
1

Lesson No. I Writer: Dr. Rakesh Kumar

Introduction to Software Engineering Vetter: Dr. Naresh Mann

1.0 Objectives

The objective of this lesson is to make the students acquainted with the

introductory concepts of software engineering. To make them familiar with the

problem of software crisis this has ultimately resulted into the development of

software engineering. After studying this lesson, the students will:

1. Understand what is software crisis?

2. What are software engineering and its importance?

3. What are the quality factors of software?

1.1 Introduction

In order to develop a software product, user needs and constraints must be

determined and explicitly stated; the product must be designed to

accommodate implementers, users and maintainers; the source code must be

carefully implemented and thoroughly tested; and supporting documents must

be prepared. Software maintenance tasks include analysis of change request,

redesign and modification of the source code, thorough testing of the modified

code, updating of documents to reflect the changes and the distribution of

modified work products to the appropriate user. The need for systematic

approaches to development and maintenance of software products became

2

apparent in the 1960s. Many software developed at that time were subject to

cost overruns, schedule slippage, lack of reliability, inefficiency, and lack of

user acceptance. As computer systems become larger and complex, it

became apparent that the demand for computer software was growing faster

than our ability to produce and maintain it. As a result the field of software

engineering has evolved into a technological discipline of considerable

importance.

1.2 Presentation of contents
1.2.1 The Software Crisis

1.2.2 Mature Software

1.2.3 Software Engineering

1.2.4 Scope and Focus

1.2.5 The Need for Software Engineering

1.2.6 Technologies and practices

1.2.7 Nature of Software Engineering

 1.2.7.1 Mathematics

 1.2.7.2 Engineering

 1.2.7.3 Manufacturing

 1.2.7.4 Project management

 1.2.7.5 Audio and Visual art

 1.2.7.6 Performance

1.2.8 Branch of Which Field?

 1.2.8.1 Branch of programming

 1.2.8.2 Branch of computer science

 1.2.8.3 Branch of engineering

3

 1.2.8.4 Freestanding field

 1.2.8.5 Debate over the term 'Engineering'

1.2.9 Software Characteristics

1.2.10 Software Applications

1.2.11 Software Quality Attributes

 1.2.11.1 ISO 9126

 1.2.11.2 McCall’s Quality Model

1.2.1 The Software Crisis

The headlines have been screaming about the Y2K Software Crisis for years

now. Lurking behind the Y2K crisis is the real root of the problem: The

Software Crisis. After five decades of progress, software development has

remained a craft and has yet to emerge into a science.

What is the Software Crisis?

Is there a crisis at all? As you stroll through the aisles of neatly packaged

software in your favorite computer discount store, it wouldn’t occur to you that

there’s a problem. You may be surprised to learn that those familiar aisles of

software represent only a small share of the software market--of the $90

Billion software market, a mere 10% of software products are "shrink

wrapped" packages for personal computers. The remaining 90% of the market

is comprised of large software products developed to specific customer

specifications.

4

By today’s definition, a "large" software system is a system that contains more

than 50,000 lines of high-level language code. It’s those large systems that

bring the software crisis to light. You know that in large projects the work is

done in teams consisting of project managers, requirements analysts,

software engineers, documentation experts, and programmers. With so many

professionals collaborating in an organized manner on a project, what’s the

problem?

Why is it that the team produces fewer than 10 lines of code per day over the

average lifetime of the project?

Why are sixty errors found per every thousand lines of code?

Why is one of every three large projects scrapped before ever being

completed? Why is only 1 in 8 finished software projects considered

"successful?"

And more:

 The cost of owning and maintaining software in the 1980’s was twice as

expensive as developing the software.

 During the 1990’s, the cost of ownership and maintenance increased by

30% over the 1980’s.

 In 1995, statistics showed that half of surveyed development projects were

operational, but were not considered successful.

 The average software project overshoots its schedule by half.

5

 Three quarters of all large software products delivered to the customer are

failures that are either not used at all, or do not meet the customer’s

requirements.

Software projects are notoriously behind schedule and over budget. Over the

last twenty years many different paradigms have been created in attempt to

make software development more predictable and controllable. There is no

single solution to the crisis. It appears that the Software Crisis can be boiled

down to two basic sources:

 Software development is seen as a craft, rather than an engineering

discipline.

 The approach to education taken by most higher education institutions

encourages that "craft" mentality.

Software development today is more of a craft than a science. Developers are

certainly talented and skilled, but work like craftsmen, relying on their talents

and skills and using techniques that cannot be measured or reproduced. On

the other hand, software engineers place emphasis on reproducible,

quantifiable techniques–the marks of science. The software industry is still

many years away from becoming a mature engineering discipline. Formal

software engineering processes exist, but their use is not widespread. A crisis

similar to the software crisis is not seen in the hardware industry, where well-

documented, formal processes are tried and true. To make matters worse,

6

software technology is constrained by hardware technology. Since hardware

develops at a much faster pace than software, software developers are

constantly trying to catch up and take advantage of hardware improvements.

Management often encourages ad hoc software development in an attempt to

get products out on time for the new hardware architectures. Design,

documentation, and evaluation are of secondary importance and are omitted

or completed after the fact. However, as the statistics show, the ad hoc

approach just doesn’t work. Software developers have classically accepted a

certain number of errors in their work as inevitable and part of the job. That

mindset becomes increasingly unacceptable as software becomes embedded

in more and more consumer electronics. Sixty errors per thousand lines of

code is unacceptable when the code is embedded in a toaster, automobile,

ATM machine or razor.

1.2.2 Mature Software

As we have seen, most software projects do not follow a formal process. The

result is a product that is poorly designed and documented. Maintenance

becomes problematic because without a design and documentation, it’s

difficult or impossible to predict what sort of effect a simple change might have

on other parts of the system.

Fortunately there is an awareness of the software crisis, and it has inspired a

worldwide movement towards process improvement. Software industry

7

leaders are beginning to see that following a formal software process

consistently leads to better quality products, more efficient teams and

individuals, reduced costs, and better morale.

The SEI (Software Engineering Institute) uses a Capability Maturity Model

(CMM) to assess the state of an organization’s development process. Such

models are nothing new–they have been routinely applied to industrial

engineering disciplines. What’s new is the application to software

development. The SEI Software CMM has become a de facto standard for

assessing and improving software processes. Ratings range from Maturity

Level 1, which is characterized by ad hoc development and lack of a formal

software development process, up to Maturity Level 5, at which an

organization not only has a formal process, but also continually refines and

improves it. Each maturity level is further broken down into key process areas

that indicate the areas an organization should focus on to improve its software

process (e.g. requirement analysis, defect prevention, or change control).

Level 5 is very difficult to attain. In early 1995, only two projects, one at

Motorola and another at Loral (the on-board space shuttle software project),

had earned Maturity Level 5. Another study showed that only 2% of reviewed

projects rated in the top two Maturity Levels, in spite of many of those projects

placing an extreme emphasis on software process improvement. Customers

contracting large projects will naturally seek organizations with high CMM

8

ratings, and that has prompted increasingly more organizations to investigate

software process improvement.

Mature software is also reusable software. Artisans are not concerned with

producing standardized products, and that is a reason why there is so little

interchangeability in software components. Ideally, software would be

standardized to such an extent that it could be marketed as a "part", with its

own part number and revision, just as though it were a hardware part. The

software component interface would be compatible with any other software

system. Though it would seem that nothing less than a software development

revolution could make that happen, the National Institute of Standards and

Technology (NIST) founded the Advanced Technology Program (ATP), one

purpose of which was to encourage the development of standardized software

components.

The consensus seems to be that software has become too big to treat as a

craft. And while it may not be necessary to apply formal software processes to

daily programming tasks, it is important in the larger scheme of things, in that

it encourages developers to think like engineers.

1.2.3 Software Engineering

Software Engineering (SE) is the design, development, and documentation of

software by applying technologies and practices from computer science,

9

project management, engineering, application domains, interface design,

digital asset management and other fields.

The term software engineering was popularized after 1968, during the 1968

NATO Software Engineering Conference (held in Garmisch, Germany) by its

chairman F.L. Bauer, and has been in widespread use since.

The term software engineering has been commonly used with a variety of

distinct meanings:

 As the informal contemporary term for the broad range of activities that

was formerly called programming and systems analysis;

 As the broad term for all aspects of the practice of computer programming,

as opposed to the theory of computer programming, which is called

computer science;

 As the term embodying the advocacy of a specific approach to computer

programming, one that urges that it be treated as engineering discipline

rather than an art or a craft, and advocates the codification of

recommended practices in the form of software engineering

methodologies.

 Software engineering is "(1) the application of a systematic, disciplined,

quantifiable approach to the development, operation, and maintenance of

software, that is, the application of engineering to software," and "(2) the

study of approaches as in (1)." – IEEE Standard 610.12

10

 Software engineering is defined as the systematic and scientific approach

to develop, operate, maintain and to retire the software product. Software

product means software for a large/medium size and complex problem.

We get the real advantage of software engineering when it is applied to a

project. Though it can also be used for the development of programs/small

assignments.

 Software engineering is the application of science and mathematics, by

which the computer hardware is made useful to the user via software

(computer programs, procedures, and associated documentation).

1.2.4 Scope and Focus

Software engineering is concerned with the conception, development and

verification of a software system. This discipline deals with identifying,

defining, realizing and verifying the required characteristics of the resultant

software. These software characteristics may include: functionality, reliability,

maintainability, availability, testability, ease-of-use, portability, and other

attributes. Software engineering addresses these characteristics by preparing

design and technical specifications that, if implemented properly, will result in

software that can be verified to meet these requirements.

Software engineering is also concerned with the characteristics of the

software development process. In this regard, it deals with characteristics

11

such as cost of development, duration of development, and risks in

development of software.

1.2.5 The Need for Software Engineering

Software is often found in products and situations where very high reliability is

expected, even under demanding conditions, such as monitoring and

controlling nuclear power plants, or keeping a modern airliner aloft Such

applications contain millions of lines of code, making them comparable in

complexity to the most complex modern machines. For example, a modern

airliner has several million physical parts (and the space shuttle about ten

million parts), while the software for such an airliner can run to 4 million lines

of code.

1.2.6 Technologies and practices

Software engineers advocate many different technologies and practices, with

much disagreement. Software engineers use a wide variety of technologies

and practices. Practitioners use a wide variety of technologies: compilers,

code repositories, word processors. Practitioners use a wide variety of

practices to carry out and coordinate their efforts: pair programming, code

reviews and daily stand up meetings. The goal of every software engineer

should be to bring an idea out of a previous planned model, which should be

transparent and well documented.

12

In spite of the enormous economic growth and productivity gains enabled by

software, persistent complaints about the quality of software remain.

1.2.7 Nature of Software Engineering

Software engineering resembles many different fields in many different ways.

The following paragraphs make some simple comparisons.

1.2.7.1 Mathematics

Programs have many mathematical properties. For example the correctness

and complexity of many algorithms are mathematical concepts that can be

rigorously proven. Programs are finite, so in principle, developers could know

many things about a program in a rigorous mathematical way. The use of

mathematics within software engineering is often called formal methods.

However, computability theory shows that not everything useful about a

program can be proven. Mathematics works best for small pieces of code and

has difficulty scaling up.

