

Lesson Number: 1 Writer: Dr. Rakesh Kumar

Introduction to Operating System Vetter: Prof. Dharminder Kr.

1.0 OBJECTIVE
The objective of this lesson is to make the students familiar with the basics of

operating system. After studying this lesson they will be familiar with:

1. What is an operating system?

2. Important functions performed by an operating system.

3. Different types of operating systems.

1. 1 INTRODUCTION
Operating System (OS) is system software, which acts as an interface between a

user of the computer and the computer hardware. The main purpose of an

Operating System is to provide an environment in which we can execute

programs. The main goals of the Operating System are:

(i) To make the computer system convenient to use,

(ii) To make the use of computer hardware in efficient way.

Operating System may be viewed as collection of software consisting of

procedures for operating the computer and providing an environment for

execution of programs. It is an interface between user and computer. So an

Operating System makes everything in the computer to work together smoothly

and efficiently.

Figure 1: The relationship between application and system software

Lesson No. 1 Intrduction to Operating System 1

Basically, an Operating System has three main responsibilities:

(a) Perform basic tasks such as recognizing input from the keyboard, sending

output to the display screen, keeping track of files and directories on the disk,

and controlling peripheral devices such as disk drives and printers.

(b) Ensure that different programs and users running at the same time do not

interfere with each other.

(c) Provide a software platform on top of which other programs can run.

The Operating System is also responsible for security and ensuring that

unauthorized users do not access the system. Figure 1 illustrates the relationship

between application software and system software.

The first two responsibilities address the need for managing the computer

hardware and the application programs that use the hardware. The third

responsibility focuses on providing an interface between application software and

hardware so that application software can be efficiently developed. Since the

Operating System is already responsible for managing the hardware, it should

provide a programming interface for application developers. As a user, we

normally interact with the Operating System through a set of commands. The

commands are accepted and executed by a part of the Operating System called

the command processor or command line interpreter.

Figure 2: The interface of various devices to an operating system

Lesson No. 1 Intrduction to Operating System 2

In order to understand operating systems we must understand the computer

hardware and the development of Operating System from beginning. Hardware

means the physical machine and its electronic components including memory

chips, input/output devices, storage devices and the central processing unit.

Software are the programs written for these computer systems. Main memory is

where the data and instructions are stored to be processed. Input/Output devices

are the peripherals attached to the system, such as keyboard, printers, disk

drives, CD drives, magnetic tape drives, modem, monitor, etc. The central

processing unit is the brain of the computer system; it has circuitry to control the

interpretation and execution of instructions. It controls the operation of entire

computer system. All of the storage references, data manipulations and I/O

operations are performed by the CPU. The entire computer systems can be

divided into four parts or components (1) The hardware (2) The Operating

System (3) The application programs and system programs (4) The users.

The hardware provides the basic computing power. The system programs the

way in which these resources are used to solve the computing problems of the

users. There may be many different users trying to solve different problems. The

Operating System controls and coordinates the use of the hardware among the

various users and the application programs.

User User User User

Compiler Assembler Text Editor
Database

Application programs

Operating System

Computer Hardware

Figure 3. Basic components of a computer system

Lesson No. 1 Intrduction to Operating System 3

We can view an Operating System as a resource allocator. A computer system

has many resources, which are to be required to solve a computing problem.

These resources are the CPU time, memory space, files storage space,

input/output devices and so on. The Operating System acts as a manager of all

of these resources and allocates them to the specific programs and users as

needed by their tasks. Since there can be many conflicting requests for the

resources, the Operating System must decide which requests are to be allocated

resources to operate the computer system fairly and efficiently.

An Operating System can also be viewed as a control program, used to control

the various I/O devices and the users programs. A control program controls the

execution of the user programs to prevent errors and improper use of the

computer resources. It is especially concerned with the operation and control of

I/O devices. As stated above the fundamental goal of computer system is to

execute user programs and solve user problems. For this goal computer

hardware is constructed. But the bare hardware is not easy to use and for this

purpose application/system programs are developed. These various programs

require some common operations, such as controlling/use of some input/output

devices and the use of CPU time for execution. The common functions of

controlling and allocation of resources between different users and application

programs is brought together into one piece of software called operating system.

It is easy to define operating systems by what they do rather than what they are.

The primary goal of the operating systems is convenience for the user to use the

computer. Operating systems makes it easier to compute. A secondary goal is

efficient operation of the computer system. The large computer systems are very

expensive, and so it is desirable to make them as efficient as possible. Operating

systems thus makes the optimal use of computer resources. In order to

understand what operating systems are and what they do, we have to study how

they are developed. Operating systems and the computer architecture have a

great influence on each other. To facilitate the use of the hardware operating

systems were developed.

Lesson No. 1 Intrduction to Operating System 4

First, professional computer operators were used to operate the computer. The

programmers no longer operated the machine. As soon as one job was finished,

an operator could start the next one and if some errors came in the program, the

operator takes a dump of memory and registers, and from this the programmer

have to debug their programs. The second major solution to reduce the setup

time was to batch together jobs of similar needs and run through the computer as

a group. But there were still problems. For example, when a job stopped, the

operator would have to notice it by observing the console, determining why the

program stopped, takes a dump if necessary and start with the next job. To

overcome this idle time, automatic job sequencing was introduced. But even with

batching technique, the faster computers allowed expensive time lags between

the CPU and the I/O devices. Eventually several factors helped improve the

performance of CPU. First, the speed of I/O devices became faster. Second, to

use more of the available storage area in these devices, records were blocked

before they were retrieved. Third, to reduce the gap in speed between the I/O

devices and the CPU, an interface called the control unit was placed between

them to perform the function of buffering. A buffer is an interim storage area that

works like this: as the slow input device reads a record, the control unit places

each character of the record into the buffer. When the buffer is full, the entire

record is transmitted to the CPU. The process is just opposite to the output

devices. Fourth, in addition to buffering, an early form of spooling was developed

by moving off-line the operations of card reading, printing etc. SPOOL is an

acronym that stands for the simultaneous peripherals operations on-line. For

example, incoming jobs would be transferred from the card decks to tape/disks

off-line. Then they would be read into the CPU from the tape/disks at a speed

much faster than the card reader.

Card
Reader

CPU Line
printer

On-line

Lesson No. 1 Intrduction to Operating System 5

Card
reader

CPU Tape

drive
Tape
drive

Line
printer

Off-line

CPU

Disk

Card
reader

Line
printer

 SPOOLING

Figure 4: the on-line, off-line and spooling processes
Moreover, the range and extent of services provided by an Operating System

depends on a number of factors. Among other things, the needs and

characteristics of the target environmental that the Operating System is intended

to support largely determine user- visible functions of an operating system. For

example, an Operating System intended for program development in an

interactive environment may have a quite different set of system calls and

commands than the Operating System designed for run-time support of a car

engine.

1.2 PRESENTATION OF CONTENTS
1.2.1 Operating System as a Resource Manager

1.2.1.1 Memory Management Functions

1.2.1.2 Processor / Process Management Functions

1.2.1.3 Device Management Functions

1.2.1.4 Information Management Functions

1.2.2 Evolution of Processing Trends

1.2.2.1 Serial Processing

Lesson No. 1 Intrduction to Operating System 6

1.2.2.2 Batch Processing

1.2.2.3 Multi Programming

1.2.3 Types Of Operating Systems

1.2.3.1 Batch Operating System

1.2.3.2 Multi Programming Operating System

1.2.3.3 Multitasking Operating System

1.2.3.4 Multi-user Operating System

1.2.3.5 Multithreading

1.2.3.6 Time Sharing System

1.2.3.7 Real Time Systems

1.2.3.8 Combination Operating Systems

1.2.3.9 Distributed Operating Systems

1.2.1 Operating System as a Resource Manager
The Operating System is a manager of system resources. A computer system

has many resources as stated above. Since there can be many conflicting

requests for the resources, the Operating System must decide which requests

are to be allocated resources to operate the computer system fairly and

efficiently. Here we present a framework of the study of Operating System based

on the view that the Operating System is manager of resources. The Operating

System as a resources manager can be classified in to the following three

popular views: primary view, hierarchical view, and extended machine view.

The primary view is that the Operating System is a collection of programs

designed to manage the system’s resources, namely, memory, processors,

peripheral devices, and information. It is the function of Operating System to see

that they are used efficiently and to resolve conflicts arising from competition

among the various users. The Operating System must keep track of status of

each resource; decide which process is to get the resource, allocate it, and

eventually reclaim it.

The major functions of each category of Operating System are.

1.2.1.1 Memory Management Functions

Lesson No. 1 Intrduction to Operating System 7

To execute a program, it must be mapped to absolute addresses and loaded into

memory. As the program executes, it accesses instructions and data from

memory by generating these absolute addresses. In multiprogramming

environment, multiple programs are maintained in the memory simultaneously.

The Operating System is responsible for the following memory management

functions:

¾ Keep track of which segment of memory is in use and by whom.

¾ Deciding which processes are to be loaded into memory when space

becomes available. In multiprogramming environment it decides which

process gets the available memory, when it gets it, where does it get it, and

how much.

¾ Allocation or de-allocation the contents of memory when the process request

for it otherwise reclaim the memory when the process does not require it or

has been terminated.

1.2.1.2 Processor/Process Management Functions
A process is an instance of a program in execution. While a program is just a

passive entity, process is an active entity performing the intended functions of its

related program. To accomplish its task, a process needs certain resources like

CPU, memory, files and I/O devices. In multiprogramming environment, there will

a number of simultaneous processes existing in the system. The Operating

System is responsible for the following processor/ process management

functions:

¾ Provides mechanisms for process synchronization for sharing of resources

amongst concurrent processes.

¾ Keeps track of processor and status of processes. The program that does this

has been called the traffic controller.

¾ Decide which process will have a chance to use the processor; the job

scheduler chooses from all the submitted jobs and decides which one will be

allowed into the system. If multiprogramming, decide which process gets the

processor, when, for how much of time. The module that does this is called a

process scheduler.

Lesson No. 1 Intrduction to Operating System 8

¾ Allocate the processor to a process by setting up the necessary hardware

registers. This module is widely known as the dispatcher.

¾ Providing mechanisms for deadlock handling.

¾ Reclaim processor when process ceases to use a processor, or exceeds the

allowed amount of usage.

1.2.1.3 I/O Device Management Functions
An Operating System will have device drivers to facilitate I/O functions involving

I/O devices. These device drivers are software routines that control respective

I/O devices through their controllers. The Operating System is responsible for the

following I/O Device Management Functions:

¾ Keep track of the I/O devices, I/O channels, etc. This module is typically

called I/O traffic controller.

¾ Decide what is an efficient way to allocate the I/O resource. If it is to be

shared, then decide who gets it, how much of it is to be allocated, and for how

long. This is called I/O scheduling.

¾ Allocate the I/O device and initiate the I/O operation.

¾ Reclaim device as and when its use is through. In most cases I/O terminates

automatically.

1.2.1.4 Information Management Functions
¾ Keeps track of the information, its location, its usage, status, etc. The module

called a file system provides these facilities.

¾ Decides who gets hold of information, enforce protection mechanism, and

provides for information access mechanism, etc.

¾ Allocate the information to a requesting process, e.g., open a file.

¾ De-allocate the resource, e.g., close a file.

1.2.1.5 Network Management Functions
An Operating System is responsible for the computer system networking via a

distributed environment. A distributed system is a collection of processors, which

do not share memory, clock pulse or any peripheral devices. Instead, each

processor is having its own clock pulse, and RAM and they communicate through

network. Access to shared resource permits increased speed, increased

Lesson No. 1 Intrduction to Operating System 9

functionality and enhanced reliability. Various networking protocols are TCP/IP

(Transmission Control Protocol/ Internet Protocol), UDP (User Datagram

Protocol), FTP (File Transfer Protocol), HTTP (Hyper Text Transfer protocol),

NFS (Network File System) etc.

1.2.2 EVOLUTION OF PROCESSING TRENDS
Starting from the bare machine approach to its present forms, the Operating

System has evolved through a number of stages of its development like serial

processing, batch processing multiprocessing etc. as mentioned below:

1.2.2.1 Serial Processing
In theory, every computer system may be programmed in its machine language,

with no systems software support. Programming of the bare machine was

customary for early computer systems. A slightly more advanced version of this

mode of operation is common for the simple evaluation boards that are

sometimes used in introductory microprocessor design and interfacing courses.

Programs for the bare machine can be developed by manually translating

sequences of instructions into binary or some other code whose base is usually

an integer power of 2. Instructions and data are then entered into the computer

by means of console switches, or perhaps through a hexadecimal keyboard.

Loading the program counter with the address of the first instruction starts

programs. Results of execution are obtained by examining the contents of the

relevant registers and memory locations. The executing program, if any, must

control Input/output devices, directly, say, by reading and writing the related I/O

ports. Evidently, programming of the bare machine results in low productivity of

both users and hardware. The long and tedious process of program and data

entry practically precludes execution of all but very short programs in such an

environment.

The next significant evolutionary step in computer-system usage came about

with the advent of input/output devices, such as punched cards and paper tape,

and of language translators. Programs, now coded in a programming language,

are translated into executable form by a computer program, such as a compiler

or an interpreter. Another program, called the loader, automates the process of

Lesson No. 1 Intrduction to Operating System 10

loading executable programs into memory. The user places a program and its

input data on an input device, and the loader transfers information from that input

device into memory. After transferring control to the loader program by manual

or automatic means, execution of the program commences. The executing

program reads its input from the designated input device and may produce some

output on an output device. Once in memory, the program may be rerun with a

different set of input data.

The mechanics of development and preparation of programs in such

environments are quite slow and cumbersome due to serial execution of

programs and to numerous manual operations involved in the process. In a

typical sequence, the editor program is loaded to prepare the source code of the

user program. The next step is to load and execute the language translator and

to provide it with the source code of the user program. When serial input devices,

such as card reader, are used, multiple-pass language translators may require

the source code to be repositioned for reading during each pass. If syntax errors

are detected, the whole process must be repeated from the beginning.

Eventually, the object code produced from the syntactically correct source code

is loaded and executed. If run-time errors are detected, the state of the machine

can be examined and modified by means of console switches, or with the

assistance of a program called a debugger.

1.2.2.2 Batch Processing
With the invention of hard disk drive, the things were much better. The batch

processing was relied on punched cards or tape for the input when assembling

the cards into a deck and running the entire deck of cards through a card reader

as a batch. Present batch systems are not limited to cards or tapes, but the jobs

are still processed serially, without the interaction of the user. The efficiency of

these systems was measured in the number of jobs completed in a given amount

of time called as throughput. Today’s operating systems are not limited to batch

programs. This was the next logical step in the evolution of operating systems to

automate the sequencing of operations involved in program execution and in the

mechanical aspects of program development. The intent was to increase system

Lesson No. 1 Intrduction to Operating System 11

resource utilization and programmer productivity by reducing or eliminating

component idle times caused by comparatively lengthy manual operations.

Furthermore, even when automated, housekeeping operations such as mounting

of tapes and filling out log forms take a long time relative to processors and

memory speeds. Since there is not much that can be done to reduce these

operations, system performance may be increased by dividing this overhead

among a number of programs. More specifically, if several programs are batched

together on a single input tape for which housekeeping operations are performed

only once, the overhead per program is reduced accordingly. A related concept,

sometimes called phasing, is to prearrange submitted jobs so that similar ones

are placed in the same batch. For example, by batching several Fortran

compilation jobs together, the Fortran compiler can be loaded only once to

process all of them in a row. To realize the resource-utilization potential of batch

processing, a mounted batch of jobs must be executed automatically, without

slow human intervention. Generally, Operating System commands are

statements written in Job Control Language (JCL). These commands are

embedded in the job stream, together with user programs and data. A memory-

resident portion of the batch operating system- sometimes called the batch

monitor- reads, interprets, and executes these commands.

Moreover, the sequencing of program execution mostly automated by batch

operating systems, the speed discrepancy between fast processors and

comparatively slow I/O devices, such as card readers and printers, emerged as a

major performance bottleneck. Further improvements in batch processing were

mostly along the lines of increasing the throughput and resource utilization by

overlapping input and output operations. These developments have coincided

with the introduction of direct memory access (DMA) channels, peripheral

controllers, and later dedicated input/output processors. As a result, computers

for offline processing were often replaced by sophisticated input/output programs

executed on the same computer with the batch monitor.

Many single-user operating systems for personal computers basically provide for

serial processing. User programs are commonly loaded into memory and

Lesson No. 1 Intrduction to Operating System 12

executed in response to user commands typed on the console. A file

management system is often provided for program and data storage. A form of

batch processing is made possible by means of files consisting of commands to

the Operating System that are executed in sequence. Command files are

primarily used to automate complicated customization and operational

sequences of frequent operations.

1.2.2.3 Multiprogramming
In multiprogramming, many processes are simultaneously resident in memory,

and execution switches between processes. The advantages of

multiprogramming are the same as the commonsense reasons that in life you do

not always wait until one thing has finished before starting the next thing.

Specifically:

¾ More efficient use of computer time. If the computer is running a single

process, and the process does a lot of I/O, then the CPU is idle most of the

time. This is a gain as long as some of the jobs are I/O bound -- spend most

of their time waiting for I/O.

¾ Faster turnaround if there are jobs of different lengths. Consideration (1)

applies only if some jobs are I/O bound. Consideration (2) applies even if all

jobs are CPU bound. For instance, suppose that first job A, which takes an

hour, starts to run, and then immediately afterward job B, which takes 1

minute, is submitted. If the computer has to wait until it finishes A before it

starts B, then user A must wait an hour; user B must wait 61 minutes; so the

average waiting time is 60-1/2 minutes. If the computer can switch back and

forth between A and B until B is complete, then B will complete after 2

minutes; A will complete after 61 minutes; so the average waiting time will be

31-1/2 minutes. If all jobs are CPU bound and the same length, then there is

no advantage in multiprogramming; you do better to run a batch system. The

multiprogramming environment is supposed to be invisible to the user

processes; that is, the actions carried out by each process should proceed in

the same was as if the process had the entire machine to itself.

This raises the following issues:

Lesson No. 1 Intrduction to Operating System 13

¾ Process model: The state of an inactive process has to be encoded and

saved in a process table so that the process can be resumed when made

active.

¾ Context switching: How does one carry out the change from one process to

another?

¾ Memory translation: Each process treats the computer's memory as its own

private playground. How can we give each process the illusion that it can

reference addresses in memory as it wants, but not have them step on each

other's toes? The trick is by distinguishing between virtual addresses -- the

addresses used in the process code -- and physical addresses -- the actual

addresses in memory. Each process is actually given a fraction of physical

memory. The memory management unit translates the virtual address in the

code to a physical address within the user's space. This translation is invisible

to the process.

¾ Memory management: How does the Operating System assign sections of

physical memory to each process?

¾ Scheduling: How does the Operating System choose which process to run

when?

Let us briefly review some aspects of program behavior in order to motivate the

basic idea of multiprogramming. This is illustrated in Figure 6, indicated by

dashed boxes. Idealized serial execution of two programs, with no inter-program

idle times, is depicted in Figure 6(a). For comparison purposes, both programs

are assumed to have identical behavior with regard to processor and I/O times

and their relative distributions. As Figure 6(a) suggests, serial execution of

programs causes either the processor or the I/O devices to be idle at some time

even if the input job stream is never empty. One way to attack this problem is to

assign some other work to the processor and I/O devices when they would

otherwise be idling.

Program 1 Program 2

Figure 6(a)

Lesson No. 1 Intrduction to Operating System 14

Figure 6(b) illustrates a possible scenario of concurrent execution of the two

programs introduced in Figure 6(a). It starts with the processor executing the first

computational sequence of Program 1. Instead of idling during the subsequent

I/O sequence of Program 1, the processor is assigned to the first computational

sequence of the Program 2, which is assumed to be in memory and awaiting

execution. When this work is done, the processor is assigned to Program 1

again, then to Program 2, and so forth.

Program 1

Program 2

P1 P2 P1 P2 P1 Time Æ

CPU activity

Figure 6 (b) Multiprogrammed executions
As Figure 6 suggests, significant performance gains may be achieved by

interleaved executing of programs, or multiprogramming, as this mode of

operation is usually called. With a single processor, parallel execution of

programs is not possible, and at most one program can be in control of the

processor at any time. The example presented in Figure 6(b) achieves 100%

processor utilization with only two active programs. The number of programs

actively competing for resources of a multi-programmed computer system is

called the degree of multiprogramming. In principle, higher degrees of

multiprogramming should result in higher resource utilization. Time-sharing

systems found in many university computer centers provide a typical example of

a multiprogramming system.

1.2.3 TYPES OF OPERATING SYSTEMS
Operating System can be classified into various categories on the basis of

several criteria, viz. number of simultaneously active programs, number of users

working simultaneously, number of processors in the computer system, etc. In

the following discussion several types of operating systems are discussed.

Lesson No. 1 Intrduction to Operating System 15

1.2.3.1 Batch Operating System
Batch processing is the most primitive type of operating system. Batch

processing generally requires the program, data, and appropriate system

commands to be submitted together in the form of a job. Batch operating

systems usually allow little or no interaction between users and executing

programs. Batch processing has a greater potential for resource utilization than

simple serial processing in computer systems serving multiple users. Due to

turnaround delays and offline debugging, batch is not very convenient for

program development. Programs that do not require interaction and programs

with long execution times may be served well by a batch operating system.

Examples of such programs include payroll, forecasting, statistical analysis, and

large scientific number-crunching programs. Serial processing combined with

batch like command files is also found on many personal computers. Scheduling

in batch is very simple. Jobs are typically processed in order of their submission,

that is, first-come first-served fashion.

Memory management in batch systems is also very simple. Memory is usually

divided into two areas. The resident portion of the Operating System permanently

occupies one of them, and the other is used to load transient programs for

execution. When a transient program terminates, a new program is loaded into

the same area of memory. Since at most one program is in execution at any

time, batch systems do not require any time-critical device management. For this

reason, many serial and I/O and ordinary batch operating systems use simple,

program controlled method of I/O. The lack of contention for I/O devices makes

their allocation and deallocation trivial.

Batch systems often provide simple forms of file management. Since access to

files is also serial, little protection and no concurrency control of file access in

required.

1.2.3.2 Multiprogramming Operating System
A multiprogramming system permits multiple programs to be loaded into memory

and execute the programs concurrently. Concurrent execution of programs has a

significant potential for improving system throughput and resource utilization

Lesson No. 1 Intrduction to Operating System 16

relative to batch and serial processing. This potential is realized by a class of

operating systems that multiplex resources of a computer system among a

multitude of active programs. Such operating systems usually have the prefix

multi in their names, such as multitasking or multiprogramming.

1.2.3.3 Multitasking Operating System
It allows more than one program to run concurrently. The ability to execute more

than one task at the same time is called as multitasking. An instance of a

program in execution is called a process or a task. A multitasking Operating

System is distinguished by its ability to support concurrent execution of two or

more active processes. Multitasking is usually implemented by maintaining code

and data of several processes in memory simultaneously, and by multiplexing

processor and I/O devices among them. Multitasking is often coupled with

hardware and software support for memory protection in order to prevent

erroneous processes from corrupting address spaces and behavior of other

resident processes. The terms multitasking and multiprocessing are often used

interchangeably, although multiprocessing sometimes implies that more than one

CPU is involved. In multitasking, only one CPU is involved, but it switches from

one program to another so quickly that it gives the appearance of executing all of

the programs at the same time. There are two basic types of multitasking:

preemptive and cooperative. In preemptive multitasking, the Operating System

parcels out CPU time slices to each program. In cooperative multitasking, each

program can control the CPU for as long as it needs it. If a program is not using

the CPU, however, it can allow another program to use it temporarily. OS/2,

Windows 95, Windows NT, and UNIX use preemptive multitasking, whereas

Microsoft Windows 3.x and the MultiFinder use cooperative multitasking.
1.2.3.4 Multi-user Operating System
Multiprogramming operating systems usually support multiple users, in which

case they are also called multi-user systems. Multi-user operating systems

provide facilities for maintenance of individual user environments and therefore

require user accounting. In general, multiprogramming implies multitasking, but

multitasking does not imply multi-programming. In effect, multitasking operation

Lesson No. 1 Intrduction to Operating System 17

is one of the mechanisms that a multiprogramming Operating System employs in

managing the totality of computer-system resources, including processor,

memory, and I/O devices. Multitasking operation without multi-user support can

be found in operating systems of some advanced personal computers and in

real-time systems. Multi-access operating systems allow simultaneous access to

a computer system through two or more terminals. In general, multi-access

operation does not necessarily imply multiprogramming. An example is provided

by some dedicated transaction-processing systems, such as airline ticket

reservation systems, that support hundreds of active terminals under control of a

single program.

In general, the multiprocessing or multiprocessor operating systems manage the

operation of computer systems that incorporate multiple processors.

Multiprocessor operating systems are multitasking operating systems by

definition because they support simultaneous execution of multiple tasks

(processes) on different processors. Depending on implementation, multitasking

may or may not be allowed on individual processors. Except for management

and scheduling of multiple processors, multiprocessor operating systems provide

the usual complement of other system services that may qualify them as time-

sharing, real-time, or a combination operating system.

1.2.3.5 Multithreading
Multithreading allows different parts of a single program to run concurrently. The

programmer must carefully design the program in such a way that all the threads

can run at the same time without interfering with each other.

1.2.3.6 Time-sharing system
Time-sharing is a popular representative of multi-programmed, multi-user

systems. In addition to general program-development environments, many large

computer-aided design and text-processing systems belong to this category. One

of the primary objectives of multi-user systems in general, and time-sharing in

particular, is good terminal response time. Giving the illusion to each user of

having a machine to oneself, time-sharing systems often attempt to provide

equitable sharing of common resources. For example, when the system is

Lesson No. 1 Intrduction to Operating System 18

loaded, users with more demanding processing requirements are made to wait

longer.

This philosophy is reflected in the choice of scheduling algorithm. Most time-

sharing systems use time-slicing scheduling. In this approach, programs are

executed with rotating priority that increases during waiting and drops after the

service is granted. In order to prevent programs from monopolizing the

processor, a program executing longer than the system-defined time slice is

interrupted by the Operating System and placed at the end of the queue of

waiting programs. This mode of operation generally provides quick response time

to interactive programs. Memory management in time-sharing systems provides

for isolation and protection of co-resident programs. Some forms of controlled

sharing are sometimes provided to conserve memory and possibly to exchange

data between programs. Being executed on behalf of different users, programs in

time-sharing systems generally do not have much need to communicate with

each other. As in most multi-user environments, allocation and de-allocation of

devices must be done in a manner that preserves system integrity and provides

for good performance.

1.2.3.7 Real-time systems
Real time systems are used in time critical environments where data must be

processed extremely quickly because the output influences immediate decisions.

Real time systems are used for space flights, airport traffic control, industrial

processes, sophisticated medical equipments, telephone switching etc. A real

time system must be 100 percent responsive in time. Response time is

measured in fractions of seconds. In real time systems the correctness of the

computations not only depends upon the logical correctness of the computation

but also upon the time at which the results is produced. If the timing constraints

of the system are not met, system failure is said to have occurred. Real-time

operating systems are used in environments where a large number of events,

mostly external to the computer system, must be accepted and processed in a

short time or within certain deadlines.

Lesson No. 1 Intrduction to Operating System 19

A primary objective of real-time systems is to provide quick event-response

times, and thus meet the scheduling deadlines. User convenience and resource

utilization are of secondary concern to real-time system designers. It is not

uncommon for a real-time system to be expected to process bursts of thousands

of interrupts per second without missing a single event. Such requirements

usually cannot be met by multi-programming alone, and real-time operating

systems usually rely on some specific policies and techniques for doing their job.

The Multitasking operation is accomplished by scheduling processes for

execution independently of each other. Each process is assigned a certain level

of priority that corresponds to the relative importance of the event that it services.

The processor is normally allocated to the highest-priority process among those

that are ready to execute. Higher-priority processes usually preempt execution of

the lower-priority processes. This form of scheduling, called priority-based

preemptive scheduling, is used by a majority of real-time systems. Unlike, say,

time-sharing, the process population in real-time systems is fairly static, and

there is comparatively little moving of programs between primary and secondary

storage. On the other hand, processes in real-time systems tend to cooperate

closely, thus necessitating support for both separation and sharing of memory.

Moreover, as already suggested, time-critical device management is one of the

main characteristics of real-time systems. In addition to providing sophisticated

forms of interrupt management and I/O buffering, real-time operating systems

often provide system calls to allow user processes to connect themselves to

interrupt vectors and to service events directly. File management is usually found

only in larger installations of real-time systems. In fact, some embedded real-time

systems, such as an onboard automotive controller, may not even have any

secondary storage. The primary objective of file management in real-time

systems is usually speed of access, rather then efficient utilization of secondary

storage.

1.2.3.8 Combination of operating systems
Different types of Operating System are optimized or geared up to serve the

needs of specific environments. In practice, however, a given environment may

Lesson No. 1 Intrduction to Operating System 20

not exactly fit any of the described molds. For instance, both interactive program

development and lengthy simulations are often encountered in university

computing centers. For this reason, some commercial operating systems provide

a combination of described services. For example, a time-sharing system may

support interactive users and also incorporate a full-fledged batch monitor. This

allows computationally intensive non-interactive programs to be run concurrently

with interactive programs. The common practice is to assign low priority to batch

jobs and thus execute batched programs only when the processor would

otherwise be idle. In other words, batch may be used as a filler to improve

processor utilization while accomplishing a useful service of its own. Similarly,

some time-critical events, such as receipt and transmission of network data

packets, may be handled in real-time fashion on systems that otherwise provide

time-sharing services to their terminal users.

1.2.3.9 Distributed Operating Systems
A distributed computer system is a collection of autonomous computer systems

capable of communication and cooperation via their hardware and software

interconnections. Historically, distributed computer systems evolved from

computer networks in which a number of largely independent hosts are

connected by communication links and protocols. A distributed Operating System

governs the operation of a distributed computer system and provides a virtual

machine abstraction to its users. The key objective of a distributed Operating

System is transparency. Ideally, component and resource distribution should be

hidden from users and application programs unless they explicitly demand

otherwise. Distributed operating systems usually provide the means for system-

wide sharing of resources, such as computational capacity, files, and I/O devices.

In addition to typical operating-system services provided at each node for the

benefit of local clients, a distributed Operating System may facilitate access to

remote resources, communication with remote processes, and distribution of

computations. The added services necessary for pooling of shared system

resources include global naming, distributed file system, and facilities for

distribution.

Lesson No. 1 Intrduction to Operating System 21

1.3 SUMMARY
Operating System is also known as resource manager because its prime

responsibility is to manage the resources of the computer system i.e. memory,

processor, devices and files. In addition to these, Operating System provides an

interface between the user and the bare machine. Following the course of the

conceptual evolution of operating systems, we have identified the main

characteristics of the program-execution and development environments

provided by the bare machine, serial processing, including batch and

multiprogramming.

On the basis of their attributes and design objectives, different types of operating

systems were defined and characterized with respect to scheduling and

management of memory, devices, and files. The primary concerns of a time-

sharing system are equitable sharing of resources and responsiveness to

interactive requests. Real-time operating systems are mostly concerned with

responsive handling of external events generated by the controlled system.

Distributed operating systems provide facilities for global naming and accessing

of resources, for resource migration, and for distribution of computation.

1.4 Keywords
(i) SPOOL: Simultaneous Peripheral Operations On Line

(ii) Task: An instance of a program in execution is called a process or a task.

(iii) Multitasking: The ability to execute more than one task at the same time is

called as multitasking.

(iv) Real time: These systems are characterized by very quick processing of data

because the output influences immediate decisions.

(v) Multiprogramming: It is characterized by many programs simultaneously

resident in memory, and execution switches between programs.

1.5. SELF ASSESMENT QUESTIONS (SAQ)
1. What are the objectives of an operating system? Discuss.

2. Differentiate between multiprogramming, multitasking, and

multiprocessing.

3. Discuss modular approach of development of an operating system.

Lesson No. 1 Intrduction to Operating System 22

4. Discuss whether there are any advantages of using a multitasking

operating system, as opposed to a serial processing one.

