0
such that

‘g(y)—g(xo)‘<e whenever ‘y—x0‘<5 (2)

yeRn

Then if ‘x—xo‘ <g

R™-B(xq,5)
‘u(x,t)—g(xo)‘£I+J (3)
where I = j CD(x—y,t)g(y)—g(xO) dy
B(xo,ﬁ)
J = f (D(x—y,t)g(y)—g(xo) dy (4)
B(xo,é)
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Further if ‘x—xo‘<é

2
and 5s‘y—xo‘
then ‘y—xo‘ﬁ‘y—x+x—x0‘

S|y—x|+‘x—xo‘

<|ly-x/+5/2
£|y—x|+-y_xo‘
2
1 0
or |y—x|2§‘y—x

Hence

‘2

yr’
J<-< J e 1ot dy

(9)



2
< ¢ etot gy By Cor. of coarea formula
5

-0 as t—>0 (6)

Using (5) and (6) in (3)

‘u(x,t)—g(xo)‘ <e

So u(x,t)—)g(xo) as (x,t)—)(xO,O)

Hence the result.

3.5.3 Non-homogeneous heat equation

Consider the non-homogeneous heat equation

u,—Au=f(xt) onR"x(0,x)

u=0 on R" x{t =0}
then
t . 7\x7y\2
u(x,t) :J 72 Je 4(t_s)f(y,8) dy ds (1)
47z(t—s)]
0 R
xeR", t>0

t

=JJ®(x—y,t—s)f(y,s)dy ds (2)
o R"

where f € Cf (R” X [O,oo)) and has compact support then
i) ueC? (R” x (O,oo))

(i)  u(xt)-Au(xt)=f(xt)
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(iii) It u(x,t)=0 for each point x° € R"
(x,t)—)(xo,o)

xeR™ t>0
Proof. (i) Since ® has a singularity at (0, 0) we cannot differentiate under

the integral sign. Substituting the variable x—y=0 , t—-s = ¢ and again

converting to original variable

u(x,t):J J- ®(y,s)f(x—-y,t—s)dy ds

o R"
Since feCQ(Rnx[O,oo)) and ®(y,s) is smooth near s = t > 0, we

compute

(By Leibnitz’s Rule)

Ou (x,t)—JJ(D(y,s) o f(x-y,t-s)dy ds
Rn

Thus

(i)  u(xt)-Au(x,t)
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:Jt'J(D(y,s)(%ijf(xy, t—s)dy ds+K

+[ J q)(y,s)(—a%—ijf(x—y t—s)dy ds
ERn
=I_+J_+K

where

I J'JCD(y,s)(—%—Ay]f(x—y, t—s)dy ds

o R"

J_ = JJ@(y,s)(—%—ijf(x—y, t—s)dy ds

Now,

o R"

€

< (uftan(Rn) +HD2fHLw(Rn)J | Jows)ay as

0
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<Ce (5)

t

J. —qu)(y,s)(—ai—ijf(x—y, t—s)dy ds

s
€ Rn
Integrating by parts
t
t

8-t ten - e s -

R" c

(surface integrals are zero since f has compact support)

Z_I ®(y,t) f(x-y, 0)+I ®(y,e) f(x-y, t-€)dy

Rn
= | ®(y,e)f(x-y, t-€)dy—-K (6)
J
Rn
Using (5) and (6) in (4)

u, —Au(x,t) = I ®(y,e)f(x-y,t-€)dy—-K+Ce+K
Rn

Taking limit as €e—> 0

(using the result Lt then J' O(x-y, t)g(y)dy - g(x) )
(3,8 5(x0,0) o
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t

(iii) u(x,t)zj J. ®(y,s)f(x-y,t—s)dy ds

o R"

t

el ) <) | [ () as

o R"
:
=[7] Jas
0
=l e
Taking limitas t -> O
It u(x, t)=0 for each x € R".
t—>0

Def. We define the parabolic cylinder

Up:=Ux(0,T]
where U < R"is open and bounded.
The parabolic boundary of U,
Ip: =U;-Uy;
Remark. U, is interpreted as the parabolic interior of U x (0,T] including

the top U x{t=T}. But I'; includes bottom and vertical sides of U x[0,T)

3.6 Self -Assessment Questions
Q. Find the solution of boundary value problem
Au=0 in B° (0,r)

u=g onadB(0,r)

Ans. u(x)zﬂ J Ly)nds(y)

76



3.7 Suggested References

1. L.C. Evans, “Partial  Differential Equations,” American
Mathematical Society, Rhade.
2. Duchateau and D.W. Zachmann, “Partial Differential Equations,”

Schaum Outline Series, McGraw Hill Series.
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Lesson 4

Solution of Wave Equation

Written by: Dr. Sunita Rani
Vetted by: Prof. Sarva Jit Singh

Structure

4.1 Introduction
4.2 Solution of 1-D wave equation

4.3 Kirchoff’s formula

4.4 Solution of 2-D wave equation

4.5 Solution of wave equation for n >3
4.5.1 Solution for odd n
4.5.2 Solution for even n
4.6 Solution of Non-homogeneous wave equation
4.7 Energy Methods
4.8 Self Assessment Questions
4.9 Suggested Readings
4.1 Introduction
In this lesson, we seek the solution of wave equation. The
homogeneous wave equation

u, —Au=0
where t>0 , xeU c R" is open and
u:Ux[0,0) > R.

The non-homogeneous wave equation.

78



u, —Au= f(n,t)

where f: Ux [O,oo) — R is a prescribed function.

4.2 Solution of 1-D wave equation

First we find the solution of wave equation in the one dimensional

case. Consider the initial value problem
u; —u,, =0 in Rx(0,) (1)
u=g u,=h onRx{t=0} (2)

where g and h are prescribed functions.

