
MCA-203 213

CHAPTER-1

Fundamental Concepts

Author: Dr. Manoj Duhan Vetter : Mr. Sandeep Arya

1.1 ANALOG SIGNALS

We are very familiar with analog signals. The reading of a moving coil or moving

iron voltmeter and ammeter, dynamometer wattmeter etc., are all analog quantities. The trace

on a CRO screen is also analog. Analog methods for communication system have long been

in use. Frequency division multiplexing is the means of analog communication. An electronic

amplifier is an analog circuit. The low level analog signal (audio, video, etc.) is amplified to

provide strength to the signal. Analog circuit systems (position control, process control) have

been in use for the past many decades. Analog Computers use voltages, resistances and

potentiometric rotations to represent the numbers and perform arithmetic operations. Analog

differentiation, integration, etc., is also done. Operational amplifier is a very versatile analog

electronic circuit used to perform a variety of operations (addition, subtraction, multiplication,

division, exponentiation, differentiation, integration etc.). Analog integrated circuits are

widely used in electronic industry.

1.2 DIGITAL SIGNALS

 The term digital is derived from digits. Any device or system which works on digits

is a digital device or system. A digital voltmeter indicates the value of voltage in the form of

digits, e.g., 230.25. Reading an analog instrument introduces human error and also requires

more time. A digital reading is more accurate, eliminates human error and can be read

quickly.

 Communication systems have also gone digital. The initial signal waveform is

always analog. To use digital transmission, the signal waveform is sampled and the digital

representation transmitted. The process of converting analog signal to digital form is also

MCA-203 214

known as digitizing. For multiple channels of transmission, Time Division Multiplexing is

used.

 Digital control systems are fast replacing analog control systems. In digital control

systems the error is in the form of digital pulses.

 Digital computers have revolutionalized the concept of computers. Their capability

ranges from simple calculations to complex calculations using numerical techniques. Many

computing tasks which required hours and days take only a few minutes on digital computers.

 Digital signal processing is concerned with the representation of continuous time

(analog) signals in digital form. It is based on Claude Shannon’s∗ sampling theorem which

states that “A band limited continuous time signal can be reconstructed in its entirety from a

sequence of samples taken at intervals of less than
Nf2

1 where fN is the highest frequency

present in the signal.” It is essential that the analog signal is band limited which limits how

much it can change between samples. The sampling rate has to high to be ensure accuracy.

 Since the initial signal is always analog and the final required signal is also mostly

analog, a digital system requires three essential aspects (1) conversion of analog signal to

digital form (2) transmission of digital signal (3) reconstruction of analog signal from the

received digital signal as shown in Fig. 1.1

 A continuous time function x(t) is converted into a digital signal x(n) by an analog to

digital (A/D) converter. The output of discrete time system is y(n) and is converted to

continuous time function by digital to analog (D/A) converter. The discrete time system, in

digital communications, is a digital communication channel. To achieve high fidelity, the

sampling rate may have to be very high say 50000 samples per second. Each sample may be

encoded by (say) 18 bits. The frequency fs (in Fig. 1.1) must be more than twice fN the

highest frequency in the analog signal. Very large scale integration (VLSI) digital circuits

have capability to sample at very fast rate so that high fidelity is achieved.

∗ Sampling is done to convert analog signal to digital signal.

MCA-203 215

A DSP (digital signal processing) chip is the core of digital system used in cellular

phones, modems, disk drives, digital automotive systems etc. It was invented only about 15

years ago but its applications have grown tremendously.

Digital methods have the following advantages over analog methods :

1. Digital devices work only in two states (say on and off). Thus their operation is

very simple and reliable.

2. Digital display is very accurate and can be read at a fast speed. Human error is

eliminated.

3. Electronic components exhibit change in behaviour due to ageing, change of

ambient temperature etc. Therefore, the behaviour of analog circuits tends to be

somewhat unpredictable. However, digital circuits are free from these defects.

4. Digital ICs are very cheap and compact in size.

5. Variety of digital ICs are available.

6. Power requirement of digital circuits is very low.

7. Digital systems have the characteristic advantage of memory. Thus information

can be stored over a period of time. The space required for this stage is very

small. One compact disc∗ can store information contained in many books.

8. Digital systems have high fidelity and provide noise free operations.

9. By integrating system peripheral functions on a DSP chip, the reliability can be

enhanced and cost reduced.

10. When volumes are high, they can be manufactured at low cost.

11. The same digital system can be used with a variety of software for a number of

tasks.

12. Standardisation & Repeatability.

∗ A compact disc is known s CD.

A/D
Converter

Discrete
Time system

D/A
converter

x(t) x(n) y(n) y(t)

Clock Clock
(Period T = 1/fs) (Period T = 1/fs)

Fig. 1.1 Digital system

MCA-203 216

1.3 BASIC DIGITAL CIRCUITS

In a digital system there are only a few basic operations performed, irrespective of the

complexities of the system. These operations may be required to be performed a number of

times in a large digital system like digital computer or a digital control system, etc. The basic

operations are AND, OR, NOT, and FLIP-FLOP. The AND, OR, and NOT operations are

discussed here and the FLIP-FLOP, which is a basic memory element used to store binary

information (one bit is stored in one FLIP-FLOP).

1.3.1 The And Operation

 A circuit which performs an AND operation is shown in Fig. 1.2. It has N inputs (N

≥ 2) and one output. Digital signals are applied at the input terminals marked A, B, …, N, the

other terminal being ground, which is not shown in the diagram. The output is obtained at the

output terminal marked Y (the other terminal being ground) and it is also a digital signal. The

AND operation is defined as : the output is 1 if and only if all the inputs are 1.

Mathematically, it is written as

 Y = A AND B AND C … AND N

 = A ⋅ B ⋅ C ⋅ … ⋅ N

 = ABC …N …(1.1)

Fig. 1.2 The standard symbol for an AND gate

where A, B, C, … N are the input variables and Y is the output variable. The variables are

binary, i.e. each variable can assume only one of the two possible values, 0 or 1. The binary

variables are also referred to as logical variables.

Equation (1.1) is known as the Boolean equation or the logical equation of the AND gate.

The term gate is used because of the similarity between the operation of a digital circuit and a

gate. For example, for an AND operation the gate opens (Y = 1) only when all the inputs are

present, i.e. at logic 1 level.

Truth Table Since a logical variable can assume only two possible values (0 and 1),

therefore, any logical operation can also be defined in the form of a table containing all

o Y
A o
B o

N o

MCA-203 217

possible input combinations (2N combinations for N inputs) and their corresponding outputs.

This is known as a truth table and it contains one row for each one of the input combinations.

 For an AND gate with two inputs A, B and the output Y, the truth table is given in

Table 1.1. Its logical equation is Y = AB and is read as “Y equals A AND B”.

 Since, there are only two inputs, A and B, therefore, the possible number of input

combinations is four. It may be observed from the truth table that the input−output

relationship for a digital circuit is completely specified by this table in contrast to the

input−output relationship for an analog circuit. The pattern in which the inputs

Table 1.1 Truth table of a 2-input AND gate

Inputs Output

A B Y

0

0

1

1

0

1

0

1

0

0

0

1

are entered in the truth table may also be observed carefully, which is in the ascending order

of binary numbers formed by the input variables. (See Chapter 2).

MCA-203 218

1.3.2 The OR Operation

Figure 1.3 shows an OR gate with N inputs (N ≥ 2) and one output. The OR operation is

defined as: the output of an OR gate is 1 if and only if one or more inputs are 1. Its logical

equation is given by

Y = A OR B OR C … OR N

= A + B + C + … + N …(1.2)

Fig. 1.3 The standard symbol for an OR gate

 The truth table of a 2-input OR gate is given in Table 1.2. Its logic equation is Y = A

+ B and is read as “Y equals A or B”.

Table 1.2 Truth table of a 2-input OR gate

Inputs Output

A B Y

0

0

1

1

0

1

0

1

0

0

0

1

1.3.3 The NOT Operation

Figure 1.4. shows a NOT gate, which is also known as an inverter. It has one input (A) and

one output (Y). Its logic equation is written as

Fig. 1.4 The standard symbols for a NOT gate Book-2 Page 5

 Y = NOT A

 = A …(1.3)

and is read as “Y equals NOT A” or “Y equals complement of A”. The truth table of a NOT

gate is given in Table 1.3.

A o O O Y O A o O Y

(a) (b)

MCA-203 219

Table 1.3 Truth table of a NOT gate

Input

A

Output

Y

0

1

1

0

 The NOT operation is also referred to as an inversion or complementation. The

presence of a small circle, known as the bubble, always denotes inversion in digital circuits.

1.4 NAND AND NOR OPERATIONS

Any Boolean (or logic) expression can be realized by using the AND, OR and NOT gates

discussed above. From these three operations, two more operations have been derived: the

NAND operation and NOR operation. These operations have become very popular and are

widely used, the reason being the only one type of gates, either NAND or NOR are sufficient

for the realization of any logical expression. Because of this reason, NAND and NOR gates

are known as universal gates.

1.4.1 The NAND Operation

 The NOT-AND operation is known as the NAND operation. Figure 1.5a shows and

N input (N ≥ 2) AND gate followed by a NOT gate. The operation of this circuit can be

described in the following way:

 The output of the AND gate (Y′) can be written using Eq. (1.)

 Y′ = AB …N …(1.4)

Now, the output of the NOT gate (Y) can be written using Eq. (1.3)

 Y = 'Y =)N...AB(…(1.5)

 The logical operation represented by Eq. (1.5) is known as the NAND operation. The

standard symbol of the NAND gate is shown in Fig. 1.5b. Here, a bubble on the output side

of the NAND gate represents NOT operation, inversion or complementation.

Fig. 1.5 (a) NAND operation as NOT-AND operation,

A o
B o

N o
Y′

o Y O
A o
B o

N o
O o Y

(a)
(b)

MCA-203 220

(b) Standard symbol for the NAND gate. Book-2 Page 6

 The truth table of a 2-input NAND gate is given in Table 1.4. Its logic equation is Y =

BA ⋅ and, is read as “Y equals NOT (A AND B)”.

Table 1.4 Truth table of a 2-input NAND gate

Inputs Output

A B Y

0

0

1

1

0

1

0

1

0

0

0

1

The three basic logic operations, AND, OR and NOT can be performed by using only NAND

gates. These are given in Fig. 1.6.

Fig. 1.6 Realization of basic logic operations using NAND gates (a) NOT (b) AND (c) OR.

1.4.2 The NOR Operation

(c)

MCA-203 221

The NOT-OR operation is known as the NOR operation. Figure 1.7a shows an N input (N ≥

2) OR gate followed by a NOT gate. The operation of this circuit can be described in the

following way:

The output of the OR gate Y′ can be written using Eq. (1.2) as

 Y′. = A + B + … + N …(1.6)

and the output of the NOT gate (Y) can be written using Eq. (1.3)

 Y = N...BA'Y +++= …(1.7)

The logic operation represented by Equ. (1.7) is known as the NOR operation.

 The standard symbol of the NOR gate is shown in Fig. 1.7b. Similar to the NAND

gate, a bubble on the output side of the NOR gate represents the NOT operation.

Fig. 1.7 (a) NOR operation as NOT-OR operation

(b) Standard symbol for the NOR gate

Table 1.5 gives the truth table of a 2-input NOR gate. Its logic equation is Y = BA +

and is read as “Y equals NOT (A OR B)”

 Table 1.5 Truth table of a 2-input NOR gate

Inputs Output

A B Y

0

0

1

1

0

1

0

1

0

0

0

1

The three basic logic operations, AND, OR, and NOT can be performed by using only the

NOR gates. These are given in Fig. 1.8.

MCA-203 222

Fig. 1.8 Realization of basic logic operations using NOR gates (a) NOT (b) OR (c) AND

1.5 EXCLUSIVE–OR OPERATION

 The EXCLUSIVE−OR (EX−OR) operation is widely used in digital circuits. It is not

a basic operation and can be performed using the basic gates−AND, OR and NOT or

universal gates NAND or NOR. Because of its importance, the standard symbol shown in

Fig. 1.9 is used for this operation.

Fig. 1.9 Standard symbol for EX-OR gate.

 The truth table of an EX−OR gate is given in Table 1.6 and its logic equation is

written as

 Y = A EX − OR B = A ⊕ B …(1.8)

Table 1.6 Truth table of a 2-input EX−OR gate

Inputs Output

A B Y

0

0

0

1

0

1

(c)

MCA-203 223

1

1

0

1

1

0

 If we compare the truth table of an EX−OR gate with that of an OR gate given in

Table 1.2, we find that the first three rows are same in both. Only the fourth row is different.

This circuit finds application where two digital signals are to be compared. From the truth

table we observe that when both the inputs are same (0 or 1) the output is 0, whereas when the

inputs are not same (one of them is 0 and the other one is 1) the output is 1.

1.6 BOOLEAN ALGEBRA RELATIONS∗

1.6.1 Commutative Law

 A + B = B + A …(1.9)

 A . B = B . A …(1.10)

Equations (1.9) and (1.10) mean that inputs can be interchanged in OR gate and AND gate.

 Fig. 1.10 illustrates commutative law. In Fig. 1.10 (a) the two inputs to OR gate have

been interchanged. The output is the same.

Fig. 1.10 Commutative law in Boolean algebra (a) ORing (b) ANDing

 In Fig. 1.10 (b) the two inputs to AND gate have been interchanged. The output is

the same.

1.6.2 Associative Law

 A + (B + C) = (A + B) + C

 A. (B. C) = (A. B) C

Equations with () and () are the Associative laws for ORing and ANDing.

∗ All Boolean relations are called laws or theorems.

MCA-203 224

 Fig. 1.11 illustrates the associative law. In Fig. 1.11 (a) the nputs to OR gates have

been grouped in two different ways but the output is the same, i.e., Y = A + B + C.

Fig. 1.11 Associative law in Boolean algebra (a) ORing (b) ANDing

In Fig. 1.11 (b) the inputs to AND gates have been grouped in two different ways without

affecting the output. In each case the output is Y = A.B.C.

1.6.3 Distributive Law

 A + (B. C) = (A + B). (A + C) …(1.12)

 A. (B + C) = A. B + A. C …(1.13)

Fig. 1.12 illustrates the distributive law.

Fig. 1.12 Distributive law in Boolean algebra

Y

Y

MCA-203 225

 In Fig. 1.12 (a), the AND gate gives an output B.C. This signal when fed to OR gate

along with input A gives the output A + (B. C). In the circuit on RHS in Fig. 1.12 (a) the two

OR gates given the output A + B and A + C respectively. The AND gate gives the output (A

+ B). (A + C).

 In Fig. 1.12 (b) the OR gate gives the output (B + C). This is fed as input to AND

gate along with A. On the RHS in Fig. 1.12 (b) the two AND gates give the outputs A. B and

A. C respectively. The OR gate gives the output A.B + A. C.

 Truth table for Equation (1.5) is given in Table 1.7. The correctness of Equations

(1.9) to (1.12) can be seen by writing the truth table.

Table 1.7. Truth table for distributive law

A B C B.C A+B.C A+B A+C (A+B. (A+C)

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

1

0

0

0

1

0

0

0

1

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

1

1

1

1

1

0

0

0

1

1

1

1

1

1.6.4 OR Laws

 If we study OR gate, the following laws become self evident

 A + A = A …(1.14)

 A + 1 = 1 …(1.15)

 A + 0 = A …(1.16)

 A + A = 1. …(1.17)

 Fig. 1.13(a) illustrates Eqn. from (1.14). If A = 0, output is 0 and if A = 1, output is

1. Thus any variable OR ed with itself equals the variable.

MCA-203 226

Fig 1.13 OR laws Book-1 Page 67

 Fig. 1.13 (b) shows Eqn. (1.15). If one of the inputs to an OR gate is 1, the output is

1 irrespective of whether the other variable is 0 or 1.

 Fig. 1.13 (c) shows Eqn. (1.16) where a variable A si ORed with 0. Any variable

ORed with 0 equals the variable. If A = 0, output = 0 and A = 1, output = 1

 Fig 1.3 (d) shows Eqn. (1.17). A variable ORed with its complement always equals

1.

1.6.5 AND Laws

 The four AND laws in Boolean Algebra are

 A.A = A …(1.18)

 A. 1 = A …(1.19)

 A. 0 = 0 …(1.20)

 A. A = 0 …(1.21)

 Fig. 1.14 (a) illustrates Eqn. (1.18). Both inputs to AND gate are A which can be 0 or

1. In each case the output is equal to A.

 Fig. 1.14 (b) illustrates Eqn. (1.19). If A = 0 and the other input is 1, the output is 0.

If A = 1 and the other input is 1, the output is 1. Thus in both cases the output is equal to A.

 If A = 0 and the other input is 0, the output = 0. If A = 1 and the other input is 0, the

output = 0. Thus irrespective of the value of A, the output is 0 thus illustrating Eqn. (1.20)

and shown in Fig. 1.14 (c).

MCA-203 227

Fig. 1.14 AND laws

 In Fig. 1.14 (d) A is ANDed with its complement A . If A = 0, A = 1 and output is

0. If A = 1. A = 0 and output is again 0. Thus output is 0 irrespective of value of A

1.6.6 Double Inversion

 The double inversion rule is

 AA =

 i.e., double complement of a

variable equals the variable. This is

illustrated in Fig. 1.15.

1.6.7 Redundancy Law

 A + A. B = A …(1.22)

 A. (A + B) = A …(1.23)

 The laws given by Eqns. (1.22) to (1.23) and some other Boolean laws are

summarized in Table 1.8. The correctness of each of them can be verified by writing the truth

table, e.g., proof of law 11 is shown in Table 1.9.

Table 1.8 Boolean Laws

1. A + A = A

2. A + 1 = 1

3. A + 0 = A

4. A + A = 1

5. A. A = A

6. A. 1 = A

7. A. 0 = 0

1

2

O A =1 O
⎯A = 0

⎯A = 0

O A =0 O
⎯A = 1

⎯A = 0

Fig. 1.15 Double inversion

MCA-203 228

8. A. A = 0

9. A = A

10. A + A. B = A

11. A(A + B) = A

12. A(A + B) = A . B

13. A + A . B = A + B

14. A + A. B = A + B

15. A + A. B = A + B

 It is seen from Table 1.9 that law 7 can be obtained from law 2 by replacing + by *

and 1 by 0. Similarly law 6 can be obtained from law 3 by replacing + by. and 0 by 1. Such

laws are known as dual laws.

Table 1.9 Proof of Boolean law 11 of Table 1.8

A B A + B A(A + B)

0 0 0 0

1 0 1 1

0 1 1 0

1.7 DE MORGAN’S THEOREMS

(a) First Theorem : DE Morgan’s first theorem is

 B,ABA =+ …(1.24)

 The L.H.S. of Eqn. (1.24) is a NOR gate [Fig 1.16 (a)]. In the R.H.S. of Eqn. (4.17)

the inputs are first inverted and then fed to the AND gate [Fig. 1.16 (b)]. Thus Figs. 1.16 (a)

and 1.16 (b) are equivalent. Proof of this theorem is given in Table 1.10.

Fig 1.16. (a and b) De Morgan’s first theorem (c) symbol for bubbled AND gate

Table 1.10. Proof of De Morgan’s first theorem

(a) (b) (c)

MCA-203 229

A B A B BA + B.A

0 0 1 1 1 1

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

Fig. 1.16 (b) is also known as bubbled AND gate and is shown in Fig. 1.16 (c). The bubbles

before he AND gate indicate the inversion before ANDing. De Morgan’s first theorem for 3

and 4 inputs is

 C.B.ACBA =++ …(1.25)

 D.C.B.ADCBA =+++ …(1.26)

(b) Second Theorem : De Morgan’s second theorem can be written as

 BAAB += …(1.27)

The L.H.S. of Eqn. (1.27) is a NAND gate [Fig. 1.17 (a)] and the R.H.S. of Eqn.

(1.27) is an OR gate with inverted inputs [Fig. 1.17 (b)]. Thus, Figs. 1.17 (a) and 1.17 (b) are

equivalent. Proof of this theorem is given in Table 4.5.

Fig. 1.17. De Morgan’s second theorem (a) NAND gate (b) OR gate with inverted

inputs (c) symbol for bubbled OR gate

Table 1.11. Proof of De Morgan’s second theorem

A B A B AB AB BA +

0 0 1 1 0 1 1

0 1 1 0 0 1 1

1 0 0 1 0 1 1

1 1 0 0 1 0 0

MCA-203 230

De Morgan’s second theorem for 3 and 4 inputs can be written as

 CBAABC ++= …(1.28)

 DCBAABCD +++= …(1.29)

In Fig. 1.17 (b) the inputs are first inverted and then fed to the OR gate. This gate can

also be called a bubbled OR gate and is represented by Fig. 1.17 (c). The bubbles indicate the

inversion which takes place before ORing.

1.8 SUMMARY

 In this chapter, the basic concepts of the digital systems have been discussed. The

basic features and advantages of these systems have been given briefly. The level of the

treatment has been kept low to avoid any confusion. Table 1.12 summarizes the operation of

all the gates introduced in this chapter. For convenience, two input gates have been taken and

the different symbols used for various operations are also given. A brief exposure to Boolean

algebra has also been given.

1.12

MCA-203 231

1. Analog signals depict continuous variation of the magnitude over a certain time

whereas digital signals depict discrete values at various instants.

2. Analog instruments indicate the magnitude through the position of pointer on the

scale. A digital instrument displays the actual magnitude in the form of digits.

MCA-203 232

3. Digital communication system, Digital control systems and Digital computers are

widely used.

4. The representation of analog signal in digital form is by the use of digital signal

processor (DSP).

5. We have to feed a program and data to a digital computer so that the computer

may process the data and produce the desired output.

6. Digital computers work on binary numbers, i.e., 1 and 0.

7. Digital signals can be represented in positive or negative logic. In positive logic,

the more positive level is level 1 and the other is level 0. In negative logic the

more negative level is level 1 and the other is level 0. Positive logic is used more

commonly.

8. An ideal pulse changes from low to high and high to low levels in zero time. An

actual pulse has finite rise and full times.

PROBLEMS

1.1 Which of the following systems are analog and which are digital? Why?

(a) Pressure gauge

(b) An electronic counter used to count persons entering an exhibition

(c) Clinical thermometer

(d) Electronic calculator

(e) Transistor radio receiver

(f) Ordinary electric switch.

1.2 In the circuits of Fig. 1.18, the switches may be On (1) or OFF (0) and will cause the

bulb to be ON (1) or OFF (0).

(a) Determine all possible conditions of the switches for the bulb to be ON (1)/ OFF

(0) in each of the circuits.

(b) Represent the information obtained in part (a) in the form of truth table.

MCA-203 233

Fig. 1.18. Circuits for Problem 1.2

(c) Name the operation performed by each circuit (refer to Table 1.11).

1.3 The voltage waveforms shown in Fig. 1.19 are applied at the inputs of 2-input AND,

Fig. 1.19 Waveforms for Problem 1.3

 OR, NAND, NOR, and EX-OR gates. Determine the output waveform in each case.

1.4 Find the relationship between the inputs and output for each of the gates shown in

Fig. 1.19. Name the operation performed in each case.

Fig. 1.19 Circuits for Problem 1.4

MCA-203 234

1.5 For each of the following statements indicate the logic gate(s), AND, OR, NAND,

NOR for which it is true.

(a) All Low inputs produce a HIGH output.

(b) Output is HIGH if and only if all inputs are HIGH.

(c) Output is LOW if and only if all inputs are HIGH.

(d) Output is LOW if and only if all inputs are LOW.

1.6 For the logic expression,

Y = BABA +

(a) Obtain the truth table.

(b) Name the operation performed.

(c) Realize this operation using AND, OR, NOT gates.

(d) Realize this operation using only NAND gates.

1.8 Prove the following :

 (a) A positive logic AND operation is equivalent to a negative logic OR operation

and vice-versa.

 (b) A positive logic NAND operation is equivalent to a negative logic NOR operation

and vice-versa.

1.9 Prove the following using the Boolean algebraic theorems:

 (a) A + A . B + A. B = A + B

 (b) A . B + A . B + A . B = A + B

 (c) BCA + CBA + CAB + ABC = AB + BC + CA

1.10 Prove the logic equations of Problem 1.9 using the truth table approach.

1.11 Realize the left hand side and the right hand side of the logic equations of Problem

1.9 using AND, OR, and NOT gates and find the saving in hardware in each case

(number of gates and the number of inputs for the gates).

1.12 (a) Realize the logic equation (a) of Problem 1.12 using

(i) AND and OR gates.

(ii) Only NAND gates.

(b) Realize the logic equation (b) or Problem 1.12 using

 (i) OR and AND gates

MCA-203 235

 (ii) only NOR gates.

1.13 Verify that the following operations are commutative and associative

(a) AND (b) OR (c) EX−OR

1.14 Verify that the following operations are commutative but not associative.

 (a) NAND (b) NOR

1.15 Realize the logic expression

 Y = A ⊕ B ⊕ C ⊕ D

 using EX−OR gates.

1.16 For a gate with N inputs, how many combinations of inputs are possible? State the

general rule to obtain the possible combinations.

1.17 Determine the IC chips required for the implementation of each of the circuits of

Problem 1.13.

1.18 Make truth table for a 3-input

 (a) AND gate (b) OR gate (c) NAND gate (d) NOR gate

1.19 Is it possible to use a 3-input gate as a 2-input gate for the following gates? If yes,

how?

 (a) AND (b) OR (c) NAND (d) NOR

1.20 Is it possible to INHIBIT (or DISABLE) AND, OR, NAND, NOR gates? If yes,

how?

1.21 One of the inputs of a gate is used to control the operation of the gate and is labeled

as ENBLE. Is it active-high or active-low if the gate is

 (a) AND? (b) OR? (c) NAND? (d) NOR?

1.22 Is the INHIBIT input active-high or active-low in Prob. 1.24.

1.23 Realize a 3-input gate using 2-input gates for the following gates:

 (a) AND (b) OR (c) NAND (d) NOR

1.24 Prove the following :

 (a) A ⊕ B = A ⊕ B

 (b) BA ⊕ = A ⊕ B = A ⊕ B

 (c) B ⊕ (B ⊕ A . C) = A . C

MCA-203 236

CHAPTER-2

NUMBER SYSTEM & CODES
Author: Dr. Manoj Duhan Vetter : Mr. Vijay Nehra

2.1 INTRODUCTION

A digital computer is also known as data processor. It processes data while solving a

mathematical problem or doing translation from one language to another etc. Before a

computer can process data, the data has to be converted into a form acceptable to a computer.

We use decimal number system in our work. This system has digits 0, 1, 2, 3, 4, 5, 6,

7, 8 and 9. Computers cannot use these numbers. Instead, a computer works on binary digits.

A binary number system has only two digits 0 and 1. This is because of the reason that

computers use integrated circuits with thousands of transistors. Due to variation of

parameters the behaviour of transistor can be very erratic and quiescent point may shift from

one position to another. Nevertheless the cut off and saturation points are fixed. When a

transistor is cut off, a large change in values is needed to change the state to saturation Similar

is the situation when it is in saturation. Thus a transistor is a very reliable two state device.

One state represents digit 0 and the other state represents digit 1. All input voltages are

recognized as either 0 or 1.

2.2 DECIMAL NUMBER SYSTEM

 We are all familiar with the decimal number system. It uses ten digits (0, 1, 2, 3, 4, 5,

6, 7, 9) and thus its base is 10. The decimal number system of counting was evolved because

we have 8 fingers and 2 thumbs on our two hands so that we can count 10. By using the

different digits in different positions we can express any number. For numbers bigger than 9

we use two or more digits. The position of each digit in the number indicates the magnitude

that this number represents. In the number 27 the digit 7 represents 7 × 10° or 7 and the digit

2 represents 2 × 101 or 20. The sum of 7 and 20 makes 27. Similarly the number 263 can be

expressed as

 Decimal 263 = (2 × 102) + (6 × 101) + (3 × 100) = 200 + 60 + 3 = 263.

 Since the base in decimal number system is 10, the number 263 can be written as

26310. The suffix 10 emphasizes the fact that the base is 10.

MCA-203 237

2.3 BINARY NUMBER SYSTEM

 The binary number system has only two digits 0 and 1. Thus a binary number is a

string of zeros and ones. Since it has only two digits, the base is 2.

 The abbreviation of binary digit is bit. The binary number 1100 has 4 bits, 101011

has 6 bits and 11001010 has 8 bits. Each bit may represent either 0 or 1. A string of 8 bits is

known as a byte. A byte is the basic unit of data in computers. In most computers, the data∗

is processed in strings of 8 bits or some multiples (i.e., 16, 24, 32 etc.). The computer

memory also stores data in strings of 8 bits or multiples of 8 bits. Table 2.1 shows the 16

combinations of a 4 bit binary word.

Table 2.1. Binary, decimal, hexadecimal and octal equivalence

Binary Decimal Hexadecimal Octal

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

It is interesting to note that our earlier system of counting and weighing was basically

a binary system. Two Annas make one Two Annas. Two two annas make one Chawani

∗ Data means the names, numbers etc. needed to solve a problem.

MCA-203 238

(quarter of a rupee) and so on. Similar two Chhattaks (one sixteenth of seer) make one aad

pao (quarter seer). Two aad pao make one pao (quarter seer) and so on.

 As in the decimal system the binary number system is positionally weighted. The

digital on the extreme right hand side has a weight of 20, the next one has a weight of 21 and

so on. Since the base is 2, the binary number is written as (say) 10112. The suffix 2

emphasizes the fact that base is 2. If the number of binary digits is n, the highest decimal

number which can be counted is 2n−1. Thus with 4 binary digits we can count upto (24 − 1) or

15 decimal number. If n = 8 we can count upto (28 − 1) = 255 decimal number.

2.3.1 Binary to Decimal Conversion

 The procedure to convert a binary number to decimal is called dibble−dabble method.

We start with the left hand bit. Multiply this value by 2 and add the next bit. Again multiply

by 2 and add the next bit. Stop when the bit on extreme right hand side is reached.

 An other fast and easy method to convert binary number to decimal number is as

under:

1. Write the binary number.

2. Write the weights 20, 21, 22, 23 etc., under the binary digits starting with the bit on

right hand side.

3. Cross out weights under zeros.

4. Add the remaining weights.

Example 2.1. Convert 1001012 to decimal.

Solution : Left hand bit 1

 Multiply by 2 and add next bit 2 × 1 + 0 = 2

 Multiply by 2 and add next bit 2 × 2 + 0 = 4

 Multiply by 2 and add next bit 2 × 4 + 1 = 9

 Multiply by 2 and add next bit 2 × 9 + 0 = 18

 Multiply by 2 and add next bit 2 × 18 + 1 = 37

Therefore, 1001012 = 3710

Example 2.2 Convert 11012 into equivalent decimal number.

Solution : 1 1 0 1 Binary number

 8 4 2 1 Write weights

MCA-203 239

 8 4 2 1 Cross out weights under zeros

 8 + 4 + 0 + 1 = 13 Add weights

Therefore, 11012 = 1310

Example 2.3. Convert 1100110110012 into equivalent decimal number.

Solution :

1 1 0 0 1 1 0 1 1 0 0 1 Binary number

2048 1024 512 256 128 64 32 16 8 4 2 1 Write weights

2048 1024 512 256 128 64 32 16 8 4 2 1 Cross out weights under

zeros

2048 + 1024 + 128 + 64 + 16 + 8 + 1 = 3289 Add weights

Thus 1100110110012 = 328910

2.3.2 Decimal to Binary Conversion

 A systematic way to convert a decimal number into equivalent binary number is

known as double dabble. This method involves successive division by 2 and recording the

remainder (the remainder will be always 0 or 1). The division is stopped when we get a

quotient of 0 with a remainder of 1. The remainders when read upwards give the equivalent

binary number.

Example 2.4 Convert decimal number 10 into its equivalent binary number.

 2 10

 2 5 remainder 0

 2 2 remainder 1

 2 1 remainder 0

 0 remainder 1

The binary number is 1010.

Example 2.5. Convert decimal number 25 into its binary equivalent.

Solution :

 2 25

 2 12 remainder 1

 2 6 remainder 0

 2 3 remainder 0

MCA-203 240

 2 1 remainder 1

 0 remainder 1

The binary number is 11001.

2.3.3 BINARY ARITHMETIC

 The rules for addition of binary numbers are as under :

 0 + 0 = 0

 0 + 1 = 1 + 0 = 1

 1 + 1 = 10 i.e., 1 + 1 equals 0 with a carry of 1 to next higher column

 1 + 1 + 1 = 11 i.e., 1 + 1 + 1 equals 1 with a carry of 1 to next higher

 column.

2.3.3.1. Binary Subtraction

 The rules for subtraction of binary numbers are as under :

 0 − 0 = 0

 1 − 0 = 1

 1 − 1 = 0

 10 − 1 = 1

 In both the operations of addition and subtraction, we start with the least significant

bit (L.S.B.), i.e., the bit on the extreme right hand side and proceed to the left (as is done in

decimal addition and subtraction).

Example 2.6. (a) Convert decimal numbers 15 and 31 into binary numbers. (b) Add the

binary numbers and convert the result into decimal equivalent.

Solution : (a)

 2 15 2 31

 2 7 remainder 1 2 15 remainder 1

 2 3 remainder 1 2 7 remainder 1

 2 1 remainder 1 2 3 remainder 1

 0 remainder 1 2 1 remainder

 0 remainder 1

 Binary number is 1111 Binary number is 11111

(b) Binary addition

MCA-203 241

 1 1 1 1

 1 1 1 1 1

 1 0 1 1 1 0

The sum of binary numbers 1111 and 11111 is the binary number 101110

 1 0 1 1 1 0 Binary number

 32 16 8 4 2 1 Write weights

 32 16 8 4 2 1 Cross cut weights under zero

 32 + 8 + 4 + 2 = 46 Add weights

Example 2.7. Subtract 10001 from 11001.

