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1.0 OBJECTIVE 
The objective of this lesson is to make the students familiar with the basics of 

operating system. After studying this lesson they will be familiar with: 

1. What is an operating system? 

2. Important functions performed by an operating system. 

3. Different types of operating systems. 

1. 1 INTRODUCTION 
Operating System (OS) is system software, which acts as an interface between a 

user of the computer and the computer hardware. The main purpose of an 

Operating System is to provide an environment in which we can execute 

programs. The main goals of the Operating System are: 

(i) To make the computer system convenient to use,  

(ii) To make the use of computer hardware in efficient way. 

Operating System may be viewed as collection of software consisting of 

procedures for operating the computer and providing an environment for 

execution of programs. It is an interface between user and computer. So an 

Operating System makes everything in the computer to work together smoothly 

and efficiently.  

 
Figure 1: The relationship between application and system software 
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Basically, an Operating System has three main responsibilities:  

(a) Perform basic tasks such as recognizing input from the keyboard, sending 

output to the display screen, keeping track of files and directories on the disk, 

and controlling peripheral devices such as disk drives and printers. 

(b) Ensure that different programs and users running at the same time do not 

interfere with each other.  

(c) Provide a software platform on top of which other programs can run.  

The Operating System is also responsible for security and ensuring that 

unauthorized users do not access the system. Figure 1 illustrates the relationship 

between application software and system software. 

The first two responsibilities address the need for managing the computer 

hardware and the application programs that use the hardware. The third 

responsibility focuses on providing an interface between application software and 

hardware so that application software can be efficiently developed. Since the 

Operating System is already responsible for managing the hardware, it should 

provide a programming interface for application developers. As a user, we 

normally interact with the Operating System through a set of commands. The 

commands are accepted and executed by a part of the Operating System called 

the command processor or command line interpreter. 

 
Figure 2:  The interface of various devices to an operating system 
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In order to understand operating systems we must understand the computer 

hardware and the development of Operating System from beginning. Hardware 

means the physical machine and its electronic components including memory 

chips, input/output devices, storage devices and the central processing unit. 

Software are the programs written for these computer systems. Main memory is 

where the data and instructions are stored to be processed. Input/Output devices 

are the peripherals attached to the system, such as keyboard, printers, disk 

drives, CD drives, magnetic tape drives, modem, monitor, etc. The central 

processing unit is the brain of the computer system; it has circuitry to control the 

interpretation and execution of instructions. It controls the operation of entire 

computer system. All of the storage references, data manipulations and I/O 

operations are performed by the CPU. The entire computer systems can be 

divided into four parts or components (1) The hardware (2) The Operating 

System (3) The application programs and system programs (4) The users. 

The hardware provides the basic computing power. The system programs the 

way in which these resources are used to solve the computing problems of the 

users. There may be many different users trying to solve different problems. The 

Operating System controls and coordinates the use of the hardware among the 

various users and the application programs. 
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Figure 3. Basic components of a computer system 
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We can view an Operating System as a resource allocator. A computer system 

has many resources, which are to be required to solve a computing problem. 

These resources are the CPU time, memory space, files storage space, 

input/output devices and so on. The Operating System acts as a manager of all 

of these resources and allocates them to the specific programs and users as 

needed by their tasks. Since there can be many conflicting requests for the 

resources, the Operating System must decide which requests are to be allocated 

resources to operate the computer system fairly and efficiently. 

An Operating System can also be viewed as a control program, used to control 

the various I/O devices and the users programs. A control program controls the 

execution of the user programs to prevent errors and improper use of the 

computer resources. It is especially concerned with the operation and control of 

I/O devices. As stated above the fundamental goal of computer system is to 

execute user programs and solve user problems. For this goal computer 

hardware is constructed. But the bare hardware is not easy to use and for this 

purpose application/system programs are developed. These various programs 

require some common operations, such as controlling/use of some input/output 

devices and the use of CPU time for execution. The common functions of 

controlling and allocation of resources between different users and application 

programs is brought together into one piece of software called operating system. 

It is easy to define operating systems by what they do rather than what they are. 

The primary goal of the operating systems is convenience for the user to use the 

computer. Operating systems makes it easier to compute. A secondary goal is 

efficient operation of the computer system. The large computer systems are very 

expensive, and so it is desirable to make them as efficient as possible. Operating 

systems thus makes the optimal use of computer resources. In order to 

understand what operating systems are and what they do, we have to study how 

they are developed. Operating systems and the computer architecture have a 

great influence on each other. To facilitate the use of the hardware operating 

systems were developed. 
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First, professional computer operators were used to operate the computer. The 

programmers no longer operated the machine. As soon as one job was finished, 

an operator could start the next one and if some errors came in the program, the 

operator takes a dump of memory and registers, and from this the programmer 

have to debug their programs. The second major solution to reduce the setup 

time was to batch together jobs of similar needs and run through the computer as 

a group. But there were still problems. For example, when a job stopped, the 

operator would have to notice it by observing the console, determining why the 

program stopped, takes a dump if necessary and start with the next job. To 

overcome this idle time, automatic job sequencing was introduced. But even with 

batching technique, the faster computers allowed expensive time lags between 

the CPU and the I/O devices. Eventually several factors helped improve the 

performance of CPU. First, the speed of I/O devices became faster. Second, to 

use more of the available storage area in these devices, records were blocked 

before they were retrieved.  Third, to reduce the gap in speed between the I/O 

devices and the CPU, an interface called the control unit was placed between 

them to perform the function of buffering. A buffer is an interim storage area that 

works like this: as the slow input device reads a record, the control unit places 

each character of the record into the buffer. When the buffer is full, the entire 

record is transmitted to the CPU. The process is just opposite to the output 

devices. Fourth, in addition to buffering, an early form of spooling was developed 

by moving off-line the operations of card reading, printing etc. SPOOL is an 

acronym that stands for the simultaneous peripherals operations on-line. For 

example, incoming jobs would be transferred from the card decks to tape/disks 

off-line. Then they would be read into the CPU from the tape/disks at a speed 

much faster than the card reader.  
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Figure 4: the on-line, off-line and spooling processes  
Moreover, the range and extent of services provided by an Operating System 

depends on a number of factors. Among other things, the needs and 

characteristics of the target environmental that the Operating System is intended 

to support largely determine user- visible functions of an operating system.  For 

example, an Operating System intended for program development in an 

interactive environment may have a quite different set of system calls and 

commands than the Operating System designed for run-time support of a car 

engine.  

1.2 PRESENTATION OF CONTENTS 
1.2.1 Operating System as a Resource Manager 

1.2.1.1 Memory Management Functions 

1.2.1.2 Processor / Process Management Functions 

1.2.1.3 Device Management Functions 

1.2.1.4 Information Management Functions 

1.2.2 Evolution of Processing Trends  

1.2.2.1 Serial Processing 
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1.2.2.2 Batch Processing 

1.2.2.3 Multi Programming 

1.2.3 Types Of Operating Systems 

1.2.3.1 Batch Operating System 

1.2.3.2 Multi Programming Operating System 

1.2.3.3 Multitasking Operating System 

1.2.3.4 Multi-user Operating System 

1.2.3.5 Multithreading  

1.2.3.6 Time Sharing System 

1.2.3.7 Real Time Systems 

1.2.3.8 Combination Operating Systems 

1.2.3.9 Distributed Operating Systems 

1.2.1 Operating System as a Resource Manager 
The Operating System is a manager of system resources. A computer system 

has many resources as stated above. Since there can be many conflicting 

requests for the resources, the Operating System must decide which requests 

are to be allocated resources to operate the computer system fairly and 

efficiently. Here we present a framework of the study of Operating System based 

on the view that the Operating System is manager of resources. The Operating 

System as a resources manager can be classified in to the following three 

popular views: primary view, hierarchical view, and extended machine view.  

The primary view is that the Operating System is a collection of programs 

designed to manage the system’s resources, namely, memory, processors, 

peripheral devices, and information. It is the function of Operating System to see 

that they are used efficiently and to resolve conflicts arising from competition 

among the various users. The Operating System must keep track of status of 

each resource; decide which process is to get the resource, allocate it, and 

eventually reclaim it.  

The major functions of each category of Operating System are. 

1.2.1.1 Memory Management Functions 
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To execute a program, it must be mapped to absolute addresses and loaded into 

memory. As the program executes, it accesses instructions and data from 

memory by generating these absolute addresses. In multiprogramming 

environment, multiple programs are maintained in the memory simultaneously. 

The Operating System is responsible for the following memory management 

functions: 

¾ Keep track of which segment of memory is in use and by whom.  

¾ Deciding which processes are to be loaded into memory when space 

becomes available. In multiprogramming environment it decides which 

process gets the available memory, when it gets it, where does it get it, and 

how much. 

¾ Allocation or de-allocation the contents of memory when the process request 

for it otherwise reclaim the memory when the process does not require it or 

has been terminated. 

1.2.1.2 Processor/Process Management Functions 
A process is an instance of a program in execution. While a program is just a 

passive entity, process is an active entity performing the intended functions of its 

related program. To accomplish its task, a process needs certain resources like 

CPU, memory, files and I/O devices. In multiprogramming environment, there will 

a number of simultaneous processes existing in the system. The Operating 

System is responsible for the following processor/ process management 

functions: 

¾ Provides mechanisms for process synchronization for sharing of resources 

amongst concurrent processes. 

¾ Keeps track of processor and status of processes. The program that does this 

has been called the traffic controller. 

¾ Decide which process will have a chance to use the processor; the job 

scheduler chooses from all the submitted jobs and decides which one will be 

allowed into the system. If multiprogramming, decide which process gets the 

processor, when, for how much of time. The module that does this is called a 

process scheduler. 
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¾ Allocate the processor to a process by setting up the necessary hardware 

registers. This module is widely known as the dispatcher. 

¾ Providing mechanisms for deadlock handling. 

¾ Reclaim processor when process ceases to use a processor, or exceeds the 

allowed amount of usage.  

1.2.1.3 I/O Device Management Functions 
An Operating System will have device drivers to facilitate I/O functions involving 

I/O devices. These device drivers are software routines that control respective 

I/O devices through their controllers. The Operating System is responsible for the 

following I/O Device Management Functions: 

¾ Keep track of the I/O devices, I/O channels, etc. This module is typically 

called I/O traffic controller. 

¾ Decide what is an efficient way to allocate the I/O resource. If it is to be 

shared, then decide who gets it, how much of it is to be allocated, and for how 

long. This is called I/O scheduling. 

¾ Allocate the I/O device and initiate the I/O operation. 

¾ Reclaim device as and when its use is through. In most cases I/O terminates 

automatically. 

1.2.1.4 Information Management Functions 
¾ Keeps track of the information, its location, its usage, status, etc. The module 

called a file system provides these facilities. 

¾ Decides who gets hold of information, enforce protection mechanism, and 

provides for information access mechanism, etc. 

¾ Allocate the information to a requesting process, e.g., open a file. 

¾ De-allocate the resource, e.g., close a file. 

1.2.1.5 Network Management Functions 
An Operating System is responsible for the computer system networking via a 

distributed environment. A distributed system is a collection of processors, which 

do not share memory, clock pulse or any peripheral devices. Instead, each 

processor is having its own clock pulse, and RAM and they communicate through 

network. Access to shared resource permits increased speed, increased 
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functionality and enhanced reliability. Various networking protocols are TCP/IP 

(Transmission Control Protocol/ Internet Protocol), UDP (User Datagram 

Protocol), FTP (File Transfer Protocol), HTTP (Hyper Text Transfer protocol), 

NFS (Network File System) etc.   

1.2.2 EVOLUTION OF PROCESSING TRENDS 
Starting from the bare machine approach to its present forms, the Operating 

System has evolved through a number of stages of its development like serial 

processing, batch processing multiprocessing etc. as mentioned below: 

1.2.2.1 Serial Processing                    
In theory, every computer system may be programmed in its machine language, 

with no systems software support. Programming of the bare machine was 

customary for early computer systems.  A slightly more advanced version of this 

mode of operation is common for the simple evaluation boards that are 

sometimes used in introductory microprocessor design and interfacing courses. 

Programs for the bare machine can be developed by manually translating 

sequences of instructions into binary or some other code whose base is usually 

an integer power of 2.  Instructions and data are then entered into the computer 

by means of console switches, or perhaps through a hexadecimal keyboard.  

Loading the program counter with the address of the first instruction starts 

programs.  Results of execution are obtained by examining the contents of the 

relevant registers and memory locations.  The executing program, if any, must 

control Input/output devices, directly, say, by reading and writing the related I/O 

ports.  Evidently, programming of the bare machine results in low productivity of 

both users and hardware.  The long and tedious process of program and data 

entry practically precludes execution of all but very short programs in such an 

environment. 

The next significant evolutionary step in computer-system usage came about 

with the advent of input/output devices, such as punched cards and paper tape, 

and of language translators.  Programs, now coded in a programming language, 

are translated into executable form by a computer program, such as a compiler 

or an interpreter. Another program, called the loader, automates the process of 
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loading executable programs into memory.  The user places a program and its 

input data on an input device, and the loader transfers information from that input 

device into memory.  After transferring control to the loader program by manual 

or automatic means, execution of the program commences.  The executing 

program reads its input from the designated input device and may produce some 

output on an output device.  Once in memory, the program may be rerun with a 

different set of input data.  

The mechanics of development and preparation of programs in such 

environments are quite slow and cumbersome due to serial execution of 

programs and to numerous manual operations involved in the process.  In a 

typical sequence, the editor program is loaded to prepare the source code of the 

user program.  The next step is to load and execute the language translator and 

to provide it with the source code of the user program. When serial input devices, 

such as card reader, are used, multiple-pass language translators may require 

the source code to be repositioned for reading during each pass.  If syntax errors 

are detected, the whole process must be repeated from the beginning.  

Eventually, the object code produced from the syntactically correct source code 

is loaded and executed.  If run-time errors are detected, the state of the machine 

can be examined and modified by means of console switches, or with the 

assistance of a program called a debugger. 

1.2.2.2 Batch Processing 
With the invention of hard disk drive, the things were much better. The batch 

processing was relied on punched cards or tape for the input when assembling 

the cards into a deck and running the entire deck of cards through a card reader 

as a batch. Present batch systems are not limited to cards or tapes, but the jobs 

are still processed serially, without the interaction of the user. The efficiency of 

these systems was measured in the number of jobs completed in a given amount 

of time called as throughput. Today’s operating systems are not limited to batch 

programs. This was the next logical step in the evolution of operating systems to 

automate the sequencing of operations involved in program execution and in the 

mechanical aspects of program development. The intent was to increase system 
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resource utilization and programmer productivity by reducing or eliminating 

component idle times caused by comparatively lengthy manual operations.  

Furthermore, even when automated, housekeeping operations such as mounting 

of tapes and filling out log forms take a long time relative to processors and 

memory speeds. Since there is not much that can be done to reduce these 

operations, system performance may be increased by dividing this overhead 

among a number of programs. More specifically, if several programs are batched 

together on a single input tape for which housekeeping operations are performed 

only once, the overhead per program is reduced accordingly.  A related concept, 

sometimes called phasing, is to prearrange submitted jobs so that similar ones 

are placed in the same batch.  For example, by batching several Fortran 

compilation jobs together, the Fortran compiler can be loaded only once to 

process all of them in a row. To realize the resource-utilization potential of batch 

processing, a mounted batch of jobs must be executed automatically, without 

slow human intervention. Generally, Operating System commands are 

statements written in Job Control Language (JCL). These commands are 

embedded in the job stream, together with user programs and data. A memory-

resident portion of the batch operating system- sometimes called the batch 

monitor- reads, interprets, and executes these commands.  

Moreover, the sequencing of program execution mostly automated by batch 

operating systems, the speed discrepancy between fast processors and 

comparatively slow I/O devices, such as card readers and printers, emerged as a 

major performance bottleneck.  Further improvements in batch processing were 

mostly along the lines of increasing the throughput and resource utilization by 

overlapping input and output operations. These developments have coincided 

with the introduction of direct memory access (DMA) channels, peripheral 

controllers, and later dedicated input/output processors. As a result, computers 

for offline processing were often replaced by sophisticated input/output programs 

executed on the same computer with the batch monitor. 

Many single-user operating systems for personal computers basically provide for 

serial processing. User programs are commonly loaded into memory and 
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executed in response to user commands typed on the console. A file 

management system is often provided for program and data storage. A form of 

batch processing is made possible by means of files consisting of commands to 

the Operating System that are executed in sequence. Command files are 

primarily used to automate complicated customization and operational 

sequences of frequent operations.  

1.2.2.3 Multiprogramming 
In multiprogramming, many processes are simultaneously resident in memory, 

and execution switches between processes. The advantages of 

multiprogramming are the same as the commonsense reasons that in life you do 

not always wait until one thing has finished before starting the next thing. 

Specifically:  

¾ More efficient use of computer time. If the computer is running a single 

process, and the process does a lot of I/O, then the CPU is idle most of the 

time. This is a gain as long as some of the jobs are I/O bound -- spend most 

of their time waiting for I/O.  

¾ Faster turnaround if there are jobs of different lengths. Consideration (1) 

applies only if some jobs are I/O bound. Consideration (2) applies even if all 

jobs are CPU bound. For instance, suppose that first job A, which takes an 

hour, starts to run, and then immediately afterward job B, which takes 1 

minute, is submitted. If the computer has to wait until it finishes A before it 

starts B, then user A must wait an hour; user B must wait 61 minutes; so the 

average waiting time is 60-1/2 minutes. If the computer can switch back and 

forth between A and B until B is complete, then B will complete after 2 

minutes; A will complete after 61 minutes; so the average waiting time will be 

31-1/2 minutes. If all jobs are CPU bound and the same length, then there is 

no advantage in multiprogramming; you do better to run a batch system. The 

multiprogramming environment is supposed to be invisible to the user 

processes; that is, the actions carried out by each process should proceed in 

the same was as if the process had the entire machine to itself. 

This raises the following issues:  
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¾ Process model: The state of an inactive process has to be encoded and 

saved in a process table so that the process can be resumed when made 

active.  

¾ Context switching: How does one carry out the change from one process to 

another?  

¾ Memory translation: Each process treats the computer's memory as its own 

private playground. How can we give each process the illusion that it can 

reference addresses in memory as it wants, but not have them step on each 

other's toes? The trick is by distinguishing between virtual addresses -- the 

addresses used in the process code -- and physical addresses -- the actual 

addresses in memory. Each process is actually given a fraction of physical 

memory. The memory management unit translates the virtual address in the 

code to a physical address within the user's space. This translation is invisible 

to the process.  

¾ Memory management: How does the Operating System assign sections of 

physical memory to each process?  

¾ Scheduling: How does the Operating System choose which process to run 

when?  

Let us briefly review some aspects of program behavior in order to motivate the 

basic idea of multiprogramming. This is illustrated in Figure 6, indicated by 

dashed boxes. Idealized serial execution of two programs, with no inter-program 

idle times, is depicted in Figure 6(a). For comparison purposes, both programs 

are assumed to have identical behavior with regard to processor and I/O times 

and their relative distributions. As Figure 6(a) suggests, serial execution of 

programs causes either the processor or the I/O devices to be idle at some time 

even if the input job stream is never empty. One way to attack this problem is to 

assign some other work to the processor and I/O devices when they would 

otherwise be idling.  

         

Program 1  Program 2 

Figure 6(a) 
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Figure 6(b) illustrates a possible scenario of concurrent execution of the two 

programs introduced in Figure 6(a). It starts with the processor executing the first 

computational sequence of Program 1. Instead of idling during the subsequent 

I/O sequence of Program 1, the processor is assigned to the first computational 

sequence of the Program 2, which is assumed to be in memory and awaiting 

execution. When this work is done, the processor is assigned to Program 1 

again, then to Program 2, and so forth.  

Program 1 

    

Program 2  

    

 

P1 P2 P1 P2 P1 Time Æ 

CPU activity 

Figure 6 (b) Multiprogrammed executions 
As Figure 6 suggests, significant performance gains may be achieved by 

interleaved executing of programs, or multiprogramming, as this mode of 

operation is usually called. With a single processor, parallel execution of 

programs is not possible, and at most one program can be in control of the 

processor at any time. The example presented in Figure 6(b) achieves 100% 

processor utilization with only two active programs. The number of programs 

actively competing for resources of a multi-programmed computer system is 

called the degree of multiprogramming. In principle, higher degrees of 

multiprogramming should result in higher resource utilization. Time-sharing 

systems found in many university computer centers provide a typical example of 

a multiprogramming system.  

1.2.3 TYPES OF OPERATING SYSTEMS 
Operating System can be classified into various categories on the basis of 

several criteria, viz. number of simultaneously active programs, number of users 

working simultaneously, number of processors in the computer system, etc. In 

the following discussion several types of operating systems are discussed.  
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1.2.3.1 Batch Operating System 
Batch processing is the most primitive type of operating system. Batch 

processing generally requires the program, data, and appropriate system 

commands to be submitted together in the form of a job. Batch operating 

systems usually allow little or no interaction between users and executing 

programs. Batch processing has a greater potential for resource utilization than 

simple serial processing in computer systems serving multiple users. Due to 

turnaround delays and offline debugging, batch is not very convenient for 

program development. Programs that do not require interaction and programs 

with long execution times may be served well by a batch operating system. 

Examples of such programs include payroll, forecasting, statistical analysis, and 

large scientific number-crunching programs. Serial processing combined with 

batch like command files is also found on many personal computers. Scheduling 

in batch is very simple. Jobs are typically processed in order of their submission, 

that is, first-come first-served fashion.  

Memory management in batch systems is also very simple. Memory is usually 

divided into two areas. The resident portion of the Operating System permanently 

occupies one of them, and the other is used to load transient programs for 

execution. When a transient program terminates, a new program is loaded into 

the same area of memory. Since at most one program is in execution at any 

time, batch systems do not require any time-critical device management. For this 

reason, many serial and I/O and ordinary batch operating systems use simple, 

program controlled method of I/O. The lack of contention for I/O devices makes 

their allocation and deallocation trivial.  

Batch systems often provide simple forms of file management. Since access to 

files is also serial, little protection and no concurrency control of file access in 

required. 

1.2.3.2 Multiprogramming Operating System 
A multiprogramming system permits multiple programs to be loaded into memory 

and execute the programs concurrently. Concurrent execution of programs has a 

significant potential for improving system throughput and resource utilization 
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relative to batch and serial processing. This potential is realized by a class of 

operating systems that multiplex resources of a computer system among a 

multitude of active programs. Such operating systems usually have the prefix 

multi in their names, such as multitasking or multiprogramming. 

1.2.3.3 Multitasking Operating System 
It allows more than one program to run concurrently. The ability to execute more 

than one task at the same time is called as multitasking. An instance of a 

program in execution is called a process or a task. A multitasking Operating 

System is distinguished by its ability to support concurrent execution of two or 

more active processes. Multitasking is usually implemented by maintaining code 

and data of several processes in memory simultaneously, and by multiplexing 

processor and I/O devices among them. Multitasking is often coupled with 

hardware and software support for memory protection in order to prevent 

erroneous processes from corrupting address spaces and behavior of other 

resident processes. The terms multitasking and multiprocessing are often used 

interchangeably, although multiprocessing sometimes implies that more than one 

CPU is involved. In multitasking, only one CPU is involved, but it switches from 

one program to another so quickly that it gives the appearance of executing all of 

the programs at the same time. There are two basic types of multitasking: 

preemptive and cooperative. In preemptive multitasking, the Operating System 

parcels out CPU time slices to each program. In cooperative multitasking, each 

program can control the CPU for as long as it needs it. If a program is not using 

the CPU, however, it can allow another program to use it temporarily. OS/2, 

Windows 95, Windows NT, and UNIX use preemptive multitasking, whereas 

Microsoft Windows 3.x and the MultiFinder use cooperative multitasking.  
1.2.3.4 Multi-user Operating System 
Multiprogramming operating systems usually support multiple users, in which 

case they are also called multi-user systems. Multi-user operating systems 

provide facilities for maintenance of individual user environments and therefore 

require user accounting. In general, multiprogramming implies multitasking, but 

multitasking does not imply multi-programming. In effect, multitasking operation 
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is one of the mechanisms that a multiprogramming Operating System employs in 

managing the totality of computer-system resources, including processor, 

memory, and I/O devices. Multitasking operation without multi-user support can 

be found in operating systems of some advanced personal computers and in 

real-time systems. Multi-access operating systems allow simultaneous access to 

a computer system through two or more terminals. In general, multi-access 

operation does not necessarily imply multiprogramming. An example is provided 

by some dedicated transaction-processing systems, such as airline ticket 

reservation systems, that support hundreds of active terminals under control of a 

single program. 

In general, the multiprocessing or multiprocessor operating systems manage the 

operation of computer systems that incorporate multiple processors. 

Multiprocessor operating systems are multitasking operating systems by 

definition because they support simultaneous execution of multiple tasks 

(processes) on different processors. Depending on implementation, multitasking 

may or may not be allowed on individual processors. Except for management 

and scheduling of multiple processors, multiprocessor operating systems provide 

the usual complement of other system services that may qualify them as time-

sharing, real-time, or a combination operating system.  

1.2.3.5 Multithreading 
Multithreading allows different parts of a single program to run concurrently. The 

programmer must carefully design the program in such a way that all the threads 

can run at the same time without interfering with each other.  

1.2.3.6 Time-sharing system 
Time-sharing is a popular representative of multi-programmed, multi-user 

systems. In addition to general program-development environments, many large 

computer-aided design and text-processing systems belong to this category. One 

of the primary objectives of multi-user systems in general, and time-sharing in 

particular, is good terminal response time. Giving the illusion to each user of 

having a machine to oneself, time-sharing systems often attempt to provide 

equitable sharing of common resources. For example, when the system is 
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loaded, users with more demanding processing requirements are made to wait 

longer. 

This philosophy is reflected in the choice of scheduling algorithm. Most time-

sharing systems use time-slicing scheduling. In this approach, programs are 

executed with rotating priority that increases during waiting and drops after the 

service is granted. In order to prevent programs from monopolizing the 

processor, a program executing longer than the system-defined time slice is 

interrupted by the Operating System and placed at the end of the queue of 

waiting programs. This mode of operation generally provides quick response time 

to interactive programs. Memory management in time-sharing systems provides 

for isolation and protection of co-resident programs. Some forms of controlled 

sharing are sometimes provided to conserve memory and possibly to exchange 

data between programs. Being executed on behalf of different users, programs in 

time-sharing systems generally do not have much need to communicate with 

each other.  As in most multi-user environments, allocation and de-allocation of 

devices must be done in a manner that preserves system integrity and provides 

for good performance.  

1.2.3.7 Real-time systems 
Real time systems are used in time critical environments where data must be 

processed extremely quickly because the output influences immediate decisions. 

Real time systems are used for space flights, airport traffic control, industrial 

processes, sophisticated medical equipments, telephone switching etc. A real 

time system must be 100 percent responsive in time. Response time is 

measured in fractions of seconds. In real time systems the correctness of the 

computations not only depends upon the logical correctness of the computation 

but also upon the time at which the results is produced. If the timing constraints 

of the system are not met, system failure is said to have occurred. Real-time 

operating systems are used in environments where a large number of events, 

mostly external to the computer system, must be accepted and processed in a 

short time or within certain deadlines.  
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A primary objective of real-time systems is to provide quick event-response 

times, and thus meet the scheduling deadlines. User convenience and resource 

utilization are of secondary concern to real-time system designers. It is not 

uncommon for a real-time system to be expected to process bursts of thousands 

of interrupts per second without missing a single event. Such requirements 

usually cannot be met by multi-programming alone, and real-time operating 

systems usually rely on some specific policies and techniques for doing their job. 

The Multitasking operation is accomplished by scheduling processes for 

execution independently of each other. Each process is assigned a certain level 

of priority that corresponds to the relative importance of the event that it services. 

The processor is normally allocated to the highest-priority process among those 

that are ready to execute. Higher-priority processes usually preempt execution of 

the lower-priority processes. This form of scheduling, called priority-based 

preemptive scheduling, is used by a majority of real-time systems. Unlike, say, 

time-sharing, the process population in real-time systems is fairly static, and 

there is comparatively little moving of programs between primary and secondary 

storage. On the other hand, processes in real-time systems tend to cooperate 

closely, thus necessitating support for both separation and sharing of memory. 

Moreover, as already suggested, time-critical device management is one of the 

main characteristics of real-time systems. In addition to providing sophisticated 

forms of interrupt management and I/O buffering, real-time operating systems 

often provide system calls to allow user processes to connect themselves to 

interrupt vectors and to service events directly. File management is usually found 

only in larger installations of real-time systems. In fact, some embedded real-time 

systems, such as an onboard automotive controller, may not even have any 

secondary storage. The primary objective of file management in real-time 

systems is usually speed of access, rather then efficient utilization of secondary 

storage.  

1.2.3.8 Combination of operating systems 
Different types of Operating System are optimized or geared up to serve the 

needs of specific environments. In practice, however, a given environment may 
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not exactly fit any of the described molds. For instance, both interactive program 

development and lengthy simulations are often encountered in university 

computing centers. For this reason, some commercial operating systems provide 

a combination of described services. For example, a time-sharing system may 

support interactive users and also incorporate a full-fledged batch monitor. This 

allows computationally intensive non-interactive programs to be run concurrently 

with interactive programs. The common practice is to assign low priority to batch 

jobs and thus execute batched programs only when the processor would 

otherwise be idle. In other words, batch may be used as a filler to improve 

processor utilization while accomplishing a useful service of its own. Similarly, 

some time-critical events, such as receipt and transmission of network data 

packets, may be handled in real-time fashion on systems that otherwise provide 

time-sharing services to their terminal users. 

1.2.3.9 Distributed Operating Systems 
A distributed computer system is a collection of autonomous computer systems 

capable of communication and cooperation via their hardware and software 

interconnections. Historically, distributed computer systems evolved from 

computer networks in which a number of largely independent hosts are 

connected by communication links and protocols. A distributed Operating System 

governs the operation of a distributed computer system and provides a virtual 

machine abstraction to its users. The key objective of a distributed Operating 

System is transparency. Ideally, component and resource distribution should be 

hidden from users and application programs unless they explicitly demand 

otherwise. Distributed operating systems usually provide the means for system-

wide sharing of resources, such as computational capacity, files, and I/O devices. 

In addition to typical operating-system services provided at each node for the 

benefit of local clients, a distributed Operating System may facilitate access to 

remote resources, communication with remote processes, and distribution of 

computations. The added services necessary for pooling of shared system 

resources include global naming, distributed file system, and facilities for 

distribution. 
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1.3 SUMMARY 
Operating System is also known as resource manager because its prime 

responsibility is to manage the resources of the computer system i.e. memory, 

processor, devices and files. In addition to these, Operating System provides an 

interface between the user and the bare machine. Following the course of the 

conceptual evolution of operating systems, we have identified the main 

characteristics of the program-execution and development environments 

provided by the bare machine, serial processing, including batch and 

multiprogramming. 

On the basis of their attributes and design objectives, different types of operating 

systems were defined and characterized with respect to scheduling and 

management of memory, devices, and files. The primary concerns of a time-

sharing system are equitable sharing of resources and responsiveness to 

interactive requests. Real-time operating systems are mostly concerned with 

responsive handling of external events generated by the controlled system. 

Distributed operating systems provide facilities for global naming and accessing 

of resources, for resource migration, and for distribution of computation. 

1.4 Keywords 
(i) SPOOL: Simultaneous Peripheral Operations On Line 

(ii) Task: An instance of a program in execution is called a process or a task. 

(iii) Multitasking: The ability to execute more than one task at the same time is 

called as multitasking.  