5. What are the major functions performed by an operating system? Explain.

6. Why operating system is referred to as resource manager? Explain.

7. Write a detailed note on the evolution of operating systems.

8. What is a real time system? How is it different from other types of

operating systems? Explain.

1.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson No. 1 Intrduction to Operating System 23

Lesson Number: 2 Writer: Dr. Rakesh Kumar

System calls and system programs Vetter: Prof. Dharminder Kumar

2.0 Objectives
The objective of this lesson is to provide the information about the various

services provided by the operating system. After studying this lesson the

students will be familiar with the various system services and how are those

implemented.

2.1 Introduction
Operating system provides an environment in which programs are executed.

Since operating system can only directly interact with the bare machine, it can

only perform the basic input and output operations, so all the users programs

have to request the operating system to perform these operations.

As discussed in previous lesson, there arises a need to identify the system

resources that must be managed by the Operating System and using the process

viewpoint, we indicate when the corresponding resource manager comes into

play. We now answer the question, “How are these resource managers

activated, and where do they reside?” Does memory manager ever invoke the

process scheduler? Does scheduler ever call upon the services of memory

manager? Is the process concept only for the user or is it used by Operating

System also?

The Operating System provides many instructions in addition to the Bare

machine instructions (A Bare machine is a machine without its software clothing,

and it does not provide the environment which most programmers are desired

for). Instructions that form a part of Bare machine plus those provided by the

Operating System constitute the instruction set of the extended machine. The

situation is pictorially represented in figure 1. The Operating System kernel runs

on the bare machine; user programs run on the extended machine. This means

that the kernel of Operating System is written by using the instructions of bare

Lesson Number II System Calls and System Programs 1

machine only; whereas the users can write their programs by making use of

instructions provided by the extended machine.

Figure 1 Extended Machine View

Extended Machine

Bare
Machine

Process 3

Process 4

Process 1

Process 2

The Operating System kernel runs on the bare machine; user programs run on

the extended machine. This means that the kernel of Operating System is written

by using the instructions of bare machine only; whereas the users can write their

programs by making use of instructions provided by the extended machine.

2.2 Presentation of contents
 2.2.1 Hierarchical structure of an operating system

 2.2.2 Virtual Machine

2.2.3 System Services

 2.2.3.1 System Calls

 2.2.3.1.1 Types of System Calls

2.2.3.1.2 System Call implementations

2.2.3.1.3 Common system calls

 2.2.3.2 System Programs

2.2.1 Hierarchical Structure of an Operating System
Let us now discuss how the operating system is put together. Most of the early

operating systems consisted simply of one big program. This was called a brute

force or monolithic approach. As computers systems became larger and more

comprehensive, abovementioned approach became unmanageable. A better

approach is to develop an operating system employing a modular approach. In

this section we discuss a hierarchical view of an operating system to show how

Lesson Number II System Calls and System Programs 2

various modules of an Operating System are organized with respect to each

other.

Outer Extended Machine

Remaining Operating System Functions

Inner Extended Machine

Key Operating System Functions

Bare Machine

Process 1

Process 2

Process 3 Process 4

O/S
Process B

O/S
Process A

Figure 2: Simple Hierarchical Machine View
In order to use the hierarchical approach, we must answer the original question:

Where does each module of the operating system fit in the hierarchy? Does it fit

in the inner extended machine, or the outer extended machine, or as a process?

Furthermore, the concept of two-level extended (inner and outer) machine can be

extended even more; resulting into a multi-layer and multilevel approach. Figure

3 illustrates the extended hierarchical structure of an operating system. All the

processes (shown in boxes) use the kernel and share all the resources of the

system. The parent-child or controller-controlled relationship between processes

is depicted in figure 3 by placing them in different layers.

In a strictly hierarchical implementation, a given level is allowed to call upon

services of lower level, but not upon those of higher levels. In figure 3, layer0

(kernel) is divided into 5 levels.

Lesson Number II System Calls and System Programs 3

Information Management

Device Management

Processor Management Upper Level

Memory Management

Process Scheduling

Hardware

Figure 3: Hierarchical Operating System Structure
Primitive functions residing in each level is discussed below:

Level 1: Processor Management Lower Level

 P and V operators

 Process scheduling

Level 2: Memory Management

 Allocate memory

 Release memory

Level 3: Processor Management Upper Level

 Create/destroy process

 Send/receive messages between processes

 Start/stop process

Level 4: Device Management

 Keep track of status of all I/O devices

 Schedule I/O operations

 Initiate I/O process

Lesson Number II System Calls and System Programs 4

Level 5: Information Management

 Create/destroy file

 Open/Close file

 Read/write file

2.2.2. Virtual Machines
The virtual machine approach makes it possible to run different operating system

on the same real machine.

System virtual machines (sometimes called hardware virtual machines) allow the

sharing of the underlying physical machine resources between different virtual

machines, each running its own operating system. The software layer providing

the virtualization is called a virtual machine monitor or hypervisor. A hypervisor

can run on bare hardware or on top of an operating system.

The main advantages of system Virtual Machines are:

• multiple Operating System environments can co-exist on the same

computer, in strong isolation from each other

• the virtual machine can provide an instruction set architecture (ISA) that is

somewhat different from that of the real machine

• Application provisioning, maintenance, high availability and disaster

recovery.

Multiple Virtual Machines each running their own operating system (called guest

operating system) are frequently used in server consolidation, where different

services that used to run on individual machines in order to avoid interference

are instead run in separate Virtual Machines on the same physical machine. This

use is frequently called quality-of-service isolation (QoS isolation).

The desire to run multiple operating systems was the original motivation for

virtual machines, as it allowed time-sharing a single computer between several

single-tasking Operating Systems. This technique requires a process to share

the CPU resources between guest operating systems and memory virtualization

to share the memory on the host.

The guest Operating Systems do not have to be all the same, making it possible

to run different Operating Systems on the same computer (e.g., Microsoft

Lesson Number II System Calls and System Programs 5

Windows and Linux, or older versions of an Operating System in order to support

software that has not yet been ported to the latest version). The use of virtual

machines to support different guest Operating Systems is becoming popular in

embedded systems; a typical use is to support a real-time operating system at

the same time as a high-level Operating System such as Linux or Windows.

Another use is to sandbox an Operating System that is not trusted, possibly

because it is a system under development. Virtual machines have other

advantages for Operating System development, including better debugging

access and faster reboots.

Consider the following figure in which OS1, OS2, and OS4 are three different

operating systems and OS3 is operating system under test. All these operating

systems are running on the same real machine but they are not directly dealing

with the real machine, they are dealing with Virtual Machine Monitor (VMM)

which provides each user with the illusion of running on a separate machine. If

the operating system being tested causes a system to crash, this crash affects

only its own virtual machine. The other users of the real machine can continue

their operation without being disturbed. Actually lowest level routines of the

operating system deals with the VMM instead of the real machine which provides

the services and functions as those available on the real machine. Each user of

the virtual machine i.e. OS1, OS2 etc. runs in user mode, not supervisor mode,

on the real machine.

U
se

r 1

U
se

r 2

Te
st

U
se

r

U
se

r 4

Operating System

OS1

Operating System

OS2

Operating System

OS3 (test)

Operating System

OS4

Virtual Machine Monitor (VMM)

Real Machine

Figure 4: Multiple users of a virtual machine operating system

2.2.3 System Services

Lesson Number II System Calls and System Programs 6

An operating system provides an environment for the execution of the programs.

It provides certain services to programs and the users of the programs. The

services are:

(a) Program Execution: If a user want to execute a program then system must

be able to load it in memory and run it. The program must be able to end it

execution.

(b) I/O operations: The running program may require input and output such as a

file or an I/O device. The program cannot execute I/O operation directly, so the

OS must facilitate this thing.

(c) File system manipulation: If the running program is in need of files the OS

should facilitate creation, deletion etc of files.

(d) Error detection: The operating system has to continuously monitor the

system because error may occur at any place such as in the CPU, in memory, in

I/O devices or in the user program itself. The operating system has to ensure the

correct and continuous computing.

In addition to above classes of services, a number of other services are resource

allocation, accounting and protection. When there are multiple users and

programs the operating system has to manage the resources and keep account

of each user and resources occupied by them. When multiple jobs are there in

the system, operating system has to ensure that one should not interfere with the

others.

The two most common approaches to provide the services are system calls and

system programs.
2.2.3.1 SYSTEM CALLS

The interface between the operating system and the user programs is

defined by the set of “extended instructions” that the operating system

provides. These extended instructions are known as system calls.

System calls provide an interface between the process and the operating system.

System calls allow user-level processes to request some services from the

operating system which process itself is not allowed to do. In handling the trap,

the operating system will enter in the kernel mode, where it has access to

Lesson Number II System Calls and System Programs 7

privileged instructions, and can perform the desired service on the behalf of user-

level process. It is because of the critical nature of operations that the operating

system itself does them every time they are needed. For example, for I/O a

process involves a system call telling the operating system to read or write

particular area and this request is satisfied by the operating system.

System programs provide basic functioning to users so that they do not need to

write their own environment for program development (editors, compilers) and

program execution (shells). In some sense, they are bundles of useful system

calls

2.2.3.1.1 Types of System Calls
System calls are kernel level service routines for implementing basic operations

performed by the operating system. System calls can be grouped into three

major categories:

(a) Process and job control

(b) Device and file manipulation

(c) Information maintenance

Process and job control
The category includes the system call to end or abort the running program, to

load and execute the program, to create new process or terminate the existing

one, to get the process attributes and to set them. Another set of the system calls

are helpful in debugging a program and to dump the memory.

File manipulation
Systems calls are required to read and delete the file, to open them and to close

them. In order to perform the read, write and reposition operations we need the

system calls. To read and determine the attributes of the files we need system

calls.

Device management
In order to use a device, we first request the device, after using it we have to

release it. Once the device has been requested we can read, write and reposition

the device.

Information maintenance

Lesson Number II System Calls and System Programs 8

Many system calls exist for the purpose of transferring information between the

user program and operating system such as a call to return the current time and

date.

Types of system calls

Process Control

1. End, Abort

2. Load, Execute

3. Create Process, Terminate Process

4. Get and Set Process attributes

File manipulation

1. Create File, Delete file

2. Open and close file

3. Read, write and reposition

4. Get and set file attributes

Device manipulation

1. Request and release the devices

2. Read, write and reposition

3. Get and set Device attributes

Information Maintenance

1. Get/Set time or date

2. Get/Set system date

3. Get/Set process/file/device attributes

A system call is a request made by any program to the operating system for

performing tasks -- picked from a predefined set -- which the said program does

not have required permissions to execute in its own flow of execution. System

calls provide the interface between a process and the operating system. Most

operations interacting with the system require permissions not available to a user

level process, e.g. I/O performed with a device present on the system or any

form of communication with other processes requires the use of system calls.

The fact that improper use of the system call can easily cause a system crash

necessitates some level of control. The design of the microprocessor architecture

Lesson Number II System Calls and System Programs 9

on practically all modern systems (except some embedded systems) offers a

series of privilege levels -- the (low) privilege level in which normal applications

execute limits the address space of the program so that it cannot access or

modify other running applications nor the operating system itself. It also prevents

the application from directly using devices (e.g. the frame buffer or network

devices). But obviously many normal applications need these abilities; thus they

can call the operating system. The operating system executes at the highest

level of privilege and allows the applications to request services via system calls,

which are often implemented through interrupts. If allowed, the system enters a

higher privilege level, executes a specific set of instructions which the interrupting

program has no direct control over, then returns control to the former flow of

execution. This concept also serves as a way to implement security.

With the development of separate operating modes with varying levels of

privilege, a mechanism was needed for transferring control safely from lesser

privileged modes to higher privileged modes. Less privileged code could not

simply transfer control to more privileged code at any point and with any

processor state. To allow it to do so would allow it to break security. For instance,

the less privileged code could cause the higher privileged code to execute in the

wrong order, or provide it with a bad stack.

The library as an intermediary
Generally, systems provide a library that sits between normal programs and the

operating system, usually an implementation of the C library (libc), such as glibc.

This library handles the low-level details of passing information to the operating

system and switching to supervisor mode, as well as any data processing and

preparation which does not need to be done in privileged mode. Ideally, this

reduces the coupling between the Operating System and the application, and

increases portability.

2.2.3.1.2 System Call implementations
On Unix, Unix-like and other POSIX-compatible Operating Systems, popular

system calls are open, read, write, close, wait, exec, fork, exit, and kill. Many of

Lesson Number II System Calls and System Programs 10

today's operating systems have hundreds of system calls. For example, Linux

has 319 different system calls.

Implementing system calls requires a control transfer which involves some sort of

architecture-specific feature. A typical way to implement this is to use a software

interrupt or trap. Interrupts transfer control to the Operating System so software

simply needs to set up some register with the system call number they want and

execute the software interrupt.

Often more information is required then simply the call number. The exact type

and amount of information depend upon the operating system and call. Three

general methods are used to pass parameters between a running program and

the operating system.

¾ Pass parameters in registers.

¾ Store the parameters in a table in memory, and the table address is

passed as a parameter in a register.

¾ Push (store) the parameters onto the stack by the program, and pop off

the stack by operating system.

Figure 5: Passing Parameters

2.2.3.1.3 Common system calls
Below are mentioned some of several generic system calls that most operating

systems provide.

CREATE (processID, attributes);

Lesson Number II System Calls and System Programs 11

In response to the CREATE call, the Operating System creates a new process

with the specified or default attributes and identifier. A process cannot create

itself-because it would have to be running in order to invoke the Operating

System, and it cannot run before being created. So a process must be created by

another process. In response to the CREATE call, the Operating System obtains

a new PCB from the pool of free memory, fills the fields with provided and/or

default parameters, and inserts the PCB into the ready list-thus making the

specified process eligible to run. Some of the parameters definable at the

process-creation time include: (a) Level of privilege, such as system or user (b)

Priority (c) Size and memory requirements (d) Maximum data area and/or stack

size (e) Memory protection information and access rights (f) Other system-

dependent data

Typical error returns, implying that the process was not created as a result of this

call, include: wrongID (illegal, or process already active), no space for PCB

(usually transient; the call may be retries later), and calling process not

authorized to invoke this function.

DELETE (process ID);
DELETE invocation causes the Operating System to destroy the designated

process and remove it from the system. A process may delete itself or another

process. The Operating System reacts by reclaiming all resources allocated to

the specified process, closing files opened by or for the process, and performing

whatever other housekeeping is necessary. Following this process, the PCB is

removed from its place of residence in the list and is returned to the free pool.

This makes the designated process dormant. The DELETE service is normally

invoked as a part of orderly program termination.

To relieve users of the burden and to enhance probability of programs across

different environments, many compilers compile the last END statement of a

main program into a DELETE system call.

Almost all multiprogramming operating systems allow processes to terminate

themselves, provided none of their spawned processes is active. Operating

System designers differ in their attitude toward allowing one process to terminate

Lesson Number II System Calls and System Programs 12

others. The issue here is none of convenience and efficiency versus system

integrity. Allowing uncontrolled use of this function provides a malfunctioning or a

malevolent process with the means of wiping out all other processes in the

system. On the other hand, terminating a hierarchy of processes in a strictly

guarded system where each process can only delete itself, and where the parent

must wait for children to terminate first, could be a lengthy operation indeed. The

usual compromise is to permit deletion of other processes but to restrict the

range to the members of the family, to lower-priority processes only, or to some

other subclass of processes.

Possible error returns from the DELETE call include: a child of this process is

active (should terminate first), wrongID (the process does not exist), and calling

process not authorized to invoke this function.

Abort (processID);
ABORT is a forced termination of a process. Although a process could

conceivably abort itself, the most frequent use of this call is for involuntary

terminations, such as removal of a malfunctioning process from the system. The

Operating System performs much the same actions as in DELETE, except that it

usually furnishes a register and memory dump, together with some information

about the identity of the aborting process and the reason for the action. This

information may be provided in a file, as a message on a terminal, or as an input

to the system crash-dump analyzer utility. Obviously, the issue of restricting the

authority to abort other processes, discussed in relation to the DELETE, is even

more pronounced in relation to the ABORT call.

Error returns for ABORT are practically the same as those listed in the discussion

of the DELETE call.

FORK/JOIN

Another method of process creation and termination is by means of the

FORK/JOIN pair, originally introduced as primitives for multiprocessor systems.

The FORK operation is used to split a sequence of instructions into two

concurrently executable sequences. After reaching the identifier specified in

FORK, a new process (child) is created to execute one branch of the forked code

Lesson Number II System Calls and System Programs 13

while the creating (parent) process continues to execute the other. FORK usually

returns the identity of the child to the parent process, and the parent can use that

identifier to designate the identity of the child whose termination it wishes to await

before invoking a JOIN operation. JOIN is used to merge the two sequences of

code divided by the FORK, and it is available to a parent process for

synchronization with a child.

The relationship between processes created by FORK is rather symbiotic in the

sense that they execute from a single segment of code, and that a child usually

initially obtains a copy of the variables of its parent.

SUSPEND (processKD);
The SUSPEND service is called SLEEP or BLOCK in some systems. The

designated process is suspended indefinitely and placed in the suspended state.

It does, however, remain in the system. A process may suspend itself or another

process when authorized to do so by virtue of its level of privilege, priority, or

family membership. When the running process suspends itself, it in effect

voluntarily surrenders control to the operating system. The Operating System

responds by inserting the target process's PCB into the suspended list and

updating the PCB state field accordingly.

Suspending a suspended process usually has no effect, except in systems that

keep track of the depth of suspension. In such systems, a process must be

resumed at least as many times as if was suspended in order to become ready.

To implement this feature, a suspend-count field has to be maintained in each

PCB. Typical error returns include: process already suspended, wrongID, and

caller not authorized.

RESUME (processID)
The RESUME service is called WAKEUP is some systems. This call resumes the

target process, which is presumably suspended. Obviously, a suspended

process cannot resume itself, because a process must be running to have its

Operating System call processed. So a suspended process depends on a

partner process to issue the RESUME. The Operating System responds by

inserting the target process's PCB into the ready list, with the state updated. In

Lesson Number II System Calls and System Programs 14

systems that keep track of the depth of suspension, the Operating System first

increments the suspend count, moving the PCB only when the count reaches

zero.

The SUSPEND/RESUME mechanism is convenient for relatively primitive and

unstructured form of inter-process synchronization. It is often used in systems

that do not support exchange of signals. Error returns include: process already

active, wrongID, and caller not authorized.

DELAY (processID, time);
The system call DELAY is also known as SLEEP. The target process is

suspended for the duration of the specified time period. The time may be

expressed in terms of system clock ticks that are system-dependent and not

portable, or in standard time units such as seconds and minutes. A process may

delay itself or, optionally, delay some other process.

The actions of the Operating System in handling this call depend on processing

interrupts from the programmable interval timer. The timed delay is a very useful

system call for implementing time-outs. In this application a process initiates an

action and puts itself to sleep for the duration of the time-out. When the delay

(time-out) expires, control is given back to the calling process, which tests the

outcome of the initiated action. Two other varieties of timed delay are cyclic

rescheduling of a process at given intervals (e.g,. running it once every 5

minutes) and time-of-day scheduling, where a process is run at a specific time of

the day. Examples of the latter are printing a shift log in a process-control system

when a new crew is scheduled to take over, and backing up a database at

midnight.

The error returns include: illegal time interval or unit, wrongID, and called not

authorized. In Ada, a task may delay itself for a number of system clock ticks

(system-dependent) or for a specified time period using the pre-declared floating-

point type TIME. The DELAY statement is used for this purpose.

GET_ATTRIBUTES (processID, attribute_set);
GET_ATTRIBUTES is an inquiry to which the Operating System responds by

providing the current values of the process attributes, or their specified subset,

Lesson Number II System Calls and System Programs 15

from the PCB. This is normally the only way for a process to find out what its

current attributes are, because it neither knows where its PCB is nor can access

the protected Operating System space where the PCBs are usually kept.

This call may be used to monitor the status of a process, its resource usage and

accounting information, or other public data stored in a PCB. The error returns

include: no such attribute, wrongID, and caller not authorized. In Ada, a task may

examine the values of certain task attributes by means of reading the pre-

declared task attribute variables, such as T'ACTIVE, T'CALLABLE, T'PRIORITY,

and T'TERMINATED, where T is the identity of the target task.

CHANGE_PRIORITY (processID, new_priority);
CHANGE_PRIORITY is an instance of a more general

SET_PROCESS_ATTRIBUTES system call. Obviously, this call is not

implemented in systems where process priority is static.

Run-time modifications of a process's priority may be used to increase or

decrease a process's ability to compete for system resources. The idea is that

priority of a process should rise and fall according to the relative importance of its

momentary activity, thus making scheduling more responsive to changes of the

global system state. Low-priority processes may abuse this call, and processes

competing with the Operating System itself may corrupt the whole system. For

these reasons, the authority to increase priority is usually restricted to changes

within a certain range. For example, maximum may be specified, or the process

may not exceed its parent's or group priority. Although changing priorities of other

processes could be useful, most implementations restrict the calling process to

manipulate its own priority only.

The error returns include: caller not authorized for the requested change and

wrong ID. In Ada, a task may change its own priority by calling the

SET_PRIORITY procedure, which is pre-declared in the language.

2.2.3.2 System Programs
System can be viewed as a collection of system programs. Most system supplies

a large collection of system programs to solve common problems and provide a

Lesson Number II System Calls and System Programs 16

convenient environment for program development and execution. These system

programs can be divided into following categories:

(a) File manipulation: These programs create, delete, copy, rename, print,

dump and manipulate files and directories.

(b) Status information: Some programs need the date, time, available

memory, disk space, number of users etc and then format the information

and print it on the terminal or file or on some output device.

(c) File modification: A number of text editors are provided to create the file

and manipulate their contents.

(d) Programming language support: A number of compilers, assemblers,

and interpreters are provided for common programming languages such

as C, Basic etc. with the operating systems.

(e) Program loading and execution: With operating system loaders and

linkers are provided which are required to load and execute the program

after their compilation. There are different types of loaders such as

absolute loader, relocatable loader, overlay loaders, and linkage editors

etc.

(f) Application programs: In addition to above a number of common

programs provided with operating system are database systems,

compilers-compiler, statistical analysis package, text formatters etc.

The most important system program for an operating system is its command

interpreter. It is the program which reads and interprets the commands given by

the user. This program is also known as control card interpreter or command line

interpreter or the console command processor (in CP/M) or the shell (In Unix). Its

function is simple: get the next command and execute it. The commands given to

the command interpreter are implemented in two ways. In one approach the

command interpreter itself contains the code to execute the command. So the

number of commands that can be given determine the size of the command

interpreter. An alternative approach implements all commands by special system

programs. So the command interpreter merely uses the command to identify a

file to be loaded into memory and executed. Thus a command delete X would

Lesson Number II System Calls and System Programs 17

search for a file called delete, load it into the memory and pass it the parameter

X. In this approach new commands can be easily added to the system by

creating new files of the proper name. The command interpreter, which can now

be quite small, need not be changed in order to add new commands.

2.3 Summary
Operating system provides an environment in which programs are executed. The

bigger systems are organized in a hierarchical manner in which each layer

provides some functionality. The virtual machine approach makes it possible to

run different operating system on the same real machine.

Operating system provides a number of services. At the lowest level system calls

allow a running program to make requests from the operating system directly.

System calls can be grouped into three major categories: Process and job

control, Device and file manipulation, and Information maintenance. At a higher

level, the command interpreter provides a mechanism for a user to issue a

request without needing to write a program. System programs can be divided into

the categories File manipulation, Status information, File modification,

Programming language support, Program loading and execution, and Application

programs.

2.4 Keywords
1. System calls: They provide an interface between the process and the

operating system and allow user-level processes to request some services

from the operating system which process itself is not allowed to do.

2. Virtual machine: It makes it possible to run different operating system on

the same real machine and allow the sharing of the underlying physical

machine resources between different virtual machines, each running its

own operating system.

3. System Program: System can be viewed as a collection of system

programs that solve common problems and provide a convenient

environment for program development and execution.

Lesson Number II System Calls and System Programs 18

2.5. SELF ASSESMENT QUESTIONS (SAQ)

1. What is extended machine view? What are the advantages of hierarchical

operating system structure? Explain.

2. Define system call? What are there different categories? Explain using

suitable examples.

3. What do you understand by a virtual machine? What are the different

advantages of it? Write a detailed note.

4. What do you understand by system programs? What are their different

categories? Explain.

5. What do you understand by command interpreter? What are the functions

performed by it? Discuss the two different approached to implement it.

2.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson Number II System Calls and System Programs 19

Lesson number: 3 Writer: Dr. Rakesh Kumar

CPU Scheduling Vetter: Prof. Dharminder Kr.

3.0 OBJECTIVE
The objective of this lesson is to make the students familiar with the various

issues of CPU scheduling. After studying this lesson, they will be familiar with:

1. Process states and transitions.

2. Different types of scheduler

3. Scheduling criteria

4. Scheduling algorithms

3.1 INTRODUCTION
In nearly every computer, the most often requested resource is processor. Many

computers have only one processor, so this processor must be shared via time-

multiplexing among all the programs that need to execute on the computer. So

processor management is an important function carried out by the operating

system. Here we need to make an important distinction between a program and

an executing program.

One of the most fundamental concepts of modern operating systems is the

distinction between a program and the activity of executing a program. The

former is merely a static set of directions; the latter is a dynamic activity whose

properties change as time progresses. This activity is knows as a process. A

process encompasses the current status of the activity, called the process state.

This state includes the current position in the program being executed (the value

of the program counter) as well as the values in the other CPU registers and the

associated memory cells. Roughly speaking, the process state is a snapshot of

the machine at that time. At different times during the execution of a program (at

different times in a process) different snapshots (different process states) will be

observed.

The operating system is responsible for managing all the processes that are

running on a computer. It allocates each process a certain amount of time to use

Lesson Number III CPU Scheduling 1

the processor. In addition, the operating system also allocates various other

resources that processes will need such as computer memory or disks. To keep

track of the state of all the processes, the operating system maintains a table

known as the process table. Inside this table, every process is listed along with

the resources the processes are using and the current state of the process.

Processes can be in one of three states: running, ready, or waiting (blocked).

The running state means that the process has all the resources it need for

execution and it has been given permission by the operating system to use the

processor. Only one process can be in the running state at any given time. The

remaining processes are either in a waiting state (i.e., waiting for some external

event to occur such as user input or a disk access) or a ready state (i.e., waiting

for permission to use the processor). In a real operating system, the waiting and

ready states are implemented as queues, which hold the processes in these

states.

The assignment of physical processors to processes allows processors to

accomplish work. The problem of determining when processors should be

assigned and to which processes, is called processor scheduling or CPU

scheduling.

When more than one process is runable, the operating system must decide

which one first. The part of the operating system concerned with this decision is

called the scheduler, and algorithm it uses is called the scheduling algorithm. In

operating system literature, the term “scheduling” refers to a set of policies and

mechanisms built into the operating system that govern the order in which the

work to be done by a computer system is completed. A scheduler is an Operating

System module that selects the next job to be admitted into the system and the

next process to run. The primary objective of scheduling is to optimize system

performance in accordance with the criteria deemed most important by the

system designers.

3.2 PRESENTATION OF CONTENTS
3.2.1 Definition of Process

3.2.2 Process States and Transitions

Lesson Number III CPU Scheduling 2

3.2.3 Types of schedulers

3.2.3.1 The long-term scheduler

3.2.3.2 The medium-term scheduler

3.2.3.3 The short-term scheduler

3.2.4 Scheduling and Performance Criteria

3.2.4.1 User-oriented Scheduling Criteria

3.2.4.2 System-oriented Scheduling Criteria

3.2.5 Scheduler Design

3.2.6 Scheduling Algorithms

3.2.6.1 First-Come, First-Served (FCFS) Scheduling

3.2.6.2 Shortest Job First (SJF)

3.2.6.3 Shortest Remaining Time Next (SRTN) Scheduling

3.2.6.4 Round Robin

3.2.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED)

3.2.6.6 Multiple-Level Queues (MLQ) Scheduling

3.2.6.7 Multiple-Level Queues with Feedback Scheduling

3.2.1 Definition of Process
The notion of process is central to the understanding of operating systems. There

are quite a few definitions presented in the literature, but no "perfect" definition

has yet appeared.

The term "process" was first used by the designers of the MULTICS in 1960’s.

Since then, the term process is used somewhat interchangeably with 'task' or

'job'. The process has been given many definitions for instance

¾ A program in Execution.

¾ An asynchronous activity.

¾ The 'animated sprit' of a procedure in execution.

¾ The entity to which processors are assigned.

¾ The 'dispatchable' unit.

As we can see from above that there is no universally agreed upon definition, but

the definition "Program in Execution" seem to be most frequently used. Now that

we agreed upon the definition of process, the question is “what is the relation

Lesson Number III CPU Scheduling 3

between process and program?” In the following discussion we point out some of

the difference between process and program. Process is not the same as

program rather a process is more than a program code. A process is an active

entity as oppose to program which consider being a 'passive' entity. As we all

know that a program is an algorithm expressed in some suitable notation, (e.g.,

programming language). Being a passive, a program is only a part of process.

Process, on the other hand, includes:

¾ Current value of Program Counter (PC)

¾ Contents of the processors registers

¾ Value of the variables

¾ The Process Stack (SP) which typically contains temporary data such as

subroutine parameter, return address, and temporary variables.

¾ A data section that contains global variables.

A process is the unit of work in a system.

In Process model, all software on the computer is organized into a number of

sequential processes. A process includes PC, registers, and variables.

Conceptually, each process has its own virtual CPU. In reality, the CPU switches

back and forth among processes. The process state consist of everything

necessary to resume the process execution if it is somehow put aside

temporarily. The process state consists of at least following:

¾ Code for the program.

¾ Program's static data.

¾ Program's dynamic data.

¾ Program's procedure call stack.

¾ Contents of general purpose register.

¾ Contents of program counter (PC)

¾ Contents of program status word (PSW).

¾ Operating Systems resource in use.

A process goes through a series of discrete process states.

¾ New State: The process being created.

Lesson Number III CPU Scheduling 4

¾ Running State: A process is said to be running if it has the CPU, that is,

process actually using the CPU at that particular instant.

¾ Blocked (or waiting) State: A process is said to be blocked if it is waiting for

some event to happen such that as an I/O completion before it can proceed.

Note that a process is unable to run until some external event happens.

¾ Ready State: A process is said to be ready if it use a CPU if one were

available. A ready state process is runable but temporarily stopped running to

let another process run.

¾ Terminated state: The process has finished execution.

3.2.2 Process States and Transitions
The figure 1 contains much information. Consider a running process P that

issues an I/O request. Then following events can take place:

¾ The process is blocked i.e. moved from running state to blocked state.

¾ At some later point, a disk interrupt occurs and the driver detects that P's

request is satisfied.

¾ P is unblocked, i.e. is moved from blocked to ready

¾ At some later time the operating system looks for a ready job to run and picks

P and P moved to running state.

¾ A suspended process (i.e. blocked) may be removed from the main memory

and placed in the backup memory (blocked suspended). Subsequently they

may be released and moved to the ready state by the medium term

scheduler.

Lesson Number III CPU Scheduling 5

Figure 1
3.2.3 TYPES OF SCHEDULERS

Operating systems may feature up to 3 distinct types of schedulers: a long-term

scheduler (also known as an admission scheduler or high-level scheduler), a

mid-term or medium-term scheduler and a short-term scheduler (also known as a

dispatcher). The names suggest the relative frequency with which these

functions are performed. Figure 2 shows the possible traversal paths of jobs and

programs through the components and queues, depicted by rectangles, of a

computer system. The primary places of action of the three types of schedulers

are marked with down-arrows. As shown in Figure 2, a submitted batch job joins

the batch queue while waiting to be processed by the long-term scheduler. Once

scheduled for execution, processes spawned by the batch job enter the ready

queue to await processor allocation by the short-term scheduler. After becoming

suspended, the running process may be removed from memory and swapped

out to secondary storage. Such processes are subsequently admitted to main

Lesson Number III CPU Scheduling 6

memory by the medium-term scheduler in order to be considered for execution

by the short-term scheduler.