Solution : 1 1 0 0 1 25

 (−1) 1 0 0 0 1 (−) 17

 Results 1 0 0 0 8

Example 2.8. Subtract 0111 from 1010.

Solution : 1 0 1 0 10

 (−1) 0 1 1 1 (−1) 7

 0 0 0 1 3

 The least significant digit.∗ in the first number is 0. So we borrow 1 from the next

digit and subtract 1 to give 1. Now in the second column we have 0, so we again borrow 1

from the next higher column and subtract 1 to give 1. In the third column, we borrow 1 from

the next higher column and 1−1 gives 0. In the fourth column, 0 (after lending) − 0 gives 0.

2.3.3.2 Binary Multiplication

 The four basic rules for binary multiplication are :

 0 × 0 = 0

 0 × 1 = 0

 1 × 0 = 0

 1 × 1 = 1

∗ The digit on the extreme RHS is the LSB and the digit on extreme LHS is the MSB

(most significant digit)

MCA-203 242

 The method of binary multiplication is similar to that in decimal multiplication. The

method involves forming partial products, shifting successive partial products left one place

and then adding all the partial products.

2.3.3.4 Binary Division

 The division in binary system follows the same long division procedure as in decimal

system.

Example 2.9. (a) Divide 1101102 by 101.

 (b) Convert 1101102 and 1012 into equivalent decimal number obtain division,

convert results into binary and compare the results with those in part (a).

Solution : (a) 101 1 1 0 1 1 0 1010 quotient

 1 0 1

 1 1 1

 1 0 1

 1 0 0 remainder

(b) 1 1 0 1 1 0 Binary number

 32 16 8 4 2 1 Write weights

 32 16 6 4 2 1 Cross out weights under zero

 32 + 16 + 4 + 2 = 54 Add weights

 1 0 1 Binary number

 4 2 1 Write weights

 4 2 1 Cross out weights under zero

 4 + 1 = 5 Add weights

 5 54

 10 − 4

quotient remainder

 2 10 2 4

 2 5 remainder 0 2 2 remainder 0

 2 2 remainder 1 2 1 remainder 0

 2 1 remainder 0 0 remainder 1

 0 remainder 1

) (

MCA-203 243

The quotient is 10102 and the remainder is 1002. These are the same as in part (a)

2.4 SIGNED BINARY NUMBERS

 To represent negative numbers in the binary system, digit 0 is used for the + sign and

1 for the −ve sign. The most significant bit is the sign bit followed by the magnitude bits.

Numbers expressed in this manner are known as signed binary numbers.∗ The numbers may

be written in 4 bits, 8 bits, 16 bits, etc. In every case, the leading bit represents the sign and

the remaining bits represent the magnitude.

Example 2.10 Express in 16−bit signed binary system : (a) + 8, (b) −8, (c) 165, (d) −165.

Solution : (a)

2 8

2 4 remainder 0

2 2 remainder 0

2 1 remainder 0

 0 remainder 1

The binary number is 1000.

 For the 16 bit system, we use 16 bits, 0 (which stands for +) in the leading position,

1000 in the last 4 bits and 0 in the remaining 11 positions. So the signed 16 bit binary number

is

 + 8 = 0000 0000 0000 1000

 (b) In the leading bit we will have 1 (to represent the ‘−’ sign). The rest of the

representation is the same s in part (a).

∗ Signed binary numbers are also known as sign−magnitude numbers.

MCA-203 244

− 8 = 1000 0000 0000 1000

 2 165

 2 82 remainder 1

 2 41 remainder 0

 2 20 remainder 1

 2 10 remainder 0

 2 5 remainder 0

 2 2 remainder 1

 2 1 remainder 0

 0 remainder 1

So the number is 10100101.

Using 0 in the leading bit (for + sign) the 16 bit signed binary number is

 + 165 = 0000 0000 1010 0101

(d) In the leading bit position we will have 1 (for the ‘−’ sign).

Therefore, − 165 = 1000 0000 1010 0101

2.5 1’S COMPLEMENT

 The 1’s complement of a binary number is obtained by complementing each bit (i.e.,

0 for 1 and 1 for 0).

 Thus each bit in the original word is inverted to give the 1’s complement. For

example, for the number

 1 1 0 0 1 0 0 1

1’s complement is 0 0 1 1 0 1 1 0

2.6 2’S COMPLEMENT

 The signed binary numbers required too much electronic circuitry for addition and

subtraction. Therefore, positive decimal numbers are expressed in sign−magnitude form but

negative decimal numbers are expressed in 2’s complements.

 2’s complement is defined as the new word obtained by adding 1 to 1’s complement∗ e.g.,

Let A = 0 1 0 1 i.e., 5

∗ 1’s complement of A is denoted by A and 2’s complement of A is denoted by A′.

MCA-203 245

1’s complement A = 1 0 1 0

 + 1

2’s complement A′ = 1 0 1 1 i.e., −5

 Taking the 2’s complement is the same as changing the sign of the given binary

number. If we take the 2’s complement twice we get the original number, e.g.,

 A′ = 1 0 1 1

1’s complement A = 0 1 0 0

 + 1

2’s complement A′′ = 0 1 0 1 = A

 Thus A′′ = A. In view of this every number and its 2’s complement form a

complementary pair. In a typical computer positive numbers are expressed in sign magnitude

form but negative numbers are expressed as 2’s complements. The positive numbers have a

leading sign bit of 0 and negative numbers have a leading sign bit of 1.

2.6.1 2’S COMPLEMENT ADDITION, SUBTRACTION

 The use of 2’s complement representation has simplified the computer hardware∗ for

arithmetic operations. When A and B are to be added, the B bits are not inverted so that we

get

 S = A + B …(2.1)

 When B is to be subtracted from A, the computer hardware forms the 2’s complement

of B and then adds it to A. Thus

 S = A + B′ = A + (−B) = A − B

 Eqns. (2.1 and 2.2) represent algebraic addition and subtraction. A and B may

represent either positive or negative numbers. Moreover, the final carry has no significance

and is not used.

2.7 BINARY FRACTIONS

 So far we have discussed only whole numbers. However, to represent fractions is

also important. The decimal number 2568 is represented as

 2568 = 2000 + 500 + 60 + 8 = 2 × 103 + 5 × 102 + 6 × 101 + 8 × 100

∗ Hardware means electronic, mechanical and magnetic devices in a computer. The

computer program is known as software.

MCA-203 246

Similarly, 25.68 can be represented as

 25.68 = 20 + 5 + 0.6 + 0.08 = 2 × 101 + 5 × 100 + 6 × 10−1 + 8 × 10−2

2.7.1 Conversion of Binary to Decimal

 In the binary system, the weights of the binary bits after the binary point, can be

written as

 0.1011 = 1 × 2−1 + 0 × 2−2 + 1 × 2−3 + 1 × 2−4

 = 1 ×
2
1 + 0 ×

4
1 + 1 ×

8
1 + 1 ×

16
1

 = 0.5 + 0 + 0.125 + 0.0625 = 0.6875 (decimal)

Example 2.11 Express the number 0.6875 into binary equivalent

Solution :

 Fraction Fraction × 2 Remainder new fraction Integer

 0.6875 1.375 0.375 1 (MSB)

 0.375 0.75 0.75 0

 0.75 1.5 0.5 1

 0.5 1 0 1(LSB)

The binary equivalent is 0.1011.

2.8 DOUBLE PRECISION NUMBERS

 Most of the computers used in today’s world are 16 bit or more. In these computers

the numbers from +32, 767 to − 32,768 can be stored in each register. To store numbers

greater than these numbers, double precision system is used. In this method two storage

locations are used to represent each number. The format is

 First word

 Second word

S is the sign bit and O is a zero. Thus numbers with 31 bit length can be represented

in 16 bit registers. For still bigger numbers triple precision can be used. In triple precision 3

word lengths (each 16 bit) is used to represent each number.

S High order bits

O Low order bits

MCA-203 247

2.9 FLOATING POINT NUMBERS

 Most of the time we use very small and very large numbers, e.g., 1.02×10−12 and

6.5 × 10+17. In binary representation, the numbers are expressed by using a mantissa and an

exponent.

 The mantissa has a 10 bit length and exponent has 6 bit length. Fig. 2.1 shows one

such representation.

 Mantissa Exponent

Fig. 2.1 Floating point format

 The left most bit of mantissa is sign bit. The binary point is to the right of this sign

bit.

 The 6 bit exponent has a base of 2. The exponent can represent numbers 0 to 63. To

express negative exponents the number 3210 (i.e., 1000002) has been added to the exponent. It

is known as excess −32 notation and is a common floating point format. Examples of

exponent in excess − 32 format are

Table 2.2

Actual exponent Binary representation in

excess−32 format

− 32

−1

0

+7

+15

+31

000000

011111

100000

100111

101111

111111

The number represented in Table 2.2 is

 Mantissa + 0.111001101

 Exponent 100111

Subtracting 100000 from exponent, we get 000111. The number is

 0.1110011012 × 27 = 1110011.012 = 115.2510

Example 2.12. What does the floating point number 01101000000010101 represent.

0 1 1 1 0 0 1 1 0
1

1 0 0 1 1 1

MCA-203 248

Solution : Mantissa is +0. 110100000

Exponent is 010101

Subtracting 100000 from exponent, we get 110110101.

The given number is + 0.110100000 × 2−11 = + 0.000000000001101000002

 = + 0.00039672810

 The advantage of floating point representation is that very large and very small

numbers can be easily expressed. Since the above representation uses 10 bit long mantissa,

the accuracy in above representation is 9 bit since 1 bit is used for sign). Fixed point 16 bit

numbers are accurate to 15 bits. Thus breaking the 16 bit lengths into mantissa and exponent

(to use floating point representation) reduces the accuracy to some extent. To ensure

maximum accuracy the computers normalize the result of any floating point operation. In this

process the most significant bit is placed next to the sign bit.

Example 2.13. Add the binary numbers 1 0 1 1 0 1. 0 1 0 1 and 1 0 0 0 1. 1 0 1.

Solution : 1 0 1 1 0 1 . 0 1 0 1

 + 1 0 0 0 1 . 1 0 1

 1 1 1 1 1 0 . 1 1 1 1

Example 2.14. Convert the binary number 1 1 0 0 1. 0 0 1 0 1 1 to decimal.

Solution : The decimal equivalent is obtained as under

 1 1 0 0 1 . 0 0 1 0 1 1

 24 23 22 21 20 . 2−1 2−2 2−3 2−4 2−5 2−6 weights

Decimal equivalent = 1 × 24 1 × 23 + 1 × 20 + 1 × 2−3 + 1 × 2−5 + 1 × 2−6

 = 16 + 8 + 1 + 0.125 + 0.03125 + 0.015625 = 25.171875.

2.10 OCTAL NUMEBR SYSTEM

 The number system with base (or radix) eight is known as the octal number system.

In this system, eight symbols, 0, 1, 2, 3, 4, 5, 6 and 7 are used to represent numbers. Similar

to decimal and binary number systems, it is also a positional system and has, in general, two

parts: integer and fractional, set apart by a radix (octal) point (⋅). For example, (6327.4051)8

is an octal number. Using the weights it can be written as

 (6327.4051)8 = 6 × 83 + 3 × 82 + 2 × 81 + 7 × 80 + .4 × 8−1

 + 0 × 8−2 + 5 × 8−3 + 1 × 8−4

MCA-203 249

 = 3072 + 192 + 16 + 7 +
8
4 + 0 +

4096
1

512
5

+

 = (3287.5100098)10

Thus, (6327.4051)8 = (3287.5100098)10

 Using the above procedure, an octal number can be converted into an equivalent

decimal number or a base -8 number can be converted into an equivalent base-10 number.

 The conversion from decimal to octal (base-10 to base-8) is similar to the conversion

procedure for base-10 to base-2 conversion. The only difference is that number 8 is used in

place of 2 for division in the case of integers and for multiplication in the case of fractional

numbers.

Example 2.15.

(a) Convert (247)10 into octal

Solution (a)

2.11 HEXADECIMAL NUMBER SYSTEM

 Hexadecimal number system is very popular in computer uses. The base for

hexadecimal number system is 16 which requires 16 distinct symbols to represent the

numbers. These are numerals 0 through 9 and alphabets A through F. Since numeric digits

and alphabets both are used to represent the digits in the hexadecimal number system,

therefore, this is an alphanumeric number system. Table 2.3 gives hexadecimal numbers with

their binary equivalents for decimal numbers 0 through 15. From the table, it is observed that

there are 16 combinations of 4-bit binary numbers and sets of 4-bit binary numbers can be

entered in the computer in the form of hexadecimal (hex.) digits. These numbers are required

Quotient Remainder

8
247

8
30

8
3

30

3

0

7

6

3

 3 6 7 Thus (247)10 = (367)8

MCA-203 250

to be converted into binary representation, using hexadecimal-to-binary converter circuits

before these can be processed by the digital circuits.

Table 2.3 Binary and decimal equivalents of hexadecimal numbers

Hexadecimal Decimal Binary

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111

Example 2.16. Obtain decimal equivalent of hexadecimal number (3A.2F)16

Solution : (3A. 2F)16 = 3 × 161 + 10 × 160 + 2 × 16−1 + 15 × 16−2

 = 48 + 10 + 216
15

16
2

+

 = (58.1836)10

2.11.1 Decimal-to-Hexadecimal Conversion

 The conversion from decimal to hexadecimal, the procedure used in binary as well as

octal systems is applicable, using 16 as the dividing (for integer part) and multiplying (for

fractional part) factor.

2.11.2 Hexadecimal-to-Binary Conversion

MCA-203 251

 Hexadecimal numbers can be converted into equivalent binary numbers by replacing

each hex digit by its equivalent 4−bit binary number.

Example 2.17. Convert (2F9A)16 to equivalent binary number.

Solution : Using Table 2.7, find the binary equivalent of each hex digit.

 (2F9A)16 = (0010 1111 1001 1010)2

 = (0010111110011010)2

2.11.3 Binary-to-Hexadecimal Conversion

 Binary number can be converted into the equivalent hexadecimal numbers by making

groups of four bits starting from LSB and moving towards MSB for integer part and then

replacing each group of four bits by its hexadecimal representation.

 For the fractional part, and above procedure is repeated starting from the bit next to

the binary point and moving towards the right.

Example 2.18 Convert the binary numbers of Example 2.24 to hexadecimal numbers.

Solution :

(a) 110 0111 0001. 0001 0111 1001 = (671.179)16

(b) 10 1101 1110.1100 1010 011 = (2DE. CA6)16

(c) 1 1111 0001.1001 101 = (1F1.99A)16
From the above examples, we observe that in forming the 4-bit groupings 0’s may be required to complete the first

(most significant digit) group in the integer part and the last (least significant digit) group in the fractional part.

2.11.4 Conversion from Hex-to-Octal and Vice-Versa

 Hexadecimal numbers can be converted to equivalent octal numbers and octal

numbers can be converted to equivalent hex numbers by converting the hex/octal number to

equivalent binary and then to octal/hex, respectively.

Example 2.19 Convert the following hex numbers to octal numbers.

 (a) A72E (b) 0.BF85

Solution :

 (a) (A72E)16 = (1010 0111 0010 1110)2

 = { { { { { {110101100011010001

 = (1123456)8

MCA-203 252

 = { { { { { {100010000111111101

 = (0.577024)8

Example 2.20 Convert (247.36)8 to equivalent hex number.

Solution :

 (247.36)8 = (010 100111.011 110)2

 = (0 { { { {10000111.01111010)2

 = (A 7.78)16

2.11.5 Hexadecimal Arithmetic

 The rules for arithmetic operations with hexadecimal numbers are similar to the rules

for decimal, octal and binary systems. The information can be handled only in binary form in

a digital circuit and it is easier to enter the information using hexadecimal number system.

Since arithmetic operations are performed by the digital circuits on binary numbers, therefore

hexadecimal numbers are to be first converted into binary numbers. Arithmetic operations

will become clear from the following examples.

Example 2.21 Add (7F)16 and (BA)16

Solution :

 7F = 01111111

100100111

10111010
)139(

BA)(

16 =
=+

Example 2.22

Subtract (a) (5C)16 from (3F)16

 (b) (7A)16 from (C0)16

Solution

 (a) 3F = 00111111

 − 5C = (+) 10100100 Two’s complement of (5C)16

 − 1D = 11100011 Two’s complement of result

 Two’s complement of 11100011 = 0001 1101 = (1D)16

 (b) C0 = 11000000

MCA-203 253

 −7A = (+) 10000110 Two’s complement of (7A)16

 46 = 101000110

 Discard carry

 Multiplication and division can also be performed using the binary representation of

hexadecimal numbers and then making use of multiplication and division rules of binary

numbers.

2.12 CODES

 Computers and other digital circuits process data in the binary format. Various

binary codes are used to represent data which may be numeric, alphabets or special

characters. Although, in every code used the information is represented in binary form, the

interpretation of this binary information is possible only if the code in which this information

is available is known. For example, the binary number 1000001 represents 65 (decimal) in

straight binary, 41 (decimal) in BCD and alphabet A in ASCII code. A user must be very

careful about the code being used while interpreting information available in the binary

format. Codes are also used for error detection and error correction in digital systems.

2.12.1 BINARY CODED DECIMAL (BCD)

 Computers work with binary numbers. We work with decimal numbers. A code is

needed to represent decimal numbers and binary numbers.

 A weighted binary code is one in which each number carries a certain weight. A

string of 4 bits is known as nibble. Binary coded decimal (BCD) means that each decimal

digit is represented by a nibble (binary code of 4 digits). Main BCD codes have been

proposed, e.g., 8421, 2421, 5211, X53. Out of these 8421 code is the most predominant BCD

code. The designation 8421indicates the weights of the 4 bits (8, 4, 2 and 1 respectively

starting from the left most bit). When one refers to a BCD code, it always means 8421 code.

Though 16 numbers (24) can be represented by 4 bits, only 10 of these are used. Table 2.4

shows the BCD code. The remaining 6 combinations, i.e., 1010, 1011, 1100, 1101, 1110 and

1111 are invalid in 8421 BCD code. To express any number in BCD code, each decimal

number is replaced by the appropriate four bit code of Table 2.4. BCD code is used in pocket

calculators, electronic counters, digital voltmeters, digital clocks etc. Early versions of

computers also used BCD code. However, the BCD code was discarded for computers

MCA-203 254

because this code is slow and more complicated than binary. Table 2.5 shows some decimal

numbers and their representation in octal, hexadecimal, binary and BCD systems.

Table 2.4. 8421 BCD code

Decimal 8421 BCD

0

1

2

3

4

5

6

7

8

9

0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

Table 2.5. Number systems

Decimal Octal Hexadecimal Binary 8421 BCD

0

1

2

3

4

5

6

7

8

9

10

11

12

0

1

2

3

4

5

6

7

10

11

12

13

14

0

1

2

3

4

5

6

7

8

9

A

B

C

0000 0000

0000 0001

0000 0010

0000 0011

0000 0100

0000 0101

0000 0110

0000 0111

0000 1000

0000 1001

0000 1010

0000 1011

0000 1100

0000 0000 0000

0000 0000 0001

0000 0000 0010

0000 0000 0011

0000 0000 0100

0000 0000 0101

0000 0000 0110

0000 0000 0111

0000 0000 1000

0000 0000 1001

0000 0001 0000

0000 0001 0001

0000 0001 0010

MCA-203 255

13

14

15

16

32

64

128

200

255

15

16

17

20

40

100

200

310

377

D

E

F

10

20

40

80

C8

FF

0000 1101

0000 1110

0000 1111

0001 0000

0010 0000

0100 0000

1000 0000

1100 1000

1111 1111

0000 0001 0110

0000 0001 0100

0000 0001 0101

0000 0001 0110

0000 0011 0010

0000 0110 0000

0001 0010 1000

0010 0000 0000

0010 0101 0101

2.12.1.1 BCD ADDITION

 Addition is the most important arithmetic operation. Subtraction, multiplication and

division can be done by using addition. The rules for BCD addition are :

1. Add the two numbers using binary addition (section 2.5). If the four bit sum is

equal or less than 9(i.e., equal to or less than 1001) it is a valid BCD number.

2. If the four bit sum is more than 9 or a carry is generated from the group of 4 bits,

the result is invalid. In such a case add 6(i.e., 0110) to the four bit sum to skip

the 6 invalid states. If a carry is generated when adding 6, add the carry to the

next four bit group.

Example 2.22. Represent the following decimal numbers in BCD and add (a) 5 and 4 (b) 7

and 6 (c) 15 and 17 (d) 131 and 162 (e) and 53.

Solution : (a) 5 0101 (b) 7 0111

1001
0100

9
4

10

+
1101
0110

13
6

10

+

10011
0110

 (c) 15 0001 0101

11000010
01110001

32
17

+
+

Left group is valid, right group is invalid. Add 6
to the right group and carry to the left group

invalid

MCA-203 256

00100011

0110

 (d) 131 0001 0011 0001

10293

162+
001110010010
001001100001

 (e) 67 0110 0111

10120

53+
10101011
00110101

000000100001

10101011

2.12.2 GRAY CODE

 It is an unweighted code. The bit positions do not have any specific weights assigned

to them. However, the most important characteristic of this code is that only a signal bit

change occurs when going from one code number to next. (In binary systems all the 4 bits

change when we go from 0111 to 1000. i.e., 710 to 810). The single bit change property is

important in some applications, e.g., shaft position encoders. In these applications the

chances of error increase if more than one bit change occurs. Table 2.6 shows the 4 bit gray

code.

 It is seen in Table 2.6 that in gray code change is by 1 bit only at one times. Like

binary Gray code can have any number of bits.

Table 2.6 Gray Code

Decimal Binary Gray code
0
1
2
3
4
5
6
7
8
9

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

0000
0001
0011
0010
0110
0111
0101
0100
1100
1101

Both groups are invalid. Add 6 to each

and add carry to next group

MCA-203 257

2.12.2.1. Binary to Gray Conversion

 The rules for changing binary number into equivalent Gray code are :

1. The left most bit (most significant bit) in Gray code is the same as the left most bit in

binary

 1 0 1 1 Binary

 ↓

1 Gray

2. Add the left most bit to the adjacent bit

 1 + 0 1 1

 1 1

3. Add the next adjacent pair

 1 0 + 1 1

 1 1 1 0

4. Add the next adjacent pair and discard carry

 1 0 1 + 1

 1 1 1 0

5. Continue the above process till completion.

2.12.2.2 Gray to Binary Conversion

 the method to convert from Gray code to binary is an under:

1. Left most bit in binary is the same as the left most bit in Gray code.

 1 1 0 1 1 Gray

 ↓

 1 Binary

2. Add the binary MSB to the Gray digit in the adjacent position. Discard carry

 1 1 0 1 1 Gray

 ↓

 1 0 Binary

3. Add the binary digit generated in step 2 to the next Gray digit. Discard carry

 1 1 0 1 1 Gray

 ↓

MCA-203 258

 1 0 0 Binary

4. Continue the above process till all the digits are covered. Discard carry in each case

 1 1 0 1 1 Gray

 ↓

 1 0 0 1 0 Binary

2.12.3 EXCESS 3 CODE

 Excess 3 is a digital code obtained by adding 3 to each decimal digit and then

converting the result to four bit binary. It is an unweighted code, i.e., no weights can be

assigned to any of the four digit positions.

Table 2.7. Excess 3 code

Decimal Excess 3

0

1

2

3

4

5

6

7

8

9

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

 Out of the possible 16 code combinations (24 = 16), only 10 are used in excess 3 code. The

remaining 6, i.e., 0000, 0001, 0010, 1101, 1110 and 1111 are invalid in this code.

Example 2.24. Convert the following decimal numbers to excess 3 code (a) 14 (b) 32 (c) 46

(d) 430.

Solution : In each case add 3 to each digit in decimal number and then convert into binary.

 (a) 1 4 (b) 3 2

 + 3 + 3 + 3 + 3

 4 7 6 5

MCA-203 259

 ↓ ↓ ↓ ↓

 0100 0111 0110 1010

 (c) 4 6 (d) 4 3 0

 + 3 + 3 + 3 + 3 + 3

 7 9 7 6 3

 ↓ ↓ ↓ ↓ ↓

 0111 1001 0111 0110 0011

2.12.4. EBCDIC Code

 EBCDIC (Extended Binary Coded Decimal Interchange Code) is used in most of

large computers for communication. It is eight bit code and uses BCD (binary coded

decimal). This code also includes capital alphabets, lower case alphabets, numbers 0 – 9 and

other symbols. Table 2.8 shows this code. e.g., letter B is written as :

 B = 11000010

and letter d is written as : d = 10000010

Table 2.8 EBCDIC Table

Bit positions 0, 1→
Bit positions 2, 3 →

00 01 10 11

 00 01 10 11 00 01 10 11 00 01 10 11 0 01 10 11
Bit positions 3, 5, 6, 7 NUL DS SP & − 0

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

 SOS
 FS
 TM
PF RES BYP PN
HT NL LF RS
LC BS EOB UC
DL IL PRE EOT

 CC SM

CU1 CU2 CU3 1

 /

⊄ ! :
 $, #
< * % @
() − ,
+ ; > =
| ? ′′

a j
b k s
c l t
d m u
e n v
f o w
g p x
h q y
i r z

A J 1
B K S 2
C L T 3
D M U 4
E N V 5
F O W 6
G P X 7
H Q Y 8
I R Z 9

MCA-203 260

2.12.5 ERROR DETECTION CODES

 Every digit of a digital system must be correct. An error in any digit can cause a

problem because the computer may recognize it as something else. The correct ASCII code

for A is 1000001. An error in one bit (i.e., 1000011) would mean C. Many methods have

been devised to detect such errors.

2.12.5.1 Parity

 Parity refers to the number of 1s in the binary word. When the number of 1s in the

binary word is odd, it is said to have odd parity. When the number of words is even, it is said

to have every parity, e.g.,

 1100110 even parity

 1000011 odd parity

 One method for error detection is to use 7 bits for data and 8th (most significant) bit

for parity. The parity bit can be 1 or 0. To make odd parity, the parity bit is set to 1 or 0. If

the word has odd number of 1s, the parity bit is set to 0. If the word has even number of 1s,

the parity bit to set to 1 so as to make the total number of 1 odd. e.g.,

Table 2.9

Parity Data Total number of 1s

0 1100111 5

0 1101011 5

1 1000010 3

1 0000011 3

 At the receiving point the parity is checked to see that it is odd. if it is even, an error

has been committed and the data is required to be transmitted again.

 In some computer systems even parity is also used, i.e., parity bit is set so as to make

the total number of 1s even.

2.12.5.2 Check Sums

 The above discussed parity check cannot detect two errors in the same word. If

01000011 or 01010111 is transmitted instead of 01100111, the errors will not be detected.

One method to detect such cases is the check sums. As each word is transmitted, it is added

to the previous word and the sum is retained at the sending end. E.g.,

MCA-203 261

 Word A 0 0 0 1 0 0 1 1

 Word B 1 0 0 1 0 1 0 0

 SUM 1 0 1 0 0 1 1 1

 Each successive word is added to the sum of the previous words. At the end of

transmission, the sum (known as check sum) is also sent and is checked at the receiving point.

Check sum method is commonly used in tele-processing.

2.12.5.3 Parity Data Codes

 Parity can be added within each character. Two of these methods are known as 2 out

of 5, and biquinary and are shown in Table 2.9.

Table 2.9 Parity data codes

 Decimal 2 out of 5 code Biquinary 5043210

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

00011

00101

00110

01001

01010

01100

10001

10010

10100

11000

0100001

0100010

0100100

0101000

0110000

1000001

1000010

1000100

1001000

1010000

 The 2 out of code uses five bits to represent the 10 decimal digits. Each code word

has two 1s. This facilitates decoding and easier error detection. If the number of 1s received

is other than two, an error is indicated. It is used in communication systems.

 The biquinary code has a 2 bit group and a 5 bit group. Each of these groups has a

single 1. Its weight are 5043210. It is used in counters. The two bit group having weights 50

indicates whether the number is less than or equal to or greater than 5. The five bit group

indicates the count below or above 5.

MCA-203 262

2.12.5.4 Error Correction Code

 A method developed by RW Hammings and known as Hamming code is very

commonly used for error correction. It contains parity bits located in proper positions.

 To find the required number of parity bits, the following equation is used

 2p ≥ m + p + 1 …(2.3)

where m = number of information bits

 p = number of parity bits

 If m = 4, p must have a minimum value of 3 for Eqn. (2.3) to be satisfied. If m = 11,

p must have a minimum value of 4 to satisfy Eqn. (2.3). the parity bits are located at each 2n

bit, e.g., for a bit data, the parity bits are located at positions 20, 21, 22, i.e., 1, 2, 4th bit position

starting with least significant bit (right most bit). Thus the format is

 D7 D6 D5 P4 D3 P2 P1

where P1, P2, P4 indicate parity bits and the remaining are data (information bits).

 For 11 bit data, the format is :

 D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 P4 D3 P2 P1

The assignment of parity bits in the four bit data is as under:

 The bit P1 is set so that it establishes even parity over bits 1, 3, 5 and 7 (i.e., data bits

D3, D5, D7 and itself P1). P2 is set for even parity over bits, 2, 3, 6 and 7 (i.e., D3, D6, D7 and

itself P2). P4 is set for even parity over bits 4, 5, 6, 7 (i.e., D5, D6, D7 and itself P4).

 At the receiver end, each group is checked for even parity. If an error is indicated, it

is located by forming a p bit binary number formed by the p parity bits. When the number of

parity bits is 3 then binary number is 3 bit. The method is as discussed in examples 2.44 and

2.45.

Example 2.25 Data required to be transmitted is 1101. Formulate even parity Hamming

code.

Solution : Since m = 4, p must be 3 to satisfy Eqn. (2.3). Parity bit positions are 20, 21, 22,

i.e., bits 1, 2, and 4.

 D7 D6 D5 P4 D3 P2 P1

 1 1 0 0 1 1 0

MCA-203 263

 P must be 0 so that there is even parity over bits 1, 3, 5, 7. P2 must be 1 to create

even parity over bits 2, 3, 6, 7 and P4 must be 0 so that there is even parity over bits 4, 5, 6, 7.

The values of P1, P2 and P4 are indicated above.

Example 2.26 A seven bit Hamming code as received is 1111101. Check if it is correct. If

not find the correct code if even parity is used.

Solution : D7 D6 D5 P4 D3 P2 P1

 1 1 1 1 1 0 1

Bits 4, 5, 6, 7 have even number of 1s. Hence no error

Bits 2, 3, 6, 7 have odd number of 1s. Hence error

Bits 1, 3, 5, 7 have even number of 1s. Hence no error

Evidently the error is in bit 2 position. The correct code is 1111111.

Example 2.27 The seven bit Hamming code as received is 0010001. Assuming that even

parity has been used, check it is correct. If not find the correct code.

Solution : D7 D6 D5 P4 D3 P2 P1

 0 0 1 0 0 0 1

Bits 4, 5, 6, 7 hae odd number of 1s. Hence error

Bits 2, 3, 6, 7 have even number of 1s. Hence no error

Bits 1, 3, 5, 7 have even number of 1s. Hence no error.

Evidently the error in bit 4. The correct code is 0011001.

Example 2.28 Solve the equation for x

 x16 = 1111 1111 1111 11112

Solution : Replacing each 4 bit binary by hexadecimal using Table 2.1. We get

 1111 1111 1111 1111

 ↓ ↓ ↓ ↓

 x16 = F F F F16

Hence x16 = FFFF16

Example 2.29 How many memory locations can 14 address bits access.

Solution : Number of memory locations = 214 = 16384.

Example 2.30 Solve the following ; (a) 1100012 = x10 (b) 23.610 = x2

 (c) 65.53510 = x16 (d) F8 E6.3916 = x10.

MCA-203 264

Solution : (a) 1 1 0 0 0 1 Binary number

 32 16 8 4 2 1 Write weights

 32 16 8 4 2 1 Cross to weights under zero

 32 + 16 + 1 = 49 Add weights

 x = 49.

(b) Take the integer part

 2 23

 2 11−1

 2 5−1

 2 2−1

 2 1−0

 0−1

Hence 2310 = 101112.

Taking the fractional part

 Fraction Fraction × 2 Remainder Integer

 new fraction

 0.6 1.2 0.2 1

 0.2 0.4 0.4 0

 0.4 0.8 0.8 0

 0.8 1.6 0.6 1

 0.6 1.2 0.2 1

 0.2 0.4 0.4 0

 0.4 0.8 0.8 0

Hence 0.610 = 1.00 11002.

Hence 23.610 = 10111.10011002

(c) Taking the integer part

 16 65

 16 4−1

 0−4

Hence 6510 = 4116

MCA-203 265

Taking the fractional part

 Fraction Fraction × 16 Remainder Integer

 new fraction

 0.535 8.56 0.56 8

 0.56 8.96 0.96 8

 0.96 15.36 0.36 15 = F

 0.36 5.76 0.76 5

 0.76 12.16 0.16 12 = C

 0.16 2.56 0.56 2

 0.56 8.96 0.96 8

Hence 0.35 = 0.88F5 C2816

Hence 65.53510 = 41.88F5 C2816.

(d) Taking the integer part

 F 8 E 6 Hexadecimal number

 163 162 161 160 Write weight

 15 × 163 + 8 × 162 + 14 × 16 + 6 × 1 Add weights

or F8 E616 = 63718

Taking the fraction part

 0 3 9 Hexadecimal Number

 16−1 16−2 Write weights

 3 × 16−1 + 9 × 16−2 Add weights

 = 0.222656

Hence F8 E6.3916 = 63718.22265610

Example 2.31 In a new number system, X and Y are successive digits such that (XY)r =

(25)10 and (YX)r = (31)10. Find X, Y, r.

Solution : Since the base is r

 Xr + Yr0 = 25

 or Xr + Y = 25 …(i)

 and Yr + Xr0 = 31

 or Yr + X = 31 …(11)

MCA-203 266

 Also Y = X + 1 …(iii)

From Eqns. (i), (ii) and (iii)

 X = 3, Y = 4 and r = 7.