(iv) Real time: These systems are characterized by very quick processing of data 

because the output influences immediate decisions. 

(v) Multiprogramming: It is characterized by many programs simultaneously 

resident in memory, and execution switches between programs. 

1.5.   SELF ASSESMENT QUESTIONS (SAQ) 
1. What are the objectives of an operating system? Discuss. 

2. Differentiate between multiprogramming, multitasking, and 

multiprocessing. 

3. Discuss modular approach of development of an operating system. 
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4. Discuss whether there are any advantages of using a multitasking 

operating system, as opposed to a serial processing one. 

5. What are the major functions performed by an operating system? Explain. 

6. Why operating system is referred to as resource manager? Explain. 

7. Write a detailed note on the evolution of operating systems. 

8. What is a real time system? How is it different from other types of 

operating systems? Explain. 

1.6 SUGGESTED READINGS / REFERENCE MATERIAL 
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B., 

John Wiley and Sons. 

2. Systems Programming and Operating Systems, 2nd Revised Edition, 

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 
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Lesson Number: 2     Writer: Dr. Rakesh Kumar 

System calls and system programs Vetter: Prof. Dharminder Kumar 
 

2.0 Objectives 
The objective of this lesson is to provide the information about the various 

services provided by the operating system. After studying this lesson the 

students will be familiar with the various system services and how are those 

implemented. 

2.1 Introduction 
Operating system provides an environment in which programs are executed. 

Since operating system can only directly interact with the bare machine, it can 

only perform the basic input and output operations, so all the users programs 

have to request the operating system to perform these operations.  

As discussed in previous lesson, there arises a need to identify the system 

resources that must be managed by the Operating System and using the process 

viewpoint, we indicate when the corresponding resource manager comes into 

play. We now answer the question, “How are these resource managers 

activated, and where do they reside?” Does memory manager ever invoke the 

process scheduler? Does scheduler ever call upon the services of memory 

manager? Is the process concept only for the user or is it used by Operating 

System also?  

The Operating System provides many instructions in addition to the Bare 

machine instructions (A Bare machine is a machine without its software clothing, 

and it does not provide the environment which most programmers are desired 

for). Instructions that form a part of Bare machine plus those provided by the 

Operating System constitute the instruction set of the extended machine. The 

situation is pictorially represented in figure 1. The Operating System kernel runs 

on the bare machine; user programs run on the extended machine. This means 

that the kernel of Operating System is written by using the instructions of bare 
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machine only; whereas the users can write their programs by making use of 

instructions provided by the extended machine. 

 
Figure 1 Extended Machine View 

Extended Machine

Bare 
Machine 

Process 3 

Process 4 

Process 1 

Process 2 

 

The Operating System kernel runs on the bare machine; user programs run on 

the extended machine. This means that the kernel of Operating System is written 

by using the instructions of bare machine only; whereas the users can write their 

programs by making use of instructions provided by the extended machine. 

2.2 Presentation of contents 
 2.2.1 Hierarchical structure of an operating system 

 2.2.2 Virtual Machine 

2.2.3 System Services 

  2.2.3.1 System Calls 

   2.2.3.1.1 Types of System Calls 

2.2.3.1.2 System Call implementations 

2.2.3.1.3 Common system calls 

  2.2.3.2 System Programs 

2.2.1 Hierarchical Structure of an Operating System 
Let us now discuss how the operating system is put together. Most of the early 

operating systems consisted simply of one big program. This was called a brute 

force or monolithic approach. As computers systems became larger and more 

comprehensive, abovementioned approach became unmanageable. A better 

approach is to develop an operating system employing a modular approach. In 

this section we discuss a hierarchical view of an operating system to show how 
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various modules of an Operating System are organized with respect to each 

other.  

 

Outer Extended Machine 
 
 
 
 
 
 
 
 
 

Remaining Operating System Functions 

Inner Extended Machine 
 
 
 
Key Operating System Functions 

Bare Machine 

Process 1 

Process 2 

Process 3 Process 4 

O/S 
Process B 

O/S 
Process A 

Figure 2: Simple Hierarchical Machine View 
In order to use the hierarchical approach, we must answer the original question: 

Where does each module of the operating system fit in the hierarchy? Does it fit 

in the inner extended machine, or the outer extended machine, or as a process?  

Furthermore, the concept of two-level extended (inner and outer) machine can be 

extended even more; resulting into a multi-layer and multilevel approach. Figure 

3 illustrates the extended hierarchical structure of an operating system. All the 

processes (shown in boxes) use the kernel and share all the resources of the 

system. The parent-child or controller-controlled relationship between processes 

is depicted in figure 3 by placing them in different layers. 

In a strictly hierarchical implementation, a given level is allowed to call upon 

services of lower level, but not upon those of higher levels. In figure 3, layer0 

(kernel) is divided into 5 levels.  
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Information Management 

Device Management 

Processor Management Upper Level 

Memory Management 

Process Scheduling 

Hardware 

Figure 3: Hierarchical Operating System Structure 
Primitive functions residing in each level is discussed below: 

Level 1: Processor Management Lower Level 

  P and V operators 

  Process scheduling 

Level 2: Memory Management 

  Allocate memory 

  Release memory 

Level 3: Processor Management Upper Level 

  Create/destroy process 

  Send/receive messages between processes 

  Start/stop process 

Level 4: Device Management 

  Keep track of status of all I/O devices 

  Schedule I/O operations 

  Initiate I/O process 
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Level 5: Information Management 

  Create/destroy file 

  Open/Close file 

  Read/write file 

2.2.2. Virtual Machines 
The virtual machine approach makes it possible to run different operating system 

on the same real machine. 

System virtual machines (sometimes called hardware virtual machines) allow the 

sharing of the underlying physical machine resources between different virtual 

machines, each running its own operating system. The software layer providing 

the virtualization is called a virtual machine monitor or hypervisor. A hypervisor 

can run on bare hardware or on top of an operating system. 

The main advantages of system Virtual Machines are: 

• multiple Operating System environments can co-exist on the same 

computer, in strong isolation from each other 

• the virtual machine can provide an instruction set architecture (ISA) that is 

somewhat different from that of the real machine 

• Application provisioning, maintenance, high availability and disaster 

recovery. 

Multiple Virtual Machines each running their own operating system (called guest 

operating system) are frequently used in server consolidation, where different 

services that used to run on individual machines in order to avoid interference 

are instead run in separate Virtual Machines on the same physical machine. This 

use is frequently called quality-of-service isolation (QoS isolation). 

The desire to run multiple operating systems was the original motivation for 

virtual machines, as it allowed time-sharing a single computer between several 

single-tasking Operating Systems. This technique requires a process to share 

the CPU resources between guest operating systems and memory virtualization 

to share the memory on the host. 

The guest Operating Systems do not have to be all the same, making it possible 

to run different Operating Systems on the same computer (e.g., Microsoft 
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Windows and Linux, or older versions of an Operating System in order to support 

software that has not yet been ported to the latest version). The use of virtual 

machines to support different guest Operating Systems is becoming popular in 

embedded systems; a typical use is to support a real-time operating system at 

the same time as a high-level Operating System such as Linux or Windows. 

Another use is to sandbox an Operating System that is not trusted, possibly 

because it is a system under development. Virtual machines have other 

advantages for Operating System development, including better debugging 

access and faster reboots. 

Consider the following figure in which OS1, OS2, and OS4 are three different 

operating systems and OS3 is operating system under test. All these operating 

systems are running on the same real machine but they are not directly dealing 

with the real machine, they are dealing with Virtual Machine Monitor (VMM) 

which provides each user with the illusion of running on a separate machine. If 

the operating system being tested causes a system to crash, this crash affects 

only its own virtual machine. The other users of the real machine can continue 

their operation without being disturbed. Actually lowest level routines of the 

operating system deals with the VMM instead of the real machine which provides 

the services and functions as those available on the real machine. Each user of 

the virtual machine i.e. OS1, OS2 etc. runs in user mode, not supervisor mode, 

on the real machine. 
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Operating System 

OS1 

Operating System

OS2 

Operating System

OS3 (test) 

Operating System

OS4 

Virtual Machine Monitor (VMM) 

Real Machine 

Figure 4: Multiple users of a virtual machine operating system 
 

2.2.3 System Services 
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An operating system provides an environment for the execution of the programs. 

It provides certain services to programs and the users of the programs. The 

services are: 

(a) Program Execution: If a user want to execute a program then system must 

be able to load it in memory and run it. The program must be able to end it 

execution. 

(b) I/O operations: The running program may require input and output such as a 

file or an I/O device. The program cannot execute I/O operation directly, so the 

OS must facilitate this thing. 

(c) File system manipulation: If the running program is in need of files the OS 

should facilitate creation, deletion etc of files. 

(d) Error detection: The operating system has to continuously monitor the 

system because error may occur at any place such as in the CPU, in memory, in 

I/O devices or in the user program itself. The operating system has to ensure the 

correct and continuous computing.  

In addition to above classes of services, a number of other services are resource 

allocation, accounting and protection. When there are multiple users and 

programs the operating system has to manage the resources and keep account 

of each user and resources occupied by them. When multiple jobs are there in 

the system, operating system has to ensure that one should not interfere with the 

others. 

The two most common approaches to provide the services are system calls and 

system programs. 
2.2.3.1 SYSTEM CALLS  

The interface between the operating system and the user programs is 

defined by the set of “extended instructions” that the operating system 

provides. These extended instructions are known as system calls. 

System calls provide an interface between the process and the operating system. 

System calls allow user-level processes to request some services from the 

operating system which process itself is not allowed to do. In handling the trap, 

the operating system will enter in the kernel mode, where it has access to 
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privileged instructions, and can perform the desired service on the behalf of user-

level process. It is because of the critical nature of operations that the operating 

system itself does them every time they are needed. For example, for I/O a 

process involves a system call telling the operating system to read or write 

particular area and this request is satisfied by the operating system. 

System programs provide basic functioning to users so that they do not need to 

write their own environment for program development (editors, compilers) and 

program execution (shells). In some sense, they are bundles of useful system 

calls 

2.2.3.1.1 Types of System Calls 
System calls are kernel level service routines for implementing basic operations 

performed by the operating system. System calls can be grouped into three 

major categories: 

(a) Process and job control 

(b) Device and file manipulation 

(c) Information maintenance 

Process and job control 
The category includes the system call to end or abort the running program, to 

load and execute the program, to create new process or terminate the existing 

one, to get the process attributes and to set them. Another set of the system calls 

are helpful in debugging a program and to dump the memory.  

File manipulation 
Systems calls are required to read and delete the file, to open them and to close 

them. In order to perform the read, write and reposition operations we need the 

system calls. To read and determine the attributes of the files we need system 

calls. 

Device management 
In order to use a device, we first request the device, after using it we have to 

release it. Once the device has been requested we can read, write and reposition 

the device. 

Information maintenance 

Lesson Number II System Calls and System Programs 8



Many system calls exist for the purpose of transferring information between the 

user program and operating system such as a call to return the current time and 

date. 

Types of system calls 

Process Control 

1. End, Abort 

2. Load, Execute 

3.  Create Process, Terminate Process 

4. Get and Set Process attributes 

File manipulation 

1. Create File, Delete file 

2. Open and close file 

3. Read, write and reposition 

4. Get and set file attributes 

Device manipulation 

1. Request and release the devices 

2. Read, write and reposition 

3. Get and set Device attributes 

Information Maintenance 

1. Get/Set time or date 

2. Get/Set system date 

3. Get/Set process/file/device attributes

A system call is a request made by any program to the operating system for 

performing tasks -- picked from a predefined set -- which the said program does 

not have required permissions to execute in its own flow of execution. System 

calls provide the interface between a process and the operating system. Most 

operations interacting with the system require permissions not available to a user 

level process, e.g. I/O performed with a device present on the system or any 

form of communication with other processes requires the use of system calls. 

The fact that improper use of the system call can easily cause a system crash 

necessitates some level of control. The design of the microprocessor architecture 
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on practically all modern systems (except some embedded systems) offers a 

series of privilege levels -- the (low) privilege level in which normal applications 

execute limits the address space of the program so that it cannot access or 

modify other running applications nor the operating system itself. It also prevents 

the application from directly using devices (e.g. the frame buffer or network 

devices). But obviously many normal applications need these abilities; thus they 

can call the operating system. The operating system executes at the highest 

level of privilege and allows the applications to request services via system calls, 

which are often implemented through interrupts. If allowed, the system enters a 

higher privilege level, executes a specific set of instructions which the interrupting 

program has no direct control over, then returns control to the former flow of 

execution. This concept also serves as a way to implement security. 

With the development of separate operating modes with varying levels of 

privilege, a mechanism was needed for transferring control safely from lesser 

privileged modes to higher privileged modes. Less privileged code could not 

simply transfer control to more privileged code at any point and with any 

processor state. To allow it to do so would allow it to break security. For instance, 

the less privileged code could cause the higher privileged code to execute in the 

wrong order, or provide it with a bad stack. 

The library as an intermediary
Generally, systems provide a library that sits between normal programs and the 

operating system, usually an implementation of the C library (libc), such as glibc. 

This library handles the low-level details of passing information to the operating 

system and switching to supervisor mode, as well as any data processing and 

preparation which does not need to be done in privileged mode. Ideally, this 

reduces the coupling between the Operating System and the application, and 

increases portability. 

2.2.3.1.2 System Call implementations
On Unix, Unix-like and other POSIX-compatible Operating Systems, popular 

system calls are open, read, write, close, wait, exec, fork, exit, and kill. Many of 
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today's operating systems have hundreds of system calls. For example, Linux 

has 319 different system calls.  

Implementing system calls requires a control transfer which involves some sort of 

architecture-specific feature. A typical way to implement this is to use a software 

interrupt or trap. Interrupts transfer control to the Operating System so software 

simply needs to set up some register with the system call number they want and 

execute the software interrupt. 

Often more information is required then simply the call number. The exact type 

and amount of information depend upon the operating system and call. Three 

general methods are used to pass parameters between a running program and 

the operating system. 

¾ Pass parameters in registers. 

¾ Store the parameters in a table in memory, and the table address is 

passed as a parameter in a register. 

¾ Push (store) the parameters onto the stack by the program, and pop off 

the stack by operating system. 

 
Figure 5: Passing Parameters 

2.2.3.1.3 Common system calls 
Below are mentioned some of several generic system calls that most operating 

systems provide. 

CREATE (processID, attributes); 
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In response to the CREATE call, the Operating System creates a new process 

with the specified or default attributes and identifier. A process cannot create 

itself-because it would have to be running in order to invoke the Operating 

System, and it cannot run before being created. So a process must be created by 

another process. In response to the CREATE call, the Operating System obtains 

a new PCB from the pool of free memory, fills the fields with provided and/or 

default parameters, and inserts the PCB into the ready list-thus making the 

specified process eligible to run. Some of the parameters definable at the 

process-creation time include: (a) Level of privilege, such as system or user (b) 

Priority (c) Size and memory requirements (d) Maximum data area and/or stack 

size (e) Memory protection information and access rights (f) Other system-

dependent data 

Typical error returns, implying that the process was not created as a result of this 

call, include: wrongID (illegal, or process already active), no space for PCB 

(usually transient; the call may be retries later), and calling process not 

authorized to invoke this function. 

DELETE (process ID); 
DELETE invocation causes the Operating System to destroy the designated 

process and remove it from the system. A process may delete itself or another 

process. The Operating System reacts by reclaiming all resources allocated to 

the specified process, closing files opened by or for the process, and performing 

whatever other housekeeping is necessary. Following this process, the PCB is 

removed from its place of residence in the list and is returned to the free pool. 

This makes the designated process dormant. The DELETE service is normally 

invoked as a part of orderly program termination.  

To relieve users of the burden and to enhance probability of programs across 

different environments, many compilers compile the last END statement of a 

main program into a DELETE system call.  

Almost all multiprogramming operating systems allow processes to terminate 

themselves, provided none of their spawned processes is active. Operating 

System designers differ in their attitude toward allowing one process to terminate 
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others. The issue here is none of convenience and efficiency versus system 

integrity. Allowing uncontrolled use of this function provides a malfunctioning or a 

malevolent process with the means of wiping out all other processes in the 

system. On the other hand, terminating a hierarchy of processes in a strictly 

guarded system where each process can only delete itself, and where the parent 

must wait for children to terminate first, could be a lengthy operation indeed. The 

usual compromise is to permit deletion of other processes but to restrict the 

range to the members of the family, to lower-priority processes only, or to some 

other subclass of processes.  

Possible error returns from the DELETE call include: a child of this process is 

active (should terminate first), wrongID (the process does not exist), and calling 

process not authorized to invoke this function.  

Abort (processID); 
ABORT is a forced termination of a process. Although a process could 

conceivably abort itself, the most frequent use of this call is for involuntary 

terminations, such as removal of a malfunctioning process from the system. The 

Operating System performs much the same actions as in DELETE, except that it 

usually furnishes a register and memory dump, together with some information 

about the identity of the aborting process and the reason for the action. This 

information may be provided in a file, as a message on a terminal, or as an input 

to the system crash-dump analyzer utility. Obviously, the issue of restricting the 

authority to abort other processes, discussed in relation to the DELETE, is even 

more pronounced in relation to the ABORT call. 

Error returns for ABORT are practically the same as those listed in the discussion 

of the DELETE call.  

FORK/JOIN 

Another method of process creation and termination is by means of the 

FORK/JOIN pair, originally introduced as primitives for multiprocessor systems. 

The FORK operation is used to split a sequence of instructions into two 

concurrently executable sequences. After reaching the identifier specified in 

FORK, a new process (child) is created to execute one branch of the forked code 
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while the creating (parent) process continues to execute the other. FORK usually 

returns the identity of the child to the parent process, and the parent can use that 

identifier to designate the identity of the child whose termination it wishes to await 

before invoking a JOIN operation. JOIN is used to merge the two sequences of 

code divided by the FORK, and it is available to a parent process for 

synchronization with a child.  

The relationship between processes created by FORK is rather symbiotic in the 

sense that they execute from a single segment of code, and that a child usually 

initially obtains a copy of the variables of its parent. 

SUSPEND (processKD); 
The SUSPEND service is called SLEEP or BLOCK in some systems. The 

designated process is suspended indefinitely and placed in the suspended state. 

It does, however, remain in the system. A process may suspend itself or another 

process when authorized to do so by virtue of its level of privilege, priority, or 

family membership. When the running process suspends itself, it in effect 

voluntarily surrenders control to the operating system. The Operating System 

responds by inserting the target process's PCB into the suspended list and 

updating the PCB state field accordingly. 

Suspending a suspended process usually has no effect, except in systems that 

keep track of the depth of suspension. In such systems, a process must be 

resumed at least as many times as if was suspended in order to become ready. 

To implement this feature, a suspend-count field has to be maintained in each 

PCB. Typical error returns include: process already suspended, wrongID, and 

caller not authorized.  

RESUME (processID) 
The RESUME service is called WAKEUP is some systems. This call resumes the 

target process, which is presumably suspended. Obviously, a suspended 

process cannot resume itself, because a process must be running to have its 

Operating System call processed. So a suspended process depends on a 

partner process to issue the RESUME. The Operating System responds by 

inserting the target process's PCB into the ready list, with the state updated. In 
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systems that keep track of the depth of suspension, the Operating System first 

increments the suspend count, moving the PCB only when the count reaches 

zero.  

The SUSPEND/RESUME mechanism is convenient for relatively primitive and 

unstructured form of inter-process synchronization. It is often used in systems 

that do not support exchange of signals. Error returns include: process already 

active, wrongID, and caller not authorized.  

DELAY (processID, time); 
The system call DELAY is also known as SLEEP. The target process is 

suspended for the duration of the specified time period. The time may be 

expressed in terms of system clock ticks that are system-dependent and not 

portable, or in standard time units such as seconds and minutes. A process may 

delay itself or, optionally, delay some other process. 

The actions of the Operating System in handling this call depend on processing 

interrupts from the programmable interval timer. The timed delay is a very useful 

system call for implementing time-outs. In this application a process initiates an 

action and puts itself to sleep for the duration of the time-out. When the delay 

(time-out) expires, control is given back to the calling process, which tests the 

outcome of the initiated action. Two other varieties of timed delay are cyclic 

rescheduling of a process at given intervals (e.g,. running it once every 5 

minutes) and time-of-day scheduling, where a process is run at a specific time of 

the day. Examples of the latter are printing a shift log in a process-control system 

when a new crew is scheduled to take over, and backing up a database at 

midnight.  

The error returns include: illegal time interval or unit, wrongID, and called not 

authorized. In Ada, a task may delay itself for a number of system clock ticks 

(system-dependent) or for a specified time period using the pre-declared floating-

point type TIME. The DELAY statement is used for this purpose.  

GET_ATTRIBUTES (processID, attribute_set); 
GET_ATTRIBUTES is an inquiry to which the Operating System responds by 

providing the current values of the process attributes, or their specified subset, 
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from the PCB. This is normally the only way for a process to find out what its 

current attributes are, because it neither knows where its PCB is nor can access 

the protected Operating System space where the PCBs are usually kept. 

This call may be used to monitor the status of a process, its resource usage and 

accounting information, or other public data stored in a PCB. The error returns 

include: no such attribute, wrongID, and caller not authorized. In Ada, a task may 

examine the values of certain task attributes by means of reading the pre-

declared task attribute variables, such as T'ACTIVE, T'CALLABLE, T'PRIORITY, 

and T'TERMINATED, where T is the identity of the target task.  

CHANGE_PRIORITY (processID, new_priority); 
CHANGE_PRIORITY is an instance of a more general 

SET_PROCESS_ATTRIBUTES system call. Obviously, this call is not 

implemented in systems where process priority is static.  

Run-time modifications of a process's priority may be used to increase or 

decrease a process's ability to compete for system resources. The idea is that 

priority of a process should rise and fall according to the relative importance of its 

momentary activity, thus making scheduling more responsive to changes of the 

global system state. Low-priority processes may abuse this call, and processes 

competing with the Operating System itself may corrupt the whole system. For 

these reasons, the authority to increase priority is usually restricted to changes 

within a certain range. For example, maximum may be specified, or the process 

may not exceed its parent's or group priority. Although changing priorities of other 

processes could be useful, most implementations restrict the calling process to 

manipulate its own priority only.  

The error returns include: caller not authorized for the requested change and 

wrong ID. In Ada, a task may change its own priority by calling the 

SET_PRIORITY procedure, which is pre-declared in the language. 

2.2.3.2 System Programs 
System can be viewed as a collection of system programs. Most system supplies 

a large collection of system programs to solve common problems and provide a 
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convenient environment for program development and execution. These system 

programs can be divided into following categories: 

(a) File manipulation: These programs create, delete, copy, rename, print, 

dump and manipulate files and directories. 

(b) Status information: Some programs need the date, time, available 

memory, disk space, number of users etc and then format the information 

and print it on the terminal or file or on some output device. 

(c) File modification: A number of text editors are provided to create the file 

and manipulate their contents. 

(d) Programming language support: A number of compilers, assemblers, 

and interpreters are provided for common programming languages such 

as C, Basic etc. with the operating systems. 

(e) Program loading and execution: With operating system loaders and 

linkers are provided which are required to load and execute the program 

after their compilation. There are different types of loaders such as 

absolute loader, relocatable loader, overlay loaders, and linkage editors 

etc.  

(f) Application programs: In addition to above a number of common 

programs provided with operating system are database systems, 

compilers-compiler, statistical analysis package, text formatters etc. 

The most important system program for an operating system is its command 

interpreter. It is the program which reads and interprets the commands given by 

the user. This program is also known as control card interpreter or command line 

interpreter or the console command processor (in CP/M) or the shell (In Unix). Its 

function is simple: get the next command and execute it. The commands given to 

the command interpreter are implemented in two ways. In one approach the 

command interpreter itself contains the code to execute the command. So the 

number of commands that can be given determine the size of the command 

interpreter. An alternative approach implements all commands by special system 

programs. So the command interpreter merely uses the command to identify a 

file to be loaded into memory and executed. Thus a command delete X would 
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search for a file called delete, load it into the memory and pass it the parameter 

X. In this approach new commands can be easily added to the system by 

creating new files of the proper name. The command interpreter, which can now 

be quite small, need not be changed in order to add new commands. 

2.3 Summary 
Operating system provides an environment in which programs are executed. The 

bigger systems are organized in a hierarchical manner in which each layer 

provides some functionality. The virtual machine approach makes it possible to 

run different operating system on the same real machine. 

Operating system provides a number of services. At the lowest level system calls 

allow a running program to make requests from the operating system directly. 

System calls can be grouped into three major categories: Process and job 

control, Device and file manipulation, and Information maintenance. At a higher 

level, the command interpreter provides a mechanism for a user to issue a 

request without needing to write a program. System programs can be divided into 

the categories File manipulation, Status information, File modification, 

Programming language support, Program loading and execution, and Application 

programs. 

2.4 Keywords 
1. System calls: They provide an interface between the process and the 

operating system and allow user-level processes to request some services 

from the operating system which process itself is not allowed to do. 

2. Virtual machine: It makes it possible to run different operating system on 

the same real machine and allow the sharing of the underlying physical 

machine resources between different virtual machines, each running its 

own operating system. 

3. System Program: System can be viewed as a collection of system 

programs that solve common problems and provide a convenient 

environment for program development and execution. 
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2.5.   SELF ASSESMENT QUESTIONS (SAQ) 

1. What is extended machine view? What are the advantages of hierarchical 

operating system structure? Explain. 

2. Define system call? What are there different categories? Explain using 

suitable examples. 

3. What do you understand by a virtual machine? What are the different 

advantages of it? Write a detailed note. 

4. What do you understand by system programs? What are their different 

categories? Explain. 

5. What do you understand by command interpreter? What are the functions 

performed by it? Discuss the two different approached to implement it. 

2.6 SUGGESTED READINGS / REFERENCE MATERIAL 
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B., 

John Wiley and Sons. 

2. Systems Programming and Operating Systems, 2nd Revised Edition, 

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company 

Ltd., New Delhi, 2002. 
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Lesson number: 3     Writer: Dr. Rakesh Kumar 

CPU Scheduling     Vetter: Prof. Dharminder Kr. 
 

3.0 OBJECTIVE 
The objective of this lesson is to make the students familiar with the various 

issues of CPU scheduling. After studying this lesson, they will be familiar with: 

1. Process states and transitions. 

2. Different types of scheduler 

3. Scheduling criteria 

4. Scheduling algorithms  

3.1 INTRODUCTION 
In nearly every computer, the most often requested resource is processor. Many 

computers have only one processor, so this processor must be shared via time-

multiplexing among all the programs that need to execute on the computer. So 

processor management is an important function carried out by the operating 

system. Here we need to make an important distinction between a program and 

an executing program.  

One of the most fundamental concepts of modern operating systems is the 

distinction between a program and the activity of executing a program. The 

former is merely a static set of directions; the latter is a dynamic activity whose 

properties change as time progresses. This activity is knows as a process. A 

process encompasses the current status of the activity, called the process state. 

This state includes the current position in the program being executed (the value 

of the program counter) as well as the values in the other CPU registers and the 

associated memory cells. Roughly speaking, the process state is a snapshot of 

the machine at that time. At different times during the execution of a program (at 

different times in a process) different snapshots (different process states) will be 

observed. 

The operating system is responsible for managing all the processes that are 

running on a computer. It allocates each process a certain amount of time to use 
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the processor. In addition, the operating system also allocates various other 

resources that processes will need such as computer memory or disks. To keep 

track of the state of all the processes, the operating system maintains a table 

known as the process table. Inside this table, every process is listed along with 

the resources the processes are using and the current state of the process. 

Processes can be in one of three states: running, ready, or waiting (blocked). 

The running state means that the process has all the resources it need for 

execution and it has been given permission by the operating system to use the 

processor. Only one process can be in the running state at any given time. The 

remaining processes are either in a waiting state (i.e., waiting for some external 

event to occur such as user input or a disk access) or a ready state (i.e., waiting 

for permission to use the processor). In a real operating system, the waiting and 

ready states are implemented as queues, which hold the processes in these 

states. 

The assignment of physical processors to processes allows processors to 

accomplish work. The problem of determining when processors should be 

assigned and to which processes, is called processor scheduling or CPU 

scheduling. 

When more than one process is runable, the operating system must decide 

which one first. The part of the operating system concerned with this decision is 

called the scheduler, and algorithm it uses is called the scheduling algorithm. In 

operating system literature, the term “scheduling” refers to a set of policies and 

mechanisms built into the operating system that govern the order in which the 

work to be done by a computer system is completed. A scheduler is an Operating 

System module that selects the next job to be admitted into the system and the 

next process to run. The primary objective of scheduling is to optimize system 

performance in accordance with the criteria deemed most important by the 

system designers.  

3.2 PRESENTATION OF CONTENTS 
3.2.1 Definition of Process     

3.2.2 Process States and Transitions 
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3.2.3 Types of schedulers  

3.2.3.1 The long-term scheduler 

3.2.3.2 The medium-term scheduler 

3.2.3.3 The short-term scheduler 

3.2.4 Scheduling and Performance Criteria 

3.2.4.1 User-oriented Scheduling Criteria 

3.2.4.2 System-oriented Scheduling Criteria 

3.2.5 Scheduler Design 

3.2.6 Scheduling Algorithms 

3.2.6.1 First-Come, First-Served (FCFS) Scheduling 

3.2.6.2 Shortest Job First (SJF) 

3.2.6.3 Shortest Remaining Time Next (SRTN) Scheduling 

3.2.6.4 Round Robin 

3.2.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED) 

3.2.6.6 Multiple-Level Queues (MLQ) Scheduling 

3.2.6.7 Multiple-Level Queues with Feedback Scheduling 

3.2.1 Definition of Process     
The notion of process is central to the understanding of operating systems. There 

are quite a few definitions presented in the literature, but no "perfect" definition 

has yet appeared. 

The term "process" was first used by the designers of the MULTICS in 1960’s. 

Since then, the term process is used somewhat interchangeably with 'task' or 

'job'. The process has been given many definitions for instance 

¾ A program in Execution.  

¾ An asynchronous activity.  

¾ The 'animated sprit' of a procedure in execution.  

¾ The entity to which processors are assigned.  

¾ The 'dispatchable' unit.  

As we can see from above that there is no universally agreed upon definition, but 

the definition "Program in Execution" seem to be most frequently used. Now that 

we agreed upon the definition of process, the question is “what is the relation 
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between process and program?” In the following discussion we point out some of 

the difference between process and program. Process is not the same as 

program rather a process is more than a program code. A process is an active 

entity as oppose to program which consider being a 'passive' entity. As we all 

know that a program is an algorithm expressed in some suitable notation, (e.g., 

programming language). Being a passive, a program is only a part of process. 

Process, on the other hand, includes: 

¾ Current value of Program Counter (PC)  

¾ Contents of the processors registers  

¾ Value of the variables  

¾ The Process Stack (SP) which typically contains temporary data such as 

subroutine parameter, return address, and temporary variables.  

¾ A data section that contains global variables.  

A process is the unit of work in a system. 

In Process model, all software on the computer is organized into a number of 

sequential processes. A process includes PC, registers, and variables. 

Conceptually, each process has its own virtual CPU. In reality, the CPU switches 

back and forth among processes. The process state consist of everything 

necessary to resume the process execution if it is somehow put aside 

temporarily. The process state consists of at least following: 

¾ Code for the program.  

¾ Program's static data.  

¾ Program's dynamic data.  

¾ Program's procedure call stack.  

¾ Contents of general purpose register.  

¾ Contents of program counter (PC)  

¾ Contents of program status word (PSW).  

¾ Operating Systems resource in use.  