1.2.7.2 Engineering

Software Engineering is considered by many to be an engineering discipline

because there are pragmatic approaches and expected characteristics of

engineers. Proper analysis, documentation, and commented code are signs of

an engineer. It is argued that software engineering is engineering. Programs

have many properties that can be measured. For example, the performance

and scalability of programs under various workloads can be measured. The

13

effectiveness of caches, bigger processors, faster networks, newer databases

are engineering issues. Mathematical equations can sometimes be deduced

from the measurements. Mathematical approaches work best for system-wide

analysis, but often are meaningless when comparing different small fragments

of code.

1.2.7.3 Manufacturing

Programs are built in as a sequence of steps. By properly defining and

carrying out those steps, much like a manufacturing assembly line, advocates

hope to improve the productivity of developers and the quality of final

programs. This approach inspires the many different processes and

methodologies.

1.2.7.4 Project management

Commercial (and many non-commercial) software projects require

management. There are budgets and schedules to set. People to hire and

lead. Resources (office space, computers) to acquire. All of this fits more

appropriately within the purview of management.

1.2.7.5 Audio and Visual art

Programs contain many artistic elements, like to writing or painting. User

interfaces should be aesthetically pleasing and provide optimal audio and

visual communication to end-users. What is considered "good design" is often

subjective, and may be decided by one's own sense of aesthetics. Because

14

graphic artists create graphic elements for graphical user interfaces, graphic

design often overlaps interaction design in the position of an interface

designer. User interfaces may require technical understanding including

graphical integration with code, computer animation technology, automation of

graphic production, integrating graphics with sound editing technology, and

mathematical application. One could say that "audiovisual engineering" is

required. User interfaces with user-read text and voice may also be enhanced

from professional copywriting and technical writing. Code should be

aesthetically pleasing to programmers. Even the decision of whether a

variable name or class name is clear and simple is an artistic question.

1.2.7.6 Performance

The act of writing software requires that developers summon the energy to

find the answers they need while they are at the keyboard. Creating software

is a performance that resembles what athletes do on the field, and actors and

musicians do on stage. Some argue that Software Engineering need

inspiration to spark the creation of code. Sometimes a creative spark is

needed to create the architecture or to develop a unit of code to solve a

particularly intractable problem. Others argue that discipline is the key

attribute. Pair programming emphasizes this point of view.

15

1.2.8 Branch of Which Field?

Is Software Engineering a branch of programming, a branch of computer

science, a branch of traditional engineering, or a field that stands on its own?

1.2.8.1 Branch of programming

Programming emphasizes writing code, independent of projects and

customers. Software engineering emphasizes writing code in the context of

projects and customers by making plans and delivering applications. As a

branch of programming, Software Engineering would probably have no

significant licensing or professionalism issues.

1.2.8.2 Branch of computer science

Many believe that software engineering is a part of computer science,

because of their close historical connections and their relationship to

mathematics. They advocate keeping Software engineering a part of

computer science. Both computer science and software engineering care

about programs. Computer science emphasizes the theoretical, eternal truths

while software engineering emphasizes practical, everyday usefulness. Some

argue that computer science is to software engineering as physics and

chemistry are to traditional engineering. As a branch of computer science,

Software Engineering would probably have few licensing or professionalism

concerns.

16

1.2.8.3 Branch of engineering

Some Software Engineering academics and practitioners have advocated

treating Software Engineering an engineering discipline. Advocates for this

view argue that the practice of engineering involves the use of mathematics,

science, and the technology of the day, to build trustworthy products that are

"fit for purpose", a description that applies as well to Software Engineering as

to any other engineering discipline. As a branch of engineering, Software

Engineering would probably adopt the engineering model of licensing and

professionalism.

1.2.8.4 Freestanding field

Recently, software engineering has been finding its own identity and emerging

as an important freestanding field. Practitioners are slowly realizing that they

form a huge community in their own right. Software engineering may need to

create a form of regulation/licensing appropriate to its own circumstances.

1.2.8.5 Debate over the term 'Engineering'

Some people believe that software development is a more appropriate term

than software engineering for the process of creating software. Pete McBreen,

(author of "Software Craftsmanship: The New Imperative" (ISBN 0-201-

73386-2)), argues that the term Software Engineering implies levels of rigor

and proven processes that are not appropriate for all types of software

development. He argues strongly for 'craftsmanship' as a more appropriate

17

metaphor because that term brings into sharper focus the skills of the

developer as the key to success instead of the "manufacturing" process.

Using a more traditional comparison, just as not everyone who works in

construction is a civil engineer, not everyone who can write code is a software

engineer.

Some people dispute the notion that the field is mature enough to warrant the

title "engineering". Opposition also comes from the traditional engineering

disciplines, whose practitioners usually object to the use of the title "engineer"

by anyone who has not gone through an accredited program of engineering

education. In each of the last few decades, at least one radical new approach

has entered the mainstream of software development (e.g. Structured

Programming, Object Orientation, ...), implying that the field is still changing

too rapidly to be considered an engineering discipline. Other people would

argue that the supposedly radical new approaches are actually evolutionary

rather than revolutionary, the mere introduction of new tools rather than

fundamental changes.

1.2.9 Software Characteristics

The fundamental difference between a software and hardware is that software

is a conceptual entity while hardware is physical entity. When the hardware is

built, the process of building a hardware results in a physical entity, which can

18

be easily measured. Software being a logical has the different characteristics

that are to be understood.

 Software is developed or engineered but it is not manufactured in the

classical sense.

 Although some similarities exist between software development and

hardware manufacture, the two activities are fundamentally different. In both

activities, high quality is achieved through good design, but the manufacturing

phase for hardware can introduce quality problems that are nonexistent (or

easily corrected) for software. Both activities are dependent on people, but the

relationship between people applied and work accomplished is entirely

different. Both activities require the construction of a "product" but the

approaches are different. Software costs are concentrated in engineering.

This means that software projects cannot be managed as if they were

manufacturing projects.

 Software doesn't "wear out."

If you will use hardware, you will observe wear and tear with the passage of

time. But software being a conceptual entity will not wear with the passage of

time.

19

FIGURE 1.1 HARDWARE FAILURE CURVE

Above figure 1.1 shows failure rate as a function of time for hardware. The

relationship, often called the "bathtub curve," indicates that hardware exhibits

relatively high failure rates early in its life (these failures are often attributable

to design or manufacturing defects); defects are corrected and the failure rate

drops to a steady-state level (ideally, quite low) for some period of time. As

time passes, however, the failure rate rises again as hardware components

suffer from the cumulative affects of dust, vibration, abuse, temperature

extremes, and many other environmental maladies. Stated simply, the

hardware begins to wear out.

Software is not susceptible to the environmental maladies that cause

hardware to wear out. In theory, therefore, the failure rate curve for software

should take the form of the "idealized curve" shown in following Figure 1.2.

20

Undiscovered defects will cause high failure rates early in the life of a

program. However, these are corrected (ideally, without introducing other

errors) and the curve flattens as shown.

 Failure Rate

 Time

Figure 1.2 Failure curve for software
 This seeming contradiction can best be explained by considering the

"actual curve" shown in following Figure 1.3. During its life, software will

undergo change (maintenance). As the changes are made, it is likely that

some new defects will be introduced, causing the failure rate curve to spike as

shown in Figure. Before the curve can return to the original steady-state

failure rate, another change is requested, causing the curve to spike again.

Slowly, the minimum failure rate level begins to rise-the software is

deteriorating due to change.

Another aspect of wear illustrates the difference between hardware and

software. When a hardware component wears out, it is replaced by a spare

21

part. There are no software spare parts. If any software fails then it indicates

an error in design or an error in the process through which design was

translated into machine executable code then it means some compilation

error. So it is very much clear that, software maintenance involves more

complexity than hardware maintenance or we can say that software

maintenance is a more complex process than hardware maintenance.

FIGURE 1.3 SOFTWARE IDEALIZED AND ACTUAL FAILURE CURVES

 Most software is custom built, rather than being assembled from

existing components.

Consider the manner in which the control hardware for a computer-based

product is designed and built: The design engineer draws a simple schematic

of the digital circuitry, does some fundamental analysis to assure that proper

function will be achieved, and then goes to the shelf where catalogs of digital

22

components exist. Each integrated circuit (called an IC or a chip) has a part

number, a defined and validated function, a well-defined interface, and a

standard set of integration guidelines. After each component is selected, it

can be ordered off the shelf.

According to the standard engineering discipline, a collection of standard

design components is created. Standard screws and off-the-shelf integrated

circuits are only two of thousands of standard components that are used by

mechanical and electrical engineers as they design new systems. The

reusable components have been created so that the engineer can

concentrate on the truly innovative elements of a design, that is, the parts of

the design that represent something new. In the hardware world, component

reuse is a natural part of the engineering process. In the software world, it is

something that has only begun to be achieved on a broad scale. In the end,

we can say that software design is a complex and sequential process.

A software component should be designed and implemented so that it can be

reused in different programs since it is a better approach, according to finance

and manpower. In the 1960s, we built scientific subroutine libraries that were

reusable in a broad array of engineering and scientific applications. These

subroutine libraries reused well-defined algorithms in an effective manner but

had a limited domain of application. Today, we have extended our view of

reuse to encompass not only algorithms but also data structure. Modern

23

reusable components encapsulate both data and the processing applied to

the data, enabling the software engineer to create new applications from

reusable parts. For example, today's graphical user interfaces are built using

reusable components that enable the creation of graphics windows, pull-down

menus, and a wide variety of interaction mechanisms. The data structure and

processing detail required to build the interface are contained with a library of

reusable components for interface construction.

Software components: If you will observe the working of mechanical /electrical

/civil engineers, you will see the frequent use reusable components. To built a

computer, they will not have to start from the scratch. They will take the

components like monitor, keyboard, mouse, hard disk etc. and assemble them

together. In the hardware world, component reuse is a natural part of the

engineering process.

Reusability of the components has also become the most desirable

characteristic in software engineering also. If you have to design software,

don’t start from the scratch, rather first check for the reusable components

and assemble them. A software component should be designed and

implemented so that t can be reused in may different applications. In the

languages like C and Pascal we are seeing the presence of a number of

library functions (The functions which are frequently required such as to

compute the square root etc, are provided in the library and those can be

24

used as such.). With the advent of Object oriented languages such as C++

and Java, reusability has become a primary issue. Reusable components

prepared using these languages, encapsulate data as well as procedure.

Availability of reusable components can avoid two major problems in the

software development: (1) Cost overrun and (2) schedule slippage. If every

time we will start from scratch, these problems are inevitable, as we have

already realized in procedure oriented approach.

In fourth generation languages also, we are not suppose to specify the

procedural detail rather we specify the desired result and supporting software

translates the specification of result into a machine executable program.

1.2.10 Software Applications

Software may be applied in any situation for which a pre-specified set of

procedural steps (i.e., an algorithm) has been defined. Information content

and determinacy are important factors in determining the nature of a software

application. Content refers to the meaning and form of incoming and outgoing

information. For example, many business applications use highly structured

input data (e.g., a database) and produce formatted "reports." Software that

controls an automated machine (e.g., a numerical control) accepts discrete

data items with limited structure and produces individual machine commands

in rapid succession.