Factorizing equation (1)

(£+ij (i_ijuzo 3)
ot ox)\ot ox
Let

v(x,0): :[E‘a_x] w(x,) @)

From (3) and (4)

(iJrijv(x,t):o xeR, t>0
ot 0ox

v,+uv, =0 (D)

which is a transport equation with constant coefficients whose solution is

v(x,t)=a(x-t) (6)
where
a(x): =v(x,0) (7)

Using equation (6) in equation (4)
u,—u,=a(x—t) in Rx(0,x)

=f(x 9.

79



This is a non-homogeneous transport equation whose solution is

u(x,t)=

f(x+t-s,s)ds+b(x+t)

O ey

where
b(x)=u(x,0)

or

t
Ia (x+t-2s)ds+b(x+t)
0

Changing the variable x+t-2s=y

x+t

u(x,t)=— J. y)dy+b(x+t)

Using equation (2)
g(x)=b(x)

SO

u(x,t)=g(x+ t)+%xj:ta(y) dy

To find a () : We have

u, (x,0)-u, (x,0)=v(x,0)

h(x)-g'(x)=a(x) (using 2)

x+t

u(x,t)=g(x+t) +— j [h -g (y)] dy

or

x+t

u(x,t)=%[g(x+t)—g(x—t)]+éJ. h(y) dy xeR,t>0 (8)

x—t
This is required solution of wave equation.Equation (8) is known as D

Alembert’s formula.
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Note. The general solution of 1-D wave equation
(u+u,) (u,—u,)=0

is the sum of general solution of u, +u, =0 and U —u, =

ie. u(xt)=F(x+t)+G(x—-t)
To find the solution of wave equation over R"(n>2), we first prove a

lemma.

Def. We define

U(x;r,t)= m u(y,t) ds(y)

0B(x,r)
x r, t g

c’)B(x r
x r, t h

GB(x r

Lemma. Fix x € R", satisfying
u; —Au=0 in R"x(0,) (1)
u=g,u =h on R"x{t=0] (2)
then
UeC™(R, x[0,0)) and

L@—Uﬂ—ﬁfhgzo in R, x(0,) (3)

U=G, U =H onR,x{t=0} (4)

Equation (3) is known as Euler Poisson Darboux Equation.

Proof. We know

U(x;r,t)= m u(y,t)ds(y)

0B(x,r)

Shifting to unit Ball B(0,1)
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U(x;r,t) = ?j)u(x+rz)ds(z)
0B(0,1

Differentiating w.r.t. r

U, = [ﬁ Du(x+rz).zds(z)
oB(0,1)

jo))

B(

ke
\

D
E‘i

kol

~e

0B(x,r) ov
1 ou
= e d
na(n) rl J ov (v)
0B(x,r)
1
= — J. Au dy

Again differentiating w.r.t. r

U, (x; r,t)zn 1( )5_8,{,, B(J' Au dy}

x,r)

:1——n j Au dy +

na(n)r B(x,r)
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=(l—1j m Au dy + Dj Au ds
n B(x,r) 8B(x,r)

From equation (5) and (6), we observe that

it U (xr,t)=0

r—0
1
It U, = Au+(——1)Au
r—0 n

1
== Au(x,t
" au(x,1)

So
U eC™(R, x[0,))

By equation (5)

U, (x;7,t) = r Au dy
n B(x,r)
- Uy dy
n B(x,r)
1
=——— 7 _[ U, dy
na (n) r B(x,r)
n-1 1
r Ur = J. Ut dy
na (n) B(x,r)

Differentiating w.r.t. r

U, +(n=-1)r"PU, = L i{ J. Uy dy]
B(

or
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L0y, -y, 7)

rr
which is required equation.

Also u=g on R"x{t=0}

[ u(w0)ds(y)= [ g(y)dS(y)
oB(x.r) oB(x,r)

Dividing by na(n)r"’
U(x,0)=G(x)
Similarly we can show

U,(x,0)=H(x) for R, x{t=0}

4.3 Kirchoff’s formula

Consider the initial value problem
Uy, —Au=0 in R® x(0,) (1)
u(x)=g(x) ,uy,=h on R*x{t=0} (2)
Sol. First we prove that

U, -U, =0 in R, x(0,) (3)

U=G , U,=H on R, x{t=0}

U=0 on {r =0}x(0,) (4)
where

U:=rU

G:=rG

H:=rH

We know Euler Poisson Darboux Equation for n=3 is
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Utt—Urr—gUr =0 in R, x(0,%) (5)
r

U=aG, U,=H on R, x{t=0} (6)

U, (7)

So U satisfies the 1-D wave equation.
Also U(r,0)=rU(r,0)

=rG(r)

=G
Similarly U, (r,0)= H(r)

Hence, by D Alembert’s formula, we have O <r <t

t+r

- 1r - - 15
U (x,r; t):5[G(t+r)—G(t—r)]JrEt.LH(y) dy (8)
Now
u(x,t)= ZtOU(x,r;t) (by def.)
g U(x,7;t)
r—0 r

_ G(t+r)-G(t-r) i”r~

_rljo { 2r }rQr tLH(y) y

=G'(t)+H(t)
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_%{tw[ﬁ gds]+t Uj h ds 9)

(x,t) 0B(x,t)

But
0 0
— gds |=— g(x+tz) ds(z)
ot [6BI];IC,t) } ot LBU.;)J)
= Dg(x+tz).z ds(z)
0B(0,1)
- ) Do) as(w)
0B(x,t)
So
u(x,t)= gds + Dg(y) (y-x)ds(y)+ t h(y) ds(y)
0B(x,t) 0B(x,t) 0B(x,t)
= [ [9+th(y)+D g(y)-(y-x)]ds(y) (10)
0B(x,t)

This is required solution.Equation (10) is known as Kirchoff’s formula.