A process goes through a series of discrete process states. 

¾ New State: The process being created.  
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¾ Running State: A process is said to be running if it has the CPU, that is, 

process actually using the CPU at that particular instant.  

¾ Blocked (or waiting) State: A process is said to be blocked if it is waiting for 

some event to happen such that as an I/O completion before it can proceed. 

Note that a process is unable to run until some external event happens.  

¾ Ready State: A process is said to be ready if it use a CPU if one were 

available. A ready state process is runable but temporarily stopped running to 

let another process run.  

¾ Terminated state: The process has finished execution.  

3.2.2 Process States and Transitions 
The figure 1 contains much information. Consider a running process P that 

issues an I/O request. Then following events can take place: 

¾ The process is blocked i.e. moved from running state to blocked state.  

¾ At some later point, a disk interrupt occurs and the driver detects that P's 

request is satisfied.  

¾ P is unblocked, i.e. is moved from blocked to ready  

¾ At some later time the operating system looks for a ready job to run and picks 

P and P moved to running state. 

¾ A suspended process (i.e. blocked) may be removed from the main memory 

and placed in the backup memory (blocked suspended). Subsequently they 

may be released and moved to the ready state by the medium term 

scheduler. 
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Figure 1 
3.2.3 TYPES OF SCHEDULERS  

Operating systems may feature up to 3 distinct types of schedulers: a long-term 

scheduler (also known as an admission scheduler or high-level scheduler), a 

mid-term or medium-term scheduler and a short-term scheduler (also known as a 

dispatcher). The names suggest the relative frequency with which these 

functions are performed. Figure 2 shows the possible traversal paths of jobs and 

programs through the components and queues, depicted by rectangles, of a 

computer system. The primary places of action of the three types of schedulers 

are marked with down-arrows. As shown in Figure 2, a submitted batch job joins 

the batch queue while waiting to be processed by the long-term scheduler. Once 

scheduled for execution, processes spawned by the batch job enter the ready 

queue to await processor allocation by the short-term scheduler. After becoming 

suspended, the running process may be removed from memory and swapped 

out to secondary storage. Such processes are subsequently admitted to main 
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memory by the medium-term scheduler in order to be considered for execution 

by the short-term scheduler. 

 

 

 

 

       

                  

                  

         

Figure 2- Process Schedulers 

3.2.3.1 The long-term scheduler 
The long-term scheduler decides when to start jobs, i.e., do not necessarily start 

them when submitted. CTSS (an early time sharing system at MIT) did this to 

insure decent interactive response time. The long-term scheduler, when present, 

works with the batch queue and selects the next batch job to be executed. Batch 

is usually reserved for resource-intensive (processor time, memory, special I/O 

devices), low-priority programs that may be used as fillers to keep the system 

resources busy during periods of low activity of interactive jobs. Batch jobs 

contain all necessary data and commands for their execution. Batch jobs usually 

also contain programmer-assigned estimates of their resource needs, such as 

memory size, expected execution time, and device requirements. Knowledge 

about the anticipated job behavior facilitates the work of the long-term scheduler.  

The primary objective of the long-term scheduler is to provide a balanced mix of 

jobs, such as processor-bound and I/O-bound, to the short-term scheduler. In a 

way, the long-term scheduler acts as a first-level throttle in keeping resource 

utilization at the desired level. For example, when the processor utilization is low, 

the scheduler may admit more jobs to increase the number of processes in a 

ready queue, and with it the probability of having some useful work awaiting 

processor allocation. Conversely, when the utilization factor becomes high as 

reflected in the response time, the long-term scheduler may opt to reduce the 
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rate of batch-job admission accordingly. In addition, the long-term scheduler is 

usually invoked whenever a completed job departs the system. The frequency of 

invocation of the long-term scheduler is thus both system-and workload-

dependent; but it is generally much lower than for the other two types of 

schedulers. As a result of the relatively infrequent execution and the availability 

of an estimate of its workload's characteristics, the long-term scheduler may 

incorporate rather complex and computationally intensive algorithms for admitting 

jobs into the system. In terms of the process state-transition diagram, the long-

term scheduler is basically in charge of the dormant-to-ready transitions. Ready 

processes are placed in the ready queue for consideration by the short-term 

scheduler.  

3.2.3.2 The medium-term scheduler 
The medium term scheduler suspend (swap out) some process if memory is 

over-committed. The criteria for choosing a victim may be (a) How long since 

previously suspended? (b) How much CPU time used recently? (c) How much 

memory does it use? (d) External priority (pay more, get swapped out less) etc.  

A running process may become suspended by making an I/O request or by 

issuing a system call. Given that suspended processes cannot make any 

progress towards completion until the related suspending condition is removed, it 

is sometimes beneficial to remove them from main memory to make room for 

other processes. In practice, the main-memory capacity may impose a limit on 

the number of active processes in the system. When a number of those 

processes become suspended, the remaining supply of ready processes in 

systems where all suspended processes remain resident in memory may 

become reduced to a level that impairs functioning of the short-term scheduler by 

leaving it few or no options for selection. In systems with no support for virtual 

memory, moving suspended processes to secondary storage may alleviate this 

problem. Saving the image of a suspended process in secondary storage is 

called swapping and the process is said to be swapped out or rolled out.  

The medium-term scheduler is in charge of handling the swapped-out processes. 

It has little to do while a process remains suspended. However, once the 
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suspending condition is removed, the medium-term scheduler attempts to 

allocate the required amount of main memory, and swap the process in and 

make it ready. To work properly, the medium-term scheduler must be provided 

with information about the memory requirements of swapped-out processes.  

In terms of the state-transition diagram, the medium-term scheduler controls 

suspended-to-ready transitions of swapped processes. This scheduler may be 

invoked when memory space is vacated by a departing process or when the 

supply of ready processes falls below a specified limit. 

Medium-term scheduling is really part of the swapping function of an operating 

system. The success of the medium-term scheduler is based on the degree of 

multiprogramming that it can maintain, by keeping as many processes “runnable” 

as possible. More processes can remain executable if we reduce the resident set 

size of all processes. The medium-term scheduler makes decisions as to which 

pages of which processes need stay resident and which pages must be swapped 

out to make room for other processes. The sharing of some pages of memory, 

either explicitly or through the use of shared or dynamic link libraries complicates 

the task of the medium-term scheduler, which now must maintain reference 

counts on each page. The responsibilities of the medium-term scheduler may be 

further complicated in some operating systems, in which some processes may 

request that their pages remain locked in physical memory:  

3.2.3.3 The short-term scheduler 
The long-term scheduler runs relatively infrequently, when a decision must be 

made as to the admission of new processes: maybe on average every ten 

seconds. The medium-term scheduler runs more frequently, deciding which 

process’s pages to swap to and from the swapping device: typically once a 

second. The short-term scheduler, often termed the dispatcher, executes most 

frequently (every few hundredths of a second) making fine-grained decisions as 

to which process to move to Running next. The short-term scheduler is invoked 

whenever an event occurs which provides the opportunity, or requires, the 

interruption of the current process and the new (or continued) execution of 

another process. Such opportunities include: 
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¾ Clock interrupts, provide the opportunity to reschedule every few 

milliseconds, 

¾ Expected I/O interrupts, when previous I/O requests are finally satisfied, 

¾ Operating system calls, when the running process asks the operating system 

to perform an activity on its behalf, and 

¾ Unexpected, asynchronous, events, such as unexpected input, user-interrupt, 

or a fault condition in the running program. 

The short-term scheduler allocates the processor among the pool of ready 

processes resident in memory. Its main objective is to maximize system 

performance in accordance with the chosen set of criteria. Since it is in charge of 

ready-to-running state transitions, the short-term scheduler must be invoked for 

each process switch to select the next process to be run. In practice, the short-

term scheduler is invoked whenever an event (internal or external) causes the 

global state of the system to change. Given that any such change could result in 

making the running process suspended or in making one or more suspended 

processes ready, the short-term scheduler should be run to determine whether 

such significant changes have indeed occurred and, if so, to select the next 

process to be run. Some of the events occurred and, if so, to select the next 

process to be run.  
Most of the process-management Operating System services discussed in this 

lesson require invocation of the short-term scheduler as part of their processing. 

For example, creating a process or resuming a suspended one adds another 

entry to the ready queue and the scheduler is invoked to determine whether the 

new entry should also become the running process. Suspending a running 

process, changing priority of the running process, and exiting or aborting a 

process are also events that may necessitate selection of a new running process.  

As indicated in Figure 2, interactive programs often enter the ready queue 

directly after being submitted to the Operating System, which then creates the 

corresponding process. Unlike-batch jobs, the influx of interactive programs are 

not throttled, and they may conceivably saturate the system. The necessary 

control is usually provided indirectly by deterioration response time, which tempts 
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the users to give up and try again later, or at least to reduce the rate of incoming 

requests.  

Figure 2 illustrates the roles and the interplay among the various types of 

schedulers in an operating system. It depicts the most general case of all three 

types being present. For example, a larger operating system might support both 

batch and interactive programs and rely on swapping to maintain a well-behaved 

mix of active processes. Smaller or special-purpose operating systems may have 

only one or two types of schedulers available. Along-term scheduler is normally 

not found in systems without support for batch, and the medium-term scheduler 

is needed only when swapping is used by the underlying operating system. 

When more than one type of scheduler exists in an operating system, proper 

support for communication and interaction is very important for attaining 

satisfactory and balanced performance. For example, the long-term and the 

medium-term schedulers prepare workload for the short-term scheduler. If they 

do not provide a balanced mixed of compute-bound and I/O-bound processes, 

the short-term scheduler is not likely to perform well no matter how sophisticated 

it may be on its own merit.  

3.2.4 SCHEDULING and PERFORMANCE CRITERIA 
The objectives of a good scheduling policy include: 

¾ Fairness.  

¾ Efficiency.  

¾ Low response time (important for interactive jobs).  

¾ Low turnaround time (important for batch jobs).  

¾ High throughput  

¾ Repeatability.  

¾ Fair across projects.  

¾ Degrade gracefully under load.  

The success of the short-term scheduler can be characterized by its success 

against user-oriented criteria under which a single user evaluates their perceived 

response, or system-oriented criteria where the focus is on efficient global use of 

resources such as the processor and memory. A common measure of the 
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system-oriented criteria is throughput, the rate at which tasks are completed. On 

a single-user, interactive operating system, and the user-oriented criteria take 

precedence: it is unlikely that an individual will exhaust resource consumption, 

but responsiveness remains all important. On a multi-user, multi-tasking system, 

the global system-oriented criteria are more important as they attempt to provide 

fair scheduling for all, subject to priorities and available resources. 

3.2.4.1 User-oriented Scheduling Criteria 
Response time 
In an interactive system this measures the time between submissions of a new 

process request and the commencement of its execution. Alternatively, it can 

measure the time between a user issuing a request to interactive input (such as a 

prompt) and the time to echo the user’s input or accept the carriage return. 

Turnaround time 
This is the time between submission of a new process and its completion. 

Depending on the mixture of current tasks, two submissions of identical 

processes will likely have different turnaround times. Turnaround time is the sum 

of execution and waiting times. 

Deadlines 
In a genuine real-time operating system, hard deadlines may be requested by 

processes. These either demands that the process is completed with a 

guaranteed upper-bound on its turnaround time, or provide a guarantee that the 

process will receive the processor in a guaranteed maximum time in the event of 

an interrupt. A real-time long-term scheduler should only accept a new process if 

it can guarantee required deadlines. In combination, the short-term scheduler 

must also meet these deadlines. 

Predictability 
With lower importance, users expect similar tasks to take similar times. Wild 

variations in response and turnaround times are distracting. 
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3.2.4.2 System-oriented Scheduling Criteria 
Throughput 
The short-term scheduler attempts to maximize the number of completed jobs 

per unit time. While this is constrained by the mixture of jobs, and their execution 

profiles, the policy affects utilization and thus completion. 

Processor utilization 
The percentage of time that the processor may be fed with work from Ready 

queue. In a single-user, interactive system, processor utilization is very unlikely 

to exceed a few percent. 

Fairness 
Subject to priorities, all processes should be treated fairly, and none should 

suffer processor starvation. This simply implies, in most cases, that all processes 

are moved to the ends of their respective state queues, and may not “jump the 

queue”. 

Priorities 
Conversely, when processes are assigned priorities, the scheduling policy should 

favor higher priorities. 

3.2.5 SCHEDULER DESIGN 
Design process of a typical scheduler consists of selecting one or more primary 

performance criteria and ranking them in relative order of importance. The next 

step is to design a scheduling strategy that maximizes performance for the 

specified set of criteria while obeying the design constraints. One should 

intentionally avoid the word "optimization" because most scheduling algorithms 

actually implemented do not schedule optimally. They are based on heuristic 

techniques that yield good or near-optimal performance but rarely achieve 

absolutely optimal performance. The primary reason for this situation lies in the 

overhead that would be incurred by computing the optimal strategy at run-time, 

and by collecting the performance statistics necessary to perform the 

optimization. Of course, the optimization algorithms remain important, at least as 

a yardstick in evaluating the heuristics. Schedulers typically attempt to maximize 

the average performance of a system, relative to a given criterion. However, due 
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consideration must be given to controlling the variance and limiting the worst-

case behavior. For example, a user experiencing 10-second response time to 

simple queries has little consolation in knowing that the system's average 

response time is under 2 seconds.  

One of the problems in selecting a set of performance criteria is that they often 

conflict with each other. For example, increased processor utilization is usually 

achieved by increasing the number of active processes, but then response time 

deteriorates. As is the case with most engineering problems, the design of a 

scheduler usually requires careful balance of all the different requirements and 

constraints. With the knowledge of the primary intended use of a given system, 

operating-system designers tend to maximize the criteria most important in a 

given environment. For example, throughput and component utilization are the 

primary design objectives in a batch system. Multi-user systems are dominated 

by concerns regarding the terminal response time, and real-time operating 

systems are designed for the ability to handle burst of external events 

responsively.  

3.2.7 SCHEDULING ALGORITHMS 
The scheduling mechanisms described in this section may, at least in theory, be 

used by any of the three types of schedulers. As pointed out earlier, some 

algorithms are better suited to the needs of a particular type of scheduler. 

Depending on whether a particular scheduling discipline is primarily used by the 

long-term or by the short-term scheduler, we illustrate its working by using the 

term job or process for a unit of work, respectively. 

The scheduling policies may be categorized as preemptive and non-preemptive. 

So it is important to distinguish preemptive from non-preemptive scheduling 

algorithms. Preemption means the operating system moves a process from 

running to ready without the process requesting it. Without preemption, the 

system implements “run to completion''.  Preemption needs a clock interrupt (or 

equivalent). Preemption is needed to guarantee fairness and it is found in all 

modern general-purpose operating systems.  
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Non-pre-emptive:  In non-preemptive scheduling, once a process is executing, it 

will continue to execute until 

¾ It terminates, or 

¾ It makes an I/O request which would block the process, or 

¾ It makes an operating system call. 

Pre-emptive: In the preemptive scheduling, the same three conditions as above 

apply, and in addition the process may be pre-empted by the operating system 

when 

¾ A new process arrives (perhaps at a higher priority), or 

¾ An interrupt or signal occurs, or 

¾ A (frequent) clock interrupt occurs. 

CPU Scheduling deals with the problem of deciding which of the processes in the 

ready queue is to be allocated the CPU. Following are some scheduling 

algorithms we will study: FCFS Scheduling, Round Robin Scheduling, SJF 

Scheduling, SRTN Scheduling, Priority Scheduling, Multilevel Queue Scheduling, 

and Multilevel Feedback Queue Scheduling.  

3.2.6.1 First-Come, First-Served (FCFS) Scheduling 
The simplest selection function is the First-Come-First-Served (FCFS) scheduling 

policy. In it 

1. The operating system kernel maintains all Ready processes in a single 

queue, 

2. The process at the head of the queue is always selected to execute next, 

3. The Running process runs to completion, unless it requests blocking I/O, 

4. If the Running process blocks, it is placed at the end of the Ready queue. 

Clearly, once a process commences execution, it will run as fast as possible 

(having 100% of the CPU, and being non-pre-emptive), but there are some 

obvious problems. By failing to take into consideration the state of the system 

and the resource requirements of the individual scheduling entities, FCFS 

scheduling may result in poor performance. As a consequence of no preemption, 

component utilization and the system throughput rate may be quite low. 
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Processes of short duration suffer when “stuck” behind very long-running 

processes. Since there is no discrimination on the basis of the required service, 

short jobs may suffer considerable turnaround delays and waiting times when 

one or more long jobs are in the system. For example, consider a system with 

two jobs, J1 and J2, with total execution times of 20 and 2 time units, 

respectively. If they arrive shortly one after the other in the order J1-J2, the 

turnaround times are 20 and 22 time units, respectively (J2 must wait for J1 to 

complete), thus yielding an average of 21 time units. The corresponding waiting 

times are 0 and 20 unit, yielding an average of 10 time units. However, when the 

same two jobs arrive in the opposite order, J2-J1, the average turnaround time 

drops to 11, and the average waiting time is only 1 time unit.  

Compute-bound processes are favored over I/O-bound processes. 

We can measure the effect of FCFS by examining: 

¾ The average turnaround time of each task (the sum of its waiting and running 

times), or 

¾ The normalized turnaround time (the ratio of running to waiting times). 

3.2.6.2 Shortest Job First (SJF) 
In this scheduling policy, the jobs are sorted on the basis of total execution time 

needed and then it run the shortest job first. It is a non-preemptive scheduling 

policy. Now First consider a static situation where all jobs are available in the 

beginning, and we know how long each one takes to run, and we implement “run-

to-completion'' (i.e., we don't even switch to another process on I/O). In this 

situation, SJF has the shortest average waiting time. Assume you have a 

schedule with a long job right before a short job. Now if we swap the two jobs, 

this decreases the wait for the short by the length of the long job and increases 

the wait of the long job by the length of the short job and this in turn decreases 

the total waiting time for these two. Hence decreases the total waiting for all jobs 

and hence decreases the average waiting time as well. So in this policy 

whenever a long job is right before a short job, we swap them and decrease the 

average waiting time. Thus the lowest average waiting time occurs when there 
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are no short jobs rights before long jobs. This is an example of priority 

scheduling. This scheduling policy can starve processes that require a long burst.  

3.2.6.3 Shortest Remaining Time Next (SRTN) Scheduling 
Shortest remaining time next is a scheduling discipline in which the next 

scheduling entity, a job or a process, is selected on the basis of the shortest 

remaining execution time. SRTN scheduling may be implemented in either the 

non-preemptive or the preemptive variety. The non-preemptive version of SRTN 

is called shortest job first (SJF). In either case, whenever the SRTN scheduler is 

invoked, it searches the corresponding queue (batch or ready) to find the job or 

the process with the shortest remaining execution time. The difference between 

the two cases lies in the conditions that lead to invocation of the scheduler and, 

consequently, the frequency of its execution. Without preemption, the SRTN 

scheduler is invoked whenever a job is completed or the running process 

surrenders control to the Operating System. In the preemptive version, whenever 

an event occurs that makes a new process ready, the scheduler is invoked to 

compare the remaining processor execution time of the running process with the 

time needed to complete the next processor burst of the newcomer. Depending 

on the outcome, the running process may continue, or it may be preempted and 

replaced by the shortest-remaining-time process. If preempted, the running 

process joins the ready queue.  

SRTN is a provably optimal scheduling discipline in terms of minimizing the 

average waiting time of a given workload. SRTN scheduling is done in a 

consistent and predictable manner, with a bias towards short jobs. With the 

addition of preemption, an SRTN scheduler can accommodate short jobs that 

arrive after commencement of a long job. Preferred treatment of short jobs in 

SRTN tends to result in increased waiting times of long jobs in comparison with 

FCFS scheduling, but this is usually acceptable.  

The SRTN discipline schedules optimally assuming that the exact future 

execution times of jobs or processes are known at the time of scheduling. In the 

case of short-term scheduling and preemption’s, even more detailed knowledge 

of the duration of each individual processor burst is required. Dependence on 
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future knowledge tends to limit the effectiveness of SRTN implementations in 

practice, because future process behavior is unknown in general and difficult to 

estimate reliably, except for some very specialized deterministic cases.  

Predictions of process execution requirements are usually based on observed 

past behavior, perhaps coupled with some other knowledge of the nature of the 

process and its long-term statistical properties, if available. A relatively simple 

predictor, called the exponential smoothing predictor, has the following form: 

    Pn = α0n-1 + (1 - α)P-1 

where 0n is the observed length of the (n-1)th execution interval, Pn-1 is the 

predictor for the same interval, and α is a number between 0 and 1. The 

parameter α controls the relative weight assigned to the past observations and 

predictions. For the extreme case of α = 1, the past predictor is ignored, and the 

new prediction equals the last observation. For α = 0, the last observation is 

ignored. In general, expansion of the recursive relationship yields 

     n - 1 

    Pn = α ∑ (1 - α)i0n-i-1 

     I = 0     

Thus the predictor includes the entire process history, with its more recent history 

weighted more.  

Many operating systems measure and record elapsed execution time of a 

process in its PCB. This information is used for scheduling and accounting 

purposes. Implementation of SRTN scheduling obviously requires rather precise 

measurement and imposes the overhead of predictor calculation at run time. 

Moreover, some additional feedback mechanism is usually necessary for 

corrections when the predictor is grossly incorrect. 

SRTN scheduling has important theoretical implications, and it can serve as a 

yardstick for assessing performance of other, realizable scheduling disciplines in 

terms of their deviation from the optimum. Its practical application depends on 

the accuracy of prediction of the job and process behavior, with increased 

accuracy calling for more sophisticated methods and thus resulting in greater 

overhead. The preemptive variety of SRTN incurs the additional overhead of 
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frequent process switching and scheduler invocation to examine each and every 

process transition into the ready state. This work is wasted when the new ready 

process has a longer remaining execution time than the running process.  

3.2.6.4 Round Robin 
In interactive environments, such as time-sharing systems, the primary 

requirement is to provide reasonably good response time and, in general, to 

share system resources equitably among all users. Obviously, only preemptive 

disciplines may be considered in such environments, and one of the most 

popular is time slicing, also known as round robin (RR). 

It is a preemptive scheduling policy. This scheduling policy gives each process a 

slice of time (i.e., one quantum) before being preempted. As each process 

becomes ready, it joins the ready queue. A clock interrupt is generated at 

periodic intervals. When the interrupt occurs, the currently running process is 

preempted, and the oldest process in the ready queue is selected to run next. 

The time interval between each interrupt may vary. 

It is one of the most common and most important scheduler. This is not the 

simplest scheduler, but it is the simplest preemptive scheduler. It works as 

follows:  

¾ The processes that are ready to run (i.e. not blocked) are kept in a FIFO 

queue, called the "Ready" queue.  

¾ There is a fixed time quantum (50 msec is a typical number) which is the 

maximum length that any process runs at a time.  

¾ The currently active process P runs until one of two things happens:  

• P blocks (e.g. waiting for input). In that case, P is taken off the ready 

queue; it is in the "blocked" state.  

• P exhausts its time quantum. In this case, P is pre-empted, even though it 

is still able to run. It is put at the end of the ready queue.  

In either case, the process at the head of the ready queue is now made 

the active process.  

¾ When a process unblocks (e.g. the input it's waiting for is complete) it is put at 

the end of the ready queue.  
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Suppose the time quantum is 50 msec, process P is executing, and it blocks after 

20 msec. When it unblocks, and gets through the ready queue, it gets the 

standard 50 msec again; it doesn't somehow "save" the 30 msec that it missed 

last time.  

It is an important preemptive scheduling policy and is essentially the preemptive 

version of FCFS. The key parameter here is the quantum size q.  When a 

process is put into the running state a timer is set to q. If the timer goes off and 

the process is still running, the Operating System preempts the process. This 

process is moved to the ready state where it is placed at the rear of the ready 

queue. The process at the front of the ready list is removed from the ready list 

and run (i.e., moves to state running). When a process is created, it is placed at 

the rear of the ready list.  As q gets large, RR approaches FCFS.  As q gets 

small, RR approaches PS (Processor Sharing).  

What value of q should we choose? Actually it is a tradeoff (1) Small q makes 

system more responsive, (2) Large q makes system more efficient since less 

process switching.  

Round robin scheduling achieves equitable sharing of system resources. Short 

processes may be executed within a single time quantum and thus exhibit good 

response times. Long processes may require several quanta and thus be forced 

to cycle through the ready queue a few times before completion. With RR 

scheduling, response time of long processes is directly proportional to their 

resource requirements. For long processes that consist of a number of interactive 

sequences with the user, primarily the response time between the two 

consecutive interactions matters. If the computational requirements between two 

such sequences may be completed within a single time slice, the user should 

experience good response time. RR tends to subject long processes without 

interactive sequences to relatively long turnaround and waiting times. Such 

processes, however, may best be run in the batch mode, and it might even be 

desirable to discourage users from submitting them to the interactive scheduler.  

Implementation of round robin scheduling requires support of an interval timer-

preferably a dedicated one, as opposed to sharing the system time base. The 
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timer is usually set to interrupt the operating system whenever a time slice 

expires and thus force the scheduler to be invoked. The scheduler itself simply 

stores the context of the running process, moves it to the end of the ready queue, 

and dispatches the process at the head of the ready queue. The scheduler is 

also invoked to dispatch a new process whenever the running process 

surrenders control to the operating system before expiration of its time quantum, 

say, by requesting I/O. The interval timer is usually reset at that point, in order to 

provide the full time slot to the new running process. The frequent setting and 

resetting of a dedicated interval timer makes hardware support desirable in 

systems that use time slicing. 

Round robin scheduling is often regarded as a "fair" scheduling discipline. It is 

also one of the best-known scheduling disciplines for achieving good and 

relatively evenly distributed terminal response time. The performance of round 

robin scheduling is very sensitive to the choice of the time slice. For this reason, 

duration of the time slice is often made user-tunable by means of the system 

generation process. 

The relationship between the time slice and performance is markedly nonlinear. 

Reduction of the time slice should not be carried too far in anticipation of better 

response time. Too short a time slice may result in significant overhead due to 

the frequent timer interrupts and process switches. On the other hand, too long a 

time slice reduces the preemption overhead but increases response time.  

Too short a time slice results in excessive overhead, and too long a time slice 

degenerates from round-robin to FCFS scheduling, as processes surrender 

control to the Operating System rather than being preempted by the interval 

timer. The "optimal" value of the time slice lies somewhere in between, but it is 

both system-dependent and workload-dependent. For example, the best value of 

time slice for our example may not turn out to be so good when other processes 

with different behavior are introduced in the system, that is, when characteristics 

of the workload change. This, unfortunately, is commonly the case with time-

sharing systems where different types of programs may be submitted at different 

times. 
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In summary, round robin is primarily used in time-sharing and multi-user systems 

where terminal response time is important.  Round robin scheduling generally 

discriminates against long non-interactive jobs and depends on the judicious 

choice of time slice for adequate performance. Duration of a time slice is a 

tunable system parameter that may be changed during system generation.  

Variants of Round Robin 
State dependent RR  
It is same as RR but q is varied dynamically depending on the state of the 

system. It favors processes holding important resources. For example, non-

swappable memory.  

External priorities 
In it a user can pay more and get bigger q. That is one process can be given a 

higher priority than another. But this is not an absolute priority, i.e., the lower 

priority (i.e., less important) process does get to run, but not as much as the high 

priority process. 

3.2.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED) 
In it each job is assigned a priority (externally, perhaps by charging more for 

higher priority) and the highest priority ready job is run. In this policy, If many 

processes have the highest priority, it uses RR among them. In principle, each 

process in the system is assigned a priority level, and the scheduler always 

chooses the highest-priority ready process. Priorities may be static or dynamic. In 

either case, the user or the system assigns their initial values at the process-

creating time. The level of priority may be determined as an aggregate figure on 

the basis of an initial value, characteristic, resource requirements, and run-time 

behavior of the process. In this sense, many scheduling disciplines may be 

regarded as being priority-driven, where the priority of a process represents its 

likelihood of being scheduled next. Priority-based scheduling may be preemptive 

or non-preemptive.  

A common problem with priority-based scheduling is the possibility that low-

priority processes may be effectively locked out by the higher priority ones. In 

general, completion of a process within finite time of its creation cannot be 
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guaranteed with this scheduling policy. In systems where such uncertainty 

cannot be tolerated, the usually remedy is provided by the aging priority, in which 

the priority of each process is gradually increased after the process spends a 

certain amount of time in the system. Eventually, the older processes attain high 

priority and are ensured of completion in finite time.  

By means of assigning priorities to processes, system programmers can 

influence the order in which an ED scheduler services coincident external events. 

However, the high-priority ones may starve low-priority processes. Since it gives 

little consideration to resource requirements of processes, event-driven 

scheduling cannot be expected to excel in general-purpose systems, such as 

university computing centers, where a large number of user processes are run at 

the same (default) level of priority.  

Another variant of priority-based scheduling is used in the so-called hard real-

time systems, where each process must be guaranteed execution before 

expiration of its deadline. In such systems, time-critical processes are assumed 

to be assigned execution deadlines. The system workload consists of a 

combination of periodic processes, executed cyclically with a known period, and 

of periodic processes, whose arrival times are generally not predictable. An 

optimal scheduling discipline in such environments is the earliest-deadline 

scheduler, which schedules for execution the ready process with the earliest 

deadline. Another form of scheduler, called the least laxity scheduler or the least 

slack scheduler has also been shown to be optimal in single-processor systems. 

This scheduler selects the ready process with the least difference between its 

deadline and computation time. Interestingly, neither of these schedulers is 

optimal in multiprocessor environments.  

Priority aging 
It is a solution to the problem of starvation. As a job is waiting, raise its priority so 

eventually it will have the maximum priority. This prevents starvation. It is 

preemptive policy. If there are many processes with the maximum priority, it uses 

FCFS among those with max priority (risks starvation if a job doesn't terminate) 

or can use RR.  
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3.2.6.6 Multiple-Level Queues (MLQ) Scheduling 
The scheduling policies discussed so far are more or less suited to particular 

applications, with potentially poor performance when applied inappropriately. 

What should one use in a mixed system, with some time-critical events, a 

multitude of interactive users, and some very long non-interactive jobs? One 

approach is to combine several scheduling disciplines. A mix of scheduling 

disciplines may best service a mixed environment, each charged with what it 

does best. For example, operating-system processes and device interrupts may 

be subjected to event-driven scheduling, interactive programs to round robin 

scheduling, and batch jobs to FCFS or STRN. 

High priority queue 

Medium priority queue 

Low priority queue 

CPU 

System Processes 

Batch Processes 

Interactive Jobs 

Round Robin Scheduling 

FCFS Scheduling 

Event Driven Scheduling 

Between Queue 

Multilevel Queue Scheduling 
 

One way to implement complex scheduling is to classify the workload according 

to its characteristics, and to maintain separate process queues serviced by 

different schedulers. This approach is often called multiple-level queues (MLQ) 

scheduling. A division of the workload might be into system processes, 

interactive programs, and batch jobs. This would result in three ready queues, as 

depicted in above Figure. A process may be assigned to a specific queue on the 

basis of its attributes, which may be user-or system-supplied. Each queue may 

then be serviced by the scheduling discipline best suited to the type of workload 

that it contains. Given a single server, some discipline must also be devised for 

scheduling between queues. Typical approaches are to use absolute priority or 

time slicing with some bias reflecting relative priority of the processes within 

specific queues. In the absolute priority case, the processes from the highest-

priority queue (e.g. system processes) are serviced until that queue becomes 
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empty. The scheduling discipline may be event-driven, although FCFS should not 

be ruled out given its low overhead and the similar characteristics of processes in 

that queue. When the highest-priority queue becomes empty, the next queue 

may be serviced using its own scheduling discipline (e.g., RR for interactive 

processes). Finally, when both higher-priority queues become empty, a batch-

spawned process may be selected. A lower-priority process may, of course, be 

preempted by a higher-priority arrival in one of the upper-level queues. This 

discipline maintains responsiveness to external events and interrupts at the 

expense of frequent preemption’s. An alternative approach is to assign a certain 

percentage of the processor time to each queue, commensurate with its priority. 