Figure 2- Process Schedulers

3.2.3.1 The long-term scheduler
The long-term scheduler decides when to start jobs, i.e., do not necessarily start

them when submitted. CTSS (an early time sharing system at MIT) did this to

insure decent interactive response time. The long-term scheduler, when present,

works with the batch queue and selects the next batch job to be executed. Batch

is usually reserved for resource-intensive (processor time, memory, special I/O

devices), low-priority programs that may be used as fillers to keep the system

resources busy during periods of low activity of interactive jobs. Batch jobs

contain all necessary data and commands for their execution. Batch jobs usually

also contain programmer-assigned estimates of their resource needs, such as

memory size, expected execution time, and device requirements. Knowledge

about the anticipated job behavior facilitates the work of the long-term scheduler.

The primary objective of the long-term scheduler is to provide a balanced mix of

jobs, such as processor-bound and I/O-bound, to the short-term scheduler. In a

way, the long-term scheduler acts as a first-level throttle in keeping resource

utilization at the desired level. For example, when the processor utilization is low,

the scheduler may admit more jobs to increase the number of processes in a

ready queue, and with it the probability of having some useful work awaiting

processor allocation. Conversely, when the utilization factor becomes high as

reflected in the response time, the long-term scheduler may opt to reduce the

Batch Queue
Ready
Queue

CPU
Exit

Suspended

Suspended and

Queue

Swapped
Out Queue

Medium Term Scheduler

Long Term
Scheduler

Batch
Jobs

Short Term Scheduler

programs
Interactive

Exit

Lesson Number III CPU Scheduling 7

rate of batch-job admission accordingly. In addition, the long-term scheduler is

usually invoked whenever a completed job departs the system. The frequency of

invocation of the long-term scheduler is thus both system-and workload-

dependent; but it is generally much lower than for the other two types of

schedulers. As a result of the relatively infrequent execution and the availability

of an estimate of its workload's characteristics, the long-term scheduler may

incorporate rather complex and computationally intensive algorithms for admitting

jobs into the system. In terms of the process state-transition diagram, the long-

term scheduler is basically in charge of the dormant-to-ready transitions. Ready

processes are placed in the ready queue for consideration by the short-term

scheduler.

3.2.3.2 The medium-term scheduler
The medium term scheduler suspend (swap out) some process if memory is

over-committed. The criteria for choosing a victim may be (a) How long since

previously suspended? (b) How much CPU time used recently? (c) How much

memory does it use? (d) External priority (pay more, get swapped out less) etc.

A running process may become suspended by making an I/O request or by

issuing a system call. Given that suspended processes cannot make any

progress towards completion until the related suspending condition is removed, it

is sometimes beneficial to remove them from main memory to make room for

other processes. In practice, the main-memory capacity may impose a limit on

the number of active processes in the system. When a number of those

processes become suspended, the remaining supply of ready processes in

systems where all suspended processes remain resident in memory may

become reduced to a level that impairs functioning of the short-term scheduler by

leaving it few or no options for selection. In systems with no support for virtual

memory, moving suspended processes to secondary storage may alleviate this

problem. Saving the image of a suspended process in secondary storage is

called swapping and the process is said to be swapped out or rolled out.

The medium-term scheduler is in charge of handling the swapped-out processes.

It has little to do while a process remains suspended. However, once the

Lesson Number III CPU Scheduling 8

suspending condition is removed, the medium-term scheduler attempts to

allocate the required amount of main memory, and swap the process in and

make it ready. To work properly, the medium-term scheduler must be provided

with information about the memory requirements of swapped-out processes.

In terms of the state-transition diagram, the medium-term scheduler controls

suspended-to-ready transitions of swapped processes. This scheduler may be

invoked when memory space is vacated by a departing process or when the

supply of ready processes falls below a specified limit.

Medium-term scheduling is really part of the swapping function of an operating

system. The success of the medium-term scheduler is based on the degree of

multiprogramming that it can maintain, by keeping as many processes “runnable”

as possible. More processes can remain executable if we reduce the resident set

size of all processes. The medium-term scheduler makes decisions as to which

pages of which processes need stay resident and which pages must be swapped

out to make room for other processes. The sharing of some pages of memory,

either explicitly or through the use of shared or dynamic link libraries complicates

the task of the medium-term scheduler, which now must maintain reference

counts on each page. The responsibilities of the medium-term scheduler may be

further complicated in some operating systems, in which some processes may

request that their pages remain locked in physical memory:

3.2.3.3 The short-term scheduler
The long-term scheduler runs relatively infrequently, when a decision must be

made as to the admission of new processes: maybe on average every ten

seconds. The medium-term scheduler runs more frequently, deciding which

process’s pages to swap to and from the swapping device: typically once a

second. The short-term scheduler, often termed the dispatcher, executes most

frequently (every few hundredths of a second) making fine-grained decisions as

to which process to move to Running next. The short-term scheduler is invoked

whenever an event occurs which provides the opportunity, or requires, the

interruption of the current process and the new (or continued) execution of

another process. Such opportunities include:

Lesson Number III CPU Scheduling 9

¾ Clock interrupts, provide the opportunity to reschedule every few

milliseconds,

¾ Expected I/O interrupts, when previous I/O requests are finally satisfied,

¾ Operating system calls, when the running process asks the operating system

to perform an activity on its behalf, and

¾ Unexpected, asynchronous, events, such as unexpected input, user-interrupt,

or a fault condition in the running program.

The short-term scheduler allocates the processor among the pool of ready

processes resident in memory. Its main objective is to maximize system

performance in accordance with the chosen set of criteria. Since it is in charge of

ready-to-running state transitions, the short-term scheduler must be invoked for

each process switch to select the next process to be run. In practice, the short-

term scheduler is invoked whenever an event (internal or external) causes the

global state of the system to change. Given that any such change could result in

making the running process suspended or in making one or more suspended

processes ready, the short-term scheduler should be run to determine whether

such significant changes have indeed occurred and, if so, to select the next

process to be run. Some of the events occurred and, if so, to select the next

process to be run.
Most of the process-management Operating System services discussed in this

lesson require invocation of the short-term scheduler as part of their processing.

For example, creating a process or resuming a suspended one adds another

entry to the ready queue and the scheduler is invoked to determine whether the

new entry should also become the running process. Suspending a running

process, changing priority of the running process, and exiting or aborting a

process are also events that may necessitate selection of a new running process.

As indicated in Figure 2, interactive programs often enter the ready queue

directly after being submitted to the Operating System, which then creates the

corresponding process. Unlike-batch jobs, the influx of interactive programs are

not throttled, and they may conceivably saturate the system. The necessary

control is usually provided indirectly by deterioration response time, which tempts

Lesson Number III CPU Scheduling 10

the users to give up and try again later, or at least to reduce the rate of incoming

requests.

Figure 2 illustrates the roles and the interplay among the various types of

schedulers in an operating system. It depicts the most general case of all three

types being present. For example, a larger operating system might support both

batch and interactive programs and rely on swapping to maintain a well-behaved

mix of active processes. Smaller or special-purpose operating systems may have

only one or two types of schedulers available. Along-term scheduler is normally

not found in systems without support for batch, and the medium-term scheduler

is needed only when swapping is used by the underlying operating system.

When more than one type of scheduler exists in an operating system, proper

support for communication and interaction is very important for attaining

satisfactory and balanced performance. For example, the long-term and the

medium-term schedulers prepare workload for the short-term scheduler. If they

do not provide a balanced mixed of compute-bound and I/O-bound processes,

the short-term scheduler is not likely to perform well no matter how sophisticated

it may be on its own merit.

3.2.4 SCHEDULING and PERFORMANCE CRITERIA
The objectives of a good scheduling policy include:

¾ Fairness.

¾ Efficiency.

¾ Low response time (important for interactive jobs).

¾ Low turnaround time (important for batch jobs).

¾ High throughput

¾ Repeatability.

¾ Fair across projects.

¾ Degrade gracefully under load.

The success of the short-term scheduler can be characterized by its success

against user-oriented criteria under which a single user evaluates their perceived

response, or system-oriented criteria where the focus is on efficient global use of

resources such as the processor and memory. A common measure of the

Lesson Number III CPU Scheduling 11

system-oriented criteria is throughput, the rate at which tasks are completed. On

a single-user, interactive operating system, and the user-oriented criteria take

precedence: it is unlikely that an individual will exhaust resource consumption,

but responsiveness remains all important. On a multi-user, multi-tasking system,

the global system-oriented criteria are more important as they attempt to provide

fair scheduling for all, subject to priorities and available resources.

3.2.4.1 User-oriented Scheduling Criteria
Response time
In an interactive system this measures the time between submissions of a new

process request and the commencement of its execution. Alternatively, it can

measure the time between a user issuing a request to interactive input (such as a

prompt) and the time to echo the user’s input or accept the carriage return.

Turnaround time
This is the time between submission of a new process and its completion.

Depending on the mixture of current tasks, two submissions of identical

processes will likely have different turnaround times. Turnaround time is the sum

of execution and waiting times.

Deadlines
In a genuine real-time operating system, hard deadlines may be requested by

processes. These either demands that the process is completed with a

guaranteed upper-bound on its turnaround time, or provide a guarantee that the

process will receive the processor in a guaranteed maximum time in the event of

an interrupt. A real-time long-term scheduler should only accept a new process if

it can guarantee required deadlines. In combination, the short-term scheduler

must also meet these deadlines.

Predictability
With lower importance, users expect similar tasks to take similar times. Wild

variations in response and turnaround times are distracting.

Lesson Number III CPU Scheduling 12

3.2.4.2 System-oriented Scheduling Criteria
Throughput
The short-term scheduler attempts to maximize the number of completed jobs

per unit time. While this is constrained by the mixture of jobs, and their execution

profiles, the policy affects utilization and thus completion.

Processor utilization
The percentage of time that the processor may be fed with work from Ready

queue. In a single-user, interactive system, processor utilization is very unlikely

to exceed a few percent.

Fairness
Subject to priorities, all processes should be treated fairly, and none should

suffer processor starvation. This simply implies, in most cases, that all processes

are moved to the ends of their respective state queues, and may not “jump the

queue”.

Priorities
Conversely, when processes are assigned priorities, the scheduling policy should

favor higher priorities.

3.2.5 SCHEDULER DESIGN
Design process of a typical scheduler consists of selecting one or more primary

performance criteria and ranking them in relative order of importance. The next

step is to design a scheduling strategy that maximizes performance for the

specified set of criteria while obeying the design constraints. One should

intentionally avoid the word "optimization" because most scheduling algorithms

actually implemented do not schedule optimally. They are based on heuristic

techniques that yield good or near-optimal performance but rarely achieve

absolutely optimal performance. The primary reason for this situation lies in the

overhead that would be incurred by computing the optimal strategy at run-time,

and by collecting the performance statistics necessary to perform the

optimization. Of course, the optimization algorithms remain important, at least as

a yardstick in evaluating the heuristics. Schedulers typically attempt to maximize

the average performance of a system, relative to a given criterion. However, due

Lesson Number III CPU Scheduling 13

consideration must be given to controlling the variance and limiting the worst-

case behavior. For example, a user experiencing 10-second response time to

simple queries has little consolation in knowing that the system's average

response time is under 2 seconds.

One of the problems in selecting a set of performance criteria is that they often

conflict with each other. For example, increased processor utilization is usually

achieved by increasing the number of active processes, but then response time

deteriorates. As is the case with most engineering problems, the design of a

scheduler usually requires careful balance of all the different requirements and

constraints. With the knowledge of the primary intended use of a given system,

operating-system designers tend to maximize the criteria most important in a

given environment. For example, throughput and component utilization are the

primary design objectives in a batch system. Multi-user systems are dominated

by concerns regarding the terminal response time, and real-time operating

systems are designed for the ability to handle burst of external events

responsively.

3.2.7 SCHEDULING ALGORITHMS
The scheduling mechanisms described in this section may, at least in theory, be

used by any of the three types of schedulers. As pointed out earlier, some

algorithms are better suited to the needs of a particular type of scheduler.

Depending on whether a particular scheduling discipline is primarily used by the

long-term or by the short-term scheduler, we illustrate its working by using the

term job or process for a unit of work, respectively.

The scheduling policies may be categorized as preemptive and non-preemptive.

So it is important to distinguish preemptive from non-preemptive scheduling

algorithms. Preemption means the operating system moves a process from

running to ready without the process requesting it. Without preemption, the

system implements “run to completion''. Preemption needs a clock interrupt (or

equivalent). Preemption is needed to guarantee fairness and it is found in all

modern general-purpose operating systems.

Lesson Number III CPU Scheduling 14

Non-pre-emptive: In non-preemptive scheduling, once a process is executing, it

will continue to execute until

¾ It terminates, or

¾ It makes an I/O request which would block the process, or

¾ It makes an operating system call.

Pre-emptive: In the preemptive scheduling, the same three conditions as above

apply, and in addition the process may be pre-empted by the operating system

when

¾ A new process arrives (perhaps at a higher priority), or

¾ An interrupt or signal occurs, or

¾ A (frequent) clock interrupt occurs.

CPU Scheduling deals with the problem of deciding which of the processes in the

ready queue is to be allocated the CPU. Following are some scheduling

algorithms we will study: FCFS Scheduling, Round Robin Scheduling, SJF

Scheduling, SRTN Scheduling, Priority Scheduling, Multilevel Queue Scheduling,

and Multilevel Feedback Queue Scheduling.

3.2.6.1 First-Come, First-Served (FCFS) Scheduling
The simplest selection function is the First-Come-First-Served (FCFS) scheduling

policy. In it

1. The operating system kernel maintains all Ready processes in a single

queue,

2. The process at the head of the queue is always selected to execute next,

3. The Running process runs to completion, unless it requests blocking I/O,

4. If the Running process blocks, it is placed at the end of the Ready queue.

Clearly, once a process commences execution, it will run as fast as possible

(having 100% of the CPU, and being non-pre-emptive), but there are some

obvious problems. By failing to take into consideration the state of the system

and the resource requirements of the individual scheduling entities, FCFS

scheduling may result in poor performance. As a consequence of no preemption,

component utilization and the system throughput rate may be quite low.

Lesson Number III CPU Scheduling 15

Processes of short duration suffer when “stuck” behind very long-running

processes. Since there is no discrimination on the basis of the required service,

short jobs may suffer considerable turnaround delays and waiting times when

one or more long jobs are in the system. For example, consider a system with

two jobs, J1 and J2, with total execution times of 20 and 2 time units,

respectively. If they arrive shortly one after the other in the order J1-J2, the

turnaround times are 20 and 22 time units, respectively (J2 must wait for J1 to

complete), thus yielding an average of 21 time units. The corresponding waiting

times are 0 and 20 unit, yielding an average of 10 time units. However, when the

same two jobs arrive in the opposite order, J2-J1, the average turnaround time

drops to 11, and the average waiting time is only 1 time unit.

Compute-bound processes are favored over I/O-bound processes.

We can measure the effect of FCFS by examining:

¾ The average turnaround time of each task (the sum of its waiting and running

times), or

¾ The normalized turnaround time (the ratio of running to waiting times).

3.2.6.2 Shortest Job First (SJF)
In this scheduling policy, the jobs are sorted on the basis of total execution time

needed and then it run the shortest job first. It is a non-preemptive scheduling

policy. Now First consider a static situation where all jobs are available in the

beginning, and we know how long each one takes to run, and we implement “run-

to-completion'' (i.e., we don't even switch to another process on I/O). In this

situation, SJF has the shortest average waiting time. Assume you have a

schedule with a long job right before a short job. Now if we swap the two jobs,

this decreases the wait for the short by the length of the long job and increases

the wait of the long job by the length of the short job and this in turn decreases

the total waiting time for these two. Hence decreases the total waiting for all jobs

and hence decreases the average waiting time as well. So in this policy

whenever a long job is right before a short job, we swap them and decrease the

average waiting time. Thus the lowest average waiting time occurs when there

Lesson Number III CPU Scheduling 16

are no short jobs rights before long jobs. This is an example of priority

scheduling. This scheduling policy can starve processes that require a long burst.

3.2.6.3 Shortest Remaining Time Next (SRTN) Scheduling
Shortest remaining time next is a scheduling discipline in which the next

scheduling entity, a job or a process, is selected on the basis of the shortest

remaining execution time. SRTN scheduling may be implemented in either the

non-preemptive or the preemptive variety. The non-preemptive version of SRTN

is called shortest job first (SJF). In either case, whenever the SRTN scheduler is

invoked, it searches the corresponding queue (batch or ready) to find the job or

the process with the shortest remaining execution time. The difference between

the two cases lies in the conditions that lead to invocation of the scheduler and,

consequently, the frequency of its execution. Without preemption, the SRTN

scheduler is invoked whenever a job is completed or the running process

surrenders control to the Operating System. In the preemptive version, whenever

an event occurs that makes a new process ready, the scheduler is invoked to

compare the remaining processor execution time of the running process with the

time needed to complete the next processor burst of the newcomer. Depending

on the outcome, the running process may continue, or it may be preempted and

replaced by the shortest-remaining-time process. If preempted, the running

process joins the ready queue.

SRTN is a provably optimal scheduling discipline in terms of minimizing the

average waiting time of a given workload. SRTN scheduling is done in a

consistent and predictable manner, with a bias towards short jobs. With the

addition of preemption, an SRTN scheduler can accommodate short jobs that

arrive after commencement of a long job. Preferred treatment of short jobs in

SRTN tends to result in increased waiting times of long jobs in comparison with

FCFS scheduling, but this is usually acceptable.

The SRTN discipline schedules optimally assuming that the exact future

execution times of jobs or processes are known at the time of scheduling. In the

case of short-term scheduling and preemption’s, even more detailed knowledge

of the duration of each individual processor burst is required. Dependence on

Lesson Number III CPU Scheduling 17

future knowledge tends to limit the effectiveness of SRTN implementations in

practice, because future process behavior is unknown in general and difficult to

estimate reliably, except for some very specialized deterministic cases.

Predictions of process execution requirements are usually based on observed

past behavior, perhaps coupled with some other knowledge of the nature of the

process and its long-term statistical properties, if available. A relatively simple

predictor, called the exponential smoothing predictor, has the following form:

 Pn = α0n-1 + (1 - α)P-1

where 0n is the observed length of the (n-1)th execution interval, Pn-1 is the

predictor for the same interval, and α is a number between 0 and 1. The

parameter α controls the relative weight assigned to the past observations and

predictions. For the extreme case of α = 1, the past predictor is ignored, and the

new prediction equals the last observation. For α = 0, the last observation is

ignored. In general, expansion of the recursive relationship yields

 n - 1

 Pn = α ∑ (1 - α)i0n-i-1

 I = 0

Thus the predictor includes the entire process history, with its more recent history

weighted more.

Many operating systems measure and record elapsed execution time of a

process in its PCB. This information is used for scheduling and accounting

purposes. Implementation of SRTN scheduling obviously requires rather precise

measurement and imposes the overhead of predictor calculation at run time.

Moreover, some additional feedback mechanism is usually necessary for

corrections when the predictor is grossly incorrect.

SRTN scheduling has important theoretical implications, and it can serve as a

yardstick for assessing performance of other, realizable scheduling disciplines in

terms of their deviation from the optimum. Its practical application depends on

the accuracy of prediction of the job and process behavior, with increased

accuracy calling for more sophisticated methods and thus resulting in greater

overhead. The preemptive variety of SRTN incurs the additional overhead of

Lesson Number III CPU Scheduling 18

frequent process switching and scheduler invocation to examine each and every

process transition into the ready state. This work is wasted when the new ready

process has a longer remaining execution time than the running process.

3.2.6.4 Round Robin
In interactive environments, such as time-sharing systems, the primary

requirement is to provide reasonably good response time and, in general, to

share system resources equitably among all users. Obviously, only preemptive

disciplines may be considered in such environments, and one of the most

popular is time slicing, also known as round robin (RR).

It is a preemptive scheduling policy. This scheduling policy gives each process a

slice of time (i.e., one quantum) before being preempted. As each process

becomes ready, it joins the ready queue. A clock interrupt is generated at

periodic intervals. When the interrupt occurs, the currently running process is

preempted, and the oldest process in the ready queue is selected to run next.

The time interval between each interrupt may vary.

It is one of the most common and most important scheduler. This is not the

simplest scheduler, but it is the simplest preemptive scheduler. It works as

follows:

¾ The processes that are ready to run (i.e. not blocked) are kept in a FIFO

queue, called the "Ready" queue.

¾ There is a fixed time quantum (50 msec is a typical number) which is the

maximum length that any process runs at a time.

¾ The currently active process P runs until one of two things happens:

• P blocks (e.g. waiting for input). In that case, P is taken off the ready

queue; it is in the "blocked" state.

• P exhausts its time quantum. In this case, P is pre-empted, even though it

is still able to run. It is put at the end of the ready queue.

In either case, the process at the head of the ready queue is now made

the active process.

¾ When a process unblocks (e.g. the input it's waiting for is complete) it is put at

the end of the ready queue.

Lesson Number III CPU Scheduling 19

Suppose the time quantum is 50 msec, process P is executing, and it blocks after

20 msec. When it unblocks, and gets through the ready queue, it gets the

standard 50 msec again; it doesn't somehow "save" the 30 msec that it missed

last time.

It is an important preemptive scheduling policy and is essentially the preemptive

version of FCFS. The key parameter here is the quantum size q. When a

process is put into the running state a timer is set to q. If the timer goes off and

the process is still running, the Operating System preempts the process. This

process is moved to the ready state where it is placed at the rear of the ready

queue. The process at the front of the ready list is removed from the ready list

and run (i.e., moves to state running). When a process is created, it is placed at

the rear of the ready list. As q gets large, RR approaches FCFS. As q gets

small, RR approaches PS (Processor Sharing).

What value of q should we choose? Actually it is a tradeoff (1) Small q makes

system more responsive, (2) Large q makes system more efficient since less

process switching.

Round robin scheduling achieves equitable sharing of system resources. Short

processes may be executed within a single time quantum and thus exhibit good

response times. Long processes may require several quanta and thus be forced

to cycle through the ready queue a few times before completion. With RR

scheduling, response time of long processes is directly proportional to their

resource requirements. For long processes that consist of a number of interactive

sequences with the user, primarily the response time between the two

consecutive interactions matters. If the computational requirements between two

such sequences may be completed within a single time slice, the user should

experience good response time. RR tends to subject long processes without

interactive sequences to relatively long turnaround and waiting times. Such

processes, however, may best be run in the batch mode, and it might even be

desirable to discourage users from submitting them to the interactive scheduler.

Implementation of round robin scheduling requires support of an interval timer-

preferably a dedicated one, as opposed to sharing the system time base. The

Lesson Number III CPU Scheduling 20

timer is usually set to interrupt the operating system whenever a time slice

expires and thus force the scheduler to be invoked. The scheduler itself simply

stores the context of the running process, moves it to the end of the ready queue,

and dispatches the process at the head of the ready queue. The scheduler is

also invoked to dispatch a new process whenever the running process

surrenders control to the operating system before expiration of its time quantum,

say, by requesting I/O. The interval timer is usually reset at that point, in order to

provide the full time slot to the new running process. The frequent setting and

resetting of a dedicated interval timer makes hardware support desirable in

systems that use time slicing.

Round robin scheduling is often regarded as a "fair" scheduling discipline. It is

also one of the best-known scheduling disciplines for achieving good and

relatively evenly distributed terminal response time. The performance of round

robin scheduling is very sensitive to the choice of the time slice. For this reason,

duration of the time slice is often made user-tunable by means of the system

generation process.

The relationship between the time slice and performance is markedly nonlinear.

Reduction of the time slice should not be carried too far in anticipation of better

response time. Too short a time slice may result in significant overhead due to

the frequent timer interrupts and process switches. On the other hand, too long a

time slice reduces the preemption overhead but increases response time.

Too short a time slice results in excessive overhead, and too long a time slice

degenerates from round-robin to FCFS scheduling, as processes surrender

control to the Operating System rather than being preempted by the interval

timer. The "optimal" value of the time slice lies somewhere in between, but it is

both system-dependent and workload-dependent. For example, the best value of

time slice for our example may not turn out to be so good when other processes

with different behavior are introduced in the system, that is, when characteristics

of the workload change. This, unfortunately, is commonly the case with time-

sharing systems where different types of programs may be submitted at different

times.

Lesson Number III CPU Scheduling 21

In summary, round robin is primarily used in time-sharing and multi-user systems

where terminal response time is important. Round robin scheduling generally

discriminates against long non-interactive jobs and depends on the judicious

choice of time slice for adequate performance. Duration of a time slice is a

tunable system parameter that may be changed during system generation.

Variants of Round Robin
State dependent RR
It is same as RR but q is varied dynamically depending on the state of the

system. It favors processes holding important resources. For example, non-

swappable memory.

External priorities
In it a user can pay more and get bigger q. That is one process can be given a

higher priority than another. But this is not an absolute priority, i.e., the lower

priority (i.e., less important) process does get to run, but not as much as the high

priority process.

3.2.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED)
In it each job is assigned a priority (externally, perhaps by charging more for

higher priority) and the highest priority ready job is run. In this policy, If many

processes have the highest priority, it uses RR among them. In principle, each

process in the system is assigned a priority level, and the scheduler always

chooses the highest-priority ready process. Priorities may be static or dynamic. In

either case, the user or the system assigns their initial values at the process-

creating time. The level of priority may be determined as an aggregate figure on

the basis of an initial value, characteristic, resource requirements, and run-time

behavior of the process. In this sense, many scheduling disciplines may be

regarded as being priority-driven, where the priority of a process represents its

likelihood of being scheduled next. Priority-based scheduling may be preemptive

or non-preemptive.

A common problem with priority-based scheduling is the possibility that low-

priority processes may be effectively locked out by the higher priority ones. In

general, completion of a process within finite time of its creation cannot be

Lesson Number III CPU Scheduling 22

guaranteed with this scheduling policy. In systems where such uncertainty

cannot be tolerated, the usually remedy is provided by the aging priority, in which

the priority of each process is gradually increased after the process spends a

certain amount of time in the system. Eventually, the older processes attain high

priority and are ensured of completion in finite time.

By means of assigning priorities to processes, system programmers can

influence the order in which an ED scheduler services coincident external events.

However, the high-priority ones may starve low-priority processes. Since it gives

little consideration to resource requirements of processes, event-driven

scheduling cannot be expected to excel in general-purpose systems, such as

university computing centers, where a large number of user processes are run at

the same (default) level of priority.

Another variant of priority-based scheduling is used in the so-called hard real-

time systems, where each process must be guaranteed execution before

expiration of its deadline. In such systems, time-critical processes are assumed

to be assigned execution deadlines. The system workload consists of a

combination of periodic processes, executed cyclically with a known period, and

of periodic processes, whose arrival times are generally not predictable. An

optimal scheduling discipline in such environments is the earliest-deadline

scheduler, which schedules for execution the ready process with the earliest

deadline. Another form of scheduler, called the least laxity scheduler or the least

slack scheduler has also been shown to be optimal in single-processor systems.

This scheduler selects the ready process with the least difference between its

deadline and computation time. Interestingly, neither of these schedulers is

optimal in multiprocessor environments.

Priority aging
It is a solution to the problem of starvation. As a job is waiting, raise its priority so

eventually it will have the maximum priority. This prevents starvation. It is

preemptive policy. If there are many processes with the maximum priority, it uses

FCFS among those with max priority (risks starvation if a job doesn't terminate)

or can use RR.

Lesson Number III CPU Scheduling 23

3.2.6.6 Multiple-Level Queues (MLQ) Scheduling
The scheduling policies discussed so far are more or less suited to particular

applications, with potentially poor performance when applied inappropriately.

What should one use in a mixed system, with some time-critical events, a

multitude of interactive users, and some very long non-interactive jobs? One

approach is to combine several scheduling disciplines. A mix of scheduling

disciplines may best service a mixed environment, each charged with what it

does best. For example, operating-system processes and device interrupts may

be subjected to event-driven scheduling, interactive programs to round robin

scheduling, and batch jobs to FCFS or STRN.

High priority queue

Medium priority queue

Low priority queue

CPU

System Processes

Batch Processes

Interactive Jobs

Round Robin Scheduling

FCFS Scheduling

Event Driven Scheduling

Between Queue

Multilevel Queue Scheduling

One way to implement complex scheduling is to classify the workload according

to its characteristics, and to maintain separate process queues serviced by

different schedulers. This approach is often called multiple-level queues (MLQ)

scheduling. A division of the workload might be into system processes,

interactive programs, and batch jobs. This would result in three ready queues, as

depicted in above Figure. A process may be assigned to a specific queue on the

basis of its attributes, which may be user-or system-supplied. Each queue may

then be serviced by the scheduling discipline best suited to the type of workload

that it contains. Given a single server, some discipline must also be devised for

scheduling between queues. Typical approaches are to use absolute priority or

time slicing with some bias reflecting relative priority of the processes within

specific queues. In the absolute priority case, the processes from the highest-

priority queue (e.g. system processes) are serviced until that queue becomes

Lesson Number III CPU Scheduling 24

empty. The scheduling discipline may be event-driven, although FCFS should not

be ruled out given its low overhead and the similar characteristics of processes in

that queue. When the highest-priority queue becomes empty, the next queue

may be serviced using its own scheduling discipline (e.g., RR for interactive

processes). Finally, when both higher-priority queues become empty, a batch-

spawned process may be selected. A lower-priority process may, of course, be

preempted by a higher-priority arrival in one of the upper-level queues. This

discipline maintains responsiveness to external events and interrupts at the

expense of frequent preemption’s. An alternative approach is to assign a certain

percentage of the processor time to each queue, commensurate with its priority.

Multiple queues scheduling is a very general discipline that combines the

advantages of the "pure" mechanisms discussed earlier. MLQ scheduling may

also impose the combined overhead of its constituent scheduling disciplines.

However, assigning classes of processes that a particular discipline handles

poorly by itself to a more appropriate queue may offset the worst-case behavior

of each individual discipline. Potential advantages of MLQ were recognized early

on by the O/S designers who have employed it in the so-called fore-

ground/background (F/B) system. An F/B system, in its usual form, uses a two-

level queue-scheduling discipline. The workload of the system is divided into two

queues-a high-priority queue of interactive and time-critical processes and other

processes that do not service external events. The foreground queue is serviced

in the event-driven manner, and it can preempt processes executing in the

background.

3.2.6.7 Multiple-Level Queues with Feedback Scheduling
Multiple queues in a system may be used to increase the effectiveness and

adaptive ness of scheduling in the form of multiple-level queues with feedback.

Rather than having fixed classes of processes allocated to specific queues, the

idea is to make traversal of a process through the system dependent on its run-

time behavior. For example, each process may start at the top-level queue. If the

process is completed within a given time slice, it departs the system after having

received the royal treatment. Processes that need more than one time slice may

Lesson Number III CPU Scheduling 25

be reassigned by the operating system to a lower-priority queue, which gets a

lower percentage of the processor time. If the process is still now finished after

having run a few times in that queue, it may be moved to yet another, lower-level

queue. The idea is to give preferential treatment to short processes and have the

resource-consuming ones slowly "sink" into lower-level queues, to be used as

fillers to keep the processor utilization high. This philosophy is supported by

program-behavior research findings suggesting that completion rate has a

tendency to decrease with attained service. In other words, the more service a

process receives, the less likely it is to complete if given a little more service.

Thus the feedback in MLQ mechanisms tends to rank the processes dynamically

according to the observed amount of attained service, with a preference for those

that have received less.

On the other hand, if a process surrenders control to the OS before its time slice

expires, being moved up in the hierarchy of queues may reward it. As before,

different queues may be serviced using different scheduling discipline. In contrast

to the ordinary multiple-level queues, the introduction of feedback makes

scheduling adaptive and responsive to the actual, measured run-time behavior of

processes, as opposed to the fixed classification that may be defeated by

incorrect guessing or abuse of authority. A multiple-level queue with feedback is

the most general scheduling discipline that may incorporate any or all of the

simple scheduling strategies discussed earlier. Its overhead may also combine

the elements of each constituent scheduler, in addition to the overhead imposed

by the global queue manipulation and the process-behavior monitoring

necessary to implement this scheduling discipline.