Example 2.32 Solve the following (a) (48.625)10 = (?)2 (b) (6CD.A)16 = (?)10

(c) (BCA3.AD)16 = (?)2 (d) (446.25)10 = (?)16 (e) (1010111.011)2 = (?)8.

Solution : Fraction Fraction ×2 Remainder Integer 2 48

 New Fraction 2 24−0

 0.625 1.25 .25 1 2 12−0

 0.25 0.5 0.5 0 2 6−0

 0.5 1.0 0 1 2 3−0

(48.625)10 = (110000.101)2 2 1−0

 0−1

 4810 = 1100002

(b) 6 C D A

 162 161 160 16−1

 = 6 × 162 + 12 × 16 + 13. 10 × 16−1 = 1741.62510

(c) B C A 3 A D

 ↓ ↓ ↓ ↓ ↓ ↓

 1011 1100 1010 0011 1010 1101

 BCA3.AD16 = 1011 1100 1010 0011. 1010 11012

(d) Fraction Fraction ×16 New fraction Integer 16 446

 0.25 4 0 4 16 27−14 = E

 (446.25)10 = (1BE.4)16 16 1−11 = B

 0−1

 44610 = 1BE16

(e) 1 010 111 . 011

 ↓ ↓ ↓ . ↓

 1 2 7 . 3

MCA-203 267

 (1010111.011)2 = (127.3)8

Example 2.33 Multiply 10.1012 by 0.1012.

Solution 1 0 1 0 1

 0 . 1 0 1

 1 0 1 0 1

 0 0 0 0 0

 1 0 1 0 1

 1 1 0 0 0 0 1

SUMMARY

1. Digital computers are basically data processors and use binary numbers system.

This system uses digits 0 and 1. Thus the base is 2.

2. Each binary digit is known as bit. A string of 4 bits is known as nibble and a

string of 8 bits is known as byte. Computers Process data in strings of 8 bits or

some multiplies, i.e., 16, 24 32 etc.

3. To convert a decimal number into binary, we divide the number successively by

2. The remainders when read upwards give the binary number.

4. To convert a binary number into decimal we multiply each binary digit by its

weight. The weights are 20, 21, 22, 23… starting with the least significant bit (i.e.,

bit in the right most position).

5. The most significant bit denotes the sign in sign magnitude number form. 0

indicates positive, 1 indicates negative. The remaining bits are magnitude bits.

6. 1’s complement is obtained by complementing each bit (i.e., 0 for 1 and 1 for 0).

If the number is A, its 1’s complement is denoted by A .

7. 2’s complement is obtained by adding 1 to 1’s complement. It is denoted by A′.

8. The use of 2’s complement representation simplifies the computer hardware.

9. In binary fractions, the weights of bits after binary point are 2−1, 2−2, 2−3 etc.

10. The rules for binary addition are 0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 10 and 1 + 1

+ 1 = 11.

11. The rules for binary subtraction are 0 − 0 = 0, 1 − 0 = 1, 1 − 1 = 0 and 10 − 1 = 1.

MCA-203 268

12. The rules for binary multiplication are 0 × 0 = 0, 0 × 1 = 0, 1 × 0 = 0, 1 × 1 = 1

13. In floating point representation, the numbers have a 10 bit long mantissa and 6 bit

long exponent. The left most bit of mantissa is sign bit. The binary point is

immediately to the right of this sign bit. To express negative exponents, the

number 3210 (i.e., 1000002) is added to the exponent.

14. In hexadecimal system the base is 16. The digits are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A,

B, C, D, E, F.

15. In octal system the base is 8. the digits are 0, 1, 2, 3, 4, 5, 6, 7.

16. In Binary Coded Decimal (BCD), each decimal digit is represented by 4 bits.

8421 BCD is the most prominent BCD code.

17. In Gray code representation only a single bit change occurs when going from one

code to the next.

18. Excess − 3 code is obtained by adding 3 to every decimal digit and then

converting the result into 4 bit binary.

19. Alphanumeric codes include binary codes for numbers, letters and symbols.

ASCII and EBCDIC are the most common alphanumeric codes.

20. Error detection code enables detection of errors in the received data. Parity,

check sums and parity data codes are used for this purpose.

21. Hamming code is used for error correction.

PROBLEMS

 Determine the decimal numbers represented by the following binary

numbers :

(a) 111001 (b) 101001 (c) 11111110

(d) 1100100 (e) 1101.0011 (f) 1010.1010

(g) 0.11100

 Determine the binary numbers represented by the following decimal

numbers ;

(a) 37 (b) 255 (c) 15 (d) 26.25

(e) 11.75 (f) 0.1

 Add the following groups of binary numbers :

MCA-203 269

(a) 1011 (b) 1010.11 01

 + 1101 + 101.01

 Perform the following subtractions using 2’s complement method.

(a) 0100 − 01001 (b) 01100 − 0001

(c) 0011.1001 − 0001.1110

 Convert the following numbers from decimal to octal and then to binary.

Compare the binary numbers obtained with the binary numbers obtained

directly from the decimal numbers.

(a) 375 (b) 249 (c) 27.125

 Convert the following binary numbers ot octal and then to decimal.

Compare the decimal numbers obtained with the decimal numbers

obtained directly from the binary numbers.

(a) 11011100.101010 (b) 01010011.010101

(c) 10110011

 Encode the following decimal numbers in BCD code :

(a) 46 (b) 327.89 (c) 20.305

 Encode the decimal numbers in Problem 2.9 to Excess-3 code.

 Encode the decimal number 46 to Gray code.

 Write your full name in

(a) ASCII code (b) EBCDIC code

 Attach an even parity bit as MSB for

(a) ASCII code. (b) EBCDIC code.

 What is the base in binary number system? What digits are used in this

system?

 What is meant by 1’s complement, 2’s complement?

 What is octal system? What is the base? What digits are sued?

 What is binary number? Discuss a procedure to convert (a) binary

number to decimal, (b) decimal number into binary.

 Explain (a) signed binary numbers, (b) 1’s complement, (c) 2’s

complement.

MCA-203 270

 What is a hexadecimal number? How can the following conversions be

done. (a) Hexadecimal into binary. (b) Decimal to hexadecimal. (c)

Hexadecimal to decimal. (d) Binary to hexadecimal?

2.18 What is ASCII code Discus it briefly.

MCA-203 271

CHAPTER-3

COMBINATIONAL LOGIC DESIGN

Author: Dr. Manoj Duhan Wetter : Mr. Manoj Taleja

3.1 INTRODUCTION

Logic operations and Boolean algebra have already been discussed in Chapter 1.

Boolean algebraic theorems are used for the manipulations of logical expressions. It has also

been demonstrated that a logical expression can be realized using the logic gates. The number

of gates and the number of input terminals for the gates required for the realization of a

logical expression, in general, get reduced considerably if the expression can be simplified.

Therefore, the simplification of logical expression is very important as it saves the hardware

required to design a specific system. A large number of functions are available in IC form and

therefore, we should be able to make optimum use of these ICs in the design of digital

systems. That is, our aim should be to minimize the number of IC packages.

Basically, digital circuits are divided into two broad categories:

1. Combinational circuits, and

2. Sequential circuits,

In combinational circuits, the outputs at any instant of time depend upon the inputs

present at that instant of time. This means there is no memory in these circuits. There are

other types of circuits in which the outputs at any instant of time depend upon the present

inputs as well as past inputs/outputs. This means that there are elements used to store past

information. These elements are known as memory. Such circuits are known as sequential

circuits. A sequential logic system may have combinational logic sub-systems. The design of

combinational circuits will be discussed here. Sequential circuit design will be discussed later.

 The design requirements of combinational circuits may be specified in one of the

following ways:

MCA-203 272

1. A set of statements

 2. Boolean expression, and

 3. truth table.

 The aim is to design a circuit using the gates already discussed or some other circuits

which are in fact derived from the basic gates. As is usual in any engineering design, the

number of components used should be minimum to ensure low cost, saving in space, power

requirements, etc. There can be two different approaches to the design of combinational

circuits. One of these is the traditional method, wherein the given Boolean expression or the

truth table is simplified by using standard methods and the simplified expression is realized

using the gates. The other method normally does not require any simplification of the logical

expression or truth table, instead the complex logic functions available in medium scale

integrated circuits (MSI) or large scale integrated circuits (LSI) can be directly used.

Combinational circuit design using the traditional design methods has been discussed below.

 The following methods can be used to simplify the Boolean function:

1. Algebraic method,

2. Karnaugh map technique,

3. Variable entered aping (VEM) technique, and

4. Quino-McCluskey method.

 The algebraic method and the Karnaugh map (K-map) technique have been given

here. The K-map is the simplest and most commonly used method. It can be used up to six

variables. The variable entered mapping (VEM) has been discussed in Fletcher and the

Quine-McCluskey method has been discussed in Hill and Peterson and the interested reader

can refer to these books (see Bibliography).

 The Quine-McClukey method is a formal method which in no way depends upon

human intuition. It is, therefore, suitable for computer mechanization and is seldom used by

logic designers manually. VEM technique is beyond the scope of this book although it is a

MCA-203 273

very powerful technique of logic simplification. Design of combinational logic circuits using

MSI and LSI chips is postponed till these functions are discussed.

3.2 STANDARD FORMS OF LOGIC FUNCTIONS

 Design of logic circuits starts with preparation of word equation or truth table for the

desired output (0 or 1) for the given input conditions. A logic circuit to implement the above

equation/truth table is to be synthesized. The logic expression can be either a sum of products

or product of sums.1

3.2.1 Fundamental Products and Sum of Products

 Fig. 3.1 shows four possible ways for connecting two input variables A, B and their

complements B,A to AND gate. These four products BA,BA,BA and AB are known as

fundamental products and are listed in Table 3.1.

Table 3.1 Fundamental products

 for two variables

Each fundamental product gives high output for the given input conditions of Table 4.6.

Table 3.2 lists the fundamental products for 3 variables A, B, C. As in the case of two

variables all the fundamental products give high output for the given input, e.g., A = 1, B = 1

and C = 1gives high output when the three inputs to AND gate are 1, 1, 1. Similarly the

other listings in Table 3.2 can be explained.

1 SOP and POS are complementary forms.

A B Fundamental
 Product
0 0 BA
0 1 BA
1 0 A B
1 1 AB

A
B

A
⎯B

A⎯B

AB ⎯A
B

⎯A
⎯B

⎯AB

⎯A⎯B

Fig. 3.1 Fundamental Products

MCA-203 274

Table 3.2 Fundamental products for three variables

A B C Fundamental products

0 0 0 CBA

0 0 1 CBA

0 1 0 CBA

0 1 1 CBA

1 0 0 CBA

1 0 1 CBA

1 1 0 CBA

1 1 1 A B C

The first standard form of logic functions is sum of products form. Suppose we are given the

truth table of Table 3.3. For convenience the rows have been numbered. Output Y = 1 for

the condition of rows 3, 5, 7, 8. In row 3, A = 0, c = 0 and B = 1. The output Y can be high

(i.e., 1) if A, B, C are ANDed as under

 Y = CBA …(3.1)

 Similarly, we can interpret the remaining rows for high output.

MCA-203 275

Table 3.3

Row A B C Y

1

2

3

4

5

6

7

8

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

1

 Rows 5, 7, 8 led to terms CBA,CBA and ABC. If any of these is 1, output Y will

be 1. Thus the expressions for rows 3, 5, 7, 8 can be ORed. The required logic equation is

 Y = CBACBACBA ++ + A B C …(3.2)

 Eqn. (3.2) is expanded form of us of products. Each term is known as minterm. It is

seen that each minterm contains all the variables A, B, C. Digital circuit which implements

Boolean eqn. (3.2) is shown in Fig. 3.2. The procedure for writing a Boolean expression as

shown in Eqn. (3.2) is called expansion. The systematic procedure for writing the sum of

products form is :

1. Write down all the terms.

2. Put blanks (or Xs) at places where letters must be provided to convert the term to

a minterm.

3. Use combinations of Xs in each term to generate minterm. Where X is 0, write a

letter with a bar, where X is 1 write a letter without bar.

4. Drop Out redundant term.

MCA-203 276

Fig. 3.2 Logical circuit for Eqn. (3.2)

Example 3.1 Write minterms of BC + A.

Solution : BC + A Write terms

 XBC + AXX Add Xs where letters are missing

 A BC, ABC Vary Xs in XBC

 A ,CBA,CBA,CB ABC Vary Xs in AXX

Thus BC + A = A BC + ABC + A CB + A B C + A B C + ABC

or BC + A = A B C + ABC + A CBACBACB ++

Example 3.2 Simplify the result of example 4.1 to show that it equals BC + A.

Solution : A B C + ABC + CBACBA + + A B C

 = BC (CBA)CC(BA)AA ++++

 = BC + A)CAC(BBACBAB ++=+

 = A ABBCBA)AC(BB ++=++

MCA-203 277

 = A (ABCBCABC)BB +=+=++

Example 3.3 Write the minterms of ACD + AB.

Solution :- ACD + AB Write terms

 AXCD + ABXX Add Xs where letters are missing

 ABCD, A CDB Vary Xs in AXCD

 ABCD, ABC DCAB,DCAB,D Vary Xs in ABXX

Therefore, ACD + AB = ABCD + A DCABDCABDABCABCDCDB ++++

 = ABCD + A DCABDCABDABCCDB +++

Example 3.4 Implement the Boolean function BC + A

Solution : Fig. 3.3 shows the implementation. The AND gate gives the output BC. The term

BC when ORed with A gives BC + A

Example 3.5 Implement the Boolean function ACD + AB.

Solution : Fig. 3.4 shows the logic circuit for the Boolean expression ACD + AB. The upper

AND gate gives the output ACD. The lower AND gate gives AB. These are ORed to give

the final output ACD + AB.

3.2.2 Sum of Product in terms of Minterms

 Since the terms ABC must appear in every product, a short hand notation has been

developed to save the labour in writing down the letters again and again. TO use this notation

Fig. 3.3 Fig. 3.4

MCA-203 278

substitute 0 for a letter with bar (i.e., NOT ed letter) and 1 for a letter without a br. Express

the resultant binary number by a decimal number and write it as a subscript of m. This

subscript is used in all truth tables and maps.

Example 3.6 Write the minterms designation for (a) ABCD (b) DCBA)c(CDBA

Solution : (a) A B C D

 1 1 1 1 = 15

 Hence ABCD = m15

(b) A B C D

 1 0 1 1 = 11

 Hence A B CD = m11

(c) A B C D

 1 0 0 0 = 8

 Hence A DCB = m8

Example 3.7 Write the complete expression for the minterm designation Y = Σ m (1, 3, 5, 7)

Solution : The expression Y = Σ m(1, 3, 5, 7) should be read as Y is the sum of minterms 1,

3, 5, 7. Since the highest value of m is 7, there are 3 variables in the system. Let the

variables by A, B, C.

Decimal number 7 corresponds to binary numbers 111 or ABC

Decimal number 1 = binary number 001 or BA C

Decimal number 3 = binary number 011 or A BC

Decimal number 5 = binary number 101 or A B C

Hence Y = Σ m(1, 3, 5, 7) = ABCCBABCACBA +++

[In each of the above cases 0 and 1 are replaced by barred and unbarred letters A, B, C]

MCA-203 279

3.2.3 Product of Sums

 The product of sums, as the name suggests, is an expression involving the product of

two or more terms where each term contains sum of a number of variables. The product of

sum form is a dual of sum of product form. It may also contain a single variable term. The

expression A(A + B) (C + D) is an example of product of sum form. Fig. 3.5 shows a logic

circuit corresponding to expression A(A + B) (C + D).

Example 3.8 Indicate the form of the expression

 Y = A BC + ABC + CBA

 Draw a logic circuit to implement this expression.

Fig. 3.5

Solution : It is a sum of products form. The logic circuit is shown in Fig. 3.6. It has three

AND gates and one OR gate.2

 Fig. 3.6 Fig. 3.7

2 The sum of product form implementation will have one OR gate and as many AND

gates as the number of product terms.

MCA-203 280

Example 3.9 Identify the form of the expression Y = AC + BC + EF

Draw logic circuit to implement the function.

Solution : It is a sum of product form. Fig. 3.7 shows the logic circuit. It has three AND

gates and one OR gate.

Example 3.10 Identify the form of the expression

 Y = A(A + B) (C + D) (E + F)

Draw logic circuit.

Solution : It is product of sum form. Fig. 3.8 shows the logic circuit. It has three OR gates

and one AND gate.

 Fig. 3.8

3.2.4 Product of Sums in terms of Max Terms

 Just as the sum of products can be written in short hand using minterms, the product

of sums can be written in short hand using max terms. If a system has variables A, B, C then

the max terms would be in the form A + B + C , A + B + C, A + B + C etc. A Boolean

expression written in max terms takes the form

 Y = ∏ M(0, 1, 3, 4) …(3.3)

where the capital ∏ represents the product and M stands for max terms.

MCA-203 281

 The numbering of max terms is different from numbering of min terms. The

unbarred letters represent 0s and the barred (NOT ed) letters represent 1s in forming the max

terms designation.

Example 3.11 Write the full form of expression

 Y = ∏ M(0, 1, 3, 4)

Solution : Let the variables be A, B, C.

Decimal 0 means binary 000 and term is A + B + C

Decimal 1 means binary 001 and term is A + B + C

Decimal 3 means binary 001 and term is A + CB +

Decimal 4 means binary 100 and term is A + B + C

Hence, Y = ∏ M(0, 1, 3, 4) = (A + B + C) (A + B +)CBA)(CBA)(C ++++

3.2.5 Complementary Nature of Minterms and Max Terms

 The SOP and POS forms of Boolean expressions are complementary forms.

Therefore, the min terms designation and max term designation are also complementary. Let

the min term designation for a three variable expression be

 Y = ∑ m(0, 1, 4, 6)

The equivalent max term form is

 Y = ∏ M(2, 3, 5, 7)

 For a three variable expression the total number of terms are 23 = 8. Out of these the

terms corresponding to decimal numbers 0, 1, 4, 6 are min terms and those corresponding to

decimal numbers 2, 3, 5, 7 are max terms. Thus if min terms are known, the max terms can

be written directly by visual inspection only.

 Let the min term form for a 4 variable expression be

 Y = ∑ m(1, 4, 5, 7, 9, 11, 14)

MCA-203 282

Then the max term form is

 Y = ∏ M(0, 2, 3, 6, 8, 10, 12, 13, 15).

3.3 SIMPLIFICATION OF LOGICAL FUNCTIONS USING K-MAP

Simplification of logical functions with K-map is based on the principle of combining terms

in adjacent cells. Two cells are said to be adjacent if they differ in only one variable. For

example, in the two-variable K-maps, the top two cells are adjacent and the bottom two cells

are adjacent. Also, the left two cells and the right two cells are adjacent. It can be verified that

in adjacent cells one of the literals in same, whereas the other literal appears in

uncomplemented form in one and in the complemented form in the other cell.

 Similarly, we observe adjacent cells in the 3-variable and 4-variable K-maps. Table

3.4 gives the adjacent cells of each cell in 2-, 3-, and 4-variable K-maps. From this it becomes

clear that if the Gray code in used for the identification of cells in K-map, physically adjacent

(horizontal and vertical but not diagonal) cells differ in only one variable. Also, the left-most

cells are adjacent to their corresponding right-most cells and similarly the top cells are

adjacent to their corresponding bottom cells. The simplification of logical function is

achieved by grouping adjacent 1’s or 0’s in groups of 2’, where i = 1, 2,… n and n is the

number of variables.

3.3.1 Grouping Two Adjacent Ones

If there are two adjacent ones on the map, these can be grouped together and the resulting

term will have one less literal than the original two terms. It can be verified for each of the

groupings of two ones as given in Table 5.5.

MCA-203 283

Table 3.4 Adjacent cells in K-maps

Decimal numbers of adjacent cell Cell with

decimal

number

 2-variable 3-variable 4-variable

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1, 2

0, 3

0, 3

1, 2

1, 2, 4

0, 3, 5

0, 3, 6

1, 2, 7

0, 5, 6

1, 4, 7

2, 4, 7

3, 5, 6

1, 2, 4, 8

0, 3, 5, 9

0, 3, 6, 10

1, 2, 7, 11

0, 5, 6, 12

1, 4, 7, 13

2, 4, 7, 14

3, 5, 6, 15

0, 9, 10, 12

1, 8, 11, 13

2, 8, 11, 14

3, 9, 10, 15

4, 8, 13, 14

5, 9, 12, 15

6, 10, 12, 15

7, 11, 13, 14

Example 3.12 Simplify the K-map of Fig. 3.9

MCA-203 284

 Fig. 3.9 K-map of Ex. 3.12

Solution : The standard SOP form of equation can be written by inspection as

 Y= CBA + A BC + ABC + CBA …(3.4)

If we combine the ones in adjacent cells (0, 4) and (3,7), Eq. (3.4) can be written as

 Y = BC)AA(CB)AA(+++ …(3.4)

 = CB + BC …(3.5)

Equation (3.5) can be directly obtained from the K-map by using the following procedure:

1. Identify adjacent ones, then see the values of the variables associated with these

cells. Only one variable will be different and gets eliminated. Other variables will

appear in ANDed form in the term, it will be in the uncomplemented form if it is 1

and in the complemented form if it is 0.

2. Determine the term corresponding to each group of adjacent ones. These

terms are ORed to get the simplified equation in SOP form.

3.3.2 Grouping Four Adjacent Ones

Four cells form a group of four adjacent ones if two of the literals associated

with the minterms/maxterms are not same and the other literals are same. Table 5.6

gives all possible groups of four adjacent ones for each cell in a 3-variable map. In

case of 2-variable map, there is only one possibility corresponding to entry 1 in all

MCA-203 285

the four cells, and the simplified expression will be Y=1. That is, Y always equals 1

(independent of the variables).

 On the basis of groupings of 4 adjacent ones given in Table 3.5, we can find

the groupings in K-maps of four or more variables. In the case of a four-variable K-

map, there are six possible groupings of 4-variables involving any cell. It is left to the

reader to verify this fact.

 Table 3.5. Groups of four adjacent ones in a 3-variable K-map

Cell with decimal

number

Decimal numbers of cells forming

groups of adjacent fours

0

1

2

3

4

5

6

7

(0, 2, 6, 4),

(1, 0, 2, 3),

(2, 0, 6, 4),

(3, 1, 7, 5),

(4, 6, 2, 0),

(5, 1, 3, 7),

(6, 0, 2, 4),

(7, 1, 3, 4),

(0, 1, 2, 3),

(1, 3, 7, 5),

(2, 3, 1, 0),

(3, 2, 1, 0),

(4, 5, 6, 7),

(5, 4, 6, 7),

(6, 7, 4, 5),

(7, 6, 4, 5),

(0, 1, 4, 5),

(1, 0, 4, 5),

(2, 3, 6, 7),

(3, 2, 6, 7),

(4, 5, 0, 1),

(5, 4, 0, 1),

(6, 7, 2, 3),

(7, 6, 2, 3),

Example 3.13 Simplify the K-map of Fig. 3.10.

Solution The standard SOP form of equation can be written by inspection as

 Y= m0 + m1 + m3 + m7 + m8 + m9 + m11 + m15

 = (m0 + m1 + m8 + m9) + (m3 + m7 + m15 + m11) …(3.6)

In the K-map of Fig. 3.10, there are two groups of four adjacent ones. One

corresponding to cells 0, 1, 8 and 9, and the other one corresponding to 3, 7, 15 and

MCA-203 286

11.

In Eq. (3.6), the minterms corresponding to each group are combined. The first term can be

written as

 m0 + m1 + m8 + m9 = DCBADCBADCBADCBA +++

 =)ADDADADA(CB +++

 =)]DD(A)DD(A[CB +++

 =]1.A1.A[CB +

 =)AA(CB +

 = CB1.CB =

In the first term or Eq, (3.6) we observe the following:

1. In this group of four minterms, two of the variables appear as CandB in all the four

terms.

2. The variable A appears as A in two and as A in the other two minterms.

3. The variable D appears as D in two and as D in the other two minterms.

0 4 12 8
 1 1
1 5 13 9
 1 1
3 7 15 11
 1 1 1 1

2 6 14 10

00

01

11

10

10 11 01 00
AB

CD

Fig. 3.10 K-map of Ex. 3.10

MCA-203 287

4. The combination of these four minterms results in one term with two literals which

are present in all the four terms. Similarly, the second term of Eq. (3.6) is simplified

to CD. Therefore, the K-map is simplified to

 Y = CDCB + …(3.7)

3.3.3 Grouping Eight Adjacent Ones

Eight cells form a group of eight adjacent ones if three of the literals associated with
the minterms/maxterms are not same and the other literals are same. In case of 3-variable K-
map, there is only one possibility of eight ones appearing in the K-map and this corresponds
to output equal to 1, irrespective of the values of the input variables. Table 3.6 gives all
possible groups of eight adjacent ones in a 4-variable K-map. From an understanding of this,
we can easily find out such combinations for 5- and 6-variable K-maps. When eight adjacent
ones are combined, the resulting equation will have only one term with the number of literals
three less than the number of literals in the original minterms. Similar to the groupings of
adjacent two and four ones, the literals which are common in all the eight minterms will be
present and the literals which are not same get eliminated in the resulting term.

 Table 3.6 Group of eight adjacent ones in 4-variable K-map

Decimal numbers of cells forming groups of adjacent

eights in a 4-variable L-map

 0, 4, 12, 8, 1, 5, 13, 9,

 0, 4, 12, 8, 2, 6, 14, 10

 0, 1, 3, 2, 4, 5, 7, 6

 0, 1, 3, 2, 8, 9, 11, 10

 1, 5, 13, 9, 3, 7, 15, 11

 4, 5, 7, 6, 12, 13, 15, 14

 12, 13, 15, 14, 8, 9, 11, 10

 3, 7, 15, 11, 2, 6, 14, 10

 The reader is advised to verify the simplification of eight adjacent ones into a single

term with three variables eliminated. For example, let us take the first group of eight adjacent

MCA-203 288

ones in Table 3.6. For all these eight cells, the variable C appears as C in the minterms and

the other three variables are not same. Therefore, the grouping of these eight cells results in a

term C . Figure 3.11 shows the simplified expression for each of the groupings of eight ones

for a 4-variable K-map.

3.3.4 Grouping 2, 4, and 8 Adjacent Zeros

In the above discussion, we have considered groups of 2, 4, and 8 adjacent ones. Instead of

making the groups of ones, we can also make groups of zeros. The procedure is similar to the

one used above and is as follows:

a. Group of two adjacent zeros result in a term with one literal less than

the number of variables. The literal which is not same in the two

maxterms gets eliminated.

b. Group of four adjacent zeros result in a term with two literals less than

the number of variables. The two literals which are not same in all the

four maxterms get eliminated.

0 4 12 8

1 5 13 9

3 7 15 11

2 6 14 10

00

01

11

10

10 11 01 00
AB

CD

Fig. 3.11 Four-variable K-map illustrating the groupings
 of eight adjacent ones

A A

D D

B
B

C

C

MCA-203 289

c. Group of eight adjacent zeros result in a term with three literals less

than the number of variables. The three literals which are not same in

all the eight maxterms get eliminated.

 We have considered groups of 2, 4, and 8 adjacent ones and zeros. The same logic can

be extended to 16, 32, and 64 adjacent ones and zeros which occur in K-maps with more than

4 variables.

3.5 MINIMIZATION OF LOGICAL FUNCTIONS SPECIFIED IN

MINTERMS/MAXTERMS OR TRUTH TABLE

3.5.1 Minimization of SOP Form

We have seen the advantages of simplifying a logical expression. If the expression is

simplified to a stage beyond which it can not be further simplified, it will require minimum

number of gates with minimum number of inputs to the gates. Such an expression is referred

to as the minimized expression.

 For minimizing a given expression in SOP form or for a given truth table, we have to

prepare the K-map first and then look for combinations of ones on the K-map. We have to

combine the ones in such a way that the resulting expression is minimum. To achieve this, the

following algorithm can be used which will definitely lead to minimized expression:

a. Identify the ones which can not be combined with any other ones and

encircle them. These are essential prime implicants.

b. Identify the ones that can be combined in groups of two in only one way.

Encircle such groups of ones.

c. Identify the ones that can be combined with three other ones, to make a

group of four adjacent ones, in only one way. Encircle such groups of ones.

d. Identify the ones that can be combined with seven other ones, to make a

group of eight adjacent ones, in only one way. Encircle such groups of ones.

e. After identifying the essential groups of 2, 4, and 8 ones, if there still

remains some ones which have not been encircled then these are to be combined

MCA-203 290

with each other or with other already encircled ones. Of course, however, we

should combine the left-over ones in largest possible groups and in as few

groupings as possible. In this, the groupings may not be unique and we should

make the groupings in an optimum manner. You can verify that any one can be

included any number of times without affecting the expression.

The above algorithm will be used to minimize the logical functions in the examples

given.

Example 3.14 Minimize the four-variable logic function using K-map.

 ƒ(A, B, C, D) = ∑m (0, 1, 2, 3, 5, 7, 8, 9, 11, 14) ..(3.7.1)

Solution : The K-map of Eq. (3.7.1) is shown in Fig. 3.12. The equation is minimized in the

following steps:

1. Encircle 1in cell 14 which can not be combined with any other 1. The term

corresponding to this is ABC D .

2. There are at least two possible ways for every 1 forming groups of two adjacent ones.

Therefore, we ignore it for the time being and go to the next step.

3. There is only one possible group of four adjacent ones involving each of the cells 8,

11, 5 or 7 and 2, and these are (8, 9, 0, 1),(11, 9, 1, 3), (5, 7, 3, 1) and (2, 3, 1,

0), respectively. Encircle these groups. The terms corresponding to these grops are

,BAand,DA,DB,CB respectively.

Since all the ones have been encircles, therefore, the minimized equation is

 f(A, B, C, D) = ABC D + BADADBCB +++ …(3.8)

MCA-203 291

Fig. 3.12 K-map for Eq. (3.8)

Example 3.15 Determine the minimized expression in SOP form for the truth table given in

Table 3.7.

Solution : The K-map for the truth table to Table 3.7 is shown in Fig. 3.13.

 Using the minimization steps, we obtain the minimized expression

 Y = CDACAB ++ …(3.9)

Table 3.7

Inputs Output Y

A B C D

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

0

1

1

1

1

0

MCA-203 292

0

0

0

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

1

1

0

0

1

1

0

0

1

1

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

1

1

1

1

1

0

0

Fig. 3.13 K-map of Table 3.7.

3.5.2 Minimization of POS Form

MCA-203 293

For minimizing a given expression in POS form or for a given truth table we write

zeros in the cells corresponding to maxterms for 0 outputs. The K-map is simplified by

following the same procedure as used for SOP form with ones replaced by zeros. In this,

groups of zeros are formed rather than groups of ones. We shall minimize the above two

examples in POS form.

Example 3.16 Minimize the logic function of Eq. (3.10) in POS form.

Solution : Equation (3.10) can be expressed in standard POS form as

 f(A, B, C, D) = ∏M (4, 6, 10, 12, 13, 15) …(3.10)

The K-map corresponding to Eq. (3.10) is shown in Fig. 3.14.

 Fig. 3.14 K-map of Eq. (3.10)

Using steps similar to those outlined for SOP form, we obtain the minimized

expression,

 f = ()DCBA +++ . ()CBA(++ .).DBA(++ (A +)DB + …(3.11)

Example 3.17 Minimize the truth table give in Table 3.7 using maxterms.

Solution : The K-map is given in Fig. 3.15.

MCA-203 294

 Fig. 3.15 K-map of Table 3.7.

The simplified expression is

 Y = (A +)DCB)(CBA)(CB +++++ …(3.12)

Comparison of Eqs (3.11) and (3.12) confirms our generalizations made in Ex. 3.16 regarding

the hardware requirements in the two methods.

3.6 MINIMIZATION OF LOGICAL FUNCTIONS NOT SPECIFIED IN

MINTERMS/MAXTERMS

If the function is specified in one of the two standard forms, its K-map can be prepared

and the function can be minimized. Now we consider the cases where the functions are not

specified in standard forms. In such cases, the equations can be converted into standard forms,

the K-map obtained and minimized. Alternately, we can directly prepare K-map using the

following algorithm:

1. Enter ones for minterms and zeros for maxterms.

2. Enter a pair of ones/zeros for each of the terms with one variable less than the total

number of variables.

MCA-203 295

3. Enter four adjacent ones/zeros for terms with two variables less than the total number

of variables.

4. Repeat for other terms in the similar way.

One the K-map is prepared the minimization procedure is same as discussed earlier,

 The following examples will help in understanding the above procedure:

Example 3.18 Minimize the four variable logic function

 f(A, B, C, D) = BCBACADBACBABCDADCAB ++++++ …(3.13)

Solution : The method for obtaining K-map is

1. Enter 1 in the cell with A = 1, B = 1, C = 0, D =1

corresponding to the minterm AB DC .

2. Enter 1 in the cell with A = 0, B = 1, C = 1, D = 1

corresponding to the minterm A BCD.

3. Enter 1’s in the two cells with A = 0, B = 0, C = 0

corresponding to the term CBA

4. Enter 1’s in the two cells with A = 0, B = 0, D = 0

(one of these is already entered) corresponding to the term DBA .

5. Enter 1’s in the two cells with A = 1, B = 0, C = 1

corresponding to the term CBA .

6. Enter 1’s in the four cells with A = 1, C = 0

(one of them is already entered) corresponding to the term A C .

7. Enter 1’s in the eight cells with B = 0 (all of them except one have already been

entered) corresponding to the term .B

MCA-203 296

 The K-map is given in Fig. 3.16.

 Fig. 3.16 K-map of Eq. (3.13)

Example 3.19 Minimize the four variable logic function

 f(A, B, C, D) = (A + B +)DCA()DC ++⋅+ ⋅

)CB()CB()DCBA(+⋅+⋅+++

)DB()BA(+⋅+ …(3.14)

Solution : The K-map cells in which 0’s are to be entered corresponding to each term are

given in Table 3.8. Even if a cell is involved in more than one terms, a 0 is to be entered only

once.

