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Lesson No. I      Writer: Dr. Rakesh Kumar 

Introduction to Software Engineering  Vetter: Dr. Naresh Mann 

 
1.0 Objectives 

The objective of this lesson is to make the students acquainted with the 

introductory concepts of software engineering. To make them familiar with the 

problem of software crisis this has ultimately resulted into the development of 

software engineering. After studying this lesson, the students will: 

1. Understand what is software crisis? 

2. What are software engineering and its importance? 

3. What are the quality factors of software? 

1.1 Introduction 

In order to develop a software product, user needs and constraints must be 

determined and explicitly stated; the product must be designed to 

accommodate implementers, users and maintainers; the source code must be 

carefully implemented and thoroughly tested; and supporting documents must 

be prepared. Software maintenance tasks include analysis of change request, 

redesign and modification of the source code, thorough testing of the modified 

code, updating of documents to reflect the changes and the distribution of 

modified work products to the appropriate user. The need for systematic 

approaches to development and maintenance of software products became 
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apparent in the 1960s. Many software developed at that time were subject to 

cost overruns, schedule slippage, lack of reliability, inefficiency, and lack of 

user acceptance. As computer systems become larger and complex, it 

became apparent that the demand for computer software was growing faster 

than our ability to produce and maintain it.  As a result the field of software 

engineering has evolved into a technological discipline of considerable 

importance. 

1.2 Presentation of contents 
1.2.1 The Software Crisis 

1.2.2 Mature Software 

1.2.3 Software Engineering 

1.2.4 Scope and Focus 

1.2.5 The Need for Software Engineering 

1.2.6 Technologies and practices 

1.2.7 Nature of Software Engineering 

    1.2.7.1 Mathematics 

    1.2.7.2 Engineering 

    1.2.7.3 Manufacturing 

    1.2.7.4 Project management  

    1.2.7.5 Audio and Visual art 

    1.2.7.6 Performance 

1.2.8 Branch of Which Field? 

    1.2.8.1 Branch of programming  

    1.2.8.2 Branch of computer science 

    1.2.8.3 Branch of engineering 
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    1.2.8.4 Freestanding field 

    1.2.8.5 Debate over the term 'Engineering' 

1.2.9 Software Characteristics 

1.2.10 Software Applications 

1.2.11 Software Quality Attributes 

    1.2.11.1 ISO 9126 

    1.2.11.2 McCall’s Quality Model 

1.2.1 The Software Crisis 

The headlines have been screaming about the Y2K Software Crisis for years 

now. Lurking behind the Y2K crisis is the real root of the problem: The 

Software Crisis. After five decades of progress, software development has 

remained a craft and has yet to emerge into a science. 

What is the Software Crisis? 

Is there a crisis at all? As you stroll through the aisles of neatly packaged 

software in your favorite computer discount store, it wouldn’t occur to you that 

there’s a problem. You may be surprised to learn that those familiar aisles of 

software represent only a small share of the software market--of the $90 

Billion software market, a mere 10% of software products are "shrink 

wrapped" packages for personal computers. The remaining 90% of the market 

is comprised of large software products developed to specific customer 

specifications. 
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By today’s definition, a "large" software system is a system that contains more 

than 50,000 lines of high-level language code. It’s those large systems that 

bring the software crisis to light. You know that in large projects the work is 

done in teams consisting of project managers, requirements analysts, 

software engineers, documentation experts, and programmers. With so many 

professionals collaborating in an organized manner on a project, what’s the 

problem?  

Why is it that the team produces fewer than 10 lines of code per day over the 

average lifetime of the project?  

Why are sixty errors found per every thousand lines of code?  

Why is one of every three large projects scrapped before ever being 

completed?  Why is only 1 in 8 finished software projects considered 

"successful?"  

And more: 

 The cost of owning and maintaining software in the 1980’s was twice as 

expensive as developing the software.  

 During the 1990’s, the cost of ownership and maintenance increased by 

30% over the 1980’s.  

 In 1995, statistics showed that half of surveyed development projects were 

operational, but were not considered successful.  

 The average software project overshoots its schedule by half.  
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 Three quarters of all large software products delivered to the customer are 

failures that are either not used at all, or do not meet the customer’s 

requirements.  

Software projects are notoriously behind schedule and over budget. Over the 

last twenty years many different paradigms have been created in attempt to 

make software development more predictable and controllable. There is no 

single solution to the crisis. It appears that the Software Crisis can be boiled 

down to two basic sources: 

 Software development is seen as a craft, rather than an engineering 

discipline.  

 The approach to education taken by most higher education institutions 

encourages that "craft" mentality.  

Software development today is more of a craft than a science. Developers are 

certainly talented and skilled, but work like craftsmen, relying on their talents 

and skills and using techniques that cannot be measured or reproduced. On 

the other hand, software engineers place emphasis on reproducible, 

quantifiable techniques–the marks of science. The software industry is still 

many years away from becoming a mature engineering discipline. Formal 

software engineering processes exist, but their use is not widespread. A crisis 

similar to the software crisis is not seen in the hardware industry, where well-

documented, formal processes are tried and true. To make matters worse, 
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software technology is constrained by hardware technology. Since hardware 

develops at a much faster pace than software, software developers are 

constantly trying to catch up and take advantage of hardware improvements. 

Management often encourages ad hoc software development in an attempt to 

get products out on time for the new hardware architectures. Design, 

documentation, and evaluation are of secondary importance and are omitted 

or completed after the fact. However, as the statistics show, the ad hoc 

approach just doesn’t work. Software developers have classically accepted a 

certain number of errors in their work as inevitable and part of the job. That 

mindset becomes increasingly unacceptable as software becomes embedded 

in more and more consumer electronics. Sixty errors per thousand lines of 

code is unacceptable when the code is embedded in a toaster, automobile, 

ATM machine or razor. 

1.2.2 Mature Software 

As we have seen, most software projects do not follow a formal process. The 

result is a product that is poorly designed and documented. Maintenance 

becomes problematic because without a design and documentation, it’s 

difficult or impossible to predict what sort of effect a simple change might have 

on other parts of the system.  

Fortunately there is an awareness of the software crisis, and it has inspired a 

worldwide movement towards process improvement. Software industry 
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leaders are beginning to see that following a formal software process 

consistently leads to better quality products, more efficient teams and 

individuals, reduced costs, and better morale.  

The SEI (Software Engineering Institute) uses a Capability Maturity Model 

(CMM) to assess the state of an organization’s development process. Such 

models are nothing new–they have been routinely applied to industrial 

engineering disciplines. What’s new is the application to software 

development. The SEI Software CMM has become a de facto standard for 

assessing and improving software processes. Ratings range from Maturity 

Level 1, which is characterized by ad hoc development and lack of a formal 

software development process, up to Maturity Level 5, at which an 

organization not only has a formal process, but also continually refines and 

improves it. Each maturity level is further broken down into key process areas 

that indicate the areas an organization should focus on to improve its software 

process (e.g. requirement analysis, defect prevention, or change control).  

Level 5 is very difficult to attain. In early 1995, only two projects, one at 

Motorola and another at Loral (the on-board space shuttle software project), 

had earned Maturity Level 5. Another study showed that only 2% of reviewed 

projects rated in the top two Maturity Levels, in spite of many of those projects 

placing an extreme emphasis on software process improvement. Customers 

contracting large projects will naturally seek organizations with high CMM 
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ratings, and that has prompted increasingly more organizations to investigate 

software process improvement. 

Mature software is also reusable software. Artisans are not concerned with 

producing standardized products, and that is a reason why there is so little 

interchangeability in software components. Ideally, software would be 

standardized to such an extent that it could be marketed as a "part", with its 

own part number and revision, just as though it were a hardware part. The 

software component interface would be compatible with any other software 

system. Though it would seem that nothing less than a software development 

revolution could make that happen, the National Institute of Standards and 

Technology (NIST) founded the Advanced Technology Program (ATP), one 

purpose of which was to encourage the development of standardized software 

components.  

The consensus seems to be that software has become too big to treat as a 

craft. And while it may not be necessary to apply formal software processes to 

daily programming tasks, it is important in the larger scheme of things, in that 

it encourages developers to think like engineers. 

1.2.3 Software Engineering 

Software Engineering (SE) is the design, development, and documentation of 

software by applying technologies and practices from computer science, 
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project management, engineering, application domains, interface design, 

digital asset management and other fields. 

The term software engineering was popularized after 1968, during the 1968 

NATO Software Engineering Conference (held in Garmisch, Germany) by its 

chairman F.L. Bauer, and has been in widespread use since. 

The term software engineering has been commonly used with a variety of 

distinct meanings: 

 As the informal contemporary term for the broad range of activities that 

was formerly called programming and systems analysis;  

 As the broad term for all aspects of the practice of computer programming, 

as opposed to the theory of computer programming, which is called 

computer science;  

 As the term embodying the advocacy of a specific approach to computer 

programming, one that urges that it be treated as engineering discipline 

rather than an art or a craft, and advocates the codification of 

recommended practices in the form of software engineering 

methodologies. 

 Software engineering is "(1) the application of a systematic, disciplined, 

quantifiable approach to the development, operation, and maintenance of 

software, that is, the application of engineering to software," and "(2) the 

study of approaches as in (1)." – IEEE Standard 610.12  



10 
 

 Software engineering is defined as the systematic and scientific approach 

to develop, operate, maintain and to retire the software product. Software 

product means software for a large/medium size and complex problem. 

We get the real advantage of software engineering when it is applied to a 

project. Though it can also be used for the development of programs/small 

assignments. 

 Software engineering is the application of science and mathematics, by 

which the computer hardware is made useful to the user via software 

(computer programs, procedures, and associated documentation). 

 

1.2.4 Scope and Focus 

Software engineering is concerned with the conception, development and 

verification of a software system. This discipline deals with identifying, 

defining, realizing and verifying the required characteristics of the resultant 

software. These software characteristics may include: functionality, reliability, 

maintainability, availability, testability, ease-of-use, portability, and other 

attributes. Software engineering addresses these characteristics by preparing 

design and technical specifications that, if implemented properly, will result in 

software that can be verified to meet these requirements. 

Software engineering is also concerned with the characteristics of the 

software development process. In this regard, it deals with characteristics 
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such as cost of development, duration of development, and risks in 

development of software. 

1.2.5 The Need for Software Engineering 

Software is often found in products and situations where very high reliability is 

expected, even under demanding conditions, such as monitoring and 

controlling nuclear power plants, or keeping a modern airliner aloft Such 

applications contain millions of lines of code, making them comparable in 

complexity to the most complex modern machines. For example, a modern 

airliner has several million physical parts (and the space shuttle about ten 

million parts), while the software for such an airliner can run to 4 million lines 

of code.  

1.2.6 Technologies and practices 

Software engineers advocate many different technologies and practices, with 

much disagreement. Software engineers use a wide variety of technologies 

and practices. Practitioners use a wide variety of technologies: compilers, 

code repositories, word processors. Practitioners use a wide variety of 

practices to carry out and coordinate their efforts: pair programming, code 

reviews and daily stand up meetings. The goal of every software engineer 

should be to bring an idea out of a previous planned model, which should be 

transparent and well documented. 
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In spite of the enormous economic growth and productivity gains enabled by 

software, persistent complaints about the quality of software remain. 

1.2.7 Nature of Software Engineering 

Software engineering resembles many different fields in many different ways. 

The following paragraphs make some simple comparisons. 

1.2.7.1 Mathematics  

Programs have many mathematical properties. For example the correctness 

and complexity of many algorithms are mathematical concepts that can be 

rigorously proven. Programs are finite, so in principle, developers could know 

many things about a program in a rigorous mathematical way. The use of 

mathematics within software engineering is often called formal methods. 

However, computability theory shows that not everything useful about a 

program can be proven. Mathematics works best for small pieces of code and 

has difficulty scaling up.  

1.2.7.2 Engineering  

Software Engineering is considered by many to be an engineering discipline 

because there are pragmatic approaches and expected characteristics of 

engineers. Proper analysis, documentation, and commented code are signs of 

an engineer. It is argued that software engineering is engineering. Programs 

have many properties that can be measured. For example, the performance 

and scalability of programs under various workloads can be measured. The 



13 
 

effectiveness of caches, bigger processors, faster networks, newer databases 

are engineering issues. Mathematical equations can sometimes be deduced 

from the measurements. Mathematical approaches work best for system-wide 

analysis, but often are meaningless when comparing different small fragments 

of code.  

1.2.7.3 Manufacturing  

Programs are built in as a sequence of steps. By properly defining and 

carrying out those steps, much like a manufacturing assembly line, advocates 

hope to improve the productivity of developers and the quality of final 

programs. This approach inspires the many different processes and 

methodologies.  

1.2.7.4 Project management  

Commercial (and many non-commercial) software projects require 

management. There are budgets and schedules to set. People to hire and 

lead. Resources (office space, computers) to acquire. All of this fits more 

appropriately within the purview of management.  

1.2.7.5 Audio and Visual art  

Programs contain many artistic elements, like to writing or painting. User 

interfaces should be aesthetically pleasing and provide optimal audio and 

visual communication to end-users. What is considered "good design" is often 

subjective, and may be decided by one's own sense of aesthetics. Because 
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graphic artists create graphic elements for graphical user interfaces, graphic 

design often overlaps interaction design in the position of an interface 

designer. User interfaces may require technical understanding including 

graphical integration with code, computer animation technology, automation of 

graphic production, integrating graphics with sound editing technology, and 

mathematical application. One could say that "audiovisual engineering" is 

required. User interfaces with user-read text and voice may also be enhanced 

from professional copywriting and technical writing. Code should be 

aesthetically pleasing to programmers. Even the decision of whether a 

variable name or class name is clear and simple is an artistic question.  

1.2.7.6 Performance  

The act of writing software requires that developers summon the energy to 

find the answers they need while they are at the keyboard. Creating software 

is a performance that resembles what athletes do on the field, and actors and 

musicians do on stage. Some argue that Software Engineering need 

inspiration to spark the creation of code. Sometimes a creative spark is 

needed to create the architecture or to develop a unit of code to solve a 

particularly intractable problem. Others argue that discipline is the key 

attribute. Pair programming emphasizes this point of view.  
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1.2.8 Branch of Which Field? 

Is Software Engineering a branch of programming, a branch of computer 

science, a branch of traditional engineering, or a field that stands on its own?  

1.2.8.1 Branch of programming  

Programming emphasizes writing code, independent of projects and 

customers. Software engineering emphasizes writing code in the context of 

projects and customers by making plans and delivering applications. As a 

branch of programming, Software Engineering would probably have no 

significant licensing or professionalism issues.  

1.2.8.2 Branch of computer science  

Many believe that software engineering is a part of computer science, 

because of their close historical connections and their relationship to 

mathematics. They advocate keeping Software engineering a part of 

computer science. Both computer science and software engineering care 

about programs. Computer science emphasizes the theoretical, eternal truths 

while software engineering emphasizes practical, everyday usefulness. Some 

argue that computer science is to software engineering as physics and 

chemistry are to traditional engineering. As a branch of computer science, 

Software Engineering would probably have few licensing or professionalism 

concerns.  
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1.2.8.3 Branch of engineering  

Some Software Engineering academics and practitioners have advocated 

treating Software Engineering an engineering discipline. Advocates for this 

view argue that the practice of engineering involves the use of mathematics, 

science, and the technology of the day, to build trustworthy products that are 

"fit for purpose", a description that applies as well to Software Engineering as 

to any other engineering discipline. As a branch of engineering, Software 

Engineering would probably adopt the engineering model of licensing and 

professionalism.  

1.2.8.4 Freestanding field  

Recently, software engineering has been finding its own identity and emerging 

as an important freestanding field. Practitioners are slowly realizing that they 

form a huge community in their own right. Software engineering may need to 

create a form of regulation/licensing appropriate to its own circumstances.  

1.2.8.5 Debate over the term 'Engineering' 

Some people believe that software development is a more appropriate term 

than software engineering for the process of creating software. Pete McBreen, 

(author of "Software Craftsmanship: The New Imperative" (ISBN 0-201-

73386-2)), argues that the term Software Engineering implies levels of rigor 

and proven processes that are not appropriate for all types of software 

development. He argues strongly for 'craftsmanship' as a more appropriate 
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metaphor because that term brings into sharper focus the skills of the 

developer as the key to success instead of the "manufacturing" process. 

Using a more traditional comparison, just as not everyone who works in 

construction is a civil engineer, not everyone who can write code is a software 

engineer. 

Some people dispute the notion that the field is mature enough to warrant the 

title "engineering". Opposition also comes from the traditional engineering 

disciplines, whose practitioners usually object to the use of the title "engineer" 

by anyone who has not gone through an accredited program of engineering 

education. In each of the last few decades, at least one radical new approach 

has entered the mainstream of software development (e.g. Structured 

Programming, Object Orientation, ... ), implying that the field is still changing 

too rapidly to be considered an engineering discipline. Other people would 

argue that the supposedly radical new approaches are actually evolutionary 

rather than revolutionary, the mere introduction of new tools rather than 

fundamental changes. 

1.2.9 Software Characteristics 

The fundamental difference between a software and hardware is that software 

is a conceptual entity while hardware is physical entity. When the hardware is 

built, the process of building a hardware results in a physical entity, which can 
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be easily measured. Software being a logical has the different characteristics 

that are to be understood.  

 Software is developed or engineered but it is not manufactured in the 

classical sense. 

 Although some similarities exist between software development and 

hardware manufacture, the two activities are fundamentally different. In both 

activities, high quality is achieved through good design, but the manufacturing 

phase for hardware can introduce quality problems that are nonexistent (or 

easily corrected) for software. Both activities are dependent on people, but the 

relationship between people applied and work accomplished is entirely 

different. Both activities require the construction of a "product" but the 

approaches are different. Software costs are concentrated in engineering. 

This means that software projects cannot be managed as if they were 

manufacturing projects. 

 Software doesn't "wear out." 

If you will use hardware, you will observe wear and tear with the passage of 

time. But software being a conceptual entity will not wear with the passage of 

time.  
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FIGURE 1.1 HARDWARE  FAILURE CURVE 

Above figure 1.1 shows failure rate as a function of time for hardware. The 

relationship, often called the "bathtub curve," indicates that hardware exhibits 

relatively high failure rates early in its life (these failures are often attributable 

to design or manufacturing defects); defects are corrected and the failure rate 

drops to a steady-state level (ideally, quite low) for some period of time. As 

time passes, however, the failure rate rises again as hardware components 

suffer from the cumulative affects of dust, vibration, abuse, temperature 

extremes, and many other environmental maladies. Stated simply, the 

hardware begins to wear out. 

Software is not susceptible to the environmental maladies that cause 

hardware to wear out. In theory, therefore, the failure rate curve for software 

should take the form of the "idealized curve" shown in following Figure 1.2. 
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Undiscovered defects will cause high failure rates early in the life of a 

program. However, these are corrected (ideally, without introducing other 

errors) and the curve flattens as shown. 

 

 
 

 

 

           Failure Rate 

                                         
        Time 

Figure 1.2 Failure curve for software 
 This seeming contradiction can best be explained by considering the 

"actual curve" shown in following Figure 1.3. During its life, software will 

undergo change (maintenance). As the changes are made, it is likely that 

some new defects will be introduced, causing the failure rate curve to spike as 

shown in Figure. Before the curve can return to the original steady-state 

failure rate, another change is requested, causing the curve to spike again. 

Slowly, the minimum failure rate level begins to rise-the software is 

deteriorating due to change. 

Another aspect of wear illustrates the difference between hardware and 

software. When a hardware component wears out, it is replaced by a spare 
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part. There are no software spare parts. If any software fails then it indicates 

an error in design or an error in the process through which design was 

translated into machine executable code then it means some compilation 

error. So it is very much clear that, software maintenance involves more 

complexity than hardware maintenance or we can say that software 

maintenance is a more complex process than hardware maintenance. 

 

FIGURE 1.3 SOFTWARE IDEALIZED AND ACTUAL FAILURE CURVES 

 Most software is custom built, rather than being assembled from 

existing components. 

Consider the manner in which the control hardware for a computer-based 

product is designed and built: The design engineer draws a simple schematic 

of the digital circuitry, does some fundamental analysis to assure that proper 

function will be achieved, and then goes to the shelf where catalogs of digital 
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components exist. Each integrated circuit (called an IC or a chip) has a part 

number, a defined and validated function, a well-defined interface, and a 

standard set of integration guidelines. After each component is selected, it 

can be ordered off the shelf. 

According to the standard engineering discipline, a collection of standard 

design components is created. Standard screws and off-the-shelf integrated 

circuits are only two of thousands of standard components that are used by 

mechanical and electrical engineers as they design new systems. The 

reusable components have been created so that the engineer can 

concentrate on the truly innovative elements of a design, that is, the parts of 

the design that represent something new. In the hardware world, component 

reuse is a natural part of the engineering process. In the software world, it is 

something that has only begun to be achieved on a broad scale. In the end, 

we can say that software design is a complex and sequential process. 

A software component should be designed and implemented so that it can be 

reused in different programs since it is a better approach, according to finance 

and manpower. In the 1960s, we built scientific subroutine libraries that were 

reusable in a broad array of engineering and scientific applications. These 

subroutine libraries reused well-defined algorithms in an effective manner but 

had a limited domain of application. Today, we have extended our view of 

reuse to encompass not only algorithms but also data structure. Modern 
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reusable components encapsulate both data and the processing applied to 

the data, enabling the software engineer to create new applications from 

reusable parts. For example, today's graphical user interfaces are built using 

reusable components that enable the creation of graphics windows, pull-down 

menus, and a wide variety of interaction mechanisms. The data structure and 

processing detail required to build the interface are contained with a library of 

reusable components for interface construction. 

Software components: If you will observe the working of mechanical /electrical 

/civil engineers, you will see the frequent use reusable components. To built a 

computer, they will not have to start from the scratch. They will take the 

components like monitor, keyboard, mouse, hard disk etc. and assemble them 

together. In the hardware world, component reuse is a natural part of the 

engineering process. 

Reusability of the components has also become the most desirable 

characteristic in software engineering also. If you have to design software, 

don’t start from the scratch, rather first check for the reusable components 

and assemble them. A software component should be designed and 

implemented so that t can be reused in may different applications. In the 

languages like C and Pascal we are seeing the presence of a number of 

library functions (The functions which are frequently required such as to 

compute the square root etc, are provided in the library and those can be 
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used as such.). With the advent of Object oriented languages such as C++ 

and Java, reusability has become a primary issue. Reusable components 

prepared using these languages, encapsulate data as well as procedure. 

Availability of reusable components can avoid two major problems in the 

software development: (1) Cost overrun and (2) schedule slippage. If every 

time we will start from scratch, these problems are inevitable, as we have 

already realized in procedure oriented approach.  

In fourth generation languages also, we are not suppose to specify the 

procedural detail rather we specify the desired result and supporting software 

translates the specification of result into a machine executable program. 

1.2.10 Software Applications 

Software may be applied in any situation for which a pre-specified set of 

procedural steps (i.e., an algorithm) has been defined. Information content 

and determinacy are important factors in determining the nature of a software 

application. Content refers to the meaning and form of incoming and outgoing 

information. For example, many business applications use highly structured 

input data (e.g., a database) and produce formatted "reports." Software that 

controls an automated machine (e.g., a numerical control) accepts discrete 

data items with limited structure and produces individual machine commands 

in rapid succession. 
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Information determinacy refers to the predictability of the order and timing of 

information. An engineering analysis program accepts data that have a 

predefined order, executes the analysis algorithm(s) without interruption, and 

produces resultant data in report or graphical format. Such applications are 

determinate. A multi-user operating system, on the other hand, accepts inputs 

that have varied content and arbitrary timing, executes algorithms that can be 

interrupted by external conditions, and produces output that varies as a 

function of environment and time. Applications with these characteristics are 

indeterminate. 

System software: System software is a collection of programs and utilities for 

providing service to other programs. Other system applications (e.g., 

operating system components, drivers, telecommunications processors) 

process largely indeterminate data. In either case, the system software area is 

characterized by heavy interaction with computer hardware; heavy usage by 

multiple users; concurrent operation that requires scheduling, resource 

sharing, and sophisticated process management; complex data structures; 

and multiple external interfaces. 

Real-time software:  Software for the monitors/analyzes/controls real-world 

events as they occur is called real time. Elements of real-time software 

include a data-gathering component that collects and formats information from 

an external environment, an analysis component that transforms information 
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as required by the application, a control/output component that responds to 

the external environment, and a monitoring component that coordinates all 

other components so that real-time response can be maintained. 

Business software: Business information processing is the largest single 

software application area. In a broad sense, business software is an 

integrated software and has many components related to a particular field of 

the business. Discrete "systems" for example, payroll, accounts 

receivable/payable, inventory have evolved into management information 

system (MIS) software that accesses one or more large databases containing 

business information. Applications in this area restructure existing data in a 

way that facilitates business operations or management decision-making. In 

addition to conventional data processing application, business software 

applications also encompass interactive computing.  

Engineering and scientific software: Engineering and scientific software 

have been characterized by "number crunching" algorithms. Applications 

range from astronomy to volcano logy, from automotive stress analysis to 

space shuttle orbital dynamics, and from molecular biology to automated 

manufacturing. However, modern applications within the engineering/scientific 

area are moving away from conventional numerical algorithms. Computer-

aided design, system simulation, and other interactive applications have 

begun to take on real-time and even system software characteristics. 
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Embedded software: Embedded software resides in read-only memory and 

is used to control products and systems for the consumer and industrial 

markets. Embedded software can perform very limited and esoteric functions 

(e.g., keypad control for a microwave oven) or provide significant function and 

control capability (e.g., digital functions in an automobile such as fuel control, 

dashboard displays, and braking systems). 

Personal computer software: The personal computer is the type of 

computer, which gave revolution to the information technology. The personal 

computer software market has burgeoned over the past two decades. Word 

processing, spreadsheets, computer graphics, multimedia, entertainment, 

database management, personal and business financial applications, external 

network, and database access are only a few of hundreds of applications. 

Web-based software: The Web pages processed by the browser are the 

software that incorporates executable instructions (e.g., CGI, HTML, PERL, or 

Java), and data (e.g. hypertext and a variety of visual and audio formats). In 

essence, the network becomes a massive computer providing an almost 

unlimited software resource that can be accessed by anyone with a modem. 

Artificial intelligence software: Artificial intelligence (AI) software is the 

software, which thinks and behaves like a human.  AI software makes use of 

non-numerical algorithms to solve complex problems that are not amenable to 

computation or straightforward analysis. Expert systems, also called 
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knowledge-based systems, pattern recognition (image and voice), artificial 

neural networks, theorem proving, and game playing are representative of 

applications within this category. 

1.2.11 Software Quality Attributes 

Software quality is defined as conformance to explicitly stated functional and 

performance requirements, explicitly documented development standards, 

implicit characteristics that are expected of all professionally developed 

software. 

The above definition serves to emphasize three important points: 

1.  Software requirements are the foundation from which quality is 

measured. Lack of conformance to requirements is lack of quality. 

2.  Specified standards define a set of development criteria that guide the 

manner in which software is engineered. If the criteria are not followed, 

lack of quality will almost surely result. 

3.  There is a set of implicit requirements that often goes unmentioned (e.g., 

the desire for ease of user). If software conforms to its explicit 

requirements but fails to meet implicit requirements, software quality is 

suspect. 

"Good Software" needs to be fit for its purpose i.e. it does what it is intended 

to do. Software has various attributes that lend towards it being good or bad. 
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External quality attributes are visible to anyone using the software. Reliability 

is an external quality attribute, which can be measured during or after 

implementation by testing how the software product relates to its environment. 

The internal quality of the software can be measured in terms of its 

technical attributes such as coupling and cohesion. Some may question the 

importance of internal quality attributes especially if the software seems to 

work well and the client is satisfied with it. It can be reasoned though that the 

internal quality attributes have an impact upon the external quality of the 

software. Low cohesion for example can lead to messy code, which may be 

very hard to understand and maintain. The ability to maintain the software 

system is of course an important factor to be considered when determining 

the overall quality of the software product. 

1.2.11.1 ISO 9126 

The ISO 9126 is a Quality Model outlines the factors that contribute to 

software being good or not so good. The International Organization for 

Standardization (ISO) 9126 model outlines the following quality attributes: 

 Functionality - how well the software system caters for the client's needs  

• Suitability  

• Accuracy: The precision of computations and control. 

• Interoperability  

• Compliance  
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• Security: The availability of mechanisms that control or protect 

programs and data. 

 Reliability - how capable the software system is to maintain a desired level 

of performance for a certain duration of time  

• Maturity  

• Recoverability  

• Fault Tolerance  

 Usability - how much effort is needed on the part of users to properly use 

the software system  

• Learnability  

• Understandability  

• Operability  

 Efficiency - how well the software system performs depending on the 

resources it requires  

• Time Behaviour  

• Resource Behaviour  

 Maintainability - how easily future changes can be made to the software 

system  

• Stability  

• Analysability  

• Changeability  
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• Testability  

 Portability - how well the systems can be transported from one 

environment to another  

• Installability  

• Conformance  

• Replaceability  

• Adaptability  

1.2.11.2 McCall’s Quality Model  

According to McCall There are three dimensions of a software product  (as 

shown in figure 1.4) dealing with different quality factors. These are discussed 

below: 

 Product Operation: Its is concerned with those aspects of the software 

when the software is in operation. 

• Correctness: It is defined as the extent to which a program satisfies its 

specification. 

• Reliability: Informally, software is reliable if the user can depend on it.  

The specialized literature on software reliability defines reliability in terms 

of statistical behavior-the probability that the software will operate as 

expected over a specified time interval. For the purpose of this chapter, 

however, the informal definition is sufficient. 

• Efficiency: It is concerned with memory requirement, response time etc. 
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• Integrity:  

• Usability: It may be defined, as efforts required learning software to 

operate it. 

 Product Transition: Periodically we have to move the software from one 

platform to another. This dimension is concerned with those factors, which 

are concerned with transition. 

• Portability: It may be defined, as the efforts required moving the 

software from one hardware platform to another. 

• Reusability: It is the extent to which parts of the software can be reused 

in other related applications. 

• Interoperability: It is the effort required to couple the system with other 

systems. 

 Product Revision: Maintenance is an important phase of software life. 

This dimension is concerned with all those factors that are concerned with 

the modification of the software. 

• Maintainability: It is defined, as the efforts required identifying the bugs 

in the program and removing them. 

• Flexibility: It may be defined, as the efforts required modifying an 

operational program. 

• Testability: It is defined, as the efforts required testing a program so that 

it can be ensured that it is performing the intended functions. 
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Figure 1.4 Three dimensions of software 

1.3 Summary 

This lesson has provided an introduction to the basic concepts of software 

engineering. In early 1960, it became apparent that there is a need of 

systemetic approach to software development. The software developed in that 

age faced a number of problems such as cost overru, schedule slippage, poor 

quality etc. It resulted into a problem coined as softwrae crisis. Software 

Engineering is the solution to these problems. A number of definitions were 

presented. An important one is reproduced here “Software engineering is "(1) 

the application of a systematic, disciplined, quantifiable approach to the 

development, operation, and maintenance of software, that is, the application 

of engineering to software," and "(2) the study of approaches as in (1)." – 

IEEE Standard 610.12”.  

Portability 
Reusability 
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Product Transaction Product Revision 
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Correctness Usability Efficiency  

Reliability Integrity  
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This lesson gives an overview of the quality attributes of software. And two 

quality models were discussed: McCall’s quality model and ISO 9126. 

According to McCall There are three dimensions of a software product dealing 

with different quality factors: Product operation, Product transition and product 

revision. According to ISO 9126, the quality attributes are classified as 

functionality, reliability, usability, efficiency, maintainability, and portability. 

1.4 Keywords 

Software quality: It is defined as conformance to explicitly stated functional 

and performance requirements, explicitly documented development 

standards, implicit characteristics that are expected of all professionally 

developed software. 

ISO 9126: The ISO 9126 is a Quality Model that outlines the factors that 

contribute to software being good or not so good. 

Software Engineering: It is the design, development, and documentation of 

software by applying technologies and practices from computer science, 

project management, engineering, application domains, interface design, 

digital asset management and other fields. 

1.5 Self Assessment Questions 

1. What do you understand by software crisis? What are the factors 

responsible for that? Explain. 
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2. Define software engineering. What is the need of a systemetic 

approach to software development? Explain. 

3. Define Software quality and discuss the ISO 9126 model of software 

quality. 

4. Develop a list of software quality attributes. Provide a concise definition 

for each of the quality attributes. 

5. What qualities are to be there in software? Discuss the McCall’s quality 

model. 

1.6 References/Suggested readings 

1. Software Engineering concepts by Richard Fairley, Tata McGraw Hill. 

2. An integrated approach to Software Engineering by Pankaj Jalote, 

Narosha Publishing houre.  

3. Software Engineering by Sommerville, Pearson Education. 

4. Software Engineering – A Practitioner’s Approach by Roger S 

Pressman, McGraw-Hill. 
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Lesson number: II    Writer: Dr. Rakesh Kumar 

Software Metrics    Vetter: Dr. Naresh Mann 

 
2.1 Objectives 

The objective of this lesson is to introduce the students with the concept of 

software measurement. After studying this lesson they will be familiar with 

different types of metrics such as Function Points (FP), Source Line Of Code 

(SLOC), Cyclomatic complexity, etc and theirs advantages and drawbacks. 

 

2.2 Introduction 

The IEEE Standard Glossary of Software Engineering Terms define metric as 

“ a quantitative measure of the degree to which a system, component, or 

process possesses a given attribute”. A software metric is a measure of some 

property of a piece of software or its specifications. Since quantitative 

methods have proved so powerful in the other sciences, computer science 

practitioners and theoreticians have worked hard to bring similar approaches 

to software development. Tom DeMarco stated, "You can't control what you 

can't measure" in DeMarco, T. (1982) Controlling Software Projects: 

Management, Measurement & Estimation, Yourdon Press, New York, USA, 

p3. Ejiogu suggested that a metric should possess the following 

characteristics: (1) simple and computable: It should be easy to learn how to 
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derive the metric and its computation should not be effort and time 

consuming. (2) Empirically and intuitively persuasive: The metric should 

satisfy the engineer's intuitive notion about the product under consideration. 

The metric should behave in certain ways, rising and falling appropriately 

under various conditions (3) consistent and Objective: The metric should 

always yield results that are unambiguous. The third party would be able to 

derive the same metric value using the same information (4) consistent in its 

use of units and dimensions: It uses only those measures that do not lead to 

bizarre combinations of units (5) Programming language independent (6) an 

effective mechanism for quality feedback. In addition to the above-mentioned 

characteristics, Roche suggests that metric should be defined in an 

unambiguous manner. According to Basili Metrics should be tailored to best 

accommodate specific products and processes. Software metric domain can 

be partitioned into process, project, and product metrics.  Process metrics are 

used for software process improvement such as defect rates, errors found 

during development. Project metrics are used by software project manager to 

adapt project work flows.  
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2.3 Presentation of Contents 

    2.3.1 Common software metrics 

    2.3.2 Limitations 

    2.3.3 Criticisms 

    2.3.4 Gaming Metrics 

    2.3.5 Balancing Metrics 

    2.3.6 Software Measurement  

    2.3.7 Halstead's Software Science 

    2.3.8 McCabe's Cyclomatic number 

    2.3.9 Fan-In Fan-Out Complexity - Henry and Kafura's 

    2.3.10 Source lines of code 

    2.3.11 Function Points (FP)  

 

2.3.1 Common software metrics 

Common software metrics include: 

• Source lines of code  

• Cyclomatic complexity  

• Function point analysis  

• Code coverage  

• Number of classes and interfaces  
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• Cohesion  

• Coupling  

2.3.2 Limitations 

The assessment of "how much" software there is in a program, especially 

making prediction of such prior to the detail design, is very difficult to 

satisfactorily define or measure. The practical utility of software metrics has 

thus been limited to narrow domains where the measurement process can be 

stabilized. 

Management methodologies such as the Capability Maturity Model or ISO 

9000 have therefore focused more on process metrics which assist in 

monitoring and controlling the processes that produce the software. 

Examples of process metrics affecting software: 

• Number of times the program failed to rebuild overnight  

• Number of defects introduced per developer hour  

• Number of changes to requirements  

• Hours of programmer time available and spent per week  

• Number of patch releases required after first product ship  

2.3.3 Criticisms 

Potential weaknesses and criticism of the metrics approach: 

 Unethical: It is said to be unethical to reduce a person's performance to a 

small number of numerical variables and then judge him/her by that 
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measure. A supervisor may assign the most talented programmer to the 

hardest tasks on a project; which means it may take the longest time to 

develop the task and may generate the most defects due to the difficulty of 

the task. Uninformed managers overseeing the project might then judge 

the programmer as performing poorly without consulting the supervisor 

who has the full picture.  

 Demeaning: "Management by numbers" without regard to the quality of 

experience of the employees, instead of "managing people."  

 Skewing: The measurement process is biased by the act of measurement 

by employees seeking to maximize management's perception of their 

performances. For example, if lines of code are used to judge 

performance, then employees will write as many separate lines of code as 

possible, and if they find a way to shorten their code, they may not use it.  

 Inaccurate: No known metrics are both meaningful and accurate. Lines of 

code measure exactly what is typed, but not of the difficulty of the problem. 

Function points were developed to better measure the complexity of the 

code or specification, but they require personal judgment to use well. 

Different estimators will produce different results. This makes function 

points hard to use fairly and unlikely to be used well by everyone.  
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2.3.4 Gaming Metrics 

Industry experience suggests that the design of metrics will encourage certain 

kinds of behaviour from the people being measured. The common phrase 

applied is "you get what you measure". 

A simple example that is actually quite common is the cost-per-function-point 

metric applied in some Software Process Improvement programs as an 

indicator of productivity. The simplest way to achieve a lower cost-per-FP is to 

make function points arbitrarily smaller. Since there is no standard way of 

measuring function points, the metric is wide open to gaming - that is, 

cheating. 

One school of thought on metrics design suggests that metrics communicate 

the real intention behind the goal, and that people should do exactly what the 

metric tells them to do. This is a spin-off of Test-driven Development, where 

developers are encouraged to write the code specifically to pass the test. If 

that's the wrong code, then they wrote the wrong test. In the metrics design 

process, gaming is a useful tool to test metrics and help make them more 

robust, as well as for helping teams to more clearly and effectively articulate 

their real goals. 

It should be noted that there are very few industry-standard metrics that stand 

up to even moderate gaming. 
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2.3.5 Balancing Metrics 

One way to avoid the "be careful what you wish for" trap is to apply a suite of 

metrics that balance each other out. In software projects, it's advisable to 

have at least one metric for each of the following: 

 Schedule  

 Risk  

 Cost  

 Quality  

Too much emphasis on any one of these aspects of performance is likely to 

create an imbalance in the team's motivations, leading to a dysfunctional 

project. 

The Balanced scorecard is a useful tool for managing a suite of metrics that 

address multiple performance perspectives. 

2.3.6 Software Measurement  

When you can measure what you are speaking about, and express it in 

numbers, you know something about it; but when you cannot measure it, 

when you cannot express it in numbers, your knowledge is of a meager and 

unsatisfactory kind.  

(Lord Kelvin, Popular Lectures and Addresses, 1889)  

Software plays an important role in our life. We want products which affect our 

lives has quality attributes. We need quality software. In order to determine 
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quality of software we must have some metrics to measure quality. The key 

point here is quality of the same product may be change. Software is not an 

exception. So if we determine quality attributes of the software we can also 

have more precise, predictable and repeatable control over the software 

development process and product. If software engineer know what he/she will 

do, then we can "measure" software more easily. Most of time we do not 

know exactly what is the problem. With only a small understanding of the 

desired software system, estimations of costs begin.  

In the early days of computing, software costs represented a small 

percentage of the overall cost of a computer-based system. Therefore, a 

sizable error in estimates of software cost had relatively little impact. Today, 

software is the most expensive element in many computer-based systems. 

Therefore, a large cost-estimation can make the difference between profit and 

loss.  

Software measurement enables us to estimate cost and effort devoted to 

project. 

Software measurement enables us to determine quality of software.  

Software measurement enables us to predict maintainability of software.  

Software measurement enables us to validate the best practices of software 

development.  
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Area of software measurement in software engineering is active more than 

thirty years. There is a huge collection of researches, but still no a concrete 

software cost estimation model.  

If we want to estimate cost-effort of a software project. We need to know the 

size of the software. One of the first software metric to measure the size of the 

software as length is the LOC (Line of Code) The LOC measure is used 

extensively in COCOMO, cost estimation model. Another size metric is 

Function points (FP) that reflect the user's view of a system's functionality and 

gives size as functionality. A unit (the function point) expresses the amount of 

information processing that an application offers the user. The unit is separate 

from the way in which the information processing is carried out technically.  

Because software is a high-level notion made up of many different attributes, 

there can never be a single measure of software complexity. Most of the 

complexity metrics are also restricted to code. The best knowns are 

Halstead's Software Science and McCabes's cyclomatic number. Halstead 

defined a range of metrics based on the operators and operands in a 

program. McCabe's metrics is derived from the program's control flow graph.  

2.3.7 Halstead's Software Science 

The Software Science developed by M. H. Halstead principally attempts to 

estimate the programming effort.  

The measurable and countable properties are:  
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 n1 = number of unique or distinct operators appearing in that 

implementation  

 n2 = number of unique or distinct operands appearing in that 

implementation  

 N1 = total usage of all of the operators appearing in that implementation  

 N2 = total usage of all of the operands appearing in that implementation  

From these metrics Halstead defines:  

 The vocabulary n as n = n1 + n2  

 The implementation length N as N = N1 + N2  

Operators can be "+" and "*" but also an index "[...]" or a statement separation 

"..;..". The number of operands consists of the numbers of literal expressions, 

constants and variables.  

Length Equation 

It may be necessary to know about the relationship between length N and 

vocabulary n. Length Equation is as follows. " ' " on N means it is calculated 

rather than counted :  

N ' = n1log2n1 + n2log2n2  

It is experimentally observed that N ' gives a rather close agreement to 

program length.  
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Quantification of Intelligence Content 

The same algorithm needs more consideration in a low level programming 

language. It is easier to program in Pascal rather than in assembly. The 

intelligence Content determines how much is said in a program. 

In order to find Quantification of Intelligence Content we need some other 

metrics and formulas: 

Program Volume: This metric is for the size of any implementation of any 

algorithm. 

V = N log2 n 

Program Level: It is the relationship between Program Volume and Potential 

Volume. Only the clearest algorithm can have a level of unity. 

L = V* / V  

Program Level Equation: is an approximation of the equation of the Program 

Level. It is used when the value of Potential Volume is not known because it is 

possible to measure it from an implementation directly. 

L ' = n*
1n2 / n1N2  

Intelligence Content 

I = L ' x V = (2n2 / n1N2) x (N1 + N2) log2 (n1 + n2)  

In this equation all terms on the right-hand side are directly measurable from 

any expression of an algorithm. The intelligence content is correlated highly 

with the potential volume. Consequently, because potential volume is 
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independent of the language, the intelligence content should also be 

independent.  

Programming Effort 

The programming effort is restricted to the mental activity required to convert 

an existing algorithm to an actual implementation in a programming language. 

In order to find Programming effort we need some metrics and formulas:  

Potential Volume: is a metric for denoting the corresponding parameters in 

an algorithm's shortest possible form. Neither operators nor operands can 

require repetition.  

V ' = (n*
1 + n*

2) log2 (n*
1 + n*

2) 

Effort Equation 

The total number of elementary mental discriminations is:  

E = V / L = V2 / V '  

If we express it: The implementation of any algorithm consists of N selections 

(nonrandom > of a vocabulary n. a program is generated by making as many 

mental comparisons as the program volume equation determines, because 

the program volume V is a measure of it. Another aspect that influences the 

effort equation is the program difficulty. Each mental comparison consists of a 

number of elementary mental discriminations. This number is a measure for 

the program difficulty.  
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Time Equation 

A concept concerning the processing rate of the human brain, developed by 

the psychologist John Stroud, can be used. Stroud defined a moment as the 

time required by the human brain to perform the most elementary 

discrimination. The Stroud number S is then Stroud's moments per second 

with 5 <= S <= 20. Thus we can derive the time equation where, except for 

the Stroud number S, all of the parameters on the right are directly 

measurable:  

T ' = (n1N2 (n1log2n1 + n2log2n2) log2n) / 2n2S  

Advantages of Halstead:  

 Do not require in-depth analysis of programming structure.  

 Predicts rate of error.  

 Predicts maintenance effort.  