3.3 SUMMARY
An important, although rarely explicit, function of process management is

processor allocation. Three different schedulers may coexist and interact in a

complex operating system: long-term scheduler, medium-term scheduler, and

short-term scheduler. Of the presented scheduling disciplines, FCFS scheduling

is the easiest to implement but is a poor performer. SRTN scheduling is optimal

but unrealizable. RR scheduling is most popular in time-sharing environments,

Lesson Number III CPU Scheduling 26

and event-driven and earliest-deadline scheduling are dominant in real-time and

other systems with time-critical requirements. Multiple-level queue scheduling,

and its adaptive variant with feedback, is the most general scheduling discipline

suitable for complex environments that serve a mixture of processes with

different characteristics.

3.4 Keywords
Long-term scheduling: the decisions to introduce new processes for execution, or

re-execution.

Medium-term scheduling: the decision to add to (grow) the processes that are

fully or partially in memory.

Short-term scheduling: the decisions as to which (Ready) process to execute

next.

Non-preemptive scheduling: In non-preemptive scheduling, process will continue

to execute until it terminates, or makes an I/O request which would block the

process, or makes an operating system call.

Preemptive scheduling: In preemptive scheduling, the process may be pre-

empted by the operating system when a new process arrives (perhaps at a

higher priority), or an interrupt or signal occurs, or a (frequent) clock interrupt

occurs.

3.5 SELF-ASSESSMENT QUESTIONS (SAQ)
1. Discuss various process scheduling policies with their cons and pros.

2. Define process. What is the difference between a process and a program?

Explain.

3. What are the different states of a process? Explain using a process state

transition diagram.

4. Which type of scheduling is used in real life operating systems? Why?

5. Which action should the short-term scheduler take when it is invoked but no

process is in the ready state? Is this situation possible?

6. How can we compare performance of various scheduling policies before

actually implementing them in an operating system?

7. Shortest Job First (SJF) is a sort of priority scheduling. Comment.

Lesson Number III CPU Scheduling 27

8. What do you understand by starvation? How does SJF cause starvation?

What is the solution of this problem?

9. What qualities are to be there in a scheduling policy? Explain.

10. Differentiate between user-oriented scheduling criteria and system-oriented

scheduling criteria.

3.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson Number III CPU Scheduling 28

Lesson number: 4 Writer: Dr. Rakesh Kumar

Deadlocks Vetter: Prof. Dharminder Kr.

Crises and deadlocks when they occur have at least this advantage that
they force us to think.”- Jawaharlal Nehru (1889 - 1964)

4.0 Objectives
The objectives of this lesson are to make the students acquainted with the

problem of deadlocks. In this lesson, we characterize the problem of deadlocks

and discuss policies, which an Operating System can use to ensure their

absence. Deadlock detection, resolution, prevention and avoidance have been

discussed in detail in the present lesson.

After studying this lesson the students will be familiar with following:

(a) Condition for deadlock.

(b) Deadlock prevention

(c) Deadlock avoidance

(d) Deadlock detection and recovery

4.1 Introduction
We can understand the notion of a deadlock from the following simple real-life

example. To be able to write a letter one needs a letter pad and a pen. Suppose

there in one letter pad and one pen on a table with two persons seated around

the table, Mr. A and Ms. B. Both Mr. A and Ms. B are desirous of writing a letter.

So both try to acquire the resources they need. Suppose Mr. A was able to get

the letter pad. In the meantime, Ms. B was able to grab the pen. Note that each

of them has one of the two resources they need to proceed to write a letter. If

they hold on to the resource they possess and await the release of the resource

by the other, then neither of them can proceed. They are deadlocked.

In a multiprogramming environment where several processes compete for

resources, a situation may arise where a process is waiting for resources that are

held by other waiting processes. This situation is called a deadlock. Generally, a

system has a finite set of resources (such as memory, IO devices, etc.) and a

Lesson number IV Deadlocks 1

finite set of processes that need to use these resources. A process which wishes

to use any of these resources makes a request to use that resource. If the

resource is free, the process gets it. If it is used by another process, it waits for it

to become free. The assumption is that the resource will eventually become free

and the waiting process will continue on to use the resource. But what if the other

process is also waiting for some resource?

“A set of processes is in a deadlock state when every process in the set is

waiting for an event that can only be caused by another process in the set.”

If a process is in the need of some resource, physical or logical, it requests the

kernel of operating system. The kernel, being the resource manager, allocates

the resources to the processes. If there is a delay in the allocation of the

resource to the process, it results in the idling of process. The deadlock is a

situation in which some processes in the system faces indefinite delays in

resource allocation. In this lesson, we identify the problems causing deadlocks,

and discuss a number of policies used by the operating system to deal with the

problem of deadlocks.

4.2 Presentation of contents
4.2.1 Definition

4.2.2 Preemptable and Nonpreemptable Resources

4.2.3 Necessary and Sufficient Deadlock Conditions

4.2.4 Resource-Allocation Graph

4.2.4.1 Interpreting a Resource Allocation Graph with Single Resource

Instances

4.2.5 Dealing with Deadlock

4.2.6 Deadlock Prevention

4.2.6.1 Elimination of “Mutual Exclusion” Condition

4.2.6.2 Elimination of “Hold and Wait” Condition

4.2.6.3 Elimination of “No-preemption” Condition

4.2.6.4 Elimination of “Circular Wait” Condition

4.2.7 Deadlock Avoidance

4.2.7.1 Banker’s Algorithm

Lesson number IV Deadlocks 2

4.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm

4.2.8 Deadlock Detection

4.2.9 Deadlock Recovery

4.2.10 Mixed approaches to deadlock handling

4.2.11 Evaluating the Approaches to Dealing with Deadlock

4.2.1 Definition
A deadlock involving a set of processes D is a situation in which:

(a) Every process Pi in D is blocked on some event Ei.

(b) Event Ei can be caused only by action of some process (es) in D.

A set of process is in a deadlock state if each process in the set is waiting for an

event that can be caused by only another process in the set. In other words,

each member of the set of deadlock processes is waiting for a resource that can

be released only by a deadlock process. None of the processes can run, none of

them can release any resources, and none of them can be awakened. It is

important to note that the number of processes and the number and kind of

resources possessed and requested are unimportant.

The resources may be either physical or logical. Examples of physical resources

are Printers, Tape Drivers, Memory Space, and CPU Cycles. Examples of logical

resources are Files, Semaphores, and Monitors.

The simplest example of deadlock is where process 1 has been allocated non-

shareable resources A, say, a tap drive, and process 2 has be allocated non-

sharable resource B, say, a printer. Now, if it turns out that process 1 needs

resource B (printer) to proceed and process 2 needs resource A (the tape drive)

to proceed and these are the only two processes in the system, each has

blocked the other and all useful work in the system stops. This situation is termed

as deadlock. The system is in deadlock state because each process holds a

resource being requested by the other process and neither process is willing to

release the resource it holds.

What are the consequences of deadlocks?
¾ Response times and elapsed times of processes suffer.

Lesson number IV Deadlocks 3

¾ If a process is allocated a resource R1 that it is not using and if some other

process P2 requires the resource, then P2 is denied the resource and the

resource remains idle.

4.2.2 Preemptable and Nonpreemptable Resources
Resources come in two flavors: preemptable and nonpreemptable. A

preemptable resource is one that can be taken away from the process with no ill

effects. Memory is an example of a preemptable resource. On the other hand, a

nonpreemptable resource is one that cannot be taken away from process

(without causing ill effect). For example, CD resources are not preemptable at an

arbitrary moment.

Reallocating resources can resolve deadlocks that involve preemptable

resources. Deadlocks that involve nonpreemptable resources are difficult to deal

with.

4.2.3 Necessary and Sufficient Deadlock Conditions
Coffman (1971) identified four (4) conditions that must hold simultaneously for

there to be a deadlock.

1. Mutual Exclusion Condition

The resources involved are non-shareable.

Explanation: At least one resource must be held in a non-shareable mode, that

is, only one process at a time claims exclusive control of the resource. If another

process requests that resource, the requesting process must be delayed until the

resource has been released.

2. Hold and Wait Condition

Requesting process hold already, resources while waiting for requested

resources.

Explanation: There must exist a process that is holding a resource already

allocated to it while waiting for additional resource that are currently being held

by other processes.

3. No-Preemptive Condition

Resources already allocated to a process cannot be preempted.

Lesson number IV Deadlocks 4

Explanation: Resources cannot be removed from the processes are used to

completion or released voluntarily by the process holding it.

4. Circular Wait Condition

The processes in the system form a circular list or chain where each process in

the list is waiting for a resource held by the next process in the list.

A set {P0, P1, P2, …, Pn} of waiting processes must exist such that P0 is waiting

for a resource that is held by P1, P1 is waiting for a resource that is held by P2,

…, Pn-1 is waiting for a resource that is held by Pn, and Pn is waiting for a

resource that is held by P0.

Conditions 1 and 3 pertain to resource utilization policies, while condition 2

pertains to resource requirements of individual processes. Only condition 4

pertains to relationships between resource requirements of a group of processes.

As an example, consider the traffic deadlock in the following figure:

Consider each section of the street as a resource.

Lesson number IV Deadlocks 5

1. Mutual exclusion condition applies, since only one vehicle can be on a

section of the street at a time.

2. Hold-and-wait condition applies, since each vehicle is occupying a section

of the street, and waiting to move on to the next section of the street.

3. No-preemptive condition applies, since a section of the street that is

occupied by a vehicle cannot be taken away from it.

4. Circular wait condition applies, since each vehicle is waiting on the next

vehicle to move. That is, each vehicle in the traffic is waiting for a section

of street held by the next vehicle in the traffic.

The simple rule to avoid traffic deadlock is that a vehicle should only enter an

intersection if it is assured that it will not have to stop inside the intersection.

It is not possible to have a deadlock involving only one single process. The

deadlock involves a circular “hold-and-wait” condition between two or more

processes, so “one” process cannot hold a resource, yet be waiting for another

resource that it is holding. In addition, deadlock is not possible between two

threads in a process, because it is the process that holds resources, not the

thread that is, each thread has access to the resources held by the process.

4.2.4 Resource-Allocation Graph
The deadlock conditions can be modeled using a directed graph called a

resource allocation graph (RAG). A resource allocation graph is a directed graph.

It consists of 2 kinds of nodes:

Boxes — Boxes represent resources, and Instances of the resource are

represented as dots within the box i.e. how many units of that resource exist in

the system.

Circles — Circles represent threads / processes. They may be a user process or

a system process.

An edge can exist only between a process node and a resource node. There are

2 kinds of (directed) edges:

Request edge: It represents resource request. It starts from process and

terminates to a resource. It indicates the process has requested the resource,

and is waiting to acquire it.

Lesson number IV Deadlocks 6

Assignment edge: It represents resource allocation. It starts from resource

instance and terminates to process. It indicates the process is holding the

resource instance.

When a request is made, a request edge is added.

When request is fulfilled, the request edge is transformed into an assignment

edge.

When process releases the resource, the assignment edge is deleted.

4.2.4.1 Interpreting a Resource Allocation Graph with Single Resource
Instances
 Following figure shows a resource allocation graph. If the graph does not contain

a cycle, then no deadlock exists. Following figure is an example of a no deadlock

situation.

O

O O

O

P3P2P1

R3 R4

R2 R1

If the graph does contain a cycle, then a deadlock does exist. As following

resource allocation graph depicts a deadlock situation.

O

O O

O

P3P2P1

R3 R4

R2 R1

With single resource instances, a cycle is a necessary and sufficient condition

for deadlock

Lesson number IV Deadlocks 7

So basic fact is that If graph contains no cycles then there is no deadlock. But If

graph contains a cycle then there are two possibilities:

(a) If only one instance per resource type, then there is a deadlock.

(b) If several instances per resource type, possibility of deadlock is there.

4.2.5 Dealing with Deadlock
There are following approaches to deal with the problem of deadlock.

The Ostrich Approach: sticks your head in the sand and ignores the problem.

This approach can be quite useful if you believe that they are rarest chances of

deadlock occurrence. In that situation it is not a justifiable proposition to invest a

lot in identifying deadlocks and tackling with it. Rather a better option is ignore it.

For example if each PC deadlocks once per 100 years, the one reboot may be

less painful that the restrictions needed to prevent it. But clearly it is not a good

philosophy for nuclear missile launchers.

Deadlock prevention: This approach prevents deadlock from occurring by

eliminating one of the four (4) deadlock conditions.

Deadlock detection algorithms: This approach detects when deadlock has

occurred.

Deadlock recovery algorithms: After detecting the deadlock, it breaks the

deadlock.

Deadlock avoidance algorithms: This approach considers resources currently

available, resources allocated to each thread, and possible future requests, and

only fulfill requests that will not lead to deadlock

4.2.6 Deadlock Prevention
Deadlock prevention is based on designing resource allocation policies, which

make deadlocks impossible. Use of the deadlock prevention approach avoids the

over- head of deadlock detection and resolution. However, it incurs two kinds of

costs - overhead of using the resource allocation policy, and cost of resource

idling due to the policy.

As described in earlier section, four conditions must hold for a resource deadlock

to arise in a system:

¾ Non-shareable resources

Lesson number IV Deadlocks 8

¾ Hold-and-wait by processes

¾ No preemption of resources

¾ Circular waits.

Havender in his pioneering work showed that since all four of the conditions are

necessary for deadlock to occur, it follows that deadlock might be prevented by

denying any one of the conditions. Ensuring that one of these conditions cannot

be satisfied prevents deadlocks. We first discuss how each of these conditions

can be prevented and then discuss a couple of resource allocation policies based

on the prevention approach.

4.2.6.1 Elimination of “Mutual Exclusion” Condition
The mutual exclusion condition must hold for non-sharable resources. That is,

several processes cannot simultaneously share a single resource. This condition

is difficult to eliminate because some resources, such as the tap drive and

printer, are inherently non-shareable. Note that shareable resources like read-

only-file do not require mutually exclusive access and thus cannot be involved in

deadlock.

4.2.6.2 Elimination of “Hold and Wait” Condition
There are two possibilities for elimination of the second condition. The first

alternative is that a process request be granted all of the resources it needs at

once, prior to execution. The second alternative is to disallow a process from

requesting resources whenever it has previously allocated resources. This

strategy requires that all of the resources a process will need must be requested

at once. The system must grant resources on “all or none” basis. If the complete

set of resources needed by a process is not currently available, then the process

must wait until the complete set is available. While the process waits, however, it

may not hold any resources. Thus the “wait for” condition is denied and

deadlocks simply cannot occur. This strategy can lead to serious waste of

resources. For example, a program requiring ten tap drives must request and

receive all ten derives before it begins executing. If the program needs only one

tap drive to begin execution and then does not need the remaining tap drives for

several hours. Then substantial computer resources (9 tape drives) will sit idle for

Lesson number IV Deadlocks 9

several hours. This strategy can cause indefinite postponement (starvation).

Since not all the required resources may become available at once.

4.2.6.3 Elimination of “No-preemption” Condition
The nonpreemption condition can be alleviated by forcing a process waiting for a

resource that cannot immediately be allocated to relinquish all of its currently

held resources, so that other processes may use them to finish. Suppose a

system does allow processes to hold resources while requesting additional

resources. Consider what happens when a request cannot be satisfied. A

process holds resources a second process may need in order to proceed while

second process may hold the resources needed by the first process. This is a

deadlock. This strategy requires that when a process that is holding some

resources is denied a request for additional resources. The process must release

its held resources and, if necessary, request them again together with additional

resources. Implementation of this strategy denies the “no-preemptive” condition

effectively.

The main drawback of this approach is high cost. When a process releases

resources the process may lose all its work to that point. One serious

consequence of this strategy is the possibility of indefinite postponement

(starvation). A process might be held off indefinitely as it repeatedly requests and

releases the same resources.

4.2.6.4 Elimination of “Circular Wait” Condition
Presence of a cycle in resource allocation graph indicates the “circular wait”

condition. The last condition, the circular wait, can be denied by imposing a total

ordering on all of the resource types and than forcing, all processes to request

the resources in numerical order (increasing or decreasing). With this rule, the

resource allocation graph can never have a cycle.

For example, provide a global numbering of all the resources, as shown

1 Card Reader

2 Printer

3 Plotter

4 Tape Drive

Lesson number IV Deadlocks 10

5 Card Punch

Now the rule is this: processes can request resources whenever they want to, but

all requests must be made in numerical order. A process may request first printer

and then a tape drive (order: 2, 4), but it may not request first a plotter and then a

printer (order: 3, 2). The problem with this strategy is that it may be impossible to

find an ordering that satisfies everyone. The resource ranking policy works best

when all processes require their resources in the order of increasing ranks.

However, difficulty arises when a process requires resources in some other

order. Now processes may tend to circumvent such difficulties by acquiring lower

ranking resources much before they are actually needed. In the worst case this

policy may degenerate into the ‘all requests together’ policy of resource

allocation. Anyway this policy is attractive due to its simplicity once resource

ranks have been assigned.

“All requests together” is the simplest of all deadlock prevention policies. A

process must make its resource requests together-typically, at the start of its

execution. This restriction permits a process to make only one multiple request in

its lifetime. Since resources requested in a multiple request are allocated

together, a blocked process does not hold any resources. The hold-and-wait

condition is satisfied. Hence paths of length larger than 1 cannot exist in the

Resource Allocation Graph, a mutual wait-for relationships cannot develop in the

system. Thus, deadlocks cannot arise.

4.2.7 Deadlock Avoidance
This approach to the deadlock problem anticipates deadlock before it actually

occurs. This approach employs an algorithm to access the possibility that

deadlock could occur and acting accordingly. This method differs from deadlock

prevention, which guarantees that deadlock cannot occur by denying one of the

necessary conditions of deadlock.

If the necessary conditions for a deadlock are in place, it is still possible to avoid

deadlock by being careful when resources are allocated. Perhaps the most

famous deadlock avoidance algorithm, due to Dijkstra [1965], is the Banker’s

Lesson number IV Deadlocks 11

algorithm. So named because the process is analogous to that used by a banker

in deciding if a loan can be safely made.

4.2.7.1 Banker’s Algorithm
In this analogy

Customers ≡ processes

Units ≡ resources, say, tape drive

Banker ≡ Operating System

Customers Used Max

A

B

C

D

0

0

0

0

6

5

4

7

Available

Units = 10

In the above figure, we see four customers each of whom has been granted a

number of credit units. The banker reserved only 10 units rather than 22 units to

service them. At certain moment, the situation becomes

Customers Used Max

A

B

C

D

1

1

2

4

6

5

4

7

Available

Units = 2

Safe State The key to a state being safe is that there is at least one way for all

users to finish. In other analogy, the state of figure 2 is safe because with 2 units

left, the banker can delay any request except C's, thus letting C finish and

release all four resources. With four units in hand, the banker can let either D or

B have the necessary units and so on.

Unsafe State Consider what would happen if a request from B for one more

unit were granted in above figure 2.

We would have following situation

Customers Used Max

A 1 6 Available

Lesson number IV Deadlocks 12

B

C

D

2

2

4

5

4

7

Units = 1

This is an unsafe state.

If all the customers namely A, B, C, and D asked for their maximum loans, then

banker could not satisfy any of them and we would have a deadlock.

Important Note: It is important to note that an unsafe state does not imply the

existence or even the eventual existence a deadlock. What an unsafe state does

imply is simply that some unfortunate sequence of events might lead to a

deadlock.

The Banker's algorithm is thus to consider each request as it occurs, and see if

granting it leads to a safe state. If it does, the request is granted, otherwise, it

postponed until later. Haberman [1969] has shown that executing of the

algorithm has complexity proportional to N2 where N is the number of processes

and since the algorithm is executed each time a resource request occurs, the

overhead is significant.

4.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm
There are following advantages and disadvantages of deadlock avoidance using

Banker’s algorithm.

Advantages:
¾ There is no need to preempt resources and rollback state (as in deadlock

detection and recovery)

¾ It is less restrictive than deadlock prevention

Disadvantages:
¾ In this case maximum resource requirement for each process must be stated

in advance.

¾ Processes being considered must be independent (i.e., unconstrained by

synchronization requirements)

¾ There must be a fixed number of resources (i.e., can’t add resources,

resources can’t break) and processes (i.e., can’t add or delete processes)

Lesson number IV Deadlocks 13

¾ Huge overhead — Operating system must use the algorithm every time a

resource is requested. So a huge overhead is involved.

4.2.8 Deadlock Detection
Deadlock detection is the process of actually determining that a deadlock exists

and identifying the processes and resources involved in the deadlock.

The basic idea is to check allocation against resource availability for all possible

allocation sequences to determine if the system is in deadlocked state. Of

course, the deadlock detection algorithm is only half of this strategy. Once a

deadlock is detected, there needs to be a way to recover. Several alternatives

exist:

¾ Temporarily prevent resources from deadlocked processes.

¾ Back off a process to some check point allowing preemption of a needed

resource and restarting the process at the checkpoint later.

¾ Successively kill processes until the system is deadlock free.

These methods are expensive in the sense that each iteration calls the detection

algorithm until the system proves to be deadlock free. The complexity of

algorithm is O (N2) where N is the number of processes. Another potential

problem is starvation; same process killed repeatedly.

4.2.9 Deadlock Recovery
Once you have discovered that there is a deadlock, what do you do about it?

One thing to do is simply re-boot. A less drastic approach is to yank back a

resource from a process to break a cycle. As we saw, if there are no cycles,

there is no deadlock. If the resource is not preemptable, snatching it back from a

process may do irreparable harm to the process. It may be necessary to kill the

process, under the principle that at least that's better than crashing the whole

system.

Sometimes, we can do better. For example, if we checkpoint a process from time

to time, we can roll it back to the latest checkpoint, hopefully to a time before it

grabbed the resource in question. Database systems use checkpoints, as well as

a technique called logging, allowing them to run processes “backwards,” undoing

everything they have done. It works like this: Each time the process performs an

Lesson number IV Deadlocks 14

action, it writes a log record containing enough information to undo the action.

For example, if the action is to assign a value to a variable, the log record

contains the previous value of the record. When a database discovers a

deadlock, it picks a victim and rolls it back.

Rolling back processes involved in deadlocks can lead to a form of starvation, if

we always choose the same victim. We can avoid this problem by always

choosing the youngest process in a cycle. After being rolled back enough times,

a process will grow old enough that it never gets chosen as the victim--at worst

by the time it is the oldest process in the system. If deadlock recovery involves

killing a process altogether and restarting it, it is important to mark the “starting

time” of the reincarnated process as being that of its original version, so that it

will look older that new processes started since then.

When should you check for deadlock? There is no one best answers to this

question; it depends on the situation. The most “eager” approach is to check

whenever we do something that might create a deadlock. Since a process cannot

create a deadlock when releasing resources, we only have to check on allocation

requests. If the Operating System always grants requests as soon as possible, a

successful request also cannot create a deadlock. Thus we only have to check

for a deadlock when a process becomes blocked because it made a request that

cannot be immediately granted. However, even that may be too frequent. As we

saw, the deadlock-detection algorithm can be quite expensive if there are a lot of

processes and resources, and if deadlock is rare, we can waste a lot of time

checking for deadlock every time a request has to be blocked.

What's the cost of delaying detection of deadlock? One possible cost is poor

CPU utilization. In an extreme case, if all processes are involved in a deadlock,

the CPU will be completely idle. Even if there are some processes that are not

deadlocked, they may all be blocked for other reasons (e.g. waiting for I/O). Thus

if CPU utilization drops, that might be a sign that it's time to check for deadlock.

Besides, if the CPU isn't being used for other things, you might as well use it to

check for deadlock!

Lesson number IV Deadlocks 15

On the other hand, there might be a deadlock, but enough non-deadlocked

processes to keep the system busy. Things look fine from the point of view of the

OS, but from the selfish point of view of the deadlocked processes, things are

definitely not fine. If the processes may represent interactive users, who can't

understand why they are getting no response. Worse still, they may represent

time-critical processes (missile defense, factory control, hospital intensive care

monitoring, etc.) where something disastrous can happen if the deadlock is not

detected and corrected quickly. Thus another reason to check for deadlock is

that a process has been blocked on a resource request “too long.” The definition

of “too long” can vary widely from process to process. It depends both on how

long the process can reasonably expect to wait for the request, and how urgent

the response is. If an overnight run deadlocks at 11pm and nobody is going to

look at its output until 9am the next day, it doesn't matter whether the deadlock is

detected at 11:01pm or 8:59am. If all the processes in a system are sufficiently

similar, it may be adequate simply to check for deadlock at periodic intervals

(e.g., one every 5 minutes in a batch system; once every millisecond in a real-

time control system).

4.2.10 Mixed approaches to deadlock handling
The deadlock handling approaches differ in terms of theirv usage implications.

Hence it is not possible to use a single deadlock handling approach to govern the

allocation of all resources. The following mixed approach is found useful:

1. System control block: Control blocks like JCB, PCB etc. can be acquired in

a specific order. Hence resource ranking can be used here. If a simpler

strategy is desired, all control blocks for a job or process can be allocated

together at its initiation.

2. I/O devices files: Avoidance is the only practical strategy for these

resources. However, in order to eliminate the overheads of avoidance, new

devices are added as and when needed. This is done using the concept of

spooling. If a system has only one printer, many printers are created by using

some disk area to store a file to be printed. Actual printing takes place when a

printer becomes available.

Lesson number IV Deadlocks 16

3. Main memory: No deadlock handling is explicitly necessary. The memory

allocated to a program is simply preempted by swapping out the program

whenever the memory is needed for another program.

4.2.11 Evaluating the Approaches to Dealing with Deadlock
¾ The Ostrich Approach — ignoring the problem

It is a good solution if deadlock is not frequent.

¾ Deadlock prevention — eliminating one of the four (4) deadlock conditions

This approach may be overly restrictive and results into the under utilization

of the resources.

¾ Deadlock detection and recovery — detect when deadlock has occurred, then

break the deadlock

In it there is a tradeoff between frequency of detection and performance /

overhead added.

¾ Deadlock avoidance — only fulfilling requests that will not lead to deadlock

It needs too much a priori information and not very dynamic (can’t add

processes or resources), and involves huge overhead

4.3 Summary
¾ A set of process is in a deadlock state if each process in the set is waiting for

an event that can be caused by only another process in the set. Processes

compete for physical and logical resources in the system. Deadlock affects

the progress of processes by causing indefinite delays in resource allocation.

¾ There are four Necessary and Sufficient Deadlock Conditions (1) Mutual

Exclusion Condition: The resources involved are non-shareable, (2) Hold and

Wait Condition: Requesting process hold already, resources while waiting for

requested resources,(3) No-Preemptive Condition: Resources already

allocated to a process cannot be preempted,(4) Circular Wait Condition: The

processes in the system form a circular list or chain where each process in

the list is waiting for a resource held by the next process in the list.

¾ The deadlock conditions can be modeled using a directed graph called a

resource allocation graph (RAG) consisting of boxes (resource), circles

Lesson number IV Deadlocks 17

(process) and edges (request edge and assignment edge). The resource

allocation graph helps in identifying the deadlocks.

¾ There are following approaches to deal with the problem of deadlock: (1) The

Ostrich Approach — stick your head in the sand and ignore the problem, (2)

Deadlock prevention — prevent deadlock from occurring by eliminating one of

the 4 deadlock conditions, (3) Deadlock detection algorithms — detect when

deadlock has occurred, (4) Deadlock recovery algorithms — break the

deadlock, (5) Deadlock avoidance algorithms — consider resources currently

available, resources allocated to each thread, and possible future requests,

and only fulfill requests that will not lead to deadlock

¾ There are merits/demerits of each approach. The Ostrich Approach is a good

solution if deadlock is not frequent. Deadlock prevention may be overly

restrictive. In Deadlock detection and recovery there is a tradeoff between

frequency of detection and performance / overhead added, Deadlock

avoidance needs too much a priori information and not very dynamic (can’t

add processes or resources), and involves huge overhead

4.4 Keywords
Deadlock: A deadlock is a situation in which some processes in the system face

indefinite delays in resource allocation.

Preemptable resource: A preemptable resource is one that can be taken away

from the process with no ill effects.

Nonpreemptable resource: It is one that cannot be taken away from process

(without causing ill effect).

Mutual exclusion: several processes cannot simultaneously share a single

resource

4.5 SELF-ASSESMENT QUESTIONS (SAQ)
1. What do you understand by deadlock? What are the necessary conditions for

deadlock?

2. What do you understand by resource allocation graph (RAG)? Explain using

suitable examples, how can you use it to detect the deadlock?

Lesson number IV Deadlocks 18

3. What do you mean by pre-emption and non-preemption discuss with an

example?

4. Compare and contrast the following policies of resource allocation:

(a) All resources requests together.

(b) Allocation using resource ranking.

(c) Allocation using Banker’s algorithm

On the basis of (a) resource idling and (b) overhead of the resource allocation

algorithm.

5. How can pre-emption be used to resolve deadlock?

6. Why Banker’s algorithm is called so?

7. Under what condition(s) a wait state becomes a deadlock?

8. Explain how mutual exclusion prevents deadlock.

9. Discuss the merits and demerits of each approach dealing with the problem of

deadlock.

10. Differentiate between deadlock avoidance and deadlock prevention.

11. A system contains 6 units of a resource, and 3 processes that need to use

this resource. If the maximum resource requirement of each process is 3

units, will the system be free of deadlocks for all time? Explain clearly.

If the system had 7 units of the resource, would the system be deadlock-free?

4.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson number IV Deadlocks 19

6. Operating Systems, A Concept-based Approach, Dhamdhere D.M., Tata

McGraw Hill Publishing Company Ltd., New Delhi.

Lesson number IV Deadlocks 20

Lesson number: 5 Writer: Dr. Rakesh Kumar

Contiguous Memory Management - I Vetter: Prof. Dharminder Kumar

5.0 OBJECTIVE
The lesson presents the principles of managing the main memory, one of the

most precious resources in a multiprogramming system. In our sample hierarchy

of Operating System layers, memory management belongs to layer 3. Memory

management is primarily concerned with allocation of physical memory of finite

capacity to requesting processes. No process may be activated before a certain

amount of memory can be allocated to it. The objective of this lesson is to make

the students acquainted with the concepts of contiguous memory management.

5.1 INTRODUCTION
Memory is large array of words or bytes, each having its unique address. CPU

fetches instructions from memory according to value of program counter. The

instructions undergo instruction execution cycle. To increase both CPU utilization

and speed of its response to users, computers must keep several processes in

memory. Specifically, the memory management modules are concerned with

following four functions:

1. Keeping track of whether each location is allocated or unallocated, to which

process and how much.

2. Deciding to whom the memory is allocated, how much, when and where. If

memory is to be shared by more than one process concurrently, it must be

determined which process’ request should be satisfied.

3. Once it is decided to allocate memory, the specific locations must be selected

and allocated. Memory status information is updated.

4. Handling the deallocation/reclamation of memory. After the process holding

memory is finished, memory locations held by it are declared free by

changing the status information.

There are varieties of memory management systems. They are:

Lesson no. V Contiguous Memory Management - I 1

1. Contiguous, real memory management system such as:

• Single, contiguous memory management system

• Fixed partitioned memory management system

• Variable Partitioned memory management system

2. Non-Contiguous, real memory management system

• Paged memory management system

• Segmented memory management system

• Combined memory management system

3. Non-Contiguous, virtual memory management system

• Virtual memory management system

These systems can be divided into two major parts (i) Contiguous and (ii) Non-

Contiguous

Contiguous Memory Management: In this approach, each program occupies a

single contiguous block of storage locations.

Non-Contiguous Memory Management: In these, a program is divided into

several blocks or segments that may be placed throughout main storage in

pieces or chunks not necessarily adjacent to one another. It is the function of

Operating System to manage these different chunks in such a way that they

appear to be contiguous to the user.

Various issues to be considered in various memory management schemes are

relocation, address translation, protection, sharing, and evaluation.

Relocation and address translation: The process of associating program

instructions and data to physical memory addresses is called address binding or

relocation. So binding is mapping from one address to another. It is of two types:

¾ Static Binding: It is taking place before execution; it may be (i) Compile time:

where the compiler or assembler translates symbolic addresses to absolute

addresses and (ii) Load time where the compiler translates symbolic

addresses to relative addresses. The loader translates these to absolute

addresses.

Lesson no. V Contiguous Memory Management - I 2

¾ Dynamic Binding: In it new locations are determined during execution. The

program retains its relative addresses. The absolute addresses are generated

by hardware.