Multiple queues scheduling is a very general discipline that combines the 

advantages of the "pure" mechanisms discussed earlier. MLQ scheduling may 

also impose the combined overhead of its constituent scheduling disciplines. 

However, assigning classes of processes that a particular discipline handles 

poorly by itself to a more appropriate queue may offset the worst-case behavior 

of each individual discipline. Potential advantages of MLQ were recognized early 

on by the O/S designers who have employed it in the so-called fore-

ground/background (F/B) system. An F/B system, in its usual form, uses a two-

level queue-scheduling discipline. The workload of the system is divided into two 

queues-a high-priority queue of interactive and time-critical processes and other 

processes that do not service external events. The foreground queue is serviced 

in the event-driven manner, and it can preempt processes executing in the 

background.  

3.2.6.7 Multiple-Level Queues with Feedback Scheduling 
Multiple queues in a system may be used to increase the effectiveness and 

adaptive ness of scheduling in the form of multiple-level queues with feedback. 

Rather than having fixed classes of processes allocated to specific queues, the 

idea is to make traversal of a process through the system dependent on its run-

time behavior. For example, each process may start at the top-level queue. If the 

process is completed within a given time slice, it departs the system after having 

received the royal treatment. Processes that need more than one time slice may 
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be reassigned by the operating system to a lower-priority queue, which gets a 

lower percentage of the processor time. If the process is still now finished after 

having run a few times in that queue, it may be moved to yet another, lower-level 

queue. The idea is to give preferential treatment to short processes and have the 

resource-consuming ones slowly "sink" into lower-level queues, to be used as 

fillers to keep the processor utilization high. This philosophy is supported by 

program-behavior research findings suggesting that completion rate has a 

tendency to decrease with attained service. In other words, the more service a 

process receives, the less likely it is to complete if given a little more service. 

Thus the feedback in MLQ mechanisms tends to rank the processes dynamically 

according to the observed amount of attained service, with a preference for those 

that have received less. 

On the other hand, if a process surrenders control to the OS before its time slice 

expires, being moved up in the hierarchy of queues may reward it. As before, 

different queues may be serviced using different scheduling discipline. In contrast 

to the ordinary multiple-level queues, the introduction of feedback makes 

scheduling adaptive and responsive to the actual, measured run-time behavior of 

processes, as opposed to the fixed classification that may be defeated by 

incorrect guessing or abuse of authority. A multiple-level queue with feedback is 

the most general scheduling discipline that may incorporate any or all of the 

simple scheduling strategies discussed earlier. Its overhead may also combine 

the elements of each constituent scheduler, in addition to the overhead imposed 

by the global queue manipulation and the process-behavior monitoring 

necessary to implement this scheduling discipline.   

3.3 SUMMARY 
An important, although rarely explicit, function of process management is 

processor allocation. Three different schedulers may coexist and interact in a 

complex operating system: long-term scheduler, medium-term scheduler, and 

short-term scheduler. Of the presented scheduling disciplines, FCFS scheduling 

is the easiest to implement but is a poor performer. SRTN scheduling is optimal 

but unrealizable. RR scheduling is most popular in time-sharing environments, 
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and event-driven and earliest-deadline scheduling are dominant in real-time and 

other systems with time-critical requirements. Multiple-level queue scheduling, 

and its adaptive variant with feedback, is the most general scheduling discipline 

suitable for complex environments that serve a mixture of processes with 

different characteristics. 

3.4 Keywords 
Long-term scheduling: the decisions to introduce new processes for execution, or 

re-execution.  

Medium-term scheduling: the decision to add to (grow) the processes that are 

fully or partially in memory. 

Short-term scheduling: the decisions as to which (Ready) process to execute 

next. 

Non-preemptive scheduling: In non-preemptive scheduling, process will continue 

to execute until it terminates, or makes an I/O request which would block the 

process, or makes an operating system call. 

Preemptive scheduling: In preemptive scheduling, the process may be pre-

empted by the operating system when a new process arrives (perhaps at a 

higher priority), or an interrupt or signal occurs, or a (frequent) clock interrupt 

occurs. 

3.5 SELF-ASSESSMENT QUESTIONS (SAQ) 
1. Discuss various process scheduling policies with their cons and pros. 

2. Define process. What is the difference between a process and a program? 

Explain. 

3. What are the different states of a process? Explain using a process state 

transition diagram. 

4. Which type of scheduling is used in real life operating systems? Why? 

5. Which action should the short-term scheduler take when it is invoked but no 

process is in the ready state? Is this situation possible?  

6. How can we compare performance of various scheduling policies before 

actually implementing them in an operating system? 

7. Shortest Job First (SJF) is a sort of priority scheduling. Comment. 
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8. What do you understand by starvation? How does SJF cause starvation? 

What is the solution of this problem? 

9. What qualities are to be there in a scheduling policy? Explain. 

10. Differentiate between user-oriented scheduling criteria and system-oriented 

scheduling criteria. 
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Lesson number: 4     Writer: Dr. Rakesh Kumar 

Deadlocks      Vetter: Prof. Dharminder Kr. 
 

Crises and deadlocks when they occur have at least this advantage that 
they force us to think.”- Jawaharlal Nehru (1889 - 1964)  

4.0 Objectives 
The objectives of this lesson are to make the students acquainted with the 

problem of deadlocks. In this lesson, we characterize the problem of deadlocks 

and discuss policies, which an Operating System can use to ensure their 

absence. Deadlock detection, resolution, prevention and avoidance have been 

discussed in detail in the present lesson. 

After studying this lesson the students will be familiar with following: 

(a) Condition for deadlock. 

(b) Deadlock prevention 

(c) Deadlock avoidance 

(d) Deadlock detection and recovery 

4.1 Introduction 
We can understand the notion of a deadlock from the following simple real-life 

example. To be able to write a letter one needs a letter pad and a pen. Suppose 

there in one letter pad and one pen on a table with two persons seated around 

the table, Mr. A and Ms. B.  Both Mr. A and Ms. B are desirous of writing a letter. 

So both try to acquire the resources they need. Suppose Mr. A was able to get 

the letter pad. In the meantime, Ms. B was able to grab the pen. Note that each 

of them has one of the two resources they need to proceed to write a letter. If 

they hold on to the resource they possess and await the release of the resource 

by the other, then neither of them can proceed. They are deadlocked. 

In a multiprogramming environment where several processes compete for 

resources, a situation may arise where a process is waiting for resources that are 

held by other waiting processes. This situation is called a deadlock. Generally, a 

system has a finite set of resources (such as memory, IO devices, etc.) and a 
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finite set of processes that need to use these resources. A process which wishes 

to use any of these resources makes a request to use that resource. If the 

resource is free, the process gets it. If it is used by another process, it waits for it 

to become free. The assumption is that the resource will eventually become free 

and the waiting process will continue on to use the resource. But what if the other 

process is also waiting for some resource? 

“A set of processes is in a deadlock state when every process in the set is 

waiting for an event that can only be caused by another process in the set.” 

If a process is in the need of some resource, physical or logical, it requests the 

kernel of operating system. The kernel, being the resource manager, allocates 

the resources to the processes. If there is a delay in the allocation of the 

resource to the process, it results in the idling of process. The deadlock is a 

situation in which some processes in the system faces indefinite delays in 

resource allocation. In this lesson, we identify the problems causing deadlocks, 

and discuss a number of policies used by the operating system to deal with the 

problem of deadlocks.  

4.2 Presentation of contents 
4.2.1 Definition 

4.2.2 Preemptable and Nonpreemptable Resources 

4.2.3 Necessary and Sufficient Deadlock Conditions 

4.2.4 Resource-Allocation Graph 

4.2.4.1 Interpreting a Resource Allocation Graph with Single Resource 

Instances 

4.2.5 Dealing with Deadlock 

4.2.6 Deadlock Prevention 

4.2.6.1 Elimination of “Mutual Exclusion” Condition 

4.2.6.2 Elimination of “Hold and Wait” Condition 

4.2.6.3 Elimination of “No-preemption” Condition 

4.2.6.4 Elimination of “Circular Wait” Condition 

4.2.7 Deadlock Avoidance 

4.2.7.1 Banker’s Algorithm 
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4.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm 

4.2.8 Deadlock Detection 

4.2.9 Deadlock Recovery  

4.2.10 Mixed approaches to deadlock handling 

4.2.11 Evaluating the Approaches to Dealing with Deadlock 

4.2.1 Definition 
A deadlock involving a set of processes D is a situation in which: 

(a) Every process Pi in D is blocked on some event Ei. 

(b) Event Ei can be caused only by action of some process (es) in D. 

A set of process is in a deadlock state if each process in the set is waiting for an 

event that can be caused by only another process in the set. In other words, 

each member of the set of deadlock processes is waiting for a resource that can 

be released only by a deadlock process. None of the processes can run, none of 

them can release any resources, and none of them can be awakened. It is 

important to note that the number of processes and the number and kind of 

resources possessed and requested are unimportant. 

The resources may be either physical or logical. Examples of physical resources 

are Printers, Tape Drivers, Memory Space, and CPU Cycles. Examples of logical 

resources are Files, Semaphores, and Monitors. 

The simplest example of deadlock is where process 1 has been allocated non-

shareable resources A, say, a tap drive, and process 2 has be allocated non-

sharable resource B, say, a printer. Now, if it turns out that process 1 needs 

resource B (printer) to proceed and process 2 needs resource A (the tape drive) 

to proceed and these are the only two processes in the system, each has 

blocked the other and all useful work in the system stops. This situation is termed 

as deadlock. The system is in deadlock state because each process holds a 

resource being requested by the other process and neither process is willing to 

release the resource it holds. 

What are the consequences of deadlocks? 
¾ Response times and elapsed times of processes suffer. 
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¾ If a process is allocated a resource R1 that it is not using and if some other 

process P2 requires the resource, then P2 is denied the resource and the 

resource remains idle. 

4.2.2 Preemptable and Nonpreemptable Resources 
Resources come in two flavors: preemptable and nonpreemptable. A 

preemptable resource is one that can be taken away from the process with no ill 

effects. Memory is an example of a preemptable resource. On the other hand, a 

nonpreemptable resource is one that cannot be taken away from process 

(without causing ill effect). For example, CD resources are not preemptable at an 

arbitrary moment. 

Reallocating resources can resolve deadlocks that involve preemptable 

resources. Deadlocks that involve nonpreemptable resources are difficult to deal 

with. 

4.2.3 Necessary and Sufficient Deadlock Conditions 
Coffman (1971) identified four (4) conditions that must hold simultaneously for 

there to be a deadlock. 

1. Mutual Exclusion Condition  

The resources involved are non-shareable.  

Explanation: At least one resource must be held in a non-shareable mode, that 

is, only one process at a time claims exclusive control of the resource. If another 

process requests that resource, the requesting process must be delayed until the 

resource has been released. 

2. Hold and Wait Condition  

Requesting process hold already, resources while waiting for requested 

resources.  

Explanation: There must exist a process that is holding a resource already 

allocated to it while waiting for additional resource that are currently being held 

by other processes. 

3. No-Preemptive Condition  

Resources already allocated to a process cannot be preempted.  
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Explanation: Resources cannot be removed from the processes are used to 

completion or released voluntarily by the process holding it.  

4. Circular Wait Condition  

The processes in the system form a circular list or chain where each process in 

the list is waiting for a resource held by the next process in the list.  

A set {P0, P1, P2, …, Pn} of waiting processes must exist such that P0 is waiting 

for a resource that is held by P1,  P1 is waiting for a resource that is held by P2, 

…, Pn-1 is waiting for a resource that is held by Pn, and Pn is waiting for a 

resource that is held by P0. 

Conditions 1 and 3 pertain to resource utilization policies, while condition 2 

pertains to resource requirements of individual processes. Only condition 4 

pertains to relationships between resource requirements of a group of processes. 

As an example, consider the traffic deadlock in the following figure: 

 
 

Consider each section of the street as a resource.  

Lesson number IV Deadlocks 5



1. Mutual exclusion condition applies, since only one vehicle can be on a 

section of the street at a time.  

2. Hold-and-wait condition applies, since each vehicle is occupying a section 

of the street, and waiting to move on to the next section of the street.  

3. No-preemptive condition applies, since a section of the street that is 

occupied by a vehicle cannot be taken away from it.  

4. Circular wait condition applies, since each vehicle is waiting on the next 

vehicle to move. That is, each vehicle in the traffic is waiting for a section 

of street held by the next vehicle in the traffic.  

The simple rule to avoid traffic deadlock is that a vehicle should only enter an 

intersection if it is assured that it will not have to stop inside the intersection. 

It is not possible to have a deadlock involving only one single process. The 

deadlock involves a circular “hold-and-wait” condition between two or more 

processes, so “one” process cannot hold a resource, yet be waiting for another 

resource that it is holding. In addition, deadlock is not possible between two 

threads in a process, because it is the process that holds resources, not the 

thread that is, each thread has access to the resources held by the process. 

4.2.4 Resource-Allocation Graph 
The deadlock conditions can be modeled using a directed graph called a 

resource allocation graph (RAG). A resource allocation graph is a directed graph. 

It consists of 2 kinds of nodes: 

Boxes — Boxes represent resources, and Instances of the resource are 

represented as dots within the box i.e. how many units of that resource exist in 

the system. 

Circles — Circles represent threads / processes. They may be a user process or 

a system process. 

An edge can exist only between a process node and a resource node. There are 

2 kinds of (directed) edges: 

Request edge: It represents resource request. It starts from process and 

terminates to a resource. It indicates the process has requested the resource, 

and is waiting to acquire it. 
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Assignment edge: It represents resource allocation. It starts from resource 

instance and terminates to process. It indicates the process is holding the 

resource instance. 

When a request is made, a request edge is added. 

When request is fulfilled, the request edge is transformed into an assignment 

edge. 

When process releases the resource, the assignment edge is deleted. 

4.2.4.1 Interpreting a Resource Allocation Graph with Single Resource 
Instances 
 Following figure shows a resource allocation graph. If the graph does not contain 

a cycle, then no deadlock exists. Following figure is an example of a no deadlock 

situation. 

O 

O O 

O 

P3P2P1 

R3 R4 

R2 R1 

 
If the graph does contain a cycle, then a deadlock does exist. As following 

resource allocation graph depicts a deadlock situation. 

O 

O O 

O 

P3P2P1 

R3 R4 

R2 R1 

 
With single resource instances, a cycle is a necessary and sufficient condition   

for deadlock 
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So basic fact is that If graph contains no cycles then there is no deadlock. But If 

graph contains a cycle then there are two possibilities: 

(a) If only one instance per resource type, then there is a deadlock. 

(b) If several instances per resource type, possibility of deadlock is there. 

4.2.5 Dealing with Deadlock 
There are following approaches to deal with the problem of deadlock. 

The Ostrich Approach: sticks your head in the sand and ignores the problem. 

This approach can be quite useful if you believe that they are rarest chances of 

deadlock occurrence. In that situation it is not a justifiable proposition to invest a 

lot in identifying deadlocks and tackling with it. Rather a better option is ignore it. 

For example if each PC deadlocks once per 100 years, the one reboot may be 

less painful that the restrictions needed to prevent it. But clearly it is not a good 

philosophy for nuclear missile launchers. 

Deadlock prevention: This approach prevents deadlock from occurring by 

eliminating one of the four (4) deadlock conditions. 

Deadlock detection algorithms: This approach detects when deadlock has 

occurred. 

Deadlock recovery algorithms: After detecting the deadlock, it breaks the 

deadlock. 

Deadlock avoidance algorithms: This approach considers resources currently 

available, resources allocated to each thread, and possible future requests, and 

only fulfill requests that will not lead to deadlock 

4.2.6 Deadlock Prevention 
Deadlock prevention is based on designing resource allocation policies, which 

make deadlocks impossible. Use of the deadlock prevention approach avoids the 

over- head of deadlock detection and resolution. However, it incurs two kinds of 

costs - overhead of using the resource allocation policy, and cost of resource 

idling due to the policy.  

As described in earlier section, four conditions must hold for a resource deadlock 

to arise in a system:  

¾ Non-shareable resources  
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¾ Hold-and-wait by processes  

¾ No preemption of resources  

¾ Circular waits.  

Havender in his pioneering work showed that since all four of the conditions are 

necessary for deadlock to occur, it follows that deadlock might be prevented by 

denying any one of the conditions. Ensuring that one of these conditions cannot 

be satisfied prevents deadlocks. We first discuss how each of these conditions 

can be prevented and then discuss a couple of resource allocation policies based 

on the prevention approach.  

4.2.6.1 Elimination of “Mutual Exclusion” Condition 
The mutual exclusion condition must hold for non-sharable resources. That is, 

several processes cannot simultaneously share a single resource. This condition 

is difficult to eliminate because some resources, such as the tap drive and 

printer, are inherently non-shareable. Note that shareable resources like read-

only-file do not require mutually exclusive access and thus cannot be involved in 

deadlock.  

4.2.6.2 Elimination of “Hold and Wait” Condition 
There are two possibilities for elimination of the second condition. The first 

alternative is that a process request be granted all of the resources it needs at 

once, prior to execution. The second alternative is to disallow a process from 

requesting resources whenever it has previously allocated resources. This 

strategy requires that all of the resources a process will need must be requested 

at once. The system must grant resources on “all or none” basis. If the complete 

set of resources needed by a process is not currently available, then the process 

must wait until the complete set is available. While the process waits, however, it 

may not hold any resources. Thus the “wait for” condition is denied and 

deadlocks simply cannot occur. This strategy can lead to serious waste of 

resources. For example, a program requiring ten tap drives must request and 

receive all ten derives before it begins executing. If the program needs only one 

tap drive to begin execution and then does not need the remaining tap drives for 

several hours. Then substantial computer resources (9 tape drives) will sit idle for 
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several hours. This strategy can cause indefinite postponement (starvation). 

Since not all the required resources may become available at once.  

4.2.6.3 Elimination of “No-preemption” Condition 
The nonpreemption condition can be alleviated by forcing a process waiting for a 

resource that cannot immediately be allocated to relinquish all of its currently 

held resources, so that other processes may use them to finish. Suppose a 

system does allow processes to hold resources while requesting additional 

resources. Consider what happens when a request cannot be satisfied. A 

process holds resources a second process may need in order to proceed while 

second process may hold the resources needed by the first process. This is a 

deadlock. This strategy requires that when a process that is holding some 

resources is denied a request for additional resources. The process must release 

its held resources and, if necessary, request them again together with additional 

resources. Implementation of this strategy denies the “no-preemptive” condition 

effectively. 

The main drawback of this approach is high cost. When a process releases 

resources the process may lose all its work to that point. One serious 

consequence of this strategy is the possibility of indefinite postponement 

(starvation). A process might be held off indefinitely as it repeatedly requests and 

releases the same resources.  

4.2.6.4 Elimination of “Circular Wait” Condition 
Presence of a cycle in resource allocation graph indicates the “circular wait” 

condition. The last condition, the circular wait, can be denied by imposing a total 

ordering on all of the resource types and than forcing, all processes to request 

the resources in numerical order (increasing or decreasing). With this rule, the 

resource allocation graph can never have a cycle. 

For example, provide a global numbering of all the resources, as shown  

1 Card Reader 

2 Printer 

3 Plotter 

4 Tape Drive  
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5 Card Punch 

Now the rule is this: processes can request resources whenever they want to, but 

all requests must be made in numerical order. A process may request first printer 

and then a tape drive (order: 2, 4), but it may not request first a plotter and then a 

printer (order: 3, 2). The problem with this strategy is that it may be impossible to 

find an ordering that satisfies everyone. The resource ranking policy works best 

when all processes require their resources in the order of increasing ranks. 

However, difficulty arises when a process requires resources in some other 

order. Now processes may tend to circumvent such difficulties by acquiring lower 

ranking resources much before they are actually needed. In the worst case this 

policy may degenerate into the ‘all requests together’ policy of resource 

allocation. Anyway this policy is attractive due to its simplicity once resource 

ranks have been assigned.  

“All requests together” is the simplest of all deadlock prevention policies. A 

process must make its resource requests together-typically, at the start of its 

execution. This restriction permits a process to make only one multiple request in 

its lifetime. Since resources requested in a multiple request are allocated 

together, a blocked process does not hold any resources. The hold-and-wait 

condition is satisfied. Hence paths of length larger than 1 cannot exist in the 

Resource Allocation Graph, a mutual wait-for relationships cannot develop in the 

system. Thus, deadlocks cannot arise.  

4.2.7 Deadlock Avoidance 
This approach to the deadlock problem anticipates deadlock before it actually 

occurs. This approach employs an algorithm to access the possibility that 

deadlock could occur and acting accordingly. This method differs from deadlock 

prevention, which guarantees that deadlock cannot occur by denying one of the 

necessary conditions of deadlock. 

If the necessary conditions for a deadlock are in place, it is still possible to avoid 

deadlock by being careful when resources are allocated. Perhaps the most 

famous deadlock avoidance algorithm, due to Dijkstra [1965], is the Banker’s 

Lesson number IV Deadlocks 11



algorithm. So named because the process is analogous to that used by a banker 

in deciding if a loan can be safely made. 

4.2.7.1 Banker’s Algorithm 
In this analogy 

Customers  ≡  processes 

Units  ≡  resources, say, tape drive 

Banker  ≡  Operating System 

 

Customers Used Max  

A 

B 

C 

D 

0 

0 

0 

0 

6 

5 

4 

7 

Available 

Units = 10

In the above figure, we see four customers each of whom has been granted a 

number of credit units. The banker reserved only 10 units rather than 22 units to 

service them. At certain moment, the situation becomes 

Customers Used Max  

A 

B 

C 

D 

1 

1 

2 

4 

6 

5 

4 

7 

Available 

Units = 2 

Safe State    The key to a state being safe is that there is at least one way for all 

users to finish. In other analogy, the state of figure 2 is safe because with 2 units 

left, the banker can delay any request except C's, thus letting C finish and 

release all four resources. With four units in hand, the banker can let either D or 

B have the necessary units and so on. 

Unsafe State     Consider what would happen if a request from B for one more 

unit were granted in above figure 2. 

We would have following situation 

Customers Used Max  

A 1 6 Available 
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B 

C 

D 

2 

2 

4 

5 

4 

7 

Units = 1 

This is an unsafe state. 

If all the customers namely A, B, C, and D asked for their maximum loans, then 

banker could not satisfy any of them and we would have a deadlock. 

Important Note:     It is important to note that an unsafe state does not imply the 

existence or even the eventual existence a deadlock. What an unsafe state does 

imply is simply that some unfortunate sequence of events might lead to a 

deadlock. 

The Banker's algorithm is thus to consider each request as it occurs, and see if 

granting it leads to a safe state. If it does, the request is granted, otherwise, it 

postponed until later. Haberman [1969] has shown that executing of the 

algorithm has complexity proportional to N2 where N is the number of processes 

and since the algorithm is executed each time a resource request occurs, the 

overhead is significant. 

4.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm 
There are following advantages and disadvantages of deadlock avoidance using 

Banker’s algorithm. 

Advantages: 
¾ There is no need to preempt resources and rollback state (as in deadlock 

detection and recovery) 

¾ It is less restrictive than deadlock prevention 

Disadvantages: 
¾ In this case maximum resource requirement for each process must be stated 

in advance. 

¾ Processes being considered must be independent (i.e., unconstrained by 

synchronization requirements) 

¾ There must be a fixed number of resources (i.e., can’t add resources, 

resources can’t break) and processes (i.e., can’t add or delete processes) 
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¾ Huge overhead — Operating system must use the algorithm every time a 

resource is requested. So a huge overhead is involved. 

4.2.8 Deadlock Detection 
Deadlock detection is the process of actually determining that a deadlock exists 

and identifying the processes and resources involved in the deadlock. 

The basic idea is to check allocation against resource availability for all possible 

allocation sequences to determine if the system is in deadlocked state. Of 

course, the deadlock detection algorithm is only half of this strategy. Once a 

deadlock is detected, there needs to be a way to recover. Several alternatives 

exist: 

¾ Temporarily prevent resources from deadlocked processes.  

¾ Back off a process to some check point allowing preemption of a needed 

resource and restarting the process at the checkpoint later.  

¾ Successively kill processes until the system is deadlock free.  

These methods are expensive in the sense that each iteration calls the detection 

algorithm until the system proves to be deadlock free. The complexity of 

algorithm is O (N2) where N is the number of processes. Another potential 

problem is starvation; same process killed repeatedly. 

4.2.9 Deadlock Recovery  
Once you have discovered that there is a deadlock, what do you do about it? 

One thing to do is simply re-boot. A less drastic approach is to yank back a 

resource from a process to break a cycle. As we saw, if there are no cycles, 

there is no deadlock. If the resource is not preemptable, snatching it back from a 

process may do irreparable harm to the process. It may be necessary to kill the 

process, under the principle that at least that's better than crashing the whole 

system.  

Sometimes, we can do better. For example, if we checkpoint a process from time 

to time, we can roll it back to the latest checkpoint, hopefully to a time before it 

grabbed the resource in question. Database systems use checkpoints, as well as 

a technique called logging, allowing them to run processes “backwards,” undoing 

everything they have done. It works like this: Each time the process performs an 
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action, it writes a log record containing enough information to undo the action. 

For example, if the action is to assign a value to a variable, the log record 

contains the previous value of the record. When a database discovers a 

deadlock, it picks a victim and rolls it back.  

Rolling back processes involved in deadlocks can lead to a form of starvation, if 

we always choose the same victim. We can avoid this problem by always 

choosing the youngest process in a cycle. After being rolled back enough times, 

a process will grow old enough that it never gets chosen as the victim--at worst 

by the time it is the oldest process in the system. If deadlock recovery involves 

killing a process altogether and restarting it, it is important to mark the “starting 

time” of the reincarnated process as being that of its original version, so that it 

will look older that new processes started since then.  

When should you check for deadlock? There is no one best answers to this 

question; it depends on the situation. The most “eager” approach is to check 

whenever we do something that might create a deadlock. Since a process cannot 

create a deadlock when releasing resources, we only have to check on allocation 

requests. If the Operating System always grants requests as soon as possible, a 

successful request also cannot create a deadlock. Thus we only have to check 

for a deadlock when a process becomes blocked because it made a request that 

cannot be immediately granted. However, even that may be too frequent. As we 

saw, the deadlock-detection algorithm can be quite expensive if there are a lot of 

processes and resources, and if deadlock is rare, we can waste a lot of time 

checking for deadlock every time a request has to be blocked.  

What's the cost of delaying detection of deadlock? One possible cost is poor 

CPU utilization. In an extreme case, if all processes are involved in a deadlock, 

the CPU will be completely idle. Even if there are some processes that are not 

deadlocked, they may all be blocked for other reasons (e.g. waiting for I/O). Thus 

if CPU utilization drops, that might be a sign that it's time to check for deadlock. 

Besides, if the CPU isn't being used for other things, you might as well use it to 

check for deadlock!  
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On the other hand, there might be a deadlock, but enough non-deadlocked 

processes to keep the system busy. Things look fine from the point of view of the 

OS, but from the selfish point of view of the deadlocked processes, things are 

definitely not fine. If the processes may represent interactive users, who can't 

understand why they are getting no response. Worse still, they may represent 

time-critical processes (missile defense, factory control, hospital intensive care 

monitoring, etc.) where something disastrous can happen if the deadlock is not 

detected and corrected quickly. Thus another reason to check for deadlock is 

that a process has been blocked on a resource request “too long.” The definition 

of “too long” can vary widely from process to process. It depends both on how 

long the process can reasonably expect to wait for the request, and how urgent 

the response is. If an overnight run deadlocks at 11pm and nobody is going to 

look at its output until 9am the next day, it doesn't matter whether the deadlock is 

detected at 11:01pm or 8:59am. If all the processes in a system are sufficiently 

similar, it may be adequate simply to check for deadlock at periodic intervals 

(e.g., one every 5 minutes in a batch system; once every millisecond in a real-

time control system).  

4.2.10 Mixed approaches to deadlock handling 
The deadlock handling approaches differ in terms of theirv usage implications. 

Hence it is not possible to use a single deadlock handling approach to govern the 

allocation of all resources. The following mixed approach is found useful: 

1. System control block: Control blocks like JCB, PCB etc. can be acquired in 

a specific order. Hence resource ranking can be used here. If a simpler 

strategy is desired, all control blocks for a job or process can be allocated 

together at its initiation. 

2. I/O devices files: Avoidance is the only practical strategy for these 

resources. However, in order to eliminate the overheads of avoidance, new 

devices are added as and when needed. This is done using the concept of 

spooling. If a system has only one printer, many printers are created by using 

some disk area to store a file to be printed. Actual printing takes place when a 

printer becomes available.  
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3. Main memory: No deadlock handling is explicitly necessary. The memory 

allocated to a program is simply preempted by swapping out the program 

whenever the memory is needed for another program. 

4.2.11 Evaluating the Approaches to Dealing with Deadlock 
¾ The Ostrich Approach — ignoring the problem 

It is a good solution if deadlock is not frequent. 

¾ Deadlock prevention — eliminating one of the four (4) deadlock conditions 

This approach may be overly restrictive and results into the under utilization 

of the resources.  

¾ Deadlock detection and recovery — detect when deadlock has occurred, then 

break the deadlock 

In it there is a tradeoff between frequency of detection and performance / 

overhead added. 

¾ Deadlock avoidance — only fulfilling requests that will not lead to deadlock 

It needs too much a priori information and not very dynamic (can’t add 

processes or resources), and involves huge overhead 

4.3 Summary 
¾ A set of process is in a deadlock state if each process in the set is waiting for 

an event that can be caused by only another process in the set. Processes 

compete for physical and logical resources in the system. Deadlock affects 

the progress of processes by causing indefinite delays in resource allocation.  

¾ There are four Necessary and Sufficient Deadlock Conditions (1) Mutual 

Exclusion Condition: The resources involved are non-shareable, (2) Hold and 

Wait Condition: Requesting process hold already, resources while waiting for 

requested resources,(3) No-Preemptive Condition: Resources already 

allocated to a process cannot be preempted,(4) Circular Wait Condition: The 

processes in the system form a circular list or chain where each process in 

the list is waiting for a resource held by the next process in the list.  

¾ The deadlock conditions can be modeled using a directed graph called a 

resource allocation graph (RAG) consisting of boxes (resource), circles 
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(process) and edges (request edge and assignment edge). The resource 

allocation graph helps in identifying the deadlocks. 

¾ There are following approaches to deal with the problem of deadlock: (1) The 

Ostrich Approach — stick your head in the sand and ignore the problem, (2) 

Deadlock prevention — prevent deadlock from occurring by eliminating one of 

the 4 deadlock conditions, (3) Deadlock detection algorithms — detect when 

deadlock has occurred, (4) Deadlock recovery algorithms — break the 

deadlock, (5) Deadlock avoidance algorithms — consider resources currently 

available, resources allocated to each thread, and possible future requests, 

and only fulfill requests that will not lead to deadlock 

¾ There are merits/demerits of each approach. The Ostrich Approach is a good 

solution if deadlock is not frequent. Deadlock prevention may be overly 

restrictive. In Deadlock detection and recovery there is a tradeoff between 

frequency of detection and performance / overhead added, Deadlock 

avoidance needs too much a priori information and not very dynamic (can’t 

add processes or resources), and involves huge overhead 

4.4 Keywords 
Deadlock: A deadlock is a situation in which some processes in the system face 

indefinite delays in resource allocation. 