 Useful in scheduling and reporting projects.  

 Measure overall quality of programs.  

 Simple to calculate.  

 Can be used for any programming language.  

 Numerous industry studies support the use of Halstead in predicting 

programming effort and mean number of programming bugs.  

Drawbacks of Halstead  

 It depends on completed code.  
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 It has little or no use as a predictive estimating model. But McCabe's 

model is more suited to application at the design level.  

2.3.8 McCabe's Cyclomatic number: Cyclomatic complexity 

Cyclomatic complexity is a software metric (measurement) in computational 

complexity theory. It was developed by Thomas McCabe and is used to 

measure the complexity of a program. It directly measures the number of 

linearly independent paths through a program's source code. 

Cyclomatic complexity is computed using a graph that describes the control 

flow of the program. The nodes of the graph correspond to the commands of 

a program. A directed edge connects two nodes if the second command might 

be executed immediately after the first command. 

Definition 

M = E − N + P  

where 

M = cyclomatic complexity  

E = the number of edges of the graph  

N = the number of nodes of the graph  

P = the number of connected components.  

"M" is alternatively defined to be one larger than the number of decision points 

(IFs, UNTILs, ENDs...) in a module (function, procedure, chart node, etc.), or 

more generally a system. 
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Alternative definition 

v(G) = e − n + 2  

G is a program's flow graph  

e is the number of arcs in the flow graph  

n is the number of nodes in the flow graph  

Alternative way 

There is another simple way to determine the cyclomatic number. This is done 

by counting the number of closed loops in the flow graph, and incrementing 

that number by one. 

i.e. 

M = Number of closed loops + 1  

Where 

M = Cyclomatic number.  

Implications for Software Testing 

 M is a lower bound for the number of possible paths through the control 

flow graph.  

 M is an upper bound for the number of test cases that are necessary to 

achieve complete branch coverage.  

For example, consider a program that consists of two sequential if-then-else 

statements. 

if (c1)  { f1(); }  
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else  

 { f2(); } 

if (c2)  { f3(); }  

else  

 { f4();} 

• To achieve complete branch coverage, two test cases are sufficient 

here.  

• For complete path coverage, four test cases are necessary.  

• The cyclomatic number M is three, falling in the range between these 

two values, as it does for any program.  

Key Concept 

The cyclomatic complexity of a section of source code is the count of the 

number of linearly independent paths through the source code. For instance, 

if the source code contained no decision points such as IF statements or FOR 

loops, the complexity would be 1, since there is only a single path through the 

code. If the code had a single IF statement there would be two paths through 

the code, one path where the IF statement is evaluated as TRUE and one 

path where the IF statement is evaluated as FALSE. 

Cyclomatic complexity is normally calculated by creating a graph of the 

source code with each line of source code being a node on the graph and 

arrows between the nodes showing the execution pathways. As some 
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programming languages can be quite terse and compact, a source code 

statement when developing the graph may actually create several nodes in 

the graph (for instance when using the C and C++ language "?" conditional 

operator (also known as the "ternary operator") within a function call 

interface). 

In general, in order to fully test a module all execution paths through the 

module should be exercised. This implies a module with a high complexity 

number requires more testing effort than a module with a lower value since 

the higher complexity number indicates more pathways through the code. 

This also implies that a module with higher complexity is more difficult for a 

programmer to understand since the programmer must understand the 

different pathways and the results of those pathways. 

One would also expect that a module with higher complexity would tend to 

have lower cohesion (less than functional cohesion) than a module with lower 

complexity. The possible correlation between higher complexity measure with 

a lower level of cohesion is predicated on a module with more decision points 

generally implementing more than a single well defined function. However 

there are certain types of modules that one would expect to have a high 

complexity number, such as user interface (UI) modules containing source 

code for data validation and error recovery. 
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The results of multiple experiments (G.A. Miller) suggest that modules 

approach zero defects when McCabe's Cyclomatic Complexity is within 7 ± 2.  

A study of PASCAL and FORTRAN programs found that a Cyclomatic 

Complexity between 10 and 15 minimized the number of module changes.  

Advantages of McCabe Cyclomatic Complexity  

 It can be used as a ease of maintenance metric.  

 Used as a quality metric, gives relative complexity of various designs.  

 It can be computed early in life cycle than of Halstead's metrics.  

 Measures the minimum effort and best areas of concentration for testing.  

 It guides the testing process by limiting the program logic during 

development.  

 Is easy to apply.  

Drawbacks of McCabe Cyclomatic Complexity  

 The cyclomatic complexity is a measure of the program's control 

complexity and not the data complexity  

 the same weight is placed on nested and non-nested loops. However, 

deeply nested conditional structures are harder to understand than non-

nested structures.  

 It may give a misleading figure with regard to a lot of simple comparisons 

and decision structures. Whereas the fan-in fan-out method would 

probably be more applicable as it can track the data flow  



54 
 

2.3.9 Fan-In Fan-Out Complexity - Henry and Kafura's 

Henry and Kafura (1981) identified a form of the fan in - fan out complexity, 

which maintains a count of the number of data flows from a component plus 

the number of global data structures that the program updates. The data flow 

count includes updated procedure parameters and procedures called from 

within a module.  

Complexity = Length x (Fan-in x Fan-out)2  

Length is any measure of length such as lines of code or alternatively 

McCabe's cyclomatic complexity is sometimes substituted.  

Henry and Kafura validated their metric using the UNIX system and 

suggested that the measured complexity of a component allowed potentially 

faulty system components to be identified. They found that high values of this 

metric were often measured in components where there had historically been 

a high number of problems.  

Advantages of Henry's and Kafura's Metic  

 it takes into account data-driven programs  

 it can be derived prior to coding, during the design stage  

Drawbacks of Henry's and Kafura's Metic  

 it can give complexity values of zero if a procedure has no external 

interactions  
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2.3.10 Source lines of code (SLOC) 

The basis of the Measure SLOC is that program length can be used as a 

predictor of program characteristics such as effort and ease of maintenance. 

The LOC measure is used to measure size of the software. Source lines of 

code (SLOC) is a software metric used to measure the amount of code in a 

software program. SLOC is typically used to estimate the amount of effort that 

will be required to develop a program, as well as to estimate productivity or 

effort once the software is produced. 

There are versions of LOC:  

DSI (Delivered Source Instructions) 

It is used in COCOMO'81 as KDSI (Means thousands of Delivered Source 

Instructions). DSI is defined as follows:  

 Only Source lines that are DELIVERED as part of the product are included 

-- test drivers and other support software is excluded  

 SOURCE lines are created by the project staff -- code created by 

applications generators is excluded  

 One INSTRUCTION is one line of code or card image  

 Declarations are counted as instructions  

 Comments are not counted as instructions  
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Advantages of LOC  

 Simple to measure  

Drawbacks of LOC  

 It is defined on code. For example it cannot measure the size of 

specification.  

 It characterize only one specific view of size, namely length, it takes no 

account of functionality or complexity  

 Bad software design may cause excessive line of code  

 It is language dependent  

 Users cannot easily understand it  

Because of the critics above there have been extensive efforts to characterize 

other products size attributes, notably complexity and functionality.  

Measuring SLOC 

Many useful comparisons involve only the order of magnitude of lines of code 

in a project. Software projects can vary between 100 to 100,000,000 lines of 

code. Using lines of code to compare a 10,000 line project to a 100,000 line 

project is far more useful than when comparing a 20,000 line project with a 

21,000 line project. While it is debatable exactly how to measure lines of 

code, wide discrepancies in 2 different measurements should not vary by an 

order of magnitude. 
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There are two major types of SLOC measures: physical SLOC and logical 

SLOC. Specific definitions of these two measures vary, but the most common 

definition of physical SLOC is a count of lines in the text of the program's 

source code including comment lines. Blanks lines are also included unless 

the lines of code in a section consist of more than 25% blank lines. In this 

case blank lines in excess of 25% are not counted toward lines of code. 

Logical SLOC measures attempt to measure the number of "statements", but 

their specific definitions are tied to specific computer languages (one simple 

logical SLOC measure for C-like languages is the number of statement-

terminating semicolons). It is much easier to create tools that measure 

physical SLOC, and physical SLOC definitions are easier to explain. However, 

physical SLOC measures are sensitive to logically irrelevant formatting and 

style conventions, while logical SLOC is less sensitive to formatting and style 

conventions. Unfortunately, SLOC measures are often stated without giving 

their definition, and logical SLOC can often be significantly different from 

physical SLOC. 

Consider this snippet of C code as an example of the ambiguity encountered 

when determining SLOC: 

for (i=0; i<100; ++i) printf("hello"); /* How many lines of code is this? */ 

In this example we have: 

 1 Physical Lines of Code LOC  
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 2 Logical Line of Code lLOC (for statement and printf statement)  

 1 Comment Line  

Depending on the programmer and/or coding standards, the above "line of 

code" could be, and usually is, written on many separate lines: 

for (i=0; i<100; ++i) 

{ 

    printf("hello"); 

} /* Now how many lines of code is this? */ 

In this example we have: 

 4 Physical Lines of Code LOC (Is placing braces work to be estimated?)  

 2 Logical Line of Code lLOC (What about all the work writing non-

statement lines?)  

 1 Comment Line (Tools must account for all code and comments 

regardless of comment placement.)  

Even the "logical" and "physical" SLOC values can have a large number of 

varying definitions. Robert E. Park (while at the Software Engineering 

Institute) et al. developed a framework for defining SLOC values, to enable 

people to carefully explain and define the SLOC measure used in a project. 

For example, most software systems reuse code, and determining which (if 

any) reused code to include is important when reporting a measure. 
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Origins of SLOC 

At the time that people began using SLOC as a metric, the most commonly 

used languages, such as FORTRAN and assembler, were line-oriented 

languages. These languages were developed at the time when punch cards 

were the main form of data entry for programming. One punch card usually 

represented one line of code. It was one discrete object that was easily 

counted. It was the visible output of the programmer so it made sense to 

managers to count lines of code as a measurement of a programmer's 

productivity. Today, the most commonly used computer languages allow a lot 

more leeway for formatting. One line of text no longer necessarily 

corresponds to one line of code. 

Usage of SLOC measures 

SLOC measures are somewhat controversial, particularly in the way that they 

are sometimes misused. Experiments have repeatedly confirmed that effort is 

highly correlated with SLOC, that is, programs with larger SLOC values take 

more time to develop. Thus, SLOC can be very effective in estimating effort. 

However, functionality is less well correlated with SLOC: skilled developers 

may be able to develop the same functionality with far less code, so one 

program with less SLOC may exhibit more functionality than another similar 

program. In particular, SLOC is a poor productivity measure of individuals, 

since a developer can develop only a few lines and yet be far more productive 
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in terms of functionality than a developer who ends up creating more lines 

(and generally spending more effort). Good developers may merge multiple 

code modules into a single module, improving the system yet appearing to 

have negative productivity because they remove code. Also, especially skilled 

developers tend to be assigned the most difficult tasks, and thus may 

sometimes appear less "productive" than other developers on a task by this 

measure. 

SLOC is particularly ineffective at comparing programs written in different 

languages unless adjustment factors are applied to normalize languages. 

Various computer languages balance brevity and clarity in different ways; as 

an extreme example, most assembly languages would require hundreds of 

lines of code to perform the same task as a few characters in APL. The 

following example shows a comparison of a "Hello World" program written in 

C, and the same program written in COBOL - a language known for being 

particularly verbose. 

Program in C 

#include <stdio.h> 

int main(void) { 

   printf("Hello World"); 

   return 0; 

} 
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Lines of code: 5 (excluding white space) 

Program in COBOL 

000100 IDENTIFICATION DIVISION. 

000200 PROGRAM-ID. HELLOWORLD. 

000300 

000400* 

000500 ENVIRONMENT DIVISION. 

000600 CONFIGURATION SECTION. 

000700 SOURCE-COMPUTER. RM-COBOL. 

000800 OBJECT-COMPUTER. RM-COBOL. 

000900 

001000 DATA DIVISION. 

001100 FILE SECTION. 

001200 

100000 PROCEDURE DIVISION. 

100100 

100200 MAIN-LOGIC SECTION. 

100300 BEGIN. 

100400  DISPLAY " " LINE 1 POSITION 1 ERASE EOS. 

100500  DISPLAY "Hello world!" LINE 15 POSITION 10. 
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100600 STOP RUN. 

100700 MAIN-LOGIC-EXIT. 

100800  EXIT. 

Lines of code: 17 (excluding white space) 

Another increasingly common problem in comparing SLOC metrics is the 

difference between auto-generated and hand-written code. Modern software 

tools often have the capability to auto-generate enormous amounts of code 

with a few clicks of a mouse. For instance, GUI builders automatically 

generate all the source code for a GUI object simply by dragging an icon onto 

a workspace. The work involved in creating this code cannot reasonably be 

compared to the work necessary to write a device driver, for instance. 

There are several cost, schedule, and effort estimation models which use 

SLOC as an input parameter, including the widely-used Constructive Cost 

Model (COCOMO) series of models by Barry Boehm et al and Galorath's 

SEER-SEM. While these models have shown good predictive power, they are 

only as good as the estimates (particularly the SLOC estimates) fed to them. 

Many have advocated the use of function points instead of SLOC as a 

measure of functionality, but since function points are highly correlated to 

SLOC (and cannot be automatically measured) this is not a universally held 

view. 
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According to Andrew Tanenbaum, the SLOC values for various operating 

systems in Microsoft's Windows NT product line are as follows: 

Year Operating System SLOC (Million) 

1993 Windows NT 3.1 6 

1994 Windows NT 3.5 10 

1996 Windows NT 4.0 16 

2000 Windows 2000 29 

2002 Windows XP 40 

2005 Windows Vista Beta 2 50 

 

David A. Wheeler studied the Red Hat distribution of the GNU/Linux operating 

system, and reported that Red Hat Linux version 7.1 (released April 2001) 

contained over 30 million physical SLOC. He also determined that, had it 

been developed by conventional proprietary means, it would have required 

about 8,000 person-years of development effort and would have cost over $1 

billion (in year 2000 U.S. dollars). 

A similar study was later made of Debian GNU/Linux version 2.2 (also known 

as "Potato"); this version of GNU/Linux was originally released in August 

2000. This study found that Debian GNU/Linux 2.2 included over 55 million 
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SLOC, and if developed in a conventional proprietary way would have 

required 14,005 person-years and cost $1.9 billion USD to develop. Later runs 

of the tools used report that the following release of Debian had 104 million 

SLOC, and as of year 2005, the newest release is going to include over 213 

million SLOC. 

Operating System SLOC (Million)

Red Hat Linux 6.2 17 

Red Hat Linux 7.1 30 

Debian 2.2 56 

Debian 3.0 104 

Debian 3.1 213 

Sun Solaris 7.5 

Mac OS X 10.4 86 

Linux kernel 2.6.0 6.0 

 

Graphics Program SLOC (Million)

Blender 2.42 ~1 

Gimp-2.3.8 0.65 
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SLOC and relation to security faults 

"The central enemy of reliability is complexity" Geer et al.  

"Measuring programming progress by lines of code is like measuring aircraft 

building progress by weight." ~ Bill Gates.  

A number of experts have claimed a relationship between the number of lines 

of code in a program and the number of bugs that it contains. This relationship 

is not simple, since the number of errors per line of code varies greatly 

according to the language used, the type of quality assurance processes, and 

level of testing, but it does appear to exist. More importantly, the number of 

bugs in a program has been directly related to the number of security faults 

that are likely to be found in the program. 

This has had a number of important implications for system security and these 

can be seen reflected in operating system design. Firstly, more complex 

systems are likely to be more insecure simply due to the greater number of 

lines of code needed to develop them. For this reason, security focused 

systems such as OpenBSD grow much more slowly than other systems such 

as Windows and Linux. A second idea, taken up in both OpenBSD and many 

Linux variants, is that separating code into different sections which run with 

different security environments (with or without special privileges, for 

example) ensures that the most security critical segments are small and 

carefully audited. 
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Advantages 

 Scope for Automation of Counting: Since Line of Code is a physical entity; 

manual counting effort can be easily eliminated by automating the 

counting process. Small utilities may be developed for counting the LOC in 

a program. However, a code counting utility developed for a specific 

language cannot be used for other languages due to the syntactical and 

structural differences among languages. 

 An Intuitive Metric: Line of Code serves as an intuitive metric for 

measuring the size of software due to the fact that it can be seen and the 

effect of it can be visualized. Function Point is more of an objective metric 

which cannot be imagined as being a physical entity, it exists only in the 

logical space. This way, LOC comes in handy to express the size of 

software among programmers with low levels of experience. 

Disadvantages 

 Lack of Accountability: Lines of code measure suffers from some 

fundamental problems. Some think it isn't useful to measure the 

productivity of a project using only results from the coding phase, which 

usually accounts for only 30% to 35% of the overall effort. 

 Lack of Cohesion with Functionality: Though experiments have repeatedly 

confirmed that effort is highly correlated with LOC, functionality is less well 

correlated with LOC. That is, skilled developers may be able to develop 
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the same functionality with far less code, so one program with less LOC 

may exhibit more functionality than another similar program. In particular, 

LOC is a poor productivity measure of individuals, since a developer can 

develop only a few lines and still be more productive than a developer 

creating more lines of code. 

 Adverse Impact on Estimation: As a consequence of the fact presented 

under point (a), estimates done based on lines of code can adversely go 

wrong, in all possibility. 

 Developer’s Experience: Implementation of a specific logic differs based 

on the level of experience of the developer. Hence, number of lines of 

code differs from person to person. An experienced developer may 

implement certain functionality in fewer lines of code than another 

developer of relatively less experience does, though they use the same 

language. 

 Difference in Languages: Consider two applications that provide the same 

functionality (screens, reports, databases). One of the applications is 

written in C++ and the other application written a language like COBOL. 

The number of function points would be exactly the same, but aspects of 

the application would be different. The lines of code needed to develop the 

application would certainly not be the same. As a consequence, the 

amount of effort required to develop the application would be different 
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(hours per function point). Unlike Lines of Code, the number of Function 

Points will remain constant. 

 Advent of GUI Tools: With the advent of GUI-based languages/tools such 

as Visual Basic, much of development work is done by drag-and-drops 

and a few mouse clicks, where the programmer virtually writes no piece of 

code, most of the time. It is not possible to account for the code that is 

automatically generated in this case. This difference invites huge 

variations in productivity and other metrics with respect to different 

languages, making the Lines of Code more and more irrelevant in the 

context of GUI-based languages/tools, which are prominent in the present 

software development arena. 

 Problems with Multiple Languages: In today’s software scenario, software 

is often developed in more than one language. Very often, a number of 

languages are employed depending on the complexity and requirements. 

Tracking and reporting of productivity and defect rates poses a serious 

problem in this case since defects cannot be attributed to a particular 

language subsequent to integration of the system. Function Point stands 

out to be the best measure of size in this case. 

 Lack of Counting Standards: There is no standard definition of what a line 

of code is. Do comments count? Are data declarations included? What 

happens if a statement extends over several lines? – These are the 
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questions that often arise. Though organizations like SEI and IEEE have 

published some guidelines in an attempt to standardize counting, it is 

difficult to put these into practice especially in the face of newer and newer 

languages being introduced every year. 

2.3.11 Function Points (FP)  

Function points is basic data from which productivity metrics could be 

computed. 

FP data is used in two ways:  

 as an estimation variable that is used to "size" each element of the 

software,  

 as baseline metrics collected from past projects and used in conjunction 

with estimation variables to develop cost and effort projections.  

The approach is to identify and count a number of unique function types: 

 External inputs (e.g. file names)  

 External outputs (e.g. reports, messages)  

 Queries (interactive inputs needing a response)  

 External files or interfaces (files shared with other software systems)  

 Internal files (invisible outside the system)  

Each of these is then individually assessed for complexity and given a 

weighting value, which varies from 3 (for simple external inputs) to 15 (for 

complex internal files).  
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Unadjusted function points (UFP) is calculated as follows:  

The sum of all the occurrences is computed by multiplying each function 

count with a weighting and then adding up all the values. The weights are 

based on the complexity of the feature being counted. Albrecht’s original 

method classified the weightings as:  

Function Type Low Average High 

External Input x3 x4 x6 

External Input x4 x5 x7 

Logical Internal File x7 x10 x15 

External Interface File x5 x7 x10 

External Inquiry x3 x4 x6 

 

Low, average and high decision can be determined with this table:  

 1-5 Data 

element types 

6-19 Data 

element types 

20+ Data 

element types 

0-1 File types referenced Low Low Average 

2-3 File types referenced Low Average High 

4+ File types referenced Average High High 
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In order to find adjusted FP, UFP is multiplied by technical complexity factor 

(TCF) which can be calculated by the formula:  

TCF = 0.65 + (sum of factors) / 100  

There are 14 technical complexity factors. Each complexity factor is rated on 

the basis of its degree of influence, from no influence to very influential:  

1. Data communications  

2. Performance  

3. Heavily used configuration  

4. Transaction rate  

5. Online data entry  

6. End user efficiency  

7. Online update  

8. Complex processing  

9. Reusability  

10. Installation ease  

11. Operations ease  

12. Multiple sites  

13. Facilitate change  

14. Distributed functions  

Then FP = UFP x TCF 
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Function points are recently used also for real time systems.  

Advantages of FP  

 It is not restricted to code  

 Language independent  

 The necessary data is available early in a project. We need only a detailed 

specification.  

 More accurate than estimated LOC  

Drawbacks of FP  

 Subjective counting  

 Hard to automate and difficult to compute  

 Ignores quality of output  

 Oriented to traditional data processing applications  

 Effort prediction using the unadjusted function count is often no worse than 

when the TCF is added.  

Organizations such as the International Function Point Users Group IFPUG 

have been active in identifying rules for function point counting to ensure that 

counts are comparable across different organizations.  

At IFPUG's Message Board Home Page you can find solutions about practical 

use of FP.  

If sufficient data exists from previous programs, function points can 

reasonably be converted to an LOC estimate. 
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2.4 Summary 

Software metrics have been partitioned into process metric, project metric and 

product metric. These metrics help the managers in improving the software 

processes; assist in the planning, tracking and control of a software project; 

and assess the quality of the product. There are a number of software metrics 

such as Source lines of code, Cyclomatic complexity, Function point analysis, 

Code coverage, Number of classes and interfaces, Cohesion, Coupling etc. 

Line of Code (LOC) is a measure of size. It is very easy to compute but have 

limited applicability.  Cyclomatic complexity is a measure of the complexity of 

the program, based on the control constructs available in the program. 

Halstead measure computes the complexity of the software on the basis of 

operators and operands present in the program. Function Point (FP) is also a 

measure of size that can be used in the early stage of the software 

development. It reflects the size on the basis of input, outputs, external 

interfaces, queries, and number of files required. Metrics are the tools that 

help in better monitoring and control. 

2.5 Key words 

Cyclomatic complexity: The cyclomatic complexity of a section of source 

code is the count of the number of linearly independent paths through the 

source code. 



74 
 

Function Point: Function points is basic data from which productivity metrics 

could be computed, based on external inputs/outputs, files, interfaces, and 

filrs. 

Halstead software science: The Software Science developed by M. H. 

Halstead principally that attempts to estimate the programming effort.  

Software metric: A software metric is a measure of some property of a piece 

of software or its specifications. 

Lines of Code (LOC): It is a software metric that measures the size of 

software in terms of lines in the program.  

2.6 Self-Assessment Questions 

1. What do you understand by complexity of software? What is cyclomatic 

complexity? Write a program for bubble sort and compute its cyclomatic 

complexity. 

2. What are the different approaches to compute the cyclomatic 

complexity? Explain using suitable examples. 

3. Define metric. What are the desirable characteristics of a metric? 

4. What do you understand by SLOC? What are its advantages and 

disadvantages? Explain. 

5. What is Halstead software science? What are the different measures 

available in it? Explain. 
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Lesson number III     Writer: Dr. Rakesh Kumar 

Software Life Cycle Models   Vetter: Dr. Naresh Mann 

 
3.0 Objectives 
The objective of this lesson is to introduce the students to the concepts of 

software life cycle models. After studying this lesson, they will: 

- Understand a number of process models like waterfall model, spiral model, 

prototyping and iterative enhancement. 

- Come to know the merits/demerits, and applicability of different models. 

3.1 Introduction 
A software process is a set of activities and associated results which lead to 

the production of a software product. There are many different software 

processes; there are fundamental activities which are common to all software 

processes. These are: 

 Software specification: The functionality of the software and constraints 

on its operations are defined. 

 Software design and implementation: The software to meet the 

specification is produced. 

 Software validation: The software must be validated to ensure that it 

does what the customer wants.  

 Software evolution: The software must evolve to meet changing 

customer needs. 
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Software process model is an abstract representation of a software process. 

A number of software models are discussed in this lesson. 

3.2 Presentation of contents 

    3.2.1 Software Project Planning 

    3.2.2 Waterfall model 

        3.2.2.1 History of the waterfall model 

        3.2.2.2 Usage of the waterfall model 

        3.2.2.3 Arguments for the waterfall model 

        3.2.2.4 Criticism of the waterfall model 

        3.2.2.5 Modified waterfall models 

        3.2.2.6 Royce’s final model 

        3.2.2.7 The “sashimi” model 

    3.2.3 Software Prototyping and Requirements Engineering  

        3.2.3.1 Prototyping Software Systems 

        3.2.3.2 Conventional Model and Related Variations 

        3.2.3.3 Evolutionary Prototyping 

        3.2.3.4 Prototyping Pitfalls  

        3.2.3.5 Throwaway prototyping 

        3.2.3.6 Prototyping Opportunities 

    3.2.4 Iterative Enhancement 

    3.2.5 The Spiral Model 

 

3.2.1 Software Project Planning 
Lack of planning is the primary cause of schedule slippage, cost overrun, poor 

quality, and high maintenance cost. So a careful planning is required to avoid 

such problems. The steps required to plan a software project are given below: 
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Planning a software project 
Defining the problem 

1. Develop a statement of the problem including the description of present 

situation, problem constraints, and a statement of the goals to be 

achieved.  

2. Identify the functions to be provided, constraints, 

harware/software/people subsystem. 

3. Determine system level goals and the requirements for development 

process and the work products. 

4. Decide the acceptance criteria for system. 

Develop a solution strategy 

1. Outline several solution strategies. 

2. Conduct a feasibility study for each strategy. 

3. Recommend a solution strategy. 

4. Develop a list of priorities for product characteristics. 

Planning the development process 

1. Define a life cycle model and organization structure. 

2. Plan the configuration management, quality assurance, and validation 

activities. 

3. Decide the phase dependent tools, techniques and notations. 

4. Establish cost estimate. 

5. Estable development schedule. 

6. Establish staffing estimate. 

7. Develop estimate of the computing resources required to operate and 

maintain the system. 

8. Prepare a glossary of terms. 

9. Identify source of information. 
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As stated above, planning the development process includes a very important 

consideration i.e. defining a life cycle model. The software life cycle includes 

all the activities required to define, develop, test, deliver, operate, and 

maintain a system. A number of models are discussed here. 

3.2.2 Water fall model 
The waterfall model is a sequential software development model in which 

development is seen as flowing steadily downwards (like a waterfall) through 

the phases of requirements analysis, design, implementation, testing 

(validation), integration, and maintenance. The origin of the term "waterfall" is 

often cited to be an article published in 1970 by W. W. Royce; ironically, 

Royce himself advocated an iterative approach to software development and 

did not even use the term "waterfall". Royce originally described what is now 

known as the waterfall model as an example of a method that he argued "is 

risky and invites failure". 

3.2.2.1 History of the waterfall model 
In 1970 Royce proposed what is now popularly referred to as the waterfall 

model as an initial concept, a model which he argued was flawed. His paper 

then explored how the initial model could be developed into an iterative 

model, with feedback from each phase influencing previous phases, similar to 

many methods used widely and highly regarded by many today. Ironically, it is 

only the initial model that received notice; his own criticism of this initial model 

has been largely ignored. The "waterfall model" quickly came to refer not to 
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Royce's final, iterative design, but rather to his purely sequentially ordered 

model.  

Despite Royce's intentions for the waterfall model to be modified into an 

iterative model, use of the "waterfall model" as a purely sequential process is 

still popular, and, for some, the phrase "waterfall model" has since come to 

refer to any approach to software creation which is seen as inflexible and non-

iterative.  

3.2.2.2 Usage of the waterfall model 
 

 

  

 

 

 

 

Figure 3.1 Water Fall Model 

The unmodified "waterfall model". Progress flows from the top to the bottom, 

like a waterfall. In Royce's original waterfall model, the following phases are 

followed perfectly in order: 

1. Requirements specification  

2. Design  

MAINTENANCE 

VERIFICATION 

IMPLEMENTATION 

DESIGN 

REQUIREMENTS 
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3. Construction (implementation or coding)  

4. Integration  

5. Testing and debugging (verification)  

6. Installation  

7. Maintenance  

To follow the waterfall model, one proceeds from one phase to the next in a 

purely sequential manner. For example, one first completes "requirements 

specification" — they set in stone the requirements of the software. When and 

only when the requirements are fully completed, one proceeds to design. The 

software in question is designed and a "blueprint" is drawn for implementers 

(coders) to follow — this design should be a plan for implementing the 

requirements given. When and only when the design is fully completed, an 

implementation of that design is made by coders. Towards the later stages of 

this implementation phase, disparate software components produced by 

different teams are integrated. After the implementation and integration 

phases are complete, the software product is tested and debugged; any faults 

introduced in earlier phases are removed here. Then the software product is 

installed, and later maintained to introduce new functionality and remove 

bugs. 

Thus the waterfall model maintains that one should move to a phase only 

when its preceding phase is completed and perfected. Phases of 
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development in the waterfall model are thus discrete, and there is no jumping 

back and forth or overlap between them. 

However, there are various modified waterfall models that may include slight 

or major variations upon this process. 

3.2.2.3 Arguments for the water fall model 
Time spent early on in software production can lead to greater economy later 

on in the software lifecycle; that is, it has been shown many times that a bug 

found in the early stages of the production lifecycle (such as requirements 

specification or design) is more economical (cheaper in terms of money, effort 

and time) to fix than the same bug found later on in the process. (it is said that 

"a requirements defect that is left undetected until construction or 

maintenance will cost 50 to 200 times as much to fix as it would have cost to 

fix at requirements time.") This should be obvious to some people; if a 

program design is impossible to implement, it is easier to fix the design at the 

design stage than to realize months down the track when program 

components are being integrated that all the work done so far has to be 

scrapped because of a broken design. 

This is the central idea behind Big Design Up Front (BDUF) and the waterfall 

model - time spent early on making sure that requirements and design are 

absolutely correct is very useful in economic terms (it will save you much time 

and effort later). Thus, the thinking of those who follow the waterfall process 
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goes, one should make sure that each phase is 100% complete and 

absolutely correct before proceeding to the next phase of program creation. 

Program requirements should be set in stone before design is started 

(otherwise work put into a design based on "incorrect" requirements is 

wasted); the programs design should be perfect before people begin work on 

implementing the design (otherwise they are implementing the "wrong" design 

and their work is wasted), etc. 

A further argument for the waterfall model is that it places emphasis on 

documentation (such as requirements documents and design documents) as 

well as source code. More "agile" methodologies can de-emphasize 

documentation in favor of producing working code - documentation however 

can be useful as a "partial deliverable" should a project not run far enough to 

produce any substantial amounts of source code (allowing the project to be 

resumed at a later date). An argument against agile development methods, 

and thus partly in favour of the waterfall model, is that in agile methods project 

knowledge is stored mentally by team members. Should team members 

leave, this knowledge is lost, and substantial loss of project knowledge may 

be difficult for a project to recover from. Should a fully working design 

document be present (as is the intent of Big Design Up Front and the waterfall 

model) new team members or even entirely new teams should theoretically be 

able to bring themselves "up to speed" by reading the documents themselves. 
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With that said, agile methods do attempt to compensate for this. For example, 

extreme programming (XP) advises that project team members should be 

"rotated" through sections of work in order to familiarize all members with all 

sections of the project (allowing individual members to leave without carrying 

important knowledge with them). 

As well as the above, some prefer the waterfall model for its simple and 

arguably more disciplined approach. Rather than what the waterfall adherent 

sees as "chaos" the waterfall model provides a structured approach; the 

model itself progresses linearly through discrete, easily understandable and 

explainable "phases" and is thus easy to understand; it also provides easily 

markable "milestones" in the development process. It is argued that the 

waterfall model and Big Design Up Front in general can be suited to software 

projects which are stable (especially those projects with unchanging 

requirements, such as with "shrink wrap" software) and where it is possible 

and likely that designers will be able to fully predict problem areas of the 

system and produce a correct design before implementation is started. The 

waterfall model also requires that implementers follow the well made, 

complete design accurately, ensuring that the integration of the system 

proceeds smoothly. 

The waterfall model is widely used, including by such large software 

development houses as those employed by the US Department of Defense 
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and NASA and upon many large government projects. Those who use such 

methods do not always formally distinguish between the "pure" waterfall 

model and the various modified waterfall models, so it can be difficult to 

discern exactly which models are being used to what extent. 

Steve McConnell sees the two big advantages of the pure waterfall model as 

producing a "highly reliable system" and one with a "large growth envelope", 

but rates it as poor on all other fronts. On the other hand, he views any of 

several modified waterfall models (described below) as preserving these 

advantages while also rating as "fair to excellent" on "work with poorly 

understood requirements" or "poorly understood architecture" and "provide 

management with progress visibility", and rating as "fair" on "manage risks", 

being able to "be constrained to a predefined schedule", "allow for midcourse 

corrections", and "provide customer with progress visibility". The only criterion 

on which he rates a modified waterfall as poor is that it requires sophistication 

from management and developers.  

3.2.2.4 Criticism of the waterfall model 
The waterfall model however is argued by many to be a bad idea in practice, 

mainly because of their belief that it is impossible to get one phase of a 

software product's lifecycle "perfected" before moving on to the next phases 

and learning from them (or at least, the belief that this is impossible for any 

non-trivial program). For example clients may not be aware of exactly what 
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requirements they want before they see a working prototype and can 

comment upon it - they may change their requirements constantly, and 

program designers and implementers may have little control over this. If 

clients change their requirements after a design is finished, that design must 

be modified to accommodate the new requirements, invalidating quite a good 

deal of effort if overly large amounts of time have been invested into "Big 

Design Up Front". (Thus methods opposed to the naive waterfall model, such 

as those used in Agile software development advocate less reliance on a 

fixed, static requirements document or design document). Designers may not 

be aware of future implementation difficulties when writing a design for an 

unimplemented software product. That is, it may become clear in the 

implementation phase that a particular area of program functionality is 

extraordinarily difficult to implement. If this is the case, it is better to revise the 

design than to persist in using a design that was made based on faulty 

predictions and which does not account for the newly discovered problem 

areas. 

Steve McConnell in Code Complete (a book which criticizes the widespread 

use of the waterfall model) refers to design as a "wicked problem" - a problem 

whose requirements and limitations cannot be entirely known before 

completion. The implication is that it is impossible to get one phase of 
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software development "perfected" before time is spent in "reconnaissance" 

working out exactly where and what the big problems are. 

To quote from David Parnas' "a rational design process and how to fake it ": 

“Many of the [systems] details only become known to us as we progress in the 

[systems] implementation. Some of the things that we learn invalidate our 

design and we must backtrack.” 

The idea behind the waterfall model may be "measure twice; cut once", and 

those opposed to the waterfall model argue that this idea tends to fall apart 

when the problem being measured is constantly changing due to requirement 

modifications and new realizations about the problem itself. The idea behind 

those who object to the waterfall model may be "time spent in reconnaissance 

is seldom wasted". 

In summary, the criticisms of waterfall model are as follows: 

 Changing Software Requirements: Software techniques and tools exist 

for identifying ambiguous and missing software requirements. These 

problems are important factors in the development of any software system. 

However, the problems are further complicated with changing software 

requirements. The development length of large-scale software systems is 

such that changing requirements are a significant problem that leads to 

increased development costs. Software requirements formulation and 

analysis is even more difficult in complex application domains  
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Management Implications 

The problems that changing requirements introduce into the software life 

cycle are reflected in schedule slippages and cost overruns. One 

argument is that more time spent upstream in the software life cycle 

results in less turmoil downstream in the life cycle. The more time 

argument is typically false when the software requirements and 

specification technique is a natural language.  

Product Implications 

The product implications are quality-based aspects of the system during 

software development and maintenance. The requirements problems 

listed above have a ripple effect throughout the development of a software 

system. Even with this advanced technology, changing requirements are 

to be expected, but there would be the environment for control and 

discipline with the changes. 

 Unless those who specify requirements and those who design the 

software system in question are highly competent, it is difficult to know 

exactly what is needed in each phase of the software process before some 

time is spent in the phase "following" it. That is, feedback from following 

phases is needed to complete "preceding" phases satisfactorily. For 

example, the design phase may need feedback from the implementation 

phase to identify problem design areas. The counter-argument for the 
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waterfall model is that experienced designers may have worked on similar 

systems before, and so may be able to accurately predict problem areas 

without time spent prototyping and implementing.  

 Constant testing from the design, implementation and verification phases 

is required to validate the phases preceding them. Constant "prototype 

design" work is needed to ensure that requirements are non-contradictory 

and possible to fulfill; constant implementation is needed to find problem 

areas and inform the design process; constant integration and verification 

of the implemented code is necessary to ensure that implementation 

remains on track. The counter-argument for the waterfall model here is 

that constant implementation and testing to validate the design and 

requirements is only needed if the introduction of bugs is likely to be a 

problem. Users of the waterfall model may argue that if designers follow a 

disciplined process and do not make mistakes that there is no need for 

constant work in subsequent phases to validate the preceding phases.  

 Frequent incremental builds (following the "release early, release often" 

philosophy) are often needed to build confidence for a software production 

team and their client.  

 It is difficult to estimate time and cost for each phase of the development 

process without doing some "recon" work in that phase, unless those 
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estimating time and cost are highly experienced with the type of software 

product in question.  

 The waterfall model brings no formal means of exercising management 

control over a project and planning control and risk management are not 

covered within the model itself.  

 Only a certain number of team members will be qualified for each phase; 

thus to have "code monkeys" who are only useful for implementation work 

do nothing while designers "perfect" the design is a waste of resources. A 

counter-argument to this is that "multiskilled" software engineers should be 

hired over "specialized" staff.  

3.2.2.5 Modified waterfall models 
In response to the perceived problems with the "pure" waterfall model, many 

modified waterfall models have been introduced. These models may address 

some or all of the criticisms of the "pure" waterfall model. While all software 

development models will bear at least some similarity to the waterfall model, 

as all software development models will incorporate at least some phases 

similar to those used within the waterfall model, this section will deal with 

those closest to the waterfall model. For models which apply further 

differences to the waterfall model, or for radically different models seek 

general information on the software development process. 
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3.2.2.6 Royce’s final model 
Royce's final model, his intended improvement upon his initial "waterfall 

model", illustrated that feedback could (should, and often would) lead from 

code testing to design (as testing of code uncovered flaws in the design) and 

from design back to requirements specification (as design problems may 

necessitate the removal of conflicting or otherwise unsatisfiable / 

undesignable requirements). In the same paper Royce also advocated large 

quantities of documentation, doing the job "twice if possible", and involving the 

customer as much as possible—now the basis of participatory design and of 

User Centered Design, a central tenet of Extreme Programming. 

3.2.2.7 The Sashimi model 
The sashimi model (so called because it features overlapping phases, like the 

overlapping fish of Japanese sashimi) was originated by Peter DeGrace. It is 

sometimes simply referred to as the "waterfall model with overlapping phases" 

or "the waterfall model with feedback". Since phases in the sashimi model 

overlap, information of problem spots can be acted upon during phases of the 

waterfall model that would typically "precede" others in the pure waterfall 

model. For example, since the design and implementation phases will overlap 

in the sashimi model, implementation problems may be discovered during the 

"design and implementation" phase of the development process. This helps 

alleviate many of the problems associated with the Big Design Up Front 

philosophy of the waterfall model. 
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3.2.3 Software Prototyping and Requirements Engineering 
The conventional waterfall software life cycle model (or software process) is 

used to characterize the phased approach for software development and 

maintenance. Software life cycle phase names differ from organization to 

organization. The software process includes the following phases:  

 requirements formulation and analysis,  

 specification,  

 design,  

 coding,  

 testing, and  

 Maintenance.  

Alternative software life cycle models have been proposed as a means to 

address the problems that are associated with the waterfall model. One 

alternative software life cycle model uses prototyping as a means for 

providing early feedback to the end user and developer.  

The waterfall model allows for a changing set of means for representing an 

evolving software system. These documents then provide a basis for 

introducing errors during the software life cycle. The user often begins to 

receive information concerning the actual execution of the system after the 

system is developed. During the development of large-scale software 
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systems, the end user, developer, and manager can become frustrated with 

ambiguous, missing, or changing software requirements.  

3.2.3.1 Prototyping Software Systems 
Software customers find it very difficult to express their requirements. Careful 

requirement analysis with systematic review help to reduce the uncertainty 

about what the system should do. However there is no substitute for trying out 

a requirement before agreeing to it. This is possible if the prototype is 

available. A software prototype supports two requirement engineering process 

activities: 

 Requirement elicitation: System prototype helps the user in identifying his 

requirements better. He can experiment with it to see how the system 

supports their work. In this process they can get new ideas and find 

strength and weakness in the software. 

 Requirement validation: The prototype may reveal errors and omissions in 

the requirements which have been proposed.  

A significant risk in software development is requirement errors and omissions 

and prototyping help in risk analysis and reduction. So prototyping is part of 

requirement engineering process. But now prototyping has been introduced 

throughout the conventional, waterfall software life cycle model. Now a day 

many systems are developed using an evolutionary approach where an initial 

version is created quickly and modified to produce a final system. 
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Two forms of life cycle models, Throwaway prototyping and evolutionary 

prototyping, have emerged around prototyping technology.  

3.2.3.2 Conventional Model and related Variations 
The conventional life cycle model can allow for prototyping within any of the 

phases. Unfortunately, this approach can be difficult to control when, for 

example, coding of a user interface takes place during requirements 

formulation and analysis.  

3.2.3.3 Evolutionary Prototyping 
In evolutionary prototyping the focus is on achieving functionality for 

demonstrating a portion of the system to the end user for feedback and 

system growth. The prototype emerges as the actual system moves 

downstream in the life cycle. With each iteration in development, functionality 

is added and then translated to an efficient implementation. Also of interest is 

functional programming and relational programming as a means for 

accomplishing evolutionary prototyping.  

3.2.3.4 Prototyping Pitfalls 
Prototyping has not been as successful as anticipated in some organizations 

for a variety of reasons. Training, efficiency, applicability, and behavior can 

each have a negative impact on using software prototyping techniques.  

Learning Curve 

A common problem with adopting prototyping technology is high expectations 

for productivity with insufficient effort behind the learning curve. In addition to 
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training for the use of a prototyping technique, there is an often overlooked 

need for developing corporate and project specific underlying structure to 

support the technology. When this underlying structure is omitted, lower 

productivity can often result.  

Tool Efficiency 

Prototyping techniques outside the domain of conventional programming 

languages can have execution inefficiencies with the associated tools. The 

efficiency question was argued as a negative aspect of prototyping.  

Applicability 

Application domain has an impact on selecting a prototyping technique. There 

would be limited benefit to using a technique not supporting real-time features 

in a process control system. The control room user interface could be 

described, but not integrated with sensor monitoring deadlines under this 

approach. Undefined Role Models for Personnel 

This new approach of providing feedback early to the end user has resulted in 

a problem related to the behavior of the end user and developers. An end 

user with a previously unfortunate system development effort can be biased in 

future interactions with development teams.  

3.2.3.5 Throwaway prototyping 
The objective of throwaway prototyping is to facilitate the designers in better 

understanding the requirements of the user. In this model, a prototype is 
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developed rapidly by using shortcuts and gives to the user to use. So that he 

will be able to identify his requirements better. To expedite the matters, 

functionalities may be stripped from the throwaway prototype where these 

functions are well understood, quality standards may be relaxed, and 

performance criteria ignored. Once the software requirement specification 

document is ready, the prototype will be discarded and the design phase will 

start. 

3.2.3.6 Prototyping Opportunities 
Not to prototype at all should simply not be an option in software 

development. The end user can not throw the software needs (stated in 

natural language) over the transom and expect the development team to 

return the finished software system after some period of time with no 

problems in the deliverables.  