Memory Protection and Sharing: Protection is used to avoid interference

between programs existing in memory. Sharing is the opposite of protection.

Evaluation: Evaluation of these schemes is done on various parameters such

as:

¾ Wasted memory: It is the amount of physical memory, which remains

unused and thus wasted.

¾ Access time is the time to access the physical memory by the Operating

System.

¾ Time complexity is related to overheads of the allocation or deallocation

methods.

5.2 PRESENTATION OF CONTENTS
5.2.1 Single Contiguous Memory Management

5.2.2 Fixed Partitioned Memory Management System

5.2.2.1 Principles of Operation

5.2.2.2 Fragmentation

5.2.2.3 Swapping

5.2.2.4 Relocation

5.2.2.4.1 Static Relocation

5.2.2.4.2 Dynamic Relocation

5.2.2.5 Protection

5.2.2.6 Sharing

5.2.2.7 Evaluation

5.2.1 SINGLE CONTIGUOUS MEMORY MANAGEMENT
In this scheme, the physical memory is divided into two contiguous areas. One of

them is permanently allocated to the resident portion of the Operating System.

Mostly, the Operating System resides in low memory (0 to P as shown in Figure

1). The remaining memory is allocated to transient or user processes, which are

Lesson no. V Contiguous Memory Management - I 3

loaded and executed one at a time, in response to user commands. This process

is run to completion and then the next process is brought in memory.

In this scheme, the starting physical address of the program is known at the time

of compilation. The machine contains absolute addresses. They do not need to

be changed or translated at the time of execution. So there is no issue of

relocation or address translation.

 OS (monitor)

00

P

Max

 Transient-Process Area

Figure 1. Single contiguous memory management

 In this scheme as there is at most one process is in memory at any given time so

there is a rare issue of interference between programs. However, it is desirable

to protect the Operating System code from being tampered by the executing

transient process.

A common way used in embedded systems to protect the Operating System

code from user programs is to place the Operating System in read-only memory.

This method is rarely used because of its inflexibility and inability to patch and

update the Operating System code. In systems where the Operating System is in

read-write memory, protection from user processes usually requires some sort of

hardware assistance such as the fence registers and protection bits.

Fence registers are used to draw a boundary between the Operating System and

the transient-process area. Assuming that the resident portion of the Operating

System is in low memory, the fence register is set to the highest address

occupied by Operating System code. Each memory address generated by a user

process is compared against the fence. Any attempt to read or write the space

below the fence may thus be detected and denied before completion of the

related memory reference. Such violations usually trap to the Operating System,

Lesson no. V Contiguous Memory Management - I 4

which in turn may abort the offending program. To serve the purpose of

protection, modification of the fence register must be a privileged operation not

executable by user processes. Consequently, this method requires the hardware

ability to distinguish between execution of the Operating System and of user

processes, such as the one provided by user and supervisor modes of operation.

Another approach to memory protection is to record the access rights in the

memory itself. One possibility is to associate a protection bit with each word in

memory. The memory may then easily be divided into two zones of arbitrary size

by setting all protection bits in one area, and resetting them in the other area. For

example, initially all protection bits may be reset. During system startup,

protection bits may be set in all locations where the Operating System is loaded.

User programs may then be loaded and executed in the remaining memory

locations. Prohibiting user processes from accessing any memory location whose

protection bit is set may enforce Operating System protection. At the same time,

the Operating System and system utilities, such as the loader, may be allowed

unrestricted access to memory necessary for their activities. This approach

requires a hardware-supported distinction between at least two distinct levels of

privilege in the execution of machine instructions.

Sharing of code and data in memory does not make much sense in single-

process environments, and single-process Operating System hardly ever support

it. Users’ programs may of course, pass data to each other in private

arrangements, say, by means of memory locations known to be safe from being

overwritten between executions of participating processes. Such schemes are

obviously unreliable, and their use should be avoided whenever possible.

Single-process Operating System are relatively simple to design and to

comprehend. They are often used in systems with little hardware support. But the

lack of support for multiprogramming reduces utilization of both processor and

memory. Processor cycles are wasted because there is no pending work that

may be executed while the running process is waiting for completion of its I/O

operations. Memory is underutilized because its portion not devoted to the

Operating System and the single active user is wasted. On the average, wasted

Lesson no. V Contiguous Memory Management - I 5

memory in a specific system is related to the difference between the size of the

transient-process area and the average process size weighted by the respective

process-execution (and residence) times. This method has fast access time and

very little time-complexity. Its usage is limited due to lack of multi-user facility.

One additional problem is sometimes encountered in systems with simplistic

static forms of memory management. To be useable across a wide range of

configurations with different capacities of installed memory, system programs in

such environments tend to be designed to use the least amount of memory

possible. Besides sacrificing speed and functionality, such programs usually take

little advantage of additional memory when it is available.

5.2.2 FIXED PARTITIONED MEMORY MANGEMENT SYSTEM

In this scheme, memory is divided into number of contiguous regions called

partitions, could be of different sizes. But once decided, they could not be

changed. Partitions are fixed at the time of system generation. System

generation is a process of setting the Operating System to specific requirements.

Various processes of the Operating System are allotted different partitions. There

are two forms of memory partitioning (i) Fixed Partitioning and (ii) Variable

Partitioning.

In fixed partitioning the main memory is divided into fixed number of partitions

during system startup. The number and sizes of individual partitions are decided

by the factors like capacity of the available physical memory, desired degree of

multiprogramming, and the typical sizes of processes most frequently run on a

given installation. Since, in principle, at most one process may execute out of a

given partition at any time, the number of partitions represents an upper limit on

the number of active processes in a system i.e. degree of multiprogramming.

Given the impact of memory partitioning on overall performance, some systems

allow for manual redefinition of partition sizes.

Programs are queued to run in the smallest available partition. An executable

prepared to run in one partition may not be able to run in another without being

relinked. This technique is called absolute loading.

5.2.2.1 Principles of Operation

Lesson no. V Contiguous Memory Management - I 6

An example of partitioned memory is depicted in Figure 2. Out of the six

partitions, one is assumed to be occupied by the resident portion of the OS, and

three others by user processes Pi, Pj, and Pk, as indicated. The remaining two

partitions, shaded in Figure 2, are free and available for allocation.

P0 OS Area

P1

P2 Process Pi

P3

Process Pj

P4

P6
Process Pk

0K

100K

300K

400k

700K

800K

100K

 Figure 2 – Fixed Partitions

On declaring fixed partitions, the Operating System creates a Partition

Description Table (PDT) to keep track of status of each partition for allocation

purposes. A sample PDT format is given in Figure 3 according to the partitions

given in Figure 2.

Partition Number Partition Base Partition size Partition Status

0 0K 100K Allocated

1 100K 200K Free

2 300K 100K Allocated

3 400K 300K Allocated

4 700K 100K Free

5 800K 200K Allocated

Figure 3 – Partition description table
Each partition is described by its base address, size, and status. When fixed

partitioning is used, only the status field of each entry varies i.e. free or allocated,

in the course of system operation. Initially, all the entries are marked “FREE”. As

Lesson no. V Contiguous Memory Management - I 7

and when process is loaded into partitions, the status entry for that partition is

changed to “ALLOCATED”.

Initially, all memory is available for user processes and is called hole. On arrival

of a process, a hole large enough for that process is allocated to it. The

Operating System then reads the program image from disk to the space

reserved. After becoming resident in memory, the newly loaded process makes a

transition to the ready state and thus becomes eligible for execution.

When a nonresident process is to be activated, the Operating System searches a

free memory partition of sufficient size in the PDT. If the search is successful, the

status field of the selected entry is marked ALLOCATED, and the process image

is loaded into the corresponding partition. Since the assumed format of the PDT

does not provide any indication as to which process is occupying a given

partition, the identity of the assigned partition may be recorded in the PCB. When

the process departs, using this information the status of related partition is made

FREE. To implement these ideas, two questions are to be answered; (i) how to

select a specific partition for a given process, (ii) what to do when no suitable

partition is available for allocation. The three common strategies of partition

allocation are:

(a) Best Fit

(b) First fit

(c) Worst Fit

Best-fit: This strategy allocates the smallest hole that is big enough to

accommodate process. Entire list ordered by size is searched and matching

smallest left over hole is chosen. For example, suppose a process requests

12KB of memory and the memory manager currently has a list of unallocated

blocks of 6KB, 14KB, 19KB, 11KB, and 13KB blocks. The best-fit strategy will

allocate 12KB of the 13KB block to the process.

First-fit: This strategy allocates the first available space that is big enough to

accommodate process. Search may start at beginning of set of holes or where

previous first-fit ended. Searching stops as soon as it finds a free hole that is

Lesson no. V Contiguous Memory Management - I 8

large enough. Using the same example as above, first fit will allocate 12KB of the

14KB block to the process.

Worst fit: This strategy allocates the largest hole. Entire list is searched. It

chooses largest left over hole. Using the same example as above, worst fit will

allocate 12KB of the 19KB block to the process, leaving a 7KB block for future

use.

6KB 6KB 6KB 6KB

12KB14KB 14KB 14KB

2KB

12KB 19KB 19KB

7KB

19KB

11KB 11KB 11KB 11KB

12KB 13KB

1KB

13KB 13KB

Primary

Memory

Best

Fit

Worst

Fit

First

Fit

Figure 4
These strategies may be compared on the basis of execution speed and memory

utilization. These algorithms have to search the PDT to identify a free partition of

adequate size. However, while the first fit terminates upon finding the first such

partition, the best fit must process all PDT entries to identify the tightest fit. So

first fit tend to execute faster but best fit may achieve higher utilization of memory

by creating the smallest possible gap resulting from the difference in size

Lesson no. V Contiguous Memory Management - I 9

between the process and its allocated partition. Both first-fit and best fit are better

than worst-fit in terms of time and storage utilization, but first-fit is faster.

In case of a relatively small number of fixed partitions in a system, the execution

time differences between these approaches may not be large enough to

outweigh the lower degree of memory utilization attributable to the first fit. When

the number of partitions is large neither first fit nor best fit is clearly superior.

Request for partitions may be due to (1) creations of new processes or (2)

reactivations of swapped-out processes. The memory manager attempts to

satisfy these requests from the pool of free partitions. Common obstacles faced

by it are:

1. No free partition is large enough to accommodate the incoming process.

2. All partitions are allocated.

3. Some partitions are free, but none of them is large enough to accommodate

the incoming process.

If the process to be created is too large to fit into any of the system partitions, the

Operating System produces an error message. This is basically a configuration

error that may be remedied by redefining the partitions accordingly. Another

option is to reduce a program's memory requirements by recording and possibly

using some sort of overlays.

The case when all partitions are allocated may be handled by deferring loading of

the incoming process until a suitable partition can be allocated to it. An

alternative is to force a memory-resident process to vacate a sufficiently large

partition. Eviction to free the necessary space incurs the additional overhead of

selecting a suitable victim and rolling it out to disk. This technique is called

swapping. Both deferring and swapping are also applicable to handling the third

case, where free but unsuitable partitions are available. If the deferring option is

chosen, memory utilization may be kept high if the Operating System continues

to allocate free partitions to other waiting processes with smaller memory

requirements. However, doing so may violate the ordering of process activation’s

intended by the scheduling algorithm and, in turn, affect performance of the

system.

Lesson no. V Contiguous Memory Management - I 10

The described memory-allocation situations illustrate the close relationship and

interaction between memory management and scheduling functions of the

Operating System. Although the division of labor in actual systems may vary, the

memory manager is generally charged with implementing memory allocation and

replacement policies. Processor scheduling, on the other hand, determines which

process gets the processor, when, and for how long. The short-term scheduler

considers only the set of ready processes, that is, those that have all the needed

resources except for the processor. Ready processes are, by definition, resident

in memory. By influencing the membership of the set of resident processes, a

memory manager may affect the scheduler's ability to perform. On the other

hand, the effectiveness of the short-term scheduler influences the memory

manager by affecting the average memory-residence times of processes.

In systems with fixed partitioning of memory, the number of partitions effectively

sets an upper limit on the degree of multiprogramming. Within the confines of this

limit, processor utilization may be improved by increasing the ratio of ready to

resident processes. This may be accomplished by removing suspended

processes from memory when otherwise ready ones are available for loading in

the related partitions. A removed process is usually kept in secondary storage

until all resources needed for its execution, except for memory and the processor

may be allocated to it. At that point, the process in question becomes eligible for

loading into the main memory. The medium-term scheduler and the memory

manager cooperate in further processing of such processes.

The Operating System holds the processes waiting to be loaded in the memory

in a queue. The two methods of maintaining this queue are (i) Multiple Queues

and (ii) Single Queues.

Multiple Queues: In this method there are as many queues as the number of

partitions. Separate queue for each partition is maintained in which processes

are added as they arrive. When a process wants to occupy memory, it is added

to a proper queue depending upon size of processes. Benefit of this method is

that a small process is not loaded in large partition so as to avoid memory

wastage. This leads to longer queue for small partitions.

Lesson no. V Contiguous Memory Management - I 11

Single Queue: In this method, there is only one queue for all ready processes.

The order of processes in the queue depends on the scheduling algorithm. In this

case, first fit allocation strategy is more efficient and fast.

5.2.2.2 Fragmentation
Some amount of memory is wasted both in single and multiple partition allocation

techniques. Fragmentation refers to the unused memory that the memory

management system cannot allocate. It is of two types: External and Internal.

External Fragmentation is waste of memory between partitions caused by

scattered non-contiguous free space. It occurs when total available memory

space is enough to satisfy the request for a process to be allocated, but it is not

continuous. Selection of first fit and best fit can affect the amount of

fragmentation. It is severe in variable size partitioning schemes. Compaction is a

technique that is used to overcome this.

Internal fragmentation is waste of memory within a partition caused by

difference between size of partition and the process allocated. It refers to the

amount of memory, which is not being used and is allocated along with a process

request i.e. available memory internal to partition. It is severe in fixed partitioning

schemes.

5.2.2.3 Swapping
Removing suspended or preempted processes from memory and their

subsequent bringing back is called swapping. The basic idea of swapping is to

treat main memory as a ‘pre-emptable’ resource. Lifting the program from the

memory and placing it on the disk is called ‘Swapping out’. To bring the program

again from the disk into the main memory is called ‘Swapping in’. Normally, a

blocked process is swapped out so as to create available space for a ready

process. This results in improving CPU utilization. Swapping has traditionally

been used to implement multiprogramming in systems with restrictive memory

capacity. Swapping may also be helpful for improving processor utilization in

partitioned memory environments by increasing the ratio of ready to resident

processes. Swapping is usually employed in memory-management systems with

contiguous allocation, such as fixed and variable partitioned memory and

Lesson no. V Contiguous Memory Management - I 12

segmentation. Somewhat modified forms of swapping may also be present in

virtual memory systems based on segmentation or on paging. Swapping brings

flexibility even to systems with fixed partitions.

When the scheduler decides to admit a new process for which no suitable free

partition can be found, the swapper may be invoked to vacate such a partition.

The swapper is an Operating System process whose major responsibilities

include:

¾ Selection of processes to swap out: Its criteria is suspended/blocked state,

low priority, time spent in memory.

¾ Selection of processes to swap in: Its criteria are time spent on swapping

device and priority.

¾ Allocation and management of swap space on a swapping device. Swap

space can be system wide or dedicated.

Thus the swapper performs most of the functions of the medium-term scheduler.

The swapper usually selects a victim among the suspended processes that

occupy partitions large enough to satisfy the needs of the incoming process.

Although the mechanics of swapping out following the choice of a victim process

is fairly simple in principle, implementation of swapping requires some specific

provisions and considerations in Operating System that support it. These

generally include the file system, specific Operating System services, and

relocation.

Figure 5 showing process of Swapping

Lesson no. V Contiguous Memory Management - I 13

A process is typically prepared for execution and submitted to the Operating

System in the form of a file that contains a program in executable form and the

related data. This file may also contain process attributes, such as priority and

memory requirements. Such a file is sometimes called a process image. Since a

process usually modifies its stack and data when executing, a partially executed

process generally has a run-time image different from its initial static process

image recorded on disk. Therefore, the dynamic run-time state of the process to

be swapped out must be recorded for its proper subsequent resumption. In

general, the modifiable portion of a process's state consists of the contents of its

data and stack locations, as well as of the processor registers. Code is also

subject to run-time modifications in systems that permit the code to modify itself.

Therefore, the contents of a sizable portion or of the entire address space of a

victim process must be copied to disk during the swapping-out operation. Since

the static process image is used for initial activation, the (modified) run-time

image should not overwrite the static process image on disk. Consequently, a

separate swap file must be available for storing the dynamic image of a rolled-out

process. There are two basic options regarding placement of a swap file:

¾ System-wide swap file

¾ Dedicated, per-process, swap files

In either case, swapping space for each swappable process is usually reserved

and allocated statically, at process creation time, to avoid the overhead of this

potentially lengthy operation at swap time.

In the system-wide swap file approach, a single large file is created, usually in

the course of system initialization, to handle swapping requirements of all

processes. The swap file is commonly placed on a fast secondary-storage device

so as to reduce the latency of swapping. The location of each swapped out

process image is noted within that file. An important trade-off in implementing a

system-wide swap file is the choice of its size. If a smaller area is reserved for

this file, the Operating System may not be able to swap out processes beyond a

certain limit, thus affecting the performance.

Lesson no. V Contiguous Memory Management - I 14

An alternative is to have a dedicated swap file for each swappable process in the

system. These swap files may be created either dynamically at process creation

time or statically at program preparation time. This method is very flexible, but

can be very inefficient due to the increased number of files and directories. In

either case, the advantages of maintenance of separate swap files include

elimination of the system swap-file dimensioning problem and of that file's

overflow errors at run-time, and non-imposition of restrictions on the number of

active processes. The disadvantages include more disk space expended on

swapping, slower access, and more complicated addressing of swapping files

scattered on the secondary storage.

Regardless of the type of swapping file used, the need to access secondary

storage makes swapping a lengthy operation relative to processor instruction

execution. This overhead must be taken into consideration in the decision of

whether to swap a process in order to make room for another one.

Delays of this magnitude may be unacceptable for interrupt-service routines or

other time-critical processes. For example, swapping out of a momentarily

inactive terminal driver in a time-sharing system is certainly a questionable

"optimization." Operating System that support swapping usually copes with this

problem by providing some means for system programmers to declare a given

process as being swappable or not. In effect, after the initial loading, an

unswappable process remains fixed in memory even when it is temporarily

suspended. Although this service is useful, a programmer may abuse it by

declaring an excessive number of processes as fixed, thereby reducing the

benefits of swapping. For this reason, the authority to designate a process as

being un-swappable is usually restricted to a given class of privileged processes

and users. All other processes, by default, may be treated as swappable.

An important issue in systems that support swapping is whether process-to-

partition binding is static or dynamic, i.e., whether a swapped-out process can

subsequently be loaded only into the specific partition from which it was removed

or into any partition of adequate size. In general, static binding of processes to

partitions may be done in any system with static partitioning of memory,

Lesson no. V Contiguous Memory Management - I 15

irrespective of whether swapping is supported or not. Static process-to-partition

binding eliminates the run-time overhead of partition allocation at the expense of

lower utilization of memory due to potentially unbalanced use of partitions. On

the other hand, systems in which processes are not permanently bound to

specific partitions are much more flexible and have a greater potential for efficient

use of memory. The price paid for dynamic binding of processes to partitions is

the overhead incurred by partition allocation whenever a new process or a

swapped process is to be loaded into main memory. Moreover, dynamic

allocation of partitions usually requires some sort of hardware support for

dynamic relocation.

5.2.2.4 Relocation
The term program relocatability refers to the ability to load and execute a given

program into an arbitrary place in memory. Since different load addresses may

be assigned during different executions of a single relocatable program, a

distinction is often made between virtual addresses (or logical address) and the

physical addresses where the program and its data are stored in memory during

a given execution. In reality, the program may be loaded at different memory

locations, which are called physical addresses. The problem of relocation and

address translation is to find a way to map virtual addresses onto physical

addresses. Depending on when and how the mapping from the virtual address

space to the physical address space takes place in a given relocation scheme,

there are two basic types of relocation: (i) Static relocation and (ii) Dynamic

relocation.
5.2.2.4.1 Static Relocation
Static relocation is performed before or during the loading of the program into

memory, by a relocating linker/ loader. Constants, physical I/O port addresses,

and offsets relative to the program counter are examples of values that are not

location-sensitive and that do not need to be adjusted for relocation. Other forms

of addresses of operands may depend on the location of a program in memory

so must be adjusted accordingly when the program is being loaded or moved to

a different area of memory.

Lesson no. V Contiguous Memory Management - I 16

A language translator typically prepares the object module by assuming the

virtual address 0 to be the starting address of the program, thus making virtual

addresses relative to the program loading address. Relocation information,

including virtual addresses that need adjustment following determination of the

physical load address, is provided for subsequent processing by the linker and

loader. Either when the linker combines object modules or when the process

image is being loaded, all program locations that need relocation are adjusted in

accordance with the actual starting physical address allocated to the program.

Once the program is in memory, values that need relocation are indistinguishable

from those that do not.

Since relocation information in memory is usually lost following the loading, a

partially executed statically relocatable program cannot be simply copied from

one area of memory into another and be expected to continue to execute

properly. In systems with static relocation a swapped-out process must either be

swapped back into the same partition from which it was evicted, or software

relocation must be repeated whenever the process is to be loaded into a different

partition. Given the considerable space and time complexity of software

relocation, systems with static relocation are practically restricted to supporting

only static binding of processes to partitions. This method is slow process

because it involves software translation. It is used only once before the initial

loading of the program.

5.2.2.4.2 Dynamic Relocation
In it, mapping from the virtual address space to the physical address space is

performed at run-time. Process images in systems with dynamic relocation are

also prepared assuming the starting location to be a virtual address 0, and they

are loaded in memory without any relocation adjustments. When the related

process is being executed, all of its memory references are relocated during

instruction execution before physical memory is actually accesses. This process

is often implemented by means of specialized base registers. After allocating a

suitable partition and loading a process image in memory, the Operating System

sets a base register to the starting physical load address. This value is normally

Lesson no. V Contiguous Memory Management - I 17

obtained from the relevant entry of the PDT. Each memory reference generated

by the executing process is mapped into the corresponding physical address by

having the contents of the base register added to it.

Dynamic relocation is illustrated in Figure 6. A sample process image prepared

with an assumed starting address of virtual address 0 is shown unchanged

before and after being loaded in memory. In this particular example, it is

assumed that address 1000 is allocated as the starting address for loading the

process image. This base address is normally available from the corresponding

entry of the PDT, which is reachable by means of the link to the allocated

partition in the PCB. Whenever the process in question is scheduled to run, the

base register is loaded with this value in the course of process switching.

Figure 6 – Dynamic relocation

1500

0

2000
2500

1000

500

LDA 500

1000

+ 500 1500

Base Register

Virtual
Address

Physical
Address

Physical
Memory

MARIR

Relocation of memory references at run-time is illustrated by means of the

instruction LDA 500, which is supposed to load the contents of the virtual

address 500 (relative to program beginning) into the accumulator. As indicated,

the target item actually resides at the physical address 1500 in memory. This

address is produced by hardware by adding the contents of the base register to

the virtual address given by the processor at run-time.

As suggested by Figure 5, relocation is performed by hardware and is invisible to

programmers. In effect, all addresses in the process image are prepared by

counting on the implicit based addressing to complete the relocation process at

run-time. This approach makes a clear distinction between the virtual and the

physical address space.

Lesson no. V Contiguous Memory Management - I 18

This is the most commonly used scheme amongst the schemes using fixed

partitions due to its enhanced speed and flexibility. Its advantage is that it

supports swapping easily. Only the base register value needs to be changed

before dispatching.

5.2.2.5 Protection
Not only must the Operating System be protected from unauthorized tampering

by user processes, but each user process must also be prevented from

accessing the areas of memory allocated to other processes. Otherwise, a single

erroneous or malevolent process may easily corrupt any or all other resident

processes. There are two approaches for preventing such interference and

achieving protection. These approaches involve the use of Limit Register and

Protection Bits.

Implementation of memory protection in a given system tends to be greatly

influenced by the available hardware support. In systems that use base registers

for relocation, a common practice is to use limit registers for protection. The

primary function of a limit register is to detect attempts to access address space

beyond the boundary assigned to the executing program by the Operating

System. The limit register is usually set to the highest virtual address in a

program. As illustrated by Figure 6, each intended memory reference of an

executing program is checked against the contents of the limit register before

being forwarded to memory. In this way, any attempt to access a memory

location outside of the specified area is detected and aborted by the protection

hardware before being allowed to reach the memory. This violation usually traps

to the Operating System, which may then take a remedial action, such as to

terminate the offending process. The base and limit values for each process are

normally kept in its PBC. Upon each process switch, the hardware base and limit

registers are loaded with the values required for the new running process.

Another approach to protection is to record the access rights in the memory itself.

The bit-per-word approach described earlier, is not suitable for multiprogramming

systems because it can separate only two distinct address spaces. Adding more

bits to designate the identity of each word’s owner may solve this problem, but

Lesson no. V Contiguous Memory Management - I 19

this approach is rather costly. A more economical version of this idea has been

implemented by associating a few individual words. For example, some models

of the IBM 360 series use four such bits, called keys, per each 2 KB block of

memory. When a process is loaded in memory, its identity is recorded in the

protection bits of the occupied blocks. The validity of memory references is

established at run-time by comparison of the running process's identity to the

contents of protection bits of the memory block being accessed. If no match is

found, the access is illegal and hardware traps to the Operating System for

processing of the protection-violation exception. The Operating System is usually

assigned a unique "master" key, say 0 that gives it unrestricted access to all

blocks of memory. Note that this protection mechanism imposes certain

restrictions on operating-system designers. For example, with 4-bit keys the

maximum number of static partitions and of resident processes is 16. Likewise,

associating protection bits with fixed-sized blocks forces partition sizes to be an

integral number of such blocks.

<=
 + CPU

Base Register

Ye

N

Protection

Max
M

Figure 7 – Base-limit register
5.2.2.6 Sharing

Lesson no. V Contiguous Memory Management - I 20

Sharing of code and data poses a serious problem in fixed partitions because it

might compromise on protection. There are three basic approaches to sharing in

systems with fixed partitioning of memory:

¾ Entrust shared objects to Operating System.

¾ Maintain multiple copies, one per participating partition, of shared objects.

¾ Use shared memory partitions.

The easiest way to implement sharing without significantly compromising

protection is to entrust shared objects to the Operating System. It means that any

code or data goes through the Operating System for any request because the

Operating System has the controlling access to shared resources. No additional

provisions may be needed to support sharing. This scheme is possible but very

tedious. Unfortunately, this simple approach increases the burden on the

Operating System. Therefore, it is not followed in practice.

Unless objects are entrusted to the Operating System, sharing is quite difficult in

systems with fixed partitioning of memory. The primary reason is their reliance on

rather straightforward protection mechanisms based mostly on the strict isolation

of distinct address spaces. Since memory partitions are fixed, disjoint, and

usually difficult to access by processes not belonging to the Operating System,

static partitioning of memory is not very conducive to sharing.

Another approach is to keep copies of the sharable code/ data in all partitions

where required. It is wasteful and leads to inconsistencies. Since there is no

commonly accessible original, each process runs using its copy of the shared

object. Consequently, updates are made only to copies of the shared object. For

consistency, updates made to any must be propagated to all other copies, by

copying the shared data from the address space of the running process to all

participating partitions upon every process switch. Swapping, when supported,

introduces the additional complexity of potentially having one or more

participating address spaces absent from main memory. This approach of

sharing does not make much sense in view of the fact that no saving of memory

may be expected.

Lesson no. V Contiguous Memory Management - I 21

Another traditional simple approach to sharing is to place the data in a dedicated

"common" partition. However, any attempt by a participating process to access

memory outside of its own partition is normally regarded as a protection violation.

In systems with protection keys, changing the keys of all shared blocks upon

every process switch in order to grant access rights to the currently running

process may circumvent this obstacle. Keeping track of which blocks are shared

and by whom, as well as the potentially frequent need to modify keys, results in

notable Operating System overhead necessary to support this form of sharing.

With base-limit registers, the use of shared partitions outside of-and potentially

discontiguous to-the running process's partition requires some special provisions.

5.2.2.7 Evaluation
¾ Wasted memory: In fixed partitions, lot of memory is wasted due to both kinds

of fragmentation.

¾ Access Time: Access time is not very high due to the assistance of special

hardware. The translation from virtual address to physical address is done by

hardware itself, thus enabling rapid access.

¾ Time complexity is very low because allocation/ deallocation routines are

simple as the partitions are fixed.

5.3 Keywords
Contiguous Memory Management: In this approach, each program occupies a

single contiguous block of storage locations.

First-fit: This allocates the first available space that is big enough to

accommodate process.

Best-fit: This allocates the smallest hole that is big enough to accommodate

process.

Worst fit: This strategy allocates the largest hole.

External Fragmentation is waste of memory between partitions caused by

scattered non-contiguous free space.

Internal fragmentation is waste of memory within a partition caused by

difference between size of partition and the process allocated.

Lesson no. V Contiguous Memory Management - I 22

Compaction is to shuffle memory contents and place all free memory together in

one block.

Program relocatability refers to the ability to load and execute a given program

into an arbitrary place in memory.

5.4 SUMMARY
In this lesson, we have presented Single Contiguous Memory Management and

Fixed Partition Memory Management schemes for management of main memory

that are characterized by contiguous allocation of memory. Single contiguous

memory management is inefficient in terms of both CPU and memory utilization

and does not support multiprogramming. All other schemes support

multiprogramming by allowing address spaces of several processes to reside in

main memory simultaneously. One approach is to statically divide the available

physical memory into a number of fixed partitions and to satisfy requests for

memory by granting suitable free partitions, if any. Fixed partition sizes limit the

maximum allowable virtual-address space of any given process to the size of the

largest partition (unless overlays are used). The total number of partitions in a

given system limits the number of resident processes. Within the confines of this

limit, the effectiveness of the short-term scheduler may be improved by

employing swapping to increase the ratio of resident to ready processes.

Systems with static partitioning suffer from internal fragmentation of memory.

Fixed partitioning of memory rely on hardware support for relocation and

protection. Sharing is quite restrictive in these systems.

5.5 SELF ASSESSMENT QUESTIONS (SAQ)
1. What functions does a memory manager perform?

2. How is user address space loaded in one partition of memory protected

from others?

3. What is the problem of fragmentation? How is it dealt with?

4. What do you understand by program relocatability? Differentiate between

static and dynamic relocation.

5. Differentiate between first fit, best fit, and worst fit memory allocation

strategies. Discuss their merits and demerits.

Lesson no. V Contiguous Memory Management - I 23

6. How is the tracks of status of memory is kept in partitioned memory

management?

7. What do you mean by relocation of address space? What problems does

it cause?

8. Differentiate between internal fragmentation and external fragmentation.

9. What is external fragmentation? What is compaction? What are the merits

and demerits of compaction?

10. What are three basic approaches to sharing in systems with fixed

partitioning of memory?

5.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Godbole A.S., Tata McGraw Hill Publishing Company

Ltd., New Delhi.

4. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

5. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

6. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson no. V Contiguous Memory Management - I 24

Lesson number: 6 Writer: Dr. Rakesh Kumar

Contiguous Memory Management - II Vetter: Prof. Dharminder kUMAR

6.0 OBJECTIVE
The main memory is the most precious resource in a multiprogramming system.

There are a number of schemes to manage the main memory broadly categorize

as contiguous and non-contiguous memory management schemes. Single

contiguous memory allocation and fixed partition memory allocation schemes

part of contiguous memory management have been discussed in previous

lesson. The objective of this lesson is:

(i) To make the students familiar with the variable partitioned memory

management scheme, a type of contiguous memory management

scheme.

(ii) To explain the various memory compaction techniques.

(iii) To discuss the memory protection and sharing in variable partition

memory management.