Preemptable resource: A preemptable resource is one that can be taken away 

from the process with no ill effects. 

Nonpreemptable resource: It is one that cannot be taken away from process 

(without causing ill effect). 

Mutual exclusion: several processes cannot simultaneously share a single 

resource 

4.5 SELF-ASSESMENT QUESTIONS (SAQ) 
1. What do you understand by deadlock? What are the necessary conditions for 

deadlock? 

2. What do you understand by resource allocation graph (RAG)? Explain using 

suitable examples, how can you use it to detect the deadlock? 
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3. What do you mean by pre-emption and non-preemption discuss with an 

example? 

4. Compare and contrast the following policies of resource allocation: 

(a) All resources requests together. 

(b) Allocation using resource ranking. 

(c) Allocation using Banker’s algorithm 

On the basis of (a) resource idling and (b) overhead of the resource allocation 

algorithm. 

5. How can pre-emption be used to resolve deadlock?  

6. Why Banker’s algorithm is called so?  

7. Under what condition(s) a wait state becomes a deadlock?  

8. Explain how mutual exclusion prevents deadlock.  

9. Discuss the merits and demerits of each approach dealing with the problem of 

deadlock. 

10. Differentiate between deadlock avoidance and deadlock prevention. 

11. A system contains 6 units of a resource, and 3 processes that need to use 

this resource. If the maximum resource requirement of each process is 3 

units, will the system be free of deadlocks for all time? Explain clearly.  

If the system had 7 units of the resource, would the system be deadlock-free?  

4.6 SUGGESTED READINGS / REFERENCE MATERIAL 
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Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 
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5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company 
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Lesson number: 5     Writer: Dr. Rakesh Kumar 

Contiguous Memory Management - I Vetter: Prof. Dharminder Kumar 
 

5.0 OBJECTIVE 
The lesson presents the principles of managing the main memory, one of the 

most precious resources in a multiprogramming system. In our sample hierarchy 

of Operating System layers, memory management belongs to layer 3. Memory 

management is primarily concerned with allocation of physical memory of finite 

capacity to requesting processes. No process may be activated before a certain 

amount of memory can be allocated to it. The objective of this lesson is to make 

the students acquainted with the concepts of contiguous memory management.   

5.1  INTRODUCTION 
Memory is large array of words or bytes, each having its unique address. CPU 

fetches instructions from memory according to value of program counter. The 

instructions undergo instruction execution cycle. To increase both CPU utilization 

and speed of its response to users, computers must keep several processes in 

memory. Specifically, the memory management modules are concerned with 

following four functions: 

1. Keeping track of whether each location is allocated or unallocated, to which 

process and how much. 

2. Deciding to whom the memory is allocated, how much, when and where. If 

memory is to be shared by more than one process concurrently, it must be 

determined which process’ request should be satisfied. 

3. Once it is decided to allocate memory, the specific locations must be selected 

and allocated. Memory status information is updated. 

4. Handling the deallocation/reclamation of memory. After the process holding 

memory is finished, memory locations held by it are declared free by 

changing the status information.  

There are varieties of memory management systems. They are: 

Lesson no. V Contiguous Memory Management - I  1



1. Contiguous, real memory management system such as: 

• Single, contiguous memory management system 

• Fixed partitioned memory management system 

• Variable Partitioned memory management system 

2. Non-Contiguous, real memory management system 

• Paged memory management system 

• Segmented memory management system 

• Combined memory management system 

3. Non-Contiguous, virtual memory management system 

• Virtual memory management system 

These systems can be divided into two major parts (i) Contiguous and (ii) Non-

Contiguous 

Contiguous Memory Management: In this approach, each program occupies a 

single contiguous block of storage locations. 

Non-Contiguous Memory Management: In these, a program is divided into 

several blocks or segments that may be placed throughout main storage in 

pieces or chunks not necessarily adjacent to one another. It is the function of 

Operating System to manage these different chunks in such a way that they 

appear to be contiguous to the user. 

Various issues to be considered in various memory management schemes are 

relocation, address translation, protection, sharing, and evaluation. 

Relocation and address translation: The process of associating program 

instructions and data to physical memory addresses is called address binding or 

relocation. So binding is mapping from one address to another. It is of two types: 

¾ Static Binding: It is taking place before execution; it may be (i) Compile time: 

where the compiler or assembler translates symbolic addresses to absolute 

addresses and (ii) Load time where the compiler translates symbolic 

addresses to relative addresses. The loader translates these to absolute 

addresses. 
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¾ Dynamic Binding: In it new locations are determined during execution. The 

program retains its relative addresses. The absolute addresses are generated 

by hardware. 

Memory Protection and Sharing: Protection is used to avoid interference 

between programs existing in memory. Sharing is the opposite of protection.  

Evaluation: Evaluation of these schemes is done on various parameters such 

as: 

¾ Wasted memory: It is the amount of physical memory, which remains 

unused and thus wasted. 

¾ Access time is the time to access the physical memory by the Operating 

System. 

¾ Time complexity is related to overheads of the allocation or deallocation 

methods. 

5.2 PRESENTATION OF CONTENTS 
5.2.1   Single Contiguous Memory Management 

5.2.2  Fixed Partitioned Memory Management System 

5.2.2.1 Principles of Operation 

5.2.2.2 Fragmentation 

5.2.2.3 Swapping 

5.2.2.4 Relocation 

5.2.2.4.1 Static Relocation 

5.2.2.4.2 Dynamic Relocation 

5.2.2.5 Protection 

5.2.2.6 Sharing 

5.2.2.7 Evaluation 

5.2.1   SINGLE CONTIGUOUS MEMORY MANAGEMENT 
In this scheme, the physical memory is divided into two contiguous areas. One of 

them is permanently allocated to the resident portion of the Operating System. 

Mostly, the Operating System resides in low memory (0 to P as shown in Figure 

1). The remaining memory is allocated to transient or user processes, which are 

Lesson no. V Contiguous Memory Management - I  3



loaded and executed one at a time, in response to user commands. This process 

is run to completion and then the next process is brought in memory.  

In this scheme, the starting physical address of the program is known at the time 

of compilation. The machine contains absolute addresses. They do not need to 

be changed or translated at the time of execution. So there is no issue of 

relocation or address translation. 

 

       OS   (monitor) 

00 

 

 

P 

 

 

Max 

 

      Transient-Process Area 

 

Figure 1. Single contiguous memory management 

 In this scheme as there is at most one process is in memory at any given time so 

there is a rare issue of interference between programs. However, it is desirable 

to protect the Operating System code from being tampered by the executing 

transient process. 

A common way used in embedded systems to protect the Operating System 

code from user programs is to place the Operating System in read-only memory. 

This method is rarely used because of its inflexibility and inability to patch and 

update the Operating System code. In systems where the Operating System is in 

read-write memory, protection from user processes usually requires some sort of 

hardware assistance such as the fence registers and protection bits. 

Fence registers are used to draw a boundary between the Operating System and 

the transient-process area. Assuming that the resident portion of the Operating 

System is in low memory, the fence register is set to the highest address 

occupied by Operating System code. Each memory address generated by a user 

process is compared against the fence. Any attempt to read or write the space 

below the fence may thus be detected and denied before completion of the 

related memory reference. Such violations usually trap to the Operating System, 
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which in turn may abort the offending program. To serve the purpose of 

protection, modification of the fence register must be a privileged operation not 

executable by user processes. Consequently, this method requires the hardware 

ability to distinguish between execution of the Operating System and of user 

processes, such as the one provided by user and supervisor modes of operation.  

Another approach to memory protection is to record the access rights in the 

memory itself. One possibility is to associate a protection bit with each word in 

memory. The memory may then easily be divided into two zones of arbitrary size 

by setting all protection bits in one area, and resetting them in the other area. For 

example, initially all protection bits may be reset. During system startup, 

protection bits may be set in all locations where the Operating System is loaded. 

User programs may then be loaded and executed in the remaining memory 

locations. Prohibiting user processes from accessing any memory location whose 

protection bit is set may enforce Operating System protection. At the same time, 

the Operating System and system utilities, such as the loader, may be allowed 

unrestricted access to memory necessary for their activities. This approach 

requires a hardware-supported distinction between at least two distinct levels of 

privilege in the execution of machine instructions.  

Sharing of code and data in memory does not make much sense in single-

process environments, and single-process Operating System hardly ever support 

it. Users’ programs may of course, pass data to each other in private 

arrangements, say, by means of memory locations known to be safe from being 

overwritten between executions of participating processes. Such schemes are 

obviously unreliable, and their use should be avoided whenever possible.  

Single-process Operating System are relatively simple to design and to 

comprehend. They are often used in systems with little hardware support. But the 

lack of support for multiprogramming reduces utilization of both processor and 

memory. Processor cycles are wasted because there is no pending work that 

may be executed while the running process is waiting for completion of its I/O 

operations. Memory is underutilized because its portion not devoted to the 

Operating System and the single active user is wasted. On the average, wasted 
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memory in a specific system is related to the difference between the size of the 

transient-process area and the average process size weighted by the respective 

process-execution (and residence) times. This method has fast access time and 

very little time-complexity. Its usage is limited due to lack of multi-user facility. 

One additional problem is sometimes encountered in systems with simplistic 

static forms of memory management. To be useable across a wide range of 

configurations with different capacities of installed memory, system programs in 

such environments tend to be designed to use the least amount of memory 

possible. Besides sacrificing speed and functionality, such programs usually take 

little advantage of additional memory when it is available.  

5.2.2  FIXED PARTITIONED MEMORY MANGEMENT SYSTEM 

In this scheme, memory is divided into number of contiguous regions called 

partitions, could be of different sizes. But once decided, they could not be 

changed. Partitions are fixed at the time of system generation. System 

generation is a process of setting the Operating System to specific requirements. 

Various processes of the Operating System are allotted different partitions. There 

are two forms of memory partitioning (i) Fixed Partitioning and (ii) Variable 

Partitioning. 

In fixed partitioning the main memory is divided into fixed number of partitions 

during system startup. The number and sizes of individual partitions are decided 

by the factors like capacity of the available physical memory, desired degree of 

multiprogramming, and the typical sizes of processes most frequently run on a 

given installation. Since, in principle, at most one process may execute out of a 

given partition at any time, the number of partitions represents an upper limit on 

the number of active processes in a system i.e. degree of multiprogramming. 

Given the impact of memory partitioning on overall performance, some systems 

allow for manual redefinition of partition sizes. 

Programs are queued to run in the smallest available partition. An executable 

prepared to run in one partition may not be able to run in another without being 

relinked. This technique is called absolute loading. 

5.2.2.1 Principles of Operation 
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An example of partitioned memory is depicted in Figure 2. Out of the six 

partitions, one is assumed to be occupied by the resident portion of the OS, and 

three others by user processes Pi, Pj, and Pk, as indicated. The remaining two 

partitions, shaded in Figure 2, are free and available for allocation.     

P0 OS Area 

P1 
 

 

P2 Process Pi

P3 
 

Process Pj

P4  

P6 
Process Pk

0K 

100K 

 

300K 

400k 

 

700K 

800K 

 

100K 

 Figure 2 – Fixed Partitions  

On declaring fixed partitions, the Operating System creates a Partition 

Description Table (PDT) to keep track of status of each partition for allocation 

purposes. A sample PDT format is given in Figure 3 according to the partitions 

given in Figure 2. 

Partition Number Partition Base Partition size Partition Status 

0 0K 100K Allocated 

1 100K 200K Free 

2 300K 100K Allocated 

3 400K 300K Allocated 

4 700K 100K Free 

5 800K 200K Allocated 

Figure 3 – Partition description table 
Each partition is described by its base address, size, and status. When fixed 

partitioning is used, only the status field of each entry varies i.e. free or allocated, 

in the course of system operation. Initially, all the entries are marked “FREE”. As 
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and when process is loaded into partitions, the status entry for that partition is 

changed to “ALLOCATED”.  

Initially, all memory is available for user processes and is called hole. On arrival 

of a process, a hole large enough for that process is allocated to it. The 

Operating System then reads the program image from disk to the space 

reserved. After becoming resident in memory, the newly loaded process makes a 

transition to the ready state and thus becomes eligible for execution. 

When a nonresident process is to be activated, the Operating System searches a 

free memory partition of sufficient size in the PDT. If the search is successful, the 

status field of the selected entry is marked ALLOCATED, and the process image 

is loaded into the corresponding partition. Since the assumed format of the PDT 

does not provide any indication as to which process is occupying a given 

partition, the identity of the assigned partition may be recorded in the PCB. When 

the process departs, using this information the status of related partition is made 

FREE. To implement these ideas, two questions are to be answered; (i) how to 

select a specific partition for a given process, (ii) what to do when no suitable 

partition is available for allocation. The three common strategies of partition 

allocation are: 

(a) Best Fit 

(b) First fit 

(c) Worst Fit 

Best-fit: This strategy allocates the smallest hole that is big enough to 

accommodate process. Entire list ordered by size is searched and matching 

smallest left over hole is chosen. For example, suppose a process requests 

12KB of memory and the memory manager currently has a list of unallocated 

blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit strategy will 

allocate 12KB of the 13KB block to the process. 

First-fit: This strategy allocates the first available space that is big enough to 

accommodate process. Search may start at beginning of set of holes or where 

previous first-fit ended. Searching stops as soon as it finds a free hole that is 
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large enough. Using the same example as above, first fit will allocate 12KB of the 

14KB block to the process. 

Worst fit: This strategy allocates the largest hole. Entire list is searched. It 

chooses largest left over hole. Using the same example as above, worst fit will 

allocate 12KB of the 19KB block to the process, leaving a 7KB block for future 

use. 

6KB 6KB 6KB 6KB 

    

12KB14KB 14KB 14KB 

2KB 

    

    

12KB 19KB 19KB 

7KB 

19KB

    

11KB 11KB 11KB 11KB

    

12KB 13KB 

1KB 

13KB 13KB

Primary 

Memory 

Best 

Fit 

Worst

Fit 

First 

Fit 

Figure 4 
These strategies may be compared on the basis of execution speed and memory 

utilization. These algorithms have to search the PDT to identify a free partition of 

adequate size. However, while the first fit terminates upon finding the first such 

partition, the best fit must process all PDT entries to identify the tightest fit. So 

first fit tend to execute faster but best fit may achieve higher utilization of memory 

by creating the smallest possible gap resulting from the difference in size 
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between the process and its allocated partition. Both first-fit and best fit are better 

than worst-fit in terms of time and storage utilization, but first-fit is faster. 

In case of a relatively small number of fixed partitions in a system, the execution 

time differences between these approaches may not be large enough to 

outweigh the lower degree of memory utilization attributable to the first fit. When 

the number of partitions is large neither first fit nor best fit is clearly superior.  

Request for partitions may be due to (1) creations of new processes or (2) 

reactivations of swapped-out processes. The memory manager attempts to 

satisfy these requests from the pool of free partitions. Common obstacles faced 

by it are: 

1. No free partition is large enough to accommodate the incoming process. 

2. All partitions are allocated. 

3. Some partitions are free, but none of them is large enough to accommodate 

the incoming process. 

If the process to be created is too large to fit into any of the system partitions, the 

Operating System produces an error message. This is basically a configuration 

error that may be remedied by redefining the partitions accordingly. Another 

option is to reduce a program's memory requirements by recording and possibly 

using some sort of overlays. 

The case when all partitions are allocated may be handled by deferring loading of 

the incoming process until a suitable partition can be allocated to it. An 

alternative is to force a memory-resident process to vacate a sufficiently large 

partition. Eviction to free the necessary space incurs the additional overhead of 

selecting a suitable victim and rolling it out to disk. This technique is called 

swapping. Both deferring and swapping are also applicable to handling the third 

case, where free but unsuitable partitions are available. If the deferring option is 

chosen, memory utilization may be kept high if the Operating System continues 

to allocate free partitions to other waiting processes with smaller memory 

requirements. However, doing so may violate the ordering of process activation’s 

intended by the scheduling algorithm and, in turn, affect performance of the 

system.  
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The described memory-allocation situations illustrate the close relationship and 

interaction between memory management and scheduling functions of the 

Operating System. Although the division of labor in actual systems may vary, the 

memory manager is generally charged with implementing memory allocation and 

replacement policies. Processor scheduling, on the other hand, determines which 

process gets the processor, when, and for how long. The short-term scheduler 

considers only the set of ready processes, that is, those that have all the needed 

resources except for the processor. Ready processes are, by definition, resident 

in memory. By influencing the membership of the set of resident processes, a 

memory manager may affect the scheduler's ability to perform. On the other 

hand, the effectiveness of the short-term scheduler influences the memory 

manager by affecting the average memory-residence times of processes.  

In systems with fixed partitioning of memory, the number of partitions effectively 

sets an upper limit on the degree of multiprogramming. Within the confines of this 

limit, processor utilization may be improved by increasing the ratio of ready to 

resident processes. This may be accomplished by removing suspended 

processes from memory when otherwise ready ones are available for loading in 

the related partitions. A removed process is usually kept in secondary storage 

until all resources needed for its execution, except for memory and the processor 

may be allocated to it. At that point, the process in question becomes eligible for 

loading into the main memory. The medium-term scheduler and the memory 

manager cooperate in further processing of such processes.  

The Operating System holds the processes waiting to be loaded in the memory 

in a queue. The two methods of maintaining this queue are (i) Multiple Queues 

and (ii) Single Queues. 

Multiple Queues: In this method there are as many queues as the number of 

partitions. Separate queue for each partition is maintained in which processes 

are added as they arrive. When a process wants to occupy memory, it is added 

to a proper queue depending upon size of processes. Benefit of this method is 

that a small process is not loaded in large partition so as to avoid memory 

wastage. This leads to longer queue for small partitions. 

Lesson no. V Contiguous Memory Management - I  11



Single Queue: In this method, there is only one queue for all ready processes. 

The order of processes in the queue depends on the scheduling algorithm. In this 

case, first fit allocation strategy is more efficient and fast. 

5.2.2.2   Fragmentation 
Some amount of memory is wasted both in single and multiple partition allocation 

techniques.  Fragmentation refers to the unused memory that the memory 

management system cannot allocate. It is of two types: External and Internal. 

External Fragmentation is waste of memory between partitions caused by 

scattered non-contiguous free space. It occurs when total available memory 

space is enough to satisfy the request for a process to be allocated, but it is not 

continuous. Selection of first fit and best fit can affect the amount of 

fragmentation. It is severe in variable size partitioning schemes. Compaction is a 

technique that is used to overcome this.  

Internal fragmentation is waste of memory within a partition caused by 

difference between size of partition and the process allocated. It refers to the 

amount of memory, which is not being used and is allocated along with a process 

request i.e. available memory internal to partition. It is severe in fixed partitioning 

schemes. 

5.2.2.3 Swapping 
Removing suspended or preempted processes from memory and their 

subsequent bringing back is called swapping. The basic idea of swapping is to 

treat main memory as a ‘pre-emptable’ resource. Lifting the program from the 

memory and placing it on the disk is called ‘Swapping out’. To bring the program 

again from the disk into the main memory is called ‘Swapping in’. Normally, a 

blocked process is swapped out so as to create available space for a ready 

process. This results in improving CPU utilization. Swapping has traditionally 

been used to implement multiprogramming in systems with restrictive memory 

capacity. Swapping may also be helpful for improving processor utilization in 

partitioned memory environments by increasing the ratio of ready to resident 

processes. Swapping is usually employed in memory-management systems with 

contiguous allocation, such as fixed and variable partitioned memory and 
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segmentation. Somewhat modified forms of swapping may also be present in 

virtual memory systems based on segmentation or on paging. Swapping brings 

flexibility even to systems with fixed partitions. 

When the scheduler decides to admit a new process for which no suitable free 

partition can be found, the swapper may be invoked to vacate such a partition. 

The swapper is an Operating System process whose major responsibilities 

include: 

¾ Selection of processes to swap out: Its criteria is suspended/blocked state, 

low priority, time spent in memory. 

¾ Selection of processes to swap in: Its criteria are time spent on swapping 

device and priority. 

¾ Allocation and management of swap space on a swapping device. Swap 

space can be system wide or dedicated. 

Thus the swapper performs most of the functions of the medium-term scheduler. 

The swapper usually selects a victim among the suspended processes that 

occupy partitions large enough to satisfy the needs of the incoming process.  

Although the mechanics of swapping out following the choice of a victim process 

is fairly simple in principle, implementation of swapping requires some specific 

provisions and considerations in Operating System that support it. These 

generally include the file system, specific Operating System services, and 

relocation.  

 
 
 
 
 
 
 
 

Figure 5 showing process of Swapping 
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A process is typically prepared for execution and submitted to the Operating 

System in the form of a file that contains a program in executable form and the 

related data. This file may also contain process attributes, such as priority and 

memory requirements. Such a file is sometimes called a process image. Since a 

process usually modifies its stack and data when executing, a partially executed 

process generally has a run-time image different from its initial static process 

image recorded on disk. Therefore, the dynamic run-time state of the process to 

be swapped out must be recorded for its proper subsequent resumption. In 

general, the modifiable portion of a process's state consists of the contents of its 

data and stack locations, as well as of the processor registers. Code is also 

subject to run-time modifications in systems that permit the code to modify itself. 

Therefore, the contents of a sizable portion or of the entire address space of a 

victim process must be copied to disk during the swapping-out operation. Since 

the static process image is used for initial activation, the (modified) run-time 

image should not overwrite the static process image on disk. Consequently, a 

separate swap file must be available for storing the dynamic image of a rolled-out 

process. There are two basic options regarding placement of a swap file: 

¾ System-wide swap file 

¾ Dedicated, per-process, swap files 

In either case, swapping space for each swappable process is usually reserved 

and allocated statically, at process creation time, to avoid the overhead of this 

potentially lengthy operation at swap time.  

In the system-wide swap file approach, a single large file is created, usually in 

the course of system initialization, to handle swapping requirements of all 

processes. The swap file is commonly placed on a fast secondary-storage device 

so as to reduce the latency of swapping. The location of each swapped out 

process image is noted within that file. An important trade-off in implementing a 

system-wide swap file is the choice of its size. If a smaller area is reserved for 

this file, the Operating System may not be able to swap out processes beyond a 

certain limit, thus affecting the performance.  
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An alternative is to have a dedicated swap file for each swappable process in the 

system. These swap files may be created either dynamically at process creation 

time or statically at program preparation time. This method is very flexible, but 

can be very inefficient due to the increased number of files and directories. In 

either case, the advantages of maintenance of separate swap files include 

elimination of the system swap-file dimensioning problem and of that file's 

overflow errors at run-time, and non-imposition of restrictions on the number of 

active processes. The disadvantages include more disk space expended on 

swapping, slower access, and more complicated addressing of swapping files 

scattered on the secondary storage. 

Regardless of the type of swapping file used, the need to access secondary 

storage makes swapping a lengthy operation relative to processor instruction 

execution. This overhead must be taken into consideration in the decision of 

whether to swap a process in order to make room for another one.  

Delays of this magnitude may be unacceptable for interrupt-service routines or 

other time-critical processes. For example, swapping out of a momentarily 

inactive terminal driver in a time-sharing system is certainly a questionable 

"optimization."  Operating System that support swapping usually copes with this 

problem by providing some means for system programmers to declare a given 

process as being swappable or not. In effect, after the initial loading, an 

unswappable process remains fixed in memory even when it is temporarily 

suspended. Although this service is useful, a programmer may abuse it by 

declaring an excessive number of processes as fixed, thereby reducing the 

benefits of swapping. For this reason, the authority to designate a process as 

being un-swappable is usually restricted to a given class of privileged processes 

and users. All other processes, by default, may be treated as swappable. 

An important issue in systems that support swapping is whether process-to-

partition binding is static or dynamic, i.e., whether a swapped-out process can 

subsequently be loaded only into the specific partition from which it was removed 

or into any partition of adequate size. In general, static binding of processes to 

partitions may be done in any system with static partitioning of memory, 
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irrespective of whether swapping is supported or not. Static process-to-partition 

binding eliminates the run-time overhead of partition allocation at the expense of 

lower utilization of memory due to potentially unbalanced use of partitions. On 

the other hand, systems in which processes are not permanently bound to 

specific partitions are much more flexible and have a greater potential for efficient 

use of memory. The price paid for dynamic binding of processes to partitions is 

the overhead incurred by partition allocation whenever a new process or a 

swapped process is to be loaded into main memory. Moreover, dynamic 

allocation of partitions usually requires some sort of hardware support for 

dynamic relocation.  

5.2.2.4 Relocation 
The term program relocatability refers to the ability to load and execute a given 

program into an arbitrary place in memory. Since different load addresses may 

be assigned during different executions of a single relocatable program, a 

distinction is often made between virtual addresses (or logical address) and the 

physical addresses where the program and its data are stored in memory during 

a given execution. In reality, the program may be loaded at different memory 

locations, which are called physical addresses. The problem of relocation and 

address translation is to find a way to map virtual addresses onto physical 

addresses. Depending on when and how the mapping from the virtual address 

space to the physical address space takes place in a given relocation scheme, 

there are two basic types of relocation: (i) Static relocation and (ii) Dynamic 

relocation. 
5.2.2.4.1 Static Relocation  
Static relocation is performed before or during the loading of the program into 

memory, by a relocating linker/ loader. Constants, physical I/O port addresses, 

and offsets relative to the program counter are examples of values that are not 

location-sensitive and that do not need to be adjusted for relocation. Other forms 

of addresses of operands may depend on the location of a program in memory 

so must be adjusted accordingly when the program is being loaded or moved to 

a different area of memory. 
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A language translator typically prepares the object module by assuming the 

virtual address 0 to be the starting address of the program, thus making virtual 

addresses relative to the program loading address. Relocation information, 

including virtual addresses that need adjustment following determination of the 

physical load address, is provided for subsequent processing by the linker and 

loader. Either when the linker combines object modules or when the process 

image is being loaded, all program locations that need relocation are adjusted in 

accordance with the actual starting physical address allocated to the program. 

Once the program is in memory, values that need relocation are indistinguishable 

from those that do not.  

Since relocation information in memory is usually lost following the loading, a 

partially executed statically relocatable program cannot be simply copied from 

one area of memory into another and be expected to continue to execute 

properly. In systems with static relocation a swapped-out process must either be 

swapped back into the same partition from which it was evicted, or software 

relocation must be repeated whenever the process is to be loaded into a different 

partition. Given the considerable space and time complexity of software 

relocation, systems with static relocation are practically restricted to supporting 

only static binding of processes to partitions. This method is slow process 

because it involves software translation. It is used only once before the initial 

loading of the program.  

5.2.2.4.2 Dynamic Relocation 
In it, mapping from the virtual address space to the physical address space is 

performed at run-time. Process images in systems with dynamic relocation are 

also prepared assuming the starting location to be a virtual address 0, and they 

are loaded in memory without any relocation adjustments. When the related 

process is being executed, all of its memory references are relocated during 

instruction execution before physical memory is actually accesses. This process 

is often implemented by means of specialized base registers. After allocating a 

suitable partition and loading a process image in memory, the Operating System 

sets a base register to the starting physical load address. This value is normally 
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obtained from the relevant entry of the PDT. Each memory reference generated 

by the executing process is mapped into the corresponding physical address by 

having the contents of the base register added to it. 

Dynamic relocation is illustrated in Figure 6. A sample process image prepared 

with an assumed starting address of virtual address 0 is shown unchanged 

before and after being loaded in memory. In this particular example, it is 

assumed that address 1000 is allocated as the starting address for loading the 

process image. This base address is normally available from the corresponding 

entry of the PDT, which is reachable by means of the link to the allocated 

partition in the PCB. Whenever the process in question is scheduled to run, the 

base register is loaded with this value in the course of process switching.  

 
Figure 6 – Dynamic relocation 
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Relocation of memory references at run-time is illustrated by means of the 

instruction LDA 500, which is supposed to load the contents of the virtual 

address 500 (relative to program beginning) into the accumulator. As indicated, 

the target item actually resides at the physical address 1500 in memory. This 

address is produced by hardware by adding the contents of the base register to 

the virtual address given by the processor at run-time.  

As suggested by Figure 5, relocation is performed by hardware and is invisible to 

programmers. In effect, all addresses in the process image are prepared by 

counting on the implicit based addressing to complete the relocation process at 

run-time. This approach makes a clear distinction between the virtual and the 

physical address space.  
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This is the most commonly used scheme amongst the schemes using fixed 

partitions due to its enhanced speed and flexibility. Its advantage is that it 

supports swapping easily. Only the base register value needs to be changed 

before dispatching. 

5.2.2.5  Protection  
Not only must the Operating System be protected from unauthorized tampering 

by user processes, but each user process must also be prevented from 

accessing the areas of memory allocated to other processes. Otherwise, a single 

erroneous or malevolent process may easily corrupt any or all other resident 

processes. There are two approaches for preventing such interference and 

achieving protection. These approaches involve the use of Limit Register and 

Protection Bits. 

Implementation of memory protection in a given system tends to be greatly 

influenced by the available hardware support. In systems that use base registers 

for relocation, a common practice is to use limit registers for protection. The 

primary function of a limit register is to detect attempts to access address space 

beyond the boundary assigned to the executing program by the Operating 

System. The limit register is usually set to the highest virtual address in a 

program. As illustrated by Figure 6, each intended memory reference of an 

executing program is checked against the contents of the limit register before 

being forwarded to memory. In this way, any attempt to access a memory 

location outside of the specified area is detected and aborted by the protection 

hardware before being allowed to reach the memory. This violation usually traps 

to the Operating System, which may then take a remedial action, such as to 

terminate the offending process. The base and limit values for each process are 

normally kept in its PBC. Upon each process switch, the hardware base and limit 

registers are loaded with the values required for the new running process. 

Another approach to protection is to record the access rights in the memory itself. 

The bit-per-word approach described earlier, is not suitable for multiprogramming 

systems because it can separate only two distinct address spaces. Adding more 

bits to designate the identity of each word’s owner may solve this problem, but 
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this approach is rather costly. A more economical version of this idea has been 

implemented by associating a few individual words. For example, some models 

of the IBM 360 series use four such bits, called keys, per each 2 KB block of 

memory. When a process is loaded in memory, its identity is recorded in the 

protection bits of the occupied blocks. The validity of memory references is 

established at run-time by comparison of the running process's identity to the 

contents of protection bits of the memory block being accessed. If no match is 

found, the access is illegal and hardware traps to the Operating System for 

processing of the protection-violation exception. The Operating System is usually 

assigned a unique "master" key, say 0 that gives it unrestricted access to all 

blocks of memory. Note that this protection mechanism imposes certain 

restrictions on operating-system designers. For example, with 4-bit keys the 

maximum number of static partitions and of resident processes is 16. Likewise, 

associating protection bits with fixed-sized blocks forces partition sizes to be an 

integral number of such blocks.  
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Figure 7 – Base-limit register 
5.2.2.6 Sharing 
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Sharing of code and data poses a serious problem in fixed partitions because it 

might compromise on protection. There are three basic approaches to sharing in 

systems with fixed partitioning of memory: 

¾ Entrust shared objects to Operating System. 

¾ Maintain multiple copies, one per participating partition, of shared objects. 

¾ Use shared memory partitions. 

The easiest way to implement sharing without significantly compromising 

protection is to entrust shared objects to the Operating System. It means that any 

code or data goes through the Operating System for any request because the 

Operating System has the controlling access to shared resources. No additional 

provisions may be needed to support sharing. This scheme is possible but very 

tedious. Unfortunately, this simple approach increases the burden on the 

Operating System. Therefore, it is not followed in practice.  