 Existing Investment in Maintained Systems 

One of the major problems with incorporating this technology is the large 

investment that exists in software systems currently in maintenance. The idea 

of completely reengineering an existing software system with current 

technology is not feasible. There is, however, a threshold that exists where 

the expected life span of a software system justifies that the system would be 

better maintained after being reengineered in this technology. Total 

reengineering of a software system should be a planned for effort rather than 
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as a reaction to a crisis situation. At a minimum, prototyping technology could 

be used on critical portions of an existing software system. This minimal 

approach could be used as a means to transition an organization to total 

reengineering.  

 Adding Investment in Fully Exploiting the Technology 

In many cases, an organization will decide to incorporate this advanced 

software prototyping technology, but the range of support for the concept 

varies widely. Software prototyping, as a development technique, must be 

integrated within an organization through training, case studies, and library 

development. In situations where this full range of commitment to the 

technology is lacking, e.g., only developer training provided, when problems 

begin to arise in using the technology a normal reaction of management is to 

revert back to what has worked in the past.  

 Developer to End User Pass Off 

Finally, the end user involvement becomes enhanced when changes in 

requirements can first be prototyped and agreed to before any development 

proceeds. Similarly, during development of the actual system or even later out 

into maintenance should the requirements change, the prototype is enhanced 

and agreed to before the actual changes become confirmed.  
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3.2.4 Iterative Enhancement 
The iterative enhancement model counters the third limitation of the waterfall 

model and tries to combine the benefits of both prototyping and the waterfall 

model. The basic idea is that the software should be developed in increments, 

each increment adding some functional capability to the system until the full 

system is implemented. At each step, extensions and design modifications 

can be made. An advantage of this approach is that it can result in better 

testing because testing each increment is likely to be easier than testing the 

entire system as in the water- fall model. Furthermore, as in prototyping, the 

increments provide feedback to the client that is useful for determining the 

final requirements of the system. 

In the first step of this model, a simple initial implementation is done for a 

subset of the overall problem. This subset is one that contains some of the 

key aspects of the problem that are easy to understand and implement and 

which form a useful and usable system. A project control list is created that 

contains, in order, all the tasks that must be performed to obtain the final 

implementation. This project control list gives an idea of how far the project is 

at any given step from the final system. 

Each step consists of removing the next task from the list, designing the 

implementation for the selected task, coding and testing the implementation, 

performing an analysis of the partial system obtained after this step, and 
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updating the list as a result of the analysis. These three phases are called the 

design phase, implementation phase, and analysis phase. The process is 

iterated until the project control list is empty, at which time the final 

implementation of the system will be available. The iterative enhancement 

process model is shown in Figure 3.2: 

Design0
Design1

Designn

Implement0
Implement1

Implementn

Analysis0
Analysis1

Analysisn  

Figure 3.2 The Iterative Enhancement Model 

The project control list guides the iteration steps and keeps track of all the 

tasks that must be done. Based on the analysis, one of the tasks in the list 

can include redesign, of defective components or redesign of the entire 

system. However, redesign of the system will generally occur only in the initial 

steps. In the later steps, the design would have stabilized and there is less 

chance of redesign. Each entry in the list is a task that should be performed in 

one step of the iterative enhancement process and should be simple enough 

to be completely understood. Selecting tasks in this manner will minimize the 

chances of error and reduce the redesign work. The design and 

implementation phases of each step can be performed in a top-down manner 

or by using some other technique. 
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One effective use of this type of model is product development, in which the 

developers themselves provide the specifications and, therefore, have a lot of 

control on what specifications go in the system and what stay out. In fact, 

most products undergo this type of development process. First, a version is 

released that contains some capability. Based on the feedback from users 

and experience with this version, a list of additional features and capabilities is 

generated. These features form the basis of enhancement of the software, 

and are included in the next version. In other words, the first version contains 

some core capability and then more features are added to later versions. 

However, in a customized software development, where the client has to 

essentially provide and approve the specifications, it is not always clear how 

this process can be applied. Another practical problem with this type of 

development project comes in generating the business contract-how will the 

cost of additional features be determined and negotiated, particularly because 

the client organization is likely to be tied to the original vendor who developed 

the first version. Overall, in these types of projects, this process model can be 

useful if the "core" of the application to be developed is well understood and 

the "increments" can be easily defined and negotiated. In client-oriented 

projects, this process has the major advantage that the client's organization 

does not have to pay for the entire software together; it can get the main part 
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of the software developed and, perform cost-benefit analysis for it before 

enhancing the software with more capabilities. 

3.2.5 The Spiral Model 
This model was originally proposed by Bohem (1988). As it is clear from the 

name, the activities in this model can be organized like a spiral that has many 

cycles. The radial dimension represents the cumulative cost incurred in 

accomplishing the steps done so far, and the angular dimension represents 

the progress made in completing each cycle of the spiral. The model is shown 

in Figure 3.3. 

 

Figure 3.3 Boehm’s spiral model of the software process 
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Each cycle in the spiral is split into four sectors: 

 Objective setting: Each cycle in the spiral begins with the identification of 

objectives for that cycle, the different alternatives that are possible for 

achieving the objectives, and the constraints that exist. This is the first 

quadrant of the cycle (upper-left quadrant). 

 Risk Assessment and reduction:  The next step in the cycle is to 

evaluate these different alternatives based on the objectives and 

constraints. The focus of evaluation in this step is based on the risk 

perception for the project. Risks reflect the chances that some of the 

objectives of the project may not be met.  

 Development and validation: The next step is to develop strategies that 

resolve the uncertainties and risks. This step may involve activities such 

as benchmarking, simulation, and prototyping.  

 Planning: Next, the software is developed, keeping in mind the risks. 

Finally, the next stage is planned. The project is reviewed and a decision 

made whether to continue with a further cycle of the spiral. If it is decided 

to continue, plans are drawn up for the next phase of the project. 

The development step depends on the remaining risks. For example, if 

performance or user-interface risks are considered more important than the 

program development risks, the next step may be an evolutionary 

development that involves developing a more detailed prototype for resolving 
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the risks. On the other hand, if the program development risks dominate and 

the previous prototypes have resolved all the user-interface and performance 

risks, the next step will follow the basic waterfall approach. 

The risk-driven nature of the spiral model allows it to accommodate any 

mixture of a specification-oriented, prototype-oriented, simulation-oriented, or 

some other type of approach. An important feature of the model is that each 

cycle of the spiral is completed by a review that covers all the products 

developed during that cycle, including plans for the next cycle. The spiral 

model works for development as well as enhancement projects. 

In a typical application of the spiral model, one might start with an extra round 

zero, in which the feasibility of the basic project objectives is studied. These 

project objectives may or may not lead to a development/enhancement 

project. Such high-level objectives include increasing the efficiency of code 

generation of a compiler, producing a new full-screen text editor and 

developing an environment for improving productivity. The alternatives 

considered in this round are also typically very high-level, such as whether the 

organization should go for in-house development, or contract it out, or buy an 

existing product. In round one, a concept of operation might be developed. 

The objectives are stated more precisely and quantitatively and the cost and 

other constraints are defined precisely. The risks here are typically whether or 

not the goals can be met within the constraints. The plan for the next phase 
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will be developed, which will involve defining separate activities for the project. 

In round two, the top-level requirements are developed. In succeeding rounds, 

the actual development may be done.  

This is a relatively new model; it can encompass different development 

strategies. In addition to the development activities, it incorporates some of 

the management and planning activities into the model. For high-risk projects, 

this might be a preferred model. 

3.3 Summary 
Software processes are the activities involved in producing a software system. 

Software process models are abstract representation of these processes.  

There are a number of models with their merits and demerits such as water 

fall model, prototyping, iterative enhancement, and spiral model. The central 

idea behind waterfall model - time spent early on making sure that 

requirements and design are absolutely correct, is very useful in economic 

terms. A further argument for the waterfall model is that it places emphasis on 

documentation as well as source code; it helps the new team members to be 

able to bring themselves "up to speed" by reading the documents themselves. 

Waterfall model is preferred for its simple and arguably more disciplined 

approach. The waterfall model however is argued by many to be a bad idea in 

practice, mainly because of their belief that it is impossible to get one phase of 

a software product's lifecycle "perfected" before moving on to the next phases 
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and learning from them. Clients may not be aware of exactly what 

requirements they want before they see a working prototype and can 

comment upon it - they may change their requirements constantly, and 

program designers and implementers may have little control over this. To sort 

out the limitations of water fall model, other models are proposed such as 

prototyping that helps the user in identifying their requirements better. 

Throwaway prototyping involves developing a prototype to understand the 

system requirements. In evolutionary prototyping, a prototype evolves through 

several versions to the final system. 

3.4 Keywords 
Iterative enhancement: In this model, the software is developed in 

increments, each increment adding some functional capability to the system 

until the full system is implemented.  

Prototyping: To avoid requirement errors and omission, prototyping is a 

technique facilitating requirement elicitation and validation.  

Spiral model: This model was proposed by Bohem  and in it the activities can 

be organized like a spiral that has many cycles. 

Waterfall model: It is a sequential software development model in which 

development is seen as flowing like a waterfall through the phases of 

analysis, design, implementation, testing and maintenance. 
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3.5 Self Assessment Questions 
1. What are the advantages of using waterfall model? 

2. What are the limitations of water fall model? Explain. 

3. What do you understand by prototyping? What is the need of it? 

4. Differentiate between evolutionary and throwaway prototyping and discuss 

their merits and demerits. 

5. Why, for large systems, it is recommended that prototypes should be 

throw-away prototype? 

6. When should one use the iterative enhancement model? 

3.6 Suggested readings/References 
9. Software Engineering concepts by Richard Fairley, Tata McGraw Hill. 

10. An integrated approach to Software Engineering by Pankaj Jalote, 

Narosha Publishing houre.  

11. Software Engineering by Sommerville, Pearson Education. 

12. Software Engineering – A Practitioner’s Approach by Roger S Pressman, 

McGraw-Hill. 
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Lesson IV      Writer: Dr. Rakesh Kumar 

SOFTWARE PROJECT PLANNING  Vetter: Dr. Yogesh Chala 

 
4.0 Objectives 

Project planning is an important issue in the successful completion of a 

software project. The objective of this lesson is to make the students familiar 

with the factors affecting the cost of the software, different versions of 

COCOMO and the problems and criteria to evaluate the models.  

 

4.1 Introduction 

Software cost estimation is the process of predicting the amount of effort 

required to build a software system. Software cost estimation is one of the 

most difficult and error prone task in software engineering. Cost estimates are 

needed throughout the software lifecycle. Preliminary estimates are required 

to determine the feasibility of a project. Detailed estimates are needed to 

assist with project planning. The actual effort for individual tasks is compared 

with estimated and planned values, enabling project managers to reallocate 

resources when necessary. 

Analysis of historical project data indicates that cost trends can be correlated 

with certain measurable parameters. This observation has resulted in a wide 

range of models that can be used to assess, predict, and control software 
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costs on a real-time basis. Models provide one or more mathematical 

algorithms that compute cost as a function of a number of variables. 
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4.2.2 Cost factor 

There are a number of factors affecting the cost of the software. The major 

one are listed below: 

 Programmer ability: Results of the experiments conducted by Sackman 

show a significant difference in individual performance among the 

programmers. The difference between best and worst performance were 

factors of 6 to I in program size, 8 to 1 in execution time, 9 to 1 in 

development time, 18 to 1 in coding time, and 28 to 1 in debugging time.  

 Product Complexity: There are generally three acknowledged category 

of the software: application programs, utility programs and system 

programs. According to Brook utility programs are three times as difficult to 

write as application programs, and that system programs are three times 

as difficult to write as utility programs. So it is a major factor influencing the 

cost of software. 

 Product Size: It is obvious that a large software product will be more 

expensive than a smaller one. 

 Available time: It is generally agreed that software projects require more 

total efforts if development time is compressed or expanded from the 

optimal time.  

 Required reliability: Software reliability can be defined as the probability 

that a program will perform a required function under stated conditions for 
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a stated period of time. Reliability can be improved in a software, but there 

is a cost associated with the increased level of analysis, design, 

implementation, verification and validation efforts that must be exerted to 

ensure high reliability. 

 Level of technology: The level of technology is reflected by the 

programming language, abstract machine, programming practices and 

software tools used. Using a high level language instead of assembly 

language will certainly improve the productivity of programmer thus 

resulting into a decrease in the cost of software.  

Size is a primary cost factor in most models. There are two common ways to 

measure software size: lines of code and function points. 

Lines of Code 

The most commonly used measure of source code program length is the 

number of lines of code (LOC). The abbreviation NCLOC is used to represent 

a non-commented source line of code. NCLOC is also sometimes referred to 

as effective lines of code (ELOC). NCLOC is therefore a measure of the 

uncommented length. The commented length is also a valid measure, 

depending on whether or not line documentation is considered to be a part of 

programming effort. The abbreviation CLOC is used to represent a 

commented source line of code. By measuring NCLOC and CLOC separately 

we can define: 
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total length (LOC) = NCLOC + CLOC 

KLOC is used to denote thousands of lines of code. 

Function Points 

Function points (FP) measure size in terms of the amount of functionality in a 

system. Function points are computed by first calculating an unadjusted 

function point count (UFC). Counts are made for the following categories: 

 External inputs – those items provided by the user that describe distinct 

application-oriented data (such as file names and menu selections)  

 External outputs – those items provided to the user that generate distinct 

application-oriented data (such as reports and messages, rather than the 

individual components of these)  

 External inquiries – interactive inputs requiring a response  

 External files – machine-readable interfaces to other systems  

 Internal files – logical master files in the system  

Once this data has been collected, a complexity rating is associated with each 

count according to Table 4.1. 

  Weighting Factor 
Item Simple Average Complex 
External inputs 3 4 6 
External outputs 4 5 7 
External inquiries 3 4 6 
External files 7 10 15 
Internal files 5 7 10 

Table 4.1 Function point complexity weights. 
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Each count is multiplied by its corresponding complexity weight and the 

results are summed to provide the UFC. The adjusted function point count 

(FP) is calculated by multiplying the UFC by a technical complexity factor 

(TCF). Components of the TCF are listed in Table 4.2. 

F1 Reliable back-up and recovery F2 Data communications 
F3 Distributed functions F4 Performance 
F5 Heavily used configuration F6 Online data entry 
F7 Operational ease F8 Online update 
F9 Complex interface F10 Complex processing 
F11 Reusability F12 Installation ease 
F13 Multiple sites F14 Facilitate change 

Table 4.2 Components of the technical complexity factor 

Each component is rated from 0 to 5, where 0 means the component has no 

influence on the system and 5 means the component is essential. The TCF 

can then be calculated as: 

TCF = 0.65 + 0.01(SUM (Fi)) 

The factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is set to 

5). The final function point calculation is: 

FP = UFC x TCF 

4.2.3 Types of Models 

There are two types of models that have been used to estimate cost: cost 

models and constraint models. 

 

Cost Models 
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Cost models provide direct estimates of effort. These models typically have a 

primary cost factor such as size and a number of secondary adjustment 

factors or cost drivers. Cost drivers are characteristics of the project, process, 

products, or resources that influence effort. Cost drivers are used to adjust the 

preliminary estimate provided by the primary cost factor. A typical cost model 

is derived using regression analysis on data collected from past software 

projects. Effort is plotted against the primary cost factor for a series of 

projects. The line of best fit is then calculated among the data points. If the 

primary cost factor were a perfect predictor of effort, then every point on the 

graph would lie on the line of best fit. In reality however, there is usually a 

significant residual error. It is therefore necessary to identify the factors that 

cause variation between predicted and actual effort. These parameters are 

added to the model as cost drivers. 

The overall structure of regression-based models takes the form: 

E = A + B x S^C 

Where A, B, and C are empirically derived constants, E is effort in person 

months, and S is the primary input (typically either LOC or FP). The following 

are some examples of cost models using LOC as a primary input: 
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E = 5.2 x (KLOC)^0.91 Walston-Felix Model 

E = 5.5 + 0.73 x (KLOC)^1.16 Bailey-Basili Model 

E = 3.2 x (KLOC)^1.05 COCOMO Basic Model 

E = 5.288 x (KLOC)^1.047 Doty Model for KLOC > 9 

Table 4.3 Cost models using LOC as a primary input 

E = -12.39 + 0.0545 FP Albrecht and Gaffney Model 

E = 60.62 x 7.728 x 10^-8 FP^3 Kemerer Model 

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp Model

Table 4.4 Cost models using FP as a primary input include: 

Constraint Models 

Constraint models demonstrate the relationship over time between two or 

more parameters of effort, duration, or staffing level. The RCA PRICE S 

model and Putnam’s SLIM model are two examples of constraint models. 

Most of the work in the cost estimation field has focused on algorithmic cost 

modeling. In this process costs are analyzed using mathematical formulas 

linking costs or inputs with metrics to produce an estimated output. The 

formulae used in a formal model arise from the analysis of historical data. The 

accuracy of the model can be improved by calibrating the model to your 

specific development environment, which basically involves adjusting the 

weightings of the metrics. 

Generally there is a great inconsistency of estimates. Kemerer conducted a 
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study indicating that estimates varied from as much as 85 - 610 % between 

predicated and actual values. Calibration of the model can improve these 

figures; however, models still produce errors of 50-100%.  

4.2.4 SLIM (Software Life Cycle Management) 

Putnam's SLIM is one of the first algorithmic cost model. It is based on the 

Norden / Rayleigh function and generally known as a macro estimation model 

(It is for large projects). SLIM enables a software cost estimator to perform the 

following functions:  

 Calibration Fine tuning the model to represent the local software 

development environment by interpreting a historical database of past 

projects.  

 Build an information model of the software system, collecting software 

characteristics, personal attributes, and computer attributes etc.  

 Software sizing SLIM uses an automated version of the lines of code 

(LOC) costing technique.  

The algorithm used is: 

K = (LOC / (C * t4/3)) * 3  

K is the total life cycle effort in working years, t is development and the C is 

the technology constant, combining the effect of using tools, languages, 

methodology and quality assurance (QA), time in years. 



116 
 

The value of technology constant varies from 610 to 57314. For easy, 

experienced projects technology constant is high. 

SLIM is not widespreadly used but there is a SLIM tool.  

Advantages of SLIM  

 Uses linear programming to consider development constraints on both 

cost and effort.  

 SLIM has fewer parameters needed to generate an estimate over 

COCOMO'81 and COCOMO'II  

Drawbacks of SLIM  

 Estimates are extremely sensitive to the technology factor  

 Not suitable for small projects  

4.2.5 COCOMO’81 

Boehm's COCOMO model is one of the mostly used models commercially. 

The first version of the model delivered in 1981 and COCOMO II is available 

now. COCOMO 81 is a model designed by Barry Boehm to give an estimate 

of the number of man-months it will take to develop a software product. This 

"COnstructive COst MOdel" is based on a study of about sixty projects at 

TRW, a Californian automotive and IT company, acquired by Northrop 

Grumman in late 2002. The programs examined ranged in size from 2000 to 

100,000 lines of code, and programming languages used ranged from 

assembly to PL/I. 
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COCOMO consists of a hierarchy of three increasingly detailed and accurate 

forms. 

 Basic COCOMO - is a static, single-valued model that computes software 

development effort (and cost) as a function of program size expressed in 

estimated lines of code.  

 Intermediate COCOMO - computes software development effort as 

function of program size and a set of "cost drivers" that include subjective 

assessment of product, hardware, personnel and project attributes.  

 Detailed COCOMO - incorporates all characteristics of the intermediate 

version with an assessment of the cost driver's impact on each step 

(analysis, design, etc.) of the software engineering process.  

4.2.5.1 Basic COCOMO 81 

Basic COCOMO is a form of the COCOMO model. COCOMO may be applied 

to three classes of software projects. These give a general impression of the 

software project. 

 Organic projects – These are relatively small, simple software projects in 

which small teams with good application experience work to a set of less 

than rigid requirements.  

 Semi-detached projects – These are intermediate (in size and 

complexity) software projects in which teams with mixed experience levels 

must meet a mix of rigid and less than rigid requirements.  
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 Embedded projects – These are software projects that must be 

developed within a set of tight hardware, software, and operational 

constraints.  

 Size Innovation Deadline/constraints Dev. Environment 
Organic Small Little Not tight Stable 

Semi-detached Medium Medium Medium Medium 
Embedded Large Greater Tight Complex H/W 

/customer interfaces
Table 4.5 Three classes of S/W projects for COCOMO 

The basic COCOMO equations take the form 

E=a (KLOC) b  

D=c (E) d  

P=E/D  

where E is the effort applied in person-months, D is the development time in 

chronological months, KLOC is the estimated number of delivered lines of 

code for the project (expressed in thousands), and P is the number of people 

required. The coefficients ab, bb, cb and db are given in the table 4.6. 

Software project  a     b       c D 

     Organic          2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

   Embedded 3.6 1.20 2.5 0.32

Table 4.6 Coefficients for Basic COCOMO 
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Basic COCOMO is good for quick, early, rough order of magnitude estimates 

of software costs, but its accuracy is necessarily limited because of its lack of 

factors to account for differences in hardware constraints, personnel quality 

and experience, use of modern tools and techniques, and other project 

attributes known to have a significant influence on software costs. 

4.2.5.2 Intermediate COCOMO 81 

The Intermediate COCOMO is an extension of the Basic COCOMO model, 

and is used to estimate the programmer time to develop a software product. 

This extension considers a set of "cost driver attributes" that can be grouped 

into four major categories, each with a number of subcategories: 

 Product attributes  

 Required software reliability (RELY) 

 Size of application database (DATA) 

 Complexity of the product (CPLX) 

 Hardware attributes  

 Execution-time constraints (TIME) 

 Main Storage Constraints (STOR) 

 Volatility of the virtual machine environment (VIRT) 

 Required turnabout time (TURN) 

 Personnel attributes  

 Analyst capability (ACAP) 
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 Programmer capability (PCAP) 

 Applications experience (AEXP) 

 Virtual machine experience (VEXP) 

 Programming language experience (LEXP) 

 Project attributes  

 Use of software tools (TOOL) 

 Modern Programming Practices (MODP) 

 Required development schedule (SCED) 

Each of the 15 attributes is rated on a 6-point scale that ranges from "very 

low" to "extra high" (in importance or value). Based on the rating, an effort 

multiplier is determined from the table below. The product of all effort 

multipliers results in an 'effort adjustment factor (EAF). Typical values for EAF 

range from 0.9 to 1.4 as shown in table 4.7. 

Ratings Cost 
Drivers Very Low Low Nominal High Very High Extra High 
RELY 0.75 0.88 1.00 1.15 1.40  
DATA  0.94 1.00 1.08 1.16  
CPLX 0.70 0.85 1.00 1.15 1.30 1.65 
TIME   1.00 1.11 1.30 1.66 
STOR   1.00 1.06 1.21 1.56 
VIRT  0.87 1.00 1.15 1.30  
TURN  0.87 1.00 1.07 1.15  
ACAP 1.46 1.19 1.00 0.86 0.71  
PCAP 1.29 1.13 1.00 0.91 0.82  
AEXP 1.42 1.17 1.00 0.86 0.70  
VEXP 1.21 1.10 1.00 0.90   
LEXP 1.14 1.07 1.00 0.95   
TOOL 1.24 1.10 1.00 0.91 0.82  
MODP 1.24 1.10 1.00 0.91 0.83  
SCED 1.23 1.08 1.00 1.04 1.10  

Table 4.7 Effort adjustment factor 

The Intermediate COCOMO formula now takes the form... 
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E=a (KLOC) (b).EAF  

Where E is the effort applied in person-months, KLOC is the estimated 

number of thousands of delivered lines of code for the project and EAF is the 

factor calculated above. The coefficient a and the exponent b are given in the 

next table. 

Software project a b 
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

Table 4.8 Coefficients for intermediate COCOMO 

The Development time D is calculated from E in the same way as with Basic 

COCOMO. 

The steps in producing an estimate using the intermediate model 

COCOMO'81 are:  

1. Identify the mode (organic, semi-detached, or embedded) of 

development for the new product.  

2. Estimate the size of the project in KLOC to derive a nominal effort 

prediction.  

3. Adjust 15 cost drivers to reflect your project.  

4. Calculate the predicted project effort using first equation and the effort 

adjustment factor ( EAF )  

5. Calculate the project duration using second equation.  

Example estimate using the intermediate COCOMO'81 
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Mode is organic 

Size = 200KDSI 

Cost drivers:  

 Low reliability => .88  

 High product complexity => 1.15  

 Low application experience => 1.13  

 High programming language experience => .95  

 Other cost drivers assumed to be nominal => 1.00  

C = .88 * 1.15 * 1.13 * .95 = 1.086 

Effort = 3.2 * (2001.05 ) * 1.086 = 906 MM 

Development time = 2.5 * 9060.38  

4.2.5.3 Detailed COCOMO 

The Advanced COCOMO model computes effort as a function of program 

size and a set of cost drivers weighted according to each phase of the 

software lifecycle. The Advanced model applies the Intermediate model at the 

component level, and then a phase-based approach is used to consolidate 

the estimate. 

The 4 phases used in the detailed COCOMO model are: requirements 

planning and product design (RPD), detailed design (DD), code and unit test 

(CUT), and integration and test (IT). Each cost driver is broken down by 

phase as in the example shown in Table 4.9. 
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Cost Driver Rating RPD DD CUT IT 
Very Low 1.80 1.35 1.35 1.50 
Low 0.85 0.85 0.85 1.20 
Nominal 1.00 1.00 1.00 1.00 
High 0.75 0.90 0.90 0.85 

ACAP 

Very High 0.55 0.75 0.75 0.70 
Table 4.9 Analyst capability effort multiplier for Detailed COCOMO 

Estimates made for each module are combined into subsystems and 

eventually an overall project estimate. Using the detailed cost drivers, an 

estimate is determined for each phase of the lifecycle. 

Advantages of COCOMO'81 

 COCOMO is transparent; you can see how it works unlike other models 

such as SLIM.  

 Drivers are particularly helpful to the estimator to understand the impact of 

different factors that affect project costs.  

Drawbacks of COCOMO'81 

 It is hard to accurately estimate KDSI early on in the project, when most 

effort estimates are required.  

 KDSI, actually, is not a size measure it is a length measure.  

 Extremely vulnerable to mis-classification of the development mode  

 Success depends largely on tuning the model to the needs of the 

organization, using historical data which is not always available  
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4.2.6 COCOMO II (Constructive Cost Model) 

Researches on COCOMO II are started in late 90s because COCOMO'81 is 

note enough to apply to newer software development practices.  

Differences between COCOMO’81 and COCOMO’II 

COCOMO'II differs from COCOMO'81 with such differences:  

 COCOMO'81 requires software size in KSLOC as an input, but 

COCOMO'II provides different effort estimating models based on the stage 

of development of the project.  

 COCOMO'81 provides point estimates of effort and schedule, but 

COCOMO'II provides likely ranges of estimates that represent one 

standard deviation around the most likely estimate.  

 COCOMO'II adjusts for software reuse and reengineering where 

automated tools are used for translation of existing software, but 

COCOMO'81 made little accommodation for these factors  

 COCOMO'II accounts for requirements volatility in its estimates.  

 The exponent on size in the effort equations in COCOMO'81 varies with 

the development mode. COCOMO'II uses five scale factors to generalize 

and replace the effects of the development mode.  

COCOMO II has three different models:  

 The Application Composition Model  

 The Early Design Model  
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 The Post-Architecture Model  

4.2.6.1 The Application Composition Model  

The Application Composition model is used in prototyping to resolve potential 

high-risk issues such as user interfaces, software/system interaction, 

performance, or technology maturity. Object points are used for sizing rather 

than the traditional LOC metric. 

An initial size measure is determined by counting the number of screens, 

reports, and third-generation components that will be used in the application. 

Each object is classified as simple, medium, or difficult using the guidelines 

shown in following Tables 4.10 and table 4.11.  

  Number and source of data tables 
Number of views contained Total <4 Total <8 Total 8+ 
<3 Simple simple medium 
3-7 Simple medium difficult 
8+ Medium difficult difficult 

Table 4.10 Object point complexity levels for screens. 

  Number and source of data tables 
Number of views contained Total <4 Total <8 Total 8+ 
<3 Simple simple medium 
3-7 Simple medium difficult 
8+ Medium difficult difficult 

Table 4.11 Object point complexity levels for reports. 

The number in each cell is then weighted according to Table 4.12. The 

weights represent the relative effort required to implement an instance of that 

complexity level.  
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Object type Simple Medium Difficult 
Screen 1 2 3 
Report 2 5 8 
3GL component - - 10 

Table 4.12 Complexity weights for object points 

The weighted instances are summed to provide a single object point number. 

Reuse is then taken into account. Assuming that r% of the objects will be 

reused from previous projects; the number of new object points (NOP) is 

calculated to be:  

NOP = (object points) x (100 – r) / 100 

A productivity rate (PROD) is determined using Table 4.13. 

 
Developers' experience and capability

Very LowLowNominal High Very High

ICASE maturity and capability Very LowLowNominal High Very High
PROD 4 7 13 25 50 
Table 4.13 Average productivity rates based on developer’s experience and 

the ICASE maturity/capability 

Effort can then be estimated using the following equation: 

E = NOP / PROD 

4.2.6.2 The Early Design Model 

The Early Design model is used to evaluate alternative software/system 

architectures and concepts of operation. An unadjusted function point count 

(UFC) is used for sizing. This value is converted to LOC using tables such as 

those published by Jones, excerpted in Table 4.14.  
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Language Level Min Mode Max 
Machine language 0.10 - 640 - 
Assembly 1.00 237 320 416 
C 2.50 60 128 170 
RPGII 5.50 40 58 85 
C++ 6.00 40 55 140 
Visual C++ 9.50 - 34 - 
PowerBuilder 20.00 - 16 - 
Excel 57.00 - 5.5 - 

Table 4.14 Programming language levels and ranges of source code 

statements per function point 

The Early Design model equation is: 

E = aKLOC x EAF 

where a is a constant, provisionally set to 2.45. 

The effort adjustment factor (EAF) is calculated as in the original COCOMO 

model using the 7 cost drivers shown in Table 4.15. The Early Design cost 

drivers are obtained by combining the Post-Architecture cost drivers. 

Cost 
Driver 

Description Counterpart Combined Post-Architecture 
Cost Driver 

RCPX Product reliability & complexity RELY, DATA, CPLX, DOCU 
RUSE Required reuse RUSE 
PDIF Platform difficulty TIME, STOR, PVOL 
PERS Personnel capability ACAP, PCAP, PCON 
PREX Personnel experience AEXP, PEXP, LTEX 
FCIL Facilities TOOL, SITE 
SCED Schedule SCED 

Table 4.15 Early Design cost drivers. 
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4.2.6.3 The Post-Architecture Model 

The Post-Architecture model is used during the actual development and 

maintenance of a product. Function points or LOC can be used for sizing, with 

modifiers for reuse and software breakage. Boehm advocates the set of 

guidelines proposed by The Software Engineering Institute in counting lines of 

code. The Post-Architecture model includes a set of 17 cost drivers and a set 

of 5 factors determining the projects scaling component. The 5 factors replace 

the development modes (organic, semidetached, embedded) of the original 

COCOMO model. 

The Post-Architecture model equation is: 

E = aKLOC^b x EAF 

Where a is set to 2.55 and b is calculated as: 

b = 1.01 + 0.01 x SUM (Wi) 

Where W is the set of 5 scale factors shown in Table 4.16: 

W(i) Very Low Low NominalHighVery High Extra High
Precedentedness 4.05 3.24 2.42 1.62 0.81 0.00 
Development/Flexibility 6.07 4.86 3.64 2.43 1.21 0.00 
Architecture/Risk Resolution 4.22 3.38 2.53 1.69 0.84 0.00 
Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00 
Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00 

Table 4.16 COCOMO II scale factors 

The EAF is calculated using the 17 cost drivers shown in Table 4.17. 
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Rating Cost 
Driver 

Description 
Very Low Low Nominal High Very High Extra 

High
Product         
RELY Required S/W reliability 0.75 0.88 1.00 1.15 1.39 - 
DATA Database size - 0.93 1.00 1.09 1.19 - 
CPLX Product complexity 0.70 0.88 1.00 1.15 1.30 1.66
RUSE Required reusability  0.91 1.00 1.14 1.29 1.49
DOCU Documentation  0.95 1.00 1.06 1.13  
Platform         
TIME Execution time 

constraint 
- - 1.00 1.11 1.31 1.67

STOR Main storage constraint - - 1.00 1.06 1.21 1.57
PVOL Platform volatility - 0.87 1.00 1.15 1.30 - 
Personnel         
ACAP Analyst capability 1.50 1.22 1.00 0.83 0.67 - 
PCAP Programmer capability 1.37 1.16 1.00 0.87 0.74 - 
PCON Personnel continuity 1.24 1.10 1.00 0.92 0.84 - 
AEXP Applications experience 1.22 1.10 1.00 0.89 0.81 - 
PEXP Platform experience 1.25 1.12 1.00 0.88 0.81 - 
LTEX Language & tool 

experience 
1.22 1.10 1.00 0.91 0.84  

Project         
TOOL Software Tools 1.24 1.12 1.00 0.86 0.72 - 
SITE Multisite development 1.25 1.10 1.00 0.92 0.84 0.78
SCED Development Schedule 1.29 1.10 1.00 1.00 1.00 - 

Table 4.17 Post-Architecture cost drivers. 

4.2.7 The Norden-Rayleigh Curve 

The Norden-Rayleigh curve represents manpower as a function of time. 

Norden observed that the Rayleigh distribution provides a good approximation 

of the manpower curve for various hardware development processes. 
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SLIM uses separate Rayleigh curves for design and code, test and validation, 

maintenance, and management. A Rayleigh curve is shown in following 

Figure. 

 

Figure 4.1 A Rayleigh curve. 

Development effort is assumed to represent only 40 percent of the total life 

cycle cost. Requirements specification is not included in the model. Estimation 

using SLIM is not expected to take place until design and coding. 

Several researchers have criticized the use of a Rayleigh curve as a basis for 

cost estimation. Norden’s original observations were not based in theory but 

rather on observations. Moreover his data reflects hardware projects. It has 

not been demonstrated that software projects are staffed in the same way. 

Software projects sometimes exhibit a rapid manpower buildup which 

invalidate the SLIM model for the beginning of the project. 
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4.2.8 The Software Equation 

Putnam used some empirical observations about productivity levels to derive 

the software equation from the basic Rayleigh curve formula. The software 

equation is expressed as: 

Size = CE1/3( t4/3) 

Where C is a technology factor, E is the total project effort in person years, 

and t is the elapsed time to delivery in years.  

The technology factor is a composite cost driver involving 14 components. It 

primarily reflects: 

 Overall process maturity and management practices  

 The extent to which good software engineering practices are used  

 The level of programming languages used  

 The state of the software environment  

 The skills and experience of the software team  

 The complexity of the application  

The software equation includes a fourth power and therefore has strong 

implications for resource allocation on large projects. Relatively small 

extensions in delivery date can result in substantial reductions in effort. 

4.2.9 The Manpower-Buildup Equation 

To allow effort estimation, Putnam introduced the manpower-buildup 

equation: 
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D = E / t3 

Where D is constant called manpower acceleration, E is the total project effort 

in years, and t is the elapsed time to delivery in years. 

The manpower acceleration is 12.3 for new software with many interfaces and 

interactions with other systems, 15 for standalone systems, and 27 for 

reimplementations of existing systems. 

Using the software and manpower-buildup equations, we can solve for effort: 

E = (S / C) 9/7 (D 4/7) 

This equation is interesting because it shows that effort is proportional to size 

to the power 9/7 or ~1.286, which is similar to Boehm's factor which ranges 

from 1.05 to 1.20. 

4.2.10 Criteria for Evaluating a Model 

Boehm provides the following criteria for evaluating cost models: 

 Definition – Has the model clearly defined the costs it is estimating, and 

the costs it is excluding?  

 Fidelity – Are the estimates close to the actual costs expended on the 

projects?  

 Objectivity – Does the model avoid allocating most of the software cost 

variance to poorly calibrated subjective factors (such as complexity)? Is it 

hard to adjust the model to obtain any result you want?  
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 Constructiveness – Can a user tell why the model gives the estimates it 

does? Does it help the user understand the software job to be done?  

 Detail – Does the model easily accommodate the estimation of a software 

system consisting of a number of subsystems and units? Does it give 

(accurate) phase and activity breakdowns?  

 Stability – Do small differences in inputs produce small differences in 

output cost estimates?  

 Scope – Does the model cover the class of software projects whose costs 

you need to estimate?  

 Ease of Use – Are the model inputs and options easy to understand and 

specify?  

 Prospectiveness – Does the model avoid the use of information that will 

not be well known until the project is complete?  

 Parsimony – Does the model avoid the use of highly redundant factors, or 

factors which make no appreciable contribution to the results?  

4.2.11 Problems with Existing Models 

There is some question as to the validity of existing algorithmic models 

applied to a wide range of projects. It is suggested that a model is acceptable 

if 75 percent of the predicted values fall within 25 percent of their actual 

values. Unfortunately most models are insufficient based on this criterion. 

Kemerer reports average errors (in terms of the difference between predicted 
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and actual project effort) of over 600 percent in his independent study of 

COCOMO. The reasons why existing modeling methods have fallen short of 

their goals include model structure, complexity, and size estimation. 

4.2.11.1 Structure 

Although most researchers and practitioners agree that size is the primary 

determinant of effort, the exact relationship between size and effort is unclear. 

Most empirical studies express effort as a function of size with an exponent b 

and a multiplicative term a. However the values of a and b vary from data set 

to data set.  

Most models suggest that effort is proportional to size, and b is included as an 

adjustment factor so that larger projects require more effort than smaller ones. 

Intuitively this makes sense, as larger projects would seem to require more 

effort to deal with increasing complexity. However in practice, there is little 

evidence to support this. Banker and Kemerer analyzed seven data sets, 

finding only one that was significantly different from 1 (with a level of 

significance of p=0.05). Table 4.18 compares the adjustment factors of 

several different models. 
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Model Adjustment 
Factor 

Walston-Felix 0.91 

Nelson 0.98 

Freburger-Basili 1.02 

COCOMO (organic) 1.05 

Herd 1.06 

COCOMO (semi-detached) 1.12 

Bailey-Basili 1.16 

Frederic 1.18 

COCOMO (embedded) 1.20 

Phister 1.275 

Putnam 1.286 

Jones 1.40 

Halstead 1.50 

Schneider 1.83 

 

Table 4.18 Comparison of effort equation adjustment factors 

There is also little consensus about the effect of reducing or extending 

duration. Boehm’s schedule cost driver assumes that increasing or 

decreasing duration increases project effort. Putnam’s model implies that 
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decreasing duration increases effort, but increasing duration decreases effort 

(Fenton, 1997). Other studies have shown that decreasing duration decreases 

effort, contradicting both models. 

Most models work well in the environments for which they were derived, but 

perform poorly when applied more generally. The original COCOMO is based 

on a data set of 63 projects. COCOMO II is based on a data set of 83 

projects. Models based on limited data sets tend to incorporate the particular 

characteristics of the data. This results in a high degree of accuracy for similar 

projects, but restricts the application of the model.  

4.2.11.2 Complexity 

An organization’s particular characteristics can influence its productivity. Many 

models include adjustment factors, such as COCOMO’s cost drivers and 

SLIM’s technology factor to account for these differences. The estimator relies 

on adjustment factors to account for any variations between the model’s data 

set and the current estimate. However this generalized approach is often 

inadequate.  

Kemerer has suggested that application of the COCOMO cost drivers does 

not always improve the accuracy of estimates. The COCOMO model 

assumes that the cost drivers are independent, but this is not the case in 

practice. Many of the cost drivers affect each other, resulting in the over 

emphasis of certain attributes. The cost drivers are also extremely subjective. 
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It is difficult to ensure that the factors are assessed consistently and in the 

way the model developer intended. 

Calculation of adjustment factor is also often complicated. The SLIM model is 

extremely sensitive to the technology factor, however this is not an easy value 

to determine. Calculation of the EAF for the detailed COCOMO model can 

also be somewhat complex, as it is distributed between phases of the 

software lifecycle. 

4.2.11.3 Size Estimation 

Most models require an estimate of product size. However size is difficult to 

predict early in the development lifecycle. Many models use LOC for sizing, 

which is not measurable during requirements analysis or project planning. 

Although function points and object points can be used earlier in the lifecycle, 

these measures are extremely subjective. 

Size estimates can also be very inaccurate. Methods of estimation and data 

collection must be consistent to ensure an accurate prediction of product size. 

Unless the size metrics used in the model are the same as those used in 

practice, the model will not yield accurate results.  

4.3 Summary 

Software cost estimation is an important part of the software development 

process. Models can be used to represent the relationship between effort and 

a primary cost factor such as size. Cost drivers are used to adjust the 
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preliminary estimate provided by the primary cost factor. Although models are 

widely used to predict software cost, many suffer from some common 

problems. The structure of most models is based on empirical results rather 

than theory. Models are often complex and rely heavily on size estimation. 

Despite these problems, models are still important to the software 

development process. Model can be used most effectively to supplement and 

corroborate other methods of estimation. 

4.4 Keywords 

Software cost estimation: is the process of predicting the amount of effort 

required to build a software system. 

COCOMO: It is a model to give an estimate of the number of man-months to 

develop a software product. 

Basic COCOMO: It is model that computes software development effort  as a 
function of program size expressed in estimated lines of code.  

Intermediate COCOMO: It computes software development effort as function 

of program size and a set of "cost drivers".  

Detailed COCOMO: It incorporates all characteristics of the intermediate 

version with an assessment of the cost driver's impact on each step of the 

software engineering process.  

 

 

4.5 Self Assessment Questions 
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1. What are the factors affecting the cost of the software? 

2. Differentiate between basic, intermediate, and advanced COCOMO. 

3. What are the differences between COCOMOII and COCOMO 81? Explain. 

4. What do you understand by cost models and constraint models? 

3.6 References/Suggested readings 
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Lesson No. V     Writer: Dr. Rakesh Kumar 
Software Requirement Analysis & Specification   Vetter: Dr. 
Yogesh Chala 

 
 

5.0 Objectives 

The objectives of this lesson are to get the students familiar with software 

requirements. After studying this lesson the students will be able: 

 To understand the concepts of requirements. 

 To differentiate between different types of requirements. 

 To know the structure of software requirement specification. 

 Characteristics of SRS. 

5.1 Introduction 

The analysis phase of software development is concerned with project planning and 
software requirement definition. To identify the requirements of the user is a tedious 
job.  The description of the services and constraints are the requirements for the 
system and the process of finding out, analyzing, documenting, and checking these 
services is called requirement engineering.  The goal of requirement definition is to 
completely and consistently specify the requirements for the software product in a 
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concise and unambiguous manner, using formal notations as appropriate. The 
software requirement specification is based on the system definition. The requirement 
specification will state the “what of” the software product without implying “how”. 
Software design is concerned with specifying how the product will provide the 
required features. 

5.2 Presentation of contents 

5.2.1 Software system requirements 

        5.2.1.1 Functional requirements 

        5.2.1.2 Non-functional requirements 

5.2.2 Software requirement specification 

        5.2.2.1 Characteristics of SRS 

        5.2.2.2 Components of an SRS 

5.2.3 Problem Analysis 

        5.2.3.1 Modeling Techniques  

        5.2.3.2 Data Flow Diagrams (DFDs)  

                5.2.3.2.1 Data Flow Diagrams show  

                5.2.3.2.2 DFD Principles  

                5.2.3.2.3 Basic DFD Notations  

                5.2.3.2.4 General Data Flow Rules  

                5.2.3.2.5 DFD Levels 

                5.2.3.2.6 Developing a DFD 

        5.2.3.2 Structured Analysis and Design Techniques (SADT) 

        5.2.3.3 Prototyping 
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5.2.4 Specification languages 

        5.2.4.1 Structured English 

        5.2.4.2 Regular expressions 

        5.2.4.3 Decision tables 

        5.2.4.4 Event tables 

        5.2.4.5 Transition table 

5.2.1 Software system requirements 

Software system requirements are classified as functional requirements and non-
functional requirements.  

5.2.1.1 Functional requirements 

The functional requirements for a system describe the functionalities or 

services that the system is expected to provide. They provide how the system 

should react to particular inputs and how the system should behave in a 

particular situation. 

5.2.1.2 Non-functional requirements 

These are constraints on the services or functionalities offered by the system. 

They include timing constraints, constraints on the development process, 

standards etc. These requirements are not directly concerned with the specific 

function delivered by the system. They may relate to such system properties 

such as reliability, response time, and storage. They may define the 
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constraints on the system such as capabilities of I/O devices and the data 

representations used in system interfaces. 