6.1 INTRODUCTION
As discussed in the last lesson, the memory management modules are

concerned primarily with following functions: (a) Keeping track of whether each

location is allocated or unallocated, to which process and how much, (b) deciding

to whom the memory is allocated, how much, when and where, (c) once it is

decided to allocate memory, the specific locations must be selected and

allocated, and (d) handling the deallocation/reclamation of memory. The main

problem with fixed partitioned memory management system discussed in the last

lesson is determining the best region size to minimize the problem of internal and

external fragmentation. It is difficult to achieve in fixed partitioning because in it

the number of partitions and their sizes are decided statically and with a dynamic

set of job to run there is no one right partition of memory. One possible solution

to this problem is to allow the partitioning of the memory dynamically i.e. variable

Lesson no. VI Contiguous Memory Management - I I 1

partitioned memory management system. In this approach, partition sie and

boundaries are changed during system operations to suit memory requirements

of individual programs. Each job is allocated a partition whose size matches its

memory requirements. Hence no internal fragmentation exists. However external

fragmentation may arise due to existence of holes which are too small to

accommodate any program.

6.2 PRESENTATION OF CONTENTS
6.2.1 Variable Partitioned Memory Allocation

6.2.1.1 Principles of Operation

6.2.1.2 Compaction

6.2.1.3 Buddy System

6.2.1.4 Protection

6.2.1.5 Sharing

6.2.1.6 Evaluation

6.2.1 VARIABLE PARTITIONED MEMORY ALLOCATION
In variable partitions, the number of partitions and their sizes are variable as they

are not defined at the time of system generation. Starting with the initial state of

the system, partitions are created dynamically to fit the needs of each requesting

process. When a process departs, the memory manager returns the vacated

space to the pool of free memory areas from which partition allocations are

made. Process is allocated exactly as much memory as required.

6.2.1.1 Principles of Operation
When instructed to load a process image, the memory-management module

attempts to create a suitable partition for allocation to the process in question.

The first step is to locate a contiguous free area of memory, which is equal to or

larger than the process's size declared with the submitted image. If a suitable

free area is found, the Operating System carves out a partition from it to provide

an exact fit to the process's needs. The leftover chunk of free memory is returned

to the pool of free memory for later use by the allocation module. The partition is

created by entering its base, size, and status into the system Partition

Description Table (PDT). A copy of, or some link to, this information is normally

Lesson no. VI Contiguous Memory Management - I I 2

recorded in the PCB. After loading the process image into the created partition,

the process may be turned over to the Operating System module appropriate for

its further processing, such as the short-term scheduler. If no suitable free area

can be allocated, the Operating System returns an error indication.

When a resident process departs, Operating System returns the partition's space

to the pool of free memory and invalidates the corresponding Partition

Description Table entry. For swapped-out processes, the Operating System also

invalidates the PCB field where the identity of the allocated partition is normally

held.

The Operating System obviously needs to keep track of both partitions and free

memory. Once created, a partition is defined by its base address and size. Those

attributes remain essentially unchanged for as long as the related partition exists.

In addition, for the purposes of process switching and swapping, it is important to

know which partition belongs to a given process.

Free areas of memory are produced upon termination of partitions and as

leftovers in the partition creation process. For allocation and for partition creation

purpose, the Operating System must keep track of the starting address and size

of each free area of memory. This information may need to be updated each time

a partition is created or terminated. The highly dynamic nature of both the

number and the attributes of free areas suggest the use of some sort of a linked

list to describe them. It is common to conserve space by building the free list

within the free memory itself. For example, the first few words of each free area

may be used to indicate the size of the area and to house a link to the successor

area.

Figure 1 illustrates the working of variable partitioned memory. In this example,

first Process 1, Process 2 and Process 3 are allocated memory as they arrive.

When Process 2 is swapped out, the memory freed by Process 2 is available for

any other process. So it is allocated to Process 4 and the size of partition for

process 4 also varies. Again when process 2 arrives, it is allocated memory at

different location that was freed by Process 1. Moreover, the size of partition also

differs from the size of partition of process 1.From the given example, it is clear

Lesson no. VI Contiguous Memory Management - I I 3

that memory is allocated to processes as they arrive and on availability of

memory. Partitions are created at the time of allocation according to size of

process and not at the time of system generation.

Operating
System

Operating
System

Operating
System

Operating
System

Process 1 Process 1 Process 1

Process 2 Process 2

Process 3

128K

896K

128K

320K

576K

128K

320K

224K

352K

128K

320K

224K

288K

64K

Operating
System

Operating
System

Operating
System

Operating
System

Process 2 Process 1 Process 1

Process 4 Process 4 Process 4

Process 3 Process 3 Process 3 Process 3

128K

320K

224K

288K

64K

128K

320K

128K

96K

288K

64K

128K

320K

128K

96K

288K

64K

128K

224K

96K

128K

96K

288K

64K

Figure 1– Partitions in dynamic memory partitioning
Common algorithms for selection of a free area of memory for creation of a

partition (Step 1) are

(i) First fit

(ii) Best fit

(iii) Worst fit

(iv) Next Fit

 Next fit is a modification of first fit whereby the pointer to the free list is saved

following an allocation and used to begin the search for the subsequent

allocation as opposed to always starting from the beginning of the free list, as is

Lesson no. VI Contiguous Memory Management - I I 4

the case with first fit. The idea is to reduce the search by avoiding examination of

smaller blocks that tend to be created at the beginning of the free list as a result

of previous allocations. In general, next fit was not found to be superior to the first

fit in reducing the amount of wasted memory.

First fit is generally faster because it terminates as soon as a free block large

enough to house a new partition is found. Thus, on the average, first fit searches

half of the free list per allocation. Best fit, on the other hand, searches the entire

free list to find the smallest free block large enough to hold a partition being

created. First fit is faster, but it does not minimize wasted memory for a given

allocation. Best fit is slower, and it tends to produce small leftover free blocks that

may be too small for subsequent allocations. However, when processing a series

of request starting with an initially free memory, neither algorithm has been

shown to be superior to the other in terms of wasted memory.

Worst fit is an antipode of best fit, as it allocates the largest free block, provided

the block size exceeds the requested partition size. The idea behind the worst fit

is to reduce the rate of production of small holes, which are quite common in best

fit. However, some simulation studies indicate that worst fit allocation is not very

effective in reducing wasted memory in the processing of a series of requests.

Termination of partitions in a system with dynamic allocation of memory may be

performed by means of the procedure that recombines free areas, if possible, to

reduce fragmentation of memory. When first fit or best fit is used, the free list

may be sorted by address to facilitate recombination of free areas when

partitions are deallocated.

6.2.1.2 Compaction
It is one solution to problem of external fragmentation. The goal here is to shuffle

memory contents and place all free memory together in one block. Compaction is

possible only if relocation is dynamic. This technique shifts the necessary

process images to bring the free chunks of memory to adjacent positions to

coalesce. Coalescing of adjacent free areas is a method often used to reduce

fragmentation and the amount of wasted memory. However, such remedies tend

to defer the impact of, rather than to prevent, the problem. The primary reason

Lesson no. VI Contiguous Memory Management - I I 5

for fragmentation is that, due to different lifetimes of resident objects, the pattern

of returns of free areas is generally different from the order of allocations.

Operating

System

Operating

System

Operating

System

Operating

System

Job 1 (100k) Job 1 (100k) Job 1(100k) Job 1(100k)

Job 2(100k) Job 2(100k) Job 2(100k) Job 2(100k)

 (300k) Job 3(300k) Job 4(300k)

 Job 3(300k) Job 4(300k) Job 3(300k)

 (300k)

(900k)

 Job 4(300k)

Job 4(300k)

 (300k)

(900k) (900k)

Job 3(300k)

Figure A

Figure B

Figure C Figure D

When memory becomes seriously fragmented, the only way out may be to

relocate some or all partitions into one end of memory and thus combine the

holes into one large free area. Since affected processes must be suspended and

actually copied from one area of memory into another. It is important to decide

when and how memory compaction is to be performed.

One simplest approach of doing compaction is to move all jobs towards one end

of the memory and all holes in other direction resulting into one large hole of

available memory. Now consider the memory allocation as shown above in figure

Lesson no. VI Contiguous Memory Management - I I 6

A. If we are using this simple approach we have to move Job 3 and Job 4 upward

as shown in figure B, producing a large hole of 900 k after moving 2 blocks of

300k. But same can be achieved by moving Job 4 above the Job 3 as shown in

figure C or moving Job 3 below Job 4 as in Figure D (Although in this case the

large hole of available memory (900 k) is not at the end of the memory rather it is

in the middle). So deciding an optimal compaction strategy is not an easy task.

Memory compaction may be performed whenever possible or only when needed.

Some systems compact memory whenever a process departs, thus is collecting

most of the free memory into a single large area. An alternative is to compact

only upon a failure to allocate a suitable partition, provided that the combined

size of free areas exceeds the needs of the request at hand.

Compaction involves a high overhead, but it increases the degree of

multiprogramming. That is why; Operating System can accommodate a process

with a larger size, which would have been impossible before compaction.
6.2.1.3. Buddy System:

This is another method of allocation-deallocation which speeds up merging of

adjacent holes. This method facilitates merging of free space by allocating free

areas with an affinity to recombine. It treats entire space available as a single

block of 2k, Requests for free areas are rounded up to the next integer power of

base 2. When a free block of size 2k is requested, the memory allocator attempts

to satisfy it by allocating a free block from the list of free blocks of size 2k. If none

is available, the block of the next larger size, 2k+1, is split in two halves (buddies)

to satisfy the request. An important property of this allocation scheme is that the

base address of the other buddy can be determined given the base address and

size of one buddy (for a block of size 2k, the two addresses differ only in the

binary digit whose weight is 2k). Thus, when a block is freed, a simple test of the

status bit can reveal whether its buddy is also free. If so, the two blocks can be

recombined to form the twice-larger original block. In addition to the free-list links,

a status field is associated with each area of memory to indicate whether it is in

use or not. Free blocks of equal size are often kept in separate free lists.

Advantage of Buddy System is that it coalesces adjacent buffers or holes. Its

Lesson no. VI Contiguous Memory Management - I I 7

major disadvantage is that this method is very inefficient in terms of memory

utilization.

As an example, consider a system with 1MB of memory (100000H) managed

using the buddy allocation scheme. An initial request for a 192 KB block in such

a system would require allocation of a 256 KB block (rounded up to the size that

is a power of 2). Since no such block is initially available, the memory manager

would form it by splitting the 1 MB block into two 512 KB buddies, and then

splitting one of them to form two 256 KB blocks. The first split produces two 512

KB blocks (buddies) with starting addresses of 00000H (H stands for

hexadecimal) and 80000H, respectively. The second split of the block at 80000H

yields two 256 KB blocks (buddies) that start at 80000H and A0000H,

respectively. Assume that the block starting at A0000H is allocated to the user.

When the partition starting as A0000H is eventually terminated, the memory

manager can identify the base address of its 256 KB buddy (buddies are of the

same size) by toggling the address bit in the position that corresponds to the size

of the block being released. In the presented example, 256 KB = 218, and

toggling of that bit yields a 0 (in this example) in bit position 18, which, with all

other bits unchanged, produces the address of the original buddy, 80000H. A

quick inspection of the associated status word indicates whether the buddy at

that address is free or not. If it is, the two buddies are coalesced to reform the

512 KB block starting at address 80000H, which was originally used to produce

the smaller blocks to satisfy the pending request.

Example: The buddy memory allocation technique allocates memory in powers of

2, i.e 2x, where x is an integer. Thus, the programmer has to decide on, or to

write code to obtain, the upper limit of x. For instance, if the system had 2000K of

physical memory, the upper limit on x would be 10, since 210 (1024K) is the

biggest allocatable block. This results in making it impossible to allocate

everything in as a single chunk; the remaining 976K of memory would have to be

taken in smaller blocks.

After deciding on the upper limit (let's call the upper limit u), the programmer has

to decide on the lower limit, i.e. the smallest memory block that can be allocated.

Lesson no. VI Contiguous Memory Management - I I 8

This lower limit is necessary so that the overhead of storing used and free

memory locations is minimized. If this lower limit did not exist, and many

programs request small blocks of memory like 1K or 2K, the system would waste

a lot of space trying to remember which blocks are allocated and unallocated.

Typically this number would be a moderate number (like 2, so that memory is

allocated in 2² = 4K blocks), small enough to minimize wasted space, but large

enough to avoid excessive overhead. Let's call this lower limit l.

Now that we have our limits, let us see what happens when a program makes

requests for memory. Let's say in this system, l = 6, which results in blocks 26 =

64K in size, and u = 10, which results in a largest possible allocatable block, 210

= 1024K in size. The following shows a possible state of the system after various

memory requests.

T

�

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

64

K

0 1024K

1 A-64K 64K 128K 256K 512K

2 A-64K 64K B-128K 256K 512K

3 A-64K C-64K B-128K 256K 512K

4 A-64K C-64K B-128K D-128K 128K 512K

5 A-64K 64K B-128K D-128K 128K 512K

6 128K B-128K D-128K 128K 512K

7 256K D-128K 128K 512K

8 1024K

Figure - 2

This allocation could have occurred in the following manner

1. Program A requests memory 34K..64K in size

2. Program B requests memory 66K..128K in size

3. Program C requests memory 35K..64K in size

4. Program D requests memory 67K..128K in size

Lesson no. VI Contiguous Memory Management - I I 9

5. Program C releases its memory

6. Program A releases its memory

7. Program B releases its memory

8. Program D releases its memory

As you can see, what happens when a memory request is made is as follows:

• If memory is to be allocated

1. Look for a memory slot of a suitable size (the minimal 2k block that is

larger or equal to that of the requested memory)

1. If it is found, it is allocated to the program

2. If not, it tries to make a suitable memory slot. The system does so

by trying the following:

1. Split a free memory slot larger than the requested memory

size into half

2. If the lower limit is reached, then allocate that amount of

memory

3. Go back to step 1 (look for a memory slot of a suitable size)

4. Repeat this process until a suitable memory slot is found

• If memory is to be freed

1. Free the block of memory

2. Look at the neighboring block - is it free too?

3. If it is, combine the two, and go back to step 2 and repeat this process

until either the upper limit is reached (all memory is freed), or until a non-

free neighbour block is encountered

This method of freeing memory is rather efficient, as compaction is done

relatively quickly, with the maximal number of compactions required equal to

log2(u/l) (i.e. log2(u)- log2(l)).

Typically the buddy memory allocation system is implemented with the use of a

binary tree to represent used or unused split memory blocks.

However, there still exists the problem of internal fragmentation. In many

situations, it is essential to minimize the amount of internal fragmentation.

6.2.1.4 Protection

Lesson no. VI Contiguous Memory Management - I I 10

Protection and sharing in systems with dynamic partitioning of memory are not

significantly different from their counterparts in static partitioning environments,

since they both rely on virtually identical hardware support. One difference is that

dynamic partitioning potentially allows adjacent partitions in physical memory to

overlap. Consequently, a single physical copy of a shared object may be

accessible from two distinct address spaces. This possibility is illustrated in

Figure 3, where partitions A and B overlap to include the shared object placed in

the doubly shaded area. The relevant portion of the partition of the partition

definition table is also shown in Figure 3. As indicated, 500 locations starting

from the physical address 5500 are shared and included in both partitions.

Although perhaps conceptually appealing, this form of sharing is quite restrictive

in practice. Sharing of objects is limited to two processes; when several

processes are in play, one of the more involved schemes described in above

must be used.

6.2.1.5 Sharing
Sharing of code is generally more restrictive than sharing of data. One of the

reasons for this is that shared code must be either reentrant or executed in a

strictly mutually exclusive fashion with no preemption’s. Otherwise, serious

problems may result if a process in the middle of execution of the shared code is

switched off, and another process begins to execute the same section of the

shared code. Reentrancy generally requires that variables be kept on stack or in

registers, so that new activation’s do not affect the state of the preempted,

incomplete executions. Additional complexities in sharing of code are imposed by

the need for shared code to ensure that references to itself-such as local jumps

and access to local data-are mapped properly during executions on behalf of any

of the participating processes. When dynamic relocation with base registers is

used, this means that all references to addresses within a shared-code object

from instructions within that code must reach the same set of physical addresses

where the shared code is stored at run-time, no matter which particular base is

used for a given relocation. This may be accomplished in different ways, such as

by making the shared code position independent or by having shared code

Lesson no. VI Contiguous Memory Management - I I 11

occupy identical virtual offsets in address spaces of all processes that reference

it.

 Base Size

A 4000 2000
B 5500 2500

Area A

Shaded

Area B

4000

5500

6000

8000

Figure 3 – Overlapping partitions

Some aspects of the issues involved in self-referencing of shared code are

illustrated in Figure 4, where a subroutine SUB is assumed to be shared by two

processes, PA and PB, whose respective partitions overlap in physical memory

as indicated in Figure 3. Let us assume that the system in question used

dynamic relocation and dynamic memory allocation, thus allowing the two

partitions to overlap. The sizes of the address spaces of the two processes are

2000 and 2500 locations, respectively. The shared subroutine, SUB, occupies

500 locations, and it is placed in locations 5500 to 5999 in physical memory. The

subroutine starts at virtual addresses 1500 and 0 in the address spaces of

processes PA and PB, respectively. Being shared by the two processes, SUB

may be linked with and loaded with either process image.

Figure 4 also shows the references to SUB from within the two processes. As

indicated in Figure 4(a), the CALL SUB at virtual address 100 of process PA is

mapped to the proper physical address of 5500 at run-time by adding the

contents of PA's base register. Likewise the CASS SUB at virtual address 1800

in process PB is mapped to 5500 at run-time by adding PB's value of the base

register. This is illustrated in Figure 4(b). Thus proper referencing of SUB from

the two processes is accomplished even when the two partitions are relocated

due to swapping or compaction, provided that they overlap in the same way in

the new set of physical addresses. However, making references from within SUB

Lesson no. VI Contiguous Memory Management - I I 12

to itself poses a problem unless some special provisions are made. For example,

a jump using absolute addressing from location 50 to location 100 within SUB

should read JUMP 1600 for proper transfer of control when invoked by PA, but

JMP 100 if PB’s invocation is to work properly. Since the JMP instruction may

have only one of these two addresses in its displacement field, there is a problem

in executing SUB correctly in both possible contexts.

One way to solve this problem is to use relative references instead of absolute

references within shared code. For example, the jump in question may read JMP

$+50, where $ denotes the address of the JMP instruction. Since it is relative to

the program counter, the JMP is mapped properly when invoked by either

process, that is, to virtual address 1600 or 100, respectively. At run-time,

however, both references map to the same physical address, 5600, as they

should. This is illustrated in Figure 4.

Code that executes correctly regardless of its load address is often referred to as

position-independent code. One of its properties is that references to portions of

the position-independent code itself are always relative, say, to the program

counter or to a base when based addressing is used. Position-independent

coding is often used for shared code, such as memory-resident subroutine

libraries. In our example, use of position-independent code solves the problem of

self-referencing.

Call Sub (call 1500)

SUB
JMP $+50

+

4000

+

4000

Base
Registe

Base
Registe

1500
5500

5600 1550+5
0

0

100

1500

1550

2000
Process A

Lesson no. VI Contiguous Memory Management - I I 13

SUB
JMP $+50

Call Sub (call 0)

+

5500

+

5500

Base
Registe

Base
Registe

50+50
5600

5500 0

0

50

500

 1800

2000
Process B

Figure 4 – Accessing shared code (a) Process A (b) Process B

Position-independent coding is one way to handle the problem of self-referencing

of shared code. The main point of our example, however, is that sharing of code

is more restrictive than sharing of data. In particular, both forms of sharing of

code is more restrictive than sharing of data. In particular, both forms of sharing

require the shared object to be accessible from all address spaces of which it is a

part; in addition, shared code must also be reentrant or executed on a mutually

exclusive basis, and some special provisions-such as position-independent

coding-must be made in order to ensure proper code references to itself. Since

ordinary (non-shared) code does not automatically meet these requirements,

some special language provisions must be in place, or assembly language

coding may be necessary to prepare shared code for execution in systems with

partitioned allocation of memory.

6.2.1.6 Evaluation
¾ Wasted memory: This memory management scheme wastes less memory

than fixed partitions because there is no internal fragmentation as the

partition size can be of any length. By using compaction, external

fragmentation can also be eliminated.

¾ Access Time: Access time is same as of fixed partitions as the same

scheme of address translation using base register is used.

Lesson no. VI Contiguous Memory Management - I I 14

¾ Time Complexity: Time complexity is higher in variable partitions due to

various data structures and algorithms used, for eg: Partition Description

Table (PDT) is no more of fixed length.

6.3 Keywords
Variable partition: The number of partitions and their sizes are variable as they

are not defined at the time of system generation.

Next fit: It is a modification of first fit whereby the pointer to the free list is saved

following an allocation and used to begin the search for the subsequent

allocation as is the case with first fit.

Position-independent code: Code that executes correctly regardless of its load

address is referred to as position-independent code.
External Fragmentation is waste of memory between partitions caused by

scattered non-contiguous free space.

Internal fragmentation is waste of memory within a partition caused by

difference between size of partition and the process allocated.

Compaction is to shuffle memory contents and place all free memory together in

one block.

Program relocatability refers to the ability to load and execute a given program

into an arbitrary place in memory.

6.4 SUMMARY
Fixed partition allocation although simple but has its own limitations in dealing

with the problem of selection of a partition of suitable size. Variable (dynamic)

partitioning allows allocation of the entire physical memory, except for the

resident part of the Operating System, to a single process. Thus, in systems with

dynamic partitioning, the virtual-address space of any given process or an

overlay is limited only by the capacity of the physical memory in a given system.

Dynamic creation of partitions according to the specific needs of requesting

processes also eliminates the problem of internal fragmentation. Dynamic

allocation of partitions requires the use of more complex algorithms for de-

allocation of partitions and coalescing of free memory in order to combat external

fragmentation. The fixed partition scheme suffers from internal fragmentation

Lesson no. VI Contiguous Memory Management - I I 15

while variable partitioning from external fragmentation. The need for occasional

compaction of memory is also a major contributor to the increased time and

space complexity of dynamic partitioning. Buddy system is a technique allocates

memory in powers of 2, i.e 2x, where x is an integer, thus facilitates memory

compaction, although with a limitation of memory wastage.

Both fixed and variable partitioning of memory rely on virtually identical hardware

support for relocation and protection. Sharing is quite restrictive in both systems.

6.5 SELF ASSESSMENT QUESTIONS (SAQ)
1. What do you understand by fragmentation? What is the difference

between internal and external fragmentation? What is there in variable

partitioned memory management? Explain. Use suitable example.

2. What do you understand by memory compaction? What are its merits and

demerits? Discuss.

3. What are the different problems with memory compaction? Illustrate using

suitable examples.

4. What is buddy system? How does it facilitate memory compaction?

Discuss its advantages and disadvantages. Use suitable examples.

5. Discuss the merits and demerits of variable partitioned memory

management scheme over fixed partitioned memory management

scheme.

6. What do you understand by position independent coding? What are its

advantages? Discuss.

7. Differentiate between First-fit and Next-fit allocation algorithms.

8. Compare the fixed partitioned memory management with variable

partitioned memory management in terms of the problem of fragmentation.

6.6 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

Lesson no. VI Contiguous Memory Management - I I 16

3. Operating Systems, Godbole A.S., Tata McGraw Hill Publishing Company

Ltd., New Delhi.

4. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

5. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

6. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson no. VI Contiguous Memory Management - I I 17

Lesson number: 7 Writer: Dr. Rakesh Kumar

Non-Contiguous Memory Management Vetter: Prof. Dharminder Kumar

7.0 OBJECTIVE
The objective of this lesson is to introduce the concepts of Non-contiguous real

memory management system. In the beginning Segmentation is also discussed

which is an approach that contains the properties of contiguous as well as non-

contiguous memory management systems.

7.1 INTRODUCTION
In Non-Contiguous Memory Management a program is divided into several

blocks or segments that may be placed throughout main storage in pieces or

chunks not necessarily adjacent to one another. It is the function of Operating

System to manage these different chunks in such a way that they appear to be

contiguous to the user.

At run time contiguous virtual address space is mapped to noncontiguous

physical address space. This type of memory management is done in various

ways:

1. Non-Contiguous, real memory management system

¾ Paged memory management system

¾ Segmented memory management system

¾ Combined memory management system

2. Non-Contiguous, virtual memory management system

¾ Virtual memory management system

7.2 PRESENTATION OF CONTENTS
7.2.1 Segmentation

7.2.1.1 Principles of Operation

7.2.1.2 Address Translation

7.2.1.3 Segment Descriptor Caching

Lesson no. VII Non-Contiguous Memory Management 1

7.2.1.4 Protection

7.2.1.5 Sharing

7.2.2 Paging

7.2.2.1 Principles of Operation

7.2.2.2 Page Allocation

7.2.2.3 Hardware Support for Paging

7.2.2.4 Protection and Sharing

7.2.1 SEGMENTATION
The external fragmentation and its negative impact should be reduced in systems

where the average size of a request for allocation is smaller. Operating System

cannot reduce the average process size, but a way to reduce the average size of

a request for memory is to divide the address space of a single process into

blocks that may be placed into noncontiguous areas of memory. This can be

accomplished by segmentation. Segmentation provides breaking of an address

space into several logical segments, dynamic relocation and sophisticated forms

of protection and sharing.

According to user’s view, programs are collections of subroutines, stacks,

functions etc. Each of these components is of variable length and are logically

related entities. Elements within segment are identified by their offset from

beginning of the segment. Segments are formed at program translation time by

grouping together logically related items. For example, a typical process may

have separate code, data, and stack segments. Data or code shared with other

processes may be placed in their own dedicated segments.

All segments of all programs do not have to be of the same length since the

segments are formed as a result of logical division. There is a maximum segment

length. Although different segments may be placed in separate, noncontiguous

areas of physical memory, items belonging to a single segment must be placed

in contiguous areas of physical memory. Since segments are not equal,

segmentation is similar to dynamic partitioning. Thus segmentation possesses

some properties of both contiguous (with regard to individual segments) and

Lesson no. VII Non-Contiguous Memory Management 2

noncontiguous (with regard to address space of a process) schemes for memory

management.

Segmentation is quite natural for programmers who tend to think of their

programs in terms of logically related entities, such as subroutines and global or

local data areas. A segment is essential a collection of such entities. The

segmented address space of a single process is illustrated in Figure 1 (a). In that

particular example, four different segments are defined: DATA, STACK, CODE,

and SHARED.

Data Segment
:

: Data

datum x dw xx

datum y dw yy

Data Ends

Stack

Stack Segment

DS 500
 Code

Stack Ends

Code Segment
Psub Shared

Main

Code Ends Segment Map
 Segment # Size Type
Shared Segment 0 D Data
 ssub1 1 500 Stack
 ssub2 2 C Code
Shared Ends 3 S Code
(a) Segment Definition (b) Load Module

Figure 1 - Segments
Except for SHARED, the name of each segment is chosen to indicate the type of

information that it contains. The STACK segment is assumed to consist of 500

locations reserved for stack. The SHARED segment consists of two subroutines,

SSUB1 and SSUB2, shared with other processes. The definition of the segments

follows the typical assembly-language notation, in which programmers usually

Lesson no. VII Non-Contiguous Memory Management 3

have the freedom to define segments directly in whatever way they feel best suits

the needs of the program at hand. As a result, a specific process may have

several different segments of the same generic type, such as code or data. For

example, both CODE and SHARED segments contain executable instructions

and thus belong to the generic type "code".

7.2.1.1 Principles of Operation
Segmentation is mapping of user’s view onto physical memory. A logical address

space is a collection of segments. Each segment has a name and length. User

specifies each address by segment name or number and offset within segment.

Segments are numbered and are referenced by segment number. For relocation

purposes, each segment is compiled to begin at its own virtual address 0. An

individual item within a segment is then identifiable by its offset relative to the

beginning of the enclosing segment. Thus, logical address consists of <segment

no., offset>. In segmented systems, components belonging to a single segment

reside in one contiguous area. But different segments belonging to same process

occupy non-contiguous area of physical memory because each segment is

individually relocated.

For example, the subroutine SSUB2 in segment SHARED is assumed to begin at

offset 100. However, the unique designation of an item in a segmented address

space requires the specification of both its segment and the relative offset

therein. Offset 100 may fetch the first instruction of the subroutine SSUB2 within

the segment SHARED, but the same relative offset may designate an entirely

unrelated datum in the DATA segment.

To simplify processing, segment names are usually mapped to (virtual) segment

numbers. This mapping is static, and systems programs in the course of

preparation of process images may perform it.

A sample linker-produced load module for the segments defined in Figure 1(a) is

depicted in Figure 1(b). Virtual segment numbers are shown as part of the

segment map that systems programs prepare to facilitate loading of segments in

memory by the Operating System. When segment numbers and relative offsets

within the segments are defined, two-component virtual addresses uniquely

Lesson no. VII Non-Contiguous Memory Management 4

identify all items within a process's address space. For example, if the SHARED

segment is assigned number 3, the subroutine SSUB2 may be uniquely identified

by its virtual address (3100), where 100 is the offset within the segment number

3-SHARED.

7.2.1.2 Address Translation
Since physical memory in segmented systems generally retains its linear-array

organization, some address translation mechanism is needed to convert a two-

dimensional virtual-segment address into its one-dimensional physical

equivalent. In segmented systems, items belonging to a single segment reside in

one contiguous area of physical memory. With each segment compiled as if

starting from the virtual address zero, segments are generally individually

relocatable. As a result, different segments of the same process need not occupy

contiguous areas of physical memory.

When requested to load a segmented process, the Operating System attempts to

allocate memory for the supplied segments. Using logic similar to that used for

dynamic partitioning, it may create a separate partition to suit the needs of each

particular segment. The base (obtained during partition creation) and size

(specified in the load module) of a loaded segment are recorded as a tuple called

the segment descriptor. All segment descriptors of a given process are collected

in a table called the segment descriptor table (SDT). Two dimensional user

defined address is mapped to one dimensional physical address by segment

descriptor table. Each entry of this table has segment base and segment limit.

Segment base contains the starting physical address of the segment and

segment limit specifies the length of the segment.

Figure 2 illustrates a sample placement of the segments defined in Figure 1 into

physical memory, and the resulting SDT formed by the Operating System. With

the physical base address of each segment defined, the process of translation of

a virtual, two-component address into its physical equivalent basically follows the

mechanics of based addressing. The segment number provided in the virtual

address is used to index the segment descriptor table and to obtain the physical

Lesson no. VII Non-Contiguous Memory Management 5

base address of the related segment. Adding the offset of the desired item to the

base of its enclosing segment then produces the physical address.

Segment
table

Physical
memory

+<

CPU

Yes

N
o

Trap: addressing error

Hardware support for Segmentation

s d

Limi
t

Base

s

Figure 2 – Address translation in segmented systems
This process is illustrated in Figure 2 for the example of the virtual address

(3100). To access Segment 3, the number 3 is used to index the SDT and to

obtain the physical base address, 20000, of the segment SHARED. The size field

of the same segment descriptor is used to check whether the supplied offset is

within the legal bounds of its enclosing segment. If so, the base and offset are

added to produce the target physical address. In our example that value is

20100, the first instruction word of the shared subroutine SSUB2.

In general, the size of a segment descriptor table is related to the size of the

virtual address space of a process. For example, Intel's iAPX 286 processor is

capable of supporting up to 16K segments of 64 KB each per process, thus

Lesson no. VII Non-Contiguous Memory Management 6

requiring 16K entries per SDT. Given their potential size, segment descriptor

tables are not kept in registers. Being a collection of logically related items, the

SDTs themselves are often treated as special types of segments. Their

accessing is usually facilitated by means of a dedicated hardware register called

the segment descriptor table base register (SDTBR), which is set to point to the

base of the running process's SDT. Since the size of an SDT may vary from a

few entries to several thousand, another dedicated hardware register, called the

segment descriptor table limit register (SDTLR), is provided to mark the end of

the SDT pointed to by the SDTBR. In this way, an SDT need contain only as

many entries as there are segments actually defined in a given process.

Attempts to access nonexistent segments may be detected and dealt with as

nonexistent-segment exceptions.