4.4 Solution of 2-D Wave Equation

Now we find the solution of wave equation by the method of descent.

Consider initial value problem
u; —Au=0 in R*x(0,) (1)
u=g , u,=h onR*x{t=0} (2)

Sol. We regard it as a problem for n = 3 in which the third spatial

variable x; does not appear.Let us write
U(x),%y,%3,t) 0 =u(x,x,,t) (3)

So equation (1) and (2) are modified to

86



i, -Au=0 in R®x(0,) (4)

u=g,u,=h on R’x{t=0} (5)

If x=(x,x,)eR* then X € R’

The solution of initial value problem defined in equation (4) and (5) is

given by Kirchoff’s formula i.e.
a()—c,t)zi t ]l gds|+t [] hds (6)
Ot B(x B
(x.t) 0B
where B(X,t) denotes the ball in R® with centre X and radius t > 0 and

d s denotes the two-dimensional surface measure on 6B(E,t).

Now
g ds = 1 > | gas
0B(x,t) 47" Bix.0)
571/2
- 4;2 (y)[l+{§—£} ] dy
B(x,t)

where factor 2’ is taken as B(X,t) consists of two hemisphere and

y(y)=yt> ~|ly-x[° is the parametric equation of any y e B(x,t)

1 t
g ds= J 9(y)———dy
oB{x.¢) 27t” t2 —|y - x°
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Similarly,

[ Ras=%

0B(%.t) 2 B(@,t) N x|2

Using (7) and (8) in equation (6)

dy

u(x,t)=%% t2 J %dy
t

B(x,t)

Hence equation (9) gives

g(y)dy

B(x,t)\[t” — |y — x|

u(x,t):%
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t2 h(y)dy

+ — [ S A —

2 B(x,t) ,/tz —|y - x|2

t g(y)+t2h(y)+Dy(y).(y—x)d

Y (10)
B(x,t) t* |y - x|

where x e R?.Eq. (10) is required solution Equation (10) is known as

Poisson’s Formula.
4.5 Solution of wave equation for n >3
To find the solution of wave equation for n > 3 we derive some identities.

Suppose ¢: R — R be C**! for k=1,2,...

d* (1d ™ ok, oy _(1d [ o df
L elra) () ()

1d " o Lo dIg(r)
(b)) - S e )

where

B;(j=0,1,2,...,k-1) are independent of .

M. A5 =1.3.5..(2k-1)

Proof

I.  We prove it by induction. For k=1 .We have to show

-2

dr ,
= E[W (r)+¢(r)]
=r¢"(r)+2¢'(r)

= %[r2¢" (r)+2r¢' (r)}

= % %[r%'(r)} = R.H.S.
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Suppose result holds for k. So

d? (1 d Y o _ 1 d\( o dg
wlra) -G E .

We have to prove for k +1 i.e.

d* (1 d Y apa oy (1 AV oxin dd
&) o3 ) ()

o
sl ) ()
e e
= e Rt
- (AT [k )+ 7 () Using e
e} ) el &) [ ]
~@es )2 LY ] (L L) [ o]

1 d . 2k g1 2k+1 4n
- 75} [ (2K +2)r* + 1 (r) |

Hence the result holds for k + 1.
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So result is true for all k=1, 2, ...
II. Try yourself.
[II.  Try yourself.

Def. Assume n is odd ,sayn =2 k+ 1 ,(k>1). We define

(j(r,t):—c ;rj (10 (x57,1))
(22 e

] [1 i} r?* 7 H (x; r))
rd
U(r,0)=G(r),U,(r,0)= H(r)
Lemma. U satisfies the 1-D wave equation.
U,-U,=0  inR, x(0,%)

U=G; U,=H onR, x{t=0)}

k
= (1 i) (er a—Uj (by identity I)
”

1 3) 1 i( a_Uj
r or |7 or or

k-1
1 ij %rzk_lUr +r2k—1Urr:|
r r

- (1 i)k_l [rQ’HU,, +2k er_QUr}

91

(1)

(2)



Also

k-1
(2 )
r or
z Yiis J+1 d U (by identity II)

U(0,t)=0.
By definition U (r,0)=G
U(r,0)=H on R, x{t=0}

Hence the lemma.

4.5.1 Solution for odd n (n>3)
Consider the initial value problem

Uy —Au=0 in R" x(0,)

u=g , u,=h on R"x{t=0}

(1)

(2)

Solution. By lemma, U satisfies the 1-D wave equation and the initial

condition. Therefore, by D Alembert’s formula, on half-line 0 <r <t

t+r

U'(r,t):é[é(t+r)—(~}(t—r)]+% [ A(y)dy

t-r

forall reR, t>0

U(r t)= (1 aﬁrj ( F2k-1 U(x;r,t))
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:ﬂgrU+ﬂkr28—U+...

! or
U(r,t)
= 22 =U+0()
o7

Taking limit as r -> O

It Mz it U(x,r;t)= 1t

r—0 0 r r—0 r—0

u(y)ds(y)
0B(x,r)

=u(x,t)

(~}(t+r)—f}(t—r)+ 1 B

Since n =2k +1

pE=1.3...2k-1

=1.3...(n-2) (wn=2k+1)
=Vn (say)
Hence,

is required solution for odd n.
Note. Putting n = 3, we obtain Kirchoff’s formula.