The objective of this phase is to 

identify the requirements of the clients 

and generate a formal requirement 

document.   

 

5.2.2 Software requirement specification 
It is the official document of what is required of the system developers.  It 

consists of user requirements and detailed specification of the system 

requirements. According to Henninger there are six requirements that an SRS 

should satisfy: 

1. It should specify only external system behavior. 

2. It should specify constraints on the implementation. 

3. It should be easy to change. 

4. It should serve as a reference tool for system maintainers. 
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5. It should record forethought about the life cycle of the system. 

6. It should characterize acceptable response to undesired events.  

The IEEE standard suggests the following structure for SRS: 

1. Introduction 

 Purpose of the requirement document. 

 Scope of the product 

 Definitions, acronyms, and abbreviations 

 References 

 Overview of the remainder of the document 

2. General description 

 Product perspective 

 Product functions 

 User characteristics 

 General constraints 

 Assumption and dependencies 

3. Specific requirements covering functional, non-functional and interface 

requirements. 

4. Appendices 

5. Index 

5.2.2.1 Characteristics of SRS 
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The desirable characteristics of an SRS are following: 

 Correct: An SRS is correct if every requirement included in the SRS 

represents something required in the final system. 

 Complete: An SRS is complete if everything software is supposed to do 

and the responses of the software to all classes of input data are specified 

in the SRS. 

 Unambiguous: An SRS is unambiguous if and only if every requirement 

stated has one and only one interpretation. 

 Verifiable: An SRS is verifiable if and only if every specified requirement 

is verifiable i.e. there exists a procedure to check that final software meets 

the requirement. 

 Consistent: An SRS is consistent if there is no requirement that conflicts 

with another. 

 Traceable: An SRS is traceable if each requirement in it must be uniquely 

identified to a source. 

 Modifiable: An SRS is modifiable if its structure and style are such that 

any necessary change can be made easily while preserving completeness 

and consistency. 

 Ranked: An SRS is ranked for importance and/or stability if for each 

requirement the importance and the stability of the requirements are 

indicated. 
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5.2.2.2 Components of an SRS 

An SRS should have the following components: 

(i) Functionality 

(ii) Performance 

(iii) Design constraints 

(iv) External Interfaces 

Functionality 

Here functional requirements are to be specified. It should specify which 

outputs should be produced from the given input. For each functional 

requirement, a detailed description of all the inputs, their sources, range of 

valid inputs, the units of measure are to be specified. All the operation to be 

performed on input should also be specified.  

Performance requirements 

In this component of SRS all the performance constraints on the system 

should be specified such as response time, throughput constraints, number of 

terminals to be supported, number of simultaneous users to be supported etc.  

Design constraints 

Here design constraints such as standard compliance, hardware limitations, 

Reliability, and security should be specified.  There may be a requirement that 

system will have to use some existing hardware, limited primary and/or 

secondary memory. So it is a constraint on the designer. There may be some 
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standards of the organization that should be obeyed such as the format of 

reports. Security requirements may be particularly significant in defense 

systems. It imposes a restriction sometimes on the use of some commands, 

control access to data, require the use of passwords and cryptography 

techniques etc. 

External Interface requirements 

Software has to interact with people, hardware, and other software. All these 

interfaces should be specified. User interface has become a very important 

issue now a day. So the characteristics of user interface should be precisely 

specified and should be verifiable. 

 

 

 

5.2.3 Problem Analysis 

The objective of problem analysis is to obtain the clear understanding of the 

user’s requirements. There are the different approaches to problem analysis 

which have been discussed in the following section. 

Data flow modeling 

It is also known as structured analysis. Here the aim is to identify the functions 

performed in the problem and the data consumed and produced by these 

function. 
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What is a model?  

Douglas T. Ross that a model answers questions; that the definition of a 

model is: M models A if M answers questions about A 

Why model?  

We need to model complex systems in the real world in order to understand 

them. For example: we create computerized models of the real world to 

manipulate large amounts of data and hence derive information which can 

assist in decision making.  

An analyst will create diagrammatic models of a target or proposed system in 

order to:  

 Understand the system, and  

 Communicate:  

• to demonstrate, or clarify, understanding of the existing system and/or 

to obtain feedback from users/clients;  

• to describe unambiguously the proposed computer system to 

users/clients and to the programming team.  

Modeling techniques are extremely useful in tackling the complexity which is 

found when attempting to analyze and understand a system. Models are also 

extremely useful communication tools; i.e.: complex ideas and concepts can 

be captured on paper and can be shown to users and clients for clarification 

and feedback; or for distribution to other professionals, team members, 
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contractors etc. In this respect, the final models created in the Design and 

Development phases of a system are essentially paper based prototypes.   

5.2.3.1 Modeling Techniques  

The three most important modeling techniques used in analyzing and building 

information systems are:  

 Data Flow Diagramming (DFDs): Data Flow Diagrams (DFDs) model 

events and processes (i.e. activities which transform data) within a system. 

DFDs examine how data flows into, out of, and within the system. (Note: 

'data' can be understood as any 'thing' (eg: raw materials, filed information, 

ideas, etc.) which is processed within the system as shown in Figure 5.1.  

 

Figure 5.1 

 Logical Data Structure modelling (LDSs): Logical Data Structures (LDSs) 

represent a system's information and data in another way. LDSs map the 

underlying data structures as entity types, entity attributes, and the 

relationships between the entities as shown in figure 5.2.    
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Figure 5.2  

 Entity Life Histories (ELHs): Entity Life Histories (ELHs) describe the 

changes which happen to 'things' (entities) within the system as shown in 

figure 5.3. 

 

Figure 5.3 

These three techniques are common to many methodologies and are widely 

used in system analysis. Notation and graphics style may vary across 

methodologies, but the underlying principles are generally the same.  

In SSADM (Structured Systems Analysis and Design Methodology - which 

has for a number of years been widely used in the UK) systems analysts and 
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modelers use the above techniques to build up three, inter-related, views of 

the target system, which are cross-checked for consistency.  

5.2.3.2 Data Flow Diagrams (DFDs)  

SSADM uses different sets of Data Flow Diagram to describe the target 

system in different ways; eg:  

 WHAT the system does  

 HOW it does it  

 WHAT it should do  

 HOW it should do it  

Another way of looking at it is that, in SSADM, DFDs are used to answer the 

following data-oriented questions about a target system:  

What processing is done?  When? How? Where? By whom?  

What data is needed?  By whom? for what? When? 

5.2.3.2.1 Data Flow Diagrams show  

 The processes within the system.  

 The data stores (files) supporting the system's operation.  

 The information flows within the system.  

 The system boundary.  

 Interactions with external entities.  
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 However, we are not interested, here, in the development process in detail, 

only in the general modeling technique. Essentially, DFDs describe the 

information flows within a system.  

5.2.3.2.2 DFD Principles  

 The general principle in Data Flow Diagramming is that a system can be 

decomposed into subsystems, and subsystems can be decomposed into 

lower level subsystems, and so on.  

 Each subsystem represents a process or activity in which data is 

processed. At the lowest level, processes can no longer be decomposed.  

 Each 'process' in a DFD has the characteristics of a system.  

 Just as a system must have input and output (if it is not dead), so a 

process must have input and output.  

 Data enters the system from the environment; data flows between 

processes within the system; and data is produced as output from the 

system  

5.2.3.2.3 Basic DFD Notations  

In a DFD, a process may be shown as a circle, an oval, or (typically) a 

rectangular box; and data are shown as arrows coming to, or going from the 

edge of the process box.  

(SSADM) DFD Notations  

SSADM uses 4 diagramming notations in DFDs as shown in figure 5.4:  
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 Processes transform or manipulate data. Each box has a unique number 

as identifier (top left) and a unique name (an imperative - eg: 'do this' - 

statement in the main box area) The top line is used for the location of, or 

the people responsible for, the process.   

 Data Flows depict data/information flowing to or from a process. The 

arrows used to represent the flows must either start and/or end at a 

process box.   

 Data Stores are some location where data is held temporarily or 

permanently.   

 External Entities, also known as 'External source/recipients, are things 

(e.g.: people, machines, organizations etc.) which contribute data or 

information to the system or which receive data/information from it.  

 
Figure 5.4 

5.2.3.2.4 General Data Flow Rules  



154 
 

 Entities are either 'sources of' or 'sinks' for data input and outputs - i.e. 

they are the originators or terminators for data flows.  

 Data flows from Entities must flow into Processes  

 Data flows to Entities must come from Processes  

 Processes and Data Stores must have both inputs and outputs (What 

goes in must come out!)  

 Inputs to Data Stores only come from Processes.  

 Outputs from Data Stores only go to Processes.  

 

5.2.3.2.5 DFD Levels 

The 'Context Diagram ' is an overall, simplified, view of the target system, which 

contains only one process box, and the primary inputs and outputs as shown in figure 

5.5. 

 

Figure 5.5 

 Context diagram 2  
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Figure 5.6 

Both the above figure 5.5 and 5.6 say the same thing.  The second makes 

use of the possibility in SSADM of including duplicate objects. (In context 

diagram 2 the duplication of the Customer object is shown by the line at the 

left hand side. Drawing the diagram in this way emphasizes the Input-Output 

properties of a system.)  

The Context diagram above, and the one which follows (Figure 5.7), are a first 

attempt at describing part of a 'Home Catalogue' sales system. In the 

modeling process it is likely that diagrams will be reworked and amended 

many times - until all parties are satisfied with the resulting model. A model 

can usefully be described as a co-ordinated set of diagrams.  

The Top (1st level) DFD  

The Top or 1st level DFD, describes the whole of the target system.  The Top 

level DFD 'bounds' the system -and shows the major processes which are 

included within the system. 
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Figure 5.7 

The next step - the Next Level(s)  

Each Process box in the Top Level diagram may itself be made up of a 

number of processes, and where this is the case, the process box will be 

decomposed as a second level diagram as shown in figure 5.8.  
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Figure 5.8 

Each box in a diagram has an identification number derived from the parent. 

Any box in the second level decomposition may be decomposed to a third 

level. Very complex systems may possibly require decomposition of some 

boxes to further levels.  

Decomposition stops when a process box can be described with an 

Elementary Function Description using, for example, Pseudocode as shown in 

figure 5.5.  

 

Figure 5.9 

Each box in a diagram has an identification number (derived from the parent - 

the Context level is seen as box 0) in the top left corner.  

Every page in a DFD should contain fewer than 10 components. If a process 

has more than 10 components, then one or more components (typically a 

process) should be combined into one and another DFD be generated that 
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describes that component in more detail. Each component should be 

numbered, as should each subcomponent, and so on. So for example, a top 

level DFD would have components 1, 2, 3, 4, 5, the subcomponent DFD of 

component 3 would have components 3.1, 3.2, 3.3, and 3.4; and the 

subsubcomponent DFD of component 3.2 would have components 3.2.1, 

3.2.2, and 3.2.3 

SSADM uses different sets of Data Flow Diagram to describe the target system in 
different ways, moving from analysis of the current system to specification of the 
required system:  

WHAT the system does - Current Physical DFD 

HOW it does it - Current Logical DFD 

WHAT it should do - Required Logical DFD 

HOW it should do it - Required Physical DFD 

Table 5.1 

5.2.3.2.6 Developing a DFD 

In the following section, two approaches to prepare the DFD are proposed. 

Top-Down Approach 

1. The system designer makes a context level DFD, which shows the 

interaction (data flows) between the system (represented by one 

process) and the system environment (represented by terminators).  
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2. The system is decomposed in lower level DFD into a set of processes, 

data stores, and the data flows between these processes and data 

stores.  

3. Each process is then decomposed into an even lower level diagram 

containing its subprocesses.  

4. This approach then continues on the subsequent subprocesses, until a 

necessary and sufficient level of detail is reached.  

Event Partitioning Approach 

This approach was described by Edward Yourdon in "Just Enough Structured 

Analysis",  

1. Construct detail DFD.  

1. The list of all events is made.  

2. For each event a process is constructed.  

3. Each process is linked (with incoming data flows) directly with 

other processes or via data stores, so that it has enough 

information to respond to given event.  

4. The reaction of each process to a given event is modeled by an 

outgoing data flow.  

5.2.3.2 Structured Analysis and Design Techniques (SADT) 
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SADT was developed by D.T. Ross. It incorporates a graphical language. An 

SADT model consists of an ordered set of SA (Structured Analysis) diagrams. 

Each diagram must contain 3 to 6 nodes plus interconnecting arcs. Two basic 

types of SA diagram are Actigram (activity diagram) and datagram (data 

diagram). In actigram the nodes denote activities and arcs specify the data 

flow between activities while in datagrams nodes specify the data objects and 

arcs denote activities. The following figure shows the formats of actigram and 

datagram. It is important to note that there are four distinct types of arcs. Arcs 

coming into the left side of a node show inputs and arcs leaving the right side 

of a node convey output. Arcs entering the top of a node convey control and 

arcs entering the bottom specify mechanism. Following Figures 5.10 and 5.11 

illustrate the activity diagrams and data diagrams. As shown, in actigram arc 

coming into the left side shows the input data on that activity works, arc 

coming from right indicates the data produced by the activity. Arc entering the 

top of the node specifies the control data for the activity arc entering the 

bottom specify the processor. 

Figure 5.10 Activity diagram 
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Figure 5.11 Data diagram components 

Following SADT diagram (Figure 5.12) illustrate a simple payroll system. It is 

making the use of activity diagrams. 

 

 

 

 

 

 

 

 

 

Figure 5.12 
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5.2.3.3 Prototyping 

Sometimes when the system is a totally new system, the users and clients do 

not have a good idea of their requirements. In this type of cases, prototyping 

can be a good option. The idea behind prototyping is that clients and users 

can assess their needs much better if they can see the working of a system, 

even if the system is a partial system. So an actual experience with a 

prototype that implements part of the whole system helps the user in 

understanding their requirements. So in prototyping approach, first of all a 

prototype is built and then delivered to the user to use it.  

There are two variants of prototyping: (i) Throwaway prototyping and (ii) 

evolutionary prototyping. Throwaway prototyping is used with the objective 

that prototype will be discarded after the requirements have been identified. In 

evolutionary prototyping, the idea is that prototype will be eventually 

converted in the final system. Gradually the increments are made to the 

prototype by taking into the consideration the feedback of clients and users.  

 

Figure 5.13 

OUTLINE 
REQUIREME

EVOLUTIONARY 
PROTOTYPING

THROWAWAY 
PROTOTYPING

DELIVERED SYSTEM 

EXECUTABLE PROTOTYPE + 
SYSTEM SPECIFICATION 



163 
 

Evolutionary prototyping 

It is the only way to develop the system where it is difficult to establish a 

detailed system specification. But this approach has following limitations: 

(i) Prototype evolves so quickly that it is not cost effective to produce 

system documentation. 

(ii) Continual changes tend to corrupt the structure of the prototype 

system. So maintenance is likely to be difficult and costly. 

 

Figure 5.14 

Throwaway prototyping 

The principal function of the prototype is to clarify the requirements. After 

evaluation the prototype is thrown away as shown in figure 5.15.  
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Figure 5.15 

Customers and end users should resist the temptation to turn the throwaway 

prototype into a delivered system. The reason for this are: 

(i) Important system characteristics such as performance, security, 

reliability may have been ignored during prototype development so 

that a rapid implementation could be developed. It may be 

impossible to turn the prototype to meet these non-functional 

requirements. 

(ii) The changes made during prototype development will probably 

have degraded the system structure. So the maintenance will be 

difficult and expensive. 

5.2.4 Specification languages 

Requirement specification necessitates the use of some specification 

language. The language should possess the desired qualities like 

modifiability, understandability, unambiguous etc. But the language should be 
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easy to use.  This requirement is sometimes difficult to meet. For example to 

avoid the unambiguity, one should use formal language, which is difficult to 

use and learn. Natural language is quite easy to use but tends to be 

ambiguous. Some of the commonly used specification languages are 

discussed below 

5.2.4.1 Structured English 

The natural languages are most easy to use but it has some drawbacks and the most 
important one is that requirements specified in natural language are imprecise and 
ambiguous.  To remove this drawback some efforts have been made and one is the use 
of structured English. In structure English the requirements are broken into sections 
and paragraphs. Each paragraph is broken into sub paragraphs. Many organizations 
specify the strict use of some words and restrict the use of others to improve the 
precision. 

5.2.4.2 Regular expressions 

Regular expressions are used to specify the syntactic structure of symbol strings. 
Many software products involve processing of symbol strings. Regular expressions 
provide a powerful notation for such cases. The rules for regular expressions are: 

1. Atoms: A basic symbol in the alphabet of interest. 

2. Alternations: If R1 and R2 are regular expressions then (R1|R2) is a 

regular expression. (R1|R2) denotes the union of the languages 

specified by R1 and R2.  
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3. Composition: If R1 and R2 are regular expressions then (R1 R2) is a 

regular expression. (R1 R2) denotes the language formed by 

concatenating strings from R2 onto strings from R1.  

4. Closure: If R1 is a regular expression then (R1)* is a regular 

expression. (R1)* denotes the language formed by concatenating zero 

or more strings from R1 with zero or more strings from R1. A 

commonly used notation is (R1)+, which denotes one or more 

concatenation of elements in R1. 

5. Completeness: Nothing else is a regular expression. 

For example the requirement, a valid data stream must start with an “a”, 

followed by “b”s and “c”s in any order but always interleaved by a and 

terminated by “b” or “c”, may be represented by following regular expression: 

((a (b|c)))+.  

5.2.4.3 Decision tables 

It is a mechanism for recording complex decision logics. A decision table 

consists of four quadrants: condition stub, condition entries, action stub, and 

action entries. In the condition stub, all the conditions are specified. Condition 

entries are used to combine conditions into decision rules. Action stub 

specifies the actions to be taken in response to decision rules. The action 

entry relates decision rules to actions as shown in table 5.2. 
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Decision Rules  

Rule 1 Rule 2 Rule 3 Rule 4 

     

Condition stub  Condition entries 

     

     

Action Stub  Action entries 

     

Table 5.2 Decision table 

Following is the decision table (Table 5.3) to find the largest of three numbers. 

 

 Rule 1 Rule 2 Rule 3

A>B Y Y N 

A>C Y N N 

B>C - N Y 

A is largest X   

B is largest   X 

C is largest  X  

Table 5.3 

The above decision table is an example of a limited entry decision table in 

which the entries are limited to Y, N, -, X where Y denotes yes, N denotes No, 

- denotes don’t care, and X denotes perform action. If more than one decision 

rule has identical (Y, N, -) entries, the table is said to be ambiguous. 

Ambiguous pair of decision rules that specify identical actions are said to be 
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redundant and those specifying different actions are contradictory. The 

contradictory rules permits specification of nondeterministic and concurrent 

actions. 

 Rule 1 Rule 2 Rule 3 Rule 4

C1 Y Y Y Y 

C2 Y N N N 

C3 N N N N 

A1 X    

A2  X   

A3   X X 

Table 5.4 

The above decision table (Table 5.4) illustrates redundant rules (R3 and R4) 

and contradictory rules (R2 and R3, R2 and R4). 

A decision table is complete if every possible set of conditions has a 

corresponding action prescribed. There are 2n combinations of conditions in a 

decision table that has n conditions.  

5.2.4.4 Event tables 

They specify actions to be taken when events occur under different sets of conditions. 
A 2-dimensional event table relates action to operating conditions and event of 
interest. For example, following table 5.5 specifies that if condition c1 is there and 
event E1 occurs, then one must take A1 action. A “-“ entry indicates that no action is 
required. “X” indicates impossible system configuration. Two actions separated by “,” 
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(A2, A3) denotes concurrent activation while separated by “;” (A4; A5) denotes A5 
follows A4. 

Event Conditions

E1 E2 E3 E4 E5 

C1 A1 - A4; A5   

C2 X A2, A3    

C3      

C4      

Table 5.5 

 
5.2.4.5 Transition table 

These are used to specify changes in the state of a system as a function of 

driving forces. Following figure shows the format of a transition table (Table 

5.6). 

Current input
Current state

A B 

S0 S0 S1 

S1 S1 S0 

Table 5.6 Transition Table 

It indicates that if B is the input in S0 state then a transition will take place to 

s1 state. Transition tables are the representation of finite state automata.  
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Summary 

Requirements state what the system should do and define constraints on its 

operations and implementation. The requirements may be classified as 

functional and non-functional requirements providing the information about the 

functionalities and constraints on the system.  The requirements are to be 

specified in an unambiguous manner. So a number of tools and techniques 

are used such as DFD, decision table, event table, transition table, regular 

expressions etc. The SRS is the agreed statement of the system 

requirements. It should be organized so that both clients and developers can 

use it. To satisfy its goal, the SRS should have certain desirable 

characteristics such as consistency, verifiability, modifiability, traceability etc.  

To ensure the characteristic completeness, the SRS should consist of the 

components: Functionality, Performance, Design constraints, and External 

interfaces. There are different approaches to problem analysis. The aim of 

problem analysis is to have the clear understanding of the requirements of the 

user. The approaches discussed are data flow modeling using DFD, 

Structured analysis and Design Technique (SADT) and prototyping. Data flow 

modeling and SADT focus mainly on the functions performed in the problem 

domain and the input consumed and produced by these functions.  
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Keywords 

Functional requirements: These are the functionalities or services that the 

system is expected to provide. 

Non-functional requirements: These are constraints on the services or 

functionalities offered by the system. 

SRS: It is the official document of what is required of the system developers. 

DFD: They model events and processes and examine how data flows into, 

out of, and within the system. 

Transition table: These are used to specify changes in the state of a system 

as a function of driving forces.  

Event tables: They specify actions to be taken when events occur under different sets 
of conditions. 

Decision Table: It is a mechanism for recording complex decision logics 

consisting of four quadrants: condition stub, condition entries, action stub, and 

action entries. 

Self-assessment questions 

1. What do you understand by requirements? Differentiate between 

functional and non-functional requirements using suitable examples. 

2. What do you understand by SRS (Software Requirement 

Specification)? What are the components of it? 
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3. What are the desirable characteristics of Software Requirement 

Specification? Explain. 

4. Why do we need the specification languages to generate the software 

requirement specification? What are the merits and demerits of using 

the specification languages? Explain. 

5. Explain the graphic and text notations used in Data Flow Diagrams 

(DFDs).  

6. What are the principles of Data Flow Diagram (DFD) modeling?  

7. Why is DFD modeling useful?  

1.6 References/Suggested readings 
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18. An integrated approach to Software Engineering by Pankaj Jalote, 
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20. Software Engineering – A Practitioner’s Approach by Roger S 

Pressman, McGraw-Hill. 
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Lesson number: VI    Writer: Dr. Rakesh Kumar 

Software Design - I    Vetter: Dr. Pradeep Bhatia 

 
6.0 Objectives 

The objective of this lesson is to make the students familiar with the concepts 

of design, design notations and design concepts. After studying the lesson 

students will be acquainted with: 

1. Design and its quality. 

2. Design fundamental concepts 

3. Modularization criteria 

4. Design notations 

6.1 Introduction  

Design is an iterative process of transforming the requirements specification 

into a design specification. Consider an example where Mrs. & Mr. XYZ want 

a new house. Their requirements include, 

 a room for two children to play and sleep  

 a room for Mrs. & Mr. XYZ to sleep  

 a room for cooking  

 a room for dining  

 a room for general activities  



174 
 

and so on. An architect takes these requirements and designs a house. The 

architectural design specifies a particular solution. In fact, the architect may 

produce several designs to meet this requirement. For example, one may 

maximize children’s room, and other minimizes it to have large living room. In 

addition, the style of the proposed houses may differ: traditional, modern and 

two-storied. All of the proposed designs solve the problem, and there may not 

be a “best” design. 

Software design can be viewed in the same way. We use requirements 

specification to define the problem and transform this to a solution that 

satisfies all the requirements in the specification. Design is the first step in the 

development phase for any engineered product. The designer goal is to 

produce a model of an entity that will later be built.  

6.2 Presentation of contents 

    6.2.1 Definitions for Design 

    6.2.2 Qualities of a Good Design  

    6.2.3 Design Constraints 

    6.2.4 Fundamental Design Concepts 

        6.2.4.1 Abstraction  

        6.2.4.2 Information Hiding  

        6.2.4.3 Modularity  
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    6.2.5 Modularization criteria 
        6.2.5.1 Coupling 

        6.2.5.2 Cohesion 

        6.2.5.3 Other Modularization Criteria 

    6.2.6 Popular Design Methods 

    6.2.7 Design Notation  

        6.2.7.1 Structure Charts 

          6.2.7.2 Data Flow Diagram 

          6.2.7.3 Pseudocode 

6.2.1 Definitions for Design 

 “Devising artifacts to attain goals” [H.A. Simon, 1981]. 

 “The process of defining the architecture, component, interfaces and other 

characteristics of a system or component” [ IEEE 160.12]. 

 The process of applying various techniques and principles for the purpose 

of defining a device, a process or a system in sufficient detail to permit its 

physical realization. 

Without Design, System will be 

 Unmanageable since there is no concrete output until coding. Therefore it 

is difficult to monitor & control. 
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 Inflexible since planning for long term changes was not given due 

emphasis. 

 Unmaintainable since standards & guidelines for design & construction are 

not used. No reusability consideration. Poor design may result in tightly 

coupled modules with low cohesion. Data disintegrity may also result. 

 Inefficient due to possible data redundancy and untuned code. 

 Not portable to various hardware / software platforms. 

Design is different from programming. Design brings out a representation for 

the program – not the program or any component of it. The difference is 

tabulated below. 

Design Programming 
Abstractions of operations & 

data("What to do") 

Device algorithms and data 

representations 

Establishes interfaces Consider run-time environments 

Choose between design alternatives 

Make trade-offs w.r.t.constraints etc 

Choose functions, syntax of language  

Devices representation of program Construction of program 

  

6.2.2 Qualities of a Good Design  

Functional: It is a very basic quality attribute. Any design solution should 

work, and should be constructable. 
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Efficiency: This can be measured through  

 run time (time taken to undertake whole of processing task or transaction) 

 response time (time taken to respond to a request for information)  

 throughput (no. of transactions / unit time)  

 memory usage, size of executable, size of source, etc 

Flexibility: It is another basic and important attribute. The very purpose of 

doing design activities is to build systems that are modifiable in the event of 

any changes in the requirements.  

Portability & Security: These are to be addressed during design - so that 

such needs are not “hard-coded” later.  

Reliability: It tells the goodness of the design - how it work successfully 

(More important for real-time and mission critical and on-line systems).  

Economy: This can be achieved by identifying re-usable components.  

Usability: Usability is in terms of how the interfaces are designed (clarity, 

aesthetics, directness, forgiveness, user control, ergonomics, etc) and how 

much time it takes to master the system.  

6.2.3 Design Constraints 

Typical Design Constraints are:  

 Budget  

 Time  

 Integration with other systems  
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 Skills  

 Standards  

 Hardware and software platforms  

Budget and Time cannot be changed. The problems with respect to 

integrating to other systems (typically client may ask to use a proprietary 

database that he is using) has to be studied & solution(s) are to be found. 

‘Skills’ is alterable (for example, by arranging appropriate training for the 

team). Mutually agreed upon standards has to be adhered to. Hardware and 

software platforms may remain a constraint. 

Designer try answer the “How” part of “What” is raised during the requirement 

phase. As such the solution proposed should be contemporary. To that extent 

a designer should know what is happening in technology. Large, central 

computer systems with proprietary architecture are being replaced by 

distributed network of low cost computers in an open systems environment 

We are moving away from conventional software development based on hand 

generation of code (COBOL, C) to Integrated programming environments. 

Typical applications today are internet based. 

The process of design involves conceiving and planning out in the mind" and “making 
a drawing, pattern, or sketch of". In software design, there are three distinct types of 
activities: external design, architectural design, and detailed design. Architectural and 
detailed designs are collectively referred to as internal design. External design of 
software involves conceiving, planning out, and specifying the externally observable 
characteristics of a software product. These characteristics include user displays and 
report formats, external data sources and data sinks, and the functional characteristics, 
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performance requirements, and high-level process structure for the product. External 
design begins during the analysis phase and continues in the design phase. In practice, 
it is not possible to perform requirements definition without doing some preliminary 
design. Requirements definition is concerned with specifying the external, functional, 
and performance requirements for a system, as well as exception handling and the 
other items. External design is concerned with refining those requirement and 
establishing the high level structural view of the system, Thus, the distinction between 
requirements definition and external design is not sharp, but is rather a gradual shift in 
emphasis from detailed "what" to high-level 'how". 

Internal design involves conceiving, planning out, and specifying the internal 

structure and processing details of the software product. The goals of internal 

design are to specify internal structure and processing details, to record 

design decisions and indicate why certain alternatives and trade-offs were 

chosen, to elaborate the test plan, and to provide a blueprint for 

implementation, testing, and maintenance activities. The work products of 

internal design include a specification of architectural structure, the details of 

algorithms and data structures, and the test plan. 

Architectural design is concerned with refining the conceptual view of the 

system, identifying the internal processing functions, decomposing the high 

level functions into sub functions, defining internal data streams and data 

stores. Issues of concern during detailed design include specification of 

algorithm, concrete data structures that implement the data stores, 

interconnection among the functions etc. 

The test plan describes the objectives of testing, the test completion criteria, 

the integration plan (strategy, schedule, and responsible individuals), 
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particular tools and techniques to be used, and the actual test cases and 

expected results. Functional tests and Performance tests are developed 

during requirements analysis and are refined during the design phase. Tests 

that examine the internal structure of the software product and tests that 

attempt to break the system (stress tests) are developed during detailed 

design and implementation.  

External design and architectural design typically span the Period from 

Software Requirements Review (SRR) to Preliminary Design Review (PDR). 

Detailed design spans the period from preliminary design review to Critical 

Design Review (CDR). 

Phases  Analysis Design Implementation
Activities  Planning 

    Requirement Definition
External 
    Architectural
        Detailed 

Coding  
    Debugging 
        Testing 

Reviews  SRR PDR CDR
6.2.4 FUNDAMENTAL DESIGN CONCEPTS 

Fundamental concepts of software design include abstraction, structure, 

information hiding, modularity, concurrency, verification, and design 

aesthetics. 

6.2.4.1 Abstraction  

Abstraction is the intellectual tool that allows us to deal with concepts apart 

from particular instances of those concepts. During requirements definition 

and design, abstraction permits separation of the conceptual aspects of a 
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system from the implementation details. We can, for example, specify the 

FIFO property of a queue or the LIFO property of a stack without concern for 

the representation scheme to be used in implementing the stack or queue. 

Similarly, we can specify the functional characteristics of the routines that 

manipulate data structures (e.g., NEW, PUSH, POP, TOP, EMPTY) without 

concern for the algorithmic details of the routines. 

During software design, abstraction allows us to organize and channel our 

thought processes by postponing structural considerations and detailed 

algorithmic considerations until the functional characteristics, data streams, 

and data stores have been established. Structural considerations are then 

addressed prior to consideration of algorithmic details. This approach reduces 

the amount of complexity that must be dealt with at any particular point in the 

design process. 

Architectural design specifications are models of software in which the 

functional and structural attributes of the system are emphasized. During 

detailed design, the architectural structure is refined into implementation 

details. Design is thus a process of proceeding from abstract considerations 

to concrete representations. Three widely used abstraction mechanisms in 

software design are functional abstraction, data abstraction, and control 

abstraction. These mechanisms-allow us to control the complexity of the 

design process by systematically proceeding from abstract to the concrete.  
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Functional abstraction involves the use of parameterized sub programs. The 

ability to parameterize a subprogram and to bind different values on different 

invocations of the subprogram is a powerful abstraction mechanism. 

Functional abstraction can be generalized to collection of subprograms i.e. 

groups. Within a group, certain routines have the visible property, which 

allows them to be used by routines in other groups. Routines without the 

visible property are hidden from other groups. A group thus provides a 

functional abstraction in which the visible routines communicate with other 

groups and the hidden routines exist to support the visible ones. 

Data abstraction involves specifying a data type or data object by specifying 

legal operations on objects. Many modern programming languages provide 

mechanisms for creating abstract data types. For example, the Ada package 

is a programming language mechanism that provides support for both data 

and procedural abstraction. The original abstract data type is used as a 

template or generic data structure from which other data structures can be 

instantiated. 

Control abstraction is the third commonly used abstraction mechanism in 

software design. Like procedural and data abstraction, control abstraction 

implies a program control mechanism without specifying internal details.  

IF statements and WHILE statements in modern programming languages are 

abstractions of machine code implementations that involve conditional jump 
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instructions. A statement of the form leaves unspecified the sorting technique, 

the nature of S, the nature of the files, and how "for all I in S" is to be handled. 

Another example of control abstraction is the monitor construct, which is a 

control abstraction for concurrent programming; implementation details of the 

operator are hidden inside the construct. At the architectural design level, 

control abstraction permits specification of sequential subprograms, exception 

handlers, and co-routines and concurrent program units without concern for 

the exact details of implementation. 

6.2.4.2 Information Hiding  

Information hiding is a fundamental design concept for software. When a 

software system is designed using the information hiding approach, each 

module in the system hides the internal details of its processing activities and 

modules communicates only thru well defined interfaces. Design should begin 

with a list of difficult design decisions and design decisions that are likely to 

change. Each module is designed to hide such a decision from the other 

modules. Because these design decisions transcend execution time, design 

modules may not correspond to processing steps in the implementation of the 

system. In addition to hiding of difficult and changeable design decisions, 

other candidates for information hiding include: 



184 
 

 A data structure, its internal linkage, and the implementation details of 

the procedures that manipulate it (this is the principle of data 

abstraction) 

 The format of control blocks such as those for queues in an operating 

system (a "control-block" module) 

 Character codes, ordering of character sets, and other implementation 

details 

 Shifting, masking, and other machine dependent details 

Information hiding can be used as the principal design technique for 

architectural design of a system, or as a modularization criterion in 

conjunction with other design 

6.2.4.3 Modularity  

There are many definitions of the term "module." They range from "a module 

is a FORTRAN subroutine" to "a module is an Ada package" to "a module is a 

work assignment for an individual programmer". All of these definitions are 

correct, in the sense that modular systems incorporate collections of 

abstractions in which each functional abstraction, each data abstraction, and 

each control abstraction handles a local aspect of the problem being solved. 

Modular systems consist of well-defined, manageable units with well-defined 

interfaces among the units. Desirable properties of a modular system include: 
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 Each processing abstraction is a well-defined subsystem that is potentially 

useful in other applications. 

 Each function in each abstraction has a single, well-defined purpose. 

 Each function manipulates no more than one major data structure. 

 Functions share global data selectively. It is easy to identify all routines 

that share a major data structure. 

 Functions that manipulate instances of abstract data types are 

encapsulated with the data structure being manipulated. 

Modularity enhances design clarity, which in turn eases implementation, 

debugging, testing, documenting, and maintenance of the software product.  

6.2.5 Modularization criteria 
Architectural design has the goal of producing well-structured, modular 

software systems. In this section of the text, we consider a software module to 

be a named entity having the following characteristics: 

 Modules contain instructions, processing logic, and data structures. 

 Modules can be separately compiled and stored in a library. 

 Modules can be included in a program. 

 Module segments can be used by invoking a name and some parameters. 

 Modules can use other modules. 
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Examples of modules include procedures, subroutines, and functions; 

functional groups of related procedures, subroutines, and functions; data 

abstraction groups; utility groups; and concurrent processes. Modularization 

allows the designer to decompose a system into functional units, to impose 

hierarchical ordering on function usage, to implement data abstraction, to 

develop independently useful subsystems. In addition, modularization can be 

used to isolate machine dependencies, to improve the performance of a 

software product, or to ease debugging, testing, integration, tuning, and 

modification of the system. 

There are numerous criteria that can be used to guide the modularization of a 

system. Depending on the criteria used, different system structures may 

result. Modularization criteria include the conventional criterion, in which each 

module and its sub modules correspond to a processing step in the execution 

sequence; the information hiding criterion, in which each module hides a 

difficult or changeable design decision from the other modules; the data 

abstraction criterion, in which each module hides the representation details of 

a major data structure behind functions that access and modify the data 

structure; levels of abstraction, in which modules and collections of modules 

provide a hierarchical set of increasingly complex services; coupling-

cohesion, in which a system is structured to maximize the cohesion of 

elements in each module and to minimize the coupling between modules; and 
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problem modeling, in which the modular structure of the system matches the 

structure of the problem being solved. There are two versions of problem 

modeling: either the data structures match the problem structure and the 

visible functions manipulate the data structures, or the modules form a 

network of communicating processes where each process corresponds to a 

problem entity.  

Coupling and cohesion 

A fundamental goal of software design is to structure the software product so 

that the number and complexity of interconnection between modules is 

minimized. A good heuristic for achieving this goal involves the concepts of 

coupling and cohesion. 

6.2.5.1 Coupling 

Coupling is the measure of strength of association established by a 

connection from one module to another. Minimizing connections between 

modules also minimizes the paths along which changes and errors can 

propagate into other parts of the system (‘ripple effect’). The use of global 

variables can result in an enormous number of connections between the 

modules of a program. The degree of coupling between two modules is a 

function of several factors: (1) How complicated the connection is, (2) 

Whether the connection refers to the module itself or something inside it, and 

(3) What is being sent or received. Coupling is usually contrasted with 
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cohesion. Low coupling often correlates with high cohesion, and vice versa. 

Coupling can be "low" (also "loose" and "weak") or "high" (also "tight" and 

"strong"). Low coupling means that one module does not have to be 

concerned with the internal implementation of another module, and interacts 

with another module with a stable interface. With low coupling, a change in 

one module will not require a change in the implementation of another 

module. Low coupling is a sign of a well structured computer system. 

However, in order to achieve maximum efficiency, a highly coupled system is 

sometimes needed. In modern computing systems, performance is often 

traded for lower coupling; the gains in the software development process are 

greater than the value of the running performance gain. 

Low-coupling / high-cohesion is a general goal to achieve when structuring 

computer programs, so that they are easier to understand and maintain. 

The concepts are usually related: low coupling implies high cohesion and vice 

versa. In the field of object-oriented programming, the connection between 

classes tends to get lower (low coupling), if we group related methods of a 

class together (high cohesion). The different types of coupling, in order of 

lowest to highest, are as follows: 

 Data coupling 

  Stamp coupling 

  Control coupling 
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  External coupling 

 Common coupling 

 Content coupling 

Where data coupling is most desirable and content coupling least. 

Data Coupling 

Two modules are data coupled if they communicate by parameters (each 

being an elementary piece of data).E.g. sin (theta) returning sine value, 

calculate_interest (amount, interest rate, term) returning interest amt. 

Stamp Coupling (Data-structured coupling) 

Two modules are stamp coupled if one passes to other a composite piece of 

data (a piece of data with meaningful internal structure). Stamp coupling is 

when modules share a composite data structure, each module not knowing 

which part of the data structure will be used by the other (e.g. passing a 

student record to a function which calculates the student's GPA) 

Control Coupling 

Two modules are control coupled if one passes to other a piece of information 

intended to control the internal logic of the other. In Control coupling, one 

module controls logic of another, by passing it information on what to do (e.g. 

passing a what-to-do flag).  

External coupling  
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External coupling occurs when two modules share an externally imposed data 

format, communication protocol, or device interface.  

Common coupling 

Two modules are common coupled if they refer to the same global data area. 

Instead of communicating through parameters, two modules use a global data 

Content coupling 

Two modules exhibit content coupled if one refers to the inside of the other in 

any way (if one module ‘jumps’ inside another module). E.g. Jumping inside a 

module violate all the design principles like abstraction, information hiding and 

modularity. 

In object-oriented programming, subclass coupling describes a special type of 

coupling between a parent class and its child. The parent has no connection 

to the child class, so the connection is one way (i.e. the parent is a sensible 

class on its own). The coupling is hard to classify as low or high; it can 

depend on the situation. 

 We aim for a ‘loose’ coupling. We may come across a (rare) case of module 

A calling module B, but no parameters passed between them (neither send, 

nor received). This is strictly should be positioned at zero point on the scale of 

coupling (lower than Normal Coupling itself). Two modules A &B are normally 

coupled if A calls B – B returns to A – (and) all information passed between 

them is by means of parameters passed through the call mechanism. The 
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other two types of coupling (Common and content) are abnormal coupling and 

not desired. Even in Normal Coupling we should take care of following issues: 

 Data coupling can become complex if number of parameters 

communicated between is large.  

 In Stamp coupling there is always a danger of over-exposing irrelevant 

data to called module. (Beware of the meaning of composite data. Name 

represented as an array of characters may not qualify as a composite 

data. The meaning of composite data is the way it is used in the 

application NOT as represented in a program)  

 “What-to-do flags” are not desirable when it comes from a called module 

(‘inversion of authority’): It is alright to have calling module (by virtue of the 

fact, is a boss in the hierarchical arrangement) know internals of called 

module and not the other way around.  

In general, use of tramp data and hybrid coupling is not advisable. When data 

is passed up and down merely to send it to a desired module, the data will 

have no meaning at various levels. This will lead to tramp data. Hybrid 

coupling will result when different parts of flags are used (misused?) to mean 

different things in different places (Usually we may brand it as control coupling 

– but hybrid coupling complicate connections between modules). Two 

modules may be coupled in more than one way. In such cases, their coupling 

is defined by the worst coupling type they exhibit.  
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In object-oriented programming, coupling is a measure of how strongly one 

class is connected to another. 

Coupling is increased between two classes A and B if: 

 A has an attribute that refers to (is of type) B.  

 A calls on services of a B object.  

 A has a method which references B (via return type or parameter).  

 A is a subclass of (or implements) B.  

Disadvantages of high coupling include: 

 A change in one class forces a ripple of changes in other classes.  

 Difficult to understand a class in isolation.  

 Difficult to reuse or test a class because dependent class must also be 

included.  

One measure to achieve low coupling is functional design: it limits the 

responsibilities of modules. Modules with single responsibilities usually need 

to communicate less with other modules, and this has the virtuous side-effect 

of reducing coupling and increasing cohesion in many cases. 

 

 

6.2.5.2 Cohesion 

Designers should aim for loosely coupled and highly cohesive modules. 

Coupling is reduced when the relationships among elements not in the same 
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module are minimized. Cohesion on the other hand aims to maximize the 

relationships among elements in the same module. Cohesion is a good 

measure of the maintainability of a module. Modules with high cohesion tend 

to be preferable because high cohesion is associated with several desirable 

traits of software including robustness, reliability, reusability, and 

understandability whereas low cohesion is associated with undesirable traits 

such as being difficult to maintain, difficult to test, difficult to reuse, and even 

difficult to understand. The types of cohesion, in order of lowest to highest, 

are as follows: 

1. Coincidental Cohesion (Worst)  

2. Logical Cohesion  

3. Temporal Cohesion  

4. Procedural Cohesion  

5. Communicational Cohesion  

6. Sequential Cohesion  

7. Functional Cohesion (Best)  

 

 

Coincidental cohesion (worst)  
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Coincidental cohesion is when parts of a module are grouped arbitrarily; the 

parts have no significant relationship (e.g. a module of frequently used 

functions).  

Logical cohesion  

Logical cohesion is when parts of a module are grouped because of a slight 

relation (e.g. using control coupling to decide which part of a module to use, 

such as how to operate on a bank account).  

Temporal cohesion  

In a temporally bound (cohesion) module, the elements are related in time. 

Temporal cohesion is when parts of a module are grouped by when they are 

processed - the parts are processed at a particular time in program execution 

(e.g. a function which is called after catching an exception which closes open 

files, creates an error log, and notifies the user).  

Procedural cohesion  

Procedural cohesion is when parts of a module are grouped because they 

always follow a certain sequence of execution (e.g. a function which checks 

file permissions and then opens the file).  

Communicational cohesion  

Communicational cohesion is when parts of a module are grouped because 

they operate on the same data (e.g. a method updateStudentRecord which 

operates on a student record, but the actions which the method performs are 

not clear).  
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Sequential cohesion  

Sequential cohesion is when parts of a module are grouped because the 

output from one part is the input to another part (e.g. a function which reads 

data from a file and processes the data).  

Functional cohesion (best)  

Functional cohesion is when parts of a module are grouped because they all 

contribute to a single well-defined task of the module (a perfect module).  

Since cohesion is a ranking type of scale, the ranks do not indicate a steady 

progression of improved cohesion. Studies by various people including Larry 

Constantine and Edward Yourdon as well as others indicate that the first two 

types of cohesion are much inferior to the others and that module with 

communicational cohesion or better tend to be much superior to lower types 

of cohesion. The seventh type, functional cohesion, is considered the best 

type. However, while functional cohesion is considered the most desirable 

type of cohesion for a software module, it may not actually be achievable. 