Unless objects are entrusted to the Operating System, sharing is quite difficult in 

systems with fixed partitioning of memory. The primary reason is their reliance on 

rather straightforward protection mechanisms based mostly on the strict isolation 

of distinct address spaces. Since memory partitions are fixed, disjoint, and 

usually difficult to access by processes not belonging to the Operating System, 

static partitioning of memory is not very conducive to sharing.  

Another approach is to keep copies of the sharable code/ data in all partitions 

where required. It is wasteful and leads to inconsistencies. Since there is no 

commonly accessible original, each process runs using its copy of the shared 

object. Consequently, updates are made only to copies of the shared object. For 

consistency, updates made to any must be propagated to all other copies, by 

copying the shared data from the address space of the running process to all 

participating partitions upon every process switch. Swapping, when supported, 

introduces the additional complexity of potentially having one or more 

participating address spaces absent from main memory. This approach of 

sharing does not make much sense in view of the fact that no saving of memory 

may be expected. 
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Another traditional simple approach to sharing is to place the data in a dedicated 

"common" partition. However, any attempt by a participating process to access 

memory outside of its own partition is normally regarded as a protection violation. 

In systems with protection keys, changing the keys of all shared blocks upon 

every process switch in order to grant access rights to the currently running 

process may circumvent this obstacle. Keeping track of which blocks are shared 

and by whom, as well as the potentially frequent need to modify keys, results in 

notable Operating System overhead necessary to support this form of sharing. 

With base-limit registers, the use of shared partitions outside of-and potentially 

discontiguous to-the running process's partition requires some special provisions.  

5.2.2.7  Evaluation 
¾ Wasted memory: In fixed partitions, lot of memory is wasted due to both kinds 

of fragmentation. 

¾ Access Time: Access time is not very high due to the assistance of special 

hardware. The translation from virtual address to physical address is done by 

hardware itself, thus enabling rapid access. 

¾ Time complexity is very low because allocation/ deallocation routines are 

simple as the partitions are fixed. 

5.3 Keywords 
Contiguous Memory Management: In this approach, each program occupies a 

single contiguous block of storage locations. 

First-fit: This allocates the first available space that is big enough to 

accommodate process.  

Best-fit: This allocates the smallest hole that is big enough to accommodate 

process. 

Worst fit: This strategy allocates the largest hole.  

External Fragmentation is waste of memory between partitions caused by 

scattered non-contiguous free space.  

Internal fragmentation is waste of memory within a partition caused by 

difference between size of partition and the process allocated. 
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Compaction is to shuffle memory contents and place all free memory together in 

one block. 

Program relocatability refers to the ability to load and execute a given program 

into an arbitrary place in memory. 

5.4 SUMMARY 
In this lesson, we have presented Single Contiguous Memory Management and 

Fixed Partition Memory Management schemes for management of main memory 

that are characterized by contiguous allocation of memory. Single contiguous 

memory management is inefficient in terms of both CPU and memory utilization 

and does not support multiprogramming. All other schemes support 

multiprogramming by allowing address spaces of several processes to reside in 

main memory simultaneously. One approach is to statically divide the available 

physical memory into a number of fixed partitions and to satisfy requests for 

memory by granting suitable free partitions, if any. Fixed partition sizes limit the 

maximum allowable virtual-address space of any given process to the size of the 

largest partition (unless overlays are used). The total number of partitions in a 

given system limits the number of resident processes. Within the confines of this 

limit, the effectiveness of the short-term scheduler may be improved by 

employing swapping to increase the ratio of resident to ready processes. 

Systems with static partitioning suffer from internal fragmentation of memory. 

Fixed partitioning of memory rely on hardware support for relocation and 

protection. Sharing is quite restrictive in these systems. 

5.5 SELF ASSESSMENT QUESTIONS (SAQ) 
1. What functions does a memory manager perform? 

2. How is user address space loaded in one partition of memory protected 

from others? 

3. What is the problem of fragmentation? How is it dealt with? 

4. What do you understand by program relocatability? Differentiate between 

static and dynamic relocation. 

5. Differentiate between first fit, best fit, and worst fit memory allocation 

strategies. Discuss their merits and demerits.  
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6. How is the tracks of status of memory is kept in partitioned memory 

management? 

7. What do you mean by relocation of address space? What problems does 

it cause? 

8. Differentiate between internal fragmentation and external fragmentation. 

9. What is external fragmentation? What is compaction? What are the merits 

and demerits of compaction? 

10. What are three basic approaches to sharing in systems with fixed 

partitioning of memory? 
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6.0 OBJECTIVE 
The main memory is the most precious resource in a multiprogramming system. 

There are a number of schemes to manage the main memory broadly categorize 

as contiguous and non-contiguous memory management schemes. Single 

contiguous memory allocation and fixed partition memory allocation schemes 

part of contiguous memory management have been discussed in previous 

lesson. The objective of this lesson is: 

(i) To make the students familiar with the variable partitioned memory 

management scheme, a type of contiguous memory management 

scheme.  

(ii) To explain the various memory compaction techniques. 

(iii) To discuss the memory protection and sharing in variable partition 

memory management. 

6.1  INTRODUCTION 
As discussed in the last lesson, the memory management modules are 

concerned primarily with following functions: (a) Keeping track of whether each 

location is allocated or unallocated, to which process and how much, (b) deciding 

to whom the memory is allocated, how much, when and where, (c) once it is 

decided to allocate memory, the specific locations must be selected and 

allocated, and (d) handling the deallocation/reclamation of memory.  The main 

problem with fixed partitioned memory management system discussed in the last 

lesson is determining the best region size to minimize the problem of internal and 

external fragmentation. It is difficult to achieve in fixed partitioning because in it 

the number of partitions and their sizes are decided statically and with a dynamic 

set of job to run there is no one right partition of memory. One possible solution 

to this problem is to allow the partitioning of the memory dynamically i.e. variable 
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partitioned memory management system. In this approach, partition sie and 

boundaries are changed during system operations to suit memory requirements 

of individual programs. Each job is allocated a partition whose size matches its 

memory requirements. Hence no internal fragmentation exists. However external 

fragmentation may arise due to existence of holes which are too small to 

accommodate any program. 

6.2 PRESENTATION OF CONTENTS 
6.2.1 Variable Partitioned Memory Allocation 

6.2.1.1 Principles of Operation 

6.2.1.2 Compaction 

6.2.1.3 Buddy System 

6.2.1.4 Protection 

6.2.1.5 Sharing 

6.2.1.6 Evaluation 

6.2.1 VARIABLE PARTITIONED MEMORY ALLOCATION 
In variable partitions, the number of partitions and their sizes are variable as they 

are not defined at the time of system generation. Starting with the initial state of 

the system, partitions are created dynamically to fit the needs of each requesting 

process. When a process departs, the memory manager returns the vacated 

space to the pool of free memory areas from which partition allocations are 

made. Process is allocated exactly as much memory as required. 

6.2.1.1 Principles of Operation 
When instructed to load a process image, the memory-management module 

attempts to create a suitable partition for allocation to the process in question. 

The first step is to locate a contiguous free area of memory, which is equal to or 

larger than the process's size declared with the submitted image. If a suitable 

free area is found, the Operating System carves out a partition from it to provide 

an exact fit to the process's needs. The leftover chunk of free memory is returned 

to the pool of free memory for later use by the allocation module. The partition is 

created by entering its base, size, and status into the system Partition 

Description Table (PDT). A copy of, or some link to, this information is normally 
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recorded in the PCB. After loading the process image into the created partition, 

the process may be turned over to the Operating System module appropriate for 

its further processing, such as the short-term scheduler. If no suitable free area 

can be allocated, the Operating System returns an error indication. 

When a resident process departs, Operating System returns the partition's space 

to the pool of free memory and invalidates the corresponding Partition 

Description Table entry. For swapped-out processes, the Operating System also 

invalidates the PCB field where the identity of the allocated partition is normally 

held. 

The Operating System obviously needs to keep track of both partitions and free 

memory. Once created, a partition is defined by its base address and size. Those 

attributes remain essentially unchanged for as long as the related partition exists. 

In addition, for the purposes of process switching and swapping, it is important to 

know which partition belongs to a given process.   

Free areas of memory are produced upon termination of partitions and as 

leftovers in the partition creation process. For allocation and for partition creation 

purpose, the Operating System must keep track of the starting address and size 

of each free area of memory. This information may need to be updated each time 

a partition is created or terminated. The highly dynamic nature of both the 

number and the attributes of free areas suggest the use of some sort of a linked 

list to describe them. It is common to conserve space by building the free list 

within the free memory itself. For example, the first few words of each free area 

may be used to indicate the size of the area and to house a link to the successor 

area.  

Figure 1 illustrates the working of variable partitioned memory. In this example, 

first Process 1, Process 2 and Process 3 are allocated memory as they arrive. 

When Process 2 is swapped out, the memory freed by Process 2 is available for 

any other process. So it is allocated to Process 4 and the size of partition for 

process 4 also varies. Again when process 2 arrives, it is allocated memory at 

different location that was freed by Process 1. Moreover, the size of partition also 

differs from the size of partition of process 1.From the given example, it is clear 
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that memory is allocated to processes as they arrive and on availability of 

memory. Partitions are created at the time of allocation according to size of 

process and not at the time of system generation. 
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Figure 1– Partitions in dynamic memory partitioning 
Common algorithms for selection of a free area of memory for creation of a 

partition (Step 1) are  

(i) First fit 

(ii) Best fit  

(iii) Worst fit 

(iv) Next Fit 

 Next fit is a modification of first fit whereby the pointer to the free list is saved 

following an allocation and used to begin the search for the subsequent 

allocation as opposed to always starting from the beginning of the free list, as is 
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the case with first fit. The idea is to reduce the search by avoiding examination of 

smaller blocks that tend to be created at the beginning of the free list as a result 

of previous allocations. In general, next fit was not found to be superior to the first 

fit in reducing the amount of wasted memory. 

First fit is generally faster because it terminates as soon as a free block large 

enough to house a new partition is found. Thus, on the average, first fit searches 

half of the free list per allocation. Best fit, on the other hand, searches the entire 

free list to find the smallest free block large enough to hold a partition being 

created. First fit is faster, but it does not minimize wasted memory for a given 

allocation. Best fit is slower, and it tends to produce small leftover free blocks that 

may be too small for subsequent allocations. However, when processing a series 

of request starting with an initially free memory, neither algorithm has been 

shown to be superior to the other in terms of wasted memory. 

Worst fit is an antipode of best fit, as it allocates the largest free block, provided 

the block size exceeds the requested partition size. The idea behind the worst fit 

is to reduce the rate of production of small holes, which are quite common in best 

fit. However, some simulation studies indicate that worst fit allocation is not very 

effective in reducing wasted memory in the processing of a series of requests.  

Termination of partitions in a system with dynamic allocation of memory may be 

performed by means of the procedure that recombines free areas, if possible, to 

reduce fragmentation of memory. When first fit or best fit is used, the free list 

may be sorted by address to facilitate recombination of free areas when 

partitions are deallocated.  

6.2.1.2 Compaction 
It is one solution to problem of external fragmentation. The goal here is to shuffle 

memory contents and place all free memory together in one block. Compaction is 

possible only if relocation is dynamic. This technique shifts the necessary 

process images to bring the free chunks of memory to adjacent positions to 

coalesce. Coalescing of adjacent free areas is a method often used to reduce 

fragmentation and the amount of wasted memory. However, such remedies tend 

to defer the impact of, rather than to prevent, the problem. The primary reason 
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for fragmentation is that, due to different lifetimes of resident objects, the pattern 

of returns of free areas is generally different from the order of allocations.  
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When memory becomes seriously fragmented, the only way out may be to 

relocate some or all partitions into one end of memory and thus combine the 

holes into one large free area. Since affected processes must be suspended and 

actually copied from one area of memory into another. It is important to decide 

when and how memory compaction is to be performed.  

One simplest approach of doing compaction is to move all jobs towards one end 

of the memory and all holes in other direction resulting into one large hole of 

available memory. Now consider the memory allocation as shown above in figure 
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A. If we are using this simple approach we have to move Job 3 and Job 4 upward 

as shown in figure B, producing a large hole of 900 k after moving 2 blocks of 

300k. But same can be achieved by moving Job 4 above the Job 3 as shown in 

figure C or moving Job 3 below Job 4 as in Figure D (Although in this case the 

large hole of available memory (900 k) is not at the end of the memory rather it is 

in the middle). So deciding an optimal compaction strategy is not an easy task. 

Memory compaction may be performed whenever possible or only when needed. 

Some systems compact memory whenever a process departs, thus is collecting 

most of the free memory into a single large area. An alternative is to compact 

only upon a failure to allocate a suitable partition, provided that the combined 

size of free areas exceeds the needs of the request at hand.  

Compaction involves a high overhead, but it increases the degree of 

multiprogramming. That is why; Operating System can accommodate a process 

with a larger size, which would have been impossible before compaction. 
6.2.1.3. Buddy System:  

This is another method of allocation-deallocation which speeds up merging of 

adjacent holes. This method facilitates merging of free space by allocating free 

areas with an affinity to recombine. It treats entire space available as a single 

block of 2k, Requests for free areas are rounded up to the next integer power of 

base 2. When a free block of size 2k is requested, the memory allocator attempts 

to satisfy it by allocating a free block from the list of free blocks of size 2k. If none 

is available, the block of the next larger size, 2k+1, is split in two halves (buddies) 

to satisfy the request. An important property of this allocation scheme is that the 

base address of the other buddy can be determined given the base address and 

size of one buddy (for a block of size 2k, the two addresses differ only in the 

binary digit whose weight is 2k). Thus, when a block is freed, a simple test of the 

status bit can reveal whether its buddy is also free. If so, the two blocks can be 

recombined to form the twice-larger original block. In addition to the free-list links, 

a status field is associated with each area of memory to indicate whether it is in 

use or not. Free blocks of equal size are often kept in separate free lists. 

Advantage of Buddy System is that it coalesces adjacent buffers or holes. Its 
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major disadvantage is that this method is very inefficient in terms of memory 

utilization. 

As an example, consider a system with 1MB of memory (100000H) managed 

using the buddy allocation scheme. An initial request for a 192 KB block in such 

a system would require allocation of a 256 KB block (rounded up to the size that 

is a power of 2). Since no such block is initially available, the memory manager 

would form it by splitting the 1 MB block into two 512 KB buddies, and then 

splitting one of them to form two 256 KB blocks. The first split produces two 512 

KB blocks (buddies) with starting addresses of 00000H (H stands for 

hexadecimal) and 80000H, respectively. The second split of the block at 80000H 

yields two 256 KB blocks (buddies) that start at 80000H and A0000H, 

respectively. Assume that the block starting at A0000H is allocated to the user. 

When the partition starting as A0000H is eventually terminated, the memory 

manager can identify the base address of its 256 KB buddy (buddies are of the 

same size) by toggling the address bit in the position that corresponds to the size 

of the block being released. In the presented example, 256 KB = 218, and 

toggling of that bit yields a 0 (in this example) in bit position 18, which, with all 

other bits unchanged, produces the address of the original buddy, 80000H. A 

quick inspection of the associated status word indicates whether the buddy at 

that address is free or not. If it is, the two buddies are coalesced to reform the 

512 KB block starting at address 80000H, which was originally used to produce 

the smaller blocks to satisfy the pending request.  

Example: The buddy memory allocation technique allocates memory in powers of 

2, i.e 2x, where x is an integer. Thus, the programmer has to decide on, or to 

write code to obtain, the upper limit of x. For instance, if the system had 2000K of 

physical memory, the upper limit on x would be 10, since 210 (1024K) is the 

biggest allocatable block. This results in making it impossible to allocate 

everything in as a single chunk; the remaining 976K of memory would have to be 

taken in smaller blocks. 

After deciding on the upper limit (let's call the upper limit u), the programmer has 

to decide on the lower limit, i.e. the smallest memory block that can be allocated. 
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This lower limit is necessary so that the overhead of storing used and free 

memory locations is minimized. If this lower limit did not exist, and many 

programs request small blocks of memory like 1K or 2K, the system would waste 

a lot of space trying to remember which blocks are allocated and unallocated. 

Typically this number would be a moderate number (like 2, so that memory is 

allocated in 2² = 4K blocks), small enough to minimize wasted space, but large 

enough to avoid excessive overhead. Let's call this lower limit l. 

Now that we have our limits, let us see what happens when a program makes 

requests for memory. Let's say in this system, l = 6, which results in blocks 26 = 

64K in size, and u = 10, which results in a largest possible allocatable block, 210 

= 1024K in size. The following shows a possible state of the system after various 

memory requests. 
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Figure - 2 

This allocation could have occurred in the following manner 

1. Program A requests memory 34K..64K in size 

2. Program B requests memory 66K..128K in size 

3. Program C requests memory 35K..64K in size 

4. Program D requests memory 67K..128K in size 
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5. Program C releases its memory 

6. Program A releases its memory 

7. Program B releases its memory 

8. Program D releases its memory 

As you can see, what happens when a memory request is made is as follows: 

• If memory is to be allocated 

1. Look for a memory slot of a suitable size (the minimal 2k block that is 

larger or equal to that of the requested memory)  

1. If it is found, it is allocated to the program 

2. If not, it tries to make a suitable memory slot. The system does so 

by trying the following:  

1. Split a free memory slot larger than the requested memory 

size into half 

2. If the lower limit is reached, then allocate that amount of 

memory 

3. Go back to step 1 (look for a memory slot of a suitable size) 

4. Repeat this process until a suitable memory slot is found 

• If memory is to be freed 

1. Free the block of memory 

2. Look at the neighboring block - is it free too? 

3. If it is, combine the two, and go back to step 2 and repeat this process 

until either the upper limit is reached (all memory is freed), or until a non-

free neighbour block is encountered 

This method of freeing memory is rather efficient, as compaction is done 

relatively quickly, with the maximal number of compactions required equal to 

log2(u/l) (i.e. log2(u)- log2(l)). 

Typically the buddy memory allocation system is implemented with the use of a 

binary tree to represent used or unused split memory blocks. 

However, there still exists the problem of internal fragmentation. In many 

situations, it is essential to minimize the amount of internal fragmentation.  

6.2.1.4 Protection 

Lesson no. VI Contiguous Memory Management - I I 10



Protection and sharing in systems with dynamic partitioning of memory are not 

significantly different from their counterparts in static partitioning environments, 

since they both rely on virtually identical hardware support. One difference is that 

dynamic partitioning potentially allows adjacent partitions in physical memory to 

overlap. Consequently, a single physical copy of a shared object may be 

accessible from two distinct address spaces. This possibility is illustrated in 

Figure 3, where partitions A and B overlap to include the shared object placed in 

the doubly shaded area. The relevant portion of the partition of the partition 

definition table is also shown in Figure 3. As indicated, 500 locations starting 

from the physical address 5500 are shared and included in both partitions. 

Although perhaps conceptually appealing, this form of sharing is quite restrictive 

in practice. Sharing of objects is limited to two processes; when several 

processes are in play, one of the more involved schemes described in above 

must be used. 

6.2.1.5 Sharing 
Sharing of code is generally more restrictive than sharing of data. One of the 

reasons for this is that shared code must be either reentrant or executed in a 

strictly mutually exclusive fashion with no preemption’s. Otherwise, serious 

problems may result if a process in the middle of execution of the shared code is 

switched off, and another process begins to execute the same section of the 

shared code. Reentrancy generally requires that variables be kept on stack or in 

registers, so that new activation’s do not affect the state of the preempted, 

incomplete executions. Additional complexities in sharing of code are imposed by 

the need for shared code to ensure that references to itself-such as local jumps 

and access to local data-are mapped properly during executions on behalf of any 

of the participating processes. When dynamic relocation with base registers is 

used, this means that all references to addresses within a shared-code object 

from instructions within that code must reach the same set of physical addresses 

where the shared code is stored at run-time, no matter which particular base is 

used for a given relocation. This may be accomplished in different ways, such as 

by making the shared code position independent or by having shared code 
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occupy identical virtual offsets in address spaces of all processes that reference 

it. 

 Base Size   

A 4000 2000
B 5500 2500

 

    

    

Area A 
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8000
  

 
Figure 3 – Overlapping partitions 

Some aspects of the issues involved in self-referencing of shared code are 

illustrated in Figure 4, where a subroutine SUB is assumed to be shared by two 

processes, PA and PB, whose respective partitions overlap in physical memory 

as indicated in Figure 3. Let us assume that the system in question used 

dynamic relocation and dynamic memory allocation, thus allowing the two 

partitions to overlap. The sizes of the address spaces of the two processes are 

2000 and 2500 locations, respectively. The shared subroutine, SUB, occupies 

500 locations, and it is placed in locations 5500 to 5999 in physical memory. The 

subroutine starts at virtual addresses 1500 and 0 in the address spaces of 

processes PA and PB, respectively. Being shared by the two processes, SUB 

may be linked with and loaded with either process image. 

Figure 4 also shows the references to SUB from within the two processes. As 

indicated in Figure 4(a), the CALL SUB at virtual address 100 of process PA is 

mapped to the proper physical address of 5500 at run-time by adding the 

contents of PA's base register. Likewise the CASS SUB at virtual address 1800 

in process PB is mapped to 5500 at run-time by adding PB's value of the base 

register. This is illustrated in Figure 4(b). Thus proper referencing of SUB from 

the two processes is accomplished even when the two partitions are relocated 

due to swapping or compaction, provided that they overlap in the same way in 

the new set of physical addresses. However, making references from within SUB 
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to itself poses a problem unless some special provisions are made. For example, 

a jump using absolute addressing from location 50 to location 100 within SUB 

should read JUMP 1600 for proper transfer of control when invoked by PA, but 

JMP 100 if PB’s invocation is to work properly. Since the JMP instruction may 

have only one of these two addresses in its displacement field, there is a problem 

in executing SUB correctly in both possible contexts.  

One way to solve this problem is to use relative references instead of absolute 

references within shared code. For example, the jump in question may read JMP 

$+50, where $ denotes the address of the JMP instruction. Since it is relative to 

the program counter, the JMP is mapped properly when invoked by either 

process, that is, to virtual address 1600 or 100, respectively. At run-time, 

however, both references map to the same physical address, 5600, as they 

should. This is illustrated in Figure 4.  

Code that executes correctly regardless of its load address is often referred to as 

position-independent code. One of its properties is that references to portions of 

the position-independent code itself are always relative, say, to the program 

counter or to a base when based addressing is used. Position-independent 

coding is often used for shared code, such as memory-resident subroutine 

libraries. In our example, use of position-independent code solves the problem of 

self-referencing. 
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Figure 4 – Accessing shared code (a) Process A (b) Process B 

Position-independent coding is one way to handle the problem of self-referencing 

of shared code. The main point of our example, however, is that sharing of code 

is more restrictive than sharing of data. In particular, both forms of sharing of 

code is more restrictive than sharing of data. In particular, both forms of sharing 

require the shared object to be accessible from all address spaces of which it is a 

part; in addition, shared code must also be reentrant or executed on a mutually 

exclusive basis, and some special provisions-such as position-independent 

coding-must be made in order to ensure proper code references to itself. Since 

ordinary (non-shared) code does not automatically meet these requirements, 

some special language provisions must be in place, or assembly language 

coding may be necessary to prepare shared code for execution in systems with 

partitioned allocation of memory. 

6.2.1.6 Evaluation 
¾ Wasted memory: This memory management scheme wastes less memory 

than fixed partitions because there is no internal fragmentation as the 

partition size can be of any length. By using compaction, external 

fragmentation can also be eliminated. 

¾ Access Time: Access time is same as of fixed partitions as the same 

scheme of address translation using base register is used. 
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¾ Time Complexity: Time complexity is higher in variable partitions due to 

various data structures and algorithms used, for eg: Partition Description 

Table (PDT) is no more of fixed length. 

6.3 Keywords 
Variable partition: The number of partitions and their sizes are variable as they 

are not defined at the time of system generation. 

Next fit: It is a modification of first fit whereby the pointer to the free list is saved 

following an allocation and used to begin the search for the subsequent 

allocation as is the case with first fit. 

Position-independent code: Code that executes correctly regardless of its load 

address is referred to as position-independent code. 
External Fragmentation is waste of memory between partitions caused by 

scattered non-contiguous free space.  

Internal fragmentation is waste of memory within a partition caused by 

difference between size of partition and the process allocated. 

Compaction is to shuffle memory contents and place all free memory together in 

one block. 

Program relocatability refers to the ability to load and execute a given program 

into an arbitrary place in memory. 

6.4  SUMMARY 
Fixed partition allocation although simple but has its own limitations in dealing 

with the problem of selection of a partition of suitable size. Variable (dynamic) 

partitioning allows allocation of the entire physical memory, except for the 

resident part of the Operating System, to a single process. Thus, in systems with 

dynamic partitioning, the virtual-address space of any given process or an 

overlay is limited only by the capacity of the physical memory in a given system. 

Dynamic creation of partitions according to the specific needs of requesting 

processes also eliminates the problem of internal fragmentation. Dynamic 

allocation of partitions requires the use of more complex algorithms for de-

allocation of partitions and coalescing of free memory in order to combat external 

fragmentation. The fixed partition scheme suffers from internal fragmentation 
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while variable partitioning from external fragmentation. The need for occasional 

compaction of memory is also a major contributor to the increased time and 

space complexity of dynamic partitioning. Buddy system is a technique allocates 

memory in powers of 2, i.e 2x, where x is an integer, thus facilitates memory 

compaction, although with a limitation of memory wastage. 

Both fixed and variable partitioning of memory rely on virtually identical hardware 

support for relocation and protection. Sharing is quite restrictive in both systems. 

6.5 SELF ASSESSMENT QUESTIONS (SAQ) 
1. What do you understand by fragmentation? What is the difference 

between internal and external fragmentation? What is there in variable 

partitioned memory management? Explain. Use suitable example. 

2. What do you understand by memory compaction? What are its merits and 

demerits? Discuss. 

3. What are the different problems with memory compaction? Illustrate using 

suitable examples. 

4. What is buddy system? How does it facilitate memory compaction? 

Discuss its advantages and disadvantages. Use suitable examples. 

5. Discuss the merits and demerits of variable partitioned memory 

management scheme over fixed partitioned memory management 

scheme. 

6. What do you understand by position independent coding? What are its 

advantages? Discuss. 

7. Differentiate between First-fit and Next-fit allocation algorithms. 

8. Compare the fixed partitioned memory management with variable 

partitioned memory management in terms of the problem of fragmentation. 
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Lesson number: 7     Writer: Dr. Rakesh Kumar 

Non-Contiguous Memory Management  Vetter: Prof. Dharminder Kumar 
 

7.0 OBJECTIVE 
The objective of this lesson is to introduce the concepts of Non-contiguous real 

memory management system. In the beginning Segmentation is also discussed 

which is an approach that contains the properties of contiguous as well as non-

contiguous memory management systems. 

7.1  INTRODUCTION 
In Non-Contiguous Memory Management a program is divided into several 

blocks or segments that may be placed throughout main storage in pieces or 

chunks not necessarily adjacent to one another. It is the function of Operating 

System to manage these different chunks in such a way that they appear to be 

contiguous to the user. 

At run time contiguous virtual address space is mapped to noncontiguous 

physical address space. This type of memory management is done in various 

ways: 

1. Non-Contiguous, real memory management system 

¾ Paged memory management system  

¾ Segmented memory management system 

¾ Combined memory management system 

2. Non-Contiguous, virtual memory management system 

¾ Virtual memory management system 

7.2 PRESENTATION OF CONTENTS 
7.2.1  Segmentation 

7.2.1.1 Principles of Operation 

7.2.1.2 Address Translation 

7.2.1.3 Segment Descriptor Caching 
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7.2.1.4 Protection 

7.2.1.5 Sharing  

7.2.2  Paging 

7.2.2.1 Principles of Operation 

7.2.2.2 Page Allocation 

7.2.2.3 Hardware Support for Paging 

7.2.2.4 Protection and Sharing 

7.2.1 SEGMENTATION 
The external fragmentation and its negative impact should be reduced in systems 

where the average size of a request for allocation is smaller. Operating System 

cannot reduce the average process size, but a way to reduce the average size of 

a request for memory is to divide the address space of a single process into 

blocks that may be placed into noncontiguous areas of memory. This can be 

accomplished by segmentation. Segmentation provides breaking of an address 

space into several logical segments, dynamic relocation and sophisticated forms 

of protection and sharing. 

According to user’s view, programs are collections of subroutines, stacks, 

functions etc. Each of these components is of variable length and are logically 

related entities. Elements within segment are identified by their offset from 

beginning of the segment. Segments are formed at program translation time by 

grouping together logically related items. For example, a typical process may 

have separate code, data, and stack segments. Data or code shared with other 

processes may be placed in their own dedicated segments. 

All segments of all programs do not have to be of the same length since the 

segments are formed as a result of logical division. There is a maximum segment 

length. Although different segments may be placed in separate, noncontiguous 

areas of physical memory, items belonging to a single segment must be placed 

in contiguous areas of physical memory. Since segments are not equal, 

segmentation is similar to dynamic partitioning. Thus segmentation possesses 

some properties of both contiguous (with regard to individual segments) and 
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noncontiguous (with regard to address space of a process) schemes for memory 

management.    

Segmentation is quite natural for programmers who tend to think of their 

programs in terms of logically related entities, such as subroutines and global or 

local data areas. A segment is essential a collection of such entities. The 

segmented address space of a single process is illustrated in Figure 1 (a). In that 

particular example, four different segments are defined: DATA, STACK, CODE, 

and SHARED. 

Data Segment 
: 

  

: Data 

datum x   dw  xx 

datum y   dw            yy 

Data Ends 
 

Stack 

Stack Segment 
 
DS 500 
 Code 

Stack  Ends 
 
Code Segment 
Psub Shared 

Main 
   
Code Ends Segment Map 
 Segment # Size Type 
Shared Segment 0 D Data 
  ssub1 1 500 Stack 
  ssub2 2 C Code 
Shared Ends 3 S Code 
(a) Segment Definition (b) Load Module 

Figure 1 - Segments 
Except for SHARED, the name of each segment is chosen to indicate the type of 

information that it contains. The STACK segment is assumed to consist of 500 

locations reserved for stack. The SHARED segment consists of two subroutines, 

SSUB1 and SSUB2, shared with other processes. The definition of the segments 

follows the typical assembly-language notation, in which programmers usually 

Lesson no. VII Non-Contiguous Memory Management  3



have the freedom to define segments directly in whatever way they feel best suits 

the needs of the program at hand. As a result, a specific process may have 

several different segments of the same generic type, such as code or data. For 

example, both CODE and SHARED segments contain executable instructions 

and thus belong to the generic type "code". 

7.2.1.1 Principles of Operation 
Segmentation is mapping of user’s view onto physical memory. A logical address 

space is a collection of segments. Each segment has a name and length. User 

specifies each address by segment name or number and offset within segment. 

Segments are numbered and are referenced by segment number. For relocation 

purposes, each segment is compiled to begin at its own virtual address 0. An 

individual item within a segment is then identifiable by its offset relative to the 

beginning of the enclosing segment. Thus, logical address consists of <segment 

no., offset>.  In segmented systems, components belonging to a single segment 

reside in one contiguous area. But different segments belonging to same process 

occupy non-contiguous area of physical memory because each segment is 

individually relocated. 

For example, the subroutine SSUB2 in segment SHARED is assumed to begin at 

offset 100. However, the unique designation of an item in a segmented address 

space requires the specification of both its segment and the relative offset 

therein. Offset 100 may fetch the first instruction of the subroutine SSUB2 within 

the segment SHARED, but the same relative offset may designate an entirely 

unrelated datum in the DATA segment.  