25

Information determinacy refers to the predictability of the order and timing of

information. An engineering analysis program accepts data that have a

predefined order, executes the analysis algorithm(s) without interruption, and

produces resultant data in report or graphical format. Such applications are

determinate. A multi-user operating system, on the other hand, accepts inputs

that have varied content and arbitrary timing, executes algorithms that can be

interrupted by external conditions, and produces output that varies as a

function of environment and time. Applications with these characteristics are

indeterminate.

System software: System software is a collection of programs and utilities for

providing service to other programs. Other system applications (e.g.,

operating system components, drivers, telecommunications processors)

process largely indeterminate data. In either case, the system software area is

characterized by heavy interaction with computer hardware; heavy usage by

multiple users; concurrent operation that requires scheduling, resource

sharing, and sophisticated process management; complex data structures;

and multiple external interfaces.

Real-time software: Software for the monitors/analyzes/controls real-world

events as they occur is called real time. Elements of real-time software

include a data-gathering component that collects and formats information from

an external environment, an analysis component that transforms information

26

as required by the application, a control/output component that responds to

the external environment, and a monitoring component that coordinates all

other components so that real-time response can be maintained.

Business software: Business information processing is the largest single

software application area. In a broad sense, business software is an

integrated software and has many components related to a particular field of

the business. Discrete "systems" for example, payroll, accounts

receivable/payable, inventory have evolved into management information

system (MIS) software that accesses one or more large databases containing

business information. Applications in this area restructure existing data in a

way that facilitates business operations or management decision-making. In

addition to conventional data processing application, business software

applications also encompass interactive computing.

Engineering and scientific software: Engineering and scientific software

have been characterized by "number crunching" algorithms. Applications

range from astronomy to volcano logy, from automotive stress analysis to

space shuttle orbital dynamics, and from molecular biology to automated

manufacturing. However, modern applications within the engineering/scientific

area are moving away from conventional numerical algorithms. Computer-

aided design, system simulation, and other interactive applications have

begun to take on real-time and even system software characteristics.

27

Embedded software: Embedded software resides in read-only memory and

is used to control products and systems for the consumer and industrial

markets. Embedded software can perform very limited and esoteric functions

(e.g., keypad control for a microwave oven) or provide significant function and

control capability (e.g., digital functions in an automobile such as fuel control,

dashboard displays, and braking systems).

Personal computer software: The personal computer is the type of

computer, which gave revolution to the information technology. The personal

computer software market has burgeoned over the past two decades. Word

processing, spreadsheets, computer graphics, multimedia, entertainment,

database management, personal and business financial applications, external

network, and database access are only a few of hundreds of applications.

Web-based software: The Web pages processed by the browser are the

software that incorporates executable instructions (e.g., CGI, HTML, PERL, or

Java), and data (e.g. hypertext and a variety of visual and audio formats). In

essence, the network becomes a massive computer providing an almost

unlimited software resource that can be accessed by anyone with a modem.

Artificial intelligence software: Artificial intelligence (AI) software is the

software, which thinks and behaves like a human. AI software makes use of

non-numerical algorithms to solve complex problems that are not amenable to

computation or straightforward analysis. Expert systems, also called

28

knowledge-based systems, pattern recognition (image and voice), artificial

neural networks, theorem proving, and game playing are representative of

applications within this category.

1.2.11 Software Quality Attributes

Software quality is defined as conformance to explicitly stated functional and

performance requirements, explicitly documented development standards,

implicit characteristics that are expected of all professionally developed

software.

The above definition serves to emphasize three important points:

1. Software requirements are the foundation from which quality is

measured. Lack of conformance to requirements is lack of quality.

2. Specified standards define a set of development criteria that guide the

manner in which software is engineered. If the criteria are not followed,

lack of quality will almost surely result.

3. There is a set of implicit requirements that often goes unmentioned (e.g.,

the desire for ease of user). If software conforms to its explicit

requirements but fails to meet implicit requirements, software quality is

suspect.

"Good Software" needs to be fit for its purpose i.e. it does what it is intended

to do. Software has various attributes that lend towards it being good or bad.

29

External quality attributes are visible to anyone using the software. Reliability

is an external quality attribute, which can be measured during or after

implementation by testing how the software product relates to its environment.

The internal quality of the software can be measured in terms of its

technical attributes such as coupling and cohesion. Some may question the

importance of internal quality attributes especially if the software seems to

work well and the client is satisfied with it. It can be reasoned though that the

internal quality attributes have an impact upon the external quality of the

software. Low cohesion for example can lead to messy code, which may be

very hard to understand and maintain. The ability to maintain the software

system is of course an important factor to be considered when determining

the overall quality of the software product.

1.2.11.1 ISO 9126

The ISO 9126 is a Quality Model outlines the factors that contribute to

software being good or not so good. The International Organization for

Standardization (ISO) 9126 model outlines the following quality attributes:

 Functionality - how well the software system caters for the client's needs

• Suitability

• Accuracy: The precision of computations and control.

• Interoperability

• Compliance

30

• Security: The availability of mechanisms that control or protect

programs and data.

 Reliability - how capable the software system is to maintain a desired level

of performance for a certain duration of time

• Maturity

• Recoverability

• Fault Tolerance

 Usability - how much effort is needed on the part of users to properly use

the software system

• Learnability

• Understandability

• Operability

 Efficiency - how well the software system performs depending on the

resources it requires

• Time Behaviour

• Resource Behaviour

 Maintainability - how easily future changes can be made to the software

system

• Stability

• Analysability

• Changeability

31

• Testability

 Portability - how well the systems can be transported from one

environment to another

• Installability

• Conformance

• Replaceability

• Adaptability

1.2.11.2 McCall’s Quality Model

According to McCall There are three dimensions of a software product (as

shown in figure 1.4) dealing with different quality factors. These are discussed

below:

 Product Operation: Its is concerned with those aspects of the software

when the software is in operation.

• Correctness: It is defined as the extent to which a program satisfies its

specification.

• Reliability: Informally, software is reliable if the user can depend on it.

The specialized literature on software reliability defines reliability in terms

of statistical behavior-the probability that the software will operate as

expected over a specified time interval. For the purpose of this chapter,

however, the informal definition is sufficient.

• Efficiency: It is concerned with memory requirement, response time etc.

32

• Integrity:

• Usability: It may be defined, as efforts required learning software to

operate it.

 Product Transition: Periodically we have to move the software from one

platform to another. This dimension is concerned with those factors, which

are concerned with transition.

• Portability: It may be defined, as the efforts required moving the

software from one hardware platform to another.

• Reusability: It is the extent to which parts of the software can be reused

in other related applications.

• Interoperability: It is the effort required to couple the system with other

systems.

 Product Revision: Maintenance is an important phase of software life.

This dimension is concerned with all those factors that are concerned with

the modification of the software.

• Maintainability: It is defined, as the efforts required identifying the bugs

in the program and removing them.

• Flexibility: It may be defined, as the efforts required modifying an

operational program.

• Testability: It is defined, as the efforts required testing a program so that

it can be ensured that it is performing the intended functions.

33

Figure 1.4 Three dimensions of software

1.3 Summary

This lesson has provided an introduction to the basic concepts of software

engineering. In early 1960, it became apparent that there is a need of

systemetic approach to software development. The software developed in that

age faced a number of problems such as cost overru, schedule slippage, poor

quality etc. It resulted into a problem coined as softwrae crisis. Software

Engineering is the solution to these problems. A number of definitions were

presented. An important one is reproduced here “Software engineering is "(1)

the application of a systematic, disciplined, quantifiable approach to the

development, operation, and maintenance of software, that is, the application

of engineering to software," and "(2) the study of approaches as in (1)." –

IEEE Standard 610.12”.

Portability
Reusability

Inter-operability

Product Transaction Product Revision

Maintainability
Flexibility
Testability

Product Operation

Correctness Usability Efficiency

Reliability Integrity

34

This lesson gives an overview of the quality attributes of software. And two

quality models were discussed: McCall’s quality model and ISO 9126.

According to McCall There are three dimensions of a software product dealing

with different quality factors: Product operation, Product transition and product

revision. According to ISO 9126, the quality attributes are classified as

functionality, reliability, usability, efficiency, maintainability, and portability.

1.4 Keywords

Software quality: It is defined as conformance to explicitly stated functional

and performance requirements, explicitly documented development

standards, implicit characteristics that are expected of all professionally

developed software.

ISO 9126: The ISO 9126 is a Quality Model that outlines the factors that

contribute to software being good or not so good.

Software Engineering: It is the design, development, and documentation of

software by applying technologies and practices from computer science,

project management, engineering, application domains, interface design,

digital asset management and other fields.

1.5 Self Assessment Questions

1. What do you understand by software crisis? What are the factors

responsible for that? Explain.

35

2. Define software engineering. What is the need of a systemetic

approach to software development? Explain.

3. Define Software quality and discuss the ISO 9126 model of software

quality.

4. Develop a list of software quality attributes. Provide a concise definition

for each of the quality attributes.

5. What qualities are to be there in software? Discuss the McCall’s quality

model.

1.6 References/Suggested readings

1. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

2. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

3. Software Engineering by Sommerville, Pearson Education.

4. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

36

Lesson number: II Writer: Dr. Rakesh Kumar

Software Metrics Vetter: Dr. Naresh Mann

2.1 Objectives

The objective of this lesson is to introduce the students with the concept of

software measurement. After studying this lesson they will be familiar with

different types of metrics such as Function Points (FP), Source Line Of Code

(SLOC), Cyclomatic complexity, etc and theirs advantages and drawbacks.

2.2 Introduction

The IEEE Standard Glossary of Software Engineering Terms define metric as

“ a quantitative measure of the degree to which a system, component, or

process possesses a given attribute”. A software metric is a measure of some

property of a piece of software or its specifications. Since quantitative

methods have proved so powerful in the other sciences, computer science

practitioners and theoreticians have worked hard to bring similar approaches

to software development. Tom DeMarco stated, "You can't control what you

can't measure" in DeMarco, T. (1982) Controlling Software Projects:

Management, Measurement & Estimation, Yourdon Press, New York, USA,

p3. Ejiogu suggested that a metric should possess the following

characteristics: (1) simple and computable: It should be easy to learn how to

37

derive the metric and its computation should not be effort and time

consuming. (2) Empirically and intuitively persuasive: The metric should

satisfy the engineer's intuitive notion about the product under consideration.

The metric should behave in certain ways, rising and falling appropriately

under various conditions (3) consistent and Objective: The metric should

always yield results that are unambiguous. The third party would be able to

derive the same metric value using the same information (4) consistent in its

use of units and dimensions: It uses only those measures that do not lead to

bizarre combinations of units (5) Programming language independent (6) an

effective mechanism for quality feedback. In addition to the above-mentioned

characteristics, Roche suggests that metric should be defined in an

unambiguous manner. According to Basili Metrics should be tailored to best

accommodate specific products and processes. Software metric domain can

be partitioned into process, project, and product metrics. Process metrics are

used for software process improvement such as defect rates, errors found

during development. Project metrics are used by software project manager to

adapt project work flows.