There are many cases where communicational cohesion is about the best that 

can be attained in the circumstances. However the emphasis of a software 

design should be to maintain module cohesion of communicational or better 

since these types of cohesion are associated with modules of lower lines of 

code per module with the source code focused on a particular functional 
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objective with less extranous or unnecessary functionality, and tend to be 

reusable under a greater variety of conditions. 

Example: Let us create a module that calculates average of marks obtained 

by students in a class: 

calc_stat(){read (x[]); a = average (x); print a} 

average (m){sum=0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);} 

In average() above, all of the elements are related to the performance of a 

single function. Such a functional binding (cohesion) is the strongest type of 

binding. Suppose we need to calculate standard deviation also in the above 

problem, our pseudo code would look like: 

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;} 

average(m) // function to calculate average 

{sum =0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);} 

sd (m, y) //function to calculate standard deviation 

{ …} 

Now, though average () and sd () are functionally cohesive, calc_stat() has a 

sequential binding (cohesion). Like a factory assembly line, functions are 

arranged in sequence and output from average () goes as an input to sd(). 

Suppose we make sd () to calculate average also, then calc_stat() has two 

functions related by a reference to the same set of input. This results in 

communication cohesion.  
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Let us make calc-stat() into a procedure as below: 

calc_stat(){ 

sum = sumsq = count = 0 

for i = 1 to N 

read (x[i]) 

sum = sum + x[i] 

sumsq = sumsq + x[i]*x[i] 

…} 

a = sum/N 

s = … // formula to calculate SD 

print a, s 

} 

Now, instead of binding functional units with data, calc-stat() is involved in 

binding activities through control flow. calc-stat() has made two statistical 

functions into a procedure. Obviously, this arrangement affects reuse of this 

module in a different context (for instance, when we need to calculate only 

average not std. dev.). Such cohesion is called procedural.  

A good design for calc_stat () could be (Figure 6.1): 
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Figure 6.1 

A logically cohesive module contains a number of activities of the same kind. 

To use the module, we may have to send a flag to indicate what we want 

(forcing various activities sharing the interface). Examples are a module that 

performs all input and output operations for a program. The activities in a 

logically cohesive module usually fall into same category (validate all input or 

edit all data) leading to sharing of common lines of code (plate of spaghetti?). 

Suppose we have a module with possible statistical measures (average, 

standard deviation). If we want to calculate only average, the call to it would 

look like calc_all_stat (x[], flag). The flag is used to indicate out intent i.e. if 

flag=0 then function will return average, and if flag=1, it will return standard 

deviation. 

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;} 

calc_all_stat(m, flag) 
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{ 

If flag=0{sum=0; for i = 1 to N { sum = sum + x[i]; }return (sum/N);} 

If flag=1{ …….; return sd;} 

} 

6.2.5.3 Other Modularization Criteria 

Additional criteria for deciding which functions to place in which modules of 

software system include: hiding difficult and changeable design decisions, 

limiting the physical size of modules, structuring the system to improve the 

observability, and testability, isolating machine dependencies to few routines, 

easing likely changes, providing general purpose utility functions, developing 

an acceptable overlay structure in a machine with limited memory capacity, 

minimizing page faults in a virtual memory machine, and reducing the call 

return overhead of excessive subroutine calls. For each software product, the 

designer must weigh these factors and develop a consistent set of 

modularization criteria to guide the design process. Efficiency of the resulting 

implementation is a concern that frequently arises when decomposing a 

system into modules. A large number of small modules having data coupling 

and functional cohesion implies a large execution time overhead for 

establishing run-time linkages between the modules. The preferred technique 

for optimizing the efficiency of a system is to first design and implements the 

system in a highly modular fashion. System performance is then measured, 
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and bottlenecks are removed by reconfiguring and recombining modules, and 

by hand coding certain critical linkages and critical routines in assembly 

language if necessary. In these situations, the modular source code should be 

retained as documentation for the assembly language routines. The 

soundness of this technique is based on two observations. First, most 

software systems spend a large portion of processing time in a small portion 

of the code; typically 80 percent or more of execution time is spent in 20 

percent or less of the code. Furthermore, the region of code where the 

majority of time is spent is usually not predictable until the program is 

implemented and actual performance is measured. Second, it is relatively 

easy to reconfigure and recombine small modules into larger units if 

necessary for better performance; however, failure to initially decompose a 

system far enough may prevent identification of a function that can be used in 

other contexts. 

6.2.6 Popular Design Methods 

Popular Design Methods include 

1) Modular decomposition  

 Based on assigning functions to components.  

 It starts from functions that are to be implemented and explain how each 

component will be organized and related to other components.  
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2) Event-oriented decomposition  

 Based on events that the system must handle.  

 It starts with cataloging various states and then describes how 

transformations take place.  

3) Object-oriented design  

 Based on objects and their interrelationships  

 It starts with object types and then explores object attributes and actions. 

Structured Design – It uses modular decomposition 

6.2.7 Design Notation  

In software design the representation schemes used are of fundamental 

importance.  Good notation can clarify the interrelationships and interactions 

of interest, while poor notation can complicate and interfere with good design 

practice. At least, three levels of design specifications exist; external design 

specifications, which describe the external characteristics of software 

systems; architectural design specifications, which describe the structure of 

the system; and detailed design specifications, which describe control flow, 

data representation, and other algorithmic details within the modules. 

During the design phase, there are two things of interest: the design of the 

system, producing which are the basic objective of this phase, and the 

process of designing itself. It is for the latter that principles and methods are 

needed. In addition, while designing, a designer needs to record his thoughts 
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and decisions, to represent the design so that he can view it and play with it. 

For this, design notations are used. 

Design notations are largely meant to be used during the process of design 

and are used to represent design or design decisions. They are meant largely 

for the designer so that he can quickly represent his decisions in a compact 

manner that he can evaluate and modify. These notations are frequently 

graphical. 

Once the designer is satisfied with the design he has produced, the design is 

to be precisely specified in the form of a document. To specify the design, 

specification languages are used. Producing the design specification is the 

ultimate objective of the design phase. The purpose of this design document 

is quite different from that of the design notation. Whereas a design 

represented using the design notation is largely to be used by the designer, a 

design specification has to be so precise and complete that it can be used as 

a basis of further development by other programmers. Generally, design 

specification uses textual structures, with design notation helping in 

understanding. 

Here, we first describe a design notation structure charts that can be used to 

represent a function-oriented design. Then, we describe a simple design 

language to specify a design. Though the design document, the final output of 

the design activity, typically also contains other things like design decisions 
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taken and background, its primary purpose is to document the design itself. 

We will focus on this aspect only. 

6.2.7.1 Structure Charts 

Structure charts, a graphic representation of the structure, are used during 

architectural design to document hierarchical structure, parameters, and 

interconnections in a system. The structure of a program is made up of the 

modules of that program together with the interconnections between modules. 

Every computer program has a structure, and given a program, its structure 

can be determined. In a structure chart, a box represents a module with the 

module name written in the box. An arrow from module A to module B 

represents that module A invokes module B. B is called the subordinate of A, 

and A is called the super-ordinate of B. The arrow is labeled by the 

parameters received by B as input and the parameters returned by B as 

output, with the direction of flow of the input and output parameters 

represented by small arrows. The parameters can be shown to be data 

(unfilled circle at the tail of the label) or control (filled circle at the tail).  

 

B C 

A 
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Unlike flowcharts, structure chart do not represent the structural information. 

So generally decision boxes are not there.  However, there are situations 

where the designer may wish to communicate certain procedural information 

explicitly, like major loops and decisions. Such information can also be 

represented in a structure chart. For example, let us consider a situation 

where module A has subordinates B, C, and D, and A repeatedly calls the 

modules C and D. This can be represented by a looping arrow around the 

arrows joining the subordinates C and D to A, as shown in figure 6.2. All the 

subordinate modules activated within a common loop are enclosed in the 

same looping arrow. 

A

B C D

A

B C D  

FIGURE 6.2 ITERATION AND DECISION REPRESENTATION 

Major decisions can be represented, similarly. For example, if the invocation 

of modules C and D in module A depends on the outcome of some decision, 

that is represented by a small diamond in the box for A, with the arrows 

joining C and D coming out of this diamond, as shown in above Figure. 
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Modules in a system can be categorized into few classes. There are some 

modules that obtain information from their subordinates and then pass it to 

their super-ordinate. This kind of module is an input module. Similarly, there 

are output modules that take information from their super-ordinate and pass it 

on to its subordinates. As the name suggests, the input and output modules 

are, typically, used for input and output of data, from and to the environment. 

The input modules get the data from the sources and get it ready to be 

processed, and the output modules take the output produced and prepare it 

for proper presentation to the environment. Then, there are modules that exist 

solely for the sake of transforming data into some other form. Such a module 

is called a transform module. Most of the computational modules typically fall 

in this category. Finally, there are modules whose primary concern is 

managing the flow of data to and from different subordinates. Such modules 

are called coordinate modules. The structure chart representation of the 

different types of modules is shown in following Figure. 

A module can perform functions of more than one type of module. For 

example, the composite module in Figure 6.3 is an input module, from the 

point of view of its super-ordinate, as it feeds the data Y to the super-ordinate. 

Internally, A is a coordinate module and views its job as getting data X from 

one subordinate and passing it to another subordinate, who converts it to Y. 

Modules in actual systems are often composite modules. 
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Input 
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FIGURE 6.3 DIFFERENT TYPES OF MODULES.  

A structure chart is a nice representation mechanism for a design that uses 

functional abstraction. It shows the modules and their call hierarchy, the 

interfaces between the modules, and what information passes between 

modules. It is a convenient and compact notation that is very useful while 

creating the design. That is, a designer can make effective use of structure 

charts to represent the model he is creating while he is designing. However, it 

is not very useful for representing the final design, as it does not give all the 

information needed about the design. For example, it does not specify the 

scope, structure of data, specifications of each module, etc. Hence, it is 

generally not used to convey design to the implementer. 
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We have seen how to determine the structure of an existing program. But, 

once the program is written, its structure is fixed; little can be done about 

altering the structure. However, for a given set of requirements many different 

programs can be written to satisfy the requirements, and each program can 

have a different structure. That is, although the structure of a given program is 

fixed, for a given set of requirements, programs with different structures can 

be obtained. The objective of the design phase using function-oriented 

method is to control the eventual structure of the system by fixing the 

structure during design. 

6.2.7.2 Data Flow diagrams (DFD) 

DFD is a directed graph in which node specifies process and arcs specify 

data items transmitted between processing nodes. Unlike flowcharts, DFD do 

not indicate decision logic under which various processing nodes in the 

diagram might be activated. DFD can be used during requirement analysis as 

well as in design phase to specify external and top-level internal design 

specification. The following symbols(Figure 6.4) are used to construct a DFD: 

Data Flow   

Process  

Data Stores  

Data Source/Sink  
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Figure 6.4 

An informal Data Flow Diagram 

6.2.7.3 Pseudocode 

Pseudocode notation can be used in architectural as well as detailed design 

phase. In it the designer describes system characteristics using short, 

concise, English language phrases that are structured by keywords such as If-

Then-else, While-Do, and End. Keywords and indentation describes the flow 

of control, while the English phrases describe processing actions. E.g. 

INITIALIZE tables and counters 

OPEN files 

READ the first ten records 

WHILE there are more records DO 

 WHILE there are more words in the text record DO 

 -------- 

 -------- 

 ENDWHILE at the end of the text record 

 
Compu

 
Compu

 
Transfo

 
Transfo

Input A 

A’ 

Input B B’ 

C’ Output D 
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ENDWHILE when all the text records have been processed 

PRINT …… 

CLOSE file 

TERMINATE the program 

6.3 Summary 

Design is the bridge between software requirements and implementation that 

specifies those requirements. The goal of architectural design is to specify a 

system structure that satisfies the requirements, the external design 

specification, and the implementation constraints. Detailed design provides 

the algorithmic details, data representation etc. Design is an important phase. 

Design principles and concepts establish a foundation for the creation of the 

design model that encompasses representation of data, architecture, 

interface, and procedures. Design principles and concepts guide the software 

engineer. Concept of modularity helps the designer in producing a design, 

which is simple and modifiable. Two important criteria for modularity are 

coupling and cohesion. Coupling is a measure of interconnection among 

modules. Cohesion of a module represents how tightly bound the internal 

elements of the module are to one another. Cohesion and coupling are 

closely related. Usually, the greater the cohesion of each module in the 

system, the lower the coupling between modules is. Structured design uses 

the modular decomposition. Design notations discussed in this chapter are 
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data flow diagrams, structured chart and Pseudocode. Structure chart is a 

good notation to represent the structured design. The structure chart of a 

program is a graphic representation of its structure. In a structure chart, a box 

represents a module with the module name written in the box. An arrow from 

module A to module B represents that module A invokes module B.  

6.4 Key words 

Abstraction, coupling, cohesion, Design, Data Flow Diagram, Information 

hiding, Modularity, Structured Chart, Pseudocode. 

6.5 Self-assessment questions 

1. Define design. What are the desirable qualities of a good design? 

Explain. 

2. What is a module? What are the advantages of a modular design? 

3. What do you understand by coupling and cohesion? What is the 

relationship between them? 

4. Define coupling. What are the different types of coupling? Explain. 

5. Define cohesion. Discuss the different types of cohesion using suitable 

examples. 

6. What can be the other criteria for modularization apart from coupling 

and cohesion?  

7. What do you understand by design notations? Discuss the difference 

between flowchart and data flow diagrams. 
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Lesson number: VII    Writer: Dr. Rakesh Kumar 

Software Design II     Vetter: Dr. Pradeep K.Bhatia 

 
7.0 Objectives 

The objective of this lesson is to get the students acquainted with the design 

activities, to provide a systematic approach for the derivation of the design - 

the blueprint from which software is constructed. This lesson will help them in 

understanding how a software design may be represented as a set of 

functions. This lesson introduces them with the notations, which may be used 

to represent a function-oriented design.  

7.1 Introduction  

Design is a process in which representations of data structure, program 

structure, interface characteristics, and procedural details are synthesized 

from information requirements. During design a large system can be 

decomposed into sub-systems that provide some related set of services. The 

initial design process of identifying these sub-systems and establishing a 

framework for sub-system control and communication is called architectural 

design. In architectural design process the activities carried out are system 

structuring (system is decomposed into sub-systems and communications 

between them are identified), control modeling, modular decomposition. In a 
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structured approach to design, the system is decomposed into a set of 

interacting functions.  

7.2 Presentation of contents 

7.2.1 Transition from Analysis to Design 

7.2.2 High Level Design Activities 

      7.2.2.1 Architectural Design 

      7.2.2.2 Architectural design process 

      7.2.2.3 Transaction Analysis 

      7.2.2.4 Transform Analysis 

            7.2.2.4.1 Identifying the central transform 

            7.2.2.4.2 First-cut Structure Chart  

            7.2.2.4.3 Refine the Structure Chart   

            7.2.2.4.4 Verify Structure Chart vis-à-vis with DFD  

      7.2.2.5 User Interface Design 

            7.2.2.5.1 General Interaction 

            7.2.2.5.2 Information Display 

            7.2.2.5.3 Data Input 

      7.2.2.6 Procedural Design 

      7.2.2.7 Structured Programming 

      7.2.2.8 Program Design Language 

 



214 
 

7.2.1 Transition from Analysis to Design 

The flow of information during design is shown in the following figure (7.1). 

The data design transforms the data model created during analysis into the 

data structures that will be required to implement the software.  

The architectural design defines the relationship between major structural 

elements of the software, the design patterns that can be used to achieve the 

requirements and the constraints that affect the implementation.  

The interface design describes how the software communicates within itself, 

and with humans who use it. 

 

 

Figure 7.1 
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The Procedural design (typically, Low Level Design) elaborates structural 

elements of the software into procedural (algorithmic) description. 

7.2.2 High Level Design Activities  

Broadly, High Level Design includes Architectural Design, Interface Design 

and Data Design.  

7.2.2.1 Architectural Design 

Software architecture is the first step in producing a software design. 

Architecture design associates the system capabilities with the system 

components (like modules) that will implement them. The architecture of a 

system is a comprehensive framework that describes its form and structure, 

its components and how they interact together. Generally, a complete 

architecture plan addresses the functions that the system provides, the 

hardware and network that are used to develop and operate it, and the 

software that is used to develop and operate it. An architecture style involves 

its components, connectors, and constraints on combining components. Shaw 

and Garlan describe seven architectural styles. Commonly used styles include 

 Pipes and Filters  

 Call-and-return systems  

• Main program / subprogram architecture  

 Object-oriented systems  

 Layered systems  
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 Data-centered systems  

 Distributed systems  

• Client/Server architecture  

In Pipes and Filters, each component (filter) reads streams of data on its 

inputs and produces streams of data on its output. Pipes are the connectors 

that transmit output from one filter to another. E.g. Programs written in UNIX 

shell. 

In Call-and-return systems, the program structure decomposes function into a 

control hierarchy where a “main” program invokes (via procedure calls) a 

number of program components, which in turn may invoke still other 

components. E.g. Structure Chart is a hierarchical representation of main 

program and subprograms. 

In Object-oriented systems, component is an encapsulation of data and 

operations that must be applied to manipulate the data. Communication and 

coordination between components is accomplished via message calls. 

In Layered systems, each layer provides service to the one outside it, and 

acts as a client to the layer inside it. They are arranged like an “onion ring”. 

E.g. OSI ISO model. 

Data-centered systems use repositories. Repository includes a central data 

structure representing current state, and a collection of independent 

components that operate on the central data store. In a traditional database, 
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the transactions, in the form of an input stream, trigger process execution. 

E.g. Database. 

A popular form of distributed system architecture is the Client/Server where a 

server system responds to the requests for actions / services made by client 

systems. Clients access server by remote procedure call.  

The following issues are also addressed during architecture design: 

 Security  

 Data Processing: Centralized / Distributed / Stand-alone  

 Audit Trails  

 Restart / Recovery  

 User Interface  

7.2.2.2 Architectural design process 

Data flow oriented design is an architectural design method that allows a 

convenient transition from the analysis model to a design description of 

program structure. The strategy for converting the DFD (representation of 

information flow) into Structure Chart is discussed below: 

 Break the system into suitably tractable units by means of transaction 

analysis  

 Convert each unit into a good structure chart by means of transform 

analysis  

 Link back the separate units into overall system implementation  
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7.2.2.3 Transaction Analysis 

The transaction is identified by studying the discrete event types that drive the 

system. For example, with respect to railway reservation, a customer may 

give the following transaction stimulus (Figure 7.2): 

 

Figure 7.2 

The three transaction types here are: Check Availability (an enquiry), Reserve 

Ticket (booking) and Cancel Ticket (cancellation). On any given time we will 

get customers interested in giving any of the above transaction stimuli. In a 

typical situation, any one stimulus may be entered through a particular 

terminal. The human user would inform the system her preference by 

selecting a transaction type from a menu. The first step in our strategy is to 

identify such transaction types and draw the first level breakup of modules in 

the structure chart, by creating separate module to co-ordinate various 

transaction types. This is shown as follows (Figure 7.3): 
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Figure 7.3 

The Main ( ) which is a over-all coordinating module, gets the information 

about what transaction the user prefers to do through TransChoice. The 

TransChoice is returned as a parameter to Main ( ). Remember, we are 

following our design principles faithfully in decomposing our modules. The 

actual details of how GetTransactionType ( ) is not relevant for Main ( ). It may 

for example, refresh and print a text menu and prompt the user to select a 

choice and return this choice to Main ( ). It will not affect any other 

components in our breakup, even when this module is changed later to return 

the same input through graphical interface instead of textual menu. The 

modules Transaction1 ( ), Transaction2 ( ) and Transaction3 ( ) are the 

coordinators of transactions one, two and three respectively. The details of 

these transactions are to be exploded in the next levels of abstraction. 

We will continue to identify more transaction centers by drawing a navigation 

chart of all input screens that are needed to get various transaction stimuli 

from the user. These are to be factored out in the next levels of the structure 
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chart (in exactly the same way as seen before), for all identified transaction 

centers. 

7.2.2.4 Transform Analysis 

Transform analysis is strategy of converting each piece of DFD (may be from 

level 2 or level 3, etc.) for all the identified transaction centers. In case, the 

given system has only one transaction (like a payroll system), then we can 

start transformation from level 1 DFD itself. Transform analysis is composed 

of the following five steps: 

1. Draw a DFD of a transaction type (usually done during analysis phase)  

2. Find the central functions of the DFD  

3. Convert the DFD into a first-cut structure chart  

4. Refine the structure chart  

5. Verify that the final structure chart meets the requirements of the 

original DFD  

Let us understand these steps through a payroll system example: 

7.2.2.4.1 Identifying the central transform  

The central transform is the portion of DFD that contains the essential 

functions of the system and is independent of the particular implementation of 

the input and output. One way of identifying central transform is to identify the 

centre of the DFD by pruning off its afferent and efferent branches. Afferent 

stream is traced from outside of the DFD to a flow point inside, just before the 
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input is being transformed into some form of output (For example, a format or 

validation process only refines the input – does not transform it). Similarly an 

efferent stream is a flow point from where output is formatted for better 

presentation. 

 

Figure 7.4 

The processes between afferent and efferent stream represent the central 

transform (marked within dotted lines above in figure 7.4). In the above 

example, P1 is an input process, and P6 & P7 are output processes. Central 

transform processes are P2, P3, P4 & P5 - which transform the given input 

into some form of output. 
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7.2.2.4.2 First-cut Structure Chart  

To produce first-cut (first draft) structure chart, first we have to establish a 

boss module. A boss module can be one of the central transform processes. 

Ideally, such process has to be more of a coordinating process 

(encompassing the essence of transformation). In case we fail to find a boss 

module within, a dummy-coordinating module is created  

 

Figure 7.5 

In the above illustration in figure 7.5, we have a dummy boss module 

“Produce Payroll” – which is named in a way that it indicate what the program 

is about. Having established the boss module, the afferent stream processes 

are moved to left most side of the next level of structure chart; the efferent 

stream process on the right most side and the central transform processes in 

the middle. Here, we moved a module to get valid timesheet (afferent 

process) to the left side. The two central transform processes are move in the 
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middle. By grouping the other two central transform processes with the 

respective efferent processes, we have created two modules– essentially to 

print results, on the right side. 

The main advantage of hierarchical (functional) arrangement of module is that 

it leads to flexibility in the software. For instance, if “Calculate Deduction” 

module is to select deduction rates from multiple rates, the module can be 

split into two in the next level – one to get the selection and another to 

calculate. Even after this change, the “Calculate Deduction” module would 

return the same value. 

7.2.2.4.3 Refine the Structure Chart  

Expand the structure chart further by using the different levels of DFD. Factor 

down till you reach to modules that correspond to processes that access 

source / sink or data stores. Once this is ready, other features of the software 

like error handling, security, etc. has to be added. A module name should not 

be used for two different modules. If the same module is to be used in more 

than one place, it will be demoted down such that “fan in” can be done from 

the higher levels. Ideally, the name should sum up the activities done by the 

module and its sub-ordinates.  

7.2.2.4.4 Verify Structure Chart vis-à-vis with DFD  

Because of the orientation towards the end-product, the software, the finer 

details of how data gets originated and stored (as appeared in DFD) is not 
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explicit in Structure Chart. Hence DFD may still be needed along with 

Structure Chart to understand the data flow while creating low-level design. 

Some characteristics of the structure chart as a whole would give some clues 

about the quality of the system. Page-Jones suggest following guidelines for a 

good decomposition of structure chart: 

 Avoid decision splits - Keep span-of-effect within scope-of-control: i.e. A 

module can affect only those modules which comes under it’s control (All 

sub-ordinates, immediate ones and modules reporting to them, etc.)  

 Error should be reported from the module that both detects an error and 

knows what the error is.  

 Restrict fan-out (number of subordinates to a module) of a module to 

seven. Increase fan-in (number of immediate bosses for a module). High 

fan-ins (in a functional way) improve reusability.  

7.2.2.5 User Interface Design  

The design of user interfaces draws heavily on the experience of the 

designer. Three categories of Human Computer Interface (HCI) design 

guidelines are  

1. General interaction  

2. Information display  

3. Data entry  
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7.2.2.5.1 General Interaction  

Guidelines for general interaction often cross the boundary into information 

/display, data entry and overall system control. They are, therefore, all 

encompassing and are ignored at great risk. The following guidelines focus on 

general interaction.  

 Be consistent: Use a consistent formats for menu selection, command 

input, data display and the myriad other functions that occur in a HCI.  

 Offer meaningful feedback: Provide the user with visual and auditory 

feedback to ensure that two way communications (between user and 

interface) is established.  

 Ask for verification of any nontrivial destructive action: If a user 

requests the deletion of a file, indicates that substantial information is to be 

overwritten, or asks for the termination of a program, an “Are you sure …” 

message should appear.  

 Permit easy reversal of most actions: UNDO or REVERSE functions 

have saved tens of thousands of end users from millions of hours of 

frustration. Reversal should be available in every interactive application.  

 Reduce the amount of information that must be memorized between 

actions: The user should not be expected to remember a list of numbers 

or names so that he or she can re-use them in a subsequent function. 

Memory load should be minimized.  
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 Seek efficiency in dialog, motion, and thought: Keystrokes should be 

minimized, the distance a mouse must travel between picks should be 

considered in designing screen layout; the user should rarely encounter a 

situation where he or she asks, "Now what does this mean."  

 Forgive mistakes: The system should protect itself from errors that might 

cause it to fail (defensive programming)  

 Categorize activities by functions and organize screen geography 

accordingly: One of the key benefits of the pull down menu is the ability 

to organize commands by type. In essence, the designer should strive for 

"cohesive" placement of commands and actions.  

 Provide help facilities that are context sensitive  

 Use simple action verbs or short verb phrases to name commands: A 

lengthy command name is more difficult to recognize and recall. It may 

also take up unnecessary space in menu lists. 

7.2.2.5.2 Information Display  

If information presented by the HCI is incomplete, ambiguous or unintelligible, 

the application will fail to satisfy the needs of a user. Information is "displayed" 

in many different ways with text, pictures and sound, by placement, motion 

and size, using color, resolution, and even omission. The following guidelines 

focus on information display.  
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 Display only information that is relevant to the current context: The user 

should not have to wade through extraneous data, menus and graphics to 

obtain information relevant to a specific system function.  

 Don’t bury the user with data; use a presentation format that enables rapid 

assimilation of information: Graphs or charts should replace voluminous 

tables.  

 Use consistent labels, standard abbreviations, and predictable colors: The 

meaning of a display should be obvious without reference to some outside 

source of information.  

 Allow the user to maintain visual context: If computer graphics displays are 

scaled up and down, the original image should be displayed constantly (in 

reduced form at the corner of the display) so that the user understands the 

relative location of the portion of the image that is currently being viewed.  

 Produce meaningful error messages  

 Use upper and lower case, indentation, and text grouping to aid in 

understanding: Much of the information imparted by a HCI is textual, yet, 

the layout and form of the text has a significant impact on the ease with 

which information is assimilated by the user.  

 Use windows to compartmentalize different types of information: Windows 

enable the user to "keep" many different types of information within easy 

reach.  
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 Use “analog” displays to represent information that is more easily 

assimilated with this form of representation: For example, a display of 

holding tank pressure in an oil refinery would have little impact if a numeric 

representation were used. However, thermometer-like displays were used; 

vertical motion and color changes could be used to indicate dangerous 

pressure conditions. This would provide the user with both absolute and 

relative information.  

 Consider the available geography of the display screen and use it 

efficiently: When multiple windows are to be used, space should be 

available to show at least some portion of each. In addition, screen size 

should be selected to accommodate the type of application that is to be 

implemented.  

7.2.2.5.3 Data Input  

Much of the user's time is spent picking commands, typing data and otherwise 

providing system input. In many applications, the keyboard remains the 

primary input medium, but the mouse, digitizer and even voice recognition 

systems are rapidly becoming effective alternatives. The following guidelines 

focus on data input:  

 Minimize the number of input actions required of the user: Reduce the 

amount of typing that is required. This can be accomplished by using the 

mouse to select from pre-defined sets of input; using a "sliding scale" to 
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specify input data across a range of values; using "macros" that enable a 

single keystroke to be transformed into a more complex collection of input 

data.  

 Maintain consistency between information display and data input: The 

visual characteristics of the display (e.g., text size, color, and placement) 

should be carried over to the input domain.  

 Allow the user to customize the input: An expert user might decide to 

create custom commands or dispense with some types of warning 

messages and action verification. The HCI should allow this.  

 Interaction should be flexible but also tuned to the user’s preferred mode 

of input: The user model will assist in determining which mode of input is 

preferred. A clerical worker might be very happy with keyboard input, while 

a manager might be more comfortable using a point and pick device such 

as a mouse.  

 Deactivate commands that are inappropriate in the context of current 

actions: This protects the user from attempting some action that could 

result in an error.  

 Let the user control the interactive flow: The user should be able to jump 

unnecessary actions, change the order of required actions (when possible 

in the context of an application), and recover from error conditions without 

exiting from the program.  
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 Provide help to assist with all input actions  

 Eliminate “Mickey mouse” input: Do not let the user to specify units for 

engineering input (unless there may be ambiguity). Do not let the user to 

type .00 for whole number dollar amounts, provide default values 

whenever possible, and never let the user to enter information that can be 

acquired automatically or computed within the program 

7.2.2.6 Procedural Design 

Procedural design occurs after data, architectural, and interface designs have 

been established. Procedural design specifies procedural details 

unambiguously. It is concerned with specifying algorithmic details, concrete 

data representations, interconnections among functions, and data structure. 

Detailed design is strongly influenced by implementation language, but it is 

not the same as implementation, detailed design is more concerned with 

semantic issues and less concerned with syntactic details than is 

implementation. Implementation addresses issues of programming language 

syntax, coding style, and internal documentation. Detailed design permits 

design of algorithm and data representation at a higher level of abstraction 

and notation than the implementation language provides. Detailed design 

should be carried to a level where each statement in the design notation will 

result in a few statements in the implementation language.  
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7.2.2.7 Structured Programming 

The goal of structured programming is to 
linearize control flow through a computer 
program so that the execution sequence 
follows the sequence in which the code is 
written. The dynamic structure of the 
program than resemble the static structure 
of the program. This enhances the 
readability, testability, and modifiability of 
the program. This linear flow of control 
can be achieved by restricting the set of 
allowed program construct to single entry, 
single exit formats. These issues are 
discussed in the following section: 
Structure Rule One: Code Block 

If the entry conditions are correct, but the exit conditions are wrong, the bug 

must be in the block. This is not true if execution is allowed to jump into a 

block. The bug might be anywhere in the program. Debugging under these 

conditions is much harder.  
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Rule 1 of Structured Programming: A code block is structured as shown in 

figure 7.6. In flow-charting terms, a box with a single entry point and single 

exit point is structured. This may look obvious, but that is the idea. Structured 

programming is a way of making it obvious that program is correct.  

 

 

 

Figure 7.6 

Structure Rule Two: Sequence 

A sequence of blocks is correct if the exit conditions of each block match the 

entry conditions of the following block. Execution enters each block at the 

block's entry point, and leaves through the block's exit point. The whole 

sequence can be regarded as a single block, with an entry point and an exit 

point.  

Rule 2 of Structured Programming: Two or more code blocks in sequence 

are structured as shown in figure 7.7.  
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      Figure 7.7 Rule 2: A sequence of  

     code blocks is structured 

Structure Rule Three: Alternation 

If-then-else is sometimes called alternation (because there are alternative 

choices). In structured programming, each choice is a code block. If 

alternation is arranged as in the flowchart at right, then there is one entry point 

(at the top) and one exit point (at the bottom). The structure should be coded 

so that if the entry conditions are satisfied, then the exit conditions are fulfilled 

(just like a code block).  

Rule 3 of Structured Programming: The alternation of two code blocks is 

structured as shown in figure 7.8.  

An example of an entry condition for an alternation structure is: register $8 

contains a signed integer. The exit condition might be: register $8 contains the 

absolute value of the signed integer. The branch structure is used to fulfill the 

exit condition.  
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Figure 7.8 Rule 3: An alternation of 

code blocks is structured 
 
Structure rule four - Iteration 

Iteration (while-loop) is arranged as at right. It also has one entry point and 

one exit point. The entry point has conditions that must be satisfied and the 

exit point has conditions that will be fulfilled. There are no jumps into the 

structure from external points of the code.  

Rule 4 of Structured Programming: The iteration of a code block is 

structured as shown in figure 7.9.  

 

 

 ? 

TRUE 

FALSE 

ENTRY POINT 

EXIT POINT 
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Figure 7.9 Rule 4: The iteration of code block is 
structured 
Structure Rule Five: Nesting Structures 

In flowcharting terms, any code block can be expanded into any of the 

structures. Or, going the other direction, if there is a portion of the flowchart 

that has a single entry point and a single exit point, it can be summarized as 

a single code block.  

Rule 5 of Structured Programming: A structure (of any size) that has a 

single entry point and a single exit point is equivalent to a code block.  

For example, say that you are designing a program to go through a list of 

signed integers calculating the absolute value of each one. You might (1) 

first regard the program as one block, then (2) sketch in the iteration 

required, and finally (3) put in the details of the loop body, as shown in figure 

7.10.  
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Figure 7.10 

Or, you might go the other way. Once the absolute value code is working, 

you can regard it as a single code block to be used as a component of a 

larger program.  

You might think that these rules are OK for ensuring stable code, but that 

they are too restrictive. Some power must be lost. But nothing is lost. Two 

researchers, Böhm and Jacopini, proved that any program could be written 

in a structured style. Restricting control flow to the forms of structured 

programming loses no computing power.  
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The other control structures you may know, such as case, do-until, do-

while, and for are not needed. However, they are sometimes convenient, 

and are usually regarded as part of structured programming. In assembly 

language they add little convenience  

7.2.2.8 Program Design Language 

Program design language (PDL), also called structured English or 

pseudocode, is "a pidgin language, in that, it uses the vocabulary of one 

language (i.e., English) and the overall syntax of another (i.e., a structured 

programming language)". PDL is used as a generic reference for a design 

language. 

At first glance, PDL looks like a modern programming language. The 

difference between PDL and a real programming language lies in the use of 

narrative text (e.g., English) embedded directly within PDL statements. Given 

the use of narrative text embedded directly into a syntactical structure, PDL 

cannot be compiled (at least not yet). However, PDL tools currently exist to 

translate PDL into a programming language "skeleton" and/or a graphical 

representation (e.g., a flowchart) of design. These tools also produce nesting 

maps, a design operation index, cross-reference tables, and a variety of other 

information. 
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A design language should have the following characteristics: 

 A fixed syntax of keywords that provide for all structured constructs, data 

declaration, and modularity characteristics. 

 A free syntax of natural language that describes processing features. 

 Data declaration facilities that should include both simple (scalar, array) 

and complex (linked list or tree) data structures. 

 Subprogram definition and calling techniques that support various modes 

of interface description. 

A basic PDL syntax should include constructs for subprogram definition, 

interface description, data declaration, techniques for block structuring, 

condition constructs, repetition constructs, and I/O constructs. The format and 

semantics for some of these POL constructs are presented in the section that 

follows. 

It should be noted that PDL can be extended to include keywords for 

multitasking and/or concurrent processing, interrupt handling, inter-process 

synchronization, and many other features. The application design, for which 

PDL is to be used should, dictates the final form for the design language. 

7.3 Summary 
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Design is a process in which representations of data structure, program 

structure, interface characteristics, and procedural details are synthesized 

from information requirements. High Level Design activity includes 

Architectural Design, Interface Design and Data Design. The architecture of a 

system is a framework that describes its form and structure, its components 

and how they interact together. An architecture style involves its components, 

connectors, and constraints on combining components. Shaw and Garlan 

describe seven architectural styles (i) Pipes and Filters  (ii) Call-and-return 

systems (iii) Object-oriented systems  (iv) Layered systems (v) Data-centered 

systems (vi) Distributed systems. In the data flow oriented design, DFD 

representing the information flow is converted into the structure chart. The 

design of user interfaces involves three categories of Human Computer 

Interface (HCI) design guidelines (i) General interaction, (ii) Information 

display, (iii) Data entry. Procedural design occurs after data, architectural, and 

interface designs have been established. It is concerned with specifying 

algorithmic details, concrete data representations, interconnections among 

functions, and data structure. An important aspect here is structured 

programming emphasizing the use of single entry and single exit constructs. 

Using structured programming, facilitate the development of testable and 

maintainable code. To specify the algorithm during detailed design PDL is a 

good tool. PDL resembles a programming language that uses of narrative text 
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(e.g., English) embedded directly within PDL statements. It is easy to translate 

a PDL code into an implementation using a programming language. 

7.4 Keywords 

Design It is a process in which representations of data structure, program 

structure, interface characteristics, and procedural details are synthesized 

from information requirements. 

Architecture design: It defines the relationship between major structural 

elements of the software, the design patterns that can be used to achieve the 

requirements and the constraints that affect the implementation. 

Structured programming: It is a 
technique to linearize control flow through 
a computer program by restricting the set 
of allowed program construct to single 
entry, single exit formats so that the 
execution sequence follows the sequence 
in which the code is written.  
7.5 Self Assessment Questions 
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1. What do you understand by structured programming? What are the 

different rules of structured programming? Explain. 

2. What are the different architectural styles? Give an overview of them. 

3. Why should we not go directly from high level design to 

implementation? What is the advantage of having a detailed design in 

between i.e. writing the algorithms instead of directly writing the 

program using a high level language. 

4. What are the desirable characteristics of human-comouter interface? 

Explain. 

5. Discuss the procedure of converting a DFD representing information 

flow into a structured chart. Use suitable example. 
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Lesson No. 8     Writer: Dr. Rakesh Kumar 
Coding      Vetter: Dr. Yogesh Chala 

 
 
8.0 Objectives 

The objective of this lesson is to make the students familier  

1. With the concept of coding. 

2. Programming Style 

3. Verification and validations techniques. 

 

8.1 Introduction 

The coding is concerned with translating design specifications into source 

code. The good programming should ensure the ease of debugging, testing 

and modification.  This is achieved by making the source code as clear and 

straightforward as possible. An old saying is “Simple is great”. Simplicity, 

clarity and elegance are the hallmarks of good programs. Obscurity, 

cleverness, and complexity are indications of inadequate design. Source code 

clarity is enhanced by structured coding techniques, by good coding style, by 

appropriate supporting documents, by good internal comments etc. 

Production of high quality software requires that the programming team 

should have a thorough understanding of duties and responsibilities and 
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should be provided with a well defined set of requirements, an architectural 

design specification, and a detailed design description. 

8.2 Presentation of contents 

      8.2.1 Programming style 

            8.2.1.1 Dos of good programming style 

8.2.1.1.1 Use a few standard control constructs 

8.2.1.1.2 Use GOTO in a disciplined way 

8.2.1.1.3 Use user-defined data types to model entities in the 

 problem domain 

8.2.1.1.4 Hide data structure behind access functions 

8.2.1.1.5 Appropriate variable names 

8.2.1.1.6 Use indentation, parentheses, blank spaces, and 

 blank lines to enhance readability 

  8.2.1.1.7 Boolean values in decision structures 

  8.2.1.1.8 Looping and control structures 

8.2.1.1.9 Examine routines having more than five 

formal     parameters 

            8.2.1.2 Don’ts of good programming style 

  8.2.1.2.1 Don’t be too clever 

  8.2.1.2.2 Avoid null then statement 
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  8.2.1.2.3 Avod then_If statement  

  8.2.1.2.4 Don’t nest too deeply 

  8.2.1.2.5 Don’t use an identifier for multiple purposes 

      8.2.2 Software Verification and Validation 

 8.2.2.1 Concepts and Definitions 

 8.2.2.2 Reviews, Inspections, and Walkthroughs 

 8.2.2.3 Testing 

  8.2.2.3.1 Informal Testing 

  8.2.2.3.2 Formal Testing 

8.2.2.4 Verification & Validation during Software Acquisition Life 

Cycle 

  8.2.2.4.1 Software Concept and Initiation Phase 

  8.2.2.4.2 Software Requirements Phase 

  8.2.2.4.3 Software Architectural (Preliminary) Design Phase 

  8.2.2.4.4 Software Detailed Design Phase 

  8.2.2.4.5 Software Implementation Phase 

  8.2.2.4.6 Software Integration and Test Phase 

  8.2.2.4.7 Software Acceptance and Delivery Phase 

8.2.2.4.8 Software Sustaining Engineering & Operations 

Phase 

 8.2.2.5 Independent Verification and Validation 
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 8.2.2.6 Techniques and Tools 

8.2.1 Programming style 

Programming style refers to the style used in writing the source code for a 

computer program. Most programming styles are designed to help 

programmers quickly read and understands the program as well as avoid 

making errors. (Older programming styles also focused on conserving screen 

space.) A good coding style can overcome the many deficiencies of a 

primitive programming language, while poor style can defeat the intent of en 

excellent language. The goal of good programming style is to provide 

understandable, straightforward, elegant code. 

The programming style used in a particular program may be derived from the 

coding standards or code conventions of a company or other computing 

organization, as well as the preferences of the actual programmer. 

Programming styles are often designed for a specific programming language 

(or language family) and are not used in whole for other languages. (Style 

considered good in C source code may not be appropriate for BASIC source 

code, and so on.) Good style, being a subjective matter, is difficult to 

concretely categorize; however, there are several elements common to a 

large number of programming styles. Programming styles are often designed 

for a specific programming language and are not used in whole for other 

languages. So there is no single set of rules that can be applied in every 
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situation; however there are general guidelines that are widely applicable. 

These are listed below: 

8.2.1.1 Dos of good programming style 

1. Use a few standards, agreed upon control constructs. 

2. Use GOTO in a disciplined way. 

3. Use user-defined data types to model entities in the problem domain. 

4. Hide data structure behind access functions 

5. Isolate machine dependencies in a few routines. 

6. Use appropriate variable names 

7. Use indentation, parentheses, blank spaces, and blank lines to 

enhance readability. 

 

8.2.1.1.1 Use a few standard control constructs 

There is no standard set of constructs for structured coding. For example to 

implement loops, a number of constructs are available such as repeat-until. 

While-do, for loop etc. If the implementation language does not provide 

structured coding constructs, a few stylistic patterns should be used by the 

programmers. This will make coding style more uniform with the result that 

programs will be easier to read, easier to understand, and easier to modify. 
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8.2.1.1.2 Use GOTO in a disciplined way 

The best time to use GOTO statement is never. In all the modern 

programming languages, constructs are available which help you in avoiding 

the use of GOTO statement, so if you are a good programmer then you can 

avoid the use of GOTO statement. But if it is warranted then the acceptable 

uses of GOTO statements are almost always forward transfers of control 

within a local region of code. Don’t use GOTO to achieve backward transfer of 

control. 

8.2.1.1.3 Use user-defined data types to model entities in the problem 

domain 

Use of distinct data types makes it possible for humans to distinguish between 

entities from the problem domain.  All the modern programming languages 

provide the facilities of enumerated data type. For example, if an identifier is 

to be used to represent the month of a year, then instead of using integer data 

type to represent it, a better option can be an enumerated data type as 

illustrated below: 

enum month = (jan, feb, march, april, may, june, july, aug, sep, oct, nov, dec); 

month x; 

Variables x is declared of month type. Using such types makes the program 

much understandable. 

X = july; 
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 is more meaningful than  

x = 7; 

8.2.1.1.4 Hide data structure behind access functions 

It is the manifestation of the principle of information hiding. It is the approach 

taken in data encapsulation, wherein data structures and its accessing 

routines are encapsulated in a single module. So a module makes visible only 

those features that are required by other modules. 

8.2.1.1.5 Appropriate variable names 

Appropriate choices for variable names are seen as the keystone for good 

style. Poorly-named variables make code harder to read and understand. For 

example, consider the following pseudo code snippet: 

get a b c  

if a < 24 and b < 60 and c < 60 

  return true 

else 

  return false 

Because of the choice of variable names, the function of the code is difficult to 

work out. However, if the variable names are made more descriptive: 

get hours minutes seconds  

if hours < 24 and minutes < 60 and seconds < 60 

  return true 



250 
 

else 

  return false 

the code's intent is easier to discern, namely, "Given a 24-hour time, true will 

be returned if it is a valid time and false otherwise." 

A general guideline is “use the descriptive names suggesting the purpose of 

identifier”. 