1 1 1

1 1 1

1 1 1

1 1

CD
AB

00 01 11 10

00

01

11

10

MCA-203 297

Table 3.8. K-map cells with 0 entries

Term Cell(s) with 0’s

A + B + DC + A = 0, B= 0, C = 1, D = 1

DCA ++ A = 1, C = 0, D = 1

DCBA +++ A = 1, B = 0, C = 1, D = 1

CB + B = 1, C = 0

CB + B = 1, C = 1

A + B A = 0, B = 1

DB + B = 1, D = 1

Fig. 3.17 K-map of Eq. (3.14)

The K-map is given in Fig. 5.17. The minimized expression is

 f(A, B, C, D) =)DC)(DA(B ++⋅ …(3.15)

MCA-203 298

3.7 DON’T-CARE CONDITIONS

We enter 1’s and 0’s in the map corresponding to input variables that make the

function equal to 1to 0, respectively. The maps are simplified using either 1’s or 0’s.

Therefore, we make the entries in the map for either 1’s or 0’s. The cells which do not contain

1 are assumed to contain 0 and vice-versa. This is not always true since there are cases in

which certain combinations of input variables do not occur. Also, for some functions the

outputs corresponding to certain combinations of input variables do not matter. In such

situations the designer has a flexibility and it is left to him whether to assume a 0 or 1 as

output for each of these combinations. This condition is known as don’t-care condition and

can be represented on the K-map as a × mark in the corresponding cell. The × mark in a cell

may be assumed to be a 1 or a 0 depending upon which one leads to a simpler expression. The

function can be specified in one of the following ways:

1. In terms of minterms and don’t-care conditions, For example,

ƒ(A, B, C, D) = ∑m (1, 3, 7, 11, 15) + d(0, 2, 5) …(3.16)

Its K-map and the minimized expression are given in Fig. 5.18a.

2. In terms of maxterms and don’t-care conditions. For example,

ƒ(A, B, C, D) = ∏m (4, 5, 6, 7, 8, 12) . d(1, 2, 3, 9, 11, 14) …(3.17)

 Its K-map and the minimized expression are given in Fig. 3.18b.

3. In terms of truth table. For example, consider the truth table of Table 3.9.

MCA-203 299

Fig. 3.18 K-maps with don’t-care conditions.

Table 3.9

 Inputs Output

A B C D Y

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

0

MCA-203 300

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

×

×

×

×

×

×

Its K-map and the minimized expression in SOP form are given in Fig. 3.18c.

Example 3.20 Given f(A,B,C,D) = ∑ m(0,3,4,5, 7) + d(8, 9, 10, 11, 12, 13, 14, 15) …(3.17)

The ‘d terms in Eqn. (4.33) refer to Don’t care conditions.

A B C D Y

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

0

1

1

0

1

1

×

×

1

1

×

×

1

×

DC DC CD DC

BD

CD

BA

BA

AB

BA

DC

MCA-203 301

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

×

×

×

×

×

×

(a) (b)

Fig. 3.19a

Fig. 3.19b

 Fig. 3.19 (a) shows the Karnaugh map. The don’t cares have been as Xs. When

forming groups these don’t cares can be treated as 1 or 0 whichever gives us the largest

group. In Fig. 3.19 (a) the groups have been formed by treating Xs as 1s. (The reader should

try to form groups by treating don’t cares as 0s. This would yield smaller groups and hence

require more costly hardware). The simplified Boolean expression is

 Y = CD + BD + DC …(3.18)

Fig. 3.19 (b) the NAND circuit corresponding to Eqn. (3.18).

Example 3.21 (a) Draw a logic circuit for the Boolean equation Y = AB + AC + BD + CD.

MCA-203 302

(b) Simplify the expression and draw logic circuit for the simplified expression.

Solution : (a) The logic circuit is shown in Fig. 3.20 (a). It requires 4 AND gates and one OR

gate.

Fig. 320

(b) Y = AB + AC + BD + CD

 = A(B + C) + D(B + C)

 = (A + D) (B + C)

Fig. 3.20 (b) shows the logic circuit. It requires 2 OR gates and 1 AND gate.

Example 3.22 (a) Draw a circuit to realize the function

 C.AB.AY +=

(b) Simplify the function and draw a circuit to realize the simplified function. Draw a truth

table showing the original and simplified function.

Solution : (a) The gate circuit for C.AB.AY += is showing in Fig. 3.22.

(b) C.AB.AY +=

 = C.A.B.AY = (using De Morgan’s theorem)

 = A. B . A . C = A. B. C (using the associative law)

MCA-203 303

The circuit for the simplified function is shown in Fig. 3.23. The truth table is dawn in Table

3.10.

Table 3.10. Truth table for Example 3.21

A B C A.B A.C B.A C.A C.AB.A + C.AAB + A.B.C

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

1

1

0

0

0

0

0

1

0

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

0

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

1

Example 3.23 Simplify the expression

 Y = ABAAB ++

Solution : Y = ABAAB ++

 = ABABA +++ (using De Morgan’s theorem Eqn. 4.2)

 = ABBA ++ (using Table 4.2)

Fig. 3.22
Fig. 3.23

MCA-203 304

 = ABA ++ (using Table 4.2)

 = BAA ++ (using Eqn. 4.1)

 = B1+ (using Table 4.2)

 = 1 (using Table 4.2)

 = 0 (Taking complement)

Example 3.24 Reduce to its minimum sum of products form. Then implement it in logic

circuit.

 A = DCBACDADCBADCBADCBA ++++

Solution : X = DCBA

 + DCBA

 + DCBA

 + A DCB

 + A CD

 =)CC(DBA +

 + A)CC(DB +

 + A CD

 = DBADBA +

 + A CD

 = CDA)AA(DB ++

or X = CDADB +

Fig. 3.24 shows the logic circuit.

Fig. 3.24

MCA-203 305

Example 3.25 Simplify and implement

 Y = (A + B) (A + ABCBA)CB(AC)AB ++++

Solution : Y = (A + B) (A + ABCBA)CB(AC)AB ++++

 = (A + B) (A + +++++ BA)CB(AC)BA ABC

 = (A + B) (1 + ABCBA)CB(AC)B ++++

 = (A + B) (C+ ABCBACABA)CB ++++

 = AC + A B C + BC + B CABACB ++ + A B + ABC

or Y = AC + AC(CABACBBBC)BB +++++

 = AC + AC + BC + 0 + CABABCACCABA +++++

 = C (A + B) + A (B +)C

Fig 3.25 shows the logic circuit.

3.8 LOGIC CIRCUIT REALIZATION USING NAND AND NOR GATES ONLY

 When a logic circuit is to be realized, the starting point is the Boolean expression or

the truth table. The first step is the simplification of the Boolean expression using rules of

Boolean Algebra and Demorgan’s theorem. The resulting expression can be realized in a

number of ways.

MCA-203 306

 We have discussed the sum of products and product of sums forms of Boolean

expressions. Both these expression can be realized using AND and OR gates.

 As discussed in Chapter-I NAND and NOR gates are universal gates and any given

Boolean expression can be realized using either NAND gates only or NOR gates only. Logic

hardware is available in NAND, NOR< AND, OR, NOT forms and a logic designer has

maximum flexibility. Many designers prefer to use either all NAND or all NOR gates in the

circuit.

3.8.1 NAND Logic

 Consider the expression

 Y = BAAB ++ …(3.19)

Eqn. (3.19) can be interpreted in two ways :

1. the output Y of a NAND gate is equal to the complement of the AND of variables

A and B.

2. The output Y of NAND gate is equal to OR of the complement of input variables

A and B.

The above two interpretations help in developing rules for NAND logic

Fig. 3.26 (a) shows a logical circuit with two level NAND logic.

 Y = C)BA(C)AB(+=

or Y = AB + C …(3.20)

 It is seen in Eqn. (3.26) that input variables A and B appear as ANDed in the final

output. Moreover, the output AB is ORed with complement of variable C. The term AB is

input to gate G1 alongwith input C. It is evident that :

1. All odd numbered gate levels (1, 3, 5 etc.) act as OR gates with single input

variables complimented.

2. All even numbered gate levels (2, 4, 6 …) act as AND gates (because its

MCA-203 307

Fig. 3.26

inputs A and B are ANDed in the final output)

The numbering odd and even are from the output side.

Fig. 3.26 (a) can be redrawn as Fig. 3.26. (b). To do this NAND gate 1 has been

replaced by a negative OR symbol. When more than one odd level NAND gates are present,

all such NAND gates are replaced by negative OR symbols. Fig. 3.26 (b) yields the output

expression given by Eqn. (3.26) directly.

3.8.2 NOR logic

 Consider the Boolean expression

 Y = B.ABA =+

Above eqn. can be interpreted in two ways :

1. The output of a NOR gate is equal to the complement of the OR of input

variables.

2. The output of a NOR gate is equal to the AND of the complements of inputs.

The above two interpretations help in developing rules for NOR logic.

Fig. 3.27 (a) shows a two level NOR logic circuit.

Fig. 3.27

MCA-203 308

 Y C)BA(CBA +=++

or Y = (A + B) C …(3.21)

 It is seen that in Eqn. (3.21) the input variables A and B appear as being ORed in the

final output. Moreover, this output is being ANDed with complement of variable C.

It is seen that :

1. All odd numbered gate levels (1, 3, 5, …) act as AND gates with single input

variable complemented.

2. All even numbered gate levels (2, 4, 6, …) act as OR gates because the inputs A

and B are being ORed in the final output.

Fig. 3.27 (a) can be redrawn as in Fig. 3.27 (b). To do this NOR gate 1 has been

replaced by a negative AND symbol. When more than one odd level gates are present, all

such NOR gates are replaced by negative AND symbols. Fig. 3.27 gives the output given by

Eqn. (3.21) directly.

3.9 DESIGN EXAMPLES

3.9.1 Arithmetic Circuits

1. Half-adder. A logic circuit for the addition of two one-bit numbers is referred to as an

half-adder. The addition process is illustrated in Section 2.5 and is reproduced in truth table

form in Table 3.11. Here, A and B are the two inputs and S (SUM) and C(CARRY) are the

two outputs.

MCA-203 309

Table 3.11 Truth table of an half-adder

Inputs Outputs

A B S C

0

0

1

1

0

1

0

1

0

1

1

0

0

0

0

1

From the truth table, we obtain the logical expressions for S and C outputs as

 S = BABA + = A ⊕ B …(3.22)

 C = AB …(3.23)

The realization of an half-adder using gates is shown in Fig. 3.28.

Fig. 3.28 Realization of an half-adder.

2. Full-adder. An half-adder has only two inputs and there is no provision to add a carry

coming from the lower order bits when multibit addition is performed. For this purpose, a

third input terminal is added and this circuit is used to add An, Bn, and Cn−1, where An and Bn

are the nth order bits of the numbers A and B respectively and Cn−1 is the carry generated

from the addition of (n−1)th order bits. This circuit is referred to as full-adder and its truth

table is given in Table 3.12.

MCA-203 310

Table 3.12 Truth table of a full-adder

Inputs Outputs

An Bn Cn−1 Sn Cn

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

0

0

1

0

1

1

1

The K-maps for the outputs Sn and Cn are given in Fig. 3.29.

 Sn = 1nnn1nnn1nnn1nnn CBACBACBACBA −−−− ++ …(3.24)

 Cn = An Bn + Bn Cn−1 + An Cn−1 …(3.25)

The NAND-NAND realizations are given in Fig. 3.30

1 1

1 1

0

1

00 01 11 10 Cn−1

AnBn

(a)

0

1

00 01 11 10
AnBn

Cn−1

1

1 1 1

AnBn

BnCn−1 AnCn−1(b)
Fig. 3.29 K-maps for (a) Sn (b) Cn

MCA-203 311

Fig. 3.30 NAND-NAND realization of (a) Sn (b) Cn.

3. Half-sub-tractor. A logic circuit for the subtraction of B (subtrahend) from A (minuend)

where A and B are 1-bit numbers is referred to as a half-sub-tractor. The subtraction process

is reproduced in truth table form in Table 3.13. Here, A and B are the two inputs and

D(difference) and C (borrow) are the two outputs.

Table 3.13 Truth table of a half-sub-tractor

Inputs Outputs

A B D C

0

0

1

1

0

1

0

1

0

1

1

0

0

1

0

0

From the truth table, and logical expressions for D and C are obtained as

 D = BABA + = A ⊕ B …(3.26)

MCA-203 312

 C = BA …(3.27)

The realization of a half-subtractor using gates is shown in Fig. 3.21

Fig. 3.31 Realization of a half-subtractor

4. Full-subtractor. Just like a full-adder, we require a full-subtractor circuit for performing

multibit subtraction wherein a borrow from the previous bit position may also be there. A

full-subtractor will have three inputs, An (minuend), Bn (sub-trahend) and Cn−1 (borrow from

the previous stage) and two outputs, Dn (difference) and Cn (borrow). Its truth table is given

in Table 5.14. The K-map for the output Dn is exactly same as the K-map for Sn of the adder

circuit and therefore, its realization is same as given in Fig. 3.30(a).

Table 3.14 Truth table of a full-subtractor

Inputs Outputs

An Bn Cn−1 Sn Cn

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

0

1

0

0

1

0

1

1

1

0

0

0

1

The K-map for Cn is given in Fig. 3.32(a) and its realization is given in Fig. 3.32(b). The

simplified expression for Cn is

MCA-203 313

 Cn = 1nn1nnnn CBCABA −− ++ …(3.28)

Fig. 3.32 (a) Truth table for Cn (b) Realization of Cn

3.9.2 BCD-to-7-Segment Decoder

 A digital display that consists of seven LED segments is commonly used to display

decimal numerals in digital systems. Most familiar examples are electronic calculators and

watches where one 7-segment display device is used for displaying one numeral 0 through 9.

For using this display device, the data has to be converted from some binary code to the code

required for the display. Usually, the binary code used is natural BCD. Figure 3.33(a) shows

the display device, Fig. 3.33(b) shows the segments which must be illuminated for each of

the numerals and Fig. 3.33(c) gives the display system.

0 1 2 3 45 6 7 8 9f

e

b

c

a

d

(a)
(b)

0

1

00 01 11 10
AnBn

Cn−1

1

1 1 1

Bn

nA Cn BnCn−1(a)

o

o

o

o

o

o

O

O

O

O o

nA

nA

Cn−1

Bn

Cn−1

Cn

(b)

MCA-203 314

Fig. 3.33 (a) 7-segment display (b) display of numerals (c) display system

 Table 3.15 gives the truth table of BCD-to-7-segment decoder. Here ABCD is the

natural BCD code for numerals 0 through 9. The K-maps for each of the outputs a through g

are given in Fig. 3.34. The entries in the K-map corresponding to six binary combinations not

used in the truth table are x − don’t-care. The K-maps are simplified and the minimum

expressions are given by:

 a = DB + BD + CD + A …(3.29)

 b = CDDCB ++ …(3.30)

 c = B + C + D = DCB …(3.31)

 d = DCBCBDCDB +++ …(3.32)

 e = DCDB + …(3.33)

 f = A + DBCBDC ++ …(3.34)

 g = A + B DCCBC ++ …(3.35)

BCD
To

Seven Segment
Decoder

f

e

 b

 c

a

d

a
b
c
d
e
f
g

(c)

O

O

O

O
A(MSB)

BCD
Input

MCA-203 315

Table 3.15 Truth table of BCD-to-7 segment decoder

Decimal

digit

displayed

Input

A B C D

Outputs

a b c d e f g

0

1

2

3

4

5

6

7

8

9

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

1

0

1

1

0

1

0

1

1

1

1

1

1

1

1

0

0

1

1

1

1

1

0

1

1

1

1

1

1

1

1

0

1

1

0

1

1

0

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

1

1

1

0

1

1

0

0

1

1

1

1

1

0

1

1

MCA-203 316

Fig. 3.34 K-maps of Table 3.15

The NAND gate realizations are shown in Fig. 3.35.

 We see from the realizations of Fig. 3.35 that a term with single literal must be

inverted and then applied to the second level NAND gate.

MCA-203 317

Fig. 3.35 NAND gate realizations of Eqns. (3.29)-(3.25).

3.10 BCD ADDER

 We have discussed the BCD∗

number representation in chapter 2. In BCD

system each decimal digit is represented by

its equivalent 4 bit binary number, e.g., 63 is

written as 01100011 where 0110 represents

∗ BCD means Binary Coded Decimal.

A0
A1
A2
A3
B0
B1
B2
B3

S0
S1
S2
S3

Carry out

Carry out

Fig. 3.36 Block diagram of BCD adder

Augend

Addend

MCA-203 318

 6 and 0011 represents 3. Since the highest decimal number is 9 (i.e., 1001) the binary

combinations 1010, 1011, 1100, 1101, 1110 and 1111 are not valid in BCD system. In BCD

addition, as and when the sum exceeds 9, we add 6 to the sum.

 A block diagram of BCD adder has been shown in Fig. 3.36. It has 9 bits of inputs.

4 bits of augend, 4 bits of addend and one bit for carry in from the lower stage. The output

has 5 bits, i.e., 4 bits of SUM and one bit for carry out.

 Fig. 3.37 shows the logic diagram of BCD adder made up from full and half adders,

OR gates and AND gate. It has provision for taking care of invalid combinations in BCD. A3

A2 A1 A0 are the 4 bits of Augend while B3 B2 B1 B0 are the 4 bits of addend. S3 S2 S1 S0 are

the output bits. The circuitry which determines when a carry is to be transmitted to the next

most significant digits to be added consists of both the full binary adder to which sum (S)

outputs from the adders for weight 8, 4, 2 inputs are connected and the OR gate to which the

carry (C) from the eight position bit is connected. It is evident that a carry should be

generated when 8 AND 2 or 8 AND 4 AND 2 sum outputs from the adder represent 1s or

when the carry outputs from the eight position adder contains a 1.

 When the 4 bit result is not valid in BCD, the method to obtain correct result is to add

decimal 6 (i.e., 0110) to the invalid result. This addition means adding 1s in the weight 4 and

weight 2 output lines. The two half adders and the full adders in the lower part of Fig. 3.37

perform this function. The examples of this correction are

MCA-203 319

Fig. 3.37 BCD adder

 6 + 7 = 13 or 0110 + 0111 = 1101

 + 0110

 1 0011 = 3

 ↓

 Carry

 8 + 6 = 14 or 1000 + 0110 = 1110

 + 0110

 1 0011 = 3

 ↓

 Carry

3.11 LOGIC CIRCUIT FOR FORMING 9’S COMPLEMENT OF BCD NUMBER

 Fig. 3.38 shows a logic

circuit for forming 9’s complement

of a BCD number. The inputs are

A3 A2 A1 A0. The weights for these

inputs are 8, 4, 2 and 1 respectively.

MCA-203 320

If the input is the BCD of any

decimal number, the output will be

9’s complement of that number, e.g.,

if input is 0011 (i.e., decimal 3) the

output will be 0110 (decimal 6).

The circuit consists of one NOT

gate, one XOR gate and NOR gate.

The validity of circuit can be

checked by Karnaugh’s graphs. The

truth tables for the NOR, XOR and

NOT gates in Fig. 3.38 are shown in

Table 3.16−3.18. By combining

these we can form the truth table of

the complete circuit. This truth table

shown in Table 3.19.

Table 3.16 Truth table for 3 input NOR gate in Fig. 3.38

A3 A2 A1 Y3 = 123 AAA ++

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

1

0

0

0

0

0

Fig. 3.38 Logic circuit for forming 9’s
complement of BCD number

MCA-203 321

Table 3.19 Truth table for logic circuit of Fig. 3.38

A3 A2 A1 A0 Y3 Y2 Y1 Y0

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 0 1

1 0 0 0

0 1 1 1

0 1 1 0

0 1 0 1

0 1 0 0

0 0 1 1

0 0 1 0

0 0 0 1

0 0 0 0

3.12 BCD ADDER/SUBTRACTOR

 BCD addition and subtraction is very easy is 10’s complement and is used in

calculators. The logic circuits of Fig. 3.37 and Fig. 3.38 are connected in tandem.

 A block diagram of BCD adder/subtractor is shown in Fig. 3.39 (a). Let B3 B2 B1 B0

be the first BCD number and let A3 A2 A1 A0 be the number to be added or subtracted from

the first number. The number B3 B2 B1 B0 is fed directly to the BCD adder/subtractor while

A2 A1 Y2 = A2 ⊕ A1

0 0 0
0 1 1
1 0 1
1 1 0

Table 3.17 Truth table for 2
input XOR gate in Fig. 3.38

A0 Y0

0 1
1 0

Table 3.18 Truth table for
NOT gate in Fig. 3.38

MCA-203 322

A3 A2 A1 A0 passes through a logic circuit for forming 10’s complement of BCD numbers

(i.e., logic of Fig. 3.38).

Fig. 3.39 BCD adder/subtractor (a) block diagram (b) symbol

When SUB is low, the A bits pass through the logic circuit as it is and BCD adder gives the

sum.* S = A + B

 When SUB is high, A bits are converted to 9’s complement by the logic circuit.

Moreover, a High SUB adds 0001 to the output of the logic circuit. This is equivalent to

forming 10’s complement of A bits. Thus we get the result as −A + B or B + (−A), i.e.,

number A is subtracted from number B. A symbol for BCD adder/subtractor is shown in Fig.

3.39 (b).

3.13 BINARY MULTIPLIER

 We have discussed the rules for binary multiplication in chapter 2. These are 0 ×

0 = 0, 0 × 1 = 0, 1 × 0 = 0 and 1 × 1 = 1. To understand the working of a binary multiplier, let

us multiply binary number 111 by 101. The method proceeds as under

MCA-203 323

 1 1 1 Multiplicand

 1 0 1 Multiplier

 1 1 1 First partial product

 0 0 0 Second partial product

 0 1 1 1 Sum of first and second partial products

 1 1 1 Third partial product

 1 0 0 0 1 1 Final result

 From the above multiplication we can write the following rules for binary

multiplication. The logic circuit for binary multiplier must follow these rules.

1. The partial product is 000, if the multiplier bit is 0 and is equal to multiplicand if

multiplier bit is 1.

2. The product register∗ needs twice as many bits as the multiplicand register.

3. The first partial product is shifted one place to the right (relative to second partial

product) when adding.

From the above rules and procedure it is evident that logic circuit for binary

multiplication dos the following.

1. It stores the multiplicand and multiplier in separate registers say Y and B

respectively.

2. It recognizes a bit as 0 or 1.

3. It stores partial products in accumulator (i.e., B).

4. If the right most bit in multiplier register is 0, it shifts the combined accumulator

and B register right one place. If the right most bit in the B register is 1, it adds

∗ Register is a digital device for temporary storage of binary number.

MCA-203 324

the contents of Y register (i.e., multiplicand) to the accumulator and then shifts

the contents of accumulator and B register right by one place.

5. After each step it examines the right most bit in multiplier register (i.e., B

register) whether the bit is 0 or 1.

6. In addition to above it

examines the sign bits

of multiplicand and

multiplier. If both are

the same, it stores the

sign bit of final result as

positive. If the two are

different, it stores the

sign bit of final result as

negative.

Fig. 3.40 shows a block diagram of binary multiplier. This process of multiplication

is known as add and shift multiplier circuit. When multiplying 111 by 101 the various steps

are :

1. Binary 111 is loaded in register Y and 101 in register B. Accumulator contents

in the beginning are 0000.

2. Binary 1 (LSB of register B) is applied to control line. Contents of Y register are

added to accumulator.

3. Registers A and B are shifted to the right by one bit.

4. Binary 0 is applied to the control line.

5. Registers A and B are shifted to the right by one bit.

6. Binary 1 (MSB of register B) is applied to the control line. Contents of Y

(starting from MSB) and partly in register B(ending with LSB).

3.14 BINARY DIVISION

Fig. 3.40

MCA-203 325

 Though the division process appearing to be almost of the same complexity as

multiplication, actually it is more complex. This is due to the reason that at every step it has

to be checked whether the result of a particular division process has left a positive or negative

remainder. If the remainder is negative, 0 is put in the quotient register.

 The basic division process is by subtraction and shifting to the left. The dividend (the

number to be divided) is stored in the accumulator register (say A). The divisor is stored in

register Y, the quotient in register B and the remainder in register A (accumulator). The steps

in the division process are :

1. Contents of Y register are subtracted from the accumulator (A). After subtraction

the remainder may be positive or negative is zero.

2. If the remainder is negative, it is evident that the division will not go. Therefore,

a 0 is placed in the LSB of B register. The contents of register A are restored by

adding the remainder to the divisor. The registers A and B are then shifted left by

one bit.

3. If the remainder is positive or zero, this part of division process has succeeded.

The registers A and B are shifted one bit left and 1 is put in the LSB of register B.

4. The above process is repeated M + 1 times where M is the number of shifts. A

counter is used to count the shifts till the first 1 bits of registers Y and A are

aligned.

3.15 MAGNITUDE COMPARATOR

 The function of a magnitude comparator is to compare the magnitudes of two

numbers and indicate which one is bigger of the two. The simplest form of a magnitude

comparator indicates whether the two numbers are equal or not.

 An exclusive OR is a comparator. If the two input bits are equal its output is 0, if not

the output is 1. Thus a 1 bit comparator is just an exclusive OR gate as shown in Fig. 3.41.

MCA-203 326

Fig. 3.41 One bit magnitude comparator

 When he numbers to be compared are of two bits we need the circuit of Fig. 3.42.

LSBs of the two numbers are A0 and B0 and are fed to XOR gate 1. The MSB of the numbers

are A1 and B1 and are fed to XOR gate 2. If the two numbers are equal, outputs of both XOR

gates are 0 each and the outputs of NOT gates are 1 each. Then the output of AND gate is 1.

Thus a High output of AND gate indicates A = B. If A ≠ B, one of the XOR gates gives High

output and the final output of And gate is low.

 The above process can be expanded for numbers with more bits. Fig. 3.43 shows a

magnitude comparator for 4 bit numbers. It is seen that the combination of XOR and NOT

gate in Fig. 3.42 is an exclusive NOR gate. Therefore, the circuit of Fig. 3.43(a) shows

Fig. 3.42 Magnitude comparator for two bit numbers A1 A0 and B1 B0

exclusive NOR gates. As in the case of two bit numbers, a High output of AND gate

indicates that A = B.

MCA-203 327

Fig. 3.43 Magnitude comparator for two 4 bit numbers

 IC magnitude comparators have an additional feature to test which of the two

numbers A and B is bigger and indicate the result thereby, Fig. 6.25 shows a logical symbol

of a 4 bit magnitude comparator with the facility to indicate whether A = B, A > B or B > A.

Magnitude comparator for higher number of bits are also available in IC form. IC7485 is an 4

bit comparator. To test two 8 bit numbers, we need two such comparators.

3.16 PARITY DETECTOR

 An exclusive OR gate gives an output of 1 if either of its inputs is 1. If both inputs

are 0 or 1, the output is 0. Thus an exclusive OR gate can work as a parity detector. For more

bits we use cascaded XOR gates as shown in Fig. 3.44. If the number of 1’s on the input is

even, the final output will be 0. On the other hand if the number of 1’s on the input is odd,

the final output will be 1.

Fig. 3.44 Four bit parity detector/generator

(a) (b)

MCA-203 328

 A parity bit can be added to the code group either at the beginning or at the end

depending on the system design. However, the total number of 1’s, including parity bit is

even for even parity and odd for odd parity. Table 3.20 lists the parity bits for various

numbers on BCD code.

Table 3.20 BCD code with parity bits

Even Parity Odd Parity

P 8 4 2 1 P 8 4 2 1

0

1

1

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

0

0

0

1

0

1

1

0

0

1

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

The parity detector can detect a single error or an odd number of errors but cannot check for

two errors.

Example 3.26 Add a parity bit to make even parity in the following binary words (a) 1110 (b)

1010 (c) 0111111000111001.

Solution : Parity Bit Data

 (a) 1 1110

 (b) 0 1010

MCA-203 329

 (c) 0 0111111000111001

Example 3.27 A system with odd parity receives the followings data. Find out the words

with error 10101, 110010, 1000111, 11111110000111.

Solution : In the following data, the numbers of 1s is not odd. These are in error 1000111,

11111110000111.

3.17 MULTIPLEXERS AND THEIR USE IN COMBINATIONAL LOGIC DESIGN

3.17.1 Multiplexer

The multiplexer is a special combinational circuit that is one of the most widely used

standard circuits in digital design. The multiplexer (or data selector) is a logic circuit that

gates one out of several inputs to a single output. The input selected is controlled by a set of

select inputs. Figure 3.45 shows the block diagram of a multiplexer with n input lines and

one output line. For selecting one out of n inputs for connection to the output, a set of m

select inputs is required, where 2m = n. Depending upon the digital code applied at the select

inputs one out of n data sources is selected and transmitted to a single output channel.

Normally, a strobe (or enable) input (G) is incorporated which helps in cascading and it is

generally active-low, which means it performs its intended operation when it is LOW.

Fig. 3.45 Block diagram of a digital multiplexer.

Table 3.21 Truth table of a 4:1 multiplexer

MCA-203 330

Select inputs

 S1 S0

Output

Y

 0

 0

 1

 1

0

1

0

1

I0

I1

I2

I3

Table 3.21 gives the truth table of a 4:1 multiplexer. With LOW input at G, the output Y can

be expressed as

 Y = 1S 0S I0 + 1S S0 I1 + S1 0S I2 + S1 S0 I3 …(3.36)

Equation (3.36) can be realized using NAND gates and the realization is given in Fig. 3.46.

3.17.2 Combinational Logic Design Using Multiplexers

 The multiplexing function discussed above can conveniently be used as a logic

element in the design of combinational circuits. Standard ICs are available Table 3.22 for

2 : 1, 4 : 1, 8 : 1, and 16 : 1 multiplexers.

Fig. 3.46 A 4:1 multiplexer with strobe input using NAND gates.

Table 3.22 Available multiplexer ICs

MCA-203 331

IC No. Description Output

74157

74158

74153

74352

74151A

74152

74150

Quad 2:1 Multiplexer

Quad 2 : 1 Multiplexer

Dual 4 : 1 Multiplexer

Dual 4 : 1 Multiplexer

8 : 1 Multiplexer

8 : 1 Multiplexer

16:1 Multiplexer

Same as input

Inverted input

Same as input

Inverted input

Complementary output

Inverted input

Inverted input

Use of multiplexers offers the following advantages :

1. Simplification of logic expression is not required,

2. it minimizes the IC package count, and

3. logic design is simplified.

For using the multiplexer as a logic element, either the truth table or one of the

standard forms of logic expression must be available. The design procedure is given below:

1. Identify the decimal number corresponding to each minterm in the expression.

The input lines corresponding to these numbers are to be connected to logic 1

level.

2. All other input lines are to be connected to logic 0 level.

3. The inputs are to be applied to select inputs.

The following examples illustrate the above procedure.

Example 3.28 Implement the expression using a multiplexer.

 f(A, B, C, D) = ∑ m(0, 2, 3, 6, 8, 9, 12, 14)

MCA-203 332

Solution : Since there are four variables, therefore, a multiplexer with four select inputs is

required. The circuit of 16:1 multiplexer connected to implement the above expression is

shown in Fig. 3.47. This implementation requires only one IC package. In case the output of

the multiplexer is active-low, the logic 0 and logic 1 inputs of Fig. 3.47 are to be

interchanged. The reader should verify the validity of this statement.

Fig. 3.47 Implementation of logic expression of Ex. 3.28

3.17.3 Multiplexer Tree

 Since 16-to-1 multiplexers are the largest available ICs, therefore, to meet the larger

input needs there should be a provision for expansion. This is achieved with the help of

enable/strobe inputs and multiplexers tacks or trees are designed. Two commonly used

methods for this purpose are illustrated in Figs (3.48) and (3.49)

MCA-203 333

Fig. 3.48 32:1 multiplexer using two 16:1 multiplexers and one OR gate

MCA-203 334

Fig. 3.49 32:1 multiplexer using two 16:1 multiplexers and one 2:1 multiplexer

 These two general techniques can be used to expand to an n input multiplexer without

any difficulty.

3.18 Demultiplexer

 The demultiplexer performs the reverse operation of a multiplexer. It accepts a single

input and distributes it over several outputs. Figure 3.50 gives the block diagram of a

demultiplexer. The select input code determines to which output the data input will be

transmitted.

 The number of output lines in n and the number of select lines is m, where n = 2m.

This circuit can also be used as binary-to-decimal decoder with binary inputs applied at the

select input lines and the output will be obtained on the corresponding line. The data input

line is to be connected to logic 1 level. This circuit can be designed using gates and it is left

as an exercise for the reader. However, this device is available as an MSI IC and can

conveniently be used for the design of combinational circuits. The device is very useful if

multiple-output combinational circuit is to be designed, because this needs minimum package

count. These devices are available (Table 3.23) as 2-line-to-line, 3-line-to-8-line, and 4-line-

to-16-line decoders. The outputs of most of these devices are active-low, also there is an

active low enable/data input terminal available.

Demultiplexer/
Decoder

o
o
o
o
o

o

o o o o

o Data input
Output

D0

D1

D2
D3

D4

Dn−1

Sm−1 Sm−2 S0

Select inputs

Fig. 3.50 Block diagram of a demultiplexer

MCA-203 335

 Unlike the multiplexer, the decoder does require some gates in order to realize

Boolean expressions in the standard SOP form. The following example illustrates its use in

combinational logic design.