4.5.2 Solution for even n
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Suppose that nis eveni.e. n>2.2m=n+2 (say),so m=>2.
We again use the method of Descent.

Consider the initial value problem
Uy, —Au=0 in R"x(0,) (1)
u=g , u,=h on R"x{t=0} (2)

Sol. Since nis even, n + 1 is odd.

Suppose

U(Xp, X0, ooy Xpyps B) 1= U(Xp, Xp, .00, Xy, t) (3)
is the solution of wave equation in R™"! x (0,) i.e.
i, -Au=0 in R™"x(0,) (4)

with initial condition.

u=g , i, =h on R™ x{t=0] (5)
where
G(x, %5500 Xpiq) i =g (X, Xg,000, )

R(x, Xgeey Xy )i =h(%g, Xg,..0, %) -

The solution of equation (4) subject to (5) is

n-2 n-2
A(%t)= 3(13] 2| ¢ gds (13j 20y f Ras|l (e)
Yni1 |OE\t Ot oB(%,t) t ot oB(x.1)

where B(X,t) denotes the ball in R™! with centre X and radius t and

ds denotes the n-dimensional surface measure on 0B(X,t)

Now

gae - (n+ 1)a2(n +1)t" f g(y)[l ’ ‘Dy(y)‘z}l/z dy

B(x,t)
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where the factor 2 ‘is due to the fact that the surface area consists of

two hemispheres and 0B(X,t)N(y,,; 20) has the equation

y(y) =4t —|y—x|2 ,yeB(x,t) and 0B(x,t)(yYn, <0) is the graph of -

_ 2 t
gds = - 9(y)| —|dy
0B(%,t) (n+)a(n+1)t [ { t? - |2]

ly-x
B(x,t)
B 2a(n)t g(y)dy 7)
(n+1)a(n+1) B(x,t) t? —|y—X|
Similarly

Y (8)
oB(%t) (n+1) a(n+1)B(x,t)1/t2 —Jy -

Using equation (7) and (8) in equation (6)

n-2
u(x,t)= 2 «(n) Q(EEJQ t" 9y
’ Ynea1 (n+1)a(n+1)| ot\ t ot B(nt) x|2

But
2a(n) ~ 1
Yna1 (n+1)a(n+1) - 2.4....(n-2)n
-1 (say) (9)
n
Hence
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n-2
10 jz N h dy
+ == t — =
(tat { B(D;I,t) t2—|y—X|2I J

is required solution, where n is even.

Note. For n=2, y, =2, we get the Poisson’s formula.

4.6 Solution of Non-homogeneous wave equation
Consider the initial value problem
u, —Au=f in R" x(0,»)

u=0 ,u,=0 on R"x{t=0}

(1)

(2)

where f ¢ C[n/2}+1 (R” y (0,00)); [n / 2} denotes the greatest integer

function, then solution of equation (1) subject to (2) is

t
u(x,t):ju(x,t;s) ds xeR" t>0
0

where u(x,t;s) is a solution of
Uy (x,t8)—Au(x,t;s)=0  in R"x(s,»)

u(x,t5)=0; u(xts)=f(xts) on R"x{t=s}

(3)

(4)

Sol. To show that equation (3) is a solution of equation (1) subject to (2)

we need to show
) ueC’ (R x[0,%)
(i) uy—Au=f(xt) in R"x(0,)

(i) it u(x,t)=0
(x,t)a(x ,O)
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[ ,t)=0
(n,t)—)fxo,o) H (x t)

for each point x° € R".

Proof. (i) [%} denotes the greatest integer function.

If nis even n +1:n_—1+1=n+1
2 2 2

If n is odd [E}+1=2+1
2 2

From previous article,

u(x,t;s)e C2 (R” X (5,00)) for each § >0
SO ueC? (R” X [O,oo))
t
(ii) u(x,t): = Iu(x, t;s) ds
0
Differentiating w.r.t. ¢

t
u, (x,t): = J-ut(x,t;s) ds+u(x,t;t)

o

t
= J-ut (x,t;s) ds (by 4)
0
Again differentiating w.r.t. ¢t

t
Uy (x,t): = Jutt(x, t;s)ds +u, (x,t;t)
0

uy (x,t;8)ds + f(x,t) (by 4)

O ey

t
Au(x,t):= jAu(x, t;s) ds
0
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t
= jutt (x,t;s) ds (by 3) (6)
0

Uy (x,t) - Au(x,t) = [utt(x, t;s)— Au(x, t;s)] ds+ f(x,t)

O ey =+

- f(xt)
(ili) Also u(x,0)=0
u,(x,0)=0
The solution of non-homogeneous wave equation is given by equation (3)

Q. Find the solution of
Uy — Uy =f(x,t)  in Rx(0,)
u=0,u,=0 on Rx{t=0}

Sol. The solution of homogeneous wave equation in

Uy — Uy, =0 in Rx(0,)
u=g, uu,=h on Rx{t=0]

is given by D Alembert’s formula.

u(x,t):% g(x+t)+g(x—t)+%nj:th(y) dy

n-t

Hence

xX+t—-s

u(x,t;s):% j f(y,s) dy

x—t+s
(Replacing t by t— s)
Hence

t

1

u(x,t) =§Jx+f_sf(y,s) dy ds

x—t+s

Replacing t—-s by s ,We find
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t

u(x,t) :é‘[xrf(y,t—s)dy ds

X—=S

0
is the required solution.
4.7 Energy Methods

Uniqueness of solution

Let U ¢ R" be a bounded, open set with a smooth boundary 6U and

Uy =Ux(0,T]

I, =U;-U; where T>0

there exists at most one function u e C? (UT) of the initial value problem.
U, —Au=f in Uy (1)
u=gonTl;; U,=honUx{t=0} (2)

Proof. Let u be another solution of equation (1). We take

w(x,t)=u-u,

So

wy; —Aw=0 in Up (3)
w=0onT,;; w,=0 onUx{t=0} (4)
Define

e(t): == w?+|Duf’ |de  0<t<T
2

U

Differentiating w.r.t. t

é(t)= '[[wtwtt + Dw Dw; |dx
U

(Integrating the 2nd integral by parts)

= (| ww, - D*w w, |dx+ | w.Dw v dS
J[ t Wt tj| _[ t
U U
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=J.wt [wy —Aw]dx+0 (using 4)
U

=0 (by 3)

So e (f) = Constant for all t.