8.2.1.1.6 Use indentation, parentheses, blank spaces, and blank 

lines to enhance readability 

Programming styles commonly deal with the appearance of source code, with 

the goal of improving the readability of the program. However, with the advent 

of software that formats source code automatically, the focus on appearance 

will likely yield to a greater focus on naming, logic, and higher techniques. As 

a practical point, using a computer to format source code saves time, and it is 

possible to then enforce company-wide standards without religious debates. 

Indenting 

Indent styles assist in identifying control flow and blocks of code. In 

programming languages that use indentation to delimit logical blocks of code, 

good indentation style directly affects the behavior of the resulting program. In 

other languages, such as those that use brackets to delimit code blocks, the 
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indent style does not directly affect the product. Instead, using a logical and 

consistent indent style makes one's code more readable. Compare: 

if (hours < 24 && minutes < 60 && seconds < 60){ 

   return true; 

} else { 

   return false; 

} 

or 

if (hours < 24 && minutes < 60 && seconds < 60) 

{ 

   return true; 

} 

else 

{ 

   return false; 

} 

with something like 

if (hours < 24 && minutes < 60 && seconds < 60) {return true;} 

else {return false;} 
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The first two examples are much easier to read because they are indented 

well, and logical blocks of code are grouped and displayed together more 

clearly. 

This example is somewhat contrived, of course - all the above are more 

complex (less stylish) than 

return hours < 24 && minutes < 60 && seconds < 60; 

Spacing 

Free-format languages often completely ignore white space. Making good use 

of spacing in one's layout is therefore considered good programming style. 

Compare the following examples of C code. 

 int count; 

 for(count=0;count<10;count++) 

 { 

   printf("%d",count*count+count); 

 } 

with 

 int count; 

 for( count = 0; count < 10; count++ ) 

 { 

   printf( "%d", count * count + count); 

 } 
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In the C-family languages, it is also recommended to avoid using tab 

characters in the middle of a line as different text editors render their width 

differently. 

Python uses indentation to indicate control structures, so correct indentation is 

required. By doing this, the need for bracketing with curly braces ({ and }) is 

eliminated, and readability is improved while not interfering with common 

coding styles. However, this frequently leads to problems where code is 

copied and pasted into a Python program, requiring tedious reformatting. 

Additionally, Python code is rendered unusable when posted on a forum or 

webpage that removes white space. 

8.2.1.1.7 Boolean values in decision structures 

Some programmers think decision structures such as the above, where the 

result of the decision is merely computation of a Boolean value, are overly 

verbose and even prone to error. They prefer to have the decision in the 

computation itself, like this: 

return hours < 12 && minutes < 60 && seconds < 60; 

The difference is often purely stylistic and syntactic, as modern compilers 

produce identical object code for both forms. 
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8.2.1.1.8 Looping and control structures 

The use of logical control structures for looping adds to good programming 

style as well. It helps someone reading code to understand the program's 

sequence of execution (in imperative programming languages). For example, 

in pseudocode: 

 count = 0 

 while count < 5 

   print count * 2 

   count = count + 1 

 endwhile 

The above snippet obeys the two aforementioned style guidelines, but the 

following use of the "for" construct makes the code much easier to read: 

 for count = 0, count < 5, count=count+1 

   print count * 2 

In many languages, the often used "for each element in a range" pattern can 

be shortened to: 

 for count = 0 to 5 

   print count * 2 

8.2.1.1.9 Examine routines having more than five formal parameters 

Parameters are used to exachange the information among the functions or 

routines. Use of more than five formal parameters gives a feeling that 
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probably the function is comples. So it is to be carefully examined. The choice 

of number five is not arbitrary. It is well known that human beings can deal 

with approximately seven items at one time and ease of understanding a 

subprogram call or the body of subprogram is a function of the number of 

parameters. 

 

8.2.1.2 Don’ts of good programming style 

1. Don’t be too clever. 

2. Avoid null Then statement 

3. Avoid Then If statement 

4. Don’t nest too deeply. 

5. Don’t use an identifier for multiple purposes. 

6. Examine routines having more than five formal parameters. 

 

8.2.1.2.1 Don’t be too clever 

There is an old saying “Simple engineering is great engineering”. We should 

try to keep our program simple. By making the use of tricks and showing 

cleverness, sometimes the complexity is increased. This can be illustrated 

using following example: 

//Code to swap the values of two integer variables. 

A=A+B; 
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B=A-B; 

A=A-B; 

You can observe the obscurity in the above code. The better approach can 

be: 

T=A; 

A=B; 

B=T; 

The second version to swap the values of two inegers is more clear and 

simple. 

8.2.1.2.2 Avoid null then statement 

A null then statement is of the form 

If B then ; else S; 

Which is equivalent to 

If (not B) the S; 

8.2.1.2.3 Avod then_If statement  

A then_if statement is of the form 

If(A>B) then 
 if(X>Y) then 
      A=X 
   Else 
      B=Y 
   Endif 
Else 
 A=B 
Endif 
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Then_if statement tend to obscure the conditions under which various actions 

are performed. It can be rewritten in the following form: 

If(A<B) then 

 A=B 
Elseif (X>Y) then 
 B=Y 
Else 
 A=X 
endif 
 
8.2.1.2.4 Don’t nest too deeply 

Consider the following code 

While X loop 

  If Y then 

    While Y loop 

       While Z loop 

          If W then S 

In the above code, it is difficult to identify the conditions under which 

statement S will be executed. As a general guideline, nesting of program 

constructs to depths greater than three or four levels should be avoided. 

8.2.1.2.5 Don’t use an identifier for multiple purposes 

Using an identifier for multiple purposes is a dangerous practice because it 

makes your program highly sensitive to future modification. Moreover the 

variable names should be descriptive suggesting their purposes to make the 
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program understandable. This is not possible if the identifier is used for 

multiple purposes.  

8.2.2 Software Verification and Validation 

8.2.2.1 Concepts and Definitions 

Software Verification and Validation (V&V) is the process of ensuring that 

software being developed or changed will satisfy functional and other 

requirements (validation) and each step in the process of building the 

software yields the right products (verification).  The differences between 

verification and validation (shown in table 8.1) are unimportant except to the 

theorist; practitioners’ use the term V&V to refer to all of the activities that are 

aimed at making sure the software will function as required. 

V&V is intended to be a systematic and technical evaluation of software and 

associated products of the development and maintenance processes.  

Reviews and tests are done at the end of each phase of the development 

process to ensure software requirements are complete and testable and that 

design, code, documentation, and data satisfy those requirements. 

Table 8.1 Difference between verification and validation 

Validation Verification 

Am I building the right product? Am I building the product right? 

Determining if the system complies The review of interim work steps and 
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with the requirements and 

performs functions for which it is 

intended and meets the 

organization’s goals and user 

needs. It is traditional and is 

performed at the end of the 

project. 

interim deliverables during a project to 

ensure they are acceptable. To 

determine if the system is consistent, 

adheres to standards, uses reliable 

techniques and prudent practices, and 

performs the selected functions in the 

correct manner. 

Am I accessing the right data (in 

terms of the data required to 

satisfy the requirement) 

Am I accessing the data right (in the 

right place; in the right way). 

High level activity Low level activity 

Performed after a work product is 

produced against established 

criteria ensuring that the product 

integrates correctly into the 

environment 

Performed during development on key 

artifacts, like walkthroughs, reviews and 

inspections, mentor feedback, training, 

checklists and standards 

Determination of correctness of the 

final software product by a 

development project with respect 

to the user needs and 

Demonstration of consistency, 

completeness, and correctness of the 

software at each stage and between 

each stage of the development life cycle.
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requirements 

Activities 

The two major V&V activities are reviews, including inspections and 

walkthroughs, and testing.  

8.2.2.2 Reviews, Inspections, and Walkthroughs 

Reviews are conducted during and at the end of each phase of the life cycle 

to determine whether established requirements, design concepts, and 

specifications have been met.  Reviews consist of the presentation of material 

to a review board or panel.  Reviews are most effective when conducted by 

personnel who have not been directly involved in the development of the 

software being reviewed. 

Informal reviews are conducted on an as-needed basis.  The developer 

chooses a review panel and provides and/or presents the material to be 

reviewed.  The material may be as informal as a computer listing or hand-

written documentation. 

Formal reviews are conducted at the end of each life cycle phase.  The 

acquirer of the software appoints the formal review panel or board, who may 

make or affect a go/no-go decision to proceed to the next step of the life 

cycle. Formal reviews include the Software Requirements Review, the 

Software Preliminary Design Review, the Software Critical Design Review, 

and the Software Test Readiness Review. 
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An inspection or walkthrough is a detailed examination of a product on a step-

by-step or line-of-code by line-of-code basis.  The purpose of conducting 

inspections and walkthroughs is to find errors.  The group that does an 

inspection or walkthrough is composed of peers from development, test, and 

quality assurance. 

 

 

8.2.2.3 Testing 

Testing is the operation of the software with real or simulated inputs to 

demonstrate that a product satisfies its requirements and, if it does not, to 

identify the specific differences between expected and actual results. There 

are varied levels of software tests, ranging from unit or element testing 

through integration testing and performance testing, up to software system 

and acceptance tests. 

8.2.2.3.1 Informal Testing 

Informal tests are done by the developer to measure the development 

progress.  "Informal" in this case does not mean that the tests are done in a 

casual manner, just that the acquirer of the software is not formally involved, 

that witnessing of the testing is not required, and that the prime purpose of the 

tests is to find errors.  Unit, component, and subsystem integration tests are 

usually informal tests. 
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Informal testing may be requirements-driven or design- driven. Requirements-

driven or black box testing is done by selecting the input data and other 

parameters based on the software requirements and observing the outputs 

and reactions of the software.  Black box testing can be done at any level of 

integration. In addition to testing for satisfaction of requirements, some of the 

objectives of requirements-driven testing are to ascertain: 

 Computational correctness. 

 Proper handling of boundary conditions, including extreme inputs and 

conditions that cause extreme outputs. 

 State transitioning as expected. 

 Proper behavior under stress or high load. 

 Adequate error detection, handling, and recovery. 

Design-driven or white box testing is the process where the tester examines 

the internal workings of code.  Design-driven testing is done by selecting the 

input data and other parameters based on the internal logic paths that are to 

be checked.  The goals of design-driven testing include ascertaining 

correctness of: 

 All paths through the code.  For most software products, this can be 

feasibly done only at the unit test level. 

 Bit-by-bit functioning of interfaces. 

 Size and timing of critical elements of code. 



263 
 

8.2.2.3.2 Formal Testing 

Formal testing demonstrates that the software is ready for its intended use.  A 

formal test should include an acquirer- approved test plan and procedures, 

quality assurance witnesses, a record of all discrepancies, and a test report. 

Formal testing is always requirements-driven, and its purpose is to 

demonstrate that the software meets its requirements. 

Each software development project should have at least one formal test, the 

acceptance test that concludes the development activities and demonstrates 

that the software is ready for operations. 

In addition to the final acceptance test, other formal testing may be done on a 

project.  For example, if the software is to be developed and delivered in 

increments or builds, there may be incremental acceptance tests.  As a 

practical matter, any contractually required test is usually considered a formal 

test; others are "informal." 

After acceptance of a software product, all changes to the product should be 

accepted as a result of a formal test. Post acceptance testing should include 

regression testing. Regression testing involves rerunning previously used 

acceptance tests to ensure that the change did not disturb functions that have 

previously been accepted. 

8.2.2.4 Verification and Validation during the Software Acquisition Life 

Cycle 
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The V&V Plan should cover all V&V activities to be performed during all 

phases of the life cycle.  The V&V Plan Data Item Description (DID) may be 

rolled out of the Product Assurance Plan DID contained in the SMAP 

Management Plan Documentation Standard and DID. 

 

 

8.2.2.4.1 Software Concept and Initiation Phase 

The major V&V activity during this phase is to develop a concept of how the 

system is to be reviewed and tested. Simple projects may compress the life 

cycle steps; if so, the reviews may have to be compressed.  Test concepts 

may involve simple generation of test cases by a user representative or may 

require the development of elaborate simulators and test data generators.  

Without an adequate V&V concept and plan, the cost, schedule, and 

complexity of the project may be poorly estimated due to the lack of adequate 

test capabilities and data. 

8.2.2.4.2 Software Requirements Phase 

V&V activities during this phase should include:  

 Analyzing software requirements to determine if they are consistent with, 

and within the scope of system requirements.  

 Assuring that the requirements are testable and capable of being satisfied.  
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 Creating a preliminary version of the Acceptance Test Plan, including a 

verification matrix, which relates   requirements to the tests used to 

demonstrate that   requirements are satisfied. 

 Beginning development, if needed, of test beds and test   data generators. 

 The phase-ending Software Requirements Review (SRR). 

 

 

8.2.2.4.3 Software Architectural (Preliminary) Design Phase 

V&V activities during this phase should include: 

 Updating the preliminary version of the Acceptance Test Plan and the 

verification matrix. 

 Conducting informal reviews and walkthroughs or inspections of the 

preliminary software and data base designs. 

 The phase-ending Preliminary Design Review (PDR) at   which the 

allocation of requirements to the software   architecture is reviewed and 

approved. 

8.2.2.4.4 Software Detailed Design Phase 

V&V activities during this phase should include: 

 Completing the Acceptance Test Plan and the   verification matrix, 

including test specifications and   unit test plans. 
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 Conducting informal reviews and walkthroughs or   inspections of the 

detailed software and data base   designs. 

 The Critical Design Review (CDR), which completes the software, detailed 

design phase. 

8.2.2.4.5 Software Implementation Phase 

V&V activities during this phase should include: 

 Code inspections and/or walkthroughs. 

 Unit testing software and data structures. 

 Locating, correcting, and retesting errors. 

 Development of detailed test procedures for the next  two phases. 

8.2.2.4.6 Software Integration and Test Phase 

This phase is a major V&V effort, where the tested units from the previous 

phase are integrated into subsystems and then the final system. Activities 

during this phase should include: 

 Conducting tests per test procedures. 

 Documenting test performance, test completion, and conformance of test 

results versus expected results. 

 Providing a test report that includes a summary of non-conformances 

found during testing. 

 Locating, recording, correcting, and retesting non-conformances. 
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 The Test Readiness Review (TRR), confirming the product's readiness for 

acceptance testing. 

8.2.2.4.7 Software Acceptance and Delivery Phase 

V&V activities during this phase should include: 

 By test, analysis, and inspection, demonstrating that the developed system 

meets its functional, performance, and interface requirements. 

 Locating, correcting, and retesting nonconformance. 

 The phase-ending Acceptance Review (AR). 

 

8.2.2.4.8 Software Sustaining Engineering and Operations Phase 

Any V&V activities conducted during the prior seven phases are conducted 

during this phase as they pertain to the revision or update of the software. 

8.2.2.5 Independent Verification and Validation 

Independent Verification and Validation (IV&V) is a process whereby the 

products of the software development life cycle phases are independently 

reviewed, verified, and validated by an organization that is neither the 

developer nor the acquirer of the software.  The IV&V agent should have no 

stake in the success or failure of the software.  The IV&V agent's only interest 

should be to make sure that the software is thoroughly tested against its 

complete set of requirements. 
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The IV&V activities duplicate the V&V activities step-by-step during the life 

cycle, with the exception that the IV&V agent does no informal testing.  If 

there is an IV&V agent, the formal acceptance testing may be done only once, 

by the IV&V agent.  In this case, the developer will do a formal demonstration 

that the software is ready for formal acceptance. 

8.2.2.6 Techniques and Tools 

Perhaps more tools have been developed to aid the V&V of software 

(especially testing) than any other software activity.  The tools available 

include code tracers, special purpose memory dumpers and formatters, data 

generators, simulations, and emulations. Some tools are essential for testing 

any significant set of software, and, if they have to be developed, may turn out 

to be a significant cost and schedule driver. 

An especially useful technique for finding errors is the formal inspection.  

Michael Fagan of IBM developed formal inspections.  Like walkthroughs, 

inspections involve the line-by-line evaluation of the product being reviewed.  

Inspections, however, are significantly different from walkthroughs and are 

significantly more effective. A team, each member of which has a specific 

role, does inspections.  A moderator, who is formally trained in the inspection 

process, leads the team.  The team includes a reader, who leads the team 

through the item; one or more reviewers, who look for faults in the item; a 
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recorder, who notes the faults; and the author, who helps explain the item 

being inspected. 

This formal, highly structured inspection process has been extremely effective 

in finding and eliminating errors.  It can be applied to any product of the 

software development process, including documents, design, and code.  One 

of its important side benefits has been the direct feedback to the 

developer/author, and the significant improvement in quality that results. 

8.3 Summary 

A primary goal of software implementation is production of source code that is 

easy to read and understand. Clarity of source code ease debugging, testing 

and modification and these activities consume a large portion of most 

software budgets. 

In this lesson, structured coding techniques, coding styles, standards and 

guidelines have been discussed. The essential aspect of structured 

programming is linearity of control flow. Linearity is assured by use of single 

entry and single exit program constructs. 

Programming style is manifest in the patterns of choice made amomg 

alternative ways of expressing an algorithm. Consistent programming style 

among different programmers enhance project communication and eases 

debugging, testing and modification of the source code. Several guidelines for 
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good programming style were presented. Dos and don’ts of good 

programming style were also illustrated. 

8.4 Keywords 

Coding: It is concerned with translating design specifications into source 

code. 

Programming style: It refers to the style used in writing the source code for a 

computer program. 

Software Validation: It is the process of ensuring that software being 

developed will satisfy functional and other requirements. 

Verification: it is the process to ensure that each step in the process of 

building the software yields the right products. 

Walkthrough: It is a detailed examination of a product on a step-by-step 

basis to find errors. 

8.5 Self Assessment Questions 

1. What do you understand by structured programming? Why should we 

do structured programming? 

2. What constructs should be there in a structured programming 

language? 

3. Why should we avoid the use of GOTO statement? 

4. What are the advantages of structured prgramming? 
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5. What do you understand by programming style? What are the dos and 

don’ts of good programming style? 

6. Define verification and validation. What are the differences between 

them? Explain. 

8.6 References/Suggested readings 
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Lesson number: IX    Writer: Dr. Rakesh Kumar 

Software Testing - I    Vetter:Dr. Dinesh Kumar 

 
9.0 Objectives 

The objective of this lesson is to make the students familiar with the concepts 

and activities carried out during testing phase.  After studying this lesson the 

students will be familiar with following: 

 Testing Fundamentals 

 Test Cases and Test Criteria 

 Psychology of testing 

 Test Plan Activities During Testing 

 Strategic Issues in Testing 

 Unit testing 

 Integration Testing 

 Acceptance testing 

 
9.1 Introduction 

Until 1956 it was the debugging oriented period, where testing was often 

associated to debugging: there was no clear difference between testing and 

debugging. From 1957-1978 there was the demonstration oriented period 

where debugging and testing was distinguished now - in this period it was 
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shown, that software satisfies the requirements. The time between 1979-1982 

is announced as the destruction oriented period, where the goal was to find 

errors. 1983-1987 is classified as the evaluation oriented period: intention 

here is that during the software lifecycle a product evaluation is provided and 

measuring quality. From 1988 on it was seen as prevention oriented period 

where tests were to demonstrate that software satisfies its specification, to 

detect faults and to prevent faults. 

Software testing is the process used to help identify the correctness, 

completeness, security, and quality of developed computer software. Testing 

is a process of technical investigation, performed on behalf of stakeholders, 

that is intended to reveal quality-related information about the product with 

respect to the context in which it is intended to operate. This includes the 

process of executing a program or application with the intent of finding errors. 

Quality is not an absolute; it is value to some person. With that in mind, 

testing can never completely establish the correctness of arbitrary computer 

software; testing furnishes a criticism or comparison that compares the state 

and behaviour of the product against a specification. An important point is that 

software testing should be distinguished from the separate discipline of 

software quality assurance, which encompasses all business process areas, 

not just testing. 
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There are many approaches to software testing, but effective testing of 

complex products is essentially a process of investigation, not merely a matter 

of creating and following routine procedure. One definition of testing is "the 

process of questioning a product in order to evaluate it", where the 

"questions" are operations the tester attempts to execute with the product, 

and the product answers with its behavior in reaction to the probing of the 

tester. Although most of the intellectual processes of testing are nearly 

identical to that of review or inspection, the word testing is connoted to mean 

the dynamic analysis of the product—putting the product through its paces. 

The quality of the application can, and normally does, vary widely from system 

to system but some of the common quality attributes include capability, 

reliability, efficiency, portability, maintainability, compatibility and usability. A 

good test is sometimes described as one which reveals an error; however, 

more recent thinking suggests that a good test is one which reveals 

information of interest to someone who matters within the project community. 
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9.2 Presentation of contents 

9.2.1 Error, fault and failure 
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9.2.6 Psychology of Testing 

9.2.7 Test Levels 

9.2.8 System Testing 

      9.2.8.1 Integration Testing 

            9.2.8.1.1 Bottom-up integration 

            9.2.8.1.2 Top-down integration 

      9.2.8.2 Regression testing 

      9.2.8.3 Recovery testing 

      9.2.8.4 Stress testing 

      9.2.8.5 Performance Testing 

9.2.9 Acceptance testing 

      9.2.9.1 Alpha testing 

      9.2.9.2 Beta testing 
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9.2.1 Error, fault and failure 

In general, software engineers distinguish software faults from software 

failures. In case of a failure, the software does not do what the user expects. 

A fault is a programming bug that may or may not actually manifest as a 

failure. A fault can also be described as an error in the correctness of the 

semantic of a computer program. A fault will become a failure if the exact 

computation conditions are met, one of them being that the faulty portion of 

computer software executes on the CPU. A fault can also turn into a failure 

when the software is ported to a different hardware platform or a different 

compiler, or when the software gets extended. 

The term error is used to refer to the discrepancy between a computed, 

observed or measured value and the true, specified or theoretically correct 

value. Basically it refers to the difference between the actual output of a 

program and the correct output. 

Fault is a condition that causes a system to fail in performing its required 

functions. 

Failure is the inability of a system to perform a required function according to 

its specification. In case of a failure the observed behavior of the system is 

different from the specified behavior.  Whenever there is a failure, there is a 

fault in the system but vice-versa may not be true. That is, sometimes there is 

a fault in the software but failure is not observed. Fault is just like an infection 
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in the body. Whenever there is fever there is an infection, but sometimes body 

has infection but fever is not observed, 

9.2.2 Software Testing Fundamentals 

Software testing may be viewed as a sub-field of software quality assurance 

but typically exists independently (and there may be no SQA areas in some 

companies). In SQA, software process specialists and auditors take a broader 

view on software and its development. They examine and change the 

software engineering process itself to reduce the amount of faults that end up 

in the code or deliver faster. 

Regardless of the methods used or level of formality involved the desired 

result of testing is a level of confidence in the software so that the developers 

are confident that the software has an acceptable defect rate. What 

constitutes an acceptable defect rate depends on the nature of the software.  

A problem with software testing is that the number of defects in a software 

product can be very large, and the number of configurations of the product 

larger still. Bugs that occur infrequently are difficult to find in testing. A rule of 

thumb is that a system that is expected to function without faults for a certain 

length of time must have already been tested for at least that length of time. 

This has severe consequences for projects to write long-lived reliable 

software. 
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A common practice of software testing is that it is performed by an 

independent group of testers after the functionality is developed but before it 

is shipped to the customer. This practice often results in the testing phase 

being used as project buffer to compensate for project delays. Another 

practice is to start software testing at the same moment the project starts and 

it is a continuous process until the project finishes. 

Another common practice is for test suites to be developed during technical 

support escalation procedures. Such tests are then maintained in regression 

testing suites to ensure that future updates to the software don't repeat any of 

the known mistakes. 

It is commonly believed that the earlier a defect is found the cheaper it is to fix 

it. 

In counterpoint, some emerging software disciplines such as extreme 

programming and the agile software development movement, adhere to a 

"test-driven software development" model. In this process unit tests are 

written first, by the programmers. Of course these tests fail initially; as they 

are expected to. Then as code is written it passes incrementally larger 

 Time Detected 
Time 

Introduced 
Requirements Architecture Construction System 

Test 
Post-

Release 
Requirements 1 3 5-10 10 10-100 
Architecture - 1 10 15 25-100 
Construction - - 1 10 10-25 
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portions of the test suites. The test suites are continuously updated as new 

failure conditions and corner cases are discovered, and they are integrated 

with any regression tests that are developed. 

Unit tests are maintained along with the rest of the software source code and 

generally integrated into the build process (with inherently interactive tests 

being relegated to a partially manual build acceptance process). 

The software, tools, samples of data input and output, and configurations are 

all referred to collectively as a test harness. 

Testing is the process of finding the differences between the expected behavior 
specified by system models and the observed behavior of the system.  Software 
testing consists of the dynamic verification of the behavior of a program on a finite set 
of test cases, suitably selected from the usually infinite executions domain, against the 
specified expected behavior.  

9.2.3 A sample testing cycle 

Although testing varies between organizations, there is a cycle to testing: 

1. Requirements Analysis: Testing should begin in the requirements 

phase of the software development life cycle.  

2. Design Analysis: During the design phase, testers work with 

developers in determining what aspects of a design are testable and 

under what parameter those tests work.  

3. Test Planning: Test Strategy, Test Plan(s), Test Bed creation.  

4. Test Development: Test Procedures, Test Scenarios, Test Cases, Test 

Scripts to use in testing software.  
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5. Test Execution: Testers execute the software based on the plans and 

tests and report any errors found to the development team.  

6. Test Reporting: Once testing is completed, testers generate metrics 

and make final reports on their test effort and whether or not the 

software tested is ready for release.  

7. Retesting the Defects 

9.2.4 Testing Objectives 

Glen Myres states a number of rules that can serves as testing objectives: 

 Testing is a process of executing a program with the intent of finding an 

error. 

 A good test case is one that has the high probability of finding an as-

yet undiscovered error. 

 A successful test is one that uncovers an as-yet undiscovered error. 

9.2.5 Testing principles 

Davis suggested the following testing principles: 

 All tests should be traceable to customer requirements. 

 Tests should be planned long before testing begins. 

 The Pareto principle applies to software testing. According to this 

principle 80 percent of all errors uncovered during testing will likely to 

be traceable to 20 percent of all program modules. The problem is to 

isolate these 20 percent modules and test them thoroughly. 
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 Testing should begin “in the small” and progress toward testing “in the 

large”. 

 Exhaustive testing is not possible.  

 To be most effective, testing should be conducted by an independent 

third party. 

9.2.6 Psychology of Testing 

“Testing cannot show the absence of defects, it can only show that software 

errors are present”. So devising a set of test cases that will guarantee that all 

errors will be detected is not feasible. Moreover, there are no formal or 

precise methods for selecting test cases. Even though, there are a number of 

heuristics and rules of thumb for deciding the test cases, selecting test cases 

is still a creative activity that relies on the ingenuity of the tester. Due to this 

reason, the psychology of the person performing the testing becomes 

important. 

The aim of testing is often to demonstrate that a program works by showing 

that it has no errors. This is the opposite of what testing should be viewed as. 

The basic purpose of the testing phase is to detect the errors that may be 

present in the program. Hence, one should not start testing with the intent of 

showing that a program works; but the intent should be to show that a 

program does not work. With this in mind, we define testing as follows: testing 

is the process of executing a program with the intent of finding errors. 
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This emphasis on proper intent of testing is a trivial matter because test cases 

are designed by human beings, and human beings have a tendency to 

perform actions to achieve the goal they have in mind. So, if the goal is to 

demonstrate that a program works, we may consciously or subconsciously 

select test cases that will try to demonstrate that goal and that will beat the 

basic purpose of testing. On the other hand, if the intent is to show that the 

program does not work, we will challenge our intellect to find test cases 

towards that end, and we are likely to detect more errors. Testing is the one 

step in the software engineering process that could be viewed as destructive 

rather than constructive. In it the engineer creates a set of test cases that are 

intended to demolish the software. With this in mind, a test case is "good" if it 

detects an as-yet-undetected error in the program, and our goal during 

designing test cases should be to design such "good" test cases. 

Due to these reasons, it is said that the creator of a program (i.e. 

programmer) should not be its tester because psychologically you cannot be 

destructive to your own creation. Many organizations require a product to be 

tested by people not involved with developing the program before finally 

delivering it to the customer. Another reason for independent testing is that 

sometimes errors occur because the programmer did not understand the 

specifications clearly. Testing of a program by its programmer will not detect 

such errors, whereas independent testing may succeed in finding them. 
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9.2.7 Test Levels 

 Unit testing: It tests the minimal software item that can be tested. Each 

component is tested independently. 

 Module testing: A module is a collection of dependent components. So it is 

component integration testing and it exposes defects in the interfaces and 

interaction between integrated components.  

 Sub-system testing: It involves testing collection of modules which have 

been integrated into sub-systems. The sub-system test should concentrate 

on the detection of interface errors. 

 System testing: System testing tests an integrated system to verify that it 

meets its requirements. It is concerned with validating that the system 

meets its functional and non-functional requirements. 

 Acceptance testing: Acceptance testing allows the end-user or customer to 

decide whether or not to accept the product.  



284 
 

 

Figure 9.1 Test levels 

9.2.8 SYSTEM TESTING 

System testing involves two kinds of activities: integration testing and 

acceptance testing. Strategies for integrating software components into a 

functioning product include the bottom-up strategy, the top-down strategy, and 

the sandwich strategy. Careful planning and scheduling are required to 

ensure that modules will be available for integration into the evolving software 

product when needed. The integration strategy dictates the order in which 

modules must be available, and thus exerts a strong influence on the order in 

which modules are written, debugged, and unit tested. 

UNIT 
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SUB-SYSTEM 
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Acceptance testing involves planning and execution of functional tests, 

performance tests, and stress tests to verify that the implemented system 

satisfies its requirements. Acceptance tests are typically performed by the 

quality assurance and/or customer organizations. Depending on local 

circumstances, the development group may or may not be involved in 

acceptance testing. Integration testing and acceptance testing are discussed 

in the following sections. 

9.2.8.1 Integration Testing 

Three are two important variants of integration testing, (a) Bottom-up 

integration and top-down integration, which are discussed in the following 

sections: 

9.2.8.1.1 Bottom-up integration 

Bottom-up integration is the traditional strategy used to integrate the 

components of a software system into a functioning whole. Bottom-up 

integration consists of unit testing, followed by subsystem testing, followed by 

testing of the entire system. Unit testing has the goal of discovering errors in 

the individual modules of the system. Modules are tested in isolation from one 

another in an artificial environment known as a "test harness," which consists 

of the driver programs and data necessary to exercise the modules. Unit 

testing should be as exhaustive as possible to ensure that each 

representative case handled by each module has been tested. Unit testing is 
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eased by a system structure that is composed of small, loosely coupled 

modules. A subsystem consists of several modules that communicate with 

each other through well-defined interfaces. Normally, a subsystem 

implements a major segment of the total system. The primary purpose of 

subsystem testing is to verify the operation of the interfaces between modules 

in the subsystem. Both control and data interfaces must be tested. Large 

software may require several levels of subsystem testing; lower-level 

subsystems are successively combined to form higher-level subsystems. In 

most software systems, exhaustive testing of subsystem capabilities is not 

feasible due to the combinational complexity of the module interfaces; 

therefore, test cases must be carefully chosen to exercise the interfaces in the 

desired manner. 

System testing is concerned with subtleties in the interfaces, decision logic, 

control flow, recovery procedures, throughput; capacity, and timing 

characteristics of the entire system. Careful test planning is required to 

determine the extent and nature of system testing to be performed and to 

establish criteria by which the results will be evaluated. 

Disadvantages of bottom-up testing include the necessity to write and debug 

test harnesses for the modules and subsystems, and the level of complexity 

that result from combining modules and subsystems into larger and larger 

units. The extreme case of complexity results when each module is unit tested 
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in isolation and all modules are then linked and executed in one single 

integration run. This is the "big bang" approach to integration testing. The 

main problem with big-bang integration is the difficulty of isolating the sources 

of errors. 

Test harnesses provide data environments and calling sequences for the 

routines and subsystems that are being tested in isolation. Test harness 

preparation can amount to 50 percent or more of the coding and debugging 

effort for a software product. 

9.2.8.1.2 Top-down integration 

Top-down integration starts with the main routine and one or two immediately 

subordinate routines in the system structure. After this top-level "skeleton" has 

been thoroughly tested, it becomes the test harness for its immediately 

subordinate routines. Top-down integration requires the use of program stubs 

to simulate the effect of lower-level routines that are called by those being 

tested. 

 

 

 

 

 

Figure 9.2 
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1. Test MAIN module, stubs for GET, PROC, and PUT are required. 

2. Integrate GET module and now test MAIN and GET 

3. Integrate PROC, stubs for SUBI, SUB2 are required. 

4. Integrate PUT, Test MAIN, GET, PROC, PUT 

5. Integrate SUB1 and test MAIN, GET, PROC, PUT, SUBI 

6. Integrate SUB2 and test MAIN, GET, PROC, PUT, SUBI, SUB2  

Above Figure 9.2 illustrates integrated top-down integration testing.  

Top-down integration offers several advantages: 

1. System integration is distributed throughout the implementation phase. 

Modules are integrated as they are developed. 

2. Top-level interfaces are tested first and most often. 

3. The top-level routines provide a natural test harness for lower-Level 

routines. 

4. Errors are localized to the new modules and interfaces that are being 

added. 

While it may appear that top-down integration is always preferable, there are 

many situations in which it is not possible to adhere to a strict top-down 

coding and integration strategy. For example, it may be difficult to find top-

Level input data that will exercise a lower level module in a particular desired 

manner. Also, the evolving system may be very expensive to run as a test 

harness for new routines; it may not be cost effective to relink and re-execute 
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a system of 50 or 100 routines each time a new routine is added. Significant 

amounts of machine time can often be saved by testing subsystems in 

isolation before inserting them into the evolving top-down structure. In some 

cases, it may not be possible to use program stubs to simulate modules below 

the current level (e.g. device drivers, interrupt handlers). It may be necessary 

to test certain critical low-level modules first.  

The sandwich testing strategy may be preferred in these situations. Sandwich 

integration is predominately top-down, but bottom-up techniques are used on 

some modules and subsystems. This mix alleviates many of the problems 

encountered in pure top-down testing and retains the advantages of top-down 

integration at the subsystem and system level. 

9.2.8.2 Regression testing 

After modifying software, either for a change in functionality or to fix defects, a 

regression test re-runs previously passing tests on the modified software to 

ensure that the modifications haven't unintentionally caused a regression of 

previous functionality. Regression testing can be performed at any or all of the 

above test levels. These regression tests are often automated. 

In integration testing also, each time a module is added, the software 

changes. New data flow paths are established, new I/O may occur, and new 

control logic is invoked. Hence, there is the need of regression testing. 
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Regression testing is any type of software testing which seeks to uncover 

regression bugs. Regression bugs occur whenever software functionality that 

previously worked as desired stops working or no longer works in the same 

way that was previously planned. Typically regression bugs occur as an 

unintended consequence of program changes. 

Common methods of regression testing include re-running previously run 

tests and checking whether previously fixed faults have reemerged. 

Experience has shown that as software is developed, this kind of 

reemergence of faults is quite common. Sometimes it occurs because a fix 

gets lost through poor revision control practices (or simple human error in 

revision control), but just as often a fix for a problem will be "fragile" - i.e. if 

some other change is made to the program, the fix no longer works. Finally, it 

has often been the case that when some feature is redesigned, the same 

mistakes will be made in the redesign that were made in the original 

implementation of the feature. 

Therefore, in most software development situations it is considered good 

practice that when a bug is located and fixed, a test that exposes the bug is 

recorded and regularly retested after subsequent changes to the program. 

Although this may be done through manual testing procedures using 

programming techniques, it is often done using automated testing tools. Such 

a 'test suite' contains software tools that allows the testing environment to 
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execute all the regression test cases automatically; some projects even set up 

automated systems to automatically re-run all regression tests at specified 

intervals and report any regressions. Common strategies are to run such a 

system after every successful compile (for small projects), every night, or 

once a week. 

Regression testing is an integral part of the extreme programming software 

development methodology. In this methodology, design documents are 

replaced by extensive, repeatable, and automated testing of the entire 

software package at every stage in the software development cycle. 

Uses of regression testing 

Regression testing can be used not only for testing the correctness of a 

program, but it is also often used to track the quality of its output. For instance 

in the design of a compiler, regression testing should track the code size, 

simulation time, and compilation time of the test suites. 

System testing is a series of different tests and each test has a different 

purpose but all work to verify that all system elements have been properly 

integrated and perform allocated functions. In the following part a number of 

other system tests have been discussed. 
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9.2.8.3 Recovery testing 

Many systems must recover from faults and resume processing within a 

specified time. Recovery testing is a system test that forces the software to 

fail in a variety of ways and verifies that recovery is properly performed.  

9.2.8.4 Stress testing 

Stress tests are designed to confront programs with abnormal situations. 

Stress testing executes a program in a manner that demands resources in 

abnormal quantity, frequency, or volume. For example, a test case that may 

cause thrashing in a virtual operating system.  

9.2.8.5 Performance Testing 

For real time and embedded systems, performance testing is essential. In 

these systems, the compromise on performance is unacceptable. 

Performance testing is designed to test run-time performance of software 

within the context of an integrated system. 

9.2.9 Acceptance testing 

Acceptance testing involves planning and execution of functional tests, 

performance tests, and stress tests in order to demonstrate that the 

implemented system satisfies its requirements. Stress tests are performed to 

test the limitations of the systems. For example, a compiler may be tested to 

determine the effect of symbol table overflow.  
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Acceptance test will incorporate test cases developed during unit testing and 

integration testing. Additional test cases are added to achieve the desired 

level of functional, performance and stress testing of the entire system.  

9.2.9.1 Alpha testing 

Alpha testing is simulated or actual operational testing by potential 

users/customers or an independent test team at the developers’ site. Alpha 

testing is often employed for off-the-shelf software as a form of internal 

acceptance testing, before the software goes to beta testing.  

9.2.9.2 Beta testing 

Beta testing comes after alpha testing. Versions of the software, known as 

beta versions, are released to a limited audience outside of the company. The 

software is released to groups of people so that further testing can ensure the 

product has few faults or bugs. Sometimes, beta versions are made available 

to the open public to increase the feedback field to a maximal number of 

future users.  

9.3 Summary 
A high quality software product satisfies user needs, conforms to its requirements, and 
design specifications and exhibits an absence of errors. Techniques for improving 
software quality include systematic quality assurance procedures, walkthroughs, 
inspections, static analysis, unit testing integration testing, acceptance testing etc. 
Testing plays a critical role in quality assurance for software. Testing is a dynamic 
method for verification and validation. In it the system is executed and the behavior of 
the system is observed. Due, to this testing observes the failure of the system, from 
which the presence of faults can be deduced. 
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The goal of the testing is to detect the errors so there are different levels of 

testing. Unit testing focuses on the errors of a module while integration testing 

tests the system design. There are a number of approaches of integration 

testing with their own merits and demerits such as top-down integration, and 

bottom up integration. To goal of the acceptance testing is to test the system 

against the requirements. It comprises of alpha testing and beta testing. 

The primary goal of verification and validation is to improve the quality of all 

the work products generated during software development and modification. 

Although testing is an important technique, but high quality cannot be 

achieved by it only. High quality is best achieved by careful attention to the 

details of planning, analysis, design, and implementation. 

9.4 Key words 

Fault: It is a programming bug that may or may not actually manifest as a 

failure.  

Error: It is the discrepancy between a computed, observed or measured 

value and the true, specified or theoretically correct value.  

Failure: It is the inability of a system to perform a required function according 

to its specification. 

Unit testing: It tests the minimal software item that can be tested.  
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Regression testing: It is the re-running of previously passing tests on the 

modified software to ensure that the modifications haven't unintentionally 

caused a regression of previous functionality. 

Acceptance testing: It is done to demonstrate that the implemented system 

satisfies its requirements. 

Alpha testing: It is operational testing by a test team at the developers’ site. 

It is a form of internal acceptance testing. 

Beta testing: In this testing, the software is released to a limited audience 

outside of the company for further testing to ensure the product has few faults 

or bugs. 

9.5 Self-Assessment Questions 

1. Differentiate between  

 Alpha testing and beta testing 

 Top down integration and bottom up integration 

2. Why the programmer of a program is not supposed to be its tester? 

Explain. 

3. Does simply presence of fault mean software failure? If no, justify your 

answer with proper example. 

4. What do you understand by regression testing and where do we use it?  

5. Define testing. What characteristics are to be there in a good test case? 
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6. Explain why regression testing is necessary and how automated testing 

tools can assist with this type of testing.  

7. Discuss whether it is possible for engineers to test their own programs in 

an objective way. 

8. What do you understand by error, fault, and failure? Explain using suitable 

examples. 

9.6 References/Suggested readings 
33. Software Engineering concepts by Richard Fairley, Tata McGraw Hill. 

34. An integrated approach to Software Engineering by Pankaj Jalote, 

Narosha Publishing house.  
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36. Software Engineering – A Practitioner’s Approach by Roger S 

Pressman, McGraw-Hill. 
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Lesson number: X     Writer: Dr. Rakesh Kumar 

Software Testing - II    Vetter: Dr. Dinesh Kumar 

 
10.0 Objectives 

The objective of this lesson is to make the students familiar with the process 

of test case design, to show them how program structure analysis can be 

used in the testing process. After studying this lesson the students will have 

the knowledge of test case design using functional and structural testing 

techniques. 

 

10.1 Introduction 

Testing of the software is most time and efforts consuming activity. On 

average 30 to 40 percent of total project efforts are consumed in testing. In 

some real time, embedded software figure may be higher.  During the 

software development, errors may be introduced in any phase of the 

development. Because of the human inability to perform and communicate 

with perfection, software development is accompanied by quality assurance 

activity. Testing is a critical element of software quality assurance. In this 

chapter a number of strategies are discussed to design the test cases. 

According to Myres a good test is one that reveals the presence of defects in 

the software being tested. So a test suit does not detect defects, this means 
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that the test chosen have not exercised the system so that defects are 

revealed. It does not mean that program defects do not exists.  

10.2 Presentation of contents 

    10.2.1 Test case design 

    10.2.2 White-box and black-box testing 

          10.2.2.1 White box testing 

                10.2.2.1.1 Code coverage 

                10.2.2.1.2 Data Flow testing 

                10.2.2.1.3 Loop testing 

          10.2.2.2 Black Box testing 

                10.2.2.2.1 Equivalence class partitioning 

                10.2.2.2.2 Boundary value analysis 

               10.2.2.2.3 Cause-Effect Graphing 

    10.2.3 Black box and white box testing compared 

    10.2.4 Mutation Testing 

10.2.1 Test case design 

A test case is usually a single step, and its expected result, along with various 

additional pieces of information. It can occasionally be a series of steps but 

with one expected result or expected outcome. The optional fields are a test 

case ID, test step or order of execution number, related requirement(s), depth, 

test category, author, and check boxes for whether the test is automatable 



299 
 

and has been automated. Larger test cases may also contain prerequisite 

states or steps, and descriptions. A test case should also contain a place for 

the actual result. These steps can be stored in a word processor document, 

spreadsheet, database or other common repository. In a database system, 

you may also be able to see past test results and who generated the results 

and the system configuration used to generate those results. These past 

results would usually be stored in a separate table. 

The most common term for a collection of test cases is a test suite. The test 

suite often also contains more detailed instructions or goals for each collection 

of test cases. It definitely contains a section where the tester identifies the 

system configuration used during testing. A group of test cases may also 

contain prerequisite states or steps, and descriptions of the following tests. 

Collections of test cases are sometimes incorrectly termed a test plan. They 

might correctly be called a test specification. If sequence is specified, it can be 

called a test script, scenario or procedure.  

There are two basic approaches to test case design: functional (black box) 

and structural (white box). In functional testing, the structure of the program is 

not considered. Structural testing, on the other hand, is concerned with testing 

the implementation of the program. 
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10.2.2 White-box and black-box testing 

White box and black box testing are terms used to describe the point of view a 

test engineer takes when designing test cases. Black box is an external view 

of the test object and white box, an internal view. 

In recent years the term grey box testing has come into common usage. The 

typical grey box tester is permitted to set up or manipulate the testing 

environment, like seeding a database, and can view the state of the product 

after her actions, like performing a SQL query on the database to be certain of 

the values of columns. It is used almost exclusively of client-server testers or 

others who use a database as a repository of information, but can also apply 

to a tester who has to manipulate XML files (DTD or an actual XML file) or 

configuration files directly. It can also be used of testers who know the internal 

workings or algorithm of the software under test and can write tests 

specifically for the anticipated results. For example, testing a data warehouse 

implementation involves loading the target database with information, and 

verifying the correctness of data population and loading of data into the 

correct tables. 