Table 3.23 Available demultiplexer ICs

IC No. Description Output

74139 Dual 1:4 Demultiplexer

(2-line-to-4-line decoder)

Inverted input

74155 Dual 1 : 4 Demltiplexer (2-

line-to-4-line decoder)

1Y − Inverted input

2Y − Same as input

74156 − do − Open − Inverted input

2Y − Same as input

74138 1 : 8 Demultiplexer

(3-line-to-8line decoder)

Inverted input

74154 1:16 Demultiplexer

(4-line-to-16-line decoder)

Same as input

74159 − do − Same as input

Open−collector

Example 3.29 Implement the following multi-output combinational logic circuit using a 4-to-

16-line decoder.

 F1 = ∑ m (1, 2, 4, 7, 8, 11, 12, 13)

 F2 = ∑ m (2, 3, 9, 11)

 F3 = ∑ m(10, 12, 13, 14)

 F4 = ∑ m (2, 4, 8)

Solution : The realization is shown in Fig. 3.51

MCA-203 336

Fig. 3.51 Implementation of combinational logic circuit of Ex. 3.29

 The four-bit input ABCD is applied at the Select input terminals S3, S2, S1 and S0.

The output F1 is required to be 1 for minterms 1, 2, 4, 7, 8, 11, 12 and 13. Therefore, a

NAND gate is connected as shown. Similarly NAND gates are used for the outputs F2, F3 and

F4. Here, the decoder’s outputs are active-low, therefore a NAND gate is required for every

output of the combinational circuit.

 In the combinational logic design using multiplexer, additional gates are not required,

whereas design using demultiplexer requires additional gates. However, even with this

disadvantage, the decoder is more economical in cases where non-trivial, multiple-output

expressions of the same input variables are required. In such cases, one multiplexer is

required for each output whereas it is likely that only one decoder will be required, supported

with a few gates. Therefore, using a decoder could have advantages over using a multiplexer.

3.18.1 Demultiplexer Tree

 Since 4−line-to-16-line decoders are the largest available circuits in ICs, to meet the

larger inputs needs there should be a provision for expansion. This is made possible by using

MCA-203 337

enable input terminal. Figure 3.52 shows a 5-line-to-32-line decoder and Fig. 3.53 shows a 8-

line-to-256-line decoder using 4-line-to-16-line decoders. In a similar way, any m-line-to-n-

line decoder can be implemented. However, if only a few codes of a larger number need be

recognized, the alternative approach, such as the one shown in Fig. 3.54, can be used. This is

connected to detect the digital number 00011111. The most significant 4-bits are applied at A

B C D inputs and the least-significant bits are applied at E F G H inputs. The output goes low

when the most significant bits are 0 0 0 1 and the least-significant bits are 1 1 1 1. The circuit

can be expanded to detect other 8-bit codes.

Fig. 3.52 5-line-to-32-line decoder using two 4-line-to-16-line decoders

MCA-203 338

Fig. 3.53. 8-line-to-26-line decoder using 4-line-to-16-line decoder tree.

Fig. 3.54 An alternative approach to decode some combinations.

MCA-203 339

3.19 ENCODERS

3.19.1 Decimal to Binary Encoder

 Digital computers operate on binary system. However, we work on decimal numbers

and alphabets. The decimal numbers and alphabets are known s alphanumeric characters. An

encoder is a device which converts alphanumeric characters to binary codes. An encoder may

be decimal to binary, hexadecimal to binary, octal to BCD etc.

 Fig. 3.55 shows a decimal to binary encoder. When push button 0 is pressed, none of

the OR gates is energized and all outputs are low so that the output word is Y3 Y2 Y1 Y0 = 0 0

0 0

 If push button 4 is pressed, Y2 OR gate has high input and the output word is

 Y3 Y2 Y1 Y0 = 0 1 0 0

When switch 7 is pressed, OR gates Y2, Y1 and Y0 have high inputs and the output

word is

 Y3 Y2 Y1 Y0 = 0 1 1 1

In a computer, it is required that a binary code be transmitted for every stroke of

alphanumeric keyboard (a type writer or teletype). The keyboard of a computer has 26 capital

alphabets, 26 lower case alphabets, 10 numerals (0 to 9) and about 22 special characters (+, −

etc.). Thus, the total number of input codes is about 84. Encoder for generating an output

binary word for these 84 inputs requires 7 bits (because 27 = 128 and 26 = 64). The block

diagram of such an encoder is shown in Fig. 3.56. Whenever a key is pressed, the + 5 V

supply is connected to one of the 84 input lines. Inside the box is an array of wires

interconnected to generate the required code.

MCA-203 340

Fig. 3.55 Decimal to binary encoder Fig. 3.56 Block diagram of decimal

3.19.2 Decimal to BCD Encoder

 This encoder has 10 inputs (for decimal numbers 0 to 9) and 4 outputs for the BCD

number. Thus it is a 10 line to 4 line encoder. Fig. 3.57 shows a block diagram of decimal to

BCD encoder. Table 3.24 lists the decimal digits and the equivalent BCD numbers.

Table 3.24 BCD code

Decimal digit BCD code

 Y3 Y2 Y1 Y0

0

1

2

3

4

0

0

0

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

1

0

MCA-203 341

5

6

7

8

9

0

0

0

1

1

1

1

1

0

0

0

1

1

0

0

1

0

1

0

1

From Table 3.24, we can find the relationship between decimal digit and BCD bit.

MSB of BCD bit is Y3. For decimal digits 8 or 9, Y3 = 1. Thus we can write OR expression

for Y3 bit as

 Y3 = 8 + 9 …(3.37)

Bit Y2 is 1 for decimal digits 4, 5, 6, and 7. Thus we can write OR expression

 Y2 = 4 + 5 + 6 + 7 …(3.38)

Similarly, Y1 = 2 + 3 + 6 + 7 …(3.39)

 Y0 = 1 + 3 + 5 + 7 + 9 …(3.40)

 The logic circuit for above expression is shown in Fig. 3.58. It is seen that this circuit

is the same as shown in Fig. 3.55. This is evidently due to the reason that for signle digit

decimal numbers, the equivalent binary and BCD equivalents are the same. When a High

appears on any of input lines the corresponding OR gates give the BCD output, e.g., if

decimal input is B, High appears only on output 3(and LOW on Y0, Y1, Y2), thus giving the

BCD code for decimal 8 as 1000. Similarly, if decimal input is 7, then High appears on

outputs Y0, Y1, Y2 (and LOW on Y3), thus giving BCD output as 0111.

3.19.3 Priority Encoder

 When feeding data/program into a computer it is opposite that more than one key is

pressed simultaneously. A priority function means tht the encoder will give priority to the

MCA-203 342

Fig. 3.57 Block diagram of decimal to BCD encoder Fig. 3.58 Logic circuit for decimal to BCD encoder

highest order decimal digit in the inputs and ignore all other, e.g., in a priority encoder

decimals 8 and 4 are pressed together (i.e., both 8 and 4 inputs are high), the encoder will

convert the decimal 8 to the output and ignore 4.

3.19.4. Decimal to BCD Priority Encoder

 The logic circuit for incorporating a priority in encoding must incorporate a feature to

prevent a lower order digit input from disrupting the encoding of higher order digit. This is

achieved by using inhibit (enable) gates. It is seen that in Fig. 7.10, Y0 is High when inputs 1,

3, 5, 7, 9 are High. Priority can be added if digit 1 input activates gate Y0 only if no higher

digit (other than those which also activate Y0) are high. This requirement can be expresses as

under:

1. Y0 is high if 1 is high and 2, 1, 6, 8 are low.

2. Y0 is high if 3 is high and 4, 6, 8 are low.

3. Y0 is high if 5 is high and 6, 8 are low.

4. Y0 is high if 7 is high and 8 is low.

5. Y0 is high if 9 is high.

MCA-203 343

The above 5 statements describe the priority for encoding for BCD bit Y0. Thus Y0 is

high if any of above statements is true or in other words Y0 is true if statement 1, statement 2,

statement 3, statement 4 or statement 5 is true. Therefore, we can write the logic equation as

 Y0 = 1. 9.8.79.8.69.8.5.4.39.8.5.4 +++ …(3.41)

The logic circuit to implement the logic equation (3.41) is shown in Fig. 3.59.

The logical statements for output Y1 are as under :

1. Y1 is high if 2 is high and 4, 5, 8, 9 are low.

2. Y1 is high if 3 is high and 4, 5, 8, 9 are low.

3. Y1 is high if 6 is high and 8, 9, are low.

4. Y1 is high if 7 is high and 8, 9 are low.

The above statements can be written in the form of following equation

 Y1 = 2. 9.8.79.8.69.8.5.4.39.8.4 +++ …(3.42)

The logic circuit to implement Eqn. (3.42) is shown in Fig. 3.60

The output Y2 can be described by the following statements :

Y1

Fig. 3.59 Logic circuit for output of bit
Y0 of decimal to BCD priority encoder

Fig. 3.60 Logic circuit for output Y1 of
decimal to BCD priority encoder

MCA-203 344

1. Y2 is high if 4 is high and 8, 9 are low.

2. Y2 is high if 5 is high and 8, 9 are low.

3. Y2 is high if 6 is high and 8, 9 are low.

4. Y2 is high if 7 is high and 8, 9 are low.

Logical equation for above statements are

 Y2 = 4. .59.8 + 9.8.79.8.69.8 ++ …(3.43)

Logical circuit for Eqn. (3.43) is shown in Fig. 3.61.

The statement for output Y3 is

1. Y3 is high if 8 is high and 9 is low.

2. Y3 is high if 9 is high

Logical equation for above statements is

 Y3 = 8 . 99 + = 8 + 9 …(3.44)

Logic circuit for Eqn. (3.44) is shown in Fig. 3.62.

Truth table for decimal to BCD priority encoder is shown in Table 3.25.

Fig. 3.61 Logic circuit for output Y2
of decimal to BCD priority encoder

Fig. 3.62 Logic circuit output of Y3
of decimal to BCD priority encoder

MCA-203 345

Table 3.25 Truth table for decimal to BCD priority encoder

Inputs Output

9 8 7 6 5 4 3 2 1 0 Y3 Y2 Y1 Y0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

1

×

0

0

0

0

0

0

0

1

×

×

0

0

0

0

0

0

1

×

×

×

0

0

0

0

0

1

×

×

×

×

0

0

0

0

1

×

×

×

×

×

0

0

0

1

×

×

×

×

×

×

0

0

1

×

×

×

×

×

×

×

0

1

×

×

×

×

×

×

×

×

1

×

×

×

×

×

×

×

×

×

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

MSI chip 74LS147 is a decimal to BCD priority encoder.

Example 3.30 Fig. 3.63 shows a decimal to BCD priority encoder. As shown all inputs are

active low.

(a) If pins 11, 3, 5 are low, find the state of

outputs Y0, Y1.

(b) If pins 1, 4, 11 are low, find the state of

outputs Y0, Y1, Y2, Y3

Solution : (a) Pin 5 is the highest order

decimal input having a low level and

represents decimal 8. Therefore, output is

BCD equivalent of decimal 8 which is 1000.

74147

o
o
o
o
o
o
o
o
o

o
o
o
o

1
2
3
4 4
5
6
7
8
9

9
7
6
14

0Y

1Y

2Y

3Y

Fig. 3.63. 74147 decimal to
BCD priority encoder

MCA-203 346

Therefore, 3Y is low and 0Y , 1Y , 2Y are

High.

(b) Pin 4 is the highest order decimal input

having a low level and represents decimal 7.

Therefore, output is BCD equivalent for

decimal 7 which is 0111. Therefore, 3Y is

high, 2Y is low, 1Y is low and 0Y is low.

Example 3.31 Design an octal to binary encoder.

Solution : The truth table for octal

to binary is shown in Table 3.26. It

has 8 inputs 0, 1, 2, 3, 4, 5, 6, 7 and

three binary outputs (since 23 = 8 we

need only 3 output lines). The rest

of the implementation is similar to

decimal to binary encoder and is

shown in Fig. 3.64. The encoder

consists of three OR gates. When

any of inputs is high, the

corresponding OR gates give high

output, e.g., when we press 7, all the

three OR gates give high output and

the output is 111 which is the

equivalent binary number. If we

press 5, the OR gates number 3 and

1 give high output and OR gate 2

gives Low output thus giving the

binary output as 101. Similarly we

can check the outputs for the

Fig. 3.64. Octal to binary encoder

MCA-203 347

remaining inputs. Inputs 0 is not

connected to any gate because for 0

input all the three OR gates must

give low output.

Table 3.26 Truth table for octal to binary encoder

Input Output

 Y2 Y1 Y0

0

1

2

3

4

5

6

7

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

3.20 Decoder

 Let the input be 1101. We need an AND gate as the basic decoding element because

an AND gate gives high output only when all its inputs are high. In addition we need a NOT

gate to convert 0 in the 2s bit position to 1. Thus the circuit will have one AND gate and one

NOT gate as shown in Fig. 7.17(a).

Fig. 3.65 Decoding for binary word 1101 (a) using AND gate (b) using NAND gate

MCA-203 348

 The decoder for the above binary number 1101 can also be built with NAND gate and

is shown in Fig. 3.65 (b). This logic circuit gives low active output.

3.20.1 Binary to Decimal Decoder

 Fig. 7.18 shows a binary to decimal decoder. The input is from a 4 bit register. The

inputs would be of the form 0101, 1001 etc. A particular input would cause one of the 10

output lines to be energized so that the corresponding decimal number would be the output, if

the input is 0101, only the Y5 AND gate has all high inputs and all other gates have at least

one low input so that only Y5 gate would give an output and number 5 would be displayed. If

the input is 0 1 1 1, only AND gate Y7 has all high input (all other AND gates have at least

one low input) and number 7 is the output. The Boolean equations for different Y outputs are

as under

 Y0 = DCBA

 Y1 = DCBA

 Y2 = DCBA

 Y3
 = DCBA

 Y4 = DCBA

 Y5 = DCBA

 Y6 = DCBA

 Y7 = DCBA

 Y8 = DCBA

 Y9 = DCBA

 The circuit of Fig. 3.66 is 4 line to 10 line decoder (because it has 4 input lines and 10

output lines). It is also known as 1 of 10 decoder because only 1 out of 10 output lines is

energized at one time. When a decoder is combined with a high current driving output, it is

MCA-203 349

known as decoder/driver. The device 7447 is used for decoding and driving a seven segment

display. The decoder/driver turns on the LEDs so that the corresponding decimal number is

displayed.

3.20.2 Four Bit Binary Decoder

 This decoder is also called 4 line to 16 line decoder because there are 4 inputs (from

the four bits) and 16 outputs (because 24 = 16, there can be 16 outputs). Table 3.27 lists all

the possible combinations of input and output words. It is seen from Table 3.27 that we

require the complements D,C,B,A a number of times. Therefore, it is desirable that these

complements are generated once and then used for all the gates.

Fig. 3.66 Binary to decimal decoder (1 of 10)

MCA-203 350

 TTL MSI 74154 is a 4 bit (or 4 line to 16 line decoder). It is seen that 4 additional

NOT gates have been used on the input. These NOT gates prevent excessive loading of the

driving source. Each input is connected to the input of only one NOT gate. In addition an

enable function is also provided in this chip. This function is implemented with a NOR gate

used as negative AND gate. A low level in each input 21 GandG is required to make the

output G high. The output G of enable is one of the inputs to all the 16 NAND gates. G must

be high for the gates to be enabled. If the enable gate is not activated, then all sixteen decoder

outputs will be High irrespective of the state of input variables A, B, C, D.

Table 3.27 Decoding functions and truth table for a 4-line-to-16 line decoder
Decimal

Digit

Binarylnputs Logic Outputs

 D C B A Function 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 0 0 ABCD 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 0 1 ABCD 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 0 0 1 0 ABCD 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

3 0 0 1 1 ABCD 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

4 0 1 0 0 ABCD 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1

5 0 1 0 1 ABCD 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1

6 0 1 1 0 ABCD 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1

7 0 1 1 1 ABCD 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1

8 1 0 0 0 ABCD 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1

9 1 0 0 1 ABCD 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

10 1 0 1 0 ABCD 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1

11 1 0 1 1 ABCD 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1

12 1 1 0 0 ABCD 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

13 1 1 0 1 ABCD 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1

14 1 1 1 0 ABCD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1

15 1 1 1 1 DCBA 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

MCA-203 351

3.20.3 BCD to Decimal Decoder

 BCD to decimal decoder is similar to binary to decimal decoder. It converts each

BCD code into one of the 10 possible decimal digits. It is also called 4 line to 10 line

decoder. The BCD decoding functions are given in Table 3.28. Since BCD code represents

only 10 decimal digits, we use only 10 decoding gates.

The decoding can be done in two ways active low and active high.

 The active low output decoding uses NAND gates. The symbol is shown in Fig. 3.67

(a). The small circles at the output lines indicate active low output.

 The active high output decoding requires AND gates. The symbol in Fig. 3.67 (b)

shows active High output decoding. For this decoding the logic circuit is the same as in Fig.

3.66.

Table 3.28 BCD decoding functions

BCD code Logic function Decimal digit

D

MSB

C B A

LSB

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

ABCD

0

1

2

3

4

5

6

7

8

9

MCA-203 352

Example 3.32 The input waves of Fig. 3.68 (a) are applied to an BCD-DEC decoder having

active high outputs. Draw output waveforms.

Solution : During interval t0, all inputs are low which means input is 0000 and output is 0.

Since it is active high output device, output will indicate High for decimal digit 0 and Low for

all other decimal digits. The input and outputs for the remaining intervals are listed below:

Inputs

 D C B A

Output

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

0

0

0

0

0

0

0

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

0

0

1

1

0

0

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

8

9

BCD/DEC BCD/DEC 0
1
2
3
4
5
6
7
8
9

A
B
C
D

(LSB)

(MSB)

0
1
2
3
4
5
6
7
8
9

A
B
C
D

o
o
o
o
o
o
o
o
o
o

(a) (b)

Fig. 3.67. BCD-decimal decoder (a) active low (b) active high

MCA-203 353

Fig. 3.68

The outputs are shown in Fig. 3.68 (b).

3.21 BCD DECODER/SEVEN SEGMENT DRIVER

 It is a combination of BCD−decimal decoder and a seven segment display driver.

The input is BCD. The outputs drive 7 segment display unit (LED or LCD etc.) and the

decimal read out is displayed.

 The seven segment display can be connected either in common anode or common

cathode configuration.

MCA-203 354

Fig. 3.69. Seven segment display (a) common anode connection suitable for active low output

decoder (b) common cathode connection suitable for active high output decoder

 When the decoder gives active low output, the common anode connection is used.

Due to the low level output from decoder, the corresponding group of LEDs is forward biased

and current flows through them producing the display. When the decoder gives active High

output, the common cathode connection is used. Due to High level output from the decoder,

the corresponding group of LEDs is forward biased, current flows through them producing

the display. These two connections are shown in Fig. 3.69. It is seen that in both the

connections the p-n junctions are forward biased because current can flow through a p-n

junction only when it is forward biased.

 We can now formulate the decoding logic required for the display. It is seen from

Table 3.29 that segment a is activated when the output of decoder is 0, 2, 3, 5, 7, 8, 9. The

Boolean expression for active segment a can be written as

 a = ABCD,CBADABCDBACDABCDABCD ++++ …(3.45)

 Eqn. (3.45) says that segment a is activated if BCD code is 0 or 2 or 3 or 5 or 7 or 8

or 9. In the same way we can write Boolean expression for all the other segments. These

Boolean expressions for various segments are shown in Table 3.29.

MCA-203 355

Table 3.29 Boolean terms for seven segments

Segment Used in digits Boolean terms

a 0, 2, 3, 5, 7, 8, 9 CBADABCDABCDABCDABCD ++++

+ ABCDABCD +

b 0, 1, 2, 3, 4, 7, 8, 9 ABCDBACDABCDABCDABCD ++++

+ CBAD + ABCDABCD +

c 0, 1, 3, 4, 5, 6, 7, 8, 9 BACDABCDBACDABCDABCD ++++

ABCDABCDCBADACBD +++

d 0, 2, 3, 5, 6, 8 ABCDBACDABCDABCD +++

+ ABCDACBD +

e 0, 2, 6, 8 ABCDABCDABCDABCD +++

f 0, 4, 5, 6, 8, 9 ACBDABCDABCDABCD +++

+ ABCDABCD +

g 2, 3, 4, 5, 6, 8, 9 ABCDABCDABCDABCD +++

ABCDABCDABCD ++

 The logic circuit for the various segments can be implemented from the Boolean

terms listed in Table 3.29.

3.22 CODE CONVERTERS

 There is a wide variety of binary codes used in digital systems. Some of these codes

are binary-coded-decimal (BCD), Excess-3, Gray, octal, hexadecimal, etc. Often, it is

required to convert from one code to another. For example the input to a digital system may

be in natural BCD and the output may be 7-segment LEDs. The digital system used may be

capable of processing the data in straight binary format. Therefore, the data has to be

converted from BCD to binary at the output.

MCA-203 356

 The BCD output has to be converted to 7-segment code before it can be used to drive

the LEDs. Similarly, octal and hexadecimal codes are widely used in micro-processors and

digital computers as inputs and outputs. The various code converters can be designed using

gates, multiplexers or demultiplexers. However, there are some MSI ICs available for

performing these conversions and are extremely useful in the design of digital systems. These

devices have been discussed below.

3.22.1 BCD-to-Binary Converter

 The block diagram of BCD-to-binary converter IC 74184 is given in Fig. 3.70 and

Table 3.30 gives its truth table. This device can be used as a
2
11 decade BCD-to-binary

converter as shown in Fig. 3.71.

74184

o
o
o
o
o

o
o
o
o
o
o
o
o

A
B
C
D
E

Y1
Y2
Y3
Y4
Y5
Y6
Y7
Y8 (MSB)

BCD
Inputs

Outputs

o O Enable input
(active-low)

Fig. 3.70 Block diagram of 74184.

A
Y1
B
Y2
C
Y

o
o
o
o
o

O

o
o
o
o
o

B
C
D
A
B

B
B
B
B
B

o o A B
(LSB)

(MSB)

Binary
Outputs

LSD

MSD

BCD
Inputs

Fg. 3.71 A 2
11 decade BCD-to-binary

MCA-203 357

The BCD inputs are applied at the input terminals A through E and the LSB of the

least-significant BCD digit bypasses the converter and appears as the LSB of the binary

output. It accepts two BCD digits − a full digit D1 C1 B1 A1 and the two least-significant bits

of a second digit B2 A2. This means that the BCD inputs 00 through 39 can be converted to

corresponding binary output by this circuit. Terminals Y6, Y7, and Y8 are not used for BCD-

to-binary conversion. These terminals are used to obtain the 9’s complement and the 10’s

Table 3.30 Truth table of 74184 BCD-to-binary converter

BCD
Words

Inputs
 E D C B A G

Outputs
 Y5 Y4 Y3 Y2 Y1

0−1 0 0 0 0 0 0 0 0 0 0 0
2−3 0 0 0 0 1 0 0 0 0 0 1
4−5 0 0 0 1 0 0 0 0 0 1 0
6−7 0 0 0 1 1 0 0 0 0 1 1
8−9 0 0 1 0 0 0 0 0 1 0 0

10−11 0 1 0 0 0 0 0 0 1 0 1
12−13 0 1 0 0 1 0 0 0 1 1 0
14−15 0 1 0 1 0 0 0 0 1 1 1
16−17 0 1 0 1 1 0 0 1 0 0 0
18−19 0 1 1 0 0 0 0 1 0 0 1
20−21 1 0 0 0 0 0 0 1 0 1 0
22−23 1 0 0 0 1 0 0 1 0 1 1
24−25 1 0 0 1 0 0 0 1 1 0 0
26−27 1 0 0 1 1 0 0 1 1 0 1
28−29 1 0 1 0 0 0 0 1 1 1 0
30−31 1 1 0 0 0 0 0 1 1 1 1
32−33 1 1 0 0 0 0 1 0 0 0 0
34−35 1 1 0 1 1 0 1 0 0 0 1
36−37 1 1 0 1 1 0 1 0 0 1 0
38−39 1 1 1 0 0 0 1 0 0 1 1
Any × × × × × 1 1 1 1 1 1

MCA-203 358

Complement of BCD numbers, useful for BCD arithmetic operations. Figure 3.72 gives the

block diagram of BCD 9’s complement converter and Table 3.31 gives its truth table.

Table 3.31 Truth table of 74184 as BCD 9’s complement converter

BCD

Word

 Inputs Outputs BCD 9’s complement

E D C B A G Y8 Y7 Y6 ND NC NB NA

0

1

2

3

4

5

6

7

8

9

Any

0

0

0

0

0

0

0

0

0

0

×

0

0

0

0

0

0

0

0

1

1

×

0

0

0

0

1

1

1

1

0

0

×

0

0

1

1

0

0

1

1

0

0

×

0

1

0

1

0

1

0

1

0

1

×

0

0

0

0

0

0

0

0

0

0

1

1

1

0

0

0

0

0

0

0

0

1

0

0

1

1

1

1

0

0

0

0

1

1

0

1

0

1

0

1

0

1

0

1

1

1

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

BCD input is applied at DCBA input terminals and its 9’s complement appears at ND NC NB

NA terminals.

A
B Y6
C 74184
D Y7

E Y8

G

o
o
o
o

A
B
C
D

O

o

Fig. 3.72 Block diagram fo BCD 9’s complement converter using 74184

BCD
Inputs o

o
o

NA

NB

NC

ND

(LSB)

(MSB)

BCD Nine’s
complement
Outputs

MCA-203 359

SUMMARY
 The most popular and commonly available MSI ICs and their applications have been
discussed in this chapter. Since the logic equations for thee circuits are very complex,
therefore, their applicability must be recognized at the system level. Quite often, the system
specifications are affected by the initial knowledge of available standard circuits. Each
technique discussed can be thought of as a tool and each tool has its place. The designer hs to
make a proper choice of the tool for the job. Though more than one tool may work for a
given job, the key is to select the right one. Although system design has been oriented around
making use of higher levels of integration, a lot of little jobs of interfacing the MSI devices
are still best done with discrete gates.
 Active-low inputs and outputs have been indicated by small circles throughout.
Recently, many authors have started using an alternative symbol (small right triangle) to
represent the active-low input/output to avoid confusion (of inversion) associated with the
small circle.

PROBLEMS
 Realize the logic function of f{A, B, C, D} = ∑m (1, 3, 5, 9, 12, 15)

(a) a 16:1 multiplexer
(b) an 8:1 multiplexer.

 Design a 32:1 multiplexer using two 16:1 multiplexer iCs.
 Design a full adder using 8:1 multiplexer iCs. Compare the IC package count with the

NAND-NAND realization.
 Design a 4-bit ADDER/SUBTRACTOR circuit with ADD/SUB control line.
 Design a 40:1 multiplexer using 8:1 multiplexers.
 Design a 1:40 demultiplexer using BCD-to-decimal decoders.
 Design a 4-digit BCD adder using 7483 adders.
 Design a 2-bit comparator using gates.
 Design an 8-bit comparator using only two 7485s.

3.10 Verify the operation of the 24-bit comparator of Fig. 3.41 for the following numbers:
A = 100110000111011001010010
B = 101110000111011000100011

3.11 Design an one digit-BCD-to-binary convergent using 74184.
3.12 Show that the hexadecimal-to-binary encoder can also work as a priority encoder.
3.13 Design a 6-bit odd/even parity checker.
3.14 Design a parity generator circuit to add an odd parity bit to a 7-bit word.
3.15 Design a parity generator circuit to add an even parity bit to a 14-bit word. Use two

74180 packages.

MCA-203 360

CHAPTER-4

FLIP FLOPS
Author: Dr. Manoj Duhan Wetter : Mr. Deepak Kedia

4.1 INTRODUCTION

 So far we have directed our studies towards the analysis and design of combinational

digital circuits. Though very important, it constitutes only a part of digital systems. The other

major aspect of digital systems is analysis and design of sequential circuits. However,

sequential circuit design depends, to a large extent, on the combinational circuit design

discussed earlier.

 There are many applications in which digital outputs are required to be generated in

accordance with the sequence in which the input signals are received. This requirement can

not be satisfied using a combinational logic system. These applications require outputs to be

generated that are not only dependent on the present input conditions but they also depend

upon the past history of these inputs. The past history is provided by feedback form the output

back to the input.

 A block diagram of a sequential circuit is shown in Fig. 4.1. It consists of

combinational circuits which accept digital signals from external inputs and from outputs of

Fig. 4.1 Block diagram of sequential circuit.

MCA-203 361

memory elements and generates signals for external outputs and for inputs to memory

elements referred to as excitation.

 A memory element is some medium in which one bit of information (1 or 0) can be

stored or retained until necessary, and thereafter its contents can be replaced by a new value.

The contents of memory elements in Fig. 4.1 can be changed by the outputs of the

combinational circuit which are connected to its input.

The combinational circuit performs certain operations, some of which are used to

determine the digital signals to be stored in memory elements. The other operations are

performed on external inputs and memory outputs to generate the external outputs.

The above process demonstrates the dependence of the external outputs of a

sequential circuit on the external inputs and the present contents of the memory elements

(referred to as the present state of memory elements). The new contents of the memory

elements, referred to as the next state; depend on the external inputs and the present state,

hence, the output of a sequential circuit is a function of the time sequence of inputs and the

internal states.

Sequential circuits are classified in two main categories, known as Sychronous and

Asynchronous sequential circuits depending on timing of their signals.

A sequential circuit whose behaviour depends upon the sequence in which the input

signals change is referred to as an asynchronous sequential circuit. The outputs will be

affected whenever the inputs change. The commonly used memory elements in these circuits

are time delay devices. These can be regarded as combinational circuits with feedback.

A sequential circuit whose behaviour can be defined from the knowledge of its signal

at discrete instants of time is referred to as a synchronous sequential circuit. In these systems,

the memory element are affected only at discrete instants of time. The synchronization is

achieved by a timing device known as a system clock which generates a periodic train of

clock pulses as shown in Fig. 4.2. The outputs are affected only with the application of a

clock pulse.

MCA-203 362

 Fig. 4.2 A train of pulses.

Since the design of asynchronous circuits is more-tedious and difficult, therefore their

uses are rather limited.

Synchronous circuits have gained considerable domination and wide popularity and

are also known as clocked-sequential circuits. The memory elements used are FLIP-FLOPs

which are capable of storing binary information.

4.2 1-BIT MEMORY CELL

The basic digital memory circuit is known as FLIP-FLOP. It has two stable states which are

known as the 1 state and the 0 state. It can be obtained by using NAND or NOR gates. We

shall be systematically developing a FLIP-FLOP circuit starting from the fundamental circuit

shown in Fig. 7.3. It consists of two inverters G1 and G2 (NAND gates used as inverters). The

output of G1 is connected to the input of G2 (A2) and the output of G2 is connected to the input

of G1 (A1).

 Fig. 4.3 Cross- coupled inverters as a memory element.

 Let us assume the output of G1 to be Q = 1, which is also the input of G2 (A2 = 1).

Therefore, the output of G2 will be Q = 00, which makes A1= 0 and consequently Q = 1

which confirms our assumption.

MCA-203 363

In a similar manner, it can be demonstrated that if Q = 0, then Q =1 and this is also

consistent with the circuit connections.

From the above discussion we note the following

1. The outputs Q and Q are always complementary.

2. The circuit has two stable states; in one of the stable state Q = 1 which is referred to

as the 1 state (or set state) whereas in the other stable state Q = 0 which is referred to

as the 0 state (or reset state).

3. If the circuit is in 1 state, it continues to remain in this state and similarly if it is in 0

state, it continues to remain in this state. This property of the circuit is referred to as

memory, i.e. it can store 1- bit of digital information.

Since this information is locked or latched in this circuit, therefore, this circuit is also

referred to as a latch.

In the latch of Fig. 4.3, there is no way of entering the desired digital information to be

stored in it. In fact, when the power is switched on, the circuit switches to one of the stable

states (Q = 1 or 0) and it is not possible to predict the state. If we replace the inverters G1 and

G2 with 2-input NAND gates, the other input terminals of the NAND gates can be used to

enter the desired digital information. The modified circuit is shown in Fig. 4.4. Two

additional inverters G3 and G4 have been added for reasons which will become clear from the

following discussion.

If S = R = 0, the circuit is exactly the same as that of Fig. 4.3. If S = 1 and R = 0, the

output of G3 will be 0 and the output of G4 will be 1. Since one of the inputs of G1 is 0, its

output will certainly be 1. Consequently, both the inputs of G2 will be giving an output Q =

0. Hence, for this input condition, Q = 1 and Q = 0. Similarly, if S = 0 and R = 1 then the

outputs will be Q = 0 and Q = 1. The first of these two input conditions (S = 1, R =0) makes

Q = 1 which is referred to as the set state, whereas the second input condition (S = 0, R = 1)

makes Q = 0 which is

MCA-203 364

Fig. 4.4. The memory cell with provision for entering data.

referred to as the reset state or clear state. This gives us the means for entering the desired bit

in the latch.

Now we see what happens if the input conditions are changed from S = 1, R = 0 to S

= R = 0 or from S = 0, R = 1 to S = R = 0. The output remains unaltered. This shows the

basic difference between a combinational circuit and a sequential circuit, even though the

sequential circuit is made up of combinational circuits.

The two input terminals are designated as set (S) and reset (R) because S = 1 brings

the circuit in set state and R = 1 brings it to reset or clear state.

If S = R = 1, both the outputs Q and Q will try to become 1 which is not allowed and

therefore, this input condition is prohibited.

4.3 CLOCKED S-R FLIP-FLOP

It is often required to set or reset the memory cell (Fig. 4.4) in synchronism with a train of

pulses (Fig. 4.2) known as clock (abbreviated as CK). Such a circuit is shown in Fig. 4.5, and

is referred to as a clocked set-reset (S-R) FLIP- FLOP.

MCA-203 365

Fig. 4.5 A clocked S-R FOIP-FLOP.

In this circuit, if a clock pulse is present (CK = 1), its operation is exactly the same as

that of Fig. 4.4 On the other hand, when the clock pulse is not present (CK =0), the gates G3

and G4 are inhibited, i.e. their outputs are 1 irrespective of the values of S or R. In other

words, the circuit responds to the inputs S and R only when the clock is present.