But e(0)=é [ 2 (x,0) +[Duw(x,0)" |ax

U
= 0.

So e (9 is zero for all t.
i.e. Dw = w, =0 within U;
Since w=0 on U x{t =0}

w=u-u=01in Uy,

u=uin Uy
Def. Let u e C%be a solution of
Uy —Au=0in R" x(0,)
Fix x, e R", t; >0.
Consider the set
C={(xt)| O<t<ty; [x—x|<ty—t
which defines a cone.
Theorem. If u=u, =0 on B(xy,t)x{t =0} then u= 0 within cone C.
Proof. We define
e(t)=% j [uf(x,t)qpu(x,t)ﬂdx 0<t<t,

B(xp,to-t)

Differentiating w.r.t. t.

é(t)= ( I )[ututt(x,t)+(Du Du,)|dx
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_% f [utz + |Du|2} ds (By Cor of coarea formula)

6B(x0,t0—t)
Integrating by parts (2nd term of 1st integral)

= J. [uuy —u, Aul dx
B(xo,to—t)

¥ J Z_uut ds—% [ |u?+lpu?|as
1%
B(xg,to-t) 0Bo(x0,t0-t)

=0+ J [uta—u—lutz—lwuf} dx
ov 2 2
8B(xo,to—t)

< J {uf +|Du|2 —éuf —%|Du|2}dx
0B(xp,to—t)
(by Cauding Schwartz Inequality)
<0.
So e (f) is a decreasing function of ¢
e(t)<e(0)
Bute(0)=0
e(t)<0
hence e(t)=0 ( e(t) is a sum of square quantities)
w, =Du=0within C
= u is constant within C
Hence u = 0 within C (- u=0for t=0)
4.8 Self Assessment Questions
Q. Find the solution of
u, —Au=f(x,t) in R’>x(0,o)

u=0, u,=0 on R®x{t=0}
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Ams. ()= - J f(y,;—_lii'—xl)dy

B(x,t)

4.9 Suggested Readings

1. L.C. Evans, “Partial  Differential  Equations,” American
Mathematical Society, Rhade.

2. Duchateau and D.W. Zachmann, “Partial Differential Equations,”

Schaum Outline Series, McGraw Hill Series.
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Lesson 5
Other Techniques to Represent Solution

Written by: Dr. Sunita Rani
Vetted by: Prof. Sarva Jit Singh

Structure

5.1 Introduction

5.2 Separation of variables

5.3 Similarity solutions

5.4 Connecting non-linear partial differential equations to linear
partial differential equations

5.4.1 Cole-Hopf transformation

5.4.2 Potential function

5.5 Transform methods

5.5.1 Fourier Transforms

5.5.2 Laplace Transforms

5.6 Self Assessment Questions

5.7 Suggested Readings

5.1 Introduction
There are several other techniques to solve the linear and non-

linear partial differential equations. e.g. Separation of variables

,Similarity solutions, Connecting non-linear partial differential equations

to linear partial differential equations, Transform methods. Here we will

discuss them.
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5.2 Separation of variables

In this method, we assume a solution given by sum or product of
undetermined functions and form ordinary differential equations, which
are solved. This technique is well understood by examples.

Exp. Consider the boundary value problem in heat equation
u,—Au=0in U x(0, =) (1)
u=0 on oU %[0, o) (2)
u=gon Ux{t=0}

where g : U —> R is given.

Sol. Let the solution of equ. (1) be given by
u(x,t)=v(t)w(x) xeU,t>0 (3)

From (1) and (3)
vw(x)-Aw v (t)=0

Dividing by w(x) v(t)

v'(t) _ Aw(x) )

v(t)  w(x)

L.H.S. of equ. (4) is a function of t only and R.H.S. is a function of x only.

Equ. (4) is true if each side is equal to some constant, say, x.

v (t Aw(x

v((t)) —HE w((x))
= U(t)-uv(t)=0 ()
and

Aw(x) - pw(x)=0 (6)

Considering equ. (5) and integrating

v=Ce" (7)
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where Cis a constant.
Taking equ. (6), comparing with the

-Aw=Aw in U
} (8)

w=0 on dU
then A is eigen value and w(# 0) is the corresponding eigen function.So

u=-A1 is eigen value of equ. (6) and w is corresponding eigen function.
Hence solution of problem defined by equ. (1) and (2) is
u(x,t)=Ce*'w(x) 9)
where Cis a constant to be determined from the initial condition at t = O,
which gives
g=Cw
so u=Ce*w
where g = Cw
is required solution.
Particular case:

@ If 4,4,,...,4, are eigen values of problem (8) and w,, w,, ..., w

m

are the corresponding eigen functions and ¢}, c,, ..., ¢, are constants

m

then solution of equ. (1)

m

u(x,t)=> ce*w(x)

i=1

provided Y dw, =g.

i=1
(b) Let A, 4,, ... be a countable set of eigen values with corresponding

eigen function w,, w,, ... so that

u= icie’“wi (x)
i=1
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provided that Zw:ciwi (x)=g in U.