38

2.3 Presentation of Contents

 2.3.1 Common software metrics

 2.3.2 Limitations

 2.3.3 Criticisms

 2.3.4 Gaming Metrics

 2.3.5 Balancing Metrics

 2.3.6 Software Measurement

 2.3.7 Halstead's Software Science

 2.3.8 McCabe's Cyclomatic number

 2.3.9 Fan-In Fan-Out Complexity - Henry and Kafura's

 2.3.10 Source lines of code

 2.3.11 Function Points (FP)

2.3.1 Common software metrics

Common software metrics include:

• Source lines of code

• Cyclomatic complexity

• Function point analysis

• Code coverage

• Number of classes and interfaces

39

• Cohesion

• Coupling

2.3.2 Limitations

The assessment of "how much" software there is in a program, especially

making prediction of such prior to the detail design, is very difficult to

satisfactorily define or measure. The practical utility of software metrics has

thus been limited to narrow domains where the measurement process can be

stabilized.

Management methodologies such as the Capability Maturity Model or ISO

9000 have therefore focused more on process metrics which assist in

monitoring and controlling the processes that produce the software.

Examples of process metrics affecting software:

• Number of times the program failed to rebuild overnight

• Number of defects introduced per developer hour

• Number of changes to requirements

• Hours of programmer time available and spent per week

• Number of patch releases required after first product ship

2.3.3 Criticisms

Potential weaknesses and criticism of the metrics approach:

 Unethical: It is said to be unethical to reduce a person's performance to a

small number of numerical variables and then judge him/her by that

40

measure. A supervisor may assign the most talented programmer to the

hardest tasks on a project; which means it may take the longest time to

develop the task and may generate the most defects due to the difficulty of

the task. Uninformed managers overseeing the project might then judge

the programmer as performing poorly without consulting the supervisor

who has the full picture.

 Demeaning: "Management by numbers" without regard to the quality of

experience of the employees, instead of "managing people."

 Skewing: The measurement process is biased by the act of measurement

by employees seeking to maximize management's perception of their

performances. For example, if lines of code are used to judge

performance, then employees will write as many separate lines of code as

possible, and if they find a way to shorten their code, they may not use it.

 Inaccurate: No known metrics are both meaningful and accurate. Lines of

code measure exactly what is typed, but not of the difficulty of the problem.

Function points were developed to better measure the complexity of the

code or specification, but they require personal judgment to use well.

Different estimators will produce different results. This makes function

points hard to use fairly and unlikely to be used well by everyone.

41

2.3.4 Gaming Metrics

Industry experience suggests that the design of metrics will encourage certain

kinds of behaviour from the people being measured. The common phrase

applied is "you get what you measure".

A simple example that is actually quite common is the cost-per-function-point

metric applied in some Software Process Improvement programs as an

indicator of productivity. The simplest way to achieve a lower cost-per-FP is to

make function points arbitrarily smaller. Since there is no standard way of

measuring function points, the metric is wide open to gaming - that is,

cheating.

One school of thought on metrics design suggests that metrics communicate

the real intention behind the goal, and that people should do exactly what the

metric tells them to do. This is a spin-off of Test-driven Development, where

developers are encouraged to write the code specifically to pass the test. If

that's the wrong code, then they wrote the wrong test. In the metrics design

process, gaming is a useful tool to test metrics and help make them more

robust, as well as for helping teams to more clearly and effectively articulate

their real goals.

It should be noted that there are very few industry-standard metrics that stand

up to even moderate gaming.

42

2.3.5 Balancing Metrics

One way to avoid the "be careful what you wish for" trap is to apply a suite of

metrics that balance each other out. In software projects, it's advisable to

have at least one metric for each of the following:

 Schedule

 Risk

 Cost

 Quality

Too much emphasis on any one of these aspects of performance is likely to

create an imbalance in the team's motivations, leading to a dysfunctional

project.

The Balanced scorecard is a useful tool for managing a suite of metrics that

address multiple performance perspectives.

2.3.6 Software Measurement

When you can measure what you are speaking about, and express it in

numbers, you know something about it; but when you cannot measure it,

when you cannot express it in numbers, your knowledge is of a meager and

unsatisfactory kind.

(Lord Kelvin, Popular Lectures and Addresses, 1889)

Software plays an important role in our life. We want products which affect our

lives has quality attributes. We need quality software. In order to determine

43

quality of software we must have some metrics to measure quality. The key

point here is quality of the same product may be change. Software is not an

exception. So if we determine quality attributes of the software we can also

have more precise, predictable and repeatable control over the software

development process and product. If software engineer know what he/she will

do, then we can "measure" software more easily. Most of time we do not

know exactly what is the problem. With only a small understanding of the

desired software system, estimations of costs begin.

In the early days of computing, software costs represented a small

percentage of the overall cost of a computer-based system. Therefore, a

sizable error in estimates of software cost had relatively little impact. Today,

software is the most expensive element in many computer-based systems.

Therefore, a large cost-estimation can make the difference between profit and

loss.

Software measurement enables us to estimate cost and effort devoted to

project.

Software measurement enables us to determine quality of software.

Software measurement enables us to predict maintainability of software.

Software measurement enables us to validate the best practices of software

development.

44

Area of software measurement in software engineering is active more than

thirty years. There is a huge collection of researches, but still no a concrete

software cost estimation model.

If we want to estimate cost-effort of a software project. We need to know the

size of the software. One of the first software metric to measure the size of the

software as length is the LOC (Line of Code) The LOC measure is used

extensively in COCOMO, cost estimation model. Another size metric is

Function points (FP) that reflect the user's view of a system's functionality and

gives size as functionality. A unit (the function point) expresses the amount of

information processing that an application offers the user. The unit is separate

from the way in which the information processing is carried out technically.

Because software is a high-level notion made up of many different attributes,

there can never be a single measure of software complexity. Most of the

complexity metrics are also restricted to code. The best knowns are

Halstead's Software Science and McCabes's cyclomatic number. Halstead

defined a range of metrics based on the operators and operands in a

program. McCabe's metrics is derived from the program's control flow graph.

2.3.7 Halstead's Software Science

The Software Science developed by M. H. Halstead principally attempts to

estimate the programming effort.

The measurable and countable properties are:

45

 n1 = number of unique or distinct operators appearing in that

implementation

 n2 = number of unique or distinct operands appearing in that

implementation

 N1 = total usage of all of the operators appearing in that implementation

 N2 = total usage of all of the operands appearing in that implementation

From these metrics Halstead defines:

 The vocabulary n as n = n1 + n2

 The implementation length N as N = N1 + N2

Operators can be "+" and "*" but also an index "[...]" or a statement separation

"..;..". The number of operands consists of the numbers of literal expressions,

constants and variables.

Length Equation

It may be necessary to know about the relationship between length N and

vocabulary n. Length Equation is as follows. " ' " on N means it is calculated

rather than counted :

N ' = n1log2n1 + n2log2n2

It is experimentally observed that N ' gives a rather close agreement to

program length.

46

Quantification of Intelligence Content

The same algorithm needs more consideration in a low level programming

language. It is easier to program in Pascal rather than in assembly. The

intelligence Content determines how much is said in a program.

In order to find Quantification of Intelligence Content we need some other

metrics and formulas:

Program Volume: This metric is for the size of any implementation of any

algorithm.

V = N log2 n

Program Level: It is the relationship between Program Volume and Potential

Volume. Only the clearest algorithm can have a level of unity.

L = V* / V

Program Level Equation: is an approximation of the equation of the Program

Level. It is used when the value of Potential Volume is not known because it is

possible to measure it from an implementation directly.

L ' = n*
1n2 / n1N2

Intelligence Content

I = L ' x V = (2n2 / n1N2) x (N1 + N2) log2 (n1 + n2)

In this equation all terms on the right-hand side are directly measurable from

any expression of an algorithm. The intelligence content is correlated highly

with the potential volume. Consequently, because potential volume is

47

independent of the language, the intelligence content should also be

independent.

Programming Effort

The programming effort is restricted to the mental activity required to convert

an existing algorithm to an actual implementation in a programming language.

In order to find Programming effort we need some metrics and formulas:

Potential Volume: is a metric for denoting the corresponding parameters in

an algorithm's shortest possible form. Neither operators nor operands can

require repetition.

V ' = (n*
1 + n*

2) log2 (n*
1 + n*

2)

Effort Equation

The total number of elementary mental discriminations is:

E = V / L = V2 / V '

If we express it: The implementation of any algorithm consists of N selections

(nonrandom > of a vocabulary n. a program is generated by making as many

mental comparisons as the program volume equation determines, because

the program volume V is a measure of it. Another aspect that influences the

effort equation is the program difficulty. Each mental comparison consists of a

number of elementary mental discriminations. This number is a measure for

the program difficulty.

48

Time Equation

A concept concerning the processing rate of the human brain, developed by

the psychologist John Stroud, can be used. Stroud defined a moment as the

time required by the human brain to perform the most elementary

discrimination. The Stroud number S is then Stroud's moments per second

with 5 <= S <= 20. Thus we can derive the time equation where, except for

the Stroud number S, all of the parameters on the right are directly

measurable:

T ' = (n1N2 (n1log2n1 + n2log2n2) log2n) / 2n2S

Advantages of Halstead:

 Do not require in-depth analysis of programming structure.

 Predicts rate of error.

 Predicts maintenance effort.

 Useful in scheduling and reporting projects.

 Measure overall quality of programs.

 Simple to calculate.

 Can be used for any programming language.

 Numerous industry studies support the use of Halstead in predicting

programming effort and mean number of programming bugs.

Drawbacks of Halstead

 It depends on completed code.

49

 It has little or no use as a predictive estimating model. But McCabe's

model is more suited to application at the design level.

2.3.8 McCabe's Cyclomatic number: Cyclomatic complexity

Cyclomatic complexity is a software metric (measurement) in computational

complexity theory. It was developed by Thomas McCabe and is used to

measure the complexity of a program. It directly measures the number of

linearly independent paths through a program's source code.

Cyclomatic complexity is computed using a graph that describes the control

flow of the program. The nodes of the graph correspond to the commands of

a program. A directed edge connects two nodes if the second command might

be executed immediately after the first command.

Definition

M = E − N + P

where

M = cyclomatic complexity

E = the number of edges of the graph

N = the number of nodes of the graph

P = the number of connected components.

"M" is alternatively defined to be one larger than the number of decision points

(IFs, UNTILs, ENDs...) in a module (function, procedure, chart node, etc.), or

more generally a system.

50

Alternative definition

v(G) = e − n + 2

G is a program's flow graph

e is the number of arcs in the flow graph

n is the number of nodes in the flow graph

Alternative way

There is another simple way to determine the cyclomatic number. This is done

by counting the number of closed loops in the flow graph, and incrementing

that number by one.

i.e.

M = Number of closed loops + 1

Where

M = Cyclomatic number.

Implications for Software Testing

 M is a lower bound for the number of possible paths through the control

flow graph.

 M is an upper bound for the number of test cases that are necessary to

achieve complete branch coverage.

For example, consider a program that consists of two sequential if-then-else

statements.

if (c1) { f1(); }

51

else

 { f2(); }

if (c2) { f3(); }

else

 { f4();}

• To achieve complete branch coverage, two test cases are sufficient

here.

• For complete path coverage, four test cases are necessary.

• The cyclomatic number M is three, falling in the range between these

two values, as it does for any program.