From the Operating System's point of view, segmentation is essentially a

multiple-base-limit version of dynamically partitioned memory. Memory is

allocated in the form of variable partitions; the main difference is that one such

partition is allocated to each individual segment. Bases and limits of segments

belonging to a given process are collected into an SDT are normally kept in the

PCB of the owner process. Upon each process switch, the SDTBR and SDTLR

are loaded with the base and size, respectively, of the SDT of the new running

process. In addition to the process-loading time, SDT entries may also need to

be updated whenever a process is swapped out or relocated for compaction

purposes. Swapping out requires invalidation of all SDT entries that describe the

affected segments. When the process is swapped back in, the base fields of its

segment descriptors must be updated to reflect new load addresses. For this

reason, swapping out of the SDT itself is rarely useful. Instead, the SDT of the

swapped-out process may be discarded, and the static segment map-such as the

one depicted in Figure 1(b)-may be used for creation of an up-to-date SDT

whenever the related process is loaded in memory. Compaction, when

supported, requires updating of the related SDT entry for each segment moved.

In such systems, some additional or revised data structures may be needed to

Lesson no. VII Non-Contiguous Memory Management 7

facilitate identification of the SDT entry that describes the segment scheduled to

be moved.

The price paid for segmenting the address space of a process is the overhead of

storing and accessing segment descriptor tables. Mapping each virtual address

requires two physical memory references for a single virtual (program) reference,

as follows:

¾ Memory reference to access the segment descriptor in the SDT

¾ Memory reference to access the target item in physical memory

In other words, segmentation may cut the effective memory bandwidth in half by

making the effective virtual-access time twice as long as the physical memory

access time.

7.2.1.3 Segment Descriptor Caching
With performance of segmented systems so critically dependent on the duration

of the address translation process, computer system designers often provide

some hardware accelerators to speed the translation. Memory references

expended on mapping may be avoided by keeping segment descriptors in

registers. However, the potential size of an SDT and the overhead of process

switching make it too costly to keep an entire SDT of the running process in

registers. A reasonable compromise is to keep a few of the most frequently used

segment descriptors in registers. In this way, most of the memory references

may be mapped with the aid of registers. The rest may be mapped using the

SDT in memory, as usual. This scheme is dependent on the Operating System's

ability to select the proper segment descriptors for storing into registers. In order

to provide the intuitive motivation for one possible implementation of systematic

descriptor selection, let us investigate the types of segments referenced by the

executing process.

Memory references may be functionally categorized as accesses to (i)

Instructions, (ii) Data, and (iii) Stack.

A typical instruction execution sequence consists of a mixture of the outline types

of memory references. In fact, completion of a single stack manipulation

instruction, such as a push of a datum from memory onto stack, may require all

Lesson no. VII Non-Contiguous Memory Management 8

three types of references. Thus the working space of a process normally

encompasses one each of code, data, and stack segments. Therefore, keeping

the current code, data, and stack segment descriptors in registers may

accelerate address translation. Depending on its type, a particular memory

reference may then be mapped using the appropriate register. But can we know

the exact type of each memory reference as the processor is making it? The

answer is yes, with the proper hardware support. Namely, in most segmented

machines the CPU emits a few status bits to indicate the type of each memory

reference. The memory management hardware uses this information to select

the appropriate mapping register.

Base DS1 Size DS1
Base DS2 Size DS2 CS2

 `

Base SS1 Size SS1
Base CS1 Size CS1 (DS1)

 :
: (CS1)

Base CSn Size CSn
Segment Descriptor
Table

(DS2)

(CSn)

 No
 Yes

Base Size

Code
Current Code

Data
Current Data

Stack

Offset

S
T
A
T
U
S

S
E
L
E
C
T
O
R

Current Stack
CPU Segment Descriptor

Register File

Memor
y

Figure 3 – Segment-descriptor cache registers

Register-assisted translation of virtual to physical addresses is illustrated in

Figure 3. As indicated, the CPU status lines are used to select the appropriate

segment descriptor register (SDR). The size field of the selected segment

<Size +

Segment Size

Lesson no. VII Non-Contiguous Memory Management 9

descriptor is used to check whether the intended reference is within the bounds

of the target segment. If so, the base field is added with the offset to produce the

physical address. By making the choice of the appropriate segment register

implicit in the type of memory reference being made, segment typing may

eliminate the need to keep track of segment numbers during address

translations. Though segment typing is certainly useful, it may become restrictive

at times. For example, copying an instruction sequence from one segment into

another may confuse the selector logic into believing that source and target

segments should be of type data rather than code. Using the so-called segment

override of type prefixes, which allows the programmer to explicitly indicate the

particular segment descriptor register to be used for mapping the memory

reference in question, may alleviate this problem.

Segment descriptor registers are initially loaded from the SDT. Whenever the

running process makes an intersegment reference, the corresponding segment

descriptor is loaded into the appropriate register from the SDT. For example, an

intersegment JUMP or CALL causes the segment descriptor of the target (code)

segment to be copied from the SDT to the code segment descriptor register.

When segment typing is used as described, segment descriptor caching

becomes deterministic as opposed to probabilistic. Segment descriptors stored in

the three segment descriptor registers; define the current working set of the

executing process. Since membership in the working set of segments of a

process changes with time, segment descriptor registers are normally included in

the process state. Upon each process switch, the contents of the SDRs of the

departing process are stored with the rest of its context. Before dispatching the

new running process, the Operating System loads segment descriptor registers

with their images recorded in the related PCB.

7.2.1.4 Protection
The base-limit form of protection is obviously the most natural choice for

segmented systems. The legal address space of a process is the collection of

segments defined by its SDT. Except for shared segments. Placing different

segments in disjoint areas of memory enforces separation of distinct address

Lesson no. VII Non-Contiguous Memory Management 10

space. Thus most of the discussion of protection in systems with dynamic

allocation of memory is applicable to segmented environments as well.

An interesting possibility in segmented systems is to provide protection within the

address space of a single process, in addition to the more usually protection

between different processes. Given that the type of each segment is defined

commensurate with the nature of information stored in its constituent elements,

access rights to each segment can be defined accordingly. For instance, though

both reading and writing of stack segments may be necessary, accessing of code

segments can be permitted in execute-only or perhaps in the read-only mode.

Data segments can be read-only, write-only, or read-write. Thus, segmented

systems may be able to prohibit some meaningless operations, such as

execution of data or modifications of code. Additional examples include

prevention of stack growth into the adjacent code or data areas, and other errors

resulting from mismatching of segment types and intended references to them.

An important observation is that access rights to different portions of a single

address space may vary in accordance with the type of information stored

therein. Due to the grouping of logically related items, segmentation is one of the

rare memory-management schemes that allow such finely grained delineation of

access rights. The mechanism for enforcement of declared access rights in

segmented systems is usually coupled with the address translation hardware.

Typically, access-rights bits are included in segment descriptors. In the course of

address mapping, the intended type of reference is checked against the access

rights for the segment in question. Any mismatch results in abortion of the

memory reference in progress, and a trap to the Operating System.

7.2.1.5 Sharing
Shared objects are usually placed in separate, dedicated segments. A shared

segment may be mapped, via the appropriate segment descriptor tables, to the

virtual-address spaces of all processes that are authorized to reference it. The

deliberate use of offsets and of bases addressing facilitate sharing since the

virtual offset of a given item is identical in all processes that share it. The virtual

number of a shared segment, on the other hand, need not be identical in all

Lesson no. VII Non-Contiguous Memory Management 11

address spaces of which it is a member. These points are illustrated in Figure 4,

where a code segment EMACS is assumed to be shared by three processes P1,

P2 & P3. The relevant portions of the segment descriptor tables of the

participating processes P1, P2 & P3 are SDT1, SDT2, and SDT3 respectively,

and shown. As indicated, the segment EMACS is assumed to have different

virtual numbers in the three address spaces of which it is part. The placement of

access-rights bits in segment descriptor tables is also shown. Figure 4 illustrates

the fact that different processes can have different access rights to the same

shared segment. For example, whereas processes P1 and P2 can execute only

the shared segment EMACS, process P3 is allowed both reading and writing.

Figure 4 also illustrates the ability of segmented systems to conserve memory by

sharing the code of programs executed by many users. In particular, each

participating process can execute the shared code from EMACS using its own

private data segment.

EO

RW

SD1

SD2

EMCS

DATA2

(DATA1)

DATA3

RW

RW
RW

EO

SD3

MEMORY

ACCESS RIGHT SIZE BASE

Lesson no. VII Non-Contiguous Memory Management 12

Figure 4 – Sharing in segmented systems
Assuming there is an editor, this means that a single copy of it may serve the

entire user population of a time-sharing system. Naturally, execution of EMACS

on behalf of each user is stored in a private data segment of its corresponding

process. For example, users 1, 2, and 3 can have their respective texts buffers

stored in data segments DATA1, DATA2, and DATA3. Depending on which of

the three processes is active at a given time, the hardware data segment

descriptor register points to data segment DATA1, DATA2, or DATA3, and the

code segment descriptor register points to EMACS in all cases. Of course, the

current instruction to be executed by the particular process is indicated by the

program counter, which is saved and restored as a part of each process's state.

In segmented systems, the program counter register usually contains offsets of

instructions within the current code segment. This facilitates sharing by making

all code self-references relative to the beginning of the current code segment.

When coupled with segment typing, this feature makes it possible to assign

different virtual segment numbers to the same (physical) shared segment in

virtual-address spaces of different processes of which it is a part. Alternatively,

the problem of making direct self-references in shared routines restricts the type

of code that may safely be shared.

As described, sharing is encouraged in segmented systems. This presents some

problems in systems that also support swapping, which is normally done to

increase processor utilization. For example, a shared segment may need to

maintain its memory residence while being actively used by any of the processes

authorized to reference it. Swapping in this case opens up the possibility that a

participating process may be swapped out while its shared segment remains

resident. When such a process is swapped back in, the construction of its SDT

must take into consideration the fact that the shared segment may already be

resident. In other words, the Operating System must keep track of shared

segments and of processes that access them. When a participating process is

loaded in memory, the Operating System is expected to identify the location of

Lesson no. VII Non-Contiguous Memory Management 13

the shared segment in memory, if any, and to ensure its proper mapping from all

virtual address spaces of which it is a part.

7.2.2 PAGING
Paging is another solution to the problem of memory fragmentation. It removes

the requirement of contiguous allocation of physical memory. In it, the physical

memory is conceptually divided into a number of fixed-size slots, called page

frames. The virtual-address space of a process is also split into fixed-size blocks

of the same size, called pages. Memory management module identifies sufficient

number of unused page frames for loading of the requesting process's pages. An

address translation mechanism is used to map virtual pages to their physical

counterparts. Since each page is mapped separately, different page frames

allocated to a single process need not occupy contiguous areas of physical

memory.

7.2.2.1 Principles of Operation
Figure 5 demonstrates the basic principle of paging. It illustrates a sample 16 MB

system where virtual and physical addresses are assumed to be 24 bits long

each.

The page size is assumed to be 4096 bytes. Thus, the physical memory can

accommodate 4096 page frames of 4096 bytes each. After reserving 1 MB of

physical memory for the resident portion of the Operating System, the remaining

3840 page frames are available for allocation to user processes. The addresses

are given in hexadecimal notation. Each page is 1000H bytes long, and the first

user-allocatable page frame starts at the physical address 100000H.

The virtual-address space of a sample user process that is 14,848 bytes (3A00H)

long is divided into four virtual pages numbered from 0 to 3. A possible

placement of those pages into physical memory is depicted in Figure 5. The

mapping of virtual addresses to physical addresses in paging systems is

performed at the page level. Each virtual address is divided into two parts: the

page number and the offset within that page. Since pages and page frames have

identical sizes, offsets within each are identical and need not be mapped. So

Lesson no. VII Non-Contiguous Memory Management 14

each 24-bit virtual address consists of a 12-bit page number (high-order bits) and

a 12-bit offset within the page.

Address translation is performed with the help of the page-map table (PMT),

constructed at process-loading time. As indicated in figure 5, there is one PMT

entry for each virtual page of a process. The value of each entry is the number of

the page frame in the physical memory where the corresponding virtual page is

placed. Since offsets are not mapped, only the page frame number need be

stored in a PMT entry. E.g., virtual page 0 is assumed to be placed in the

physical page frame whose starting address is FFD000H (16,764,928 decimal).

With each frame being 1000H bytes long, the corresponding page frame number

is FFDH, as indicated on the right-hand side of the physical memory layout in

Figure 5. This value is stored in the first entry of the PMT. All other PMT entries

are filled with page frame numbers of the region where the corresponding pages

are actually loaded.

Virtual

Address
 Virtual

Physical Physical Page Page Frame Page Address Frame

No. 0000 0 000000
0 FFD 01000 1 .

02000 LDA 003 200 2
03000 3

1 100 .
2 103
3 FFF

 PMT

.

.

.
100000 (P1) 100
101000 101
102000 102
103000 (P2) 103
 .

:
:
:
:
:
:
:
:

FFC000 FFC
FFD000 (P0) FFD
FFE000 FFE
FFF000 (P3) FFF

 Memory

Figure 5 – Paging

C

200

FFF

FFF200

Lesson no. VII Non-Contiguous Memory Management 15

The logic of the address translation process in paged systems is illustrated in

Figure 5 on the example of the virtual address 03200H. The virtual address is

split by hardware into the page number 003H, and the offset within that page

(200H). The page number is used to index the PMT and to obtain the

corresponding physical frame number, i.e. FFF. This value is then concatenated

with the offset to produce the physical address, FFF200H, which is used to

reference the target item in memory.

The Operating System keeps track of the status of each page frame by using a

memory-map table (MMT). Format of an MMT is illustrated in Figure 6, assuming

that only the process depicted in Figure 5 and the Operating System are resident

in memory.

000 ALLOCATED
:
:
:

0FF ALLOCATED
100 ALLOCATED
101 FREE
102 FREE
103 ALLOCATED

:
:
:

FFC FREE
FFD ALLOCATED
FFE FREE
FFF ALLOCATED

Figure 6 – Memory-map table (MMT)
Each entry of the MMT described the status of page frame as FREE or

ALLOCATED. The number of MMT entries i.e. f is computed as f = m/p where m

is the size of the physical memory, and p is page size. Both m and p are usually

an integer power of base 2, thus resulting in f being an integer. When requested

to load a process of size s, the Operating System must allocate n free page

frames, so that n = Round(s/p) where p is the page size. The Operating System

allocates memory in terms of an integral number of page frames. If the size of a

Lesson no. VII Non-Contiguous Memory Management 16

given process is not a multiple of the page size, the last page frame may be

partly unused resulting into page fragmentation.

After selecting n free page frames, the Operating System loads process pages

into them and constructs the page-map table of the process. Thus, there is one

MMT per system, and as many PMTs as there are active processes. When a

process terminates or becomes swapped out, memory is deallocated by

releasing the frame holdings of the departing process to the pool of free page

frames.

7.2.2.2 Page Allocation
The efficiency of the memory allocation algorithm depends on the speed with

which it can locate free page frames. To facilitate this, a list of free pages is

maintained instead of the static-table format of the memory map assumed earlier.

In that case, n free frames may be identified and allocated by unlinking the first n

nodes of the free list. Deallocation of memory in systems without the free list

consists of marking in the MMT as FREE all frames found in the PMT of the

departing process a time consuming operation. Frames identified in the PMT of

the departing process can be linked to the beginning of the freed list. Linking at

the beginning is the fastest way of adding entries to an unordered singly linked

list. Since the time complexity of deallocation is not significantly affected by the

choice of data structure of free pages, the free-list approach has a performance

advantage as its time complexity of deallocation is not significantly affected by

the choice of data structure of free pages, and is not affected by the variation of

memory utilization.

7.2.2.3 Hardware Support for Paging
Hardware support for paging, concentrates on saving the memory necessary for

storing of the mapping tables, and on speeding up the mapping of virtual to

physical addresses. In principle, each PMT must be large enough to

accommodate the maximum size allowed for the address space of a process in a

given system. In theory, this may be the entire physical memory. So in a 16 MB

system with 256-byte pages, the size of a PMT should be 64k entries. Individual

PMT entries are page numbers that are 16 bits long in the sample system, thus

Lesson no. VII Non-Contiguous Memory Management 17

requiring 128 KB of physical memory to store a PMT. With one PMT needed for

each active process, the total PMT storage can consume a significant portion of

physical memory.

Since the actual address space of a process may be well below its allowable

maximum, it is reasonable to construct each PMT with only as many entries as

its related process has pages. This may be accomplished by means of a

dedicated hardware page-map table limit register (PMTLR). A PMTLR is set to

the highest virtual page number defined in the PMT of the running process.

Accessing of the PMT of the running process may be facilitated by means of the

page-map table base register (PMTBR), which points to the base address of the

PMT of the running process. The respective values of these two registers for

each process are defined at process-loading time and stored in the related PCB.

Upon each process switch, the PCB of the new running process provides the

values to be loaded in the PMTBR and PMTLR registers.

Even with the assistance of these registers, address translations in paging

systems still require two memory references; one to access the PMT for

mapping, and the other to reference the target item in physical memory. To

speed it up, a high-speed associative memory for storing a subset of often-used

page-map table entries is used. This memory is called the translation look aside

buffer (TLB), or mapping cache.

Associative memories can be searched by contents rather than by address. So,

the main-memory reference for mapping can be substituted by a TLB reference.

Given that the TLB cycle time is very small, the memory-access overhead

incurred by mapping can be significantly reduced. The role of the cache in the

mapping process is depicted in Figure 7.

As indicated, the TLB entries contain pairs of virtual page numbers and the

corresponding page frame numbers where the related pages are stored in

physical memory. The page number is necessary to define each particular entry,

because a TLB contains only a subset of page-map table entries. Address

translation begins by presenting the page-number portion of the virtual address

Lesson no. VII Non-Contiguous Memory Management 18

to the TLB. If the desired entry is found in the TLB, the corresponding page frame

number is combined with the offset to produce the physical address.

Alternatively, if the target entry is not in TLB, the PMT in memory must be

accessed to complete the mapping. This process begins by consulting the

PMTLR to verify that the page number provided in the virtual address is within

the bounds of the related process's address space. If so, the page number is

added to the contents of the PMTBR to obtain the address of the corresponding

PMT entry where the physical page frame number is stored. This value is then

concatenated with the offset portion of the virtual address to produce the physical

memory address of the desired item.

Virtual address .

Figure 7 – Translation-lookaside buffer (TLB)

Page Offset .

 Yes

No

 Yes

No

Non-existent page exception

.
40000 (i)
 .

.

.
60000 (m)
 .

.

.
90000 (k)
 .

.

.

I 400

 .

.

.
M 900

K 600
 PMT

400 I
600 M
900 K

TLB

Page
In
cache

<
PMTL +

C

C
PMTBR

Lesson no. VII Non-Contiguous Memory Management 19

Figure 7 demonstrates that the overhead of TLB search is added to all mappings,

regardless of whether they are eventually completed using the TLB or the PMT in

main memory. In order for the TLB to be effective, it must satisfy a large portion

of all address mappings. Given the generally small size of a TLB because of the

high price of associative memories, only the PMT entries most likely to be

needed ought to reside in the TLB.

The effective memory-access time, teff in systems with run-time address

translation is the sum of the address translation time, tTR and the subsequent

access time needed to fetch the target item from memory, t . M

 teff = t + tTR M

With TLB used to assist in address translation, t becomes TR

 T = h tTR TLB + (1 - h) (t + t) = t + (1 - h)tTLB M TLB M

where h is the TLB hit ratio, that is, the ratio of address translations that are

contained the TLB over all translations, and thus 0≤h≤1;tTLB is the TLB access

time; and tM is the main-memory access time. Therefore, effective memory-

access time in systems with a TLB is

 teff = t + (2 - h)tTLB M

It is observed that the hardware used to accelerate address translations in

paging systems (TLB) is managed by means of probabilistic algorithms, as

opposed to the deterministic mapping-register typing described in relation to

segmentation. The reason is that the mechanical splitting of a process’s address

space into fixed-size chunks produces pages. As a result, a page, unlike a

segment, in general does not bear any relationship to the logical entities of the

underlying program. For example, a single page may contain a mixture of data,

stack, and code. This makes typing and other forms of deterministic loading of

TLB entries extremely difficult, in view of the stringent timing restrictions imposed

on TLB manipulation.

7.2.2.4 Protection and Sharing
Unless specifically declared as shared, distinct address spaces are placed in

disjoint areas of physical memory. Memory references of the running process are

restricted to its own address space by means of the address translation

Lesson no. VII Non-Contiguous Memory Management 20

mechanism, which uses the dedicated PMT. The PMTLR is used to detect and to

abort attempts to access any memory beyond the legal boundaries of a process.

Modifications of the PMTBR and PMTLR registers are usually possible only by

means of privileged instructions, which trap to the Operating System if attempted

in user mode.

By adding the access bits to the PMT entries and appropriate hardware for

testing these bits, access to a given page may be allowed only in certain

programmer-defined modes such as read-only, execute-only, or other restricted

forms of access. This feature is much less flexible in paging systems than

segmentation. The primary difference is that paging is supposed to be entirely

transparent to programmers. Mechanical splitting of an address space into pages

is performed without any regard for the possible logical relationships between the

items under consideration. Since there is no notion of typing, code and data may

be mixed within one page. As we shall see, specification of the access rights in

paging systems is useful for pages shared by several processes, but it is of much

less value inside the boundaries of a given address space.

Protection in paging systems may also be accomplished by means of the

protection keys. In principle, the page size should correspond to the size of the

memory block protected by the single key. This allows pages belonging to a

single process to be scattered throughout memory-a perfect match for paged

allocation. By associating access-rights bits with protection keys, access to a

given page may be restricted when necessary.

Sharing of pages is quite straightforward with paged memory management. A

single physical copy of a shared page can be easily mapped into as many

distinct address spaces as desired. Since each such mapping is performed via a

dedicated entry in the PMT of the related process, different processes may have

different access rights to the shared page. Given that paging is transparent to

users, sharing at the page level must be recognized and supported by systems

programs. Systems programs must ensure that virtual offsets of each item within

a shared page are identical in all participating address spaces.

Lesson no. VII Non-Contiguous Memory Management 21

Like data, shared code must have the same within-page offsets in all address

spaces of which it is a part. As usual, shared code that is not executed in

mutually exclusive fashion must be reentrant. In addition, unless the shared code

is position-independent, it must have the same virtual page numbers in all

processes that invoke it. This property must be preserved even in cases when

the shared code spans several pages.

7.3 Keywords
MMT: memory-map table (MMT) is used by the Operating System to keep track

of the status of each page frame whether allocated or free.

Page: The virtual-address space of a process is divided into fixed-size blocks of

the same size, called pages.

TLB (Translation Look aside Buffer): It is a high-speed associative memory,

used to speed up memory access, by for storing a subset of often-used page-

map table entries.

PMT (Page Map Table): It is a table used to translate a virtual address into

actual physical address in paging system.

7.4 SUMMARY
Segmentation allows breaking of the virtual address space of a single process

into separate entities (segments) that may be placed in noncontiguous areas of

physical memory. As a result, the virtual-to-physical address translation at

instruction execution time in such systems is more complex, and some dedicated

hardware support is necessary to avoid a drastic reduction in effective memory

bandwidth. Since average segment sizes are usually smaller then average

process sizes, segmentation can reduce the impact of external fragmentation on

the performance of systems with dynamically partitioned memory. Other

advantages of segmentation include dynamic relocation, finely grained protection

both within and between address spaces, ease of sharing, and facilitation of

dynamic linking and loading. Unless virtual segmentation is supported,

segmentation does not remove the problem of limiting the size of a process's

virtual space by the size of the available physical memory.

Lesson no. VII Non-Contiguous Memory Management 22

No doubt segmentation reduces the impact of fragmentation and offers superior

protection and sharing by dividing each process's address space into logically

related entities that may be placed into non-contiguous areas of physical

memory. But paging simplifies allocation and de-allocation of memory by dividing

address spaces into fixed-sized chunks. Execution-time translation of virtual to

physical addresses, usually assisted by hardware, is used to bridge the gap

between contiguous virtual addresses and non-contiguous physical addresses

where different pages may reside.

7.5 SELF ASSESSMENT QUESTIONS (SAQ)
1. What do you understand by segmentation? Discuss in detail the address

translation mechanism in segmentation.

2. Write a detailed mote on sharing in segmentation. Also discuss the problem

during swapping in it.

3. How the access rights are implementation in sharing in segmentation.

4. What is the basic difference between paging and segmentation? Which one is

better and why?

5. What is the difference between a segment and a page? Discuss using

suitable example.

6. What is Table Look aside Buffer (TLB)? How is it used to speed up the

memory access? Explain.

7.6 SUGGESTED READINGS / REFERENCE MATERIAL
th1. Operating System Concepts, 5 Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.
nd2. Systems Programming and Operating Systems, 2 Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operating Systems, Godbole A.S., Tata McGraw Hill Publishing Company

Ltd., New Delhi.

4. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

5. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

Lesson no. VII Non-Contiguous Memory Management 23

6. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson no. VII Non-Contiguous Memory Management 24

Lesson number: 8 Writer: Dr. Rakesh Kumar

Virtual Memory Vetter: Prof. Dharminder Kumar

8.0 OBJECTIVE
This lesson is focused on the non-contiguous memory management systems.

The objective of this lesson is to make the students primarily familiar with the

following concepts:

(a) Virtual memory.

(b) Page replacement policies

(c) Page allocation policies

(d) Segmentation and Paging

8.1 INTRODUCTION
Virtual memory is designed to solve the problem of running a program that needs

more memory than the hardware has. One way of approaching this is to use

overlays. Overlays are code and data written to memory under system or

programmer control to reuse memory for a process. The old memory could be

overwritten or saved first to disk for later use as another overlay. Programmers

had to create the overlays, which required laying out their code in such a way

that it could be overlaid. Virtual Memory provides the same functionality, and

solved the protection and relocation problems in an interesting way. Central to

Virtual Memory is the idea of a virtual address and the associated virtual address

space. Under Virtual Memory all processes execute code written in terms of

virtual addresses that are translated by the memory management hardware into

the appropriate physical address. Each process thinks it has access to the whole

physical memory of the machine. This solves the relocation problem - no

rewriting of addresses is ever necessary, and the protection problem because a

process can no longer express the idea of accessing another process’s memory.

The open issues are how the virtual to physical translation is made, and how this

all allows automatic overlays.

Lesson No. VIII Virtual Memory 1

8.2 Presentation of contents
8.2.1 Virtual Memory

8.2.1.1 Principles of Operation

8.2.1.2 Management of Virtual Memory

8.2.1.3 Program Behavior

8.2.1.4 Replacement Policies

8.2.1.4.1 Replacement Algorithms

8.2.1.4.2 Global and Local Replacement Policies

8.2.1.5 Allocation Policies

8.2.1.6 Hardware Support and Considerations

8.2.1.7 Protection and Sharing

8.2.2 Segmentation and Paging

8.2.1 VIRTUAL MEMORY
Virtual memory allows execution of partially loaded processes. As a

consequence, virtual address spaces of active processes in a virtual-memory

system can exceed the capacity of the physical memory. This is accomplished by

maintaining an image of the entire virtual-address space of a process on

secondary storage, and by bringing its sections into main memory when needed.

The Operating System decides which sections to bring in, when to bring them in,

and where to place them. Thus, virtual-memory systems provide for automatic

migration of portions of address spaces between secondary and primary storage.

Virtual memory provides the illusion of a much larger memory than may actually

be available, so programmers are relieved of the burden of trying to fit a program

into limited memory.

Due to the ability to execute a partially loaded process, a process may be loaded

into a space of arbitrary size resulting into the reduction of external

fragmentation. Moreover, the amount of space in use by a given process may be

varied during its memory residence. As a result, the Operating System may

speed up the execution of important processes by allocating them more real

memory. Alternatively, by reducing the real-memory holdings of resident

Lesson No. VIII Virtual Memory 2

processes, the degree of multi-programming can be increased by using the

vacated space to activate more processes.

The speed of program execution in virtual-memory systems is bounded from

above by the execution speed of the same program run in a non-virtual memory

management system. That is due to delays caused by fetching of missing

portions of program's address space at run-time.

Virtual memory provides execution of partially loaded programs. But an

instruction can be completed only if all code, data, and stack locations that it

references reside in physical memory. When there is a reference for an out-of-

memory item, the running process must be suspended to fetch the target item

from disk. So what is the performance penalty?

An analysis of program behavior provides an answer to the question. Most

programs consist of alternate execution paths, some of which do not span the

entire address space. On any given run, external and internal program conditions

cause only one specific execution path to be followed. Dynamic linking and

loading exploits this aspect of program behavior by loading into memory only

those procedures that are actually referenced on a particular run. Moreover,

many programs tend to favor specific portions of their address spaces during

execution. So it is reasonable to keep in memory only those routines that make

up the code of the current pass. When another pass over the source code

commences, the memory manager can bring new routines into the main memory

and return those of the previous pass back to disk.

8.2.1.1 Principles of Operation
Virtual memory can be implemented as an extension of paged or segmented

memory management or as a combination of both. Accordingly, address

translation is performed by means of PMT (Page Map Table), SDT (Segment

Descriptor Tables), or both. The important characteristic is that in virtual-memory

systems some portions of the address space of the running process can be

absent from main memory.

The process of address mapping in virtual-memory systems is more formally

defined as follows. Let the virtual-address space be V = {0, 1, … , v-1}, and the

Lesson No. VIII Virtual Memory 3

physical memory space by M = {0, 1, ….m-1}. The Operating System dynamically

allocates real memory to portions of the virtual-address space. The address

translation mechanism must be able to associate virtual names with physical

locations. In other words, at any time the mapping hardware must realize the

function f: V → M such that

 r if item x is in real memory at location r
 f(x) =
 missing-item exception if item x is not in real memory

Thus, the additional task of address translation hardware in virtual systems is to

detect whether the target item is in real memory or not. If the referenced item is

in memory, the process of address translation is completed.

We present the operation of virtual memory assuming that paging is the basic

underlying memory-management scheme. The detection of missing items is

rather straightforward. It is usually handled by adding the presence indicator, a

bit, to each entry of page-map tables. The presence bit, when set, indicates that

the corresponding page is in memory; otherwise the corresponding virtual page

is not in real memory. Before loading the process, the Operating System clears

all the presence bits in the related page-map table. As and when specific pages

are brought into the main memory, its presence bit is reset.

A possible implementation is illustrated in Figure 1. The presented process's

virtual space is assumed to consisting of only six pages. As indicated, the

complete process image is present in secondary memory. The PMT contains an

entry for each virtual page of the related process. For each page actually present

in real memory, the presence bit is set (IN), and the PMT points to the physical

frame that contains the corresponding page. Alternatively, the presence bit is

cleared (OUT), and the PMT entry is invalid.

The address translation hardware checks the presence bit during the mapping of

each memory reference if the bit is set, the mapping is completed as usual.

However, if the corresponding presence bit in the PMT is reset, the hardware

generates a missing-item exception. In paged virtual-memory systems, this

exception is called a page fault. When the running process experiences a page

fault, it must be suspended until the missing page is brought into main memory.

Lesson No. VIII Virtual Memory 4

The disk address of the faulted page is usually provided in the file-map table

(FMT). This table is parallel to the PMT. Thus, when processing a page fault, the

Operating System uses the virtual page number provided by the mapping

hardware to index the FMT and to obtain the related disk address. A possible

format and use of the FMT is depicted in Figure 1.

 X (P3)

 Y (P0)

 Z (P4)

 Main Memory (P0)
 (P1)

 Presence Frame (P2)
0 IN Y 0
1 OUT 1
2 OUT 2
3 IN X 3 (P3)
4 IN Z 4 (P4)
5 OUT 5 (P5)

 Page Map Table File Mp Table
Secondary Disk

Memory
Figure 1: Virtual Memory

Page Faults
When a page is referenced and not found in the main memory, the Operating

System faces a page fault. The following are the basic steps in servicing a page

fault:

¾ The MMU interrupts the CPU (with a paging interrupt or exception

depending on the CPU model)

Lesson No. VIII Virtual Memory 5

¾ The paging ISR i.e. Interrupt Service Routine (usually called a pager or

page fault handler) loads the required page into an available frame. If a

frame is not available, the pager must make one available, by discarding a

frame. It’s generally better to evict a clean page than a dirty one because

dirty ones must be written to backing store. The current process may give

up the CPU while the relevant pages are moved in and out. (This is

basically an I/O request, although not an explicit one).