i1
Exp. Find the solution of the non-linear porous medium equation

u, —A(u’) =0 in R" x(0,) (1)
where u >0 and y>1 is a constant.
Sol. We seek a solution of equ. (1) of the type

u(x,t)=v(t)w(x) (2)
From (1) and (2)

w(x)v'(t)- (Awy)vy =0
Dividing by wv”

U'(t) _ AW’
v’ w

(3)

L.H.S. is a function of t only and R.H.S. is a function of x only. Equ. 3 is

true if each side is equal to some constant say u.

v’ -4
-y+1
_1}7+1=ut+/1,

where A is a constant.

v :(1—7/),ut+l,
L
v =[(1—}/) ,ut+ﬂ]1*7 (4)
AW = pw (5)
Suppose w:|x|a is solution of equ. (5) where «a is a constant to be

determined.

AW’ = Alx|"”

106



= |x|ay_2 ay[n+ay -2]
Using in equ. (5)

ay—

|x| 2ay(n+ay—2) = u|x|” (6)

In order to hold equ. (6) in R?, we must have

a=ay-2 = a:i and

y—1
u=ay(n+ay-2)>0 (7)
So solution of equ. (1) is
L a
u=[(1-y) ut+ 2] |x". (8)

where «, y are given by equ. (7)
Remark. In equ. (8) uis singular when
(1—y)yt+/1=0 or

t= _4t =t* (say) ,t*is called the critical time.

(r=1)u

5.3 Similarity solution

Certain symmetries of partial differential equation help to convert
them in ordinary differential equations.

Def. Plane Travelling Wave:

A solution u(x, t) of the partial differential equations of two
variables x,t € R of the form

u(x,t)=v(x-ot) xeR, teR
represents a travelling wave with speed o and velocity profile v.

Generalization. A solution u(x,t) of a partial differential equations in

n+ 1 variables x =(x,, x,, ..., X,) € R", t € R having the form
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u(x,t)=v(y.x-ot)
is called a plane wave with wave front normal to y € R".

Exponential solution: The exponential solution of partial differential
equations is

LL()C, t) _ ei(yﬂx+wt)

where well, y=(y, Y, --» Y,) €R", w being frequency and {y,}, the

wave number.

Exp. The heat equation
u,—Au=0

has the exponential solution.

U= ei(yx+i ‘y‘Qt)

_ Pt Liyx
=e e

Mt cos yx and e sin yx are solutions of equ.(1).Here the term e ™

e
corresponds the dissipation of energy.
Exp. The wave equation

u,—Au=0
has the exponential solution

i(ylx+ |y|t
u = ety llt)

Since w is real, no dissipation effects occur.
Exp. The dispersive equation

u+u, =0 in Rx(0,)

t

has the exponential solution

ei(ny+y3t)

No dissipation of energy. Also the velocity of propagation depends on

frequency. Hence dispersion takes place.
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Exp. Barenblaltt’s solution

Consider the porous medium equation
u,—Au’ =0 in R" x(0,) (1)
where u >0 and y>1 is a constant.

Sol. We seek a solution of equ. (1) of the form

u(x,t):tia v(tiﬁj xeR", t>0

where «, f are unknowns.
1
u(x,t)= = v(y)

where y=x/t’ (2)
From equ. (1) and (2)

1
av(y)+ﬂy.Dv(y)+W vV =0 (3)

To convert equ. (3) into an equation independent of t, we must have
ay+2f—-a-1=0 or

. 1228 ”

y—1

Hence equ. (3) gives

av + fy.Dv + Av” =0 (5)
We seek a radial solution of equ. (5)
Let it be

v(y)=w(r) where r =|y| (6)
From equ. (5) and (6)

aw+ pw'(r)r+ (u/)” +(n- 1)(w7 )l r"?=0
where dash denotes derivative w.r.t. r.

To make it exact differential, multiplying by " and taking a =np
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+ [r“l (w )' ] =0

Integrating and assuming thatas r >0 w, w' —> 0

!

ﬂ(r”w)

priw+r! (u/ ), =0

(u/)' =—frw
yw' ™ = —frw
or w2 _2,
Y

Again integrating

-1 i+b

w =
27(r-1)

where b is a constant.

= w(r)= {b—w rﬂ“

2y
Hence
) 1
(=18l
U(y)_{ 27/t2’3
where a:nﬂzl_Q’B
y—1
. 1
i.e. =
2-n+ny
n
o=
2-n+ny
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5.4 Connecting non-linear partial differential equations to linear
partial differential equations

5.4.1 Cole-Hopf transformation

Consider the initial value problem for a quasi-linear parabolic

equation
ut—aAu+b|Du|2 =0 in R" x(0,») (1)
u=gon R"x{t=0} (2)

where a > 0;a,b are constants..

Sol. Let w=¢(u) (3)
where u is a smooth solution of equ. (1) and ¢: R— R is a smooth
function. We seek ¢ such that w solves the linear equation.

From (1) and (3)

Dw = ¢'(u) Du

Aw = ¢'(u)Au+ ¢§”(u)|Du|2

w,= ¢ (u)[aAu —~ b|Du|2}

= a[Aw - ¢”(u)|Du|2} —b¢' (u)|Duf’

Hence,w, —aAw = —[ ag" (u)+b¢'(u)] |Du|2

We choose ¢ such that

a¢"(u)+bg¢' (u)=0 (4)
So we have

w, —aAw =0 (5)
To find the solution of equ. (4)

Auxiliary equation is am® +bm =0

roots with m=0,-b/a
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Hence

¢(u) = e ”/"*+C ,where C is a constant.