Key Concept

The cyclomatic complexity of a section of source code is the count of the

number of linearly independent paths through the source code. For instance,

if the source code contained no decision points such as IF statements or FOR

loops, the complexity would be 1, since there is only a single path through the

code. If the code had a single IF statement there would be two paths through

the code, one path where the IF statement is evaluated as TRUE and one

path where the IF statement is evaluated as FALSE.

Cyclomatic complexity is normally calculated by creating a graph of the

source code with each line of source code being a node on the graph and

arrows between the nodes showing the execution pathways. As some

52

programming languages can be quite terse and compact, a source code

statement when developing the graph may actually create several nodes in

the graph (for instance when using the C and C++ language "?" conditional

operator (also known as the "ternary operator") within a function call

interface).

In general, in order to fully test a module all execution paths through the

module should be exercised. This implies a module with a high complexity

number requires more testing effort than a module with a lower value since

the higher complexity number indicates more pathways through the code.

This also implies that a module with higher complexity is more difficult for a

programmer to understand since the programmer must understand the

different pathways and the results of those pathways.

One would also expect that a module with higher complexity would tend to

have lower cohesion (less than functional cohesion) than a module with lower

complexity. The possible correlation between higher complexity measure with

a lower level of cohesion is predicated on a module with more decision points

generally implementing more than a single well defined function. However

there are certain types of modules that one would expect to have a high

complexity number, such as user interface (UI) modules containing source

code for data validation and error recovery.

53

The results of multiple experiments (G.A. Miller) suggest that modules

approach zero defects when McCabe's Cyclomatic Complexity is within 7 ± 2.

A study of PASCAL and FORTRAN programs found that a Cyclomatic

Complexity between 10 and 15 minimized the number of module changes.

Advantages of McCabe Cyclomatic Complexity

 It can be used as a ease of maintenance metric.

 Used as a quality metric, gives relative complexity of various designs.

 It can be computed early in life cycle than of Halstead's metrics.

 Measures the minimum effort and best areas of concentration for testing.

 It guides the testing process by limiting the program logic during

development.

 Is easy to apply.

Drawbacks of McCabe Cyclomatic Complexity

 The cyclomatic complexity is a measure of the program's control

complexity and not the data complexity

 the same weight is placed on nested and non-nested loops. However,

deeply nested conditional structures are harder to understand than non-

nested structures.

 It may give a misleading figure with regard to a lot of simple comparisons

and decision structures. Whereas the fan-in fan-out method would

probably be more applicable as it can track the data flow

54

2.3.9 Fan-In Fan-Out Complexity - Henry and Kafura's

Henry and Kafura (1981) identified a form of the fan in - fan out complexity,

which maintains a count of the number of data flows from a component plus

the number of global data structures that the program updates. The data flow

count includes updated procedure parameters and procedures called from

within a module.

Complexity = Length x (Fan-in x Fan-out)2

Length is any measure of length such as lines of code or alternatively

McCabe's cyclomatic complexity is sometimes substituted.

Henry and Kafura validated their metric using the UNIX system and

suggested that the measured complexity of a component allowed potentially

faulty system components to be identified. They found that high values of this

metric were often measured in components where there had historically been

a high number of problems.

Advantages of Henry's and Kafura's Metic

 it takes into account data-driven programs

 it can be derived prior to coding, during the design stage

Drawbacks of Henry's and Kafura's Metic

 it can give complexity values of zero if a procedure has no external

interactions

55

2.3.10 Source lines of code (SLOC)

The basis of the Measure SLOC is that program length can be used as a

predictor of program characteristics such as effort and ease of maintenance.

The LOC measure is used to measure size of the software. Source lines of

code (SLOC) is a software metric used to measure the amount of code in a

software program. SLOC is typically used to estimate the amount of effort that

will be required to develop a program, as well as to estimate productivity or

effort once the software is produced.

There are versions of LOC:

DSI (Delivered Source Instructions)

It is used in COCOMO'81 as KDSI (Means thousands of Delivered Source

Instructions). DSI is defined as follows:

 Only Source lines that are DELIVERED as part of the product are included

-- test drivers and other support software is excluded

 SOURCE lines are created by the project staff -- code created by

applications generators is excluded

 One INSTRUCTION is one line of code or card image

 Declarations are counted as instructions

 Comments are not counted as instructions

56

Advantages of LOC

 Simple to measure

Drawbacks of LOC

 It is defined on code. For example it cannot measure the size of

specification.

 It characterize only one specific view of size, namely length, it takes no

account of functionality or complexity

 Bad software design may cause excessive line of code

 It is language dependent

 Users cannot easily understand it

Because of the critics above there have been extensive efforts to characterize

other products size attributes, notably complexity and functionality.

Measuring SLOC

Many useful comparisons involve only the order of magnitude of lines of code

in a project. Software projects can vary between 100 to 100,000,000 lines of

code. Using lines of code to compare a 10,000 line project to a 100,000 line

project is far more useful than when comparing a 20,000 line project with a

21,000 line project. While it is debatable exactly how to measure lines of

code, wide discrepancies in 2 different measurements should not vary by an

order of magnitude.

57

There are two major types of SLOC measures: physical SLOC and logical

SLOC. Specific definitions of these two measures vary, but the most common

definition of physical SLOC is a count of lines in the text of the program's

source code including comment lines. Blanks lines are also included unless

the lines of code in a section consist of more than 25% blank lines. In this

case blank lines in excess of 25% are not counted toward lines of code.

Logical SLOC measures attempt to measure the number of "statements", but

their specific definitions are tied to specific computer languages (one simple

logical SLOC measure for C-like languages is the number of statement-

terminating semicolons). It is much easier to create tools that measure

physical SLOC, and physical SLOC definitions are easier to explain. However,

physical SLOC measures are sensitive to logically irrelevant formatting and

style conventions, while logical SLOC is less sensitive to formatting and style

conventions. Unfortunately, SLOC measures are often stated without giving

their definition, and logical SLOC can often be significantly different from

physical SLOC.

Consider this snippet of C code as an example of the ambiguity encountered

when determining SLOC:

for (i=0; i<100; ++i) printf("hello"); /* How many lines of code is this? */

In this example we have:

 1 Physical Lines of Code LOC

58

 2 Logical Line of Code lLOC (for statement and printf statement)

 1 Comment Line

Depending on the programmer and/or coding standards, the above "line of

code" could be, and usually is, written on many separate lines:

for (i=0; i<100; ++i)

{

 printf("hello");

} /* Now how many lines of code is this? */

In this example we have:

 4 Physical Lines of Code LOC (Is placing braces work to be estimated?)

 2 Logical Line of Code lLOC (What about all the work writing non-

statement lines?)

 1 Comment Line (Tools must account for all code and comments

regardless of comment placement.)

Even the "logical" and "physical" SLOC values can have a large number of

varying definitions. Robert E. Park (while at the Software Engineering

Institute) et al. developed a framework for defining SLOC values, to enable

people to carefully explain and define the SLOC measure used in a project.

For example, most software systems reuse code, and determining which (if

any) reused code to include is important when reporting a measure.

59

Origins of SLOC

At the time that people began using SLOC as a metric, the most commonly

used languages, such as FORTRAN and assembler, were line-oriented

languages. These languages were developed at the time when punch cards

were the main form of data entry for programming. One punch card usually

represented one line of code. It was one discrete object that was easily

counted. It was the visible output of the programmer so it made sense to

managers to count lines of code as a measurement of a programmer's

productivity. Today, the most commonly used computer languages allow a lot

more leeway for formatting. One line of text no longer necessarily

corresponds to one line of code.

Usage of SLOC measures

SLOC measures are somewhat controversial, particularly in the way that they

are sometimes misused. Experiments have repeatedly confirmed that effort is

highly correlated with SLOC, that is, programs with larger SLOC values take

more time to develop. Thus, SLOC can be very effective in estimating effort.

However, functionality is less well correlated with SLOC: skilled developers

may be able to develop the same functionality with far less code, so one

program with less SLOC may exhibit more functionality than another similar

program. In particular, SLOC is a poor productivity measure of individuals,

since a developer can develop only a few lines and yet be far more productive

60

in terms of functionality than a developer who ends up creating more lines

(and generally spending more effort). Good developers may merge multiple

code modules into a single module, improving the system yet appearing to

have negative productivity because they remove code. Also, especially skilled

developers tend to be assigned the most difficult tasks, and thus may

sometimes appear less "productive" than other developers on a task by this

measure.

SLOC is particularly ineffective at comparing programs written in different

languages unless adjustment factors are applied to normalize languages.

Various computer languages balance brevity and clarity in different ways; as

an extreme example, most assembly languages would require hundreds of

lines of code to perform the same task as a few characters in APL. The

following example shows a comparison of a "Hello World" program written in

C, and the same program written in COBOL - a language known for being

particularly verbose.

Program in C

#include <stdio.h>

int main(void) {

 printf("Hello World");

 return 0;

}

61

Lines of code: 5 (excluding white space)

Program in COBOL

000100 IDENTIFICATION DIVISION.

000200 PROGRAM-ID. HELLOWORLD.

000300

000400*

000500 ENVIRONMENT DIVISION.

000600 CONFIGURATION SECTION.

000700 SOURCE-COMPUTER. RM-COBOL.

000800 OBJECT-COMPUTER. RM-COBOL.

000900

001000 DATA DIVISION.

001100 FILE SECTION.

001200

100000 PROCEDURE DIVISION.

100100

100200 MAIN-LOGIC SECTION.

100300 BEGIN.

100400 DISPLAY " " LINE 1 POSITION 1 ERASE EOS.

100500 DISPLAY "Hello world!" LINE 15 POSITION 10.

62

100600 STOP RUN.

100700 MAIN-LOGIC-EXIT.

100800 EXIT.

Lines of code: 17 (excluding white space)

Another increasingly common problem in comparing SLOC metrics is the

difference between auto-generated and hand-written code. Modern software

tools often have the capability to auto-generate enormous amounts of code

with a few clicks of a mouse. For instance, GUI builders automatically

generate all the source code for a GUI object simply by dragging an icon onto

a workspace. The work involved in creating this code cannot reasonably be

compared to the work necessary to write a device driver, for instance.

There are several cost, schedule, and effort estimation models which use

SLOC as an input parameter, including the widely-used Constructive Cost

Model (COCOMO) series of models by Barry Boehm et al and Galorath's

SEER-SEM. While these models have shown good predictive power, they are

only as good as the estimates (particularly the SLOC estimates) fed to them.

Many have advocated the use of function points instead of SLOC as a

measure of functionality, but since function points are highly correlated to

SLOC (and cannot be automatically measured) this is not a universally held

view.

63

According to Andrew Tanenbaum, the SLOC values for various operating

systems in Microsoft's Windows NT product line are as follows:

Year Operating System SLOC (Million)

1993 Windows NT 3.1 6

1994 Windows NT 3.5 10

1996 Windows NT 4.0 16

2000 Windows 2000 29

2002 Windows XP 40

2005 Windows Vista Beta 2 50

David A. Wheeler studied the Red Hat distribution of the GNU/Linux operating

system, and reported that Red Hat Linux version 7.1 (released April 2001)

contained over 30 million physical SLOC. He also determined that, had it

been developed by conventional proprietary means, it would have required

about 8,000 person-years of development effort and would have cost over $1

billion (in year 2000 U.S. dollars).