10.2.2.1 White box testing 

White box testing (also known as clear box testing, glass box testing or 

structural testing) uses an internal perspective of the system to design test 

cases based on internal structure. It requires programming skills to identify all 
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paths through the software. The tester chooses test case inputs to exercise all 

paths and determines the appropriate outputs. In electrical hardware testing 

every node in a circuit may be probed and measured, an example is In circuit 

test (ICT). 

Since the tests are based on the actual implementation, if the implementation 

changes, the tests probably will need to also. For example ICT needs updates 

if component values change, and needs modified/new fixture if the circuit 

changes. This adds financial resistance to the change process, thus buggy 

products may stay buggy. Automated optical inspection (AOI) offers similar 

component level correctness checking without the cost of ICT fixtures, 

however changes still require test updates. 

While white box testing is applicable at the unit, integration and system levels, 

it's typically applied to the unit. So while it normally tests paths within a unit, it 

can also test paths between units during integration, and between 

subsystems during a system level test. Though this method of test design can 

uncover an overwhelming number of test cases, it might not detect 

unimplemented parts of the specification or missing requirements. But you 

can be sure that all paths through the test object are executed. 

Typical white box test design techniques include: 

 Control flow testing  

 Data flow testing  
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10.2.2.1.1 Code coverage 

The most common structure based criteria are based on the control flow of 

the program. In this criterion, a control flow graph of the program is 

constructed and coverage of various aspects of the graph is specified as 

criteria. A control flow graph of program consists of nodes and edges. A node 

in the graph represents a block of statement that is always executed together. 

An edge frm node i to node j represents a possible transfer of control after 

executing the last statement in the block represented by node i to the first 

statement of the block represented by node j. Three common forms of code 

coverage used by testers are statement (or line) coverage, branch coverage, 

and path coverage. Line coverage reports on the execution footprint of testing 

in terms of which lines of code were executed to complete the test. According 

to this criterion each statement of the program to be tested should be 

executed at least once. Using branch coverage as the test criteria, the tester 

attempts to find a set of test cases that will execute each branching statement 

in each duirection at least once. A path coverage criterion acknowledges that 

the order in which the btanches are executed during a test (the path 

traversed) is an important factor in determining the test outcome. So tester 

attempts to find a set of test cases that ensure the traversal of each logical 

path in the control flow graph.  
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A Control Flow Graph (CFG) is a diagrammatic representation of a program 

and its execution. A CFG shows all the possible sequences of statements of a 

program. CFGs consist of all the typical building blocks of any flow diagrams. 

There is always a start node, an end node, and flows (or arcs) between 

nodes. Each node is labeled in order for it to be identified and associated 

correctly with its corresponding part in the program code. 

CFGs allow for constructs to be nested in order to represent nested loops in 

the actual code. Some examples are given below in figure 10.1: 

 

 

 

 

 

If loop                                While Loop   Do While Loop 

Figure 10.1 

In programs where while loops exist, there are potentially an infinite number of 

unique paths through the program. Every path through a program has a set of 

associated conditions. Finding out what these conditions are allows for test 

data to be created. This enables the code to be tested to a suitable degree. 

The conditions that exist for a path through a program are defined by the 

values of variable, which change through the execution of the code. At any 
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point in the program execution, the program state is described by these 

variables. Statements in the code such as "x = x + 1" alter the state of the 

program by changing the value of a variable (in this case, x). 

Infeasible paths are those paths, which cannot be executed. Infeasible paths 

occur when no values will satisfy the path constraint. 

Example:  

//Program to find the largest of three numbers: 

input a,b,c; 

max=a; 

if (b>max) max=b; 

if(c=max) max=c; 

output max; 

The control flow graph of this program is given below in figure 10.2. In this 

flowgraph node 1 represents the statements [input a,b,c;max=a;if(b>max)], 

node 2 represents [max=b], node 3 represents [if(c>max)], node 4 represents 

[max=c] and node 5 represents [output max]. 
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1 

4 

5 3 

2 



305 
 

To ensure the Statement coverage [1, 2, 3, 4, 5] one test case a=5, b=10, and 

c=15 is sufficient.  

To ensure Branch coverage [1, 3, 5] and [1, 2, 3, 4, 5], two test cases are 

required (i) a=5, b=10, c=15 and (ii) a=15, b=10, and c=5. 

To ensure Path coverage ([1,2,3,4,5], [1,3,5], [1,2,3,5], and [1,3,4,5]), four test 

cases are required: 

(i) a=5, b=10, c=15  

(ii) a=15, b=10, and c=5. 

(iii) a=5, b=10, and c=8 

(iv) a=10, b=5, c=15 

Path coverage criteria leads to a potentially infinite number of paths, some 

efforts have been made to limit the number of paths to be tested. One such 

approach is the cyclomatic complexity. The cyclomatic complexity of a path 

represents the logically independent path in a program as in the above case 

the cyclomatic complexity is three so three test cases are sufficient. As these 

are the independent paths, all other paths can be represented as a 

combination of these basic paths.  

10.2.2.1.2 Data Flow testing 

The data flow testing is based on the information about where the variables 

are defined and where the definitions are used. During testing the definitions 

of variables and their subsequent use is tested. Data flow testing looks at how 
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data moves within a program. There are a number of associated test criteria 

and these should complement the control-flow criteria. Data flow occurs 

through assigning a value to a variable in one place accessing that a value in 

another place. 

To illustrate the data flow based testing; let us assume that each statement in 

the program has been assigned a unique statement number and that each 

function does not modify its parameters or global variables. For a statement 

with S as its statement number, 

DEF(S) = { X| statement S contains a definition of X} 

USE(S) = { X | statement S contains a use of X} 

If statement S is an if or loop statement, its DEF set is empty and its USE set 

is based on the condition of statement S. The definition of variable X is said to 

be live at the statement S’ if there exists a path from statement S to statement 

S’ that does not contain any other definition of X. A Definition Use chain (DU 

chain) of variable X is of the form [X, S, S’], where S and S’ are statement 

numbers, X is in DEF(S) and USE(S’), and the definition of X in the statement 

S is live at the statement S’. 

One simple data flow testing strategy is to require that every DU chain be 

covered at least once. This strategy is known as DU testing strategy.  
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10.2.2.1.3 Loop testing 

Loops are very important constructs for generally all the algorithms. Loop 

testing is a white box testing technique. It focuses exclusively on the validity of 

loop constructs. Four different types of loops are: simple loop, concatenated 

loop, nested loop, and unstructured loop as shown in figure 10.3. 

Simple loop: The following set of tests should be applied to simple loop 

where n is the maximum number of allowable passes thru the loop: 

- Skip the loop entirely. 

- Only one pass thru the loop. 

- Two passes thru the loop. 

- M passes thru the loop where m < n. 

- N-1, n, n+1 passes thru the loop. 
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Simple loop  Nested loop  Concatenated loop Unstructured loop 

Figure 10.3 

Nested loop: Beizer approach to the nested loop is: 

- Start at the innermost loop. Set all other loops to minimum value. 

- Conduct the simple loop test for the innermost loop while holding the 

outer loops at their minimum iteration parameter value.  

- Work outward, conducting tests for next loop, but keeping all other 

outer loops at minimum values and other nested loops to typical 

values. 

- Continue until all loops have been tested. 
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Concatenated loops: These can be tested using the approach of simple 

loops if each loop is independent of other. However, if the loop counter of loop 

1 is used as the initial value for loop 2 then approach of nested loop is to be 

used. 

Unstructured loop: This class of loops should be redesigned to reflect the 

use of the structured programming constructs. 

10.2.2.2 Black Box testing 

Black box testing takes an external perspective of the test object to derive test 

cases. These tests can be functional or non-functional, though usually 

functional. The test designer selects valid and invalid input and determines 

the correct output. There is no knowledge of the test object's internal 

structure. 

This method of test design is applicable to all levels of development - unit, 

integration, system and acceptance. The higher the level, and hence the 

bigger and more complex the box, the more we are forced to use black box 

testing to simplify. While this method can uncover unimplemented parts of the 

specification, you can't be sure that all existent paths are tested. Some 

common approaches of black box testing are equivalence class partitioning, 

boundary value analysis etc. 
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10.2.2.2.1 Equivalence class partitioning 

Equivalence partitioning is software testing related technique with the goal: 

1. To reduce the number of test cases to a necessary minimum.  

2. To select the right test cases to cover all possible scenarios.  

Although in rare cases equivalence partitioning is also applied to outputs of a 

software component, typically it is applied to the inputs of a tested component. 

The equivalence partitions are usually derived from the specification of the 

component's behaviour. An input has certain ranges which are valid and other 

ranges which are invalid. This may be best explained at the following example 

of a function which has the pass parameter "month" of a date. The valid range 

for the month is 1 to 12, standing for January to December. This valid range is 

called a partition. In this example there are two further partitions of invalid 

ranges. The first invalid partition would be <= 0 and the second invalid 

partition would be >= 13. 

-2, -1, 0 1,2,……..12 13, 14, 15 

Invalid partition 1 Valid partition Invalid partition 2 

The testing theory related to equivalence partitioning says that only one test 

case of each partition is needed to evaluate the behaviour of the program for 

the related partition. In other words it is sufficient to select one test case out of 

each partition to check the behaviour of the program. To use more or even all 

test cases of a partition will not find new faults in the program. The values 



311 
 

within one partition are considered to be "equivalent". Thus the number of test 

cases can be reduced considerably. 

An additional effect by applying this technique is that you also find the so 

called "dirty" test cases. An inexperienced tester may be tempted to use as 

test cases the input data 1 to 12 for the month and forget to select some out 

of the invalid partitions. This would lead to a huge number of unnecessary test 

cases on the one hand, and a lack of test cases for the dirty ranges on the 

other hand. 

The tendency is to relate equivalence partitioning to the so called black box 

testing which is strictly checking a software component at its interface, without 

consideration of internal structures of the software. But having a closer look 

on the subject there are cases where it applies to the white box testing as 

well. Imagine an interface to a component which has a valid range between 1 

and 12 like in the example above. However internally the function may have a 

differentiation of values between 1 and 6 and the values between 7 and 12. 

Depending on the input value the software internally will run through different 

paths to perform slightly different actions. Regarding the input and output 

interfaces to the component this difference will not be noticed, however in 

your white-box testing you would like to make sure that both paths are 

examined. To achieve this it is necessary to introduce additional equivalence 
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partitions which would not be needed for black-box testing. For this example 

this would be: 

-2, -1, 0 1,…..6 7,……12 13, 14, 15 

P1 P2 
Invalid Partition 1

Valid Partition 
Invalid Partition 2 

To check for the expected results you would need to evaluate some internal 

intermediate values rather than the output interface. 

Equivalence partitioning is no stand alone method to determine test cases. It 

has to be supplemented by boundary value analysis. Having determined the 

partitions of possible inputs the method of boundary value analysis has to be 

applied to select the most effective test cases out of these partitions. 

10.2.2.2.2 Boundary value analysis 

Boundary value analysis is software testing related technique to determine 

test cases covering known areas of frequent problems at the boundaries of 

software component input ranges. Testing experience has shown that 

especially the boundaries of input ranges to a software component are liable 

to defects. A programmer who has to implement e.g. the range 1 to 12 at an 

input, which e.g. stands for the month January to December in a date, has in 

his code a line checking for this range. This may look like: 

  if (month > 0 && month < 13) 
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But a common programming error may check a wrong range e.g. starting the 

range at 0 by writing: 

  if (month >= 0 && month < 13) 

For more complex range checks in a program this may be a problem which is 

not so easily spotted as in the above simple example. 

Applying boundary value analysis 

To set up boundary value analysis test cases you first have to determine 

which boundaries you have at the interface of a software component. This has 

to be done by applying the equivalence partitioning technique. Boundary 

value analysis and equivalence partitioning are inevitably linked together. For 

the example of the month in a date you would have the following partitions: 

-2, -1, 0 1,2,……..12 13, 14, 15 

Invalid partition 1 Valid partition Invalid partition 2 

Applying boundary value analysis you have to select now a test case at each 

side of the boundary between two partitions. In the above example this would 

be 0 and 1 for the lower boundary as well as 12 and 13 for the upper 

boundary. Each of these pairs consists of a "clean" and a "dirty" test case. A 

"clean" test case should give you a valid operation result of your program. A 

"dirty" test case should lead to a correct and specified input error treatment 

such as the limiting of values, the usage of a substitute value, or in case of a 

program with a user interface, it has to lead to warning and request to enter 



314 
 

correct data. The boundary value analysis can have 6 textcases.n,n-1,n+1 for 

the upper limit and n,n-1,n+1 for the lower limit. 

A further set of boundaries has to be considered when you set up your test 

cases. A solid testing strategy also has to consider the natural boundaries of 

the data types used in the program. If you are working with signed values this 

is especially the range around zero (-1, 0, +1). Similar to the typical range 

check faults programmers tend to have weaknesses in their programs in this 

range. E.g. this could be a division by zero problems when a zero value is 

possible to occur although the programmer always thought the range starting 

at 1. It could be a sign problem when a value turns out to be negative in some 

rare cases, although the programmer always expected it to be positive. Even 

if this critical natural boundary is clearly within an equivalence partition it 

should lead to additional test cases checking the range around zero. A further 

natural boundary is the natural lower und upper limit of the data type itself. 

E.g. an unsigned 8-bit value has the range of 0 to 255. A good test strategy 

would also check how the program reacts at an input of -1 and 0 as well as 

255 and 256. 

The tendency is to relate boundary value analysis more to the so called black 

box testing which is strictly checking a software component at its interfaces, 

without consideration of internal structures of the software. But having a 
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closer look on the subject there are cases where it applies also to white box 

testing. 

After determining the necessary test cases with equivalence partitioning and 

the subsequent boundary value analysis it is necessary to define the 

combinations of the test cases in case of multiple inputs to a software 

component. 

10.2.2.2.3 Cause-Effect Graphing 

One weakness with the equivalence class partitioning and boundary value 

methods is that they consider each input separately. That is, both concentrate 

on the conditions and classes of one input. They do not consider 

combinations of input circumstances that may form interesting situations that 

should be tested. One way to exercise combinations of different input 

conditions is to consider all valid combinations of the equivalence classes of 

input conditions. This simple approach will result in an unusually large number 

of test cases, many of which will not be useful for revealing any new errors. 

For example, if there are n different input conditions, such that any 

combination of the input conditions is valid, we will have 2n test cases. 

Cause-effect graphing is a technique that aids in selecting combinations of 

input conditions in a systematic way, such that the number of test cases does 

not become unmanageably large. The technique starts with identifying causes 

and effects of the system under testing. A cause is a distinct input condition, 
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and an effect is a distinct output condition. Each condition forms a node in the 

cause-effect graph. The conditions should be stated such that they can be set 

to either true or false. For example, an input condition can be "file is empty," 

which can be set to true by having an empty input file, and false by a 

nonempty file. After identifying the causes and effects, for each effect we 

identify the causes that can produce that effect and how the conditions have 

to be combined to make the effect true. Conditions are combined using the 

Boolean operators "and", "or", and "not", which are represented in the graph 

by Λ, V and zigzag line respectively. Then, for each effect, all combinations of 

the causes that the effect depends on which will make the effect true, are 

generated (the causes that the effect does not depend on are essentially 

"don't care"). By doing this, we identify the combinations of conditions that 

make different effects true. A test case is then generated for each 

combination of conditions, which make some effect true. 

Let us illustrate this technique with a small example. Suppose that for a bank 

database there are two commands allowed: 

credit acct-number   transaction_amount  

debit acct-number   transaction_amount 

The requirements are that if the command is credit and the acct-number is 

valid, then the account is credited. If the command is debit, the acct-number is 

valid, and the transaction_amount is valid (less than the balance), then the 



317 
 

account is debited. If the command is not valid, the account number is not 

valid, or the debit amount is not valid, a suitable message is generated. We 

can identify the following causes and effects from these requirements: 

Cause: 

c1. Command is credit  

c2. Command is debit  

c3. Account number is valid  

c4. Transaction_amt. is valid  

Effects: 

el. Print "invalid command" 

e2. Print "invalid account-number" 

e3. Print "Debit amount not valid" 

e4. Debit account 

e5. Credit account 

The cause effect of this is shown in following Figure 10.4. In the graph, the 

cause-effect relationship of this example is captured. For all effects, one can 

easily determine the causes each effect depends on and the exact nature of 

the dependency. For example, according to this graph, the effect E5 depends 

on the causes c2, c3, and c4 in a manner such that the effect E5 is enabled 

when all c2, c3, and c4 are true. Similarly, the effect E2 is enabled if c3 is false. 
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From this graph, a list of test cases can be generated. The basic strategy is to 

set an effect to I and then set the causes that enable this condition. The 

condition of causes forms the test case. A cause may be set to false, true, or 

don't care (in the case when the effect does not depend at all on the cause). 

To do this for all the effects, it is convenient to use a decision table (Table 

10.1). This table lists the combinations of conditions to set different effects. 

Each combination of conditions in the table for an effect is a test case. 

Together, these condition combinations check for various effects the software 

should display. For example, to test for the effect E3, both c2 and c4 have to be 

set. That is, to test the effect "Print debit amount not valid," the test case 

should be: Command is debit (setting: c2 to True), the account number is valid 

(setting c3 to False), and the transaction money is not proper (setting c4 to 

False). 
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Figure 10.4 The Cause Effect Graph 

SNo. 1 2 3 4 5 

Cl 0 1 x x 1 

C2 0 x 1 1 x 

C3 x 0 1 1 1 

C4 x x 0 1 1 

El 1     

E2  1    

E3   1   

E4    1  

E5     1 

 

Table 10.1 Decision Table for the Cause-effect Graph 

E4 

C1 

C4 

C3 

C2 

E2 

E3 

E5 

E1 
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Cause-effect graphing, beyond generating high-yield test cases, also aids the 

understanding of the functionality of the system, because the tester must 

identify the distinct causes and effects. There are methods of reducing the 

number of test cases generated by proper traversing of the graph. Once the 

causes and effects are listed and their dependencies specified, much of the 

remaining work can also be automated. 

10.2.3 Black box and white box testing compared 

White box testing is concerned only with testing the software product; it 

cannot guarantee that the complete specification has been implemented. 

Black box testing is concerned only with testing the specification; it cannot 

guarantee that all parts of the implementation have been tested. Thus black 

box testing is testing against the specification and will discover 

faults of omission, indicating that part of the specification has not been 

fulfilled. White box testing is testing against the implementation and will 

discover faults of commission, indicating that part of the implementation is 

faulty. In order to fully test a software product both black and white box testing 

are required.  

White box testing is much more expensive than black box testing. It requires 

the source code to be produced before the tests can be planned and is much 

more laborious in the determination of suitable input data and the 

determination if the software is or is not correct. The advice given is to start 
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test planning with a black box test approach as soon as the specification is 

available. White box planning should commence as soon as all black box 

tests have been successfully passed, with the production of flow graphs and 

determination of paths. The paths should then be checked against the black 

box test plan and any additional required test runs determined and applied.  

The consequences of test failure at this stage may be very expensive. A 

failure of a white box test may result in a change which requires all black box 

testing to be repeated and the re-determination of the white box paths. The 

cheaper option is to regard the process of testing as one of quality assurance 

rather than quality control. The intention is that sufficient quality will be put into 

all previous design and production stages so that it can be expected that 

testing will confirm that there are very few faults present, quality assurance, 

rather than testing being relied upon to discover any faults in the software, 

quality control. A combination of black box and white box test considerations 

is still not a completely adequate test rationale; additional considerations are 

to be introduced.  

10.2.4 Mutation Testing 

Mutation testing is another white box testing technique. Mutation testing is a 

fault-based testing technique that is based on the assumption that a program 

is well tested if all simple faults are predicted and removed; complex faults are 
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coupled with simple faults and are thus detected by tests that detect simple 

faults.  

Mutation testing is used to test the quality of your test suite. This is done by 

mutating certain statements in your source code and checking if your test 

code is able to find the errors. However, mutation testing is very expensive 

to run, especially on very large applications. There is a mutation testing tool, 

Jester, which can be used to run mutation tests on Java code. Jester looks 

at specific areas of your source code, for example: forcing a path through an 

if statement, changing constant values, and changing Boolean values 

The idea of mutation testing was introduced as an attempt to solve the 

problem of not being able to measure the accuracy of test suites. The thinking 

goes as follows: Let’s assume that we have a perfect test suite, one that 

covers all possible cases. Let’s also assume that we have a perfect program 

that passes this test suite. If we change the code of the program (this process 

is called mutation) and we run the mutated program (mutant) against the test 

suite, we will have two possible scenarios:  

1. The results of the program were affected by the code change and the 

test suite detects it. If this happens, the mutant is called a killed mutant.  

2. The results of the program are not changed and the test suite does not 

detect the mutation. The mutant is called an equivalent mutant.  
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The ratio of killed mutants to the total mutants created measures how 

sensitive the program is to the code changes and how accurate the test suite 

is.  

The effectiveness of Mutation Testing depends heavily on the types of faults 

that the mutation operators are designed to represent. By mutation operators 

we mean certain aspects of the programming techniques, the slightest change 

in which may cause the program to function incorrectly. For example, a simple 

condition check in the following code may perform viciously because of a little 

change in the code.  

1. Original Code: for (x==1) { ….}  

2. Mutated Code: for (x<=1) { ….}  

In the example above the ‘equality condition’ was considered as a mutation 

operator and a little change in the condition is brought into effect as shown in 

the mutated code and the program is tested for its functionality.  

Mutation Operators  

Following could be some of the Mutation Operators for Object-Oriented 

languages like Java, C++ etc.  

 Changing the access modifiers, like public to private etc.  

 Static modifier change.  

 Argument order change.  

 Super keyword deletion.  



324 
 

Summary 
A high quality software product satisfies user needs, conforms to its requirements, and 
design specifications and exhibits an absence of errors. Techniques for improving 
software quality include systematic quality assurance procedures, walkthroughs, 
inspections, static analysis, unit testing integration testing, acceptance testing etc. 
Testing plays a critical role in quality assurance for software. Testing is a dynamic 
method for verification and validation. In it the system is executed and the behavior of 
the system is observed. Due, to this testing observes the failure of the system, from 
which the presence of faults can be deduced. 

There are two basic approaches to testing: white box testing and black box 

testing. In white box testing the structure of the program i.e. internal logic is 

considered to decide the test cases while in black box testing the examples of 

which are boundary value analysis, equivalence partitioning, the test cases 

are deduced on the basis of external specification of the program. So the 

functionality of the program is tested.  

The goal of the testing is to detect the errors so there are different levels of 

testing. Unit testing focuses on the errors of a module while integration testing 

tests the system design. To goal of the acceptance testing is to test the 

system against the requirements. 

The primary goal of verification and validation is to improve the quality of all 

the work products generated during software development and modification. 

Although testing is an important technique, but high quality cannot be 

achieved by it only. High quality is best achieved by careful attention to the 

details of planning, analysis, design, and implementation. 

Key words 
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White box testing: It uses an internal perspective of the system to design 

test cases based on internal structure. 

Mutation testing: It is used to test the quality of your test suite by mutating 

certain statements in your source code and checking if your test code is able 

to find the errors. 

Boundary value analysis It is a technique to determine test cases covering 

known areas of frequent problems at the boundaries of software component 

input ranges. 

Black box: It takes an external perspective of the test object to derive test 

cases. 

Equivalence partitioning: It is a technique with the goal to reduce the 

number of test cases to a necessary minimum and to select the right test 

cases to cover all possible scenarios. By dividing the input ranges into 

equivalent partition and then selecting one representative from each partition.  

 

Self-Assessment Questions 

9. Differentiate between  

 Black box testing and white box testing. 

 Alpha testing and beta testing 

 Top down integration and bottom up integration 

 Control flow based and data flow based testing 
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10. What is boundary value analysis? Explain using suitable examples.  

11. What is equivalence class partitioning? What are the advantages of using this 

testing technique? 

12. What do you understand by structural testing? Using an example show 

that path coverage criteria is stronger than statement coverage and branch 

coverage criteria. 

13. Write a module to compute the factorial of a given integer N. Design the 

test cases using boundary value analysis and equivalence class 

partitioning technique. 

14. Why the programmer of a program is not supposed to be its tester? 

Explain. 

15. What types of errors are detected by boundary value analysis and 

equivalence class partitioning techniques? Explain using suitable 

examples. 

16. Using suitable examples show that: 

- Path coverage is a stronger criterion than branch coverage. 

- Branch coverage is a stronger criterion than statement coverage. 

17. Does simply presence of fault mean software failure? If no, justify your 

answer with proper example. 

18. What do you understand by regression testing and where do we use it?  

19. Define testing. What characteristics are to be there in a good test case? 

20. What do you understand by loop testing? Write a program for bubble sort 

and design the test cases using the loop testing criteria. 
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21. What is cyclomatic complexity? How does cyclomatic complexity number 

help in testing? Explain using suitable examples.  
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Lesson no. XI     Writer: Dr. Rakesh Kumar 

Software Reliability    Vetter: Dr. PradeepK.Bhatia 

 
11.0 Objectives 

The objectives of this lesson are: 

1. To introduce the concepts of reliability. 

2. To discuss the metrics to measure software reliability. 

3. To discuss the approaches to make software fault tolerant. 

4. To make the students acquainted with the reliability growth modeling. 

 

11.1 Introduction 

With the advent of the computer age, computers, as well as the software 

running on them, are playing a vital role in our daily lives. We may not have 

noticed, but appliances such as washing machines, telephones, TVs, and 

watches, are having their analog and mechanical parts replaced by CPUs and 

software. The computer industry is booming exponentially. With a 

continuously lowering cost and improved control, processors and software-

controlled systems offer compact design, flexible handling, rich features and 

competitive cost. Like machinery-replaced craftsmanship in the industrial 

revolution, computers and intelligent parts are quickly pushing their 

mechanical counterparts out of the market.  
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People used to believe that "software never breaks". Intuitively, unlike 

mechanical parts such as bolts, levers, or electronic parts such as transistors, 

capacitor, software will stay "as is" unless there are problems in hardware that 

changes the storage content or data path. Software does not age, rust, wear-

out, deform or crack. There is no environmental constraint for software to 

operate as long as the hardware processor it runs on can operate. 

Furthermore, software has no shape, color, material, and mass. It cannot be 

seen or touched, but it has a physical existence and is crucial to system 

functionality.  

Without being proven to be wrong, optimistic people would think that once 

after the software can run correctly, it will be correct forever. A series of 

tragedies and chaos caused by software proves this to be wrong. These 

events will always have their place in history.  

Tragedies in Therac 25, a computer-controlled radiation-therapy machine in 

the year 1986, caused by the software not being able to detect a race 

condition, alerts us that it is dangerous to abandon our old but well-

understood mechanical safety control and surrender our lives completely to 

software controlled safety mechanism.  

Software can make decisions, but can just as unreliable as human beings. 

The British destroyer Sheffield was sunk because the radar system identified 

an incoming missile as "friendly".  The defense system has matured to the 
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point that it will not mistaken the rising moon for incoming missiles, but gas-

field fire, descending space junk, etc, were also examples that can be 

misidentified as incoming missiles by the defense system.  

Software can also have small unnoticeable errors or drifts that can culminate 

into a disaster. On February 25, 1991, during the Golf War, the chopping error 

that missed 0.000000095 second in precision in every 10th of a second, 

accumulating for 100 hours, made the Patriot missile fail to intercept a scud 

missile. 28 lives were lost.  

Fixing problems may not necessarily make the software more reliable. On the 

contrary, new serious problems may arise. In 1991, after changing three lines 

of code in a signaling program which contains millions lines of code, the local 

telephone systems in California and along the Eastern seaboard came to a 

stop.   

Once perfectly working software may also break if the running environment 

changes. After the success of Ariane 4 rocket, the maiden flight of Ariane 5 

ended up in flames while design defects in the control software were unveiled 

by faster horizontal drifting speed of the new rocket.  

There are much more scary stories to tell. This makes us wondering whether 

software is reliable at all, whether we should use software in safety-critical 

embedded applications. You can hardly ruin your clothes if the embedded 

software in your washing machine issues erroneous commands; and 50% of 



331 
 

the chances you will be happy if the ATM machine miscalculates your money; 

but in airplanes, heart pace-makers, radiation therapy machines, a software 

error can easily claim people's lives. With processors and software 

permeating safety critical embedded world, the reliability of software is simply 

a matter of life and death.  

11.2 Presentation of contents 

11.2.1 Definition 

11.2.2 Software failure mechanisms 

11.2.3 The bathtub curve for Software Reliability 

11.2.4 Available tools, techniques, and metrics 

11.2.5 Software Reliability Models  

11.2.6 Software Reliability Metrics  

11.2.6.1 Product metrics  

11.2.6.2 Project management metrics  

11.2.6.3 Process metrics  

11.2.6.4 Fault and failure metrics  
11.2.7 Software Reliability Improvement Techniques  

11.2.8 Software Fault Tolerance 

11.2.9 Software fault tolerance techniques 
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11.2.9.1 Recovery Blocks 

11.2.9.2 N-version Software 
11.2.9.3 N-version software and recover block - comparison 

11.2.10 Reliability Models  

11.2.11 J-M Model 

11.2.12 Goel-Okumoto model 
 11.2.13 Musa’s Basic Execution Time Model 

 11.2.14 Markov Model 

11.2.1 Definition 

According to ANSI, Software Reliability is defined as: the probability of failure-

free software operation for a specified period of time in a specified 

environment. Although Software Reliability is defined as a probabilistic 

function, and comes with the notion of time, we must note that, different from 

traditional Hardware Reliability, Software Reliability is not a direct function of 

time. Electronic and mechanical parts may become "old" and wear out with 

time and usage, but software will not wear-out during its life cycle. Software 

will not change over time unless intentionally changed or upgraded.  

Software Reliability is an important attribute of software quality, together with 

functionality, usability, performance, serviceability, capability, installability, 

maintainability, and documentation. Software Reliability is hard to achieve, 

because the complexity of software tends to be high. While any system with a 
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high degree of complexity, including software, will be hard to reach a certain 

level of reliability, system developers tend to push complexity into the 

software layer, with the rapid growth of system size and ease of doing so by 

upgrading the software. For example, large next-generation aircraft will have 

over one million source lines of software on-board; next-generation air traffic 

control systems will contain between one and two million lines; the upcoming 

international Space Station will have over two million lines on-board and over 

ten million lines of ground support software; several major life-critical defense 

systems will have over five million source lines of software. While the 

complexity of software is inversely related to software reliability, it is directly 

related to other important factors in software quality, especially functionality, 

capability, etc. Emphasizing these features will tend to add more complexity to 

software.  

11.2.2 Software failure mechanisms 

The software failure may be classified as: 

 Transient failure: These failures only occur with certain inputs. 

 Permanent failure: this failure occurs on all inputs. 

 Recoverable failure: System can recover without operator help. 

 Unrecoverable failure: System can recover with operator help only. 

 Non-corruption failure: Failure does not corrupt system state or data. 

 Corrupting failure: It corrupts system state or data. 
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Software failures may be due to errors, ambiguities, oversights or 

misinterpretation of the specification that the software is supposed to satisfy, 

carelessness or incompetence in writing code, inadequate testing, incorrect or 

unexpected usage of the software or other unforeseen problems. While it is 

tempting to draw an analogy between Software Reliability and Hardware 

Reliability, software and hardware have basic differences that make them 

different in failure mechanisms. Hardware faults are mostly physical faults, 

while software faults are design faults, which are harder to visualize, classify, 

detect, and correct. Design faults are closely related to fuzzy human factors 

and the design process, which we don't have a solid understanding. In 

hardware, design faults may also exist, but physical faults usually dominate. 

In software, we can hardly find a strict corresponding counterpart for 

"manufacturing" as hardware manufacturing process, if the simple action of 

uploading software modules into place does not count. Therefore, the quality 

of software will not change once it is uploaded into the storage and start 

running. Trying to achieve higher reliability by simply duplicating the same 

software modules will not work, because voting cannot mask off design faults.  

A partial list of the distinct characteristics of software compared to hardware is 

listed below:  

 Failure cause: Software defects are mainly design defects.  
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 Wear-out: Software does not have energy related wear-out phase. Errors 

can occur without warning.  

 Repairable system concept: Periodic restarts can help fix software 

problems.  

 Time dependency and life cycle: Software reliability is not a function of 

operational time.  

 Environmental factors: Do not affect Software reliability, except it might 

affect program inputs.  

 Reliability prediction: Software reliability cannot be predicted from any 

physical basis, since it depends completely on human factors in design.  

 Redundancy: Cannot improve Software reliability if identical software 

components are used.  

 Interfaces: Software interfaces are purely conceptual other than visual.  

 Failure rate motivators: Usually not predictable from analyses of 

separate statements.  

 Built with standard components: Well-understood and extensively 

tested standard parts will help improve maintainability and reliability. But in 

software industry, we have not observed this trend. Code reuse has been 

around for some time, but to a very limited extent. Strictly speaking there 

are no standard parts for software, except some standardized logic 

structures.  
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11.2.3 The bathtub curve for Software Reliability 

Over time, hardware exhibits the failure characteristics shown in following 

Figure 11.1, known as the bathtub curve. Period A, B and C stand for burn-in 

phase, useful life phase and end-of-life phase respectively.  

 

Figure 11.1 Bathtub curve for hardware reliability 

Software reliability, however, does not show the same characteristics similar 

as hardware. A possible curve is shown in following Figure 11.2 if we 

projected software reliability on the same axes. There are two major 

differences between hardware and software curves. One difference is that in 

the last phase, software does not have an increasing failure rate as hardware 

does. In this phase, software is approaching obsolescence; there are no 
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motivations for any upgrades or changes to the software. Therefore, the 

failure rate will not change. The second difference is that in the useful-life 

phase, software will experience a drastic increase in failure rate each time an 

upgrade is made. The failure rate levels off gradually, partly because of the 

defects found and fixed after the upgrades.  

 

Figure 11.2 Revised bathtub curve for software reliability 

The upgrades in above Figure imply feature upgrades, not upgrades for 

reliability. For feature upgrades, the complexity of software is likely to be 

increased, since the functionality of software is enhanced. Even bug fixes may 

be a reason for more software failures, if the bug fix induces other defects into 

software. For reliability upgrades, it is possible to incur a drop in software 

failure rate, if the goal of the upgrade is enhancing software reliability, such as 
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a redesign or reimplementation of some modules using better engineering 

approaches, such as clean-room method.  

Following Figure shows the testing results of fifteen POSIX compliant 

operating systems. From the graph we see that for QNX and HP-UX, 

robustness failure rate increases after the upgrade. But for SunOS, IRIX and 

Digital UNIX, robustness failure rate drops when the version numbers go up. 

Since software robustness is one aspect of software reliability, this result 

indicates that the upgrade of those systems shown in following Figure 11.3 

should have incorporated reliability upgrades.  

 

Figure 11.3  
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11.2.4 Available tools, techniques, and metrics 

Since Software Reliability is one of the most important aspects of software 

quality, Reliability Engineering approaches are practiced in software field as 

well. Software Reliability Engineering (SRE) is the quantitative study of the 

operational behavior of software-based systems with respect to user 

requirements concerning reliability.  

11.2.5 Software Reliability Models  

A proliferation of software reliability models have emerged as people try to 

understand the characteristics of how and why software fails, and try to 

quantify software reliability. Over 200 models have been developed since the 

early 1970s, but how to quantify software reliability still remains largely 

unsolved. As many models as there are and many more emerging, none of 

the models can capture a satisfying amount of the complexity of software; 

constraints and assumptions have to be made for the quantifying process. 

Therefore, there is no single model that can be used in all situations. No 

model is complete or even representative. One model may work well for a set 

of certain software, but may be completely off track for other kinds of 

problems.  

Most software models contain the following parts: assumptions, factors, and a 

mathematical function that relates the reliability with the factors. The 

mathematical function is usually higher order exponential or logarithmic.  
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Software modeling techniques can be divided into two subcategories: 

prediction modeling and estimation modeling. Both kinds of modeling 

techniques are based on observing and accumulating failure data and 

analyzing with statistical inference. The major differences of the two models 

are shown in following Table 11.1.  

ISSUES PREDICTION MODELS ESTIMATION MODELS 

DATA REFERENCE Uses historical data Uses data from the current 

software development effort 

WHEN USED IN 

DEVELOPMENT 

CYCLE  

Usually made prior to 

development or test phases; can 

be used as early as concept 

phase 

Usually made later in life cycle 

(after some data have been 

collected); not typically used in 

concept or development phases 

TIME FRAME Predict reliability at some future 

time 

Estimate reliability at either 

present or some future time 

Table 11.1 Difference between software reliability prediction models and 

software reliability estimation models 

Representative prediction models include Musa's Execution Time Model, 

Putnam's Model, and Rome Laboratory models TR-92-51 and TR-92-15, etc. 

Using prediction models, software reliability can be predicted early in the 

development phase and enhancements can be initiated to improve the 

reliability.  
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Representative estimation models include exponential distribution models, 

Weibull distribution model, Thompson and Chelson's model, etc. Exponential 

models and Weibull distribution model are usually named as classical fault 

count/fault rate estimation models, while Thompson and Chelson's model 

belong to Bayesian fault rate estimation models.  

The field has matured to the point that software models can be applied in 

practical situations and give meaningful results and, second, that there is no 

one model that is best in all situations. Because of the complexity of software, 

any model has to have extra assumptions. Only limited factors can be put into 

consideration. Most software reliability models ignore the software 

development process and focus on the results -- the observed faults and/or 

failures. By doing so, complexity is reduced and abstraction is achieved, 

however, the models tend to specialize to be applied to only a portion of the 

situations and a certain class of the problems. We have to carefully choose 

the right model that suits our specific case. Furthermore, the modeling results 

cannot be blindly believed and applied.  

11.2.6 Software Reliability Metrics  

Measurement is commonplace in other engineering field, but not in software 

engineering. Though frustrating, the quest of quantifying software reliability 

has never ceased. Until now, we still have no good way of measuring 

software reliability.  
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Measuring software reliability remains a difficult problem because we don't 

have a good understanding of the nature of software. There is no clear 

definition to what aspects are related to software reliability. We cannot find a 

suitable way to measure software reliability, and most of the aspects related 

to software reliability. Even the most obvious product metrics such as 

software size have not uniform definition.  

It is tempting to measure something related to reliability to reflect the 

characteristics, if we cannot measure reliability directly. The current practices 

of software reliability measurement can be divided into four categories:  

11.2.6.1 Product metrics  
Software size is thought to be reflective of complexity, development effort and 

reliability. Lines Of Code (LOC), or LOC in thousands (KLOC), is an intuitive 

initial approach to measuring software size. But there is not a standard way of 

counting. Typically, source code is used (SLOC, KSLOC) and comments and 

other non-executable statements are not counted. This method cannot 

faithfully compare software not written in the same language. The advent of 

new technologies of code reuse and code generation technique also cast 

doubt on this simple method.  

Function point metric is a method of measuring the functionality of a proposed 

software development based upon a count of inputs, outputs, master files, 

inquires, and interfaces. The method can be used to estimate the size of a 
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software system as soon as these functions can be identified. It is a measure 

of the functional complexity of the program. It measures the functionality 

delivered to the user and is independent of the programming language. It is 

used primarily for business systems; it is not proven in scientific or real-time 

applications.  

Complexity is directly related to software reliability, so representing complexity 

is important. Complexity-oriented metrics is a method of determining the 

complexity of a program's control structure; by simplify the code into a 

graphical representation. Representative metric is McCabe's Complexity 

Metric.  

Test coverage metrics are a way of estimating fault and reliability by 

performing tests on software products, based on the assumption that software 

reliability is a function of the portion of software that has been successfully 

verified or tested.  

11.2.6.2 Project management metrics  
Researchers have realized that good management can result in better 

products. Research has demonstrated that a relationship exists between the 

development process and the ability to complete projects on time and within 

the desired quality objectives. Costs increase when developers use 

inadequate processes. Higher reliability can be achieved by using better 



344 
 

development process, risk management process, configuration management 

process, etc.  

11.2.6.3 Process metrics  
Based on the assumption that the quality of the product is a direct function of 

the process, process metrics can be used to estimate, monitor and improve 

the reliability and quality of software. ISO-9000 certification, or "quality 

management standards", is the generic reference for a family of standards 

developed by the International Standards Organization (ISO).  

11.2.6.4 Fault and failure metrics  
The goal of collecting fault and failure metrics is to be able to determine when 

the software is approaching failure-free execution. Minimally, both the number 

of faults found during testing (i.e., before delivery) and the failures (or other 

problems) reported by users after delivery are collected, summarized and 

analyzed to achieve this goal. Test strategy is highly relative to the 

effectiveness of fault metrics, because if the testing scenario does not cover 

the full functionality of the software, the software may pass all tests and yet be 

prone to failure once delivered. Usually, failure metrics are based upon 

customer information regarding failures found after release of the software. 

The failure data collected is therefore used to calculate failure density, Mean 

Time Between Failures (MTBF) or other parameters to measure or predict 

software reliability.  
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Mean Time to Failure (MTTF) 

MTTF is a basic measure of reliability for non-repairable systems. It is the 

mean time expected until the first failure of a piece of equipment. MTTF is a 

statistical value and is meant to be the mean over a long period of time and 

large number of units. For constant failure rate systems, MTTF is the inverse 

of the failure rate. If failure rate is in failures/million hours, MTTF = 1,000,000 / 

Failure Rate for components with exponential distributions. 

Technically MTBF should be used only in reference to repairable items, while 

MTTF should be used for non-repairable items. However, MTBF is commonly 

used for both repairable and non-repairable items. 

Mean Time between Failures (MTBF) 

MTBF is a basic measure of reliability for repairable items. It can be described 

as the number of hours that pass before a component, assembly, or system 

fails. It is a commonly-used variable in reliability and maintainability analyses. 

MTBF can be calculated as the inverse of the failure rate for constant failure 

rate systems. For example: If a component has a failure rate of 2 failures per 

million hours, the MTBF would be the inverse of that failure rate. 

MTBF = (1,000,000 hours) / (2 failures) = 500,000 hours 

Actually MTBF is the summation of MTTF and MTRF (Mean Time To Repair). 

MTBF=MTTF+MTTR 
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Availability 

It is a measure of the time during which the system is available. It may be 

stated as: 

Availability = MTBF / (MTBF + MMTR) 

Probability of Failure on Demand (POFOD) 

It is defined as the probability that the system will fail when a service is 

requested. 

Rate of occurrence of failure (ROCOF) 

It may be defined as the number of failures in unit time interval.  

11.2.7 Software Reliability Improvement Techniques  

Good engineering methods can largely improve software reliability.  

Before the deployment of software products, testing, verification and 

validation are necessary steps. Software testing is heavily used to trigger, 

locate and remove software defects. Software testing is still in its infant stage; 

testing is crafted to suit specific needs in various software development 

projects in an ad-hoc manner. Various analysis tools such as trend analysis, 

fault-tree analysis, Orthogonal Defect classification and formal methods, etc, 

can also be used to minimize the possibility of defect occurrence after release 

and therefore improve software reliability.  

After deployment of the software product, field data can be gathered and 

analyzed to study the behavior of software defects. Fault tolerance or 
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fault/failure forecasting techniques will be helpful techniques and guide rules 

to minimize fault occurrence or impact of the fault on the system.  

11.2.8 Software Fault Tolerance 

Software fault tolerance is the ability for software to detect and recover from a 

fault that is happening or has already happened in either the software or 

hardware in the system in which the software is running in order to provide 

service in accordance with the specification. Software fault tolerance is a 

necessary component in order to construct the next generation of highly 

available and reliable computing systems from embedded systems to data 

warehouse systems.  

In order to adequately understand software fault tolerance it is important to 

understand the nature of the problem that software fault tolerance is 

supposed to solve. Software faults are all design faults. Software 

manufacturing, the reproduction of software, is considered to be perfect. The 

source of the problem being solely design faults is very different than almost 

any other system in which fault tolerance is a desired property. This inherent 

issue, that software faults are the result of human error in interpreting a 

specification or correctly implementing an algorithm, creates issues, which 

must be dealt with in the fundamental approach to software fault tolerance.  