Neglecting the constant

w(x,t)= e (/e (*)
w(x,0)= e (P/a)g (6)
Combining (5) and (6)

w, —aAw =0 in R" x(0,»)

b
w=e « on R" x{t =0}

which is heat equation having the solution

1 Jef g

w(x,t =—nje tat ea” d xeR"

)= ™) 7

R
or u(x,t)=-—logw
a 1 euf b

u(x,t)=—— 1o —je 4t ga” d xeR", t>0
() b g[(47zat)n/2 o y]

This is the required solution. Equation (*) is known as Cole Hopf

transformation.
Exp. Find the solution of Burger’s equation with viscosity

u-au,+uu,=0 in Rx(0,x)
u=g on Rx{t =0} (1)

Sol. Let us take

w(x,t): = jf u(y,t) dy

h(x):= ]E g(y) dy (2)
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so that w, = u, w, (x,0)=u(x,0)=g(x)=h'(x)
From (1) and (3)

W, —-a W, +w, w, =0 in Rx(0,x)

i{wt—a wxx+lw§}=0 in Rx(0,)
0x 2

Thus, problem is converted to
1, .
w,—a w,, +—w; =0 in Rx(0,x)
w(x,0)=h(x) on Rx{t=0} (4)
The equation (4) is a quasi-linear parabolic equation (previous example)

with b= é .So solution of equ. (4) is

|
w(x,t)=—2alog| ——— |e * ** d
(1) & (4mt)”/2_£ Y

Differentiating w.r.t. x

0

ey’ _n(y)
Jx;y e 4af _% dy

X = © 7‘x7y‘27M
Je 4at 2a dy

—00

This is required solution.

5.4.2 Potential function

By use of potential function, non-linear partial differential
equations can be converted to linear partial differential equations.
Exp. Consider the Euler’s equation for inviscid, incompressible flow

u, +u.Du=-Dp+ f in R’ x(0,)

div u=0 in R®x(0,)
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u=g on R’x{t=0} (1)
where fand g are prescribed functions, u and p are unknowns.
Sol. Let the external body force be derived from potential function h,
such that
F=Dh @)
Let the velocity u be derived from the potential v s.t.
u =Dv (3)
From equ. (1) and (3)
divu=Av=0 (4)
So from equ. (4) we can find v and thus u.
From (1) and (3)
Dv, + Dv D(Dv)=-Dp+Dh
or
D[vt +%|Dv|2 + p—h} =0
Integrating
v, +1|Dv|2 +p=h

2

which is Bernoulli’s equation to get p.
5.5 Transform Methods
5.5.1 Fourier Transforms
We now discuss the transform methods to solve linear and non-linear

partial differentiation equations. First we define Fourier transform over L!

and L? spaces, respectively.

Def. Let ue ! (R”) , we define the Fourier transform of u(x), denoted by

u(y) as
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G Lt a yer
RTL

and its inverse Fourier transform

a(y)=

~ 1 ix.y n

uly)i=——5 | e u(x)dx YeR
()= oy L )

Since |e*'*¥|=1 and uel (R”)

So integral converges for eachy.

Plancherel’s theorem

Assume that u e ! (R”) N I? (R”) then
i, ue*(R") and

2] 2y =2l 2 ) =242
Proof. To prove (1), we prove three results

(i) j v(y)w(y) dy = J. D(x)w(x) dx

R" R"

L.H.S. = W '[ v(y) j [w(x)e—iX-y dx] dy

Rn

=W J- w(x) Iv(y) e™™ dy dx

RT‘L

Hence the result.
() If wvel'(R")nI*(R")
n/2 ~ -

then (u*v)=(27)""av

where * denotes the convolution operator.
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=(22)"" a(y)o(y)

(iij) Consider

—yi2/4t ©

e _z2 ly
= e dz here =t| x;, + =+
7 I W z f(xl ot ]

—00

2
e*yi /4t
= T

NG

Hence
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I eyt dx:z(%;j ol rat

Rn
Proof of theorem:

Choosing a function for €>0

2
v (x)= e
U (y)= ;n/z J e ™y_(x) dx (Using result (iii), putting t = € )
(27)"" g
1 Jyf? /4
= e (2)
(2 E)n/2
Hence
I w(y)e © b dy = ln/2 j w(x)e_‘x‘z/46 dx (Using result (i)
R" (2 e) R"
(3)
Taking limitas €e—>0
J w(y)dy= 1t 1 J. w(x) ef‘x‘Q/46 dx
e—0 (2 e)”L/Q on
Rn
n/2 x-2
= (27)"* w(0) where —L = z? (4)
4 e
Suppose u e L! (R”) N I? (R”)
and set v(x):=u(-x), u is the conjugate of u.
w(x):=u*v
= J u(z)v(x-z)dz
Rn
w=(27)"? a0 (by result II)
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- 1 i
But D=—or J- e Vi (-x) dx

(Qﬂ) P

:—1n/2 Ieixy u(x)dx

(27)"" gn

"G jneTu(x)dx

L= (27)? |
From (4) and (5)

(22)" [ |af dy =(22)"" w(0)

= [ |4 dz (by def.)

) = e
Similarly Ha”LQ(Rn) = HuHLz(Rn)

(The result can be obtained by previously argument changing i to —i

Hence
el 2y =202 ) =12

Note

Since u e I?(R") choose a sequence {u};_ < L'(R")nI*(R") with
w, > u in *(R").