Assuming that the inputs do not change during the presence of the clock pulse, we

can express the operation of a FLIP-FLOP in the form of the truth table in Table 4.1 for the S-

R FLIP-FLOP. Here Sn and Rn denote the inputs and Qn the output during the bit time n (Fig.

4.2) Qn+1 denotes the output Q after the pulse passes, i.e. in the bit time n + 1.

Table 4.1 Truth table of S-R FLIP-FLOP

Inputs Output

 Sn Rn Qn+1

 0

 1

 0

 1

0

0

1

1

Qn

1

0

?

If Sn = Rn = 0, and the clock pulse is applied, the output at the end of the clock pulse is

same as the output before the clock pulse, i. e. Qn+1 = Qn. This is indicated in the first row of

the truth table.

If Sn = 1 Rn = 0, the output at the end of the clock pulse will be 1, where if Sn =0 and

Rn = 1, then Qn+1 = 0. These are indicated in the second and third rows of the truth table

respectively.

In the circuit of Fig. 4.4, it was mentioned that S = R = 1 is not allowed. Let us see

what happens in the S-R FLIP-FLOP of Fig. 4.5 if Sn = Rn = 1. When the clock is present the

outputs of gates G3 and G4 are both 0, making one of the inputs of G1 and G2 NAND gates 0.

Consequently, Q and Q both will attain logic 1 which is inconsistent with our assumption of

complementary outputs. Now, when the clock pulse has passed away (CK = 0), the outputs of

MCA-203 366

G3 and G4 will rise from 0 to 1. Depending upon the propagation delays of the gates, either

the stable state Qn+1 = 1(Q n+1 =0) or Qn+1 = 0 (Q n+1 = 1) will result. That means the state of

the circuit is undefined, indeterminate or ambiguous and therefore is indicated by a question

mark (fourth row of the truth table).

The condition Sn = Rn = 1 is forbidden and it must not be allowed to occur.

The logic symbol of clocked S-R FLIP-FLOP is given in Fig. 4.6.

4.3.1 Preset and Clear

In the FLIP-FLOP of Fig. 4.5, when the power is switched on, the state of the circuit is

uncertain. It may come to set (Q = 1) or reset (Q = 0) state. In many applications it is desired

to initially set or reset the FLIP-FLOP, i.e. the initial state of the FLIP-FLOP is to be

assigned. This is accomplished by using the direct, or asynchronous inputs, referred to as

preset (Pr) and clear (Cr) inputs. These inputs may be applied at any time between clock

pulses and are not in synchronism with the clock. An S-R FLIP-FLOP with preset and clear

is shown in Fig. 4.7. If Pr = Cr = 1 the circuit operates in accordance with the truth table of S-

R FLIP-FLOP given in Table 4.1.

 In Pr = 0 and Cr = 1, the output of G1 (Q) will certainly be 1. Consequently, all the three

inputs to G2 will be 1 which will make Q = 0, Hence, making Pr = 0 sets the FLIP-FLOP.

 Similarly, if Pr = 1 and Cr = 0, the FLIP-FLOP is reset. Once the state of the FLIP-

FLOP is established asynchronously, the asynchronous inputs Pr and Cr must be connected to

logic 1 before the next clock is applied.

 The condition Pr = Cr= 0 must not be used, since this leads to an uncertain state

S-R

FLIP-FLOP

o

o

o

S

CK

R

o Q

o Q

Fig. 4.6 Logic symbol of clocked S−R FLIP-FLOP

MCA-203 367

 In the logic symbol of Fig. 4.7b, bubbles are used for Pr and Cr inputs, which means

these are active-law, i.e. the intended function is performed when the signal applied to Pr or

Cr is LOW. The operation of Fig. 4.7 is summarized in Table 4.2.

Fig. 4.7 (a) An S-R FLIP-FLOP with preset and clear,

 (b) its logic symbol.

S-R

FLIP FLOP

o

o

o

S

CK

R

o Q

o Q

(b)

o Pr

O

O

o Cr

MCA-203 368

Table 4.2 Summary of operation of S-R FLIP-FLOP

Inputs

 CK Cr Pr

Output

Q

Operation performed

1

0

0

1

0

1

1

1

0

Qn+1 (Table 4.1)

0

1

Normal FLIP-FLOP

Clear

Preset

 The circuit can be designed such that the asynchronous inputs override the clock, i.e.

the circuit can be set or reset even in the presence of the clock pulse.

4.4. J-K FLIP-FLOP

The uncertainty in the state of an S-R FLIP-FLOP when Sn = Rn = 1 (fourth row of the truth

table) can be eliminated by converting it into a J-K FLIP-FLOP. The data inputs are J and K

which are ANDed with Q and Q, respectively, to obtain S and R inputs, i.e.

S = J. Q (4.1a)

 R = K. Q (4.1b)

 A J-K FLIP-FLOP thus obtained is shown in Fig. 4.8. Its truth table is given in Table

4.3a which is reduced to Table 4.3b for convenience. Table 4.3a has been prepared for all the

possible combinations of Land K inputs, and for each combination both the states of the

output have been considered.

MCA-203 369

 Fig. 4.8 An S-R FLIP-FLOP converted into J-K FLIP-FLOP.

It is not necessary to use the AND gates of Fig. 4.8, since the same function can be

performed by adding an extra input terminal to each NAND gate G3 and G4 of Fig. 4.7. With

this modification incorporated in Fig. 747, we obtain the J-K FLIP-FLOP using NAND gates

as shown in Fig. 4.9. The logic symbol of J-K FLIP-FLOP is given in Fig. 4.10.

Table 4.3a Truth table for Fig. 4.8

Data inputs

 Jn Kn

Outputs

 Qn nQ

Inputs to

S-R FF

 Sn Rn

Output

Qn+1

0

0

0

0

0

1

1

0

0

0

0

0

0

1

1

1

0

0

0

1

1

0

1

0

0

0

1

1

0

0

1

1

0

1

1

0

0

0

0

1

0

0

1

1

1

1

0

1

1

0

1

0

0

1

0

1

] = Qn

] = 1

] = 0

] = nQ

MCA-203 370

Table 4.3b Truth table of J−K FLIP-FLOP

Inputs

 Jn Kn

Output

Qn+1

0

1

0

1

0

0

1

1

Qn

1

0

nQ

 Fig. 4.9 A J−K FLIP-FLOP using NAND gates.

J−K
FF

o

o

o

J

CK

K

o Q

o Q

o Pr

O

O

o Cr

Fig. 4.10 Logic symbols of J−K FLIP-FLOP

MCA-203 371

4.4.1 The Race-Around Condition

The difficulty of both inputs 1 (S = R = 1) being not allowed in an S-R FLIP-FLOP is

eliminated in a J-K FLIP-FLOP by using the feedback connection from outputs to the inputs

of the gates G3 and G4 (Fig. 4.9). Table 4.3 assumes that the inputs do not change during the

clock pulse (CK = 1), which is not true because of the feedback connections. Consider, for

example, that the clock input, after a time interval Δt equal to the propagation delay through

two NAND gates in series, the output will change to Q = 1 (see fourth row of Table 4.3b).

Now we have J = K = 1 and Q =1 and after another interval of Δt the output will change back

to Q = 0. Hence, we conclude that for the duration tp of the clock p0ulse, the output will

oscillate back and forth between 0 and 1. At the end of the clock pulse, the value of Q is

uncertain. This situation is referred to as the race-round condition.

 The race-around condition can be avoided if tp < Δt < T. However, it may be difficult

to satisfy this inequality because of very small propagation delays in ICs. A more practical

method for overcoming this difficulty is the use of the master-slave (M-S) configuration

discussed below.

Fig. 4.11 A clock pulse

4.4.2 The Master-Slave J-K FLIP-FLOP

A master-slave J-K FLIP-FLOP is a cascade of two S-R FLIP-FLOPs with feedback from the

outputs of the second to the inputs of the first as illustrated in Fig. 4.12. Positive clock pulses

are applied to the first FLIP-FLOP and the clock pulses are inverted before these are applied

to the second FLIP-FLOP.

MCA-203 372

 When CK = 1, the first FLIP-FLOP is enabled and the outputs QM and Q M respond to

the inputs J and K according to Table 4.3. At this time, the second FLIP-FLOP is inhibited

because its clock is LOW (CK = 0). When CK goes LOW (CK = 1), the first FLIP-FLOP is

inhibited and the second FLIP-FLOP is enabled, because now its clock is HIGH (CK = 1).

Therefore, the outputs Q and Q follow the outputs QM and MQ , respectively (second and

third rows of Table 4.3b). Since the second FLIP-FLOP simply follows the first one, it is

referred to as the slave and the first one as the master. Hence, this configuration is referred to

as master-slave (M−S) FLIP-FLOP.

 In this circuit, the inputs to the gates G3M and G4M do not change during the clock pulse,

therefore the race-around condition does not exist. The state of the master-slave FLIP-FLOP

changes at the negative transition (trailing edge) of the clock pulse. The logic symbol of a M-

S FLIP-FLOP is given in Fig. 4.13.

 Fig. 4.12 A master-salve J-K FLIP-FLOP.

At the clock input terminal, the symbol > is used to illustrate that the output changes when the

clock makes a transition and the accompanying bubble signifies negative transition (change in

DK from 1 to 0).

MCA-203 373

4.5 D-TYPE FLIP-FLOP

If we use only the middle two rows of the truth table of the S-R (Table 4.1) or J-K (Table

4.3b) FLIP-FLOP, we obtain a D-type FLIP-FLOP as shown in Fig. 4.14. It has only one

input referred to as D-input or data input. Its truth table is given in Table 4.4 from which it is

clear that the output Qn+1 at the end of the clock pulse equals the input Dn before the clock

pulse.

Fig. 4.14 (a) A J−K or S−R FLIP-FLOP converted into a D-type FLIP-FLOP (b) its logic

symbol

M−S
J−K
FF

o

o

o

J

CK

K

o Q

o Q

o Pr

O

O

o Cr
Fig. 4.13 A master−slave J−K FLIP-FLOP logic symbol

O

MCA-203 374

Table 4.4 Truth table of a D-type FLIP-FLOP

 Input

 Dn

 Output

 Qn+1

 0

 1

 0

 1

 This is equivalent to saying that the input data appears at the output at the end of the

clock pulse. Thus, the transfer of data from the input to the output is delayed and hence the

name delay (D) FLIP-FLOP. The D-type FLIP-FLOP is either used as a delay device or as a

latch to store 1-bit of binary information.

4.6 T-TYPE FLIP-FLOP

In a J-K FLIP-FLOP, if J = K, the resulting FLIP-FLOP is referred to as a T-type FLIP-FLOP

and is shown in Fig. 4.15. It has only one input, referred to as T-input. Its truth table is given

in Table 4.5 from which it is clear that if T = 1 it acts as a toggle switch. For every clock

pulse, the output Q changes.

Fig. 4.15 (a) A−K FLIP-FLOP converted into a T-type FLIP-FLOP, (b) its logic symbol

 Table 4.5 Truth table of T-type FLIP-FLOP

MCA-203 375

 Input

 Tn

 Output

 Qn+1

 0

 1

 Qn

 Q n

 As S-R FLIP-FLOP cannot be converted into a T-type FLIP-FLOP since S = R = 1 is

not allowed. However, the circuit of Fig. 4.16 acts as a toggle switch, i.e. the output Q

changes with every clock pulse.

 Fig. 4.16 An S-R FLIP-FLOP as a toggle switch

4.7 EXCITATION TABLE OF FLIP-FLOP

The truth table of a FLIP-FLOP is also referred to as the characteristic table and specifies the

operational characteristic of the FLIP-FLOP.

 In the design of sequential circuits, we usually come across situations in which the

present state and the next state of the circuit are specified, and we have to find the input

conditions that must prevail to cause the desired transition of the state. By the present state

and the next state we mean the state of the circuit prior to and after the clock pulse

respectively. For example, the output of an S-R FLIP-FLOP before the clock pulse is Qn = 0

and it is desired that the output dies not change when the clock pulse is applied. What input

conditions (Sn and Rn values) must exist to achieve this?

MCA-203 376

 From the truth table (or the characteristic Table) of an S-R FLIP-FLOP (Table 7.1)

we obtain the following conditions:

1. Sn = Rn = 0 (first row)

2. Sn = 0, Rn = 1 (third-row)

We conclude from the above conditions that the Sn input must be 0, whereas the Rn input may

be either 0 or 1 (don’t-care). Similarly, input conditions can be found for all possible

situations. A tabulation of these conditions is known as the excitation table. It is a very

important and useful design aid for sequential circuits. Table 7.6 gives the excitation tables of

S-R, J-K, T, and D FLIP-FLOPs. This is derived from the characteristic table of the FLIP-

FLOP.

 Table 4.6 Excitation table of FLIP-FLOPs

Present

State

Next

State

S-R

Sn

FF

Rn

J-K

Jn

FF

Kn

T-FF

Tn

D-FF

Dn

0

0

1

1

0

1

0

1

O

1

0

×

×

0

1

0

0

1

×

×

×

×

1

0

0

1

1

0

0

1

0

1

4.8 CLOCKED FLIP-FLOP DESIGN

In earlier sections, we defined or specified the operation of different FLIP-FLOPs assuming a

circuit without regard to where the circuit came from or how it was designed. In this section,

the design of a FLIP-FLOP is given. The design philosophy illustrated is, in fact, a general

approach for the design of sequential circuits and systems.

 Consider the general model of the FLIP-FLOP shown in fig. 4.17. Basically, a

clocked FLIP-FLOP is a sequential circuit which stores the bits 0 and 1. This operation is

accomplished by using a binary cell coupled with some combinational set/reset decoding

MCA-203 377

logic to allow some input control over the set and reset operations of the cell. The steps for

the design of FLIP-FLOP are given below.

Fig. 4.17 The general model of the FLIP-FLOP

Step I: Examine each row of the given characteristic table, specifying the desired inputs and

outputs, and answer the following questions and make a truth table with Y1 and Y2 as output

variables.

1. Does the cell need to be set (Qn+1 = 1) for this condition?

2. Does the cell need to be reset (Qn+1 = 0) for this condition?

3. Does the cell need to be left as it is?

Step II: Prepare the K-map for Y1 and Y2 output variables, minimize it and determine the

logic for Y1 and Y2, respectively. Draw the complete circuit using gates.

 The above design steps are illustrated in Example 4.1.

Example 4.1 Using the technique described above, design a clocked S-R FLIP-FLOP whose

characteristic table is given in Table 4.7.

MCA-203 378

Table 4.7 Truth table

Characteristic table

 CK S R Qn Qn+1

Truth table for decoder

 Y1 Y2

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

0

1

1

×

×

1

×

1

×

1

×

1

×

1

×

1

1

0

×

×

×

×

1

×

1

×

1

 ×

1

×

1

×

0

1

1

×

×

*S = R = 1 can happen with no clock.

**S = R = 1 must not happen.

Solution

∗

∗

MCA-203 379

Step I Determine the values of Y1 and Y2 for each row. For example, for the first row Qn = 0

and Qn+1 = 0. To obtain Qn+1 = 0,. Y1 must be equal to 1, since Q n = 1, Y2 can be 0 or 1 since

Qn = 0. In a similar manner, complete the truth table (Table 4.7).

Step II the K-maps for Y1 and Y2 are given in Fig. 4. 18 which give

Fig. 4.18 K-maps for Ex. 4.1

 Y1 = SCKSCK ⋅=+

 Y2 = RCKCKR ⋅=+

Thus, we see that the circuit resulting from this design is the same as that shown in Fig. 4.5.

4.8.1 Conversion From One Type of FLIP-FLOP to Another Type

In earlier sections, we have discussed conversion from S-R to J-K, S-R (or J-K) to D-type,

and J-K to T-type FLIP-FLOPs. Now, we shall effect the conversion from one type of FLIP-

FLOP to another type by using a formal technique which is similar to the one used above and

will be useful in the design of clocked sequential circuits.

 Consider the general model for conversion from one type of FLIP-FLOP to another

type (Fig.4.19). In this, we are required to design the combinational logic decoder (conversion

logic) for converting new input definitions into input codes which will cause the given FLIP-

FLOP to perform as desired.

 To design the conversion logic we need to combine the excitation tables for both

FLIP-FLOPs and made a truth table with data input (s) and Q as the inputs and the input (s) of

1 1 0 1

× × × ×

× × × 1

1 1 × 1

00 01 11 10
00

01

11

10

RQn
CKS

Y1

× × 1 ×

1 1 1 1

× 1 × 0

× × × ×

00 01 11 10

00

01

11

10

RQn
CKS

Y2

MCA-203 380

the given FLIP-FLOP as the output (s). The conventional method of combinational logic

design then follows as usual. The conversion is illustrated in Example 4.2.

Fig. 4.19 The general model used to convert one type of FLIP-FLOP

Example 4.2 Convert as S-R FLIP-FLOP to a J-K FLIP-FLOP.

Solution : The excitation tables of S−R and J−K FLIP-FLOPs are given in Table 4.6 from

which we make the truth table given in Table 4.8

 S = J ⋅ Q and R = K ⋅ Q

Thus, we see that the circuit resulting from this design is the same as that shown in

Fig. 4.8.

Table 4.8 Truth table of conversion logic

Row FF data inputs

 J K

Output

Q

S−R FF inputs

 S R

1

2

0

0

0

1

0

0

0

0

×

×

3

4

1

1

0

1

0

0

1

1

0

0

5 0 1 1 0 1

MCA-203 381

6 1 1 1 0 1

7

8

0

1

0

0

1

1

×

×

0

0

Fig. 4.20 K-maps for Ex. 4.2

4.9. LEVEL CLOCKING AND EDGE TRIGGERING

 In a clocked flip flop, the output can change state when CLK is high. When CLK is

low, the output remains in the same state. Thus, the output can change state during the entire

half cycle when CLK is high. This may be a disadvantage in many situations. It is necessary

that the output should change state only at one instant in the positive half cycle of the clock.

This is known as edge triggering and the resulting flip flop is known as edge triggered flip

flop.

 Edge triggering is possible using an RC circuit. The time constant RC is made much

smaller than the width of the clock pulse. Therefore, the capacitor can charge fully when CLK

is high. The exponential charging produces a narrow positive voltage spike across the resistor.

The input gates are activated at the instant of this positive spike.

Edge triggering using RC circuit is not very convenient for a computer because it is

difficult to fabricate a capacitor on a chip. Instead, additional NAND gates are used to

produce positive spike for edge triggering.

4.10. PULSE TRIGGERED FLIP FLOP

0 0 1 1

× 0 0 ×

Q JK 00 01 11 10

0

1

S

× × 0 0

0 1 1 0

Q JK 00 01 11 10

0

1

R

MCA-203 382

 Another type of triggering is pulse triggering. The term pulse triggering means that

the data are entered into the flip flop on the leading edge of the clock pulse, but the output

does not reflect the input state until the trailing edge of the pulse. Thus the input must be set

up prior to the leading edge of the clock pulse, but the output is postponed until the trailing

edge of the pulse. A major restriction in pulse triggered flip flop is that the data input should

not change when clock pulse in High because the flip flop is sensitive to any change of input

level during the period when clock pulse in High.

 All the three edge triggered flip flop, viz., SR, D and JK can be pulse triggered also.

JK flip flop is the most commonly available one in IC form.

4.11. PARAMETERS OF FLIP FLOPS

 When a flip flop is to be selected for a specific application, it is necessary to consider

its parameters. These parameters are given in data sheets supplied by manufacturers and are

common to all the flip flops.

(a) Propagation Delay Time

It is the time interval between data input signal and the resulting change in output. It is

further categorized into different types

Propagation delay tPLH is measured from the triggering edge of clock pulse to Low to

High transition of output and is shown in Fig. 4.21 (a).

Fig. 4.21 Propagation delay times of flip flop (clock to output) (a) tPLH (b) tPHL

 Propagation delay tPLH is measured from the triggering edge of clock pulse to high to

low transition of output and is shown in Fig. 4.21 (b).

MCA-203 383

(b) Set-up Time (ts)

 It is the minimum time required for the control levels to be maintained constantly on

the inputs (D or SR or JK) prior to the triggering edge of the clock pulse so that for the levels

be reliably clocked into the flip flop. It is shown in Fig. 4.22 for a D flip flop. It is denoted by

ta.

(c) Hold Time (th)

 It is the minimum time required for the control levels to remain on the inputs after the

triggering edge of the clock pulse so that the levels are reliably clocked into the flip flop. It is

denoted by th and is shown in Fig. 4.23 for a D flip flop.

(d) Maximum Clock Frequency (fmax)

 It is the highest rate at which the flip flop can be reliably triggered. It clock frequency

is more than the maximum specified value, the flip flop may not be able to reliably.

Fig. 4.22 Set up time of flip flop Fig. 4.23 Hold time of flip flop

(e) Pulse Width (tw)

 Minimum pulse widths are specified for clock, preset and clear inputs. These are

denoted by tw.

(f) Power Dissipation

 It is the total power dissipation of the flip flop. It is the product of voltage and

current. If voltage is + 5 V dc and current is 25 mA, the power dissipation is 5 × 25 =

125mW.

MCA-203 384

 This parameter assumes importance because a system may have a large number of

flip flops (say 10). The dc source must have a current rating to supply rated current to all the

flip flops in the system.

(g) Other Parameters

 Flip flop is also a digital gate. The parameters of gates viz., fan out, noise margin,

input voltage, output voltage are applicable for flip flops also.

4.12. Contact Bounce Elimination

 When a mechanical switch is closed the holes of the switch vibrate or bounce a

number of times before finally making a solid contact. These bounces may produce voltage

spikes. This is shown in Fig. 4.24 (a). Such voltage spikes are not desirable in a digital

system.

Fig. 4.24 Use of SR latch to eliminate contact bounce and voltage spikes

 As SR latch can be used to eliminate the contact bounce as shown in Fig. 9.25 (b).

The normal position of switch is 1. Thus R input is Low and latch is in RESET position.

When switch is thrown to position 2, R goes High due to presence of pull up resistor to Vcc

and S goes to Low on first contact. This SETS the latch. Any further voltage spikes on the

S input (due to contact bounce) do not affect the latch and it remains SET. The Q output

makes a clean transition from LOW to HIGH and voltage spikes due to contact bounce are

eliminated. A similar clean transition occurs when the switch is brought back to position 1.

4.13. Parallel Data Storage in Registers

 Data storage is an important aspect of digital systems. Many data hits are taken on

parallel lines and stored simultaneously in a group of flip flops. Fig. 4.25 (a) shows this

MCA-203 385

parallel data input. The data inputs are connected to D0, D1, D2. The clock inputs of all the

three flip flops are tied together and connected to common clock input. This ensures that all

the three flip flops are triggered together. As shown in Fig. 4.25 (a) positive edge triggering is

used in this case. Therefore, the data is stored in flip flops on the positive edge (i.e., Low to

High edge) of the clock. Moreover, all CLR* terminals are also connected together so that all

the three flip flops are reset together. Groups of flip flops used to store data are known as

registers in computer terminology. Fig. 4.25 (b) shows data inputs D0, D1, D2 as 101, Fig.

4.25 (c) shows data storage. The flip flops have low CLR. Therefore, the flip flops are cleared

when CLR is low. The data is stored on the positive edge of CLK as shown.

Fig. 4.25. Data storage by flip flops (a) logic circuit (b) data (c) waveforms of ,CLR

CLK, Q0, Q1 and Q2

4.14. Transfer of Data

 Many times it is necessary to transfer data from one bit to another. This can be done

by using flip flops as illustrated in Fig. 4.26 (a). The data is to be initially stored in FF1 and is

then required to be transferred to FF2. Both the flip flops are pulse triggered. Their clock

inputs are connected together.

MCA-203 386

 Fig. 4.26. Data transfer using flip flops (a) connection of flip flops (b) instants of data

transfer.

 The process of data transfer is shown in Fig. 4.26 (b). Since the flip flops are pulse

triggered the data appears on the output on trailing edge of the clock pulse. At the trailing

edge of first clock pulse data output appears at Q1. At the trailing edge of second clock pulse

data appears at output Q2 of second flip flop. As in the pulse triggered operation, the data is

clocked into the master of flip flop at the leading clock edge but appears at the output at the

trailing edge of the clock pulse. Thus at t1 data (i.e., 1) is clocked into master of FF1. At t2 this

data appears at Q1. At t3 this data is clocked into master of FF2 and at t4 this data appears at

Q2.

4.15. Counting

Digital counting is an important application of flip flops. This is illustrated in Fig.

4.27. These two flip flops are for counting two bit binary numbers (for bigger binary

numbers, the number of flip flops will be more). As shown the flip flops are negative edge

triggered*. At trailing edge of first clock pulse Q1 becomes 1. At trailing edge of second clock

pulse Q2 becomes 1 and Q1 becomes 0 (indicating binary number 10 or decimal number 2). At

trailing edge of third clock pulse, Q1 = 1 and Q2 = 1 indicating the binary number as 11 (equal

to decimal number 3). This binary sequence is repeated every 4 clock pulses as shown in Fig.

4.27 (b). Thus the flip flops count 00, 01, 10 and 11 (i.e., from decimal 0 to 3) and then return

to 00 to start the next sequence.

MCA-203 387

Fig. 4.27. Use of flip flops as counters (a) connections of flip flops (b) counting process

4.15.1. Frequency Division

 Flip Flops can be used to reduce the frequency of clock pulses. When a pulse

waveform is applied to clock input of JK flip flop connected to toggle, the frequency of

output at Q is half of that at clock input. This is shown in Fig. 4.28. Thus one flip flop is a

divide by 2 device. The flip flop changes state at every positive clock edge to give at the

output a square wave with half the frequency of that at dock input.

Fig. 4.28. Frequency division by 2 using JK flip flop

 More flip flops can be added to reduce the frequency further. In Fig. 4.29, two flip

flops 1 and 2 are connected in tandem. The frequency of output at Q1 is half of that at clock

input. The frequency of output at Q2 is half of that at Q1 or one fourth of that at clock input. If

the number of flip flops is n, the frequency can be reduced by factor 2n.

MCA-203 388

Fig. 4.29. Frequency division by 4 using two flip flops

If n = 5, the frequency is reduced to 1/32 of the original frequency.

SUMMARY

1. Latches and flip flops are bistable elements with two stable states. The main

difference between a latch and flip flop is in the method used for changing state.

2. Latches are bistable elements whose state depends on asynchronous inputs. On

the other hand, edge triggered flip flops are bistable elements with synchronous

inputs whose state depends on inputs only at the triggering transition of a clock

pulse. Edge triggering can be positive edge triggering or negative edge

triggering.

3. RS latch can be built with NOR gates or NAND gates. In this latch a High on

both R and S inputs leads to race condition.

4. A clocked RS latch has a clock input in addition to R and S inputs. A state

change can occur only when clock signal becomes high.

5. In a D latch a common D input drives the R and S inputs, S input directly and R

input through inverter. A clocked D latch uses a clock signal to enable and

disable the latch.

MCA-203 389

6. Flip flops often have present (PR) and clear (CLR) inputs also. A clear signal is

the same as reset signal. A preset is equivalent to set the flip flop before the

computer run.

7. JK master slave flip flop has two clocked SR flip flops, one known as master and

the second known as slave.

8. Edge triggered JK flip flop is used in digital counters.

9. A T flip flop is obtained by connecting the J and K inputs of JK edge triggered

flip flop.

10. Pulse triggering means that data is entered into the flip flop at the leading edge of

the clock pulse but the output occurs only on the trailing edge of clock pulse.

11. Data lock out flip flop has dynamic clock input but the data inputs are disabled

after the leading edge transition.

12. Various parameters of flip flops are : propagation delay, set up time, hold time,

maximum clock frequency, pulse width and power dissipation.

13. Flip flops are used for contact bounce elimination, data storage, data transfer,

counting and frequency division.

14. A Schmitt trigger is a very suitable device for waveshaping. It can convert a sine

wave or a distorted signal into a square wave.

PROBLEMS
4.1 What are flip flops? Why they are called electronic switch?
4.2 What are different parameters of flip flops?
4.3 What is J-K flip flop and how it is converted from S-R flip flop?
4.4 Explain the concept of d and t flip flop.
4.5 What is the significance of excitation table?
4.6 Enumerate the advantages of flip flops.
4.7 How data is transferred from one place to another with the help of digital techniques?
4.8 Differentiate between a latch and a flip flop.
4.9 Differentiate between edge triggered and level triggered flip flops with help of

examples.
4.10 How can we convert a JK flip flop to a D type flip flop?

MCA-203 390

CHAPTER-5

REGISTERS
Author: Dr. Manoj Duhan Vetter : Mr. Deepak Kedia

5.1 INTRODUCTION

A register is device capable of storing a bit. The data can be serial or parallel. A register

can convert a data from serial to parallel and vice versa. Shifting the digits to left and right is

an important aspect of arithmetic operations. In this chapter we discuss these concepts.

5.2 BUFFER REGISTER

 A register is used for storing and shifting data entered into it from an external source.

We know that a flip flop is the basic storage element in digital system. Fig. 5.1 explains the

concept of storing a 1 or 0 in a flip flop. A 1 is applied to the input of flip flop and a clock

pulse is applied. 1 is stored by setting the flip flop. Even when 1 is removed from the input,

the flip flop remains in the set state storing 1. If a 0 is applied at the input, 0 is stored in the

flip flop on the application of clock pulse. For storing more bits we need more flip flops. Each

state of a flip flop has one bit of storage capacity. Thus the number of stages is equal to the

storage capacity.

 A buffer register is the simplest type of register. It can only store a digital word.

Fig. 5.1. Flip flop as storage element
(a) Q = 1 on positive edge of block or
remains 1 if already in that state
(b) Q = 0 on positive edge of clock or
remain 0 if already in that state

Fig. 5.2. 3 bit buffer register

MCA-203 391

Fig. 5.2 shows a 3 bit buffer register. The X bits set the flip flops for loading. When the first

positive clock edge arrives the output becomes

Q2 Q1 Q0 =X2 X1 X0

The buffer register is too primitive to be of any use. A control over the X bits is needed.

5.3 CONTROLED BUFFER REGISTER

 Fig. 5.3 shows a controlled buffer register. It has an active High CLR. When CLR

goes High, all flip flops set and Q2 Q1 Q0 = 000. When CLR returns Low, the register is

ready for working

 Load is the control input. When Load is Low, the X bits cannot reach the flip flops.

When Load is Low, Load is High. This forces each flip flop output to feedback its data input.

When positive clock edge arrives, data bits are circulated or retained, i.e., when Load is Low,

the register contents remain the same.

 When Load is High, X bits can reach the flip flops. When positive clock edge

arrives, the X bits are stored so that Q2 Q1 Q0 = X2 X1 X0. If Load now returns to Low, this

word is stored indefinitely and even if X bits change, the stored contents remain the same.

Fig. 5.3 bit controlled buffer register

MCA-203 392

5.4 BASIC SHIFT OPERATIONS

 A simple example of shift

operation is that in a calculator.

Suppose we have to enter 356 in the

calculator. First we press and

release 3. The digit 3 appears in the

display. Next we press and release

5. The digit 3 is shifted one place to

the left and 5 appears on the extreme

right. As we press and release 6, the

digit 3 and 5 shift to the left and 6

appears in the extreme right

position. This simple example

illustrates two characteristics of a

shift register. (1). It is a temporary

memory and holds the number

displayed. (2). When we press a

new digit on the

keyboard, the earlier number is shifted to the left. Thus, shift register has memory and

shifting characteristics.

The basic shift operations are :

(a) serial shift left, then out

(b) serial shift right, then out

(c) parallel shift in

(d) parallel shift out

(e) rotate left

(f) rotate right.

Fig. 5.4 Basic shift operations in digital registers

MCA-203 393

These operations are shown in Fig. 5.4.

5.5 SHIFT LEFT REGISTER

 Fig. 5.5 shows a shift left register. It uses D flip flops. The circuit shown has

positive edge triggering. It is a 4 bit register using 4 flip flops FF0, FF1, FF2 and FF3. Din is

the input to FF0. Output of FF0 is Q0 and is fed to D1. Similarly Q1 is fed to D2 and Q2 to D3.

All the flip flops are clocked together by the clock pulse.

Fig. 5.5 Shift left register

Initially Q3 Q2 Q1 = 0000

At the first positive edge of clock pulse FF0 is set and then Q3 Q2 Q1 Q0 = 0001

At the second positive edge of clock pulse FF1 is set and then Q3 Q2 Q1 Q0 = 0011

The positive edge of the third pulse sets FF2 and then Q3 Q2 Q1 Q0 = 0111

Finally, the positive edge of fourth clock pulse sets FF3 and then Q3 Q2 Q1 Q0 = 1111

As long as Din = 1, the stored word cannot change further. Now let Din be changed to 0. Then

the successive clock pulses produce the following stored contents.

Clock pulse Stored contents

1

2

3

4

1110

1100

1000

0000

 As long as Din = 0, the stored contents cannot change further.

MCA-203 394

5.6 SHIFT RIGHT REGISTER

 Fig. 5.6 shows a shift right register using D flip flops. As the name suggests the

stored contents are shifted right on each clock pulse. The Q output is connected to the D

input of preceding flip flop. At the arrival of each positive edge of clock shift right operation

occurs. Let Din = 1 and

Q3 Q2 Q1 Q0 = 0

Fig. 5.6 Shift right register

The positive edge of first clock pulse sets up flip flop FF3 and

 Q3 Q2 Q1 Q0 = 1000

The positive edge of second clock pulse makes the stored contents as

 Q3 Q2 Q1 Q0 = 1100

The positive edge of third clock pulse gives

 Q3 Q2 Q1 Q0 = 1110

and the positive edge of fourth clock pulse gives

 Q3 Q2 Q1 Q0 = 1111

 After this the stored contents remain the same till Din = 1. Let Din be changed to 0

now. Then successive clock pulses make the stored contents as under:

MCA-203 395

Clock pulse Stored contents

1

2

3

4

0111

0011

0001

0000

 As long as Din = 0, subsequent clock pulse do not cause any further change in stored

contents.