Current software fault tolerance methods are based on traditional hardware 

fault tolerance. The deficiency with this approach is that traditional hardware 
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fault tolerance was designed to conquer manufacturing faults primarily, and 

environmental and other faults secondarily. Design diversity was not a 

concept applied to the solutions to hardware fault tolerance, and to this end, 

N-Way redundant systems solved many single errors by replicating the same 

hardware. Software fault tolerance tries to leverage the experience of 

hardware fault tolerance to solve a different problem, but by doing so creates 

a need for design diversity in order to properly create a redundant system.   

Design diversity is a solution to software fault tolerance only so far as it is 

possible to create diverse and equivalent specifications so that programmers 

can create software, which has different enough designs that they don't share 

similar failure modes. Design diversity and independent failure modes have 

been shown to be a particularly difficult problem though. The issue still 

remains that for a complex problem, the need for humans to solve that 

problem error free is not easily solvable.  

Fault tolerance is defined as how to provide, by redundancy, service 

complying with the specification in spite of faults having occurred or occurring. 

Laprie argues that fault tolerance is accomplished using redundancy. This 

argument is good for errors which are not caused by design faults, however, 

replicating a design fault in multiple places will not aide in complying with a 

specification. It is also important to note the emphasis placed on the 

specification as the final arbiter of what is an error and what is not. Design 
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diversity increases pressure on the specification creators to make multiple 

variants of the same specification, which are equivalent in order to aid the 

programmer in creating variations in algorithms for the necessary redundancy. 

The definition itself may no longer be appropriate for the type of problems that 

current fault tolerance is trying to solve, both hardware and software.  

Randell argues that the difference between fault tolerance versus exception 

handling is that exception handling deviates from the specification and fault 

tolerance attempts to provide services compliant with the specification after 

detecting a fault. This is an important difference to realize between trying to 

construct robust software versus trying to construct reliable software. Reliable 

software will accomplish its task under adverse conditions while robust 

software will be able to indicate a failure correctly, (hopefully without the entire 

system failing.)  

Software Bugs 

Software faults are most often caused by design faults. Design faults occur 

when a programmer either misunderstands a specification or simply makes a 

mistake. Software faults are common for the simple reason that the 

complexity in modern systems is often pushed into the software part of the 

system. It is estimated that 60-90% of current computer errors are from 

software faults. Software faults may also occur from hardware; these faults 
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are usually transitory in nature, and can be masked using a combination of 

current software and hardware fault tolerance techniques.  

11.2.9 Software fault tolerance techniques 

11.2.9.1 Recovery Blocks 
The recovery block method is a simple method developed by Randell from 

what was observed as somewhat current practice at the time. The recovery 

block operates with an adjudicator, which confirms the results of various 

implementations of the same algorithm. In a system with recovery blocks, the 

system view is broken down into fault recoverable blocks. The entire system 

is constructed of these fault tolerant blocks. Each block contains at least a 

primary, secondary, and exceptional case code along with an adjudicator. The 

adjudicator is the component, which determines the correctness of the various 

blocks to try. The adjudicator should be kept somewhat simple in order to 

maintain execution speed and aide in correctness. Upon first entering a unit, 

the adjudicator first executes the primary alternate. (There may be N 

alternates in a unit which the adjudicator may try.) If the adjudicator 

determines that the primary block failed, it then tries to roll back the state of 

the system and tries the secondary alternate. If the adjudicator does not 

accept the results of any of the alternates, it then invokes the exception 

handler, which then indicates the fact that the software could not perform the 

requested operation.  
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Recovery block operation still has the same dependency, which most 

software fault tolerance systems have: design diversity. The recovery block 

method increases the pressure on the specification to be specific enough to 

create different multiple alternatives that are functionally the same. This issue 

is further discussed in the context of the N-version method.  

The recovery block system is also complicated by the fact that it requires the 

ability to roll back the state of the system from trying an alternate. This may be 

accomplished in a variety of ways, including hardware support for these 

operations. This try and rollback ability has the effect of making the software 

to appear extremely transactional, in which only after a transaction is 

accepted is it committed to the system. There are advantages to a system 

built with a transactional nature, the largest of which is the difficult nature of 

getting such a system into an incorrect or unstable state. This property, in 

combination with check pointing and recovery may aide in constructing a 

distributed hardware fault tolerant system.  

11.2.9.2 N-version Software 
The N-version software concept attempts to parallel the traditional hardware 

fault tolerance concept of N-way redundant hardware. In an N-version 

software system, each module is made with up to N different implementations. 

Each variant accomplishes the same task, but hopefully in a different way. 

Each version then submits its answer to voter or decider, which determines 
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the correct answer, and returns that as the result of the module. This system 

can hopefully overcome the design faults present in most software by relying 

upon the design diversity concept. An important distinction in N-version 

software is the fact that the system could include multiple types of hardware 

using multiple versions of software. The goal is to increase the diversity in 

order to avoid common mode failures. Using N-version software, it is 

encouraged that each different version be implemented in as diverse a 

manner as possible, including different tool sets, different programming 

languages, and possibly different environments. The various development 

groups must have as little interaction related to the programming between 

them as possible. N-version software can only be successful and successfully 

tolerate faults if the required design diversity is met.  

The dependence on appropriate specifications in N-version software, (and 

recovery blocks,) cannot be stressed enough. The delicate balance required 

by the N-version software method requires that a specification be specific 

enough so that the various versions are completely inter-operable, so that a 

software decider may choose equally between them, but cannot be so limiting 

that the software programmers do not have enough freedom to create diverse 

designs. The flexibility in the specification to encourage design diversity, yet 

maintain the compatibility between versions is a difficult task, however, most 
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current software fault tolerance methods rely on this delicate balance in the 

specification.  

11.2.9.3 N-version software and recover block - comparison 

The differences between the recovery block method and the N-version 

method are not too numerous, but they are important. In traditional recovery 

blocks, each alternative would be executed serially until an acceptable 

solution is found as determined by the adjudicator. The recovery block 

method has been extended to include concurrent execution of the various 

alternatives. The N-version method has always been designed to be 

implemented using N-way hardware concurrently. In a serial retry system, the 

cost in time of trying multiple alternatives may be too expensive, especially for 

a real-time system. Conversely, concurrent systems require the expense of N-

way hardware and a communications network to connect them. Another 

important difference in the two methods is the difference between an 

adjudicator and the decider. The recovery block method requires that each 

module build a specific adjudicator; in the N-version method, a single decider 

may be used. The recovery block method, assuming that the programmer can 

create a sufficiently simple adjudicator, will create a system, which is difficult 

to enter into an incorrect state. The engineering tradeoffs, especially monetary 

costs, involved with developing either type of system have their advantages 
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and disadvantages, and it is important for the engineer to explore the space to 

decide on what the best solution for his project is.  

11.2.10 Reliability Models  

A reliability growth model is a mathematical model of software reliability, 

which predicts how software reliability should improve over time as faults are 

discovered and repaired. These models help the manager in deciding how 

much efforts should be devoted in testing. The goal of project manager is to 

test and debug the system until the required level of reliability is reached.  

11.2.11 Jelinski-Moranda (J-M) Model 

There are various models, which have been derived from reliability 

experiments in a number of application domains. These models are usually 

based on formal testing data. The quality of their results depends upon the 

input data, the better the outcome. The more data points available the better 

the model will perform. When using calendar time for large projects, you need 

to verify homogeneity of testing effort. 

Software reliability growth models fall into two major categories: 

 Time between failure models (MTBF)  

 Fault count models (faults or time normalized rates)  

Jelinski-Moranda model developed by Jelinski and Moranda in 1972 was one 

of the first software reliability growth models. It consists of some simple 

assumptions: 
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1. At the beginning of testing, there are u0 faults in the software code with u0 

being an unknown but fixed number. 

2. Each fault is equally dangerous with respect to the probability of its 

instantaneously causing a failure. Furthermore, the hazard rate of each fault 

does not change over time, but remains constant at φ. 

3. The failures are not correlated, i.e. given u0 and φ the times between 

failures (Δt1, Δt2, ... Δtu0) are independent. 

4. Whenever a failure has occurred, the fault that caused it is removed instantaneously 
and without introducing any new fault into the software. 

As a consequence of these assumptions, the program hazard rate after 

removal of the (i−1)st  fault is proportional to the number of faults remaining in 

the software with the hazard rate of one fault, za(t) = φ, being the constant of 

proportionality: 

z(Δt | ti−1) = φ [u0 −M(ti−1)] = φ [u0 − (i − 1)]     (1) 

The Jelinski-Moranda model belongs to the binomial type of models. For 

these models, the failure intensity function is the product of the inherent 

number of faults and the probability density of the time until activation of a 

single fault, fa(t), i.e.: 

dμ(t)/dt = u0fa(t) = u0 φ exp(−φt)       (2) 

Therefore, the mean value function is 

μ(t) = u0[1 − exp(−φt)]        (3) 
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It can easily be seen from equations (2) and (3) that the failure intensity can also be 
expressed as 

dμ(t)/dt = φ [u0 − μ(t)]       (4) 

According to equation (4) the failure intensity of the software at time t is 

proportional to the expected number of faults remaining in the software; again, 

the hazard rate of an individual fault is the constant of proportionality. This 

equation can be considered the “heart” of the Jelinski-Moranda model. J-M 

model assumptions are hard to meet. In J-M model, reliability increases by a 

constant increment each time a fault is discovered and repaired.  

11.2.12 Goel-Okumoto (GO) model 
The model proposed by Goel and Okumoto in 1979 is based on the following 

assumptions: 

1. The number of failures experienced by time t follows a Poisson distribution 

with mean value function μ(t). This mean value function has the boundary 

conditions μ(0) = 0 and lim t ∞ μ(t) = N < ∞. 

2. The number of software failures that occur in (t, t+Δt] with Δt  0 is 

proportional to the expected number of undetected faults, N − μ(t). The 

constant of proportionality is φ. 

3. For any finite collection of times t1 < t2 < · · · < tn the number of failures 

occurring in each of the disjoint intervals (0, t1), (t1, t2), ..., (tn−1, tn) is 

independent. 
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4. Whenever a failure has occurred, the fault that caused it is removed 

instantaneously and without introducing any new fault into the software. 

Since each fault is perfectly repaired after it has caused a failure, the number 

of inherent faults in the software at the beginning of testing is equal to the 

number of failures that will have occurred after an infinite amount of testing. 

According to assumption 1, M(∞) follows a Poisson distribution with expected 

value N. Therefore, N is the expected number of initial software faults as 

compared to the fixed but unknown actual number of initial software faults u0 

in the Jelinski-Moranda model. Indeed, this is the main difference between the 

two models. 

Assumption 2 states that the failure intensity at time t is given by  

dμ(t) / dt = φ[N − μ(t)] 

Just like in the Jelinski-Moranda model the failure intensity is the product of the 
constant hazard rate of an individual fault and the number of expected faults 
remaining in the software. However, N itself is an expected value. 

11.2.13 Musa's basic execution time model 

Musa's basic execution time model is based on an execution time model, i.e., 

the time taken during modeling is the actual CPU execution time of the 

software being modeled. This model is simple to understand and apply, and 

its predictive value has been generally found to be good. The model focuses 

on failure intensity while modeling reliability. It assumes that the failure 

intensity decreases with time, that is, as (execution) time increases, the failure 
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intensity decreases. This assumption is generally true as the following is 

assumed about the software testing activity, during which data is being 

collected: during testing, if a failure is observed, the fault that caused that 

failure is detected and the fault is removed. Even if a specific fault removal 

action might be unsuccessful, overall failures lead to a reduction of faults in 

the software. Consequently, the failure intensity decreases. Most other 

models make a similar assumption, which is consistent with actual 

observations. 

In the basic model, it is assumed that each failure causes the same amount of 

decrement in the failure intensity. That is, the failure intensity decreases with 

a constant rate with the number of failures. In the more sophisticated Musa's 

logarithmic model, the reduction is not assumed to be linear but logarithmic.  

Musa’s basic execution time model developed in 1975 was the first one to 

explicitly require that the time measurements be in actual CPU time utilized in 

executing the application under test (named “execution time” t in short).  

Although it was not originally formulated like that the model can be classified 

by three characteristics: 

1. The number of failures that can be experienced in infinite time is finite. 

2. The distribution of the number of failures observed by time t is of Poisson 

type. 

3. The functional form of the failure intensity in terms of time is exponential. 
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It shares these attributes with the Goel-Okumoto model, and the two models 

are mathematically equivalent. In addition to the use of execution time, a 

difference lies in the interpretation of the constant per-fault hazard rate φ. 

Musa split φ up in two constant factors, the linear execution frequency f and 

the so-called fault exposure ratio K: 

dμ(t) / dt = f K [N − μ(t )] 

f can be calculated as the average object instruction execution rate of the 

computer, r, divided by the number of source code instructions of the 

application under test, IS, times the average number of object instructions per 

source code instruction, Qx: f = r / IS Qx. The fault exposure ratio relates the 

fault velocity f [N − μ(t)], the speed with which defective parts of the code 

would be passed if all the statements were consecutively executed, to the 

failure intensity experienced. Therefore, it can be interpreted as the average 

number of failures occurring per fault remaining in the code during one linear 

execution of the program. 

 

 

11.2.14 Markov Model 

This analysis yields results for both, the time dependent evolution of the 

system and the steady state of the system. For example, in reliability 

engineering, the operation of the system may be represented by a state 
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diagram, which represents the states and rates of a dynamic system. This 

diagram consists of nodes (representing a possible state of the system, which 

is determined by the states of the individual components & sub-components) 

connected by arrows (representing the rate at which the system operation 

transitions from one state to the other state). Transitions may be determined 

by a variety of possible events, for example the failure or repair of an 

individual component. A state-to-state transition is characterized by a 

probability distribution. Under reasonable assumptions, the system operation 

may be analyzed using a Markov model. 

A Markov model analysis can yield a variety of useful performance measures 

describing the operation of the system. These performance measures include 

the following:  

 System reliability.  

 Availability.  

 Mean time to failure (MTTF). 

 Mean time between failures (MTBF).  

 The probability of being in a given state at a given time.  

 The probability of repairing the system within a given time period 

(maintainability).  

 The average number of visits to a given state within a given time period.  

 And many other measures. 
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The name Markov model is derived from one of the assumptions which allows 

this system to be analyzed; namely the Markov property. The Markov property 

states: given the current state of the system, the future evolution of the 

system is independent of its history. The Markov property is assured if the 

transition probabilities are given by exponential distributions with constant 

failure or repair rates. In this case, we have a stationary, or time 

homogeneous, Markov process. This model is useful for describing electronic 

systems with repairable components, which either function or fail. As an 

example, this Markov model could describe a computer system with 

components consisting of CPUs, RAM, network card and hard disk controllers 

and hard disks. 

The assumptions on the Markov model may be relaxed, and the model may 

be adapted, in order to analyze more complicated systems. Markov models 

are applicable to systems with common cause failures, such as an electrical 

lightning storm shock to a computer system. Markov models can handle 

degradation, as may be the case with a mechanical system. For example, the 

mechanical wear of an aging automobile leads to a non-stationary, or non-

homogeneous, Markov process, with the transition rates being time 

dependent. Markov models can also address imperfect fault coverage, 

complex repair policies, multi-operational-state components, induced failures, 

dependent failures, and other sequence dependent events. 
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11.3 Summary 

Software reliability is a key part in software quality. Software Reliability is 

defined as: the probability of failure-free software operation for a specified 

period of time in a specified environment. The study of software reliability can 

be categorized into three parts: modeling, measurement and improvement.  

Reliability of the software depends on the faults in the software. To assess the 

reliability of software, reliability models are required. To use the model, data is 

collected about the software. Most reliability models are based on the data 

obtained during the system and acceptance testing.  

Software reliability modeling has matured to the point that meaningful results 

can be obtained by applying suitable models to the problem. There are many 

models exist, but no single model can capture a necessary amount of the 

software characteristics. Assumptions and abstractions must be made to 

simplify the problem. There is no single model that is universal to all the 

situations.  

Software reliability measurement is naive. Measurement is far from 

commonplace in software, as in other engineering field. "How good is the 

software, quantitatively?" As simple as the question is, there is still no good 

answer. Software reliability cannot be directly measured, so other related 

factors are measured to estimate software reliability and compare it among 
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products. Development process, faults and failures found are all factors 

related to software reliability.  

Software reliability improvement is hard. The difficulty of the problem stems 

from insufficient understanding of software reliability and in general, the 

characteristics of software. Until now there is no good way to conquer the 

complexity problem of software. Complete testing of a moderately complex 

software module is infeasible. Defect-free software product cannot be 

assured. Realistic constraints of time and budget severely limits the effort put 

into software reliability improvement.  

As more and more software is creeping into embedded systems, we must 

make sure they don't embed disasters. If not considered carefully, software 

reliability can be the reliability bottleneck of the whole system. Ensuring 

software reliability is no easy task. As hard as the problem is, promising 

progresses are still being made toward more reliable software. More standard 

components, and better process are introduced in software engineering field.  

11.4 Keywords  

Software Reliability: It is defined as: the probability of failure-free software 

operation for a specified period of time in a specified environment. 

Reliability growth model: It is a mathematical model of software reliability, 

which predicts how software reliability should improve over time as faults are 

discovered and repaired. 
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MTTF: It is a basic measure of reliability for non-repairable systems. It is the 

mean time expected until the first failure of a piece of equipment.  

MTBF: It is a basic measure of reliability for repairable items. It can be 

described as the number of hours that pass before a component, assembly, 

or system fails.  

Availability: It is a measure of the time during which the system is available.  

POFOD: It is defined as the probability that the system will fail when a service 

is requested. 

ROCOF: It may be defined as the number of failures in unit time interval.  

11.5 Self-Assessment Questions 
[1] What do you understand by software reliability? Differentiate between 

software reliability and hardware reliability. 

[2] Differentiate between fault, error and failure. Does testing observe faults 

or failures? 

[3] What are the different categories of software failure? 

[4] What are the assumptions made in Jelinski-Moranda Model? Explain the 

J-M model and discuss its limitations. 

[5] What is the difference between software reliability and hardware 

reliability? Explain. 

[6] What do you understand by software fault tolerance? Discuss the 

recovery block and N-version software techniques to fault tolerance. 
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[7] What is a metric? Give an overview of the different reliability metrics. 

[8] What are the differences between JM model, GO model, and Musa’s 

basic execution time model? Explain. 
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44. Software Engineering – A Practitioner’s Approach by Roger S 
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Lesson No. 12     Writer: 

Dr. Rakesh Kumar 

Object Oriented Design   

 Vetter:Dr. Pradeep K. Bhatia 

 

12.0 Objectives 

The objective of this lesson is to make the students familiar with object 

oriented design. Earlier in chapter 6 and 7 function oriented design was 

discussed. This chapter is intended to impart the knowledge of object 

modeling, functional modeling, and dynamic modeling. The important 

objective of this lesson is to get the student acquainted with OMT, a 

methodology for object oriented design. 

12.1 Introduction  
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Object oriented approach for software 

development has become very popular 

in recent years. There are many 

advantages of using this approach 

over function oriented design such as 

reusability, permitting changes more 

easily, reduction in development cost 

and time etc. There is a fundamental 

difference between function oriented 

design and object oriented design. The 

former is based on procedural 

abstraction while later is using data 

abstraction. In object oriented design 

our focus is to identify the classes in 



368 
 

the system and the relationship 

between them.  

12.2 Presentation of contents  

12.2.1 Object Oriented Design 

Methodology 

12.2.2 Concepts and Notations for OMT methodology 

12.2.2.1 Object Modeling 

12.2.2.2 Object: 

12.2.2.3 Derived object 

12.2.2.4 Derived attribute 

12.2.2.5 Class: 

12.2.2.6 Links and Associations 

12.2.2.7 Multiplicity 

12.2.2.8 Link attributes 

12.2.2.9 Role Names 

12.2.2.10 Ordering 

12.2.2.11 Qualification 

12.2.2.12 Aggregation 

12.2.2.13 Generalization 

12.2.2.14 Multiple Inheritance 

12.2.2.15 Metadata 
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12.2.2.16 Grouping Constructs 

12.2.3 Dynamic Modeling 

12.2.4 Functional Modeling 

12.2.5 OMT method 

12.2.5.1 Analysis: 

12.2.5.1.1Object Model 

12.2.5.1.2 Dynamic Model 

12.2.5.1.3 Functional Model 

12.2.5.2 System Design 

12.2.5.3 Object Design 

12.2.1 Object Oriented Design 
Methodology 

OMT (Object Modeling Technique) is a software development methodology 

given by James Rumbaugh et.al. This methodology describes a method for 

analysis, design and implementation of a system using object-oriented 

technique. It is a fast, intuitive approach for identifying and modeling all the 

objects making up a system. The static, dynamic and functional behaviors of 

the system are described by object model, dynamic model and functional 

model of the OMT. The object model describes the static, structural and data 

aspects of a system. The dynamic model describes the temporal, behavioral 

and control aspects of a system. The functional model describes the 
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transformational and functional aspects of a system. Every system has these 

three aspects. Each model describes one aspect of the system but contains 

references to the other models.  

12.2.2 Concepts and Notations for OMT methodology 
12.2.2.1 Object Modeling 
An object model describes the structure of objects in a system: their identity, 

relationship to other objects, attributes and operations. The object model is 

represented graphically with an object diagram. The object diagram contains 

classes interconnected by association lines. Each class represents a set of 

individual objects. The association lines establish relationships among 

classes. Each association line represents a set of links from the object of one 

class to the object of another class. 

12.2.2.2 Object: An object is a concept, abstraction, or thing with crisp 

boundaries and meaning for the problem in hand. Objects are represented by 

the following icon: 

 
 
 
 
 
 
12.2.2.3 Derived object: It is defined as a function of one or more objects. It 

is completely determined by the other objects. Derived object is redundant but 

can be included in the object model. 

12.2.2.4 Derived attribute: A derived attribute is that which is derived from 

other attributes. For example, age can be derived from date of birth and 

current date. 

12.2.2.5 Class:  A class describes a group of objects with similar properties, 

operations and relationships to other objects. Classes are represented by the 

rectangular symbol and may be divided into three parts. The top part contains 

(ClassName) 
Object name 
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the name of the class, middle part attributes and bottom part operations. An 

attribute is a data value held by the objects in a class. For example, person is 

a class; Mayank is an object while name, age, and sex are its attributes. 

Operations are functions or transformations that may be applied to or by 

objects in a class. For example push and pop are operations in stack class. 

 
 
 
 
 
 
 
 
 
12.2.2.6 Links and Associations: A link is a physical or conceptual 

connection between object instances. For example Mayank flies Jaguar. So 

‘flies’ is a link between Mayank and Jaguar. 

An association describes a group of links with common structure and common 

semantics. For example a pilot flies an airplane. So here ‘flies’ is an 

association between pilot and airplane. All the links in an association connect 

objects from the same classes. 

Associations are bidirectional in nature. For example, a pilot flies an airplane 

or an airplane is flown by a pilot. 

Associations may be binary, ternary or higher order. For example, a 

programmer develops a project in a programming language represents a 

ternary association among programmer, project and programming language. 

Links and associations are represented by a line between objects or classes 

as shown in a diagram below: 

 

 

ClassName 
 
Attribute-name1:data-type1=default-val1 
Attribute-name2:data-type2=default-val2 
 
Operation-name1(arguments1):result-type1 
Operation-name2(arguments2):result-type2 

 
Person 

 
Car 

drives
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12.2.2.7 Multiplicity: It specifies how many instances of one class may relate 

to a single instance of an associated class. Multiplicity is described in the 

following manner: 

 Line without any ball indicates one-to-one association. 

 Hollow ball indicates zero or one. 

 Solid ball indicates zero, one or more. 

 1,2,6 indicates 1 or 2 or 6. 

 1+ indicates 1 or more 

12.2.2.8 Link attributes: It is a property of the links in an association. For 

example, ‘accessible by’ is an association between class File and class User. 

‘Access permission’ is a link attribute. 

 

 

 

 
                                                       
  
 
 
 

Link attribute for many to many association 

12.2.2.9 Role Names: A role name is a name that uniquely identifies one end 

of an association. Binary association has two roles. A role name is written 

next to the association line near the class that plays the role. For example, 

consider the association ‘a person works for a company’, in this employee and 

employer are role names for the classes person and company respectively as 

shown in fig below. 

 

 
File 

 
User 

 
Access permission 

Accessible by 

Person Company Employee Employer

Works for
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Role names for an association 
12.2.2.10 Ordering: Some times the objects on the many side of an 

association have order. An ordered set of objects of an association is 

indicated by writing {ordered} next to the multiplicity dot for the role as shown 

in figure below. Consider the example of association between Window class 

and Screen class. A screen can contain a number of windows. Windows are 

explicitly ordered. Only topmost window is visible on the screen at any time. 

 
                                              
 
 
 
 

Ordered sets in an association 
12.2.2.11 Qualification: A qualifier is an association attribute. For example, a 

person object may be associated to a Bank object. An attribute of this 

association is the accoutNo. The accountNo is the qualifier of this association.  

A qualifier is shown as a small rectangle attached to the end of an association 

as shown in figure below. The qualifier rectangle is part of the association, not 

of class. 

 
 
 
 

Qualified association 
12.2.2.12 Aggregation: Aggregation is a form of association. It is the “part-

whole” or “a-part-of” relationship in which objects representing the component 

of something are associated with an object representing the entire assembly. 

A hollow diamond is attached to the end of the path to indicate the 

aggregation. For example, a team is aggregation of players. 
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Aggregation 
 

Aggregation can be fixed, variable or recursive.  

• In a fixed aggregation number and subtypes are fixed i.e. predefined.  

• In a variable aggregation number of parts may vary but number of 

levels is finite.  

• A recursive aggregate contains, directly or indirectly, an instance of the 

same aggregate. The number of levels is unlimited. For example, a 

computer program is an aggregation of blocks, with optionally recursive 

compound statements. The recursion terminates with simple 

statement. Blocks can be nested to arbitrary depth.   

 
 
 
 
 
 
 
 
 

 
 
 

Recursive Aggregation 
 
12.2.2.13 Generalization: It is the relationship between a more general class 

and a more specific class. The general class is called as super class and 

specific class is called as subclass. Generalization is indicated by a triangle 

connecting a super class to its subclass as shown in fig below. 
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Fig. Inheritance 
12.2.2.14 Multiple Inheritance: if a class inherits features from more than 

one superclass, it is called as multiple inheritance. A class with more than one 

superclass is also called as join class. For example, BoatHouse class inherits 

features from class Boat and House as shown in fig below: 

 
 
 
 
 
 
 
 
 
 
  
 
 

Multiple Inheritance 
 

12.2.2.15 Metadata: Metadata is data about data. For example, the definition 

of a class is metadata. Models, catalogs, blueprints, dictionary etc. are all 

examples of metadata.   

12.2.2.16 Grouping Constructs: There are two grouping constructs: module 

and sheet.  
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Module is logical construct for grouping classes, associations and 

generalizations. An object model consists of one or more modules. The 

module name is usually listed at the top of each sheet. 

A sheet is a single printed page. Sheet is the mechanism for breaking a large 

object model into a series of pages. Each module is contained in one or more 

sheets. Sheet numbers or sheet names inside circle contiguous to a class box 

indicate other sheets that refer to a class. 

12.2.3 Dynamic Modeling 
Dynamic model describes those aspects of the system that changes with the 

time. It is used to specify and implement control aspects of the system. It 

depicts states, transitions, events and actions. The OMT state transition 

diagram is a network of states and events. Each state receives one or more 

events, at that time it makes the transition to the next state. The next state 

depends upon the current state as well as the events. 

State: the attribute values and links held by an object are called its state. 

Stack is empty or stack is full are different states of object stack. A state 

corresponds to interval between two events received by an object. So a state 

has duration.  

State Icon: A state is drawn as a rounded box containing an optional name as 

shown in fig below: 

 

 

 
 
 
 
Event: An event is something that happens at a point in time. An individual 

stimulus from one object to another is an event. Press a button on mouse, 

State Name 
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airplane departs from an airport are examples of event. An event does not 

have duration. 

State Diagram: It relates events and states. A change of state caused by an 

event is called a transition. Transition is drawn as an arrow from the receiving 

state to the target state. A state diagram is graph whose nodes are states and 

whose directed arcs are transitions labeled by event names. State diagram 

specifies the state sequence caused by an event sequence. The state 

diagram for the phone line is as shown below: 
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12.2.4 Functional Modeling 
The functional model specifies the result of a computation without specifying 

how or when they are computed. It specifies the meaning of the operations 

and any constraints in the object model and the actions in the dynamic model. 

The functional model consists of multiple data flow diagram, which specifies 

the meaning of operations and constraints. 

Data Flow Diagram: A data flow diagram is a graph showing the flow of data 

values from their sources in objects through processes that transform them to 

their destinations in other objects. A data flow diagram contains four symbols: 

processes, actors, data stores and data flows. 

Processes: A process transforms data values. It is drawn as an ellipse having 

a description of the transformation, generally its name (as shown in figure 

below). Each process has a fixed number of input and output data arrows, 

each of which carries a value of given type. Inputs and outputs can be labeled 

to show their role in computation.  

 

                      Multiplicand 
 
 
                                                                                            Product 
 
 
 
                         Multiplier 
 
 
Actors: An actor is an active object that drives the data flow diagram by 

producing or consuming values. Actors are attached to the inputs and outputs 

of a data flow diagram. Actors are also called as terminators as they act as 

source and sink for data. An actor is represented by rectangle.  
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                                                        name 
 
 
 
 
 
 
                                                      request 
 
 
 
 
 
 
 
 
 
Data Stores: It stores data for later use. It does not generate any operation 

on its own but can respond to request. So it is a passive object in a data flow 

diagram. It is represented by a pair of parallel lines containing the name of 

store as shown in figure below. Input arrow indicates storing data in the data 

store and output arrow indicates accessing of data from data store.   
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Data Flows: A data flow connects the output of an object or process to the 

input of another object or process. An arrow between the producer and the 

consumer of the data value represents a data flow. Arrow is labeled with 

description of data. Sometimes an aggregate value is split into its 

constituents, each of which goes to a different process. A fork in the path as 

shown below can show this. 

 
 
 
 
 
 
 
 
Control Flow: It is a Boolean value that affects whether a process is 

evaluated. The control flow is not an input value to the process. It represented 

by a dotted line from a process originating the Boolean value to the process 

being controlled as shown in figure below. This DFD is for a withdrawal from a 

bank account. The customer supplies a password and an amount. The update 

(withdrawal) can occur only when password is OK, which is shown as control 

flow in the diagram. 
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Control flow 
 
12.2.5 OMT method 
The OMT method is composed of following four phases: 

 Analysis 

 System design 

 Object design 

 Implementation 

12.2.5.1 Analysis: In this step, a model of the system is prepared in reference 

to what the system will do. The model is expressed in terms of objects and 

relationships, control flow and functional transformation. In this phase three 

models- object model, dynamic model and functional model are prepared. 

These models are iterated in order to refine them. The outcome of this phase 

is problem statement, object model, dynamic model and functional model.  

Verify 

Update Customer 
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12.2.5.1.1Object Model 
It consists of object diagrams and data dictionary. Following guidelines are 

used to construct the object model: 

 Identify objects and classes 

 Begin a data dictionary containing descriptions of classes, attributes and 

associations. 

 Add associations between classes 

 Add attributes for objects and links 

 Organize and simplify object classes using inheritance 

 Test access paths using scenarios and iterate the above step if necessary. 

 Group classes into modules, based on close coupling and related 

functions. 

Identifying Object Classes: The first step in constructing an object model is 

to identify relevant object classes from the application domain. Classes 

generally correspond to nouns in the problem description. List all the classes 

that come to mind. Then identify right classes and discard others. Following 

are the guidelines for keeping the right classes: 

 Find redundant classes: If two classes have the same information, the 

most descriptive name should be kept.  

 Find irrelevant classes: If a class has little or nothing to do with the 

problem, it should be discarded.  

 Find vague classes: A class should be specific. Classes with ill-defined 

boundaries and too broad in scope are vague and may be discarded.  

 Check for attributes: check name could be an attribute not a class. 

 Check for operations: If a name describes an operation that is applied to 

objects and not manipulated in its own right, then it is not a class.  

 Check for roles: The name of a class should reflect its intrinsic nature and 

not a role that it plays in an association.  
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 Check for implementation constructs: A name extraneous to the real world 

should be eliminated from the analysis model. That may be needed later 

during design, but not now.  

Prepare Data Dictionary: Prepare a data dictionary for all modeling entities 

by describing each object class. Describe the scope of the class within the 

current problem, including any assumptions or restrictions on its membership 

or use. The data dictionary also describes associations, attributes, and 

operations.  

Identifying Associations: Any dependency between two or more classes is 

an association. A reference from one class to another is an association. Verb 

or verb phrases corresponds to associations in the problem description. For 

example, location (next to, part of, contained in), directed actions (drives), 

communication (talk to) ownership (has or part of), satisfaction of some 

condition (works-for, manages) etc. all associations may not be right. 

Unnecessary associations must be discarded. Following guidelines may be 

used to discard incorrect associations: 

 Associations between eliminated classes: If one of the classes in the 

association has been eliminated, then the association must be eliminated 

or restated in terms of other classes. 

 Irrelevant or implementation associations: Eliminate associations that are 

outside the problem domain or deal with implementation constructs.  

 Actions. An association should describe a structural property of the 

application domain, not a transient event.  

 Derived association: Eliminate associations that can be defined in terms of 

other associations. 

 Add role names to associations, wherever appropriate. Qualify association 

if needed. 

 Indicate multiplicity, if possible. 
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 Check for any missing association. 

Identify attributes: Attributes usually corresponds to nouns followed by 

possessive phrases such as color of the car in the problem statement. Some 

guidelines for keeping right attributes: 

 If independent existence of an entity is important rather than its value then 

it is object not attribute. 

 If the value of an attribute depends on a particular context then it is 

qualifier not attribute. 

 If the property depends upon the presence of a link then it is link attribute. 

 An attribute that seems different and unrelated from other attributes may 

be a class. Make it a separate class. 

 Minor attributes and internal attributes must be omitted in the analysis 

phase. 

Refining with inheritance: In this step, classes are organized by using 

inheritance in order to share common structures. This could be done in two 

directions: bottom up and top down. For bottom up direction look for classes 

with similar attributes, associations or operations and then make a superclass 

to share common features. For top-down direction, look for noun phrases 

composed of various adjectives on the class name and consider them 

subclass. Enumerated sub cases in the application domain are main source of 

specialization. Some guidelines are listed below: 

 Avoid excessive refinement. 

 Multiple inheritance may be used for more sharing but only when 

necessary. 

 Attributes and associations must be assigned to specific classes in the 

class hierarchy. 

 Generalize the association classes, if the same association name appears 

more than once and almost with the same meaning.   
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Testing access Paths: Using object model diagram, trace access paths to 

see whether they give sensible result. Ask the following questions: 

 Do they give unique result, when it is expected? 

 Is there a way to take unique value out of many when needed? 

 Are there useful questions which cannot be answered? 

Iterating Object Modeling: Object model is rarely correct in a single go. It 

needs many iterations in order to refine it. 

Grouping classes into Modules: diagrams may be divided into sheets of 

uniform size. A module is a set of classes. Modules may vary in size. 

12.2.5.1.2 Dynamic Model: 
It consists of state diagrams and event flow diagrams. Following guidelines 

are used to construct the dynamic model: 

 Prepare scenarios of typical interaction sequences. 

 Identify events between objects and prepare an event trace for each 

scenario. 

 Develop a state diagram for each class that has important dynamic 

behavior. 

 Check for consistency and completeness of events shared among the 

state diagrams. 

Prepare scenarios of typical interaction sequences: A scenario is a 

sequence of events. Prepare scenarios for major interactions, external display 

formats and information exchanges. 

Identify events between objects and prepare an event trace for each 
scenario: events are signals, inputs, decisions, interrupts, transitions and 

actions from users or external devices. Identify all events by using scenarios.  

Event trace is an ordered list of events between different objects. Prepare 

each scenario as an event trace. 
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Develop a state diagram for each class that has important dynamic 
behavior: Start with the event trace diagrams that affect the class being 

modeled. Pick a trace showing a particular interaction and only consider the 

events affecting single object. Arrange the events into path whose arcs are 

labeled by the input and output events found along one column in the trace. 

The interval between any two events is state. Give each state a name. if the 

scenario can be repeated infinitely, close the path in the state diagram. Then 

merge other scenarios into the state diagram. 

Check for consistency and completeness of events shared among the 
state diagrams: every event should have a sender and a receiver, 

occasionally the same object. States without predecessors or successors are 

suspicious; ensure they represent starting and terminating points of the 

interaction sequence. Make sure that corresponding events on different state 

diagrams are consistent. 

12.2.5.1.3 Functional Model: 
It consists of data flow diagrams and constraints. Following guidelines are 

used to construct the functional model: 

 Identify input and output values. 

 Build data flow diagrams. 

 Describe what each function does. 

 Identify constraints. 

 Specify optimization criteria. 

Identify input and output values: List input and output values, which are 

parameters of events between the system and the outside world. Check for 

missing input/output values through problem statement. 

Build data flow diagrams: DFDs specify only dependencies among 

operations. They do not show sequencing or decisions. Construct DFD to 

show how each value is computed from input values.  
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Describe what each function does: After completing and refining DFDs, 

write description of each function in natural language, decision table, pseudo 

code or any other appropriate form. The description can be procedural or 

declarative. 

Identify constraints: Constraints are functional dependencies between 

objects that are not related by an input-output dependency. Identify all 

constraints between objects. For example, account balance can not be 

negative. 

Specify optimization criteria: Specify values to be maximized, minimized or 

optimized.  

12.2.5.2 System Design 

In this step the high level structure of the system is chosen. The outcome of 

this phase is structure of basic architecture for the system as well as high-

level strategy decisions. Following steps are considered in this phase: 

 Organize the system into subsystem. 

 Identify concurrency inherent in the problem. 

 Allocate subsystems to processors and tasks. 

 Choose the basic strategy for implementing data stores in terms of data 

structures, files and databases. 

 Identify global resources and determine mechanisms for controlling access 

to them. 

 Choose an approach to implement software control. 

 Consider boundary conditions. 

 Establish trade off priorities. 
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Organize the system into subsystem: A subsystem is a collection of related 

classes, associations, operations, events and constraints having well defined 

small interfaces to other subsystems. A subsystem is identified by the 

services it provides. A service is group of related functions that share some 

common purpose. Each subsystem may be decomposed into smaller 

subsystems of its own. The lowest level subsystems are called modules. The 

relationship between two subsystems can be client-supplier or peer-to-peer. 

The decomposition of systems into subsystems may be organized as 

sequence of horizontal layers or vertical partitions. 

Identify concurrency inherent in the problem: Two objects are inherently 

concurrent if they can receive events at the same time without interacting. The 

dynamic model is the guide to identifying concurrency. If events are 

unsynchronized, objects cannot be folded into a single thread of control. A 

thread of control is path through a set of state diagrams on which only a single 

object at a time is active. 

Allocate subsystems to processors and tasks: Each concurrent 

subsystem must be allocated to a hardware unit. The designer must do the 

following: 

 Estimate performance needs and resources needed to satisfy them. 

 Choose H/W or S/W implementations for subsystems. 

 Allocate software subsystems to processors to satisfy performance needs 

and minimize interprocessor communication. 

 Determine the connectivity of the physical units that implement the 

subsystems. 

Choose the basic strategy for implementing data stores in terms of data 
structures, files and databases: The internal and external data stores in a 

system provide clear separation points between subsystems. Each data store 
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may combine data structures, files and databases implemented in primary or 

secondary memory. 

Identify global resources and determine mechanisms for controlling 
access to them: global resources such as processors, tape drives, disk 

space, mouse buttons, file names, class names, databases etc. must be 

identified. A mechanism for controlling access to the must be determined. 

Choose an approach to implement software control: There are two types 

of control flows in software: external control and internal control. 

External control is the flow of externally-visible events among objects in the 

system. There are three types of such control: procedure-driven sequential, 

event driven sequential and concurrent. The type of control used depends 

upon the language, OS etc. 

Internal control is the flow of control within a process. It exists in the 

implementation. Commonly used control flow are procedure calls, quasi-

concurrent inter-task calls, concurrent inter-task calls etc. 

Consider boundary conditions: The system designer must consider the 

boundary conditions of the system such as initialization, termination and 

failure. 

Establish trade off priorities: the system designer must set priorities that will 

be sued to guide trade-offs during the rest of design. The entire character of a 

system is affected by the trade-off decisions made by the designer. 

12.2.5.3 Object Design 

In this phase, the analysis model is elaborated to provide a detailed basis for 

implementation. Following steps are considered in this phase: 

 Obtain operations for the object model from the other models. 
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 Design algorithms to implement operations. 

 Optimize access paths to data. 

 Implement software control by fleshing out the approach chosen during 

system design. 

 Adjust class structure to increase inheritance. 

 Design implementations of associations. 

 Determine the exact representation of object attributes. 

 Package classes and associations into modules.  

Obtain operations for the object model from the other models: The 

designer must convert the actions and activities of the dynamic model and the 

processes of the functional model into operations attached to classes in the 

object model. 

Design algorithms to implement operations: For each operation in 

functional model, an algorithm must be developed. Use following guidelines: 

 Choose algorithms that minimize the cost of implementation. 

 Select data structures appropriate to the algorithms. 

 Define new internal classes and operations as necessary. 

 Assign responsibility for operations to appropriate classes. 

Optimize access paths to data: The inefficient but semantically-correct 

analysis model can be optimized to make implementation more efficient. For 

optimization, the designer must: 

 Add redundant associations to minimize access cost and maximize 

convenience. 

 Rearrange the computation for greater efficiency. 

 Save derived attributes to avoid recomputation of complicated 

expressions. 

Implement software control by fleshing out the approach chosen during 
system design: There are three basic approaches to implementing the 
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dynamic model: procedure-driven, event-driven and concurrent. Implement 

appropriate one. 

Adjust class structure to increase inheritance: The definitions of classes 

and operations must be adjusted to increase the amount of inheritance. It is 

done in the following way: 

 Rearrange and adjust classes and operations to increase inheritance. 

 Adjust common behavior out of groups of classes. 

 Use delegation to share behavior when inheritance is semantically invalid. 

Design implementations of associations: We can either choose a global 

strategy for implementing all associations uniformly or we can select a 

particular technique for each association, taking into account the way it will be 

used in the application. 

Determine the exact representation of object attributes: Designer must 

choose when to use primitive types in representing objects and when to 

combine groups of related objects. Classes can be defined in terms of other 

classes. But every thing in a class is implemented in terms of primitive data 

types. 

Package classes and associations into modules: Packaging involves the 

following issues: Hiding internal information from outside view, Coherence 

entities, constructing physical modules.  

12.3 Summary 

This chapter is focused on how a software system can be design using 

objects and classes while in chapter 6 and chapter 7 the focus was on 

function oriented design. In object oriented approach, an object is the basic 

design unit. During design the classes for objects are identified. A class 

represents the type for the object and defines the possible state space for the 
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objects of that class and the operations that can be performed on the objects. 

An object is an instance of the class. Objects do not exist in isolation but are 

related to each other. One f the goal of design here is to identify the 

relationships between the objects of different classes.  

The OMT methodology describes a method for analysis, design and 

implementation of a system using object-oriented technique. The static, 

dynamic and functional behaviors of the system are described by object 

model, dynamic model and functional model. The object model describes the 

static, structural and data aspects of a system. The dynamic model describes 

the temporal, behavioral and control aspects of a system. The functional 

model describes the transformational and functional aspects of a system. 

OMT first creates an object model for the system, and then refines it through 

dynamic and functional modeling. Identifying the internal classes and 

optimization are the final steps in this methodology for creating a design. 

12.4 Key words 

Object: An object is a concept, abstraction, or thing with crisp boundaries and 

meaning for the problem in hand. 

Class:  A class describes a group of objects with similar properties, 

operations and relationships to other objects. 

Inheritance & Multiple Inheritance: Inheritance is a relation between 

classes that allows for definition of one class based on the definition of 
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existing class. If a class inherits features from more than one superclass, it is 

called as multiple inheritance. 

Dynamic model: describes those aspects of the system that changes with 

the time. 

12.5 Self-Assessment Questions 

6. What is the difference between object model, dynamic model and 

functional model? 

7. What do you understand by functional model? What are the guidelines to 

construct it? 

8. What do you understand by DFD? What are the different symbols used 

to construct it? Explain. 

9. What do you understand by state diagram? Explain it using suitable 

examples. 

10. Define the following terms: object, class, inheritance, link, association, 

aggregation. 

11. If an association between classes has some attributes of its own, how will 

you implement it? 
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