By (1)
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Pler) " [~ ) = e =l
{&.}7_, is a Cauchy sequence in L? (R”) which converges to .
So @ —> @ in I*(R")
Def Fourier Transform of u over L7 (R”)

Let ueL? (R”)then
Ha”LQ(Rn) - Ha”LQ(Rn) - Hu”LQ(Rn)
So i, u e I? (R”) (by above theorem)

hence i@, v are well defined over L? (R”)

Properties of Fourier transform:

Assume u,v e [ (R”)

(i) Jfuvdx=[avay
R R™

() D u=(iy) i

for each multiindex a s.t. D%u e L? (R”)

Proof. Let u, v e [° (R”) and o e C"
then

Hu + av”2 = Ha + a13”2 (Using Plancherel’s theorem)

ie. [ (u+av)(u+av)de= [ (a+ad)(d+ad)dy

= f [|u|2 + |av|2 +u(av)+ u(&ﬁ)} dx

RT‘L
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= [[1af +|aof +a(av) + a(a 5)| dy

or j [t(av)+u(av)] dx= J. (a§13+&ﬁ5) dy
rR* R"

Taking a =1,i in (1) respectively and subtracting we obtain

[uv dx= [ (a0)dy

R" R"
(i) If u is smooth and has compact support

Dy = ;np j e ™YD%u dx

(27[) el

_1\¢ .
:—((27[1)21/2 j D% e™™ u(x) dx

Rn

_1) .
= ﬁ _[ e ™ (-1)" (iy)” u(x) dx

Rn
= (iy)" 2(y)
Exp. Solve the partial differential equation

-Au+u=f in R"
where f e C? (R")

Sol. Taking Fourier transform of equation (1)

~(yYa+a=f, yeR"

S
1+y2

u=

Taking inverse Fourier transform of (2)

(7Y
u_(lwzJ

u= f*B where
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(1ey?)

To find B, we know that

e ' dt

o —38

Q[+~

SO 1 = Te_t (H ‘ y2D dt

1+|y|2 0

v © o
:( 1 2] ) ln/2 er L )eixydt dy
1+|y| (27)

0

Rn

% n/2 2
_ 1n/2Je—t(%j ot g
2r
")

|2

Lo |x

_ 4t
= Y dt xeR" (3)

So,

8

Here ,B given in equation (3), is called the Bessel ’s potential.

Exp. Find the solution of initial value problem of heat equation

u, —Au=0in R" x(0,) (1)

u=g onR"x{t=0} (2)
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Sol. Taking Fourier transform of equation (1) and (2) w.r.t. the spatial

variable x.
at—(iy)QA:O for t>0
u=g fort=0

or
Integrating

2
=Ce ¥ where Cis a constant.
Since C= g (Using (4)

R
u=ge

Taking inverse Fourier transform

g*F
u=
(272_)1’1/2
where,
F = [e‘tlﬂ jv
IS SR 2
(2t)"? ©
Hence solution is
2
1 L
u(x,t):w g(y)e dy
Vs o

Exp. Solve the Schro6dinger’s equation.

iu, +Au=0 in R" x(0,)

u=g on R" x{t =0}
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where u and g are complex valued functions .
Sol. Equ. (1) can be rewritten as
ou
o (-it)

which is obtained from heat equation replacing t by it, hence we get

+Au=0

i‘x—y‘z
1
u(x,t):WJe * g(y)dy t+0 (3)
(4rit)
Rn
which is required solution.
Remark. From equ. (3), we can obtain the fundamental solution of

Schrodinger equation

ix?
‘P(x,y)::me‘” xeR", t#0

Exp. Find the solution of initial value problem

Uy —Au=0 in R" x(0,) (1)
:z%} on R"x{t =0} @)

Sol. Taking Fourier transform of equation (1) w.r.t. x
@y +lyfa=0  fort>0 (3)
u=g u =0 fort=0 4)
We seek an exponential solution of equ. (3). Let
i = fe” where S, y €l are to be determined.
From (1) and (3)
A +lyl* =0
y =iy

i = ﬂlei‘y‘t +ﬂ26_i‘y‘t
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Using equation (2), we obtain

B—P,=0
=>p=p=pF (say)
and f=g/2

Hence
i(y,t)= g(eiyt + eii‘y‘t)

Taking inverse Fourier transform

u(x,t)= ln/2 J%(eiyt+e_iyt)eb‘y dy xeR", t>0
(27[) a

is the required solution.

5.5.2 Laplace Transforms

Laplace transform method is useful for functions defined on R- i.e.

(0,0) if ue I (R, ), we define the Laplace transform of u,
L(ﬁ(s)): = J'e*Stu(t) dt s>0
0

We denoted by .

Exp. Solve the heat equation

v, —Av =0 in U x(0,) (1)
v=f onUx{t=0! 2)

Sol. Taking Laplace transform of (1) w.r.t. ¢

AV (x,s) = J-e’StAv(x,t) dt
0

- Je_Stvt (x,t) dt
0
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Hence

~AU(s)+sv(s)=f (3)
Equation (3) is called Resolvent equation. The solution of resolvent
equation is the Laplace transform of equation (1).
5.6 Self Assessment Questions

Exp. Solve the Hamilton Jacobi equation
u, + H(Du)=0in R" x(0,)
where H is the Hamilton function.

Exp. Find the exponential solution of Schrodinger ’s equation
iu,+Au=0 in R"

Q. Solve the telegraph equation.

Uy +2du, —u,, =0 in Rx(0,)

u=g u,=h on Rx{t=0}

for d > 0.

Q Prove that

() IfuveLl(R")nL*(R") then
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5.7 Suggested Readings

1. L.C. Evans, “Partial  Differential = Equations,” American
Mathematical Society, Rhade.

2. Duchateau and D.W. Zachmann, “Partial Differential Equations,”

Schaum Outline Series, McGraw Hill Series.
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