5.7 SHIFT REGISTER OPERATIONS

 One method to describe the operation of shift register is the method of loading in and

reading from the storage bits. There could be 4 such operations :

(a) Serial in – Serial out : The data is loaded into and read from the shift register

serially. [Fig. 5.7 (a)]

(b) Serial in – Parallel out : The data is loaded into the register serially but read in

parallel (i.e., data is available from all bits simultaneously. [Fig. 5.7(b)].

(c) Parallel in – Serial out : The data is loaded in parallel, i.e., the bits are entered

simultaneously in their respective stages and read serially. [Fig. 5.7 (c)]

(d) Parallel in – Parallel out : The data is loaded and read from the register in paralle,

i.e., all bits are loaded simultaneously and read simultaneously. [Fig. 5.7(d)].

Fig. 5.7 Shift register operations (a) serial in-serial out (SISO) (b) serial in – parallel out

(SIPO) (c) parallel in – serial out (PISO) (d) parallel in – parallel out (PIPO)

MCA-203 396

5.8 SERIAL IN – SERIAL OUT SHIFT REGISTER

 Fig. 5.8 shows a 4 bit serial in – serial out shift register consisting of four D flip flops

FF0, FF1, FF2 and FF3. As shown it is a positive edge triggered device. We study the working

of this register for the data 1010 in the following steps :

1. Bit 0 is entered into data input line. D0 = 0, first clock pulse is applied, FF0 is

reset and stores 0.

2. Next bit 1 is entered. Q0 = 0, since Q0 is connected to D1, D1 becomes 0.

3. Second clock pulse is applied, The 1 on the input line is shifted into FF0 because

FF0 sets. The 0 which was stored in FF0 is shifted into FF1.

Fig. 5.8 Serial in – serial out shift register

4. Next bit 0 is entered and third clock pulse applied. 0 is entered into FF0 1 stored

in FF0 is shifted to FF1 and 0 stored in FF1 is shifted to FF2.

5. Last bit 1 is entered and 4th clock pulse applied. 1 is entered into FF0, 0 stored in

FF0 is shifted to FF1, 1 stored in FF1 is shifted to FF2 and 0 stored in FF2 is shifted

to FF3. This completes the serial entry of 4 bit data into the register. Now the

LSB 0 is on the output Q3.

6. Clock pulse 5 is applied. LSB 0 is shifted out. The next bit 1 appears on Q3

output.

7. Clock pulse 6 is applied. The 1 on Q3 is shifted out and 0 appears on Q3 output.

8. Clock pulse 7 is applied. 0 on Q3 is shifted out. Now 1 appears on Q3 output.

9. Clock pulse 8 is applied. 1 on Q3 is shifted out.

MCA-203 397

When the bits are being shifted out (on CLK pulse 5 to 8) more data bits can be

entered in.

 IC 7491A is a serial in – serial out shift register. It uses eight clocked SR flip flops.

Thus it is an 8 bit register. It is designated as SRG8 (shift register 8 bits). A and B are two

input lines. When data is entered into A, B must be High and vice versa. The output is QH

and HQ is complement of QH. Its logic symbol is shown in Fig. 5.9. The pin numbers are as

shown.

Example 5.1 Data 1101 is fed into 4 bit serial in – serial out shift register. Show the status of

register at various clock pulses.

Solution : Fig. 5.10 shows the diagram depicting the status of register.

5.9 SERIAL IN – PARALLEL OUT SHIFT REGISTER

 The data bits are entered serially but they are available at their respective positions

simultaneously. Fig. 5.11 shows the circuit of 4 bit serial in – parallel out shift register using

D flip flops. Q0, Q1, Q2 and Q3 are the output terminals and data is available at all of them

together.

Fig. 5.9 Logic symbol of 8 bit serial in-
serial out IC shift register 7491 A

Fig. 5.10.

MCA-203 398

Fig. 5.11 bit serial in – parallel out shift register

 IC 74164 is an 8 bit serial in-parallel out shift register. It has two serial inputs A and

B, active Low clear CLR and parallel outputs QA to QH. it uses SR flip flops. Fig. 5.12

shows its logical symbol and pins.

Example 5.2 Fig. 5.13 (a) shows a 4 bit serial in – parallel out shift register. Show the status

of 4 registers for the data 0110.

Solution : Fig. 5.13 (b) shows the diagram depicting the status of register.

Fig. 5.12. 8 bit serial in –parallel out shift
register IC 74164

Fig. 5.13.

MCA-203 399

5.10 PARALLEL IN –SERIAL OUT SHIFT REGISTER

 The data bits are entered simultaneously and taken out serially. Fig. 5.14 shows such

a shift register with 4 bits. It uses D flip flops and 4 data input lines A, B, C, D. Moreover, it

has a shift/ Load input which allows 4 bits of data to be entered into the register

simultaneously. When shift/ Load is Low,

F

Fig. 5. 14. 4 bit parallel in-serial out shift register

gates G1, G2, G3. are enabled and data can be entered into the D input of the four flip flops.

When clock pulse is applied, the flip flop with data bit 1 will SET and flip flops with data bits

0 will reset and thus the 4 bit data will be stored.

 When shift/ Load is High, gates G1, G2, G3 are disabled while gates G4, G5.G6 are

enabled. Thus datra bits can shift right one stage to the next. The OR gates allow parallel data

entry operation or shifting operation depending on which AND gates are enabled by the level

on shift/ Load input.

 IC 74165 is an 8 bit parallel in-

serial out shift register SH/ LD is the

shift/ Load terminal. ABCDEFGH are

the terminals for 8 bit data input. An

additional terminal SER is provided for

serial data input. The clock can be

Fig. 5.15. Logic symbol of 8 bit parallel in – serial

out IC 74165 shift register

MCA-203 400

inhibited any time by a High on CLKINH

input. The serial data output is HQ Fig.

5.15 shows its symbol.

Example 5.3. Fig. 5.16 (a) shows the symbol of a 4 bit parallel in –serial out shift register.

Data 1010 is entered in it. Show the data and waveform along with clock and shift/ Load

waveforms.

Fig. 5.16

Solution: The clock, shift/ Load and data (1010) waveforms are shown in Fig. 5.16 (b).

5.11. PARALLEL IN – PARALLEL OUT SHIFT REGISTER

 Fig. 11.17 (a) shows a 4 bit parallel in – parallel out shift register. ABCD are parallel

data bits and QA QB QC QD are parallel data outputs.

IC 74165 is a 4 bit parallel in – parallel out shift register. Its symbol is shown in in

Fig. 5.17 (b). when SH/ LD input is ‘low, data on parallel lines A, B, C, D can be entered

synchronously on the positive edge of clock pulse. When SH/ LD input is High, stored data

shifts to right (i.e., QA to QD) synchronously with the clock.

MCA-203 401

Fig. 5.17(a) Parallel in – parallel out shift register (b) logic Symbol of IC 74195 4 bit

shift register

This IC can also be used for serial input – serial output. J and K are serial data inputs to the

first stage of IC. QD can be used for serial data output. The active Low clear is asynchronous.

Example 5.4. In Fig. 5.17 (a), A = 0, B = 1, C = 0 and D = 1. What are data outputs after 2

clock pulses.

Solution : The data output remains the same as input, i.e.,

5.12. UNIVERSAL SHIFT REGISTER

 A universal shift register (also known as bidirectional shift register) can shift data in

both directions, i.e., left as well as right. The logic gates are arranged in such a way that data

bits can be transferred from one stage to the next in either direction depending on the control

line input. Fig. 5.18 (a) shows the circuit of such a register using D flip flops. When

Right/ Load control input is High, it acts as a shift right register. This occurs because gates

G1, G2, G3, G4 are enabled and the Q output of one stage goes to D input of next stage. At

positive edge of each clock, data bits shift one place to the right. When Right/ Left control

input is Low, it acts as a shift left register. In this case gates G5, G6, G7, G8 are enabled and Q

1010

MSB LSB

MCA-203 402

output of each stage goes to D input of preceding stage. At the positive edge of each clock

data bits shift one place to the left.

Fig. 5.18. (a) 4 bit universal shift register (b) symbol of IC 74194 4 bit universal shift

register

IC 74194 is a 4 bit universal shift register. Its symbol is shown in Fig. 5.18 (b).

ABCD are the inputs and QA QB QC QD are outputs. Parallel loading is achieved by applying 4

bits of data simultaneously to the inputs ABCD and High to S0 ,S1 inputs. At positive edge of

clock, parallel data is loaded into the register.

 When S0 is High and S1 is Low, shift right operation occurs at positive edge of clock.

In this mode serial data can be entered as shift right serial input (SR SER). When S0 is Low

and S1 is High, shift left operation occurs at positive edge of clock. In this mode serial data

can be entered at shift serial input (SL SER).

MCA-203 403

5.13. TRISTATE Buffer register

 The term tristate means three stages. In digital systems refers to three levels, viz.,

High Low and High Impedance. Table 5.1 shows its truth table.

Table 5.1: Truth table of Tristate buffer register

EN Data in Output

0

0

0

0

1

0

1

0

1

0

 Float (High impedance)

 Float (High impedance)

When EN is Low the register works as a

buffer register. When EN is High, the

output is placed in high impedance (i.e.,

open circuit) level.

Many times it is necessary to feed

the output from who or more registers to a

common device. In such a situation it is

essential that only one register is enabled

and the other is in float (high impedance)

condition. This ensures that only one register

is feeding into the device.

IC 74395 is a 4 bit shift register with

register with tristate feature. Fig. 5.19 shows

its when logic symbol. A, B, C, D are inputs

QA, QB, QC, QD are tristate outputs. Outputs

are available only EN is Low. Non tristate

74395

SER

CLK

EN O

O

PRE A B C D

DQ

CLR QA QB QC QD

Fig. 5.19 Tristate buffer register IC 74395

MCA-203 404

output DQ is also available. SER is serial

data input. CLR is clear Low. As indicated

it is a negative edge triggered device.

5.14. APPLICATIONS OF SHIFT RECISTERS

 (a) Time Delay : Serial in – serial out shift register can be used to introduce time delay from

input to output. This time delay is a function of the number of stages and the clock frequency.

An 8 bit register (IC 7491A) having the clock frequency of 1 MHz will mean a time delay of

8 × 1, i.e., 8 μs between input and output. In general time delay Δ t is given by

Δ t = n ×
f
1

where Δ t = time delay, μs

 n = number of stages

 f = clock frequency, MHz

(b) Ring Counter : If the output of a shift register is fed back to serial input, the shift register

can be used as a ring counter.

(c) Serial to parallel data conversion : In many digital systems, serial data is used to reduce

the number of input lines. By using serial in – parallel out shift register, serial data can be

converted to parallel data.

SUMMARY

1. Shift registers have two functions: to store data and to shift data (for arithmetic

operations etc.).

2. Flip flops are connected together to for shift registers. IC shift registers are also

available.

3. A buffer register is the simplest of all registers. It can only store data.

4. Basic shift operations are : shift left, shift right.

5. Data entry and output can be : serial in – serial out, serial in – parallel out,

parallel in – serial out, parallel in – parallel out. ICs are available for all the

above configurations.

6. A universal shift register (also called bidirectional shift register) can shift left as

well as shift right.

MCA-203 405

7. A tri state buffer register has three states, viz., High, Low and High impedance.

PROBLEMS

5.1. What are the applications of shift registers.

5.2. A parallel in – serial out shift registers can be used to convert parallel data to serial

data. Is this statement true or false, comment?

5.3. A parallel in – parallel out shift register can be used to introduce delay in digital

signals. Is this statement true or false, comment?

5.4. A serial in – serial out shift register can be used o introduce delay in digital signals.

Evaluate the statement and comment.

5.5. A universal shift register can shift left or right, How?

5.6. Explain the concept of UP – DOWN counter.

5.7. How shift left and shift right operations occur in a calculator also.

5.8. How parallel in – parallel out shift register all bits are loaded and read

simultaneously.

5.9. Expalin, will serial in – serial out shift registers can be fabricated from D flip flops

5.10. In IC 74165, only parallel data can be loaded. Justify the statement.

B. Fill in the blanks with suitable words :

5.1. Serial loading means entering___________ bit per clock pulse.

5.2. When load input of a buffer register is active, the input word is stored on the next

__________ ____________ of clock pulse.

5.3. In parallel loading only __________ __________ __________ is required to load all

the bits.

5.4. IC 74194 is _________ shift register.

5.5. The two principal functions of a shift register are _________ and __________

MCA-203 406

CHAPTER-6

COUNTERS
Author: Dr. Manoj Duhan V etter : Mr. Deepak Kedia

6.1. INTRODUCTION

In computer terminology a group of memory elements is called a register. A counter

is a register capable of counting the number of clock pulses which have arrived at clock input.

Counters are used for a variety of counting purposes, e.g., counting the number of revolution

of a motor in a given time, frequency division required to produce the hour, minute and

seconds output in a digital watch etc.

6.2 TERMINOLOGY AND CLASSIFICATION

 Binary counters generate 0s and 1s. A counter for counting 4 bits will start at decimal

number 0 and count upto decimal number 3. The binary sequence is 00, 01, 10, 11. The

counter may not have this sequence but may follow an arbitrary sequence also. If a decimal

output of the count is required, the output of counter can be converted to decimal by a

decoder. In counting from 0 to 3, the counter goes through 4 states and then recycles. This

number is called modulus of counter. This counter is mod-4 counter.

 We know that each flip flop has 2 possible states. If a counter has N flip flops, it has

a maximum of 2N states. Each of these 2N states has a unique combination of 0s and 1s stored

in the different flip flops. A counter with N flip flops can have a maximum modulus of 2N.

However, the actual number of states used may be less than maximum. If 4 flip flops are

used, the maximum modulus can be 24 or 16. But a counter for counting upto 10 is known as

decade or mod 10 counter though it has 4 flip flops and has a maximum modulus of 16.

 Counters are classified as a synchronous and asynchronous. Synchronous counter is

clocked such that all the flip flops are clocked at the same time. For this purpose the clock

terminal is connected to each stage of the counter. Asynchronous means that flip flops, in the

counter, do not change state exactly at the same instant. In asynchronous counter the clock

pulses are not connected directly to clock input of each flip flop in the counter. The counters

mostly use JK flip flops connected properly.

MCA-203 407

 The word binary counter means a counter which counts and produces binary output

0000, 0001, 0010, 0011 etc. It goes through a binary sequence depending on its modulus.

6.3 CIRCUIT AND WORKING OF RIPPLE COUNTER:

 Fig. 6.1 (a) shows the circuit of a bit ripple counter consisting of 4 edge triggered JK

flip flop. As indicated by small circles at the CLK input of flip flops, the triggering occurs

when CLK input gets a negative edge. Q0 is the least significant bit (LSB) and Q3 is the most

significant bit (MSB). The flip flops are connected in series. The Q0 output is connected to

CLK terminal of second flip flop. The Q1 output is connected to CLK terminal of third flip

flop and so on. By adding more flip flop, a counter of any length can be built. It is known as

a ripple counter because the carry moves through the flip flops like a ripple on water.

Initially, CLR is made low and all flip flops reset giving an output Q = 0000. When CLR

becomes high, the counter is ready to start. As LSB receives its clock pulse, its output

changes from 0 to 1 and the total output Q = 0001. When second clock pulse arrives, Q0

resets and carries (i.e., Q0 goes from 1 to 0 and, second flip flop will receive CLK input).

Now the output is Q = 0010. The third CLK pulse changes Q0 to 1 giving a total output Q =

0011. The fourth CLK pulse causes Q0 to reset and carry and Q1 also resets and carries giving

a total output Q = 0100 and the process goes on. The action is shown in Table 6.1. The

number of output states of a counter are known as modulus (or mod). A ripple counter with 4

flip flops can count from 0 to 15 and is, therefore, known as mod-16 counter while one with 6

flip flops can count from 0 to 63 and is a mod-64 counter and so on.

Fig. 6.1 Ripple counter (a) circuit (b) timing diagram

MCA-203 408

Table 6.1 4 Bit Ripple Counter

Count Q3 Q2 Q1 Q0 Count Q3 Q2 Q1 Q0

0

1

2

3

4

5

6

7

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

8

9

10

11

12

13

14

15

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

 Ripple counters are simple to fabricate but have the problem that the carry has to

propagate through a number of flip flops. The delay times of all the flip flops are added.

Therefore, they are very slow for some applications. Another problem is that unwanted

pulses occur at the output of gates.

 The timing diagram is shown in Fig. 6.1 (b). FF0 is LSB flip flop and FF3 is the MSB

flip flop. Since FF0 receives each clock pulse, Q0 toggles once per negative clock edge as

shown in Fig. 6.1 (b). The remaining flip flops toggle less often because they receive

negative clock edge from preceding flip flops. When Q0 goes from 1 to 0, FF1 receives a

negative edge and toggles. Similarly, when Q1 changes from 1 to 0, FF2 receives a negative

edge and toggles. Finally when Q2 changes from 1 to 0, FF3 receives a negative edge and

toggles. Thus whenever a flip flop resets to 0, the next higher flip flop toggles.

 From the above discussion it is evident why this counter is known as ripple counter.

As the 16th clock pulse is applied, the trailing edge of 16th pulse causes a transition in each flip

flop. Q0 goes from High to Low, this causes Q1 go from High to Low which causes Q2 to go

from High to Low which causes Q3 to go from High to Low. Thus the effect ripples through

the counter. It is the delay caused by this ripple which results in a limitation on the maximum

frequency of the input signal.

6.3.1 DIVIDE BY N EFFECT

 The waveform in Fig. 6.1 (b) shows that the frequency of output Q0 is one half of that

of input, frequency of output Q1 is one fourth of input frequency, frequency of output Q2 is

MCA-203 409

one eighth of input frequency and frequency of output Q3 is one-sixteenth of input frequency.

Thus the circuit acts as a frequency divider. It we have N flip flops, the input frequency is

divided by 2N in steps of 2.

6.4 SYNCHRONOUS COUNTER

 In a synchronous counter, all the flip flops are clocked together. Fig. 6.2 shows a

synchronous counter having positive edge triggered JK flip flops. Since all the flip flops are

clocked together, the delay time is less. The flip flop corresponding to lest significant bit

(LSB) has its input JK fed from voltage + VCC. Therefore, it responds to each positive clock

edge. However, the other three flip flops can respond to the positive clock pulse under some

certain conditions. The Q1 flip flop toggles on positive clock edge only if Q0 is 1. The Q2 flip

flop toggles on positive clock edge only when Q0 and Q1 are (due to presence of AND circuit)

and so on.

Fig. 6.2 Synchronous counter

 Thus, each flip flop toggles on the next positive clock edge if all lower bits are 1.

 A low CLR signal resets the counter so that Q = 0000. When CLR goes high, the

counter is ready to start. The first positive clock edge sets Q0 to 1 so that Q = 0001. At

second positive clock edge Q1 and Q0 toggle and Q = 0010. The third positive clock edge

increases the count by 1 so that Q = 0011.

 The successive Q outputs are 0100, 0101 and so on upto 1111 (i.e., decimal 15). The

next positive clock edge resets the counter to 0000 and the cycle is repeated. More flip flops

can be added to increase the count.

MCA-203 410

The counting sequence is given in Table 6.2.

The circuit action and output for various clock pulses are as under:

Clock pulse 1 : Each FF is pulsed by clock. However, only FF0 can toggle because it is the

only one with 1s applied to both J and K inputs. FF0 goes from 0 to 1.

Output is 0001.

Clock pulse 2 : Each FF is pulsed by clock. FF0 and FF1 have 1s applied to both J and K

inputs. Therefore, FF0 and FF1 toggle. FF1 goes from 0 to 1 and FF0 goes

from 1 to 0. Output is 0010.

Table 6.2 Counting sequence of 4 bit Synchronous Counter

Number of clock pulses Counting sequence

 Q3 Q2 Q1 Q0

Equivalent decimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Clock pulse 3 : Each FF is pulsed by clock. Only FF0 toggles from 0 to 1. Output is 0011.

MCA-203 411

Clock pulse 4 : Each FF is pulsed by clock. FF0 toggles from 1 to 0, FF1 toggles from 1 to 0.

FF2 toggles from 0 to 1. FF3 does not toggle. (Its JK inputs do not have 1s

on then). Output is 0100.

Clock pulse 5 : Each FF is pulsed by clock. Only FF0 toggles from 0 to 1. Output is 0101.

Clock pulse 6 : Each FF is pulsed by clock. Two FF toggle. FF0 toggle from 1 to 0 and FF1

toggles from 0 to 1. FF2 and FF3 do not toggle. Output is 0110.

Clock pulse 7 : Each FF is pulsed by clock. Only FF0 toggles from 0 to 1. Output is 0111.

Clock pulse 8 : Each FF is pulsed by clock. All the four flip flops toggle. FF3 toggles from 0

to 1, FF2 from 1 to 0, FF1 from 1 to 0 and FF0 from 1 to 0. Output is 1000.

Clock pulse 9 : Each FF is pulsed by clock. Only FF0 toggles from 0 to 1. Output is 1001.

Clock pulse 10 : Each FF is pulsed by clock. Only FF0 and FF1 toggle. FF0 toggles from 1 to

0 and FF2 from 0 to 1. FF2 and FF3 do not toggle. Output is 1010.

Clock pulse 11 : Each FF is pulsed by clock. Only FF0 toggles from 0 to 1. FF3, FF2 and FF1

do not toggle. Output is 1011.

Clock pulse 12 : Each FF is pulsed by clock. FF3 does not toggle. FF2 toggles from 0 to 1,

FF1 from 1 to 0 and FF0 from 1 to 0. Output is 1100.

Clock pulse 13 : Each FF is pulsed by clock. FF3, FF2, FF1 do not toggle. Only FF0 toggles

from 0 to 1. Output is 1101.

Clock pulse 14 : Each FF is pulsed by clock. FF3 and FF2 do not toggle. FF1 toggles from 0

to 1 and FF0 toggles from 1 to 0. Output is 1110.

Clock pulse 15 : Each FF is pulsed by clock. FF3, FF2, FF1 do not toggle. Only FF0 toggles

from 0 to 1. Output is 1111.

Clock pulse 16 : Each FF is pulsed by clock. All FFs toggle from 1 to 0. Output is 0000.

Thus 1 cycle of operation is completed. The 4 bit synchronous counter of Fig. 10.13 is Mod-

16 counter.

6.5 UP-DOWN COUNTER

 As the name suggests an UP-DOWN counter can count either upwards from 0000

onwards or from the highest number (equal to modulus of counter) to 0000. Thus a 4 bit up-

down counter can count from 0000 to 1111 and also from 1111 to 0000.

MCA-203 412

 Fig. 6.3 shows a 3 bit up-down counter. When UP signal is High, Q1, Q0 drive the

clock inputs and the circuit counts upwards from 000 to 111. When UP signal is Low,

01 Q,Q drive the clock inputs and the circuit counts downwards from 111 to 000.

Fig. 6.3 Up-down counter

 Example 6.1 A ripple counter is constructed with 5 flip flops. It is preset to skip

initial 7 states. Find the modulus.

Solution : 25 = 32

 Thus the natural modulus is 32. If initial 7 states are skipped, the modulus is 32 −

7 = 25. Thus it becomes a Mod-25 counter or a divide by 25 circuit.

6.6 DIFFERENCE BETWEEN ASYNCHRONOUS AND SYNCHRONOUS

COUNTER

The term asynchronous means that the counter is clocked in such a way that all the

flip flops of the counter do not receive clock pulses at the same time. Ripple counter is an

asynchronous counter. The clock pulses drive the clock input of the first flip flop. But the

clock input of the second flip flop is driven by Q output of the first flip flop. The clock input

of third flip flop is driven by the Q output of the second flip flop and so on. This results in

propagation delay in each flip flop. In a 4 bit ripple counter having flip flops with

propagation delay of 10 ns each, there will be a total propagation delay of 40 ns. This may be

undesirable in many cases.

MCA-203 413

 The term synchronous means that all flip flops are clocked simultaneously.

The clock pulses drive the clock input of all the flip flops together so that there is no

propagation delay.

6.7 RING COUNTER

 If the serial output Q0 of the shift register of Fig. 8.2 is connected back to the serial

input, then an injected pulse will keep circulating. This circuit is referred to as a ring counter.

The pulse is injected by entering 00001 in the parallel form after clearing the FLIP-FLOPs.

When the clock pulses are applied, this 1 circulates around the circuit. The waveforms at the

Q outputs are shown in Fig. 6.5. The outputs are sequential non-overlapping pulses which are

useful for control-state counters, for stepper motor (which rotates in steps) which require

sequential pulses to rotate it from one position to the next, etc.

Fig 6.4: A five bit register (7496)

Fig. 6.5 Output waveforms of ring counter.

 This circuit can also be used for counting the number of pulses. The number of pulses

counted is read by noting which FLIP-FLOP is in 1 state. No decoding circuitry is required.

Since there is one pulse at the output for each of the N clock pulses, this circuit is referred to

as a divide-by-N counter or an N : 1 scalar.

MCA-203 414

6.8 TWISTED-RING COUNTER

In the shift register of Fig. 6.4, if 0Q is connected to the serial input, the resulting circuit is

referred to as a twisted-ring Johnson, or moebius counter. If the clock pulses are applied after

clearing the FLIP-FLOPs, square waveform is obtained at the Q outputs as shown in Fig. 6.6.

 Similar to ring-counter sequence, the moebious is also useful for control- state

counters. It is also useful for the generation of multiphase clock.

 The moebious counter is a divide-by-2N counter. For decoding the count, two input

AND gates are required. The decoder circuit for a five-stage counter is shown in Fig. 6.7.

Fig. 6.6 Output wave forms of twisted ring counter

Fig. 6.7 The decoding logic for a 5-stage twisted-ring counter.

MCA-203 415

6.9 RIPPLE OR ASYNCHRONOUS COUNTER DESIGN

 Consider the count sequence shown in Table 6.3. The number of states in this

sequence is 8 which requires 3 FLIP-FLOPs (23 = 8) and Q2, Q1, and Q0 are the outputs of

these FLIP-FLOPs. Assume master-slave FLIP-FLOPs.

Table 6.3 Counting sequence of a 3-bit binary counter

Counter state Count

 Q2 Q1 Q0

0

1

2

3

4

5

6

7

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

The output Q0 of the least-significant FLIP-FLOP, changes for every clock pulse. This can be

achieved by using T-type FLIP-FLOP with T0 = 1. The output Q1 makes a transition (from 0

to 1 or 1 to 0) whenever Q0 changes from 1 to 0. Therefore, if Q0 is connected to the clock

input of next T-type FLIP-FLOP, FF1 with T1 = 1, Q1 will change whenever Q0 goes from 1

to 0 (falling edge of clock pulse). Similarly, Q2 makes a transition whenever Q1 goes from 1

to 0 and this can be achieved by connecting Q1 to the clock input of the most-significant

FLIP-FLOP, FF2 (and T2 = 1). The resulting circuit is shown in Fig. 6.8. The wave-forms of

the outputs of the FLIP-FLOPs are shown in Fig. 6.9

Fig. 6.8 A 3-bit binary counter.

MCA-203 416

Fig. 6.9 Output waveforms of counter of Fig. 6.8

 A decoder circuit for decoding the count is shown in Fig. 6.10. In this, the output

corresponding to the number counted goes low (active-low).

Fig. 6.10 A decoder circuit for a 3-bit binary counter.

MCA-203 417

 At the decoder outputs, false pulses of a short duration, known as spikes, occur as

counter FLIP-FLOPs change state. This is because of the propagation delay of the FLIP-

FLOPs due to which either all the FLIP-FLOPs do not change sate at exactly the same time or

only one FLIP-FLOP changes state for any clock pulse.

 The problems of spikes at the decoder outputs is eliminated by using a strobe pulse

input. With this, the decoding will occur only when all the FLIP-FLOPs have come to steady

state.

 The frequency, f, of clock pulses for reliable operation of the count is given by

 ≥
f
1 N ⋅ (td) + TN …(6.1)

where N = number of FLIP-FLOPs

 td = propagation delay of one FLIP-FLOP

 Ts = strobe pulse width

Example 6.2 In a 4-stage ripple counter, the propagation delay of a FLIP-FLOP is 50 ns. If

the pulse width of the strobe is 30 ns, find the maximum frequency at which the counter

operates reliably.

Solution : The maximum frequency is

 fmax = MHz
30504

103

+×

 = 4.35 MHz.

6.10 SYNCHRONOUS COUNTER DESIGN

 Synchronous counters for any given count sequence and modulus can eb designed in

the following way:

1. Find the number of FLIP-FLOPs required using Eq. m ≤ 2N

2. Write the count sequence in the tabular form similar to Table 6.3.

3. Determine the FLIP-FLOP inputs which must be present for the desired next state

from the present state using the excitation table of the FLIP-FLOPs.

4. Prepare K-map for each FLIP-FLOP input in terms of FLIP-FLOP outputs as the

input variables. Simplify the K-maps and obtain the minimized expressions.

MCA-203 418

5. Connect the circuit using FLIP-FLOPs and other gates corresponding to the

minimized expressions.

The above design steps can be clearly understood from the following examples.

Example 6.3 Design a 3-bit synchronous counter using J−K FLIP-FLOPs.

Solution : The number of FLIP-FLOPs required is 3. Let the FLIP-FLOPs be FF0, FF1, and

FF2 and their inputs and outputs are given below:

FLIP-FLOP Inputs Output

FF0

FF1

FF2

J0, K0

J1, K1

J2, K2

Q0

Q1

Q2

Table 6.4

Counter state

 Q2 Q1 Q0

FLIP-FLOP inputs

 FF0 FF1 FF2

 J0 K0 J1 K1 J2 K2

0 0 0 1 × 0 × 0 ×

0 0 1 × 1 1 × 0 ×

0 1 0 1 × × 0 0 ×

0 1 1 × 1 × 1 1 ×

1 0 0 1 × 0 × × 0

1 0 1 × 1 1 × × 0

1 1 0 1 × × 0 × 0

1 1 1 × 0 × 1 × 1

0 0 0

The count sequence and the required inputs of FLIP-FLOPs are given in Table 6.4. The

inputs to the FLIP-FLOPs are determined in the following manner :

MCA-203 419

Consider one column of the counter state at a time and start from the first row, for example,

consider Q0. Before the first pulse is applied, Q0 = 0 and it is required to be 1 at the end of the

first clock pulse. Therefore, to achieve this condition, the values of J0 and K0 are 1 and ×

respectively (from the excitation table 4.6). These are entered in the table in the row

corresponding to 0 pulse. When the second clock pulse is applied Q0 is to change from 1 to 0,

therefore, the required inputs are

 J0 = ×, K0 = 1

In a similar manner inputs of each FLIP-FLOP are determined.

 Now, we prepare the K-maps (Fig. 6.11) with Q2, Q1 and Q0 as input variables and

FLIP-FLOP inputs as output variables. We then minimize the K-maps and the resulting

minimized expressions are :

 Q0

1 1 1 1

× × × ×

 00 01 11 10

 0

 1

 Q2Q1

J0 = 1

(a)

× × x ×

1 1 1 1

 00 01 11 10

 0

 1

 Q0
 Q2Q1

K0 = 1

(b)

 Q0

0 × × 0

1 × × 1

 00 01 11 10

 0

 1

 Q2Q1

J1 = Q0

(c)

× 0 0 ×

× 1 1 ×

 00 01 11 10

 0

 1

 Q0
 Q2Q1

K1 = Q0

(d)

0 0 × ×

0 1 × ×

 00 01 11 10

 0

 1

 Q2Q1

J2 = Q0Q1

(e)

× × 0 0

× × 1 0

 00 01 11 10

 0

 1

 Q2Q1

K2 = Q0Q1

(f)

Fig. 6.11 K-maps of Ex. 6.3

MCA-203 420

 J = 1, K0 = 1

 J1 = Q0, K1 = Q0

 J2 = Q0 Q1, K2 = Q0 Q1

The circuit can be implemented using above equations.

Example 6.4 Design a 3-bit binary UP/DOWN counter with a direction control M. Use J−K

FLIP-FLOPs.

Solution : The count sequence is given in Table 6.5. For M = 0, it acts as an UP counter and

for M = 1 as a DOWN counter. The number of FLIP-FLOPs required is 3. The inputs of the

FLIP-FLOPs are determined in a manner similar to the one employed in Ex. 6.3.

Table 6.5

Direction
control

M

Counter state

 Q2 Q1 Q0

FLIP-FLOP inputs

 J0 K0 J1 K1 J2 K2
0 0 0 0 1 × 0 × 0 ×
0 0 0 1 × 1 1 × 0 ×
0 0 1 0 1 × × 0 0 ×
0 0 1 1 × 1 × 1 1 ×
0 1 0 0 1 × 0 × × 0
0 1 0 1 × 1 1 × × 0
0 1 1 0 1 × × 0 × 0
0 1 1 1 × 1 × 1 × 1
1 0 0 0 1 × 1 × 1 ×
1 1 1 1 × 1 × 0 × 0
1 1 1 0 1 × × 1 × 0
1 1 0 1 × 1 0 × × 0
1 1 0 0 1 × 1 × × 1
1 0 1 1 × 1 × 0 0 ×
1 0 1 0 1 × × 1 0 ×
1 0 0 1 × 1 0 × 0 ×
 0 0 0

 J0 = K0 = 1

The K-maps for J1, K1, J2 and L2 are shown in Fig. 6.12. From the k-maps, the minimized

expression are obtained as

MCA-203 421

 J1 = K1 = Q0 0QM + M

 J2 = K2 = M Q1 Q0 + M 01 QQ

The counter circuit can be drawn using the above expressions

Example 6.5 Design a decade UP counter. Use J-K FLIP-FLOPs.

Solution : There are ten states in a decade counter, which requires four FLIP-FLOPs. The

remaining six states are unused states. The count sequence and the FLIP-FLOP inputs are

given in Table 6.6.