A similar study was later made of Debian GNU/Linux version 2.2 (also known

as "Potato"); this version of GNU/Linux was originally released in August

2000. This study found that Debian GNU/Linux 2.2 included over 55 million

64

SLOC, and if developed in a conventional proprietary way would have

required 14,005 person-years and cost $1.9 billion USD to develop. Later runs

of the tools used report that the following release of Debian had 104 million

SLOC, and as of year 2005, the newest release is going to include over 213

million SLOC.

Operating System SLOC (Million)

Red Hat Linux 6.2 17

Red Hat Linux 7.1 30

Debian 2.2 56

Debian 3.0 104

Debian 3.1 213

Sun Solaris 7.5

Mac OS X 10.4 86

Linux kernel 2.6.0 6.0

Graphics Program SLOC (Million)

Blender 2.42 ~1

Gimp-2.3.8 0.65

65

SLOC and relation to security faults

"The central enemy of reliability is complexity" Geer et al.

"Measuring programming progress by lines of code is like measuring aircraft

building progress by weight." ~ Bill Gates.

A number of experts have claimed a relationship between the number of lines

of code in a program and the number of bugs that it contains. This relationship

is not simple, since the number of errors per line of code varies greatly

according to the language used, the type of quality assurance processes, and

level of testing, but it does appear to exist. More importantly, the number of

bugs in a program has been directly related to the number of security faults

that are likely to be found in the program.

This has had a number of important implications for system security and these

can be seen reflected in operating system design. Firstly, more complex

systems are likely to be more insecure simply due to the greater number of

lines of code needed to develop them. For this reason, security focused

systems such as OpenBSD grow much more slowly than other systems such

as Windows and Linux. A second idea, taken up in both OpenBSD and many

Linux variants, is that separating code into different sections which run with

different security environments (with or without special privileges, for

example) ensures that the most security critical segments are small and

carefully audited.

66

Advantages

 Scope for Automation of Counting: Since Line of Code is a physical entity;

manual counting effort can be easily eliminated by automating the

counting process. Small utilities may be developed for counting the LOC in

a program. However, a code counting utility developed for a specific

language cannot be used for other languages due to the syntactical and

structural differences among languages.

 An Intuitive Metric: Line of Code serves as an intuitive metric for

measuring the size of software due to the fact that it can be seen and the

effect of it can be visualized. Function Point is more of an objective metric

which cannot be imagined as being a physical entity, it exists only in the

logical space. This way, LOC comes in handy to express the size of

software among programmers with low levels of experience.

Disadvantages

 Lack of Accountability: Lines of code measure suffers from some

fundamental problems. Some think it isn't useful to measure the

productivity of a project using only results from the coding phase, which

usually accounts for only 30% to 35% of the overall effort.

 Lack of Cohesion with Functionality: Though experiments have repeatedly

confirmed that effort is highly correlated with LOC, functionality is less well

correlated with LOC. That is, skilled developers may be able to develop

67

the same functionality with far less code, so one program with less LOC

may exhibit more functionality than another similar program. In particular,

LOC is a poor productivity measure of individuals, since a developer can

develop only a few lines and still be more productive than a developer

creating more lines of code.

 Adverse Impact on Estimation: As a consequence of the fact presented

under point (a), estimates done based on lines of code can adversely go

wrong, in all possibility.

 Developer’s Experience: Implementation of a specific logic differs based

on the level of experience of the developer. Hence, number of lines of

code differs from person to person. An experienced developer may

implement certain functionality in fewer lines of code than another

developer of relatively less experience does, though they use the same

language.

 Difference in Languages: Consider two applications that provide the same

functionality (screens, reports, databases). One of the applications is

written in C++ and the other application written a language like COBOL.

The number of function points would be exactly the same, but aspects of

the application would be different. The lines of code needed to develop the

application would certainly not be the same. As a consequence, the

amount of effort required to develop the application would be different

68

(hours per function point). Unlike Lines of Code, the number of Function

Points will remain constant.

 Advent of GUI Tools: With the advent of GUI-based languages/tools such

as Visual Basic, much of development work is done by drag-and-drops

and a few mouse clicks, where the programmer virtually writes no piece of

code, most of the time. It is not possible to account for the code that is

automatically generated in this case. This difference invites huge

variations in productivity and other metrics with respect to different

languages, making the Lines of Code more and more irrelevant in the

context of GUI-based languages/tools, which are prominent in the present

software development arena.

 Problems with Multiple Languages: In today’s software scenario, software

is often developed in more than one language. Very often, a number of

languages are employed depending on the complexity and requirements.

Tracking and reporting of productivity and defect rates poses a serious

problem in this case since defects cannot be attributed to a particular

language subsequent to integration of the system. Function Point stands

out to be the best measure of size in this case.

 Lack of Counting Standards: There is no standard definition of what a line

of code is. Do comments count? Are data declarations included? What

happens if a statement extends over several lines? – These are the

69

questions that often arise. Though organizations like SEI and IEEE have

published some guidelines in an attempt to standardize counting, it is

difficult to put these into practice especially in the face of newer and newer

languages being introduced every year.

2.3.11 Function Points (FP)

Function points is basic data from which productivity metrics could be

computed.

FP data is used in two ways:

 as an estimation variable that is used to "size" each element of the

software,

 as baseline metrics collected from past projects and used in conjunction

with estimation variables to develop cost and effort projections.

The approach is to identify and count a number of unique function types:

 External inputs (e.g. file names)

 External outputs (e.g. reports, messages)

 Queries (interactive inputs needing a response)

 External files or interfaces (files shared with other software systems)

 Internal files (invisible outside the system)

Each of these is then individually assessed for complexity and given a

weighting value, which varies from 3 (for simple external inputs) to 15 (for

complex internal files).

70

Unadjusted function points (UFP) is calculated as follows:

The sum of all the occurrences is computed by multiplying each function

count with a weighting and then adding up all the values. The weights are

based on the complexity of the feature being counted. Albrecht’s original

method classified the weightings as:

Function Type Low Average High

External Input x3 x4 x6

External Input x4 x5 x7

Logical Internal File x7 x10 x15

External Interface File x5 x7 x10

External Inquiry x3 x4 x6

Low, average and high decision can be determined with this table:

 1-5 Data

element types

6-19 Data

element types

20+ Data

element types

0-1 File types referenced Low Low Average

2-3 File types referenced Low Average High

4+ File types referenced Average High High

71

In order to find adjusted FP, UFP is multiplied by technical complexity factor

(TCF) which can be calculated by the formula:

TCF = 0.65 + (sum of factors) / 100

There are 14 technical complexity factors. Each complexity factor is rated on

the basis of its degree of influence, from no influence to very influential:

1. Data communications

2. Performance

3. Heavily used configuration

4. Transaction rate

5. Online data entry

6. End user efficiency

7. Online update

8. Complex processing

9. Reusability

10. Installation ease

11. Operations ease

12. Multiple sites

13. Facilitate change

14. Distributed functions

Then FP = UFP x TCF

72

Function points are recently used also for real time systems.

Advantages of FP

 It is not restricted to code

 Language independent

 The necessary data is available early in a project. We need only a detailed

specification.

 More accurate than estimated LOC

Drawbacks of FP

 Subjective counting

 Hard to automate and difficult to compute

 Ignores quality of output

 Oriented to traditional data processing applications

 Effort prediction using the unadjusted function count is often no worse than

when the TCF is added.

Organizations such as the International Function Point Users Group IFPUG

have been active in identifying rules for function point counting to ensure that

counts are comparable across different organizations.

At IFPUG's Message Board Home Page you can find solutions about practical

use of FP.

If sufficient data exists from previous programs, function points can

reasonably be converted to an LOC estimate.

73

2.4 Summary

Software metrics have been partitioned into process metric, project metric and

product metric. These metrics help the managers in improving the software

processes; assist in the planning, tracking and control of a software project;

and assess the quality of the product. There are a number of software metrics

such as Source lines of code, Cyclomatic complexity, Function point analysis,

Code coverage, Number of classes and interfaces, Cohesion, Coupling etc.

Line of Code (LOC) is a measure of size. It is very easy to compute but have

limited applicability. Cyclomatic complexity is a measure of the complexity of

the program, based on the control constructs available in the program.

Halstead measure computes the complexity of the software on the basis of

operators and operands present in the program. Function Point (FP) is also a

measure of size that can be used in the early stage of the software

development. It reflects the size on the basis of input, outputs, external

interfaces, queries, and number of files required. Metrics are the tools that

help in better monitoring and control.

2.5 Key words

Cyclomatic complexity: The cyclomatic complexity of a section of source

code is the count of the number of linearly independent paths through the

source code.

74

Function Point: Function points is basic data from which productivity metrics

could be computed, based on external inputs/outputs, files, interfaces, and

filrs.

Halstead software science: The Software Science developed by M. H.

Halstead principally that attempts to estimate the programming effort.

Software metric: A software metric is a measure of some property of a piece

of software or its specifications.

Lines of Code (LOC): It is a software metric that measures the size of

software in terms of lines in the program.

2.6 Self-Assessment Questions

1. What do you understand by complexity of software? What is cyclomatic

complexity? Write a program for bubble sort and compute its cyclomatic

complexity.

2. What are the different approaches to compute the cyclomatic

complexity? Explain using suitable examples.

3. Define metric. What are the desirable characteristics of a metric?

4. What do you understand by SLOC? What are its advantages and

disadvantages? Explain.

5. What is Halstead software science? What are the different measures

available in it? Explain.

75

2.7 References/Suggested readings

5. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

6. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

7. Software Engineering by Sommerville, Pearson Education.

8. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

76

Lesson number III Writer: Dr. Rakesh Kumar

Software Life Cycle Models Vetter: Dr. Naresh Mann

3.0 Objectives
The objective of this lesson is to introduce the students to the concepts of

software life cycle models. After studying this lesson, they will:

- Understand a number of process models like waterfall model, spiral model,

prototyping and iterative enhancement.

- Come to know the merits/demerits, and applicability of different models.

3.1 Introduction
A software process is a set of activities and associated results which lead to

the production of a software product. There are many different software

processes; there are fundamental activities which are common to all software

processes. These are:

 Software specification: The functionality of the software and constraints

on its operations are defined.

 Software design and implementation: The software to meet the

specification is produced.

 Software validation: The software must be validated to ensure that it

does what the customer wants.

 Software evolution: The software must evolve to meet changing

customer needs.

77

Software process model is an abstract representation of a software process.

A number of software models are discussed in this lesson.

3.2 Presentation of contents

 3.2.1 Software Project Planning

 3.2.2 Waterfall model

 3.2.2.1 History of the waterfall model

 3.2.2.2 Usage of the waterfall model

 3.2.2.3 Arguments for the waterfall model

 3.2.2.4 Criticism of the waterfall model

 3.2.2.5 Modified waterfall models

 3.2.2.6 Royce’s final model

 3.2.2.7 The “sashimi” model

 3.2.3 Software Prototyping and Requirements Engineering

 3.2.3.1 Prototyping Software Systems

 3.2.3.2 Conventional Model and Related Variations

 3.2.3.3 Evolutionary Prototyping

 3.2.3.4 Prototyping Pitfalls

 3.2.3.5 Throwaway prototyping

 3.2.3.6 Prototyping Opportunities

 3.2.4 Iterative Enhancement

 3.2.5 The Spiral Model

3.2.1 Software Project Planning
Lack of planning is the primary cause of schedule slippage, cost overrun, poor

quality, and high maintenance cost. So a careful planning is required to avoid

such problems. The steps required to plan a software project are given below:

78

Planning a software project
Defining the problem

1. Develop a statement of the problem including the description of present

situation, problem constraints, and a statement of the goals to be

achieved.