¾ When the pages are available and the process is runnable again, the

faulting instruction is restarted.

8.2.1.2 Management of Virtual Memory
The implementation of virtual memory requires maintenance of one PMT per

active process. Given that the virtual-address space of a process may exceed

the capacity of real memory, the size of an individual PMT can be much larger in

a virtual than in a real paging system with identical page sizes. The Operating

System maintains one MMT or a free-frame list to keep track of Free/allocated

page frames.

A new component of the memory manager's data structures is the FMT. FMT

contains secondary-storage addresses of all pages. The memory manager used

the FMT to load the missing items into the main memory. One FMT is maintained

for each active process. Its base may be kept in the control block of the related

process. An FMT has a number of entries identical to that of the related PMT. A

pair of page-map table base and page-map length registers may be provided in

hardware to expedite the address translation process and to reduce the size of

PMT for smaller processes. As with paging, the existence of a TLB is highly

desirable to reduce the negative effects of mapping on the effective memory

bandwidth.

The allocation of only a subset of real page frames to the virtual-address space

of a process requires the incorporation of certain policies into the virtual-memory

manager. We may classify these policies as follows:

1. Allocation policy: How much real memory to allocate to each active process

Lesson No. VIII Virtual Memory 6

2. Fetch policy: Which items to bring and when to bring them from secondary

storage into the main memory

3. Replacement policy: When a new item is to be brought in and there is no free

real memory, which item to evict in order to make room.

4. Placement policy: Where to place an incoming item

8.2.1.3 Program Behavior
Program behavior is of extreme importance for the performance of virtual-

memory systems. Execution of partially loaded programs generally leads to

longer turnaround times due to the processing of page faults. By minimizing the

number of page faults, the effective processor utilization, effective disk I/O

bandwidth, and program turnaround times may be improved.

It is observed that there is a strong tendency of programs to favor subsets of their

address spaces during execution. This phenomenon is known as locality of

reference. Both temporal and spatial locality of reference has been observed.

(a) Spatial locality is the tendency for a program to reference clustered

locations in preference to randomly distributed locations. Spatial locality

suggests that once an item is referenced, there is a high probability that it

or its neighboring items are going to be referenced in the near future.

(b) Temporal locality is the tendency for a program to reference the same

location or a cluster several times during brief intervals of time. Temporal

locality of reference is exhibited by program loops.

A locality is a small cluster of not necessarily adjacent pages to which most

memory references are made during a period of time. Both temporal and spatial

locality of reference is dynamic properties in the sense that the identity of the

particular pages that compose the actively used set varies with time. As

observed, the executing program moves from one locality to another in the

course of its execution. Statistically speaking, the probability that a particular

memory reference is going to be made to a specific page is a time-varying

function. It increases when pages in its current locality are being referenced, and

it decreases otherwise. The evidence also suggests that the executing program

moves slowly from one locality to another.

Lesson No. VIII Virtual Memory 7

Locality of reference basically suggests that a significant portion of memory

references of the running process may be made to a subset of its pages. These

findings may be utilized for implementation of replacement and allocation

policies.

8.2.1.4 Replacement Policies
If a page fault is there, then it is to be brought into the main memory

necessitating creation of a room for it. There are two options for this situation:

¾ The faulted process may be suspended until availability of memory.

¾ A page may be removed to make room for the incoming one.

Suspending a process is not an acceptable solution. Thus, removal is commonly

used to free the memory needed to load the missing items. A replacement policy

decides the victim page for eviction. In virtual memory systems all pages are kept

on the secondary storage. As and when needed, some of those pages are

copied into the main memory. While executing, the running process may modify

its data or stack areas, thus making some resident pages different from their disk

images (dirty page). So it must be written back to disk in place of its obsolete

copy. When a page that has not been modified (clean page) during its residence

in memory is to be evicted, if can simply be discarded. Tracking of page

modifications is usually performed in hardware by adding a written-into bit called

as dirty bit, to each entry of the PMT. It indicates whether the page is dirty or

clean.

8.2.1.4.1 Replacement Algorithms
First-In-First-Out (FIFO):
The FIFO algorithm replaces oldest pages i.e. the resident page that has spent

the longest time in memory. To implement the FIFO page-replacement algorithm,

the memory manager must keep track of the relative order of the loading of

pages into the main memory. One way to accomplish this is to maintain a FIFO

queue of pages.

FIFO fails to take into account the pattern of usage of a given page; FIFO tends

to throw away frequently used pages because they naturally tend to stay longer

in memory. Another problem with FIFO is that it may defy intuition by increasing

Lesson No. VIII Virtual Memory 8

the number of page faults when more real pages are allocated to the program.

This behavior is known as Belady’s anomaly.

Belady’s Anomaly
A group of researchers, led by a fellow named Belady, discovered a surprising

fact about FIFO paging. It’s possible (though unlikely) that adding memory to a

FIFO paging system increases the number of faults. The example is below:

Reference Strings 0 1 2 3 0 1 4 0 1 2 3 4

Youngest Page 0 1 2 3 0 1 4 4 4 2 3 3

 0 1 2 3 0 1 1 1 4 2 2

Older Page 0 1 2 3 0 0 0 1 4 4

Page Faults P P P P P P P P P

Figure 2(a): Number of real pages 3

Reference Strings 0 1 2 3 0 1 4 0 1 2 3 4

Youngest Page 0 1 2 3 3 3 4 0 1 2 3 4

 0 1 2 2 2 3 4 0 1 2 3

 0 1 1 1 2 3 4 0 1 2

Older Page 0 0 0 1 2 3 4 0 1

Page Faults P P P P P P P P P P

Figure 2(b): Number of real pages 4
This result has been generalized, and the key property is called the stack

property: that increasing the size of memory only adds contents to it. In the FIFO

case above, there are different contents in the upper 3 page frames in memory

for several states. FIFO is not a stack algorithm. Any non-stack algorithm can

display Belady’s anomaly. LRU is a stack algorithm.

Least Recently Used (LRU):
The least recently used algorithm replaces the least recently used resident page.

LRU algorithm performs better than FIFO because it takes into account the

patterns of program behavior by assuming that the page used in the most distant

past is least likely to be referenced in the near future. The LRU algorithm belongs

to a larger class of stack replacement algorithms. A stack algorithm is

distinguished by the property of performing better, or at least not worse, when

Lesson No. VIII Virtual Memory 9

more real memory is made available to the executing program. Stack algorithms

therefore do not suffer from Belady's anomaly.

The implementation of the LRU algorithm imposes too much overhead to be

handled by software alone. One possible implementation is to record the usage

of pages by means of a structure similar to the stack. Whenever a resident page

is referenced, it is removed from its current stack position and placed at the top

of the stack. When a page eviction is in order, the page at the bottom of the stack

is removed from memory.

Maintenance of the page-referencing stack requires it’s updating for each page

reference, regardless of whether it results in a page fault or not. So the overhead

of searching the stack, moving the reference page to the top, and updating the

rest of the stack accordingly must be added to all memory references. But the

FIFO queue needs to be updated only when page faults occur-overhead almost

negligible in comparison to the time required for processing of a page fault.

Optimal (OPT):
The algorithm by Belady, removes the page to be reference in the most distant

future i.e. page out the page that will be needed the furthest in the future. This is

impossible (halting problem), but provides an interesting benchmark. Since it

requires future knowledge, the OPT algorithm is not realizable. Its significance is

theoretical, as it can serve as a yardstick for comparison with other algorithms.

Approximations-Clock:
One popular algorithm combines the relatively low overhead of FIFO with

tracking of the resident-page usage, which accounts for the better performance

of LRU. This algorithm is sometimes referred to as Clock, and it is also known as

not recently used (NRU).

The algorithm makes use of the referenced bit, which is associated with each

resident page. The referenced bit is set whenever the related page is reference

and cleared occasionally by software. Its setting indicates whether a given page

has been referenced in the recent past. How recent this past is depends on the

frequency of the referenced-bit resetting. The page-replacement routine makes

use of this information when selecting a victim for removal.

Lesson No. VIII Virtual Memory 10

The algorithm is usually implemented by maintaining a circular list of the resident

pages and a pointer to the page where it left off. The algorithm works by

sweeping the page list and resetting the presence bit of the pages that it

encounters. This sweeping motion of the circular list resembles the movement of

the clock hand, hence the name clock. The clock algorithm seeks and evicts

pages not recently used in order to free page frames for allocation to demanding

processes. When it encounters a page whose reference bit is cleared, which

means that the related page has not been referenced since the last sweep, the

algorithm acts as follows:

(1) If the page is modified, it is marked for clearing and scheduled for writing to

disk.

(2) If the page is not modified, it is declared non-resident, and the page frames

that it occupies are feed.

The algorithm continues its operation until the required numbers of page frames

are freed. The algorithm may be invoked at regular time intervals or when the

number of free page frames drops below a specified threshold.

Other approximations and variations on this theme are possible. Some of them

track page usage more accurately by means of a reference counter that counts

the number of sweeps during which a given page is found to be un-referenced.

Another possibility is to record the states of referenced bits by shifting them

occasionally into related bit arrays. When a page is to be evicted, the victim is

chosen by comparing counters or bit arrays in order to find the least frequently

reference page. The general idea is to devise an implementable algorithm that

bases its decisions on measured page usage and thus takes into account the

program behavior patterns.

8.2.1.4.2 Global and Local Replacement Policies
As discussed, all replacement policies choose a victim among the resident pages

owned by the process that experiences the page fault. This is known as local

replacement. However, each of the presented algorithms may be made to

operate globally. A global replacement algorithm processes all resident pages

when selecting a victim. Local replacement tends to localize effects of the

Lesson No. VIII Virtual Memory 11

allocation policy to each particular process. Global replacement, on the other

hand, increases the degree of coupling between replacement and allocation

strategies. A global replacement algorithm may take pages allocated to one

process by the allocation algorithm, away. Global replacement is concerned

mostly with the overall state of the system, and much less with the behavior of

each individual process. Global replacement is known to be sub-optimal.

8.2.1.5 Allocation Policies
The allocation policy must compromise among conflicting requirements such as:

(a) Reduced page-fault frequency,

(b) Improved turn-around time,

(c) Improved processor utilization, etc.

Giving more real pages to a process will result in reduced page-fault frequency

and improved turnaround time. But it reduces the number of active processes

that may coexist in memory at a time resulting into the lower processor utilization

factor. On the other hand, if too few pages are allocated to a process, its page-

fault frequency and turnaround times may deteriorate.

Another problem caused by under-allocation of real pages may be encountered

in systems that opt for restarting of faulted instructions. If fewer pages are

allocated to a process than are necessary for execution of the restartable

instruction that causes the largest number of page faults in a given architecture,

the system might fault continuously on a single instruction and fail to make any

real progress.

Consider a two-address instruction, such as Add @X, @Y, where X and Y are

virtual addresses and @ denotes indirect addressing. Assuming that the

operation code and operand addresses are encoded in one word each, this

instruction need three words for storage. With the use of indirect addressing,

eight memory references are needed to complete execution of this instruction:

three to fetch the instruction words, two to fetch operand addresses, two to

access the operands themselves (indirect addressing), and one to store the

result. In the worst case, six different pages may have to reside in memory

concurrently in order to complete execution of this instruction: two if the

Lesson No. VIII Virtual Memory 12

instruction crosses a page boundary, two holding indirect addresses, and two

holding the target operands. A likely implementation of this instruction calls for

the instruction to be restarted after a page fault. If so, with fewer than six pages

allocated to the process that executes it, the instruction may keep faulting

forever. In general, the lower limit on the number of pages imposed by the

described problem is architecture-dependent. In any particular implementation,

the appropriate bound must be evaluated and built into the logic of the allocation

routine.

While we seem to have some guidance as to the minimal number of pages, the

reasonable maximum remains elusive. It is also unclear whether a page

maximum should be fixed for a given system or determined on an individual

basis according to some specific process attributes. Should the maximum be

defined statically or dynamically, in response to system resource utilization and

availability, and perhaps in accordance with the observable behavior of the

specific process?

From the allocation module's point of view, the important conclusion is that each

program has a certain threshold regarding the proportion of real to virtual pages,

below which the number of page faults increases very quickly. At the high end,

there seems to be a certain limit on the number of real pages, above which an

allocation of additional real memory results in little or in moderate performance

improvement. Thus, we want to allocate memory in such a way that each active

program is between these two extremes.

Being program-specific, the upper and lower limits should probably not be fixed

but derived dynamically on the basis of the program faulting behavior measured

during its execution. When resource utilization is low, activating more processes

may increase the degree of multiprogramming. However, the memory manager

must keep track of the program behavior when doing so. A process that

experiences a large number of page faults should be either allocated more

memory or suspended otherwise. Likewise, a few pages may be taken away

from a process with a low page-fault rate without great concern. In addition, the

number of pages allocated to a process may be influenced by its priority (higher

Lesson No. VIII Virtual Memory 13

priority may indicate that shorter turnaround time is desirable), the amount of free

memory, fairness, and the like.

Although the complexity and overhead of memory allocation should be within a

reasonable bound, the use of oversimplified allocation algorithms has the

potential of crippling the system throughput. If real memory is over-allocated to

the extent that most of the active programs are above their upper page-fault-rate

thresholds, the system may exhibit a behavior known as thrashing. With very

frequent page faults, the system spends most of its time shuttling pages between

main memory and secondary memory. Although the disk I/O channel may be

overloaded by this activity, but processor utilization is reduced.

One way of introducing thrashing behavior is dangerously logical and simple.

After observing a low processor utilization factor, the Operating System may

attempt to improve it by activating more processes. if no free pages are available,

the holdings of the already-active processes may be reduced. This may drive

some of the processes into the high page-fault zone. As a result, the processor

utilization may drop while the processes are awaiting their pages to be brought

in. In order to improve the still-decreasing processor utilization, the Operating

System may decide to increase the degree of multi-programming even further.

Still more pages will be taken away from the already-depleted holdings of the

active processes, and the system is hopelessly on its way to thrashing. It is

obvious that global replacement strategies are susceptible to thrashing.

Thus a good design must make sure that the allocation algorithm is not unstable

and inclined toward thrashing. Knowing the typical patterns of program behavior,

we want to ensure that no process is allocated too few pages for its current

needs. Too few pages may lead to thrashing, and too many pages may unduly

restrict the degree of multi-programming and processor utilization.

Page-Fault Frequency (PFF)
This policy uses an upper and lower page-fault frequency threshold to decide for

allocation of new page frames. The PFF parameter P may be defined as: P = 1/T

Where T is the critical inter-page fault time. P is usually measured in number of

page faults per millisecond. The PFF algorithm may be implemented as follows:

Lesson No. VIII Virtual Memory 14

1. The Operating System defines a system-wide (or per-process) critical page-

fault frequency, P.

2. The Operating System measures the virtual (process) time and stores the

time of the most recent page fault in the related process control block.

When a page fault occurs, the Operating System acts as follows:

¾ If the last page fault occurred less than T = 1/P ms ago, the process is

operating above the PFF threshold, and a new page frame is added from the

pool to house the needed page.

¾ Otherwise, the process is operating below the PFF threshold P, and a page

frame occupied by a page whose reference bit and written-into bit are not set

is freed to accommodate the new page.

¾ The Operating System sweeps and resets referenced bits of all resident

pages. Pages that are found to be unused, unmodified, and not shared since

the last sweep are released, and the freed page frames are returned to the

pool for future allocations.

For completeness, some policies need to be employed for process activation and

deactivation to maintain the size of the pool of free page frames within desired

limits.

8.2.1.6 Hardware Support and Considerations
Virtual memory requires:

(1) instruction interruptibility and restartability,

(2) a collection of page status bits associated with each page descriptor,

(3) And if based on paging - a TLB to accelerate address translations.

Choice of the page size is an important design consideration in that it can have a

significant impact on performance of a virtual-memory system. In most

implementations, one each of the following bits is provided in every page

descriptor:

¾ Presence bit, used to aid detection of missing items by the mapping hardware

¾ Written-into (modified) bit, used to reduce the overhead incurred by the

writing of unmodified replaced pages to disk

¾ Referenced bit, used to aid implementation of the replacement policy

Lesson No. VIII Virtual Memory 15

An important hardware accelerator in virtual-memory systems is the TLB.

Although system architects and hardware designers primarily determine the

details of the TLB operation, the management of TLB is of interest because it

deals with problems quite similar to those discussed in the more general

framework of virtual memory. TLB hardware must incorporate allocation and

replacement policies so as to make the best use of the limited number of

mapping entries that the TLB can hold. An issue in TLB allocation is whether to

devote all TLB entries to the running process or to distribute them somehow

among the set of active processes. The TLB replacement policy governs the

choice of the entry to be evicted when a miss occurs and another entry needs to

be brought in.

Allocation of all TLB entries to the running process can lead to relatively lengthy

initial periods of “loading” the TLB whenever a process is scheduled. This can

lead to the undesirable behavior observed in some systems when an interrupt

service routine (ISR) preempts the running process. Since a typical ISR is only a

few hundred instructions long, it may not have enough time to load the TLB. This

can result in slower execution of the interrupt service routine due to the need to

reference PMT in memory while performing address translations. Moreover,

when the interrupted process is resumed, its performance also suffers from

having to load the TLB all over again. One way to combat this problem is to use

multi-context TLBs that can contain and independently manage the PMT entries

of several processes. With a multi-context TLB, when a process is scheduled for

execution, it may find some of its PMT entries left over in the TLB from the

preceding period of activity. Management of such TLBs requires the identity of

the corresponding process to be associated with each entry, in order to make

sure that matches are made only with the TLB entries belonging to the process

that produced the addresses to be mapped.

Removal of TLB entries is usually done after each miss. If PMT entries of several

processes are in the buffer, the victim may be chosen either locally or globally.

Understandably, some preferential treatment is usually given to holdings of the

Lesson No. VIII Virtual Memory 16

running process. In either case, least recently used is a popular strategy for

replacement of entries.

The problem of maintaining consistency between the PMT entries and their TLB

copies in the presence of frequent page moves must also be tackled by hardware

designers. Its solution usually relies on some specialized control instructions for

TLB flushing or for it selective invalidation.

Another hardware-related design consideration in virtual-memory systems is

whether I/O devices should operate with real or virtual addresses.

A hardware/software consideration involved in the design of paged systems Is

the choice of the page size. Primary factors that influence this decision are

(1) Memory utilization and cost.

(2) Page-transport efficiency.

Page-transport efficiency refers to the performance cost and overhead of fetching

page from the disk or, in a diskless workstation environment, across the network.

Loading of a page from disk consists of two basic components: the disk-access

time necessary to position the heads over the target track and sector, and the

page-transfer time necessary to transfer the page to main memory thereafter.

Head positioning delays generally exceed disk-memory transfer times by order of

magnitude. Thus, total page-transfer time tends to be dominated by the disk

positioning delay, which is independent of the page size.

Small page size reduces page breakage, and it may make better use of memory

by containing only a specific locality of reference. Research results suggest that

procedures in many applications tend to be smaller than 100 words. On the other

hand, small pages may result in excessive size of mapping tables in virtual

systems with large virtual-address spaces. Page-transport efficiency is also

adversely affected by small page sizes, since the disk-accessing overhead is

imposed for transferring a relatively small group of bytes.

Large pages tend to reduce table fragmentation and to increase page-transport

efficiency. This is because the overhead of disk accessing is amortized over a

larger number of bytes whenever a page is transferred between disk and

memory. On the negative side, larger pages may impact memory utilization by

Lesson No. VIII Virtual Memory 17

increasing page breakage and by spanning more than one locality of reference. If

multiple localities contained in a single page have largely dissimilar patterns of

reference, the system may experience reduced effective memory utilization and

wasted I/O bandwidth. In general, the page-size trade-off is technology-

dependent, and its outcome tends to vary as the price and performance of

individual components change.

8.2.1.7 Protection and Sharing
The frequent moves of items between main and secondary memory may

complicate the management of mapping tables in virtual systems. When several

parties share an item in real memory, the mapping tables of all involved

processes must point to it. If the shared item is selected for removal, all

concerned mapping tables must be updated accordingly. The overhead involved

tends to outweigh the potential benefit or removing shared items. Many systems

simplify the management of mapping tables by fixing the shared objects in

memory.

An interesting possibility provided by large virtual-address spaces is to treat the

Operating System itself as a shared object. As such, the Operating System is

mapped as a part of each user’s virtual space. To reduce table fragmentation,

dedicated mapping registers are often provided to access a single physical copy

of the page-map table reserved for mapping references to the Operating System.

One or more status bits direct the mapping hardware to use the public or private

mapping table, as appropriate for each particular memory reference. In this

scheme, different users have different access rights to portions of the Operating

System. Moreover, the Operating System-calling mechanism may be simplified

by avoiding expensive mode switches between users and the Operating System

code. With the protection mechanism provided by mapping, a much faster CALL

instruction, or its variant, may be used to invoke the Operating System.

8.2.2 Segmentation and Paging
It is also possible to implement virtual memory in the form of demand

segmentation inheriting the benefits of sharing and protection provided by

segmentation. Moreover, their placement policies are aided by explicit

Lesson No. VIII Virtual Memory 18

awareness of the types of information contained in particular segments. For

example, a “working set” of segments should include at least one each of code,

data, and stack segments. As with segmentation, inter-segment references alert

the Operating System to changes of locality. However, the variability of segment

sizes and the within-segment memory contiguity requirement complicate the

management of both main and secondary memories. Placement strategies are

quite complex in segmented systems. Moreover, allocation and deallocation of

variable-size storage areas to hold individual segments on disk imposes

considerably more overhead than handling of pages that are usually designed to

fit in a single disk block.

On the other hand, paging is very easy for the management of main and

secondary memories, but it is inferior with regard to protection and sharing. The

transparency of paging necessitates the use of probabilistic replacement

algorithms which virtually no guidance from users, they are forced to operate

mainly on the basis of their observations of program behavior.

Both segmented and paged implementations of virtual memory have their

advantages/disadvantages. Some systems combine the two approaches in order

to enjoy the benefits of both. One approach is to use segmentation from the

user’s point of view but to divide each segment into pages of fixed size for

purposes of allocation. In this way, the combined system retains most of the

advantages of segmentation. At the same time, the problems of complex

segment placement and management of secondary memory are eliminated by

using paging.

The principle of address translation in combined segmentation and paging

systems is shown in Figure 5. Both segment descriptor tables and PMT are

required for mapping. Instead of containing the base and limit of the

corresponding segment, each entry of the SDT contains the base address and

size of the PMT to be used for mapping of the related segment’s pages. The

presence bit in each PMT entry indicates availability of the corresponding page in

the real memory. Access rights are recorded as a part of segment descriptors,

although they may be placed or refined in the entries of the PMT. Each virtual

Lesson No. VIII Virtual Memory 19

address consists of three fields: segment number, page number, and offset

within the page. When a virtual address is presented to the mapping hardware,

the segment number is used to locate the corresponding PMT. Provided that the

issuing process is authorized to make the intended type of reference to the target

segment, the page number is used to index the PMT. If the presence bit is set,

obtaining the page-frame address from the PMT and combining this with the

offset part of the virtual address complete the mapping. If the target page is

absent from real memory, the mapping hardware generates a page-fault

exception, which is processed. At both mapping stages, the length fields are

used to verify that the memory references of the running process lie within the

confines of it address space.

Virtual Address To Memory
Segment
Number

Page
Number

Offset

Presence

 Segment Size Violation Illegal Access

 PMT for segment X

Base Size Access

Rights

Segment Descriptor
Table

C1 is “<LIMT”
C2 is “Authorized Access”
C3 is “SDTLR”

Figure 5 – Segmentation and paging
Many variations of this powerful scheme are possible. For example, the presence

bit may be included with entries of the SDT. It may be cleared when no pages of

the related segment are in real memory. When such a segment is referenced,

bringing several of lits pages into main memory may process the segment fault.

In general, page re-fetching has been more difficult to implement in a way that

C1 C2

NO
NO

C3

SDTBR

NO

YES

YES

YES

Non Existent
Segment Exception

Lesson No. VIII Virtual Memory 20

performs better than demand paging. One of the main reasons for this is the

inability to predict the use of previously un-referenced pages. However,

referencing of a particular segment increases the probability of its constituent

pages being referenced.

While the combination of segmentation and paging is certainly appealing, it

requires two memory accesses to complete the mapping of each virtual address

resulting into the reduction of the effective memory bandwidth by two-thirds. It

may be too much to bear even in the face of all the added benefits. Obviously,

hardware designers of such systems must assist the work of the Operating

System by providing ample support in terms of mapping registers and look aside

buffers.

8.3 Keywords
Locality of Reference: There is a strong tendency of programs to favor subsets

of their address spaces during execution. This phenomenon is known as locality

of reference.
Page fault: The phenomenon of not finding a referenced page in the memory is

known a page fault.

Dirty page: A page on which a write operation has been performed.

Clean page: A page which is not dirty i.e. not modified due to write operation.

Thrashing: A process is thrashing if it spending more time in paging (i.e. page

swapping) then executing.

8.4 SUMMARY
The memory-management layer of an Operating System allocates and reclaims

portions of main memory in response to requests, and in accordance with the

resource-management objectives of a particular system. Memory is normally

freed when resident objects terminate. When it is necessary and cost-effective,

the memory manager may increase the amount of available memory by moving

inactive or low-priority objects to lower levels of the memory hierarchy

(swapping). The objective of memory management is to provide efficient use of

memory by minimizing the amount of wasted memory while imposing little

storage, computational, and memory-access overhead. In addition, the memory

Lesson No. VIII Virtual Memory 21

manager should provide protection by isolating distinct address spaces, and

facilitate inter-process cooperation by allowing access to shared data and code.

It is very desirable to execute a process whose logical address space is larger

than the available physical address space. It can be achieved through overlays

but imposing a lot of burden on the programmers. The better option is virtual

memory. Virtual memory removes the restriction on the size of address spaces of

individual processes that is imposed by the capacity of the physical memory

installed in a given system. In addition, virtual memory provides for dynamic

migration of portions of address spaces between primary and secondary memory

in accordance with the relative frequency of usage.

If the total memory requirement is larger than the available physical memory,

then memory management system has to create the house for new pages by

replacing some pages from the memory. A number of page replacement policies

have been proposed such as FIFO, LRU, NRU, etc with their merits and

demerits. FIFO implementation is easy but suffers from Belady anomaly. Optimal

replacement requires future knowledge. LRU is n approximation of optimal but

difficult to implement. After page replacement, there is the need for frame

allocation policy. An improper allocation policy may result into thrashing.

It is also possible to implement virtual memory in the form of demand

segmentation inheriting the benefits of sharing and protection provided by

segmentation but placement strategies are complex, allocation and deallocation

of variable-size storage areas to hold individual segments on disk imposes more

overhead. On the other hand, paging is very easy for the management of main

and secondary memories, but it is inferior with regard to protection and sharing.

Some systems combine the two approaches in order to enjoy the benefits of

both.

8.6 SELF ASSESMENT QUESTIONS (SAQ)
1. Write short notes on following:

(a) Thrashing

(b) Page fault frequency

(c) Sharing in virtual memory

Lesson No. VIII Virtual Memory 22

2. Differentiate between following:

(a) Dirty page and clean page

(b) Logical Address and Physical Address

(c) Spatial and temporal locality of reference

(d) Segmentation and paging

3. What is the common drawback of all the real memory management

techniques? How is it overcome in virtual memory management schemes?

4. What extra hardware do we require for implementing demand paging and

demand segmentation?

5. Show that LRU page replacement policy possesses the stack property.

6. Differentiate between internal and external fragmentation.

7. What do you understand by thrashing? What are the factors causing it?

8. Compare FIFO page replacement policy with LRU page replacement on

the basis of overhead.

9. What do you understand by Belady’s anomaly? Show that page

replacement algorithm which possesses the stack property cannot suffer

from Belady’s anomaly.

8.5 SUGGESTED READINGS / REFERENCE MATERIAL
1. Operating Systems Concepts, 5th Edition, Silberschatz A., Galvin P.B.,

John Wiley and Sons.

2. Systems Programming and Operating Systems, 2nd Revised Edition,

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi.

3. Operting Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill

Publishing Company Ltd., New Delhi.

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education

Asia, 2000.

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company

Ltd., New Delhi, 2002.

Lesson No. VIII Virtual Memory 23

	
	1. 1 INTRODUCTION
	Figure 3. Basic components of a computer system
	Figure 4: the on-line, off-line and spooling processes
	1.3 SUMMARY

	1.5. SELF ASSESMENT QUESTIONS (SAQ)
	LESSON2.pdf
	
	Figure 1 Extended Machine View
	
	Figure 2: Simple Hierarchical Machine View
	The two most common approaches to provide the services are system calls and system programs.
	2.2.3.1 SYSTEM CALLS
	FORK/JOIN

	2.5. SELF ASSESMENT QUESTIONS (SAQ)

	LESSON3.pdf
	3.2.1 Definition of Process
	3.2.3.1 The long-term scheduler
	3.2.3.2 The medium-term scheduler
	3.2.3.3 The short-term scheduler
	3.2.4.1 User-oriented Scheduling Criteria
	3.2.4.2 System-oriented Scheduling Criteria
	3.2.6.2 Shortest Job First (SJF)

	3.2.1 Definition of Process
	In Process model, all software on the computer is organized into a number of sequential processes. A process includes PC, registers, and variables. Conceptually, each process has its own virtual CPU. In reality, the CPU switches back and forth among processes. The process state consist of everything necessary to resume the process execution if it is somehow put aside temporarily. The process state consists of at least following:
	3.2.3.1 The long-term scheduler
	3.2.3.2 The medium-term scheduler
	3.2.3.3 The short-term scheduler
	3.2.4.1 User-oriented Scheduling Criteria
	Response time
	Turnaround time
	Deadlines
	Predictability
	3.2.4.2 System-oriented Scheduling Criteria
	Throughput
	Processor utilization
	Fairness
	Priorities
	3.2.6.2 Shortest Job First (SJF)
	Variants of Round Robin
	Priority aging

	LESSON4.pdf
	
	Lesson number: 4 Writer: Dr. Rakesh Kumar
	4.2.2 Preemptable and Nonpreemptable Resources

	4.2.3 Necessary and Sufficient Deadlock Conditions
	4.2.6 Deadlock Prevention
	4.2.7 Deadlock Avoidance
	4.2.7.1 Banker’s Algorithm

	4.2.8 Deadlock Detection
	4.2.9 Deadlock Recovery
	4.2.2 Preemptable and Nonpreemptable Resources

	4.2.3 Necessary and Sufficient Deadlock Conditions
	4.2.6 Deadlock Prevention
	4.2.7 Deadlock Avoidance
	4.2.7.1 Banker’s Algorithm

	4.2.8 Deadlock Detection
	4.2.9 Deadlock Recovery

	 There are four Necessary and Sufficient Deadlock Conditions (1) Mutual Exclusion Condition: The resources involved are non-shareable, (2) Hold and Wait Condition: Requesting process hold already, resources while waiting for requested resources,(3) No-Preemptive Condition: Resources already allocated to a process cannot be preempted,(4) Circular Wait Condition: The processes in the system form a circular list or chain where each process in the list is waiting for a resource held by the next process in the list.
	4.5 SELF-ASSESMENT QUESTIONS (SAQ)

	LESSON5.pdf
	
	Figure 1. Single contiguous memory management
	Figure 2 – Fixed Partitions
	Figure 3 – Partition description table

	5.5 SELF ASSESSMENT QUESTIONS (SAQ)

	LESSON6.pdf
	
	6.2.1.6 Evaluation
	Figure 1– Partitions in dynamic memory partitioning
	Figure 3 – Overlapping partitions

	
	
	Figure 4 – Accessing shared code (a) Process A (b) Process B

	6.2.1.6 Evaluation

	6.5 SELF ASSESSMENT QUESTIONS (SAQ)

	LESSON7.pdf
	
	Figure 1 - Segments
	Figure 2 – Address translation in segmented systems
	Figure 4 – Sharing in segmented systems

	7.5 SELF ASSESSMENT QUESTIONS (SAQ)

	lesson8.pdf
	
	8.2.1.4.2 Global and Local Replacement Policies

	8.6 SELF ASSESMENT QUESTIONS (SAQ)