To simplify processing, segment names are usually mapped to (virtual) segment 

numbers. This mapping is static, and systems programs in the course of 

preparation of process images may perform it.  

A sample linker-produced load module for the segments defined in Figure 1(a) is 

depicted in Figure 1(b). Virtual segment numbers are shown as part of the 

segment map that systems programs prepare to facilitate loading of segments in 

memory by the Operating System. When segment numbers and relative offsets 

within the segments are defined, two-component virtual addresses uniquely 
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identify all items within a process's address space. For example, if the SHARED 

segment is assigned number 3, the subroutine SSUB2 may be uniquely identified 

by its virtual address (3100), where 100 is the offset within the segment number 

3-SHARED. 

7.2.1.2 Address Translation 
Since physical memory in segmented systems generally retains its linear-array 

organization, some address translation mechanism is needed to convert a two-

dimensional virtual-segment address into its one-dimensional physical 

equivalent. In segmented systems, items belonging to a single segment reside in 

one contiguous area of physical memory. With each segment compiled as if 

starting from the virtual address zero, segments are generally individually 

relocatable. As a result, different segments of the same process need not occupy 

contiguous areas of physical memory. 

When requested to load a segmented process, the Operating System attempts to 

allocate memory for the supplied segments. Using logic similar to that used for 

dynamic partitioning, it may create a separate partition to suit the needs of each 

particular segment. The base (obtained during partition creation) and size 

(specified in the load module) of a loaded segment are recorded as a tuple called 

the segment descriptor. All segment descriptors of a given process are collected 

in a table called the segment descriptor table (SDT). Two dimensional user 

defined address is mapped to one dimensional physical address by segment 

descriptor table. Each entry of this table has segment base and segment limit. 

Segment base contains the starting physical address of the segment and 

segment limit specifies the length of the segment.  

Figure 2 illustrates a sample placement of the segments defined in Figure 1 into 

physical memory, and the resulting SDT formed by the Operating System. With 

the physical base address of each segment defined, the process of translation of 

a virtual, two-component address into its physical equivalent basically follows the 

mechanics of based addressing. The segment number provided in the virtual 

address is used to index the segment descriptor table and to obtain the physical 
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base address of the related segment. Adding the offset of the desired item to the 

base of its enclosing segment then produces the physical address. 
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Figure 2 – Address translation in segmented systems 
This process is illustrated in Figure 2 for the example of the virtual address 

(3100). To access Segment 3, the number 3 is used to index the SDT and to 

obtain the physical base address, 20000, of the segment SHARED. The size field 

of the same segment descriptor is used to check whether the supplied offset is 

within the legal bounds of its enclosing segment. If so, the base and offset are 

added to produce the target physical address. In our example that value is 

20100, the first instruction word of the shared subroutine SSUB2. 

In general, the size of a segment descriptor table is related to the size of the 

virtual address space of a process. For example, Intel's iAPX 286 processor is 

capable of supporting up to 16K segments of 64 KB each per process, thus 
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requiring 16K entries per SDT. Given their potential size, segment descriptor 

tables are not kept in registers. Being a collection of logically related items, the 

SDTs themselves are often treated as special types of segments. Their 

accessing is usually facilitated by means of a dedicated hardware register called 

the segment descriptor table base register (SDTBR), which is set to point to the 

base of the running process's SDT. Since the size of an SDT may vary from a 

few entries to several thousand, another dedicated hardware register, called the 

segment descriptor table limit register (SDTLR), is provided to mark the end of 

the SDT pointed to by the SDTBR. In this way, an SDT need contain only as 

many entries as there are segments actually defined in a given process. 

Attempts to access nonexistent segments may be detected and dealt with as 

nonexistent-segment exceptions. 

From the Operating System's point of view, segmentation is essentially a 

multiple-base-limit version of dynamically partitioned memory. Memory is 

allocated in the form of variable partitions; the main difference is that one such 

partition is allocated to each individual segment. Bases and limits of segments 

belonging to a given process are collected into an SDT are normally kept in the 

PCB of the owner process. Upon each process switch, the SDTBR and SDTLR 

are loaded with the base and size, respectively, of the SDT of the new running 

process. In addition to the process-loading time, SDT entries may also need to 

be updated whenever a process is swapped out or relocated for compaction 

purposes. Swapping out requires invalidation of all SDT entries that describe the 

affected segments. When the process is swapped back in, the base fields of its 

segment descriptors must be updated to reflect new load addresses. For this 

reason, swapping out of the SDT itself is rarely useful. Instead, the SDT of the 

swapped-out process may be discarded, and the static segment map-such as the 

one depicted in Figure 1(b)-may be used for creation of an up-to-date SDT 

whenever the related process is loaded in memory. Compaction, when 

supported, requires updating of the related SDT entry for each segment moved. 

In such systems, some additional or revised data structures may be needed to 
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facilitate identification of the SDT entry that describes the segment scheduled to 

be moved. 

The price paid for segmenting the address space of a process is the overhead of 

storing and accessing segment descriptor tables. Mapping each virtual address 

requires two physical memory references for a single virtual (program) reference, 

as follows: 

¾ Memory reference to access the segment descriptor in the SDT 

¾ Memory reference to access the target item in physical memory 

In other words, segmentation may cut the effective memory bandwidth in half by 

making the effective virtual-access time twice as long as the physical memory 

access time.  

7.2.1.3 Segment Descriptor Caching 
With performance of segmented systems so critically dependent on the duration 

of the address translation process, computer system designers often provide 

some hardware accelerators to speed the translation. Memory references 

expended on mapping may be avoided by keeping segment descriptors in 

registers. However, the potential size of an SDT and the overhead of process 

switching make it too costly to keep an entire SDT of the running process in 

registers. A reasonable compromise is to keep a few of the most frequently used 

segment descriptors in registers. In this way, most of the memory references 

may be mapped with the aid of registers. The rest may be mapped using the 

SDT in memory, as usual. This scheme is dependent on the Operating System's 

ability to select the proper segment descriptors for storing into registers. In order 

to provide the intuitive motivation for one possible implementation of systematic 

descriptor selection, let us investigate the types of segments referenced by the 

executing process. 

Memory references may be functionally categorized as accesses to (i) 

Instructions, (ii) Data, and (iii) Stack. 

A typical instruction execution sequence consists of a mixture of the outline types 

of memory references. In fact, completion of a single stack manipulation 

instruction, such as a push of a datum from memory onto stack, may require all 
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three types of references. Thus the working space of a process normally 

encompasses one each of code, data, and stack segments. Therefore, keeping 

the current code, data, and stack segment descriptors in registers may 

accelerate address translation. Depending on its type, a particular memory 

reference may then be mapped using the appropriate register. But can we know 

the exact type of each memory reference as the processor is making it? The 

answer is yes, with the proper hardware support. Namely, in most segmented 

machines the CPU emits a few status bits to indicate the type of each memory 

reference. The memory management hardware uses this information to select 

the appropriate mapping register. 
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Figure 3 – Segment-descriptor cache registers 

Register-assisted translation of virtual to physical addresses is illustrated in 

Figure 3. As indicated, the CPU status lines are used to select the appropriate 

segment descriptor register (SDR). The size field of the selected segment 

<Size +

Segment Size 
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descriptor is used to check whether the intended reference is within the bounds 

of the target segment. If so, the base field is added with the offset to produce the 

physical address. By making the choice of the appropriate segment register 

implicit in the type of memory reference being made, segment typing may 

eliminate the need to keep track of segment numbers during address 

translations. Though segment typing is certainly useful, it may become restrictive 

at times. For example, copying an instruction sequence from one segment into 

another may confuse the selector logic into believing that source and target 

segments should be of type data rather than code. Using the so-called segment 

override of type prefixes, which allows the programmer to explicitly indicate the 

particular segment descriptor register to be used for mapping the memory 

reference in question, may alleviate this problem.  

Segment descriptor registers are initially loaded from the SDT. Whenever the 

running process makes an intersegment reference, the corresponding segment 

descriptor is loaded into the appropriate register from the SDT. For example, an 

intersegment JUMP or CALL causes the segment descriptor of the target (code) 

segment to be copied from the SDT to the code segment descriptor register. 

When segment typing is used as described, segment descriptor caching 

becomes deterministic as opposed to probabilistic. Segment descriptors stored in 

the three segment descriptor registers; define the current working set of the 

executing process. Since membership in the working set of segments of a 

process changes with time, segment descriptor registers are normally included in 

the process state. Upon each process switch, the contents of the SDRs of the 

departing process are stored with the rest of its context. Before dispatching the 

new running process, the Operating System loads segment descriptor registers 

with their images recorded in the related PCB.  

7.2.1.4 Protection 
The base-limit form of protection is obviously the most natural choice for 

segmented systems. The legal address space of a process is the collection of 

segments defined by its SDT. Except for shared segments. Placing different 

segments in disjoint areas of memory enforces separation of distinct address 

Lesson no. VII Non-Contiguous Memory Management  10



space. Thus most of the discussion of protection in systems with dynamic 

allocation of memory is applicable to segmented environments as well. 

An interesting possibility in segmented systems is to provide protection within the 

address space of a single process, in addition to the more usually protection 

between different processes. Given that the type of each segment is defined 

commensurate with the nature of information stored in its constituent elements, 

access rights to each segment can be defined accordingly. For instance, though 

both reading and writing of stack segments may be necessary, accessing of code 

segments can be permitted in execute-only or perhaps in the read-only mode. 

Data segments can be read-only, write-only, or read-write. Thus, segmented 

systems may be able to prohibit some meaningless operations, such as 

execution of data or modifications of code. Additional examples include 

prevention of stack growth into the adjacent code or data areas, and other errors 

resulting from mismatching of segment types and intended references to them. 

An important observation is that access rights to different portions of a single 

address space may vary in accordance with the type of information stored 

therein. Due to the grouping of logically related items, segmentation is one of the 

rare memory-management schemes that allow such finely grained delineation of 

access rights. The mechanism for enforcement of declared access rights in 

segmented systems is usually coupled with the address translation hardware. 

Typically, access-rights bits are included in segment descriptors. In the course of 

address mapping, the intended type of reference is checked against the access 

rights for the segment in question. Any mismatch results in abortion of the 

memory reference in progress, and a trap to the Operating System.  

7.2.1.5 Sharing 
Shared objects are usually placed in separate, dedicated segments. A shared 

segment may be mapped, via the appropriate segment descriptor tables, to the 

virtual-address spaces of all processes that are authorized to reference it. The 

deliberate use of offsets and of bases addressing facilitate sharing since the 

virtual offset of a given item is identical in all processes that share it. The virtual 

number of a shared segment, on the other hand, need not be identical in all 
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address spaces of which it is a member. These points are illustrated in Figure 4, 

where a code segment EMACS is assumed to be shared by three processes P1, 

P2 & P3. The relevant portions of the segment descriptor tables of the 

participating processes P1, P2 & P3 are SDT1, SDT2, and SDT3 respectively, 

and shown. As indicated, the segment EMACS is assumed to have different 

virtual numbers in the three address spaces of which it is part. The placement of 

access-rights bits in segment descriptor tables is also shown. Figure 4 illustrates 

the fact that different processes can have different access rights to the same 

shared segment. For example, whereas processes P1 and P2 can execute only 

the shared segment EMACS, process P3 is allowed both reading and writing. 

Figure 4 also illustrates the ability of segmented systems to conserve memory by 

sharing the code of programs executed by many users. In particular, each 

participating process can execute the shared code from EMACS using its own 

private data segment.  

EO 

RW 
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SD2

EMCS 

DATA2 

(DATA1) 

DATA3 

RW 

RW 
RW 

EO 

SD3

MEMORY

ACCESS RIGHT SIZE BASE
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Figure 4 – Sharing in segmented systems 
Assuming there is an editor, this means that a single copy of it may serve the 

entire user population of a time-sharing system. Naturally, execution of EMACS 

on behalf of each user is stored in a private data segment of its corresponding 

process. For example, users 1, 2, and 3 can have their respective texts buffers 

stored in data segments DATA1, DATA2, and DATA3. Depending on which of 

the three processes is active at a given time, the hardware data segment 

descriptor register points to data segment DATA1, DATA2, or DATA3, and the 

code segment descriptor register points to EMACS in all cases. Of course, the 

current instruction to be executed by the particular process is indicated by the 

program counter, which is saved and restored as a part of each process's state. 

In segmented systems, the program counter register usually contains offsets of 

instructions within the current code segment. This facilitates sharing by making 

all code self-references relative to the beginning of the current code segment. 

When coupled with segment typing, this feature makes it possible to assign 

different virtual segment numbers to the same (physical) shared segment in 

virtual-address spaces of different processes of which it is a part. Alternatively, 

the problem of making direct self-references in shared routines restricts the type 

of code that may safely be shared. 

As described, sharing is encouraged in segmented systems. This presents some 

problems in systems that also support swapping, which is normally done to 

increase processor utilization. For example, a shared segment may need to 

maintain its memory residence while being actively used by any of the processes 

authorized to reference it. Swapping in this case opens up the possibility that a 

participating process may be swapped out while its shared segment remains 

resident. When such a process is swapped back in, the construction of its SDT 

must take into consideration the fact that the shared segment may already be 

resident. In other words, the Operating System must keep track of shared 

segments and of processes that access them. When a participating process is 

loaded in memory, the Operating System is expected to identify the location of 
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the shared segment in memory, if any, and to ensure its proper mapping from all 

virtual address spaces of which it is a part. 

7.2.2 PAGING 
Paging is another solution to the problem of memory fragmentation. It removes 

the requirement of contiguous allocation of physical memory. In it, the physical 

memory is conceptually divided into a number of fixed-size slots, called page 

frames. The virtual-address space of a process is also split into fixed-size blocks 

of the same size, called pages. Memory management module identifies sufficient 

number of unused page frames for loading of the requesting process's pages. An 

address translation mechanism is used to map virtual pages to their physical 

counterparts. Since each page is mapped separately, different page frames 

allocated to a single process need not occupy contiguous areas of physical 

memory.  

7.2.2.1   Principles of Operation 
Figure 5 demonstrates the basic principle of paging. It illustrates a sample 16 MB 

system where virtual and physical addresses are assumed to be 24 bits long 

each.  

The page size is assumed to be 4096 bytes. Thus, the physical memory can 

accommodate 4096 page frames of 4096 bytes each. After reserving 1 MB of 

physical memory for the resident portion of the Operating System, the remaining 

3840 page frames are available for allocation to user processes. The addresses 

are given in hexadecimal notation. Each page is 1000H bytes long, and the first 

user-allocatable page frame starts at the physical address 100000H. 

The virtual-address space of a sample user process that is 14,848 bytes (3A00H) 

long is divided into four virtual pages numbered from 0 to 3. A possible 

placement of those pages into physical memory is depicted in Figure 5. The 

mapping of virtual addresses to physical addresses in paging systems is 

performed at the page level. Each virtual address is divided into two parts: the 

page number and the offset within that page. Since pages and page frames have 

identical sizes, offsets within each are identical and need not be mapped. So 
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each 24-bit virtual address consists of a 12-bit page number (high-order bits) and 

a 12-bit offset within the page. 

Address translation is performed with the help of the page-map table (PMT), 

constructed at process-loading time. As indicated in figure 5, there is one PMT 

entry for each virtual page of a process. The value of each entry is the number of 

the page frame in the physical memory where the corresponding virtual page is 

placed. Since offsets are not mapped, only the page frame number need be 

stored in a PMT entry. E.g., virtual page 0 is assumed to be placed in the 

physical page frame whose starting address is FFD000H (16,764,928 decimal). 

With each frame being 1000H bytes long, the corresponding page frame number 

is FFDH, as indicated on the right-hand side of the physical memory layout in 

Figure 5. This value is stored in the first entry of the PMT. All other PMT entries 

are filled with page frame numbers of the region where the corresponding pages 

are actually loaded. 
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Figure 5 – Paging 
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The logic of the address translation process in paged systems is illustrated in 

Figure 5 on the example of the virtual address 03200H. The virtual address is 

split by hardware into the page number 003H, and the offset within that page 

(200H). The page number is used to index the PMT and to obtain the 

corresponding physical frame number, i.e. FFF. This value is then concatenated 

with the offset to produce the physical address, FFF200H, which is used to 

reference the target item in memory. 

The Operating System keeps track of the status of each page frame by using a 

memory-map table (MMT). Format of an MMT is illustrated in Figure 6, assuming 

that only the process depicted in Figure 5 and the Operating System are resident 

in memory. 

000 ALLOCATED
: 
: 
: 

0FF ALLOCATED
100 ALLOCATED
101 FREE 
102 FREE 
103 ALLOCATED

: 
: 
: 

FFC FREE 
FFD ALLOCATED
FFE FREE 
FFF ALLOCATED

Figure 6 – Memory-map table (MMT) 
Each entry of the MMT described the status of page frame as FREE or 

ALLOCATED. The number of MMT entries i.e. f is computed as f = m/p where m 

is the size of the physical memory, and p is page size. Both m and p are usually 

an integer power of base 2, thus resulting in f being an integer. When requested 

to load a process of size s, the Operating System must allocate n free page 

frames, so that n = Round(s/p) where p is the page size. The Operating System 

allocates memory in terms of an integral number of page frames. If the size of a 
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given process is not a multiple of the page size, the last page frame may be 

partly unused resulting into page fragmentation. 

After selecting n free page frames, the Operating System loads process pages 

into them and constructs the page-map table of the process. Thus, there is one 

MMT per system, and as many PMTs as there are active processes. When a 

process terminates or becomes swapped out, memory is deallocated by 

releasing the frame holdings of the departing process to the pool of free page 

frames. 

7.2.2.2 Page Allocation 
The efficiency of the memory allocation algorithm depends on the speed with 

which it can locate free page frames. To facilitate this, a list of free pages is 

maintained instead of the static-table format of the memory map assumed earlier. 

In that case, n free frames may be identified and allocated by unlinking the first n 

nodes of the free list. Deallocation of memory in systems without the free list 

consists of marking in the MMT as FREE all frames found in the PMT of the 

departing process a time consuming operation. Frames identified in the PMT of 

the departing process can be linked to the beginning of the freed list. Linking at 

the beginning is the fastest way of adding entries to an unordered singly linked 

list. Since the time complexity of deallocation is not significantly affected by the 

choice of data structure of free pages, the free-list approach has a performance 

advantage as its time complexity of deallocation is not significantly affected by 

the choice of data structure of free pages, and is not affected by the variation of 

memory utilization.  

7.2.2.3 Hardware Support for Paging  
Hardware support for paging, concentrates on saving the memory necessary for 

storing of the mapping tables, and on speeding up the mapping of virtual to 

physical addresses. In principle, each PMT must be large enough to 

accommodate the maximum size allowed for the address space of a process in a 

given system. In theory, this may be the entire physical memory. So in a 16 MB 

system with 256-byte pages, the size of a PMT should be 64k entries. Individual 

PMT entries are page numbers that are 16 bits long in the sample system, thus 
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requiring 128 KB of physical memory to store a PMT. With one PMT needed for 

each active process, the total PMT storage can consume a significant portion of 

physical memory.  

Since the actual address space of a process may be well below its allowable 

maximum, it is reasonable to construct each PMT with only as many entries as 

its related process has pages. This may be accomplished by means of a 

dedicated hardware page-map table limit register (PMTLR). A PMTLR is set to 

the highest virtual page number defined in the PMT of the running process. 

Accessing of the PMT of the running process may be facilitated by means of the 

page-map table base register (PMTBR), which points to the base address of the 

PMT of the running process. The respective values of these two registers for 

each process are defined at process-loading time and stored in the related PCB. 

Upon each process switch, the PCB of the new running process provides the 

values to be loaded in the PMTBR and PMTLR registers. 

Even with the assistance of these registers, address translations in paging 

systems still require two memory references; one to access the PMT for 

mapping, and the other to reference the target item in physical memory. To 

speed it up, a high-speed associative memory for storing a subset of often-used 

page-map table entries is used. This memory is called the translation look aside 

buffer (TLB), or mapping cache. 

Associative memories can be searched by contents rather than by address. So, 

the main-memory reference for mapping can be substituted by a TLB reference. 

Given that the TLB cycle time is very small, the memory-access overhead 

incurred by mapping can be significantly reduced. The role of the cache in the 

mapping process is depicted in Figure 7.  

As indicated, the TLB entries contain pairs of virtual page numbers and the 

corresponding page frame numbers where the related pages are stored in 

physical memory. The page number is necessary to define each particular entry, 

because a TLB contains only a subset of page-map table entries. Address 

translation begins by presenting the page-number portion of the virtual address 
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to the TLB. If the desired entry is found in the TLB, the corresponding page frame 

number is combined with the offset to produce the physical address.                  

Alternatively, if the target entry is not in TLB, the PMT in memory must be 

accessed to complete the mapping. This process begins by consulting the 

PMTLR to verify that the page number provided in the virtual address is within 

the bounds of the related process's address space. If so, the page number is 

added to the contents of the PMTBR to obtain the address of the corresponding 

PMT entry where the physical page frame number is stored. This value is then 

concatenated with the offset portion of the virtual address to produce the physical 

memory address of the desired item. 

Virtual address  . 

Figure 7 – Translation-lookaside buffer (TLB) 
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Figure 7 demonstrates that the overhead of TLB search is added to all mappings, 

regardless of whether they are eventually completed using the TLB or the PMT in 

main memory. In order for the TLB to be effective, it must satisfy a large portion 

of all address mappings. Given the generally small size of a TLB because of the 

high price of associative memories, only the PMT entries most likely to be 

needed ought to reside in the TLB.  

The effective memory-access time, teff in systems with run-time address 

translation is the sum of the address translation time, tTR and the subsequent 

access time needed to fetch the target item from memory, t . M

    teff = t  + tTR M

With TLB used to assist in address translation, t  becomes  TR

    T  = h tTR TLB + (1 - h) (t  + t ) = t  + (1 - h)tTLB M TLB M

where h is the TLB hit ratio, that is, the ratio of address translations that are 

contained the TLB over all translations, and thus 0≤h≤1;tTLB is the TLB access 

time; and tM is the main-memory access time. Therefore, effective memory-

access time in systems with a TLB is  

    teff = t  + (2 - h)tTLB M

It is observed that the hardware used to accelerate address translations in 

paging systems (TLB) is managed by means of probabilistic algorithms, as 

opposed to the deterministic mapping-register typing described in relation to 

segmentation. The reason is that the mechanical splitting of a process’s address 

space into fixed-size chunks produces pages. As a result, a page, unlike a 

segment, in general does not bear any relationship to the logical entities of the 

underlying program. For example, a single page may contain a mixture of data, 

stack, and code. This makes typing and other forms of deterministic loading of 

TLB entries extremely difficult, in view of the stringent timing restrictions imposed 

on TLB manipulation. 

7.2.2.4 Protection and Sharing 
Unless specifically declared as shared, distinct address spaces are placed in 

disjoint areas of physical memory. Memory references of the running process are 

restricted to its own address space by means of the address translation 
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mechanism, which uses the dedicated PMT. The PMTLR is used to detect and to 

abort attempts to access any memory beyond the legal boundaries of a process. 

Modifications of the PMTBR and PMTLR registers are usually possible only by 

means of privileged instructions, which trap to the Operating System if attempted 

in user mode.  

By adding the access bits to the PMT entries and appropriate hardware for 

testing these bits, access to a given page may be allowed only in certain 

programmer-defined modes such as read-only, execute-only, or other restricted 

forms of access. This feature is much less flexible in paging systems than 

segmentation. The primary difference is that paging is supposed to be entirely 

transparent to programmers. Mechanical splitting of an address space into pages 

is performed without any regard for the possible logical relationships between the 

items under consideration. Since there is no notion of typing, code and data may 

be mixed within one page. As we shall see, specification of the access rights in 

paging systems is useful for pages shared by several processes, but it is of much 

less value inside the boundaries of a given address space. 

Protection in paging systems may also be accomplished by means of the 

protection keys. In principle, the page size should correspond to the size of the 

memory block protected by the single key. This allows pages belonging to a 

single process to be scattered throughout memory-a perfect match for paged 

allocation. By associating access-rights bits with protection keys, access to a 

given page may be restricted when necessary. 

Sharing of pages is quite straightforward with paged memory management. A 

single physical copy of a shared page can be easily mapped into as many 

distinct address spaces as desired. Since each such mapping is performed via a 

dedicated entry in the PMT of the related process, different processes may have 

different access rights to the shared page. Given that paging is transparent to 

users, sharing at the page level must be recognized and supported by systems 

programs. Systems programs must ensure that virtual offsets of each item within 

a shared page are identical in all participating address spaces. 
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Like data, shared code must have the same within-page offsets in all address 

spaces of which it is a part. As usual, shared code that is not executed in 

mutually exclusive fashion must be reentrant. In addition, unless the shared code 

is position-independent, it must have the same virtual page numbers in all 

processes that invoke it. This property must be preserved even in cases when 

the shared code spans several pages.  

7.3 Keywords 
MMT: memory-map table (MMT) is used by the Operating System to keep track 

of the status of each page frame whether allocated or free. 

Page: The virtual-address space of a process is divided into fixed-size blocks of 

the same size, called pages. 

TLB (Translation Look aside Buffer): It is a high-speed associative memory, 

used to speed up memory access, by for storing a subset of often-used page-

map table entries.  

PMT (Page Map Table): It is a table used to translate a virtual address into 

actual physical address in paging system. 

7.4 SUMMARY 
Segmentation allows breaking of the virtual address space of a single process 

into separate entities (segments) that may be placed in noncontiguous areas of 

physical memory. As a result, the virtual-to-physical address translation at 

instruction execution time in such systems is more complex, and some dedicated 

hardware support is necessary to avoid a drastic reduction in effective memory 

bandwidth. Since average segment sizes are usually smaller then average 

process sizes, segmentation can reduce the impact of external fragmentation on 

the performance of systems with dynamically partitioned memory. Other 

advantages of segmentation include dynamic relocation, finely grained protection 

both within and between address spaces, ease of sharing, and facilitation of 

dynamic linking and loading. Unless virtual segmentation is supported, 

segmentation does not remove the problem of limiting the size of a process's 

virtual space by the size of the available physical memory. 
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No doubt segmentation reduces the impact of fragmentation and offers superior 

protection and sharing by dividing each process's address space into logically 

related entities that may be placed into non-contiguous areas of physical 

memory. But paging simplifies allocation and de-allocation of memory by dividing 

address spaces into fixed-sized chunks. Execution-time translation of virtual to 

physical addresses, usually assisted by hardware, is used to bridge the gap 

between contiguous virtual addresses and non-contiguous physical addresses 

where different pages may reside. 

7.5 SELF ASSESSMENT QUESTIONS (SAQ) 
1. What do you understand by segmentation? Discuss in detail the address 

translation mechanism in segmentation. 

2. Write a detailed mote on sharing in segmentation. Also discuss the problem 

during swapping in it. 

3. How the access rights are implementation in sharing in segmentation. 

4. What is the basic difference between paging and segmentation? Which one is 

better and why? 

5. What is the difference between a segment and a page? Discuss using 

suitable example. 

6. What is Table Look aside Buffer (TLB)? How is it used to speed up the 

memory access? Explain. 
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Lesson number: 8     Writer: Dr. Rakesh Kumar 

Virtual Memory    Vetter: Prof. Dharminder Kumar 
 

8.0 OBJECTIVE 
This lesson is focused on the non-contiguous memory management systems. 

The objective of this lesson is to make the students primarily familiar with the 

following concepts: 

(a) Virtual memory. 

(b) Page replacement policies 

(c) Page allocation policies 

(d) Segmentation and Paging 

8.1  INTRODUCTION 
Virtual memory is designed to solve the problem of running a program that needs 

more memory than the hardware has. One way of approaching this is to use 

overlays. Overlays are code and data written to memory under system or 

programmer control to reuse memory for a process. The old memory could be 

overwritten or saved first to disk for later use as another overlay. Programmers 

had to create the overlays, which required laying out their code in such a way 

that it could be overlaid. Virtual Memory provides the same functionality, and 

solved the protection and relocation problems in an interesting way. Central to 

Virtual Memory is the idea of a virtual address and the associated virtual address 

space. Under Virtual Memory all processes execute code written in terms of 

virtual addresses that are translated by the memory management hardware into 

the appropriate physical address. Each process thinks it has access to the whole 

physical memory of the machine. This solves the relocation problem - no 

rewriting of addresses is ever necessary, and the protection problem because a 

process can no longer express the idea of accessing another process’s memory. 

The open issues are how the virtual to physical translation is made, and how this 

all allows automatic overlays. 
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8.2 Presentation of contents 
8.2.1 Virtual Memory 

8.2.1.1 Principles of Operation 

8.2.1.2 Management of Virtual Memory 

8.2.1.3 Program Behavior 

8.2.1.4 Replacement Policies 

8.2.1.4.1 Replacement Algorithms 

8.2.1.4.2 Global and Local Replacement Policies 

8.2.1.5 Allocation Policies 

8.2.1.6 Hardware Support and Considerations 

8.2.1.7 Protection and Sharing 

8.2.2 Segmentation and Paging 

8.2.1 VIRTUAL MEMORY 
Virtual memory allows execution of partially loaded processes. As a 

consequence, virtual address spaces of active processes in a virtual-memory 

system can exceed the capacity of the physical memory. This is accomplished by 

maintaining an image of the entire virtual-address space of a process on 

secondary storage, and by bringing its sections into main memory when needed. 

The Operating System decides which sections to bring in, when to bring them in, 

and where to place them. Thus, virtual-memory systems provide for automatic 

migration of portions of address spaces between secondary and primary storage. 

Virtual memory provides the illusion of a much larger memory than may actually 

be available, so programmers are relieved of the burden of trying to fit a program 

into limited memory.  

Due to the ability to execute a partially loaded process, a process may be loaded 

into a space of arbitrary size resulting into the reduction of external 

fragmentation. Moreover, the amount of space in use by a given process may be 

varied during its memory residence. As a result, the Operating System may 

speed up the execution of important processes by allocating them more real 

memory. Alternatively, by reducing the real-memory holdings of resident 
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processes, the degree of multi-programming can be increased by using the 

vacated space to activate more processes. 

The speed of program execution in virtual-memory systems is bounded from 

above by the execution speed of the same program run in a non-virtual memory 

management system. That is due to delays caused by fetching of missing 

portions of program's address space at run-time. 

Virtual memory provides execution of partially loaded programs. But an 

instruction can be completed only if all code, data, and stack locations that it 

references reside in physical memory. When there is a reference for an out-of-

memory item, the running process must be suspended to fetch the target item 

from disk. So what is the performance penalty? 

An analysis of program behavior provides an answer to the question. Most 

programs consist of alternate execution paths, some of which do not span the 

entire address space. On any given run, external and internal program conditions 

cause only one specific execution path to be followed. Dynamic linking and 

loading exploits this aspect of program behavior by loading into memory only 

those procedures that are actually referenced on a particular run. Moreover, 

many programs tend to favor specific portions of their address spaces during 

execution. So it is reasonable to keep in memory only those routines that make 

up the code of the current pass. When another pass over the source code 

commences, the memory manager can bring new routines into the main memory 

and return those of the previous pass back to disk. 

8.2.1.1 Principles of Operation 
Virtual memory can be implemented as an extension of paged or segmented 

memory management or as a combination of both. Accordingly, address 

translation is performed by means of PMT (Page Map Table), SDT (Segment 

Descriptor Tables), or both. The important characteristic is that in virtual-memory 

systems some portions of the address space of the running process can be 

absent from main memory. 