0 0 1 1

00 01 11 10

00

01

10

11

1 1 0 0

× × × ×

× × × ×

Q1Q0
MQ2

J1

× × × ×

00 01 11 10

00

01

10

11

× × × ×

1 1 0 0

0 0 1 1

Q1Q0
MQ2

K1

0 × × 1

00 01 11 10

00

01

10

11

0 × × 0

1 × × 0

0 × × 0

Q1Q0
MQ2

J2

× 0 1 ×

00 01 11 10

00

01

10

11

× 0 0 ×

× 1 0 ×

× 0 0 ×

Q1Q0
MQ2

K2

Fig. 6.12 –maps for Ex. 6.4

MCA-203 422

Table 6.6

Counter state

 Q3 Q2 Q1 Q0

FLIP-FLOP inputs

 J0 K0 J1 K1 J2 K2 J3 K3

0 0 0 0 1 × 0 × 0 × 0 ×

0 0 0 1 × 1 1 × 0 × 0 ×

0 0 1 0 1 × × 0 0 × 0 ×

0 0 1 1 × 1 × 1 1 × 0 ×

0 1 0 0 1 × 0 × × 0 0 ×

0 1 0 1 × 1 1 × × 0 0 ×

0 1 1 1 1 × × 0 × 0 0 ×

0 1 1 1 × 1 × 1 × 1 1 ×

1 0 0 0 1 × 0 × 0 × × 0

1 0 0 1 × 1 0 × 0 × × 1

0 0 0 0

The K-maps are drawn for J0, K0, J1, K1, J2, K2 and J3, K3 from which the minimized

expressions are obtained as

 J0 = 1, K0 = 1

 J1 = Q0 3Q , K1 = Q0

 J2 = Q0Q1, K2 = Q0Q1

 J3 = Q0Q1Q2, K3 = Q0

The counter circuit can be drawn using the above expressions.

SUMMARY

1. Counters consist of flip flops. They are classified as synchronous and

asynchronous. In a synchronous counter the clock terminal is connected to each

stage of the counter so that all the flip flops are triggered together. In

asynchronous counter all the flip flops are not triggered together.

2. A counter having N flip flops has 2N states. The actual number of states may be

equal or less than 2N. The actual number of states is called modulus of counter.

MCA-203 423

3. A ripple counter consists of JK flip flops. The Q output of each stage feeds the

clock input of next stage. In this counter the carry moves through the flip flops

like a ripple on water.

4. In a controlled ripple counter the COUNT signal controls the action of counter.

The counter works only when COUNT is High.

5. A decade counter has a modulus of 10. It uses 4 flip flops but only 10 states are

used.

6. A Mod-m counter has m states. It uses a NAND gate to skip the remaining states.

7. A presettable counter counts, not from zero, but from any specified number (say

3). It has a special LOAD terminal and counting begins with P3 P2 P1 P0 which

can be any number between 0000 and 1111 (in a 4 bit counter).

8. In a programmable counter the modulus of the counter can be programmed.

9. An up counter counts from 0000 upwards. A down counter starts with the

highest state and counts downwards to 0000. An up-down counter can count in

both directions.

10. A self stopping down counter stops at 0000 and does not start the next cycle.

11. In synchronous counter all the flip flops are clocked simultaneously. Therefore,

there is no propagation delay. A synchronous counter all the flip flops are

clocked simultaneously. Therefore, there is no propagation delay. A synchronous

counter can also have any modulus.

12. A ring counter has D flip flops. The Q output of any stage feeds the D input of

next stage. In this counter the stored bits follow a circular path.

13. A Johnson counters also uses D flip flops. The Q output of last stage feeds the

D input of first stage.

14. Counters can be connected in cascade to achieve higher modulus. When a Mod-4

counter is cascaded with a Mod-8 counter, we get Mod-32 counter.

15. Counters have innumerable application in scientific field, engineering field and

every day household, commercial and industrial devices.

16. IC counters are available in all the three families, i.e., TTL, CMOS and ECL.

MCA-203 424

PROBLEMS

6.1 Explain the operation of the bi-directional shift register.

6.2 Explain the operation of a twisted-ring counter and give its state diagram.

6.3 Explain the decoder logic.

6.4 A stepper-motor drive circuit requires four signal waveforms given in Fig. 6.14

Design a sequence generator to provide the necessary signals for this stepper-motor

drive.

Fig. 6.14 Waveforms

6.5 Write the count sequence of a 3-bit binary DOWN counter. Design a ripple counter

using FLIP-FLOPs for this sequence.

6.6 Design a 4-bit binary UP/DOWN ripple counter with a control for UP/DOWN

counting.

6.7 Design a 4-bit asynchronous counter with provision for asynchronous loading.

6.8 The latch is used for eliminating resetting difficulties due to unequal internal delays

of FLIP-FLOPs. Explain the operation of this latch and show how the resetting

difficulties are eliminated.

6.9 Convert 7493 into a 4-bit DOWN counter.

6.10 What is meant by modulus of a counter?

6.11 Differentiate between asynchronous and synchronous counters.

6.12 Explain the terms: up counter, down counter, up-down counter.

6.13 Which type of flip flops are used in counters?

MCA-203 425

6.14 What is the function of counter in a computer?

6.15 Name applications of counters.

6.16 How are counters classified?

6.17 Discuss the design procedure for Mod-m asynchronous counter.

6.18 Explain the terms: Presettable counter, programmable counter.

6.19 Draw the circuit of a 4 bit up-down counter. How are both up and down features

obtained?

6.20 Draw the circuit of a 3 bit synchronous counter and explain its working.

6.21 What is a ring counter? Draw its circuit and explain its working.

MCA-203 426

CHAPTER-7

INTRODUCTION OF DIGITAL LOGIC FAMILY
Author: Dr. Manoj Duhan V etter : Dr. Pradeep Bhatia

7.1. INTRODUCTION

The design of a logic system starts with the statement of logic problems. This

problem is then translated into a truth table and then into a logic equation. The logic equation

yields the logical blocks and their interconnection so that we get the desired output for the

given input conditions. From the logical block we realize an actual digital circuit.

The basic building block in a digital system is logic gate logic circuits have evolved

into families each of which has its own advantages and disadvantages. Generally a digital

system is designed with circuits from one family only. When circuits from more than one

family are used. It is necessary to ensure that the output of one is compatible with input to the

other.

The different logic functions are available in integrated circuit (IC) form. All digital

systems are built with digital ICs. The present day ICs have many advantages in terms of size,

power, reliability *and const over discrete circuits*. A monolithic integrated circuit is an

electronic circuit constructed entirely on a single chip of silicon. All the components, i.e.,

transistors, diodes, resistors etc. are an integral part of this chip. Typical chip sizes range from

40 × 40 mils** to about 300 × 300 mils and it contains both active and passive components.

Many processes like wafer preparation, impurity diffusion, ion implantation, oxide growth,

photolithography are used in their manufacture.

7.2. CLASSIFICATION OF LOGIC FAMILIES

7.2.1. Classification as per Level of Integration

As per this classification digital integrated circuits can be classified as small scale integration

(SSI), Medium scale integration (MSI), Large scale integration (LSI), Very large scale

integration (VLSI) and ultra large scale integration (ULSI). This classification is given in

Table 7.1.

MCA-203 427

Table 7.1. Levels of integration of digital ICs

Category Numbers of equivalent basic

gates on a single chip

Total number of components

on single chip

SSI

MSI

LSI

VLSI

ULSI

Less than 12

12-99

100-999

1000-9999

10,000 and more

Less than 100

100-999

1000-9999

10,000 to 99,999

100,000 and more

 SSI are the least complex and include basic gates and flip flops. They are available in

dual in package (DIP) or flat package and 14 or 16 pin versions.

 Small digital sub systems form the MSI category. The complex logic functions, e.g.,

adders, registers, comparators, code converters, counter, multiplexers etc., are fabricated in

MSI. They are also available in dual in package (KIP), flat package and carrier package with

24 or 28 pins.

 LSI chips are small digital systems, e.g., digital clocks, calculators, microprocessors,

ROM, RAM*** etc.

 VLSI is a digital system on a chip. Large memory chips and advanced

microprocessors fall in this category.

 ULSI is the most complex of digital ICs.

 In 1960s, digital ICs manufactured were SSI and MSI only. LSI technology was

developed in late 1960s and single chip calculators and memories become available. After

this microprocessors were introduced in 1973. A microprocessor has the architecture of a

computer on a single chip. In 1980s many sections of computers (central processing unit or

CPU, RAM, ROM etc.,) were combined into a single chip. At present the latest version of

microprocessor has equivalent of millions of transistors on a single chip.

7.2.2. Classification as per Technology

 Digital ICS are manufactured by two technologies viz., Bipolar and MOS.

 The bipolar family uses transistor fabricated on a chip. This family includes DTL

(Diode transistor logic using diodes and transistor), TTL (transistor-transistor logic which

MCA-203 428

uses transistors only) and ECL (emitter coupled logic). TTL is the most poplar family in SSI

and MSI category.

 MOS family includes PMOS (p-channel MOSFET), NMOS (n0channel MOSFET)

and CMOS (complementary MOSFET). PMOS is almost obsolete. NMOS is dominating the

LSI field. CMOS is the most commonly used technology for digital wrist watches, pocket

calculators etc.

 The technologies being used now-a-days are TTL, ECL and CMOS. Before

discussing these technologies we discuss the important specifications of digital ICs.

7.3 CHARACTERISTICS OF DIGITAL ICs

With the widespread use of ICs in digital systems and with the development of various

technologies for the fabrication of ICs, it has become necessary to be familiar with the

characteristics of IC logic families and their relative advantages and disadvantages. Digital

ICs are classified either according to the complexity of the circuit, as the relative number of

individual basic gates (2-input NAND gates) it would require to build the circuit to

accomplish the same logic function or the number of components fabricated on the chip.

 The various characteristics of digital ICs used to compare their performances are:

1. Speed of operation,

2. Power dissipation,

3. Figure of merit,

4. Fan-out,

5. Current and voltage parameters,

6. Noise immunity,

7. Operating temperature range,

8. Power supply requirements, and

9. Flexibilities available.

7.3.1 Speed of Operation

The speed of a digital circuit is specified in terms of the propagation delay time. The input

and output waveforms of a logic gate are shown in Fig. 7.1. The delay times are measured

between the 50 per cent voltage levels of input and output waveforms. There are two delay

times: tpLH , when the output goes from the HIGH state to the LOW state and tpLH ,

MCA-203 429

corresponding to the output making a transition from the LOW state to the HIGH state. The

propagation delay time of the logic gate is taken as the average of these two delay times.

Fig. 7.1 Input and output voltage waveforms to define propagation delay tines.

7.3.2 Power Dissipation

This is the amount of power dissipated in an IC. It is determined by the current, 1CC, that it

draws from the VCC supply, and is given by VCC × 1CC. 1CC is the average value of 1CC (0) and

1CC(1). This power is specified in milliwatts.

7.3.3 Figure of Merit

The figure of merit of a digital IC is defined as the product of speed and power. The speed is

specified in terms of propagation delay time expressed in nanoseconds.

Figure of merit = propagation delay time (ns) × power (mW)

 It is specified in pico joules (ns × mW = pJ)

 A low value of speed-power product is desirable. In a digital circuit, if it is desired to

have high speed, i.e. low propagation delay, then there is a corresponding increase in the

power dissipation and vice-versa.

7.3.4 Fan-Out

This is the number of similar gates which can be driven by a gate, High fan-out is

advantageous because it reduces the need for additional drivers to drive more gates.

7.3.5 Current and Voltage Parameters

The following currents and voltages are specified which are very useful in the design of

digital system.

 High-level input voltage, VIH: This is the minimum input voltage which is

recognized by the gate as logic 1.

Output

Input 50%

50%

tpHL tpLH

MCA-203 430

 Low-level input voltage, VIL: This is the maximum input voltage which is

recognized by the gate as logic 0.

 High-level output voltage, VOH : This is the maximum input voltage available at the

output corresponding to logic 1.

 Low-level output voltage, VOL: This is the maximum input voltage available at the

output corresponding to logic 0.

 High-level input current, IIH: This is the maximum current which must be supplied

by a driving source corresponding to 1 level voltage.

 Low-level input current, IIL: This is the maximum current which must be supplied

by a driving source corresponding to 0 level voltage.

 High-level output current, IOH: This is the maximum current which the gate can

sink in 1 level.

Low-level output current, IOL: This is the maximum current which the gate can sink

in 0 level.

 High-level supply current, ICC (1): This is the supply current when the output of the

gate is at logic 1.

 Low-level supply current, ICC (0) : This is the supply current when the output of the

gate is at logic (0).

 The current directions are illustrated in Fig. 7.2.

Fig. 7.2 A gate with current directions marked

7.3.6. Noise Immunity

The input and output voltage levels defined above are shown in Fig. 4.3. Stray electric and

magnetic fields may induce unwanted voltages, known as noise, on the connecting wires

between logic circuits. This may cause the voltage at the input to a logic circuit to drop below

VIH or rise above VIL and may produce undesired operation.

o O
IIL
IIH

o
IOL
IOH

MCA-203 431

Fig. 7.3 Voltage levels and noise margins of ICs.

The circuit’s ability to tolerate noise signals is referred to as the no8ise immunity, a

quantitative measure of which is called noise margin. Noise margins are illustrated in Fig. 7.3.

 The noise margins defined above are referred to as dc noise margins. Strictly

speaking, the noise is generally thought of as an a.c. signal with amplitude and pulse width.

For high speed ICs, a pulse width of a few microseconds is extremely long in comparison to

the propagation delay time of the circuit and therefore, may be treated as d.c. as far as the

response of the logic circuit is concerned. As the noise pulse width decreases and approaches

the propagation delay time of the circuit, the pulse duration is too short for the circuit to

respond. Under this condition, a large pulse amplitude would be required to produce a change

in the circuit output. This means that a logic circuit can effectively tolerate a large noise

amplitude if the noise is of a very short duration. This is referred to as ac noise margin and is

substantially greater than the dc noise margin. It is generally supplied by the manufacturers in

the form of a curve between noise margin and noise pulse width.

7.3.7 Operating Temperature

The temperature range in which an IC functions properly must be known. The accepted

temperature ranges are: 0 to + 70 0C for consumer and industrial applications and --55 0C to +

125 oC for military purposes.

7.3.8 Power Supply Requirements

The supply voltage (s) and the amount of power required by an IC are important

characteristics required to choose the proper power supply.

7.3.9 Flexibilities Available

0

VOL

VIL

VIH

VOH

Voltages

0 State noise margin Δ 0 = VIL − VOL

MCA-203 432

Various flexibilities are available in different IC logic families and these must be considered

while selecting a logic family for a particular job. Some of the flexibilities available are:

1. The breadth of the series: Type of different logic functions available in the series.

2. Popularity of the series: The cost of manufacturing depends upon the number of ICs

manufactured. When a large number of ICs of one type are manufactured, the cost per

function will be very small and it will be easily available because of multiple sources.

3. Wired-logic capability: the outputs can be connected together to perform additional

logic without any extra hardware.

4. Availability of complement outputs: This eliminates the need for additional inverters.

5. Type of output: Passive pull-up, active pull-up, open-collector/drain, and tristate.

These will be explained in subsequent sections.

7.4. TRANSISTOR-TRANSISTOR LOGIC (TTL)

 Fig. 7.4 shows a TTL NAND gate with a totem pole output. The totem pole output

means that transistor T4 sits atop T3 so as to give low output impedance. The low output

impedance implies a short time constant RC so that the output can change quickly from one

state to another. T1 is a multiple emitter transistor. This transistor can be thought of as a

combination of many transistors with a common base and collector. Multiple emitter

transistors with about 60 emitters have been developed. In Fig. 7.4, T1 has 3 emitters so that

there can be three inputs A, B, C. The transistor T2 acts as a phase splitter because the emitter

voltage is out of phase with the collector voltage. The transistors T3 and T4 form the totem

pole output. The capacitance CL represents the stray capacitance etc. The diode D is added to

ensure that T4 is cut off when output is low. The voltage drop of diode D keeps the base-

emitter junction of T4 reverse biased so that only T3 conducts when output is low. The

operation can be summed up as under:

 Condition I : At least one input is low (i.e.,0). Transistor T1 saturates. Therefore, the

base voltage of T2 is almost zero. T2 is cut off and forces T3 to cut off. T4 acts like an emitter

follower and couples a high voltage to load. Output is high (i.e., Y = 1).

MCA-203 433

 Condition II : All

inputs are high. The emitter

base junctions of T1 are

reverse biased. The

collector base junction of T1

is forward biased. Thus, T1

is in reverse active mode.

The collector current of T1

flows in reverse direction.

Since this current is flowing

into the base of T2, the

transistors T2 and T3

saturate and output Y is

low.

Condition II : The circuit

is operating under condition II when one of the input becomes low. The corresponding

emitter base junction of T1 starts conducting and its base voltage drops to a low value.

Therefore, T1 is in forward active mode. The high collector current of T1 removes the stored

charge inT2 and T3 and therefore, T2 and T3 go cutoff and T1 saturates and output Y returns to

high.

Fig. 7.4. TTL NAND gate with totem pole output

MCA-203 1

 TTL is the most popular logic in the SSI and MSI category. Table 7.2 summarises the

input and output conditions.

Table 7.2. Three input NAND gate

A B C Y = ABC
0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

 1
 1
 1
 1
 1
 1
 1
 0

 Two important characteristics of a digital IC are power dissipation per gate and

propagation delay time. TTL 5400/7400 series is the most popular and commonly used. The

power dissipation of TTL series varies from 1 to 20mW per gate. The propagation delay time

is the time taken by the output to change from one state to the other. Thus, this determines the

speed of operation. For the different ICs in TTL series, the propagation delay time varies from

about 1.5 ns to 10 ns.

 An improved version of TTL logic uses Schottky transistors and is designated as 74 S

series. In this series, bipolar junction transistors have been replaced by Schottky transistors. In

this series, the propagation delay time is reduced by a factor of 3 but the power dissipation is

double than that in 5400/7400 series.

7.4.1. Active Pull Up

 The capacitance CL is the stray capacitance, capacitances of driven states and output

capacitance of transistor T3. This capacitance limits the speed of operation of the gate. The

totem pole output has the advantage of low output impedance and hence short time constant.

This is known as active pull up. The action is an under.

 Let all inputs be high. Therefore, output Y is low (about 0.2 V). In this state both T2

and T3 are saturated. The collector voltage of T2 is

VC2 = VCE2 sat + VBE3 = 0.7 + 0.2 = 0.9 V

 Since the base of T4 is tied to the collector of T2, VB2 = 0.9 V. The voltage from base

of T4 to collector of T3 is

MCA-203 2

VBE2 + VD =VC2 – VCE3 = 0.9 – 0.2 = 0.7 V

 This voltage is not enough to turn both T4 and diode D on. Diode D provides the

offset voltage to ensure that T4 is off when T2 and T3 are on.

 Now let one of the input go low. The collector current of T1 becomes zero and T2

becomes off. This causes T3 to go off because VBE3 goes to zero after the charge stored in base

of T3 is removed through 1 KΩ resistance. The voltage across CL cannot change

instantaneously∗ and remains close to 0.2 V for a short time. During this time the collector

voltage of T2 rises and T4 turns on. When T4 is on, its base voltage is

VB4 = VBE4 + VD + V0 = 0.7 + 0.7 + 0.2 = 1.6 V

The base current of T4 is

 IB4 = 33
4BCC

104.1
6.15

104.1
VV

×

−
=

×

− = 2.43 mA

The collector current of T4 is

 IC4 = mA39
100

2.07.02.05
100

VV,VV 0Dsat4CECC =
−−−

=
−−−

The ratio
4B

4C
I
I =

43.2
39 =16. Since transistor β for T4 is about 50, T4 will be in

saturation. T4 supplies the current to charge CL. Thus T4 acts as a source. With T4 in

saturation, the output voltage rises exponentially with time constant equal to RCL where R =

(100 + saturation resistance of T4 forward resistance of diode). Typical value of saturation

resistance of T4 is 10 Ω and forward resistance of diode less than 10 Ω. Therefore, time

constant RCL is very small about 7 times lesser than passive pull up (when T4 and diode are

not used). In high speed TTL the resistance of 100 Ω is replaced by 50 Ω so that time constant

reduces further by a factor of 2. As output Y reaches a steady state when T4 is at the edge of

saturation. Then output voltage Y is

Y = VCC – 1.4 × 103 IB4 – VBE4 − VD = 5 − 0 0.7 – 0.7 = 3.6 V

The voltage drop 1.4 × 103 × IB4 is negligible.

7.4.2. Wired AND Connection

∗ A basic characteristic of a capacitance is that voltage across it cannot change

instantaneously.

MCA-203 3

 TTL gates with active pull up (as in Fig. 7.4) should not be used in wired AND

connection. If one gate output is HIGH when the other gate output is LOW, the gate with

HIGH output tends to dissipate a large amount of power.

7.3.3. Open Collector Connection

 TTL gates without active pull up and with collector open and brought out can be

connected for wired AND connection. Fig. 7.5 shows one such connection. In this case all

the open collector terminals share one common pull up resistance R. The size of this

resistance R depends on the number of open collector gates, required noise margin, fan out

etc.

 In any of the input (say A) of TTL gate is not used (and left unconnected or open) the

corresponding emitter base junction of T1 will not be forward biased and behave as if logical

1 is applied to this input. Therefore, the unused input terminal of any TTL gate should

preferably be

Fig. 7.5 Open collector TTL gate Fig. 7.6 Clamping diodes connected

 at inputs to TTL gate

MCA-203 4

TTL gates are used with clamping diodes connected between each input terminal and

ground as shown in Fig. 7.6. These diodes clamp the input to – 0.7 V and minimize undesired

negative noise transients.

Example 7.1. The circuit of Fig. 7.5 contains three 5401/7401 NAND gates with open

collector outputs driving four 5400/7400 load gates. Find the value of pull up resistance R.

Assume VCC = 5 V, VOH, min = 2.4 V, VOL, max =0.4 V.

For each driving gate, IOH = 0.25 mA, IOL = 16 mA.

For each load gate, IIH =0.04 mA, IIL = -- mA.

Solution : When output VO is HIGH, there should be sufficient available load current for load

gates and off condition current for driving gates. This condition gives the maximum value of

R. When VO is LOW, the current through R and currents from load gates should not cause the

voltage VO to cross VOL , max, even if only one driving gate is sinking all the currents. This

condition gives minimum value of R.

 Maximum of value of R : VO is HIGH, all driving gates are off. The voltage drop

across R should be less than

VR, max = VCC – VOH, min, = 5—2.4 = 2.6 V

 The total current through R is sum of current IIH of load gates and off currents IOH of

driving gates. This current is 4 × 0.04 + 3 × .25 = 0.91 mA.

Therefore, Rmax =
91.0
6.2 = 3.956 kΩ

 Minimum value of R : V0 is LOW. All load gates are ON. The worst situation occurs

when only one driving gate is ON. The current through R should be such that current IOH

flowing through OH driving gate.

VR, min = VCC -- VOL, max = 5 – 0.4 = 4.6 V

Rmin =
)6.1(416

6.4
−+

 = 0.479 kΩ

 Hence minimum value of R is 479 ohm and maximum value is 3956 ohm.

7.5 CMOS LOGIC

A complementary MOSFET (CMOS) is obtained by connecting a p-channel and an

n-channel MOSFET is series, with drains tied together and the output is taken at the common

MCA-203 5

drain. Input is applied at the common gate formed by connecting the two gates together. (Fig.

7.7). In a CMOS, p-channel and n-channel enhancement MOS devices are fabricated on the

same chip, which makes its fabrication more complicated and reduces the packing density.

But because of negligibly small power consumption, CMOS is ideally suited for battery

operated systems.

 Its speed is limited by substrate capacitances. To reduce the effect of these substrate

capacitances, the latest technology known as silicon on sapphire (SOS) is used in

microprocessor fabrication which employs an insulating substrate (sapphire). CMOS is

becoming very popular in MSI and LSI areas.

Fig. 7.7 CMOS Inverter

7.5.1 CMOS Inverter

The basic CMOS logic circuit is an inverter shown in Fig. 7.7. For this circuit the logic levels

are 0 V (logic 0) and VCC (logic 1). When Vi = VCC, T1 turns On and T2 turns OFF. Therefore

V0 = 0 V, and since the transistors are connected in series the current ID is very small. On the

other hand, when Vi = 0 V, T1 turns OFF and T2 turns ON giving an output voltage V0 = VCC

MCA-203 6

and ID is again very small. In either logic state, T1 or T2 is OFF and the quiescent power

dissipation which is the product of the OFF leakage current and VCC is very low. More

complex functions can be realized by combinations of inverters.

7.5.2 CMOS NAND and NOR Gates

A 2-input CMOS NAND gate is shown in Fig. 7.8 and NOR gate in Fig. 7.9. In the NAND

gate, the NMOS drivers are connected in series, where as the PMOS loads are connected in

parallel. On the other hand, the CMOS NOR gate is obtained by connecting the NMOS

drivers in parallel and PMOS loads in series. The operation of NAND gate can be understood

from Table 7.3. The operation of the NOR gate can be verified in the similar manner.

Table 7.3 Operation of CMOS NAND gate

Inputs

 A B

State of MOS devices

 T1 T2 T3 T4

Output

Y

0

0

VCC

VCC

0

VCC

0

VCC

OFF

ON

OFF

ON

OFF

OFF

ON

ON

ON

ON

OFF

OFF

ON

OFF

OF

OFF

VCC

VCC

VCC

0

MCA-203 7

Fig. 7.8 A 2-input CMOS NAND gate.

Fig. 7.9 A 2-input CMOS NOR gate.

7.5.3. CMOS Transmission Gate

MCA-203 8

A CMOS transmission gate controlled by gate voltages C and C is shown in Fig. 7.10.

Assume C – 1. If A = V(1), then T1 is OFF and T2 conducts in the ohmic

Fig. 7.10 (a) A CMOS transmission gate.

region because there is no voltage applied at the drain. Therefore, T2 behaves as a small

resistance connecting the output to the input and B = A = V(1). Similarly, if A = V(0), then T2

is OFF and T1 conducts, connecting the output to the input and B = A = V(0). This means the

signal is transmitted from A to B when C = 1.

 In a similar manner, it can be shown that if C = 0, transmission is not possible.

 In this gate the control C is binary, whereas the input at A may be either digital or

analog [the instantaneous value must lie between V(0) and V(1)].

7.5.4 Noise Margin

Noise margin of CMOS logic ICs is considerably higher than that of TTL ICs. CMOS devices

have wide supply voltage range and the noise margin increases with the supply voltage VCC

Typically, it is 0.45 VCC.

7.5.5 Unconnected Inputs

The unconnected CMOS ICs inputs behave in a way similar to MOS devices. Therefore, the

unused inputs must be connected to either the supply voltage terminal or one of the used

inputs provided that the fan-out of the signal source is not exceeded. This is highly unlikely

for CMOS circuits because of their high fan-out.

MCA-203 9

 Some CMOS ICs have Zener diodes connected at the inputs for protection against

high input voltages.

7.5.6 Wired-Logic

Figure 7.11 shows two CMOS inverters with their outputs connected together. In this circuit,

Fig. 7.11 CMOS inverters with outputs connected.

(i) When A = B = V(0)

T1 and T’1 are cut-off and Y = V (1) = VCC

(ii) When A = B = V(1)

T1 and T’1 are ON and Y = V(0) = 0

(iii) When A =V(1) and B = V(0)

T1 and T′2 are ON whereas

T′1 and T2 are OFF

Therefore, a large current I will flow as shown in Fig. 7.11.

This will make voltage at Y equal to VCC/2 which is neither in the range of logic 0 nor in the

range of logic 1. Therefore, the circuit will not operate properly. Also because of large current

I, the transistors will be damaged.

 Similarly, corresponding to A = V(0) and B = V(1) the operation will not be proper.

 Therefore, wired-logic must not be used for CMOS logic circuits.

7.5.7 Open-Drain Outputs

MCA-203 10

CMOS gates with open-drain output are available which useful for wired-AND operation. In

this the drain terminal of the output transistor (n-channel) is available outside and the load

resistor is to be connected externally since p-channel load does not exist.

7.5.8 54C00/74C00 CMOS Series

There are two commonly used CMOS series ICs. These are the 4000 series and 54C/74C

series. 54C/74C CMOS series is pin-for-pin, function-for-function equivalent to the 54/74

TTL family and has, therefore, become very popular. The temperature range for 54 series is -

55 oC to + 125 oC and for 74C series is – 40 oC to 85 oC. It has a wide supply voltage range, 3

V to 15 V. A person can take full advantage of his knowledge of the 54?74 TTL series for the

effective use of 54C/74C series.

There have been significant improvements in 54C/74C series. The 74HC/74HTC

have higher speed and better current capabilities. 74HC is known as high-speed CMOS and

74HCTisknown as high-speed, TTL compatible CMOS series. 74AC/74ACT are very fast

and have very high current sinking capabilities. There are known as advanced CMOS and

advanced, TTL compatible CMOS, respectively. The 74 HC/74HCT/74AC/74ACT series can

be operated at supply voltages in the range of 2—6 volts.

The voltage and current parameters of various 74 CMOS series with 5V supply

voltage are given in Table 4.9. From the table, we observe that the output currents and

voltages for 74HC/74HCT/75AC/74ACT are different when gates of these series are driving

CMOS circuits and TTL circuits. 74 HCT and 74 ACT series are compatible with TTL series

for input as well as output and therefore, can easily be used along with TTL ICs for optimum

system design from the point of view of speed, power dissipation noise margins, cost, etc.

The fan-out of 74 HC/74HCT series is 20, whereas for 74AC/74ACT series it is 50

while driving these CMOS series. The fan-out of these gates while driving various TTL series

gates can be determined using the specifications of TTL (Table 4.3) and CMOS (Table 7.4).

Table 7.4 Specifications of CMOS IC families

Parameter Load 74C 74HC 74HCT 74AC 74ACT Units

VIH

VIL

VOH

CMOS

3.5

1.5

4.5

3.85

1.35

4.4

2.0

0.8

4.4

3.85

135

4.4

2.0

0.8

4.4

volts

volts

volts

MCA-203 11

VOL

IIH

IIL

IOH

IOL

TTL

CMOS

TTL

CMOS

TTL

CMOS

TTL

0.5

1

−1

−0.1

0.36

3.84

0.1

0.33

1

−1

−0.02

−4.0

0.02

4.0

3.84

0.1

0.33

1

−1

−0.02

−4.0

0.02

4.0

3.76

0.1

0.37

1

−1

−0.05

−24.0

0.05

24.0

3.76

0.1

0.37

1

−1

−0.05

−24.0

0.05

24.0

volts

volt

volt

μA

μA

mA

mA

mA

mA

MCA-203 12

7.6 TRI-STATE LOGIC

In normal logic circuits there are two states of the output, LOW and HIGH. If the output is

not in the LOW state, it is definitely in the other state (HIGH). Similarly, if the output isnot in

the HIGH state, it is definitely in the LOW state. In complex digital systems like

microcomputers and microprocessors, a number of gate outputs may be required to be

connected to a common line which is referred to as a bus which, in turn, may be required to

drive a number of gate inputs. When a number of gate outputs are connected to the bus, we

encounter some difficulties. These are:

1. Totem-pole outputs cannot be connected together because of very large current drain

from the supply and consequent heating of the ICs which may get damaged.

2. Open-collector outputs can connected together with a common collector-resistor

connected externally. This causes the problems of loading and speed of operation.

To overcome these difficulties, special circuits have been developed in which there is one

more state of the output, referred to as the third state or high-impedance state, in addition to

the LOW and HIGH states. These circuits are known as TRI-STATE, tri-state logic (TSL) or

three-state logic. TRI-STATE, is a registered Trade Mark of National Semiconductor

Corporation of USA.

There is a basic functional difference between wired-OR and the TSL. For the wired-OR

connection of two functions Y1 and Y2 is

Y = Y1 + Y2

whereas for TSL, the result is not a Boolean function but an ability to multiplex many

functions economically.

SUMMARY

1. The different logic functions are available in IC form.

2. Digital ICs are categorized as SI, MSI LSI, VLSI and ULSI depending on the number

of gates and components on a single clip.

3. The most popular technologies being used now-a-days are TTL, ECL and CMOS. In

each technology a number of different series having different parameters are

available.

MCA-203 13

4. Specifications of digital ICs include input and output voltage and current levels (for

high and low conditions), power dissipation, propagation delay, noise margin,

operating temperature, power supply requirements, fan in, fan out etc.

5. Voltage and current characteristics are important factors when interfacing one logic

family with another or when interfacing logic family with other devices.

6. The fan out and fan in are determined by the output drive and input loading

conditions.

7. CMOS family has higher noise margin than TTL family.

8. CMOS has slow speed but very small physical size and simple geometry. Its power

dissipation is very low. It is widely used in electronic wrist watches, calculators,

portable computers etc.

9. Special ICs for interfacing TTL-CMOS, CMOS-TTL etc., are available.

10. When a logic gate is interfaced with devices like relays, motors, solenoids etc., it is

desirable to have separate power supplies for the gate and these devices.

11. Tri state logic refers to the conditions that output can exist in three states, i.e., Low,

High and High impedance states. This logic has another input called control input.

12. Open input and open output are the most common faults on ICs. These can be

detected by a logic pulser and logic probe.

 PROBLEMS

7.1 What are the different logic functions available in the IC’s ?

7.2 What is tri state logic? What is its significance?

7.3 Why CMOS devices are more suitable for IC as compared to transistors?

7.4 Enumerate the different parameters and characteristics of the logic families.

7.5 Categorize the different IC’s.

7.6 How we can calculate the FAN OUT and FAN IN of the different families?

7.7 List the advantages of the TTL families.

7.8 Explain the working of TTL NAND gate.

7.9 What is the significance of the totem pole configuration?

7.10 Why do we require different logic families?