2. Identify the functions to be provided, constraints,

harware/software/people subsystem.

3. Determine system level goals and the requirements for development

process and the work products.

4. Decide the acceptance criteria for system.

Develop a solution strategy

1. Outline several solution strategies.

2. Conduct a feasibility study for each strategy.

3. Recommend a solution strategy.

4. Develop a list of priorities for product characteristics.

Planning the development process

1. Define a life cycle model and organization structure.

2. Plan the configuration management, quality assurance, and validation

activities.

3. Decide the phase dependent tools, techniques and notations.

4. Establish cost estimate.

5. Estable development schedule.

6. Establish staffing estimate.

7. Develop estimate of the computing resources required to operate and

maintain the system.

8. Prepare a glossary of terms.

9. Identify source of information.

79

As stated above, planning the development process includes a very important

consideration i.e. defining a life cycle model. The software life cycle includes

all the activities required to define, develop, test, deliver, operate, and

maintain a system. A number of models are discussed here.

3.2.2 Water fall model
The waterfall model is a sequential software development model in which

development is seen as flowing steadily downwards (like a waterfall) through

the phases of requirements analysis, design, implementation, testing

(validation), integration, and maintenance. The origin of the term "waterfall" is

often cited to be an article published in 1970 by W. W. Royce; ironically,

Royce himself advocated an iterative approach to software development and

did not even use the term "waterfall". Royce originally described what is now

known as the waterfall model as an example of a method that he argued "is

risky and invites failure".

3.2.2.1 History of the waterfall model
In 1970 Royce proposed what is now popularly referred to as the waterfall

model as an initial concept, a model which he argued was flawed. His paper

then explored how the initial model could be developed into an iterative

model, with feedback from each phase influencing previous phases, similar to

many methods used widely and highly regarded by many today. Ironically, it is

only the initial model that received notice; his own criticism of this initial model

has been largely ignored. The "waterfall model" quickly came to refer not to

80

Royce's final, iterative design, but rather to his purely sequentially ordered

model.

Despite Royce's intentions for the waterfall model to be modified into an

iterative model, use of the "waterfall model" as a purely sequential process is

still popular, and, for some, the phrase "waterfall model" has since come to

refer to any approach to software creation which is seen as inflexible and non-

iterative.

3.2.2.2 Usage of the waterfall model

Figure 3.1 Water Fall Model

The unmodified "waterfall model". Progress flows from the top to the bottom,

like a waterfall. In Royce's original waterfall model, the following phases are

followed perfectly in order:

1. Requirements specification

2. Design

MAINTENANCE

VERIFICATION

IMPLEMENTATION

DESIGN

REQUIREMENTS

81

3. Construction (implementation or coding)

4. Integration

5. Testing and debugging (verification)

6. Installation

7. Maintenance

To follow the waterfall model, one proceeds from one phase to the next in a

purely sequential manner. For example, one first completes "requirements

specification" — they set in stone the requirements of the software. When and

only when the requirements are fully completed, one proceeds to design. The

software in question is designed and a "blueprint" is drawn for implementers

(coders) to follow — this design should be a plan for implementing the

requirements given. When and only when the design is fully completed, an

implementation of that design is made by coders. Towards the later stages of

this implementation phase, disparate software components produced by

different teams are integrated. After the implementation and integration

phases are complete, the software product is tested and debugged; any faults

introduced in earlier phases are removed here. Then the software product is

installed, and later maintained to introduce new functionality and remove

bugs.

Thus the waterfall model maintains that one should move to a phase only

when its preceding phase is completed and perfected. Phases of

82

development in the waterfall model are thus discrete, and there is no jumping

back and forth or overlap between them.

However, there are various modified waterfall models that may include slight

or major variations upon this process.

3.2.2.3 Arguments for the water fall model
Time spent early on in software production can lead to greater economy later

on in the software lifecycle; that is, it has been shown many times that a bug

found in the early stages of the production lifecycle (such as requirements

specification or design) is more economical (cheaper in terms of money, effort

and time) to fix than the same bug found later on in the process. (it is said that

"a requirements defect that is left undetected until construction or

maintenance will cost 50 to 200 times as much to fix as it would have cost to

fix at requirements time.") This should be obvious to some people; if a

program design is impossible to implement, it is easier to fix the design at the

design stage than to realize months down the track when program

components are being integrated that all the work done so far has to be

scrapped because of a broken design.

This is the central idea behind Big Design Up Front (BDUF) and the waterfall

model - time spent early on making sure that requirements and design are

absolutely correct is very useful in economic terms (it will save you much time

and effort later). Thus, the thinking of those who follow the waterfall process

83

goes, one should make sure that each phase is 100% complete and

absolutely correct before proceeding to the next phase of program creation.

Program requirements should be set in stone before design is started

(otherwise work put into a design based on "incorrect" requirements is

wasted); the programs design should be perfect before people begin work on

implementing the design (otherwise they are implementing the "wrong" design

and their work is wasted), etc.

A further argument for the waterfall model is that it places emphasis on

documentation (such as requirements documents and design documents) as

well as source code. More "agile" methodologies can de-emphasize

documentation in favor of producing working code - documentation however

can be useful as a "partial deliverable" should a project not run far enough to

produce any substantial amounts of source code (allowing the project to be

resumed at a later date). An argument against agile development methods,

and thus partly in favour of the waterfall model, is that in agile methods project

knowledge is stored mentally by team members. Should team members

leave, this knowledge is lost, and substantial loss of project knowledge may

be difficult for a project to recover from. Should a fully working design

document be present (as is the intent of Big Design Up Front and the waterfall

model) new team members or even entirely new teams should theoretically be

able to bring themselves "up to speed" by reading the documents themselves.

84

With that said, agile methods do attempt to compensate for this. For example,

extreme programming (XP) advises that project team members should be

"rotated" through sections of work in order to familiarize all members with all

sections of the project (allowing individual members to leave without carrying

important knowledge with them).

As well as the above, some prefer the waterfall model for its simple and

arguably more disciplined approach. Rather than what the waterfall adherent

sees as "chaos" the waterfall model provides a structured approach; the

model itself progresses linearly through discrete, easily understandable and

explainable "phases" and is thus easy to understand; it also provides easily

markable "milestones" in the development process. It is argued that the

waterfall model and Big Design Up Front in general can be suited to software

projects which are stable (especially those projects with unchanging

requirements, such as with "shrink wrap" software) and where it is possible

and likely that designers will be able to fully predict problem areas of the

system and produce a correct design before implementation is started. The

waterfall model also requires that implementers follow the well made,

complete design accurately, ensuring that the integration of the system

proceeds smoothly.

The waterfall model is widely used, including by such large software

development houses as those employed by the US Department of Defense

85

and NASA and upon many large government projects. Those who use such

methods do not always formally distinguish between the "pure" waterfall

model and the various modified waterfall models, so it can be difficult to

discern exactly which models are being used to what extent.

Steve McConnell sees the two big advantages of the pure waterfall model as

producing a "highly reliable system" and one with a "large growth envelope",

but rates it as poor on all other fronts. On the other hand, he views any of

several modified waterfall models (described below) as preserving these

advantages while also rating as "fair to excellent" on "work with poorly

understood requirements" or "poorly understood architecture" and "provide

management with progress visibility", and rating as "fair" on "manage risks",

being able to "be constrained to a predefined schedule", "allow for midcourse

corrections", and "provide customer with progress visibility". The only criterion

on which he rates a modified waterfall as poor is that it requires sophistication

from management and developers.

3.2.2.4 Criticism of the waterfall model
The waterfall model however is argued by many to be a bad idea in practice,

mainly because of their belief that it is impossible to get one phase of a

software product's lifecycle "perfected" before moving on to the next phases

and learning from them (or at least, the belief that this is impossible for any

non-trivial program). For example clients may not be aware of exactly what

86

requirements they want before they see a working prototype and can

comment upon it - they may change their requirements constantly, and

program designers and implementers may have little control over this. If

clients change their requirements after a design is finished, that design must

be modified to accommodate the new requirements, invalidating quite a good

deal of effort if overly large amounts of time have been invested into "Big

Design Up Front". (Thus methods opposed to the naive waterfall model, such

as those used in Agile software development advocate less reliance on a

fixed, static requirements document or design document). Designers may not

be aware of future implementation difficulties when writing a design for an

unimplemented software product. That is, it may become clear in the

implementation phase that a particular area of program functionality is

extraordinarily difficult to implement. If this is the case, it is better to revise the

design than to persist in using a design that was made based on faulty

predictions and which does not account for the newly discovered problem

areas.

Steve McConnell in Code Complete (a book which criticizes the widespread

use of the waterfall model) refers to design as a "wicked problem" - a problem

whose requirements and limitations cannot be entirely known before

completion. The implication is that it is impossible to get one phase of

87

software development "perfected" before time is spent in "reconnaissance"

working out exactly where and what the big problems are.

To quote from David Parnas' "a rational design process and how to fake it ":

“Many of the [systems] details only become known to us as we progress in the

[systems] implementation. Some of the things that we learn invalidate our

design and we must backtrack.”

The idea behind the waterfall model may be "measure twice; cut once", and

those opposed to the waterfall model argue that this idea tends to fall apart

when the problem being measured is constantly changing due to requirement

modifications and new realizations about the problem itself. The idea behind

those who object to the waterfall model may be "time spent in reconnaissance

is seldom wasted".

In summary, the criticisms of waterfall model are as follows:

 Changing Software Requirements: Software techniques and tools exist

for identifying ambiguous and missing software requirements. These

problems are important factors in the development of any software system.

However, the problems are further complicated with changing software

requirements. The development length of large-scale software systems is

such that changing requirements are a significant problem that leads to

increased development costs. Software requirements formulation and

analysis is even more difficult in complex application domains

88

Management Implications

The problems that changing requirements introduce into the software life

cycle are reflected in schedule slippages and cost overruns. One

argument is that more time spent upstream in the software life cycle

results in less turmoil downstream in the life cycle. The more time

argument is typically false when the software requirements and

specification technique is a natural language.

Product Implications

The product implications are quality-based aspects of the system during

software development and maintenance. The requirements problems

listed above have a ripple effect throughout the development of a software

system. Even with this advanced technology, changing requirements are

to be expected, but there would be the environment for control and

discipline with the changes.

 Unless those who specify requirements and those who design the

software system in question are highly competent, it is difficult to know

exactly what is needed in each phase of the software process before some

time is spent in the phase "following" it. That is, feedback from following

phases is needed to complete "preceding" phases satisfactorily. For

example, the design phase may need feedback from the implementation

phase to identify problem design areas. The counter-argument for the

89

waterfall model is that experienced designers may have worked on similar

systems before, and so may be able to accurately predict problem areas

without time spent prototyping and implementing.