The process of address mapping in virtual-memory systems is more formally 

defined as follows. Let the virtual-address space be V = {0, 1, … , v-1}, and the 
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physical memory space by M = {0, 1, ….m-1}. The Operating System dynamically 

allocates real memory to portions of the virtual-address space. The address 

translation mechanism must be able to associate virtual names with physical 

locations. In other words, at any time the mapping hardware must realize the 

function f: V → M such that  

   r if item x is in real memory at location r   
  f(x) =    
   missing-item exception if item x is not in real memory 

Thus, the additional task of address translation hardware in virtual systems is to 

detect whether the target item is in real memory or not. If the referenced item is 

in memory, the process of address translation is completed. 

We present the operation of virtual memory assuming that paging is the basic 

underlying memory-management scheme. The detection of missing items is 

rather straightforward. It is usually handled by adding the presence indicator, a 

bit, to each entry of page-map tables. The presence bit, when set, indicates that 

the corresponding page is in memory; otherwise the corresponding virtual page 

is not in real memory. Before loading the process, the Operating System clears 

all the presence bits in the related page-map table. As and when specific pages 

are brought into the main memory, its presence bit is reset. 

A possible implementation is illustrated in Figure 1. The presented process's 

virtual space is assumed to consisting of only six pages. As indicated, the 

complete process image is present in secondary memory. The PMT contains an 

entry for each virtual page of the related process. For each page actually present 

in real memory, the presence bit is set (IN), and the PMT points to the physical 

frame that contains the corresponding page. Alternatively, the presence bit is 

cleared (OUT), and the PMT entry is invalid. 

The address translation hardware checks the presence bit during the mapping of 

each memory reference if the bit is set, the mapping is completed as usual. 

However, if the corresponding presence bit in the PMT is reset, the hardware 

generates a missing-item exception. In paged virtual-memory systems, this 

exception is called a page fault. When the running process experiences a page 

fault, it must be suspended until the missing page is brought into main memory.  
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The disk address of the faulted page is usually provided in the file-map table 

(FMT). This table is parallel to the PMT. Thus, when processing a page fault, the 

Operating System uses the virtual page number provided by the mapping 

hardware to index the FMT and to obtain the related disk address. A possible 

format and use of the FMT is depicted in Figure 1. 

   

 X (P3) 
  

 Y (P0) 
  

 Z (P4) 
   

  

  Main Memory  (P0) 
    (P1) 
    

 

    
 

 Presence Frame    (P2) 
0 IN Y 0    
1 OUT  1    
2 OUT  2    
3 IN X 3   (P3) 
4 IN Z 4   (P4) 
5 OUT  5   (P5) 

  Page Map Table  File Mp Table  
Secondary Disk 

Memory 
Figure 1: Virtual Memory 

Page Faults 
When a page is referenced and not found in the main memory, the Operating 

System faces a page fault. The following are the basic steps in servicing a page 

fault: 

¾ The MMU interrupts the CPU (with a paging interrupt or exception 

depending on the CPU model) 
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¾ The paging ISR i.e. Interrupt Service Routine (usually called a pager or 

page fault handler) loads the required page into an available frame. If a 

frame is not available, the pager must make one available, by discarding a 

frame. It’s generally better to evict a clean page than a dirty one because 

dirty ones must be written to backing store. The current process may give 

up the CPU while the relevant pages are moved in and out. (This is 

basically an I/O request, although not an explicit one). 

¾ When the pages are available and the process is runnable again, the 

faulting instruction is restarted. 

8.2.1.2 Management of Virtual Memory 
The implementation of virtual memory requires maintenance of one PMT per 

active process. Given that the virtual-address space of a process may exceed 

the capacity of real memory, the size of an individual PMT can be much larger in 

a virtual than in a real paging system with identical page sizes. The Operating 

System maintains one MMT or a free-frame list to keep track of Free/allocated 

page frames.  

A new component of the memory manager's data structures is the FMT. FMT 

contains secondary-storage addresses of all pages. The memory manager used 

the FMT to load the missing items into the main memory. One FMT is maintained 

for each active process. Its base may be kept in the control block of the related 

process. An FMT has a number of entries identical to that of the related PMT. A 

pair of page-map table base and page-map length registers may be provided in 

hardware to expedite the address translation process and to reduce the size of 

PMT for smaller processes. As with paging, the existence of a TLB is highly 

desirable to reduce the negative effects of mapping on the effective memory 

bandwidth. 

The allocation of only a subset of real page frames to the virtual-address space 

of a process requires the incorporation of certain policies into the virtual-memory 

manager. We may classify these policies as follows: 

1. Allocation policy: How much real memory to allocate to each active process 
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2. Fetch policy: Which items to bring and when to bring them from secondary 

storage into the main memory 

3. Replacement policy: When a new item is to be brought in and there is no free 

real memory, which item to evict in order to make room. 

4. Placement policy: Where to place an incoming item 

8.2.1.3 Program Behavior 
Program behavior is of extreme importance for the performance of virtual-

memory systems. Execution of partially loaded programs generally leads to 

longer turnaround times due to the processing of page faults. By minimizing the 

number of page faults, the effective processor utilization, effective disk I/O 

bandwidth, and program turnaround times may be improved.  

It is observed that there is a strong tendency of programs to favor subsets of their 

address spaces during execution. This phenomenon is known as locality of 

reference. Both temporal and spatial locality of reference has been observed.  

(a) Spatial locality is the tendency for a program to reference clustered 

locations in preference to randomly distributed locations. Spatial locality 

suggests that once an item is referenced, there is a high probability that it 

or its neighboring items are going to be referenced in the near future. 

(b) Temporal locality is the tendency for a program to reference the same 

location or a cluster several times during brief intervals of time. Temporal 

locality of reference is exhibited by program loops.  

A locality is a small cluster of not necessarily adjacent pages to which most 

memory references are made during a period of time. Both temporal and spatial 

locality of reference is dynamic properties in the sense that the identity of the 

particular pages that compose the actively used set varies with time. As 

observed, the executing program moves from one locality to another in the 

course of its execution. Statistically speaking, the probability that a particular 

memory reference is going to be made to a specific page is a time-varying 

function. It increases when pages in its current locality are being referenced, and 

it decreases otherwise. The evidence also suggests that the executing program 

moves slowly from one locality to another. 
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Locality of reference basically suggests that a significant portion of memory 

references of the running process may be made to a subset of its pages. These 

findings may be utilized for implementation of replacement and allocation 

policies. 

8.2.1.4 Replacement Policies 
If a page fault is there, then it is to be brought into the main memory 

necessitating creation of a room for it. There are two options for this situation: 

¾ The faulted process may be suspended until availability of memory. 

¾ A page may be removed to make room for the incoming one. 

Suspending a process is not an acceptable solution. Thus, removal is commonly 

used to free the memory needed to load the missing items. A replacement policy 

decides the victim page for eviction. In virtual memory systems all pages are kept 

on the secondary storage. As and when needed, some of those pages are 

copied into the main memory. While executing, the running process may modify 

its data or stack areas, thus making some resident pages different from their disk 

images (dirty page). So it must be written back to disk in place of its obsolete 

copy. When a page that has not been modified (clean page) during its residence 

in memory is to be evicted, if can simply be discarded. Tracking of page 

modifications is usually performed in hardware by adding a written-into bit called 

as dirty bit, to each entry of the PMT. It indicates whether the page is dirty or 

clean. 

8.2.1.4.1 Replacement Algorithms 
First-In-First-Out (FIFO):  
The FIFO algorithm replaces oldest pages i.e. the resident page that has spent 

the longest time in memory. To implement the FIFO page-replacement algorithm, 

the memory manager must keep track of the relative order of the loading of 

pages into the main memory. One way to accomplish this is to maintain a FIFO 

queue of pages.  

FIFO fails to take into account the pattern of usage of a given page; FIFO tends 

to throw away frequently used pages because they naturally tend to stay longer 

in memory. Another problem with FIFO is that it may defy intuition by increasing 
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the number of page faults when more real pages are allocated to the program. 

This behavior is known as Belady’s anomaly.  

Belady’s Anomaly 
A group of researchers, led by a fellow named Belady, discovered a surprising 

fact about FIFO paging. It’s possible (though unlikely) that adding memory to a 

FIFO paging system increases the number of faults. The example is below: 

Reference Strings 0 1 2 3 0 1 4 0 1 2 3 4 

Youngest Page 0 1 2 3 0 1 4 4 4 2 3 3 

  0 1 2 3 0 1 1 1 4 2 2 

Older Page   0 1 2 3 0 0 0 1 4 4 

Page Faults P P P P P P P   P P  

Figure 2(a): Number of real pages 3 

Reference Strings 0 1 2 3 0 1 4 0 1 2 3 4 

Youngest Page 0 1 2 3 3 3 4 0 1 2 3 4 

  0 1 2 2 2 3 4 0 1 2 3 

   0 1 1 1 2 3 4 0 1 2 

Older Page    0 0 0 1 2 3 4 0 1 

Page Faults P P P P   P P P P P P 

Figure 2(b): Number of real pages 4 
This result has been generalized, and the key property is called the stack 

property: that increasing the size of memory only adds contents to it. In the FIFO 

case above, there are different contents in the upper 3 page frames in memory 

for several states. FIFO is not a stack algorithm. Any non-stack algorithm can 

display Belady’s anomaly. LRU is a stack algorithm. 

Least Recently Used (LRU): 
The least recently used algorithm replaces the least recently used resident page. 

LRU algorithm performs better than FIFO because it takes into account the 

patterns of program behavior by assuming that the page used in the most distant 

past is least likely to be referenced in the near future. The LRU algorithm belongs 

to a larger class of stack replacement algorithms. A stack algorithm is 

distinguished by the property of performing better, or at least not worse, when 
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more real memory is made available to the executing program. Stack algorithms 

therefore do not suffer from Belady's anomaly.  

The implementation of the LRU algorithm imposes too much overhead to be 

handled by software alone. One possible implementation is to record the usage 

of pages by means of a structure similar to the stack. Whenever a resident page 

is referenced, it is removed from its current stack position and placed at the top 

of the stack. When a page eviction is in order, the page at the bottom of the stack 

is removed from memory. 

Maintenance of the page-referencing stack requires it’s updating for each page 

reference, regardless of whether it results in a page fault or not. So the overhead 

of searching the stack, moving the reference page to the top, and updating the 

rest of the stack accordingly must be added to all memory references. But the 

FIFO queue needs to be updated only when page faults occur-overhead almost 

negligible in comparison to the time required for processing of a page fault.  

Optimal (OPT): 
The algorithm by Belady, removes the page to be reference in the most distant 

future i.e. page out the page that will be needed the furthest in the future. This is 

impossible (halting problem), but provides an interesting benchmark. Since it 

requires future knowledge, the OPT algorithm is not realizable. Its significance is 

theoretical, as it can serve as a yardstick for comparison with other algorithms. 

Approximations-Clock: 
One popular algorithm combines the relatively low overhead of FIFO with 

tracking of the resident-page usage, which accounts for the better performance 

of LRU. This algorithm is sometimes referred to as Clock, and it is also known as 

not recently used (NRU).  

The algorithm makes use of the referenced bit, which is associated with each 

resident page. The referenced bit is set whenever the related page is reference 

and cleared occasionally by software. Its setting indicates whether a given page 

has been referenced in the recent past. How recent this past is depends on the 

frequency of the referenced-bit resetting. The page-replacement routine makes 

use of this information when selecting a victim for removal.  
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The algorithm is usually implemented by maintaining a circular list of the resident 

pages and a pointer to the page where it left off. The algorithm works by 

sweeping the page list and resetting the presence bit of the pages that it 

encounters. This sweeping motion of the circular list resembles the movement of 

the clock hand, hence the name clock. The clock algorithm seeks and evicts 

pages not recently used in order to free page frames for allocation to demanding 

processes. When it encounters a page whose reference bit is cleared, which 

means that the related page has not been referenced since the last sweep, the 

algorithm acts as follows:  

(1) If the page is modified, it is marked for clearing and scheduled for writing to 

disk.  

(2) If the page is not modified, it is declared non-resident, and the page frames 

that it occupies are feed.  

The algorithm continues its operation until the required numbers of page frames 

are freed. The algorithm may be invoked at regular time intervals or when the 

number of free page frames drops below a specified threshold. 

Other approximations and variations on this theme are possible. Some of them 

track page usage more accurately by means of a reference counter that counts 

the number of sweeps during which a given page is found to be un-referenced. 

Another possibility is to record the states of referenced bits by shifting them 

occasionally into related bit arrays. When a page is to be evicted, the victim is 

chosen by comparing counters or bit arrays in order to find the least frequently 

reference page. The general idea is to devise an implementable algorithm that 

bases its decisions on measured page usage and thus takes into account the 

program behavior patterns. 

8.2.1.4.2 Global and Local Replacement Policies 
As discussed, all replacement policies choose a victim among the resident pages 

owned by the process that experiences the page fault. This is known as local 

replacement. However, each of the presented algorithms may be made to 

operate globally. A global replacement algorithm processes all resident pages 

when selecting a victim. Local replacement tends to localize effects of the 
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allocation policy to each particular process. Global replacement, on the other 

hand, increases the degree of coupling between replacement and allocation 

strategies. A global replacement algorithm may take pages allocated to one 

process by the allocation algorithm, away. Global replacement is concerned 

mostly with the overall state of the system, and much less with the behavior of 

each individual process. Global replacement is known to be sub-optimal. 

8.2.1.5 Allocation Policies 
The allocation policy must compromise among conflicting requirements such as: 

(a) Reduced page-fault frequency, 

(b) Improved turn-around time, 

(c) Improved processor utilization, etc.  

Giving more real pages to a process will result in reduced page-fault frequency 

and improved turnaround time. But it reduces the number of active processes 

that may coexist in memory at a time resulting into the lower processor utilization 

factor. On the other hand, if too few pages are allocated to a process, its page-

fault frequency and turnaround times may deteriorate. 

Another problem caused by under-allocation of real pages may be encountered 

in systems that opt for restarting of faulted instructions. If fewer pages are 

allocated to a process than are necessary for execution of the restartable 

instruction that causes the largest number of page faults in a given architecture, 

the system might fault continuously on a single instruction and fail to make any 

real progress.  

Consider a two-address instruction, such as Add @X, @Y, where X and Y are 

virtual addresses and @ denotes indirect addressing. Assuming that the 

operation code and operand addresses are encoded in one word each, this 

instruction need three words for storage. With the use of indirect addressing, 

eight memory references are needed to complete execution of this instruction: 

three to fetch the instruction words, two to fetch operand addresses, two to 

access the operands themselves (indirect addressing), and one to store the 

result. In the worst case, six different pages may have to reside in memory 

concurrently in order to complete execution of this instruction: two if the 
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instruction crosses a page boundary, two holding indirect addresses, and two 

holding the target operands. A likely implementation of this instruction calls for 

the instruction to be restarted after a page fault. If so, with fewer than six pages 

allocated to the process that executes it, the instruction may keep faulting 

forever. In general, the lower limit on the number of pages imposed by the 

described problem is architecture-dependent. In any particular implementation, 

the appropriate bound must be evaluated and built into the logic of the allocation 

routine. 

While we seem to have some guidance as to the minimal number of pages, the 

reasonable maximum remains elusive. It is also unclear whether a page 

maximum should be fixed for a given system or determined on an individual 

basis according to some specific process attributes. Should the maximum be 

defined statically or dynamically, in response to system resource utilization and 

availability, and perhaps in accordance with the observable behavior of the 

specific process?  

From the allocation module's point of view, the important conclusion is that each 

program has a certain threshold regarding the proportion of real to virtual pages, 

below which the number of page faults increases very quickly. At the high end, 

there seems to be a certain limit on the number of real pages, above which an 

allocation of additional real memory results in little or in moderate performance 

improvement. Thus, we want to allocate memory in such a way that each active 

program is between these two extremes.  

Being program-specific, the upper and lower limits should probably not be fixed 

but derived dynamically on the basis of the program faulting behavior measured 

during its execution. When resource utilization is low, activating more processes 

may increase the degree of multiprogramming. However, the memory manager 

must keep track of the program behavior when doing so. A process that 

experiences a large number of page faults should be either allocated more 

memory or suspended otherwise. Likewise, a few pages may be taken away 

from a process with a low page-fault rate without great concern. In addition, the 

number of pages allocated to a process may be influenced by its priority (higher 
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priority may indicate that shorter turnaround time is desirable), the amount of free 

memory, fairness, and the like. 

Although the complexity and overhead of memory allocation should be within a 

reasonable bound, the use of oversimplified allocation algorithms has the 

potential of crippling the system throughput. If real memory is over-allocated to 

the extent that most of the active programs are above their upper page-fault-rate 

thresholds, the system may exhibit a behavior known as thrashing. With very 

frequent page faults, the system spends most of its time shuttling pages between 

main memory and secondary memory. Although the disk I/O channel may be 

overloaded by this activity, but processor utilization is reduced. 

One way of introducing thrashing behavior is dangerously logical and simple. 

After observing a low processor utilization factor, the Operating System may 

attempt to improve it by activating more processes. if no free pages are available, 

the holdings of the already-active processes may be reduced. This may drive 

some of the processes into the high page-fault zone. As a result, the processor 

utilization may drop while the processes are awaiting their pages to be brought 

in. In order to improve the still-decreasing processor utilization, the Operating 

System may decide to increase the degree of multi-programming even further. 

Still more pages will be taken away from the already-depleted holdings of the 

active processes, and the system is hopelessly on its way to thrashing. It is 

obvious that global replacement strategies are susceptible to thrashing. 

Thus a good design must make sure that the allocation algorithm is not unstable 

and inclined toward thrashing. Knowing the typical patterns of program behavior, 

we want to ensure that no process is allocated too few pages for its current 

needs. Too few pages may lead to thrashing, and too many pages may unduly 

restrict the degree of multi-programming and processor utilization.   

Page-Fault Frequency (PFF) 
This policy uses an upper and lower page-fault frequency threshold to decide for 

allocation of new page frames. The PFF parameter P may be defined as: P = 1/T 

Where T is the critical inter-page fault time. P is usually measured in number of 

page faults per millisecond. The PFF algorithm may be implemented as follows: 
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1. The Operating System defines a system-wide (or per-process) critical page-

fault frequency, P. 

2. The Operating System measures the virtual (process) time and stores the 

time of the most recent page fault in the related process control block.  

When a page fault occurs, the Operating System acts as follows: 

¾ If the last page fault occurred less than T = 1/P ms ago, the process is 

operating above the PFF threshold, and a new page frame is added from the 

pool to house the needed page. 

¾ Otherwise, the process is operating below the PFF threshold P, and a page 

frame occupied by a page whose reference bit and written-into bit are not set 

is freed to accommodate the new page. 

¾ The Operating System sweeps and resets referenced bits of all resident 

pages. Pages that are found to be unused, unmodified, and not shared since 

the last sweep are released, and the freed page frames are returned to the 

pool for future allocations.  

For completeness, some policies need to be employed for process activation and 

deactivation to maintain the size of the pool of free page frames within desired 

limits.  

8.2.1.6 Hardware Support and Considerations 
Virtual memory requires:  

(1) instruction interruptibility and restartability,  

(2) a collection of page status bits associated with each page descriptor,  

(3) And if based on paging - a TLB to accelerate address translations.  

Choice of the page size is an important design consideration in that it can have a 

significant impact on performance of a virtual-memory system. In most 

implementations, one each of the following bits is provided in every page 

descriptor: 

¾ Presence bit, used to aid detection of missing items by the mapping hardware  

¾ Written-into (modified) bit, used to reduce the overhead incurred by the 

writing of unmodified replaced pages to disk 

¾ Referenced bit, used to aid implementation of the replacement policy 
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An important hardware accelerator in virtual-memory systems is the TLB. 

Although system architects and hardware designers primarily determine the 

details of the TLB operation, the management of TLB is of interest because it 

deals with problems quite similar to those discussed in the more general 

framework of virtual memory. TLB hardware must incorporate allocation and 

replacement policies so as to make the best use of the limited number of 

mapping entries that the TLB can hold. An issue in TLB allocation is whether to 

devote all TLB entries to the running process or to distribute them somehow 

among the set of active processes. The TLB replacement policy governs the 

choice of the entry to be evicted when a miss occurs and another entry needs to 

be brought in.  

Allocation of all TLB entries to the running process can lead to relatively lengthy 

initial periods of “loading” the TLB whenever a process is scheduled. This can 

lead to the undesirable behavior observed in some systems when an interrupt 

service routine (ISR) preempts the running process. Since a typical ISR is only a 

few hundred instructions long, it may not have enough time to load the TLB. This 

can result in slower execution of the interrupt service routine due to the need to 

reference PMT in memory while performing address translations. Moreover, 

when the interrupted process is resumed, its performance also suffers from 

having to load the TLB all over again. One way to combat this problem is to use 

multi-context TLBs that can contain and independently manage the PMT entries 

of several processes. With a multi-context TLB, when a process is scheduled for 

execution, it may find some of its PMT entries left over in the TLB from the 

preceding period of activity. Management of such TLBs requires the identity of 

the corresponding process to be associated with each entry, in order to make 

sure that matches are made only with the TLB entries belonging to the process 

that produced the addresses to be mapped.  

Removal of TLB entries is usually done after each miss. If PMT entries of several 

processes are in the buffer, the victim may be chosen either locally or globally. 

Understandably, some preferential treatment is usually given to holdings of the 
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running process. In either case, least recently used is a popular strategy for 

replacement of entries.  

The problem of maintaining consistency between the PMT entries and their TLB 

copies in the presence of frequent page moves must also be tackled by hardware 

designers. Its solution usually relies on some specialized control instructions for 

TLB flushing or for it selective invalidation.  

Another hardware-related design consideration in virtual-memory systems is 

whether I/O devices should operate with real or virtual addresses. 

A hardware/software consideration involved in the design of paged systems Is 

the choice of the page size. Primary factors that influence this decision are  

(1) Memory utilization and cost.  

(2) Page-transport efficiency.  

Page-transport efficiency refers to the performance cost and overhead of fetching 

page from the disk or, in a diskless workstation environment, across the network. 

Loading of a page from disk consists of two basic components: the disk-access 

time necessary to position the heads over the target track and sector, and the 

page-transfer time necessary to transfer the page to main memory thereafter. 

Head positioning delays generally exceed disk-memory transfer times by order of 

magnitude. Thus, total page-transfer time tends to be dominated by the disk 

positioning delay, which is independent of the page size. 

Small page size reduces page breakage, and it may make better use of memory 

by containing only a specific locality of reference. Research results suggest that 

procedures in many applications tend to be smaller than 100 words. On the other 

hand, small pages may result in excessive size of mapping tables in virtual 

systems with large virtual-address spaces. Page-transport efficiency is also 

adversely affected by small page sizes, since the disk-accessing overhead is 

imposed for transferring a relatively small group of bytes.  

Large pages tend to reduce table fragmentation and to increase page-transport 

efficiency. This is because the overhead of disk accessing is amortized over a 

larger number of bytes whenever a page is transferred between disk and 

memory. On the negative side, larger pages may impact memory utilization by 
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increasing page breakage and by spanning more than one locality of reference. If 

multiple localities contained in a single page have largely dissimilar patterns of 

reference, the system may experience reduced effective memory utilization and 

wasted I/O bandwidth. In general, the page-size trade-off is technology-

dependent, and its outcome tends to vary as the price and performance of 

individual components change.  

8.2.1.7 Protection and Sharing 
The frequent moves of items between main and secondary memory may 

complicate the management of mapping tables in virtual systems. When several 

parties share an item in real memory, the mapping tables of all involved 

processes must point to it. If the shared item is selected for removal, all 

concerned mapping tables must be updated accordingly. The overhead involved 

tends to outweigh the potential benefit or removing shared items. Many systems 

simplify the management of mapping tables by fixing the shared objects in 

memory.  

An interesting possibility provided by large virtual-address spaces is to treat the 

Operating System itself as a shared object. As such, the Operating System is 

mapped as a part of each user’s virtual space. To reduce table fragmentation, 

dedicated mapping registers are often provided to access a single physical copy 

of the page-map table reserved for mapping references to the Operating System. 

One or more status bits direct the mapping hardware to use the public or private 

mapping table, as appropriate for each particular memory reference. In this 

scheme, different users have different access rights to portions of the Operating 

System. Moreover, the Operating System-calling mechanism may be simplified 

by avoiding expensive mode switches between users and the Operating System 

code. With the protection mechanism provided by mapping, a much faster CALL 

instruction, or its variant, may be used to invoke the Operating System.  

8.2.2 Segmentation and Paging 
It is also possible to implement virtual memory in the form of demand 

segmentation inheriting the benefits of sharing and protection provided by 

segmentation. Moreover, their placement policies are aided by explicit 
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awareness of the types of information contained in particular segments. For 

example, a “working set” of segments should include at least one each of code, 

data, and stack segments. As with segmentation, inter-segment references alert 

the Operating System to changes of locality. However, the variability of segment 

sizes and the within-segment memory contiguity requirement complicate the 

management of both main and secondary memories. Placement strategies are 

quite complex in segmented systems. Moreover, allocation and deallocation of 

variable-size storage areas to hold individual segments on disk imposes 

considerably more overhead than handling of pages that are usually designed to 

fit in a single disk block. 

On the other hand, paging is very easy for the management of main and 

secondary memories, but it is inferior with regard to protection and sharing. The 

transparency of paging necessitates the use of probabilistic replacement 

algorithms which virtually no guidance from users, they are forced to operate 

mainly on the basis of their observations of program behavior.   

Both segmented and paged implementations of virtual memory have their 

advantages/disadvantages. Some systems combine the two approaches in order 

to enjoy the benefits of both. One approach is to use segmentation from the 

user’s point of view but to divide each segment into pages of fixed size for 

purposes of allocation. In this way, the combined system retains most of the 

advantages of segmentation. At the same time, the problems of complex 

segment placement and management of secondary memory are eliminated by 

using paging.  

The principle of address translation in combined segmentation and paging 

systems is shown in Figure 5. Both segment descriptor tables and PMT are 

required for mapping. Instead of containing the base and limit of the 

corresponding segment, each entry of the SDT contains the base address and 

size of the PMT to be used for mapping of the related segment’s pages. The 

presence bit in each PMT entry indicates availability of the corresponding page in 

the real memory. Access rights are recorded as a part of segment descriptors, 

although they may be placed or refined in the entries of the PMT. Each virtual 
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address consists of three fields: segment number, page number, and offset 

within the page. When a virtual address is presented to the mapping hardware, 

the segment number is used to locate the corresponding PMT. Provided that the 

issuing process is authorized to make the intended type of reference to the target 

segment, the page number is used to index the PMT. If the presence bit is set, 

obtaining the page-frame address from the PMT and combining this with the 

offset part of the virtual address complete the mapping. If the target page is 

absent from real memory, the mapping hardware generates a page-fault 

exception, which is processed. At both mapping stages, the length fields are 

used to verify that the memory references of the running process lie within the 

confines of it address space. 

Virtual Address        To Memory 
Segment  
Number 

Page 
Number 

Offset  

Presence  
  
  
  
  
  

                          Segment Size Violation   Illegal Access

  
   PMT for segment X 
   
   
   
   
   
Base Size Access 

Rights 

 

Segment Descriptor 
Table 

 
 
C1 is “<LIMT” 
C2 is “Authorized Access”
C3 is “SDTLR” 
 

Figure 5 – Segmentation and paging 
Many variations of this powerful scheme are possible. For example, the presence 

bit may be included with entries of the SDT. It may be cleared when no pages of 

the related segment are in real memory. When such a segment is referenced, 

bringing several of lits pages into main memory may process the segment fault. 

In general, page re-fetching has been more difficult to implement in a way that 
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performs better than demand paging. One of the main reasons for this is the 

inability to predict the use of previously un-referenced pages. However, 

referencing of a particular segment increases the probability of its constituent 

pages being referenced. 

While the combination of segmentation and paging is certainly appealing, it 

requires two memory accesses to complete the mapping of each virtual address 

resulting into the reduction of the effective memory bandwidth by two-thirds. It 

may be too much to bear even in the face of all the added benefits. Obviously, 

hardware designers of such systems must assist the work of the Operating 

System by providing ample support in terms of mapping registers and look aside 

buffers. 

8.3 Keywords 
Locality of Reference: There is a strong tendency of programs to favor subsets 

of their address spaces during execution. This phenomenon is known as locality 

of reference. 
Page fault: The phenomenon of not finding a referenced page in the memory is 

known a page fault. 

Dirty page: A page on which a write operation has been performed. 

Clean page: A page which is not dirty i.e. not modified due to write operation. 

Thrashing: A process is thrashing if it spending more time in paging (i.e. page 

swapping) then executing. 

8.4 SUMMARY 
The memory-management layer of an Operating System allocates and reclaims 

portions of main memory in response to requests, and in accordance with the 

resource-management objectives of a particular system. Memory is normally 

freed when resident objects terminate. When it is necessary and cost-effective, 

the memory manager may increase the amount of available memory by moving 

inactive or low-priority objects to lower levels of the memory hierarchy 

(swapping). The objective of memory management is to provide efficient use of 

memory by minimizing the amount of wasted memory while imposing little 

storage, computational, and memory-access overhead. In addition, the memory 
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manager should provide protection by isolating distinct address spaces, and 

facilitate inter-process cooperation by allowing access to shared data and code.  

It is very desirable to execute a process whose logical address space is larger 

than the available physical address space. It can be achieved through overlays 

but imposing a lot of burden on the programmers.  The better option is virtual 

memory. Virtual memory removes the restriction on the size of address spaces of 

individual processes that is imposed by the capacity of the physical memory 

installed in a given system. In addition, virtual memory provides for dynamic 

migration of portions of address spaces between primary and secondary memory 

in accordance with the relative frequency of usage.  

If the total memory requirement is larger than the available physical memory, 

then memory management system has to create the house for new pages by 

replacing some pages from the memory. A number of page replacement policies 

have been proposed such as FIFO, LRU, NRU, etc with their merits and 

demerits. FIFO implementation is easy but suffers from Belady anomaly. Optimal 

replacement requires future knowledge. LRU is n approximation of optimal but 

difficult to implement. After page replacement, there is the need for frame 

allocation policy. An improper allocation policy may result into thrashing.  

It is also possible to implement virtual memory in the form of demand 

segmentation inheriting the benefits of sharing and protection provided by 

segmentation but placement strategies are complex, allocation and deallocation 

of variable-size storage areas to hold individual segments on disk imposes more 

overhead. On the other hand, paging is very easy for the management of main 

and secondary memories, but it is inferior with regard to protection and sharing. 

Some systems combine the two approaches in order to enjoy the benefits of 

both.  

8.6 SELF ASSESMENT QUESTIONS (SAQ) 
1. Write short notes on following: 

(a) Thrashing 

(b) Page fault frequency 

(c) Sharing in virtual memory 
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2. Differentiate between following: 

(a) Dirty page and clean page 

(b) Logical Address and Physical Address 

(c) Spatial and temporal locality of reference 

(d) Segmentation and paging 

3. What is the common drawback of all the real memory management 

techniques? How is it overcome in virtual memory management schemes? 

4. What extra hardware do we require for implementing demand paging and 

demand segmentation? 

5. Show that LRU page replacement policy possesses the stack property. 

6. Differentiate between internal and external fragmentation. 

7. What do you understand by thrashing? What are the factors causing it?  

8. Compare FIFO page replacement policy with LRU page replacement on 

the basis of overhead. 

9. What do you understand by Belady’s anomaly? Show that page 

replacement algorithm which possesses the stack property cannot suffer 

from Belady’s anomaly. 
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