 Constant testing from the design, implementation and verification phases

is required to validate the phases preceding them. Constant "prototype

design" work is needed to ensure that requirements are non-contradictory

and possible to fulfill; constant implementation is needed to find problem

areas and inform the design process; constant integration and verification

of the implemented code is necessary to ensure that implementation

remains on track. The counter-argument for the waterfall model here is

that constant implementation and testing to validate the design and

requirements is only needed if the introduction of bugs is likely to be a

problem. Users of the waterfall model may argue that if designers follow a

disciplined process and do not make mistakes that there is no need for

constant work in subsequent phases to validate the preceding phases.

 Frequent incremental builds (following the "release early, release often"

philosophy) are often needed to build confidence for a software production

team and their client.

 It is difficult to estimate time and cost for each phase of the development

process without doing some "recon" work in that phase, unless those

90

estimating time and cost are highly experienced with the type of software

product in question.

 The waterfall model brings no formal means of exercising management

control over a project and planning control and risk management are not

covered within the model itself.

 Only a certain number of team members will be qualified for each phase;

thus to have "code monkeys" who are only useful for implementation work

do nothing while designers "perfect" the design is a waste of resources. A

counter-argument to this is that "multiskilled" software engineers should be

hired over "specialized" staff.

3.2.2.5 Modified waterfall models
In response to the perceived problems with the "pure" waterfall model, many

modified waterfall models have been introduced. These models may address

some or all of the criticisms of the "pure" waterfall model. While all software

development models will bear at least some similarity to the waterfall model,

as all software development models will incorporate at least some phases

similar to those used within the waterfall model, this section will deal with

those closest to the waterfall model. For models which apply further

differences to the waterfall model, or for radically different models seek

general information on the software development process.

91

3.2.2.6 Royce’s final model
Royce's final model, his intended improvement upon his initial "waterfall

model", illustrated that feedback could (should, and often would) lead from

code testing to design (as testing of code uncovered flaws in the design) and

from design back to requirements specification (as design problems may

necessitate the removal of conflicting or otherwise unsatisfiable /

undesignable requirements). In the same paper Royce also advocated large

quantities of documentation, doing the job "twice if possible", and involving the

customer as much as possible—now the basis of participatory design and of

User Centered Design, a central tenet of Extreme Programming.

3.2.2.7 The Sashimi model
The sashimi model (so called because it features overlapping phases, like the

overlapping fish of Japanese sashimi) was originated by Peter DeGrace. It is

sometimes simply referred to as the "waterfall model with overlapping phases"

or "the waterfall model with feedback". Since phases in the sashimi model

overlap, information of problem spots can be acted upon during phases of the

waterfall model that would typically "precede" others in the pure waterfall

model. For example, since the design and implementation phases will overlap

in the sashimi model, implementation problems may be discovered during the

"design and implementation" phase of the development process. This helps

alleviate many of the problems associated with the Big Design Up Front

philosophy of the waterfall model.

92

3.2.3 Software Prototyping and Requirements Engineering
The conventional waterfall software life cycle model (or software process) is

used to characterize the phased approach for software development and

maintenance. Software life cycle phase names differ from organization to

organization. The software process includes the following phases:

 requirements formulation and analysis,

 specification,

 design,

 coding,

 testing, and

 Maintenance.

Alternative software life cycle models have been proposed as a means to

address the problems that are associated with the waterfall model. One

alternative software life cycle model uses prototyping as a means for

providing early feedback to the end user and developer.

The waterfall model allows for a changing set of means for representing an

evolving software system. These documents then provide a basis for

introducing errors during the software life cycle. The user often begins to

receive information concerning the actual execution of the system after the

system is developed. During the development of large-scale software

93

systems, the end user, developer, and manager can become frustrated with

ambiguous, missing, or changing software requirements.

3.2.3.1 Prototyping Software Systems
Software customers find it very difficult to express their requirements. Careful

requirement analysis with systematic review help to reduce the uncertainty

about what the system should do. However there is no substitute for trying out

a requirement before agreeing to it. This is possible if the prototype is

available. A software prototype supports two requirement engineering process

activities:

 Requirement elicitation: System prototype helps the user in identifying his

requirements better. He can experiment with it to see how the system

supports their work. In this process they can get new ideas and find

strength and weakness in the software.

 Requirement validation: The prototype may reveal errors and omissions in

the requirements which have been proposed.

A significant risk in software development is requirement errors and omissions

and prototyping help in risk analysis and reduction. So prototyping is part of

requirement engineering process. But now prototyping has been introduced

throughout the conventional, waterfall software life cycle model. Now a day

many systems are developed using an evolutionary approach where an initial

version is created quickly and modified to produce a final system.

94

Two forms of life cycle models, Throwaway prototyping and evolutionary

prototyping, have emerged around prototyping technology.

3.2.3.2 Conventional Model and related Variations
The conventional life cycle model can allow for prototyping within any of the

phases. Unfortunately, this approach can be difficult to control when, for

example, coding of a user interface takes place during requirements

formulation and analysis.

3.2.3.3 Evolutionary Prototyping
In evolutionary prototyping the focus is on achieving functionality for

demonstrating a portion of the system to the end user for feedback and

system growth. The prototype emerges as the actual system moves

downstream in the life cycle. With each iteration in development, functionality

is added and then translated to an efficient implementation. Also of interest is

functional programming and relational programming as a means for

accomplishing evolutionary prototyping.

3.2.3.4 Prototyping Pitfalls
Prototyping has not been as successful as anticipated in some organizations

for a variety of reasons. Training, efficiency, applicability, and behavior can

each have a negative impact on using software prototyping techniques.

Learning Curve

A common problem with adopting prototyping technology is high expectations

for productivity with insufficient effort behind the learning curve. In addition to

95

training for the use of a prototyping technique, there is an often overlooked

need for developing corporate and project specific underlying structure to

support the technology. When this underlying structure is omitted, lower

productivity can often result.

Tool Efficiency

Prototyping techniques outside the domain of conventional programming

languages can have execution inefficiencies with the associated tools. The

efficiency question was argued as a negative aspect of prototyping.

Applicability

Application domain has an impact on selecting a prototyping technique. There

would be limited benefit to using a technique not supporting real-time features

in a process control system. The control room user interface could be

described, but not integrated with sensor monitoring deadlines under this

approach. Undefined Role Models for Personnel

This new approach of providing feedback early to the end user has resulted in

a problem related to the behavior of the end user and developers. An end

user with a previously unfortunate system development effort can be biased in

future interactions with development teams.

3.2.3.5 Throwaway prototyping
The objective of throwaway prototyping is to facilitate the designers in better

understanding the requirements of the user. In this model, a prototype is

96

developed rapidly by using shortcuts and gives to the user to use. So that he

will be able to identify his requirements better. To expedite the matters,

functionalities may be stripped from the throwaway prototype where these

functions are well understood, quality standards may be relaxed, and

performance criteria ignored. Once the software requirement specification

document is ready, the prototype will be discarded and the design phase will

start.

3.2.3.6 Prototyping Opportunities
Not to prototype at all should simply not be an option in software

development. The end user can not throw the software needs (stated in

natural language) over the transom and expect the development team to

return the finished software system after some period of time with no

problems in the deliverables.

 Existing Investment in Maintained Systems

One of the major problems with incorporating this technology is the large

investment that exists in software systems currently in maintenance. The idea

of completely reengineering an existing software system with current

technology is not feasible. There is, however, a threshold that exists where

the expected life span of a software system justifies that the system would be

better maintained after being reengineered in this technology. Total

reengineering of a software system should be a planned for effort rather than

97

as a reaction to a crisis situation. At a minimum, prototyping technology could

be used on critical portions of an existing software system. This minimal

approach could be used as a means to transition an organization to total

reengineering.

 Adding Investment in Fully Exploiting the Technology

In many cases, an organization will decide to incorporate this advanced

software prototyping technology, but the range of support for the concept

varies widely. Software prototyping, as a development technique, must be

integrated within an organization through training, case studies, and library

development. In situations where this full range of commitment to the

technology is lacking, e.g., only developer training provided, when problems

begin to arise in using the technology a normal reaction of management is to

revert back to what has worked in the past.

 Developer to End User Pass Off

Finally, the end user involvement becomes enhanced when changes in

requirements can first be prototyped and agreed to before any development

proceeds. Similarly, during development of the actual system or even later out

into maintenance should the requirements change, the prototype is enhanced

and agreed to before the actual changes become confirmed.

98

3.2.4 Iterative Enhancement
The iterative enhancement model counters the third limitation of the waterfall

model and tries to combine the benefits of both prototyping and the waterfall

model. The basic idea is that the software should be developed in increments,

each increment adding some functional capability to the system until the full

system is implemented. At each step, extensions and design modifications

can be made. An advantage of this approach is that it can result in better

testing because testing each increment is likely to be easier than testing the

entire system as in the water- fall model. Furthermore, as in prototyping, the

increments provide feedback to the client that is useful for determining the

final requirements of the system.

In the first step of this model, a simple initial implementation is done for a

subset of the overall problem. This subset is one that contains some of the

key aspects of the problem that are easy to understand and implement and

which form a useful and usable system. A project control list is created that

contains, in order, all the tasks that must be performed to obtain the final

implementation. This project control list gives an idea of how far the project is

at any given step from the final system.

Each step consists of removing the next task from the list, designing the

implementation for the selected task, coding and testing the implementation,

performing an analysis of the partial system obtained after this step, and

99

updating the list as a result of the analysis. These three phases are called the

design phase, implementation phase, and analysis phase. The process is

iterated until the project control list is empty, at which time the final

implementation of the system will be available. The iterative enhancement

process model is shown in Figure 3.2:

Design0
Design1

Designn

Implement0
Implement1

Implementn

Analysis0
Analysis1

Analysisn

Figure 3.2 The Iterative Enhancement Model

The project control list guides the iteration steps and keeps track of all the

tasks that must be done. Based on the analysis, one of the tasks in the list

can include redesign, of defective components or redesign of the entire

system. However, redesign of the system will generally occur only in the initial

steps. In the later steps, the design would have stabilized and there is less

chance of redesign. Each entry in the list is a task that should be performed in

one step of the iterative enhancement process and should be simple enough

to be completely understood. Selecting tasks in this manner will minimize the

chances of error and reduce the redesign work. The design and

implementation phases of each step can be performed in a top-down manner

or by using some other technique.

100

One effective use of this type of model is product development, in which the

developers themselves provide the specifications and, therefore, have a lot of

control on what specifications go in the system and what stay out. In fact,

most products undergo this type of development process. First, a version is

released that contains some capability. Based on the feedback from users

and experience with this version, a list of additional features and capabilities is

generated. These features form the basis of enhancement of the software,

and are included in the next version. In other words, the first version contains

some core capability and then more features are added to later versions.

However, in a customized software development, where the client has to

essentially provide and approve the specifications, it is not always clear how

this process can be applied. Another practical problem with this type of

development project comes in generating the business contract-how will the

cost of additional features be determined and negotiated, particularly because

the client organization is likely to be tied to the original vendor who developed

the first version. Overall, in these types of projects, this process model can be

useful if the "core" of the application to be developed is well understood and

the "increments" can be easily defined and negotiated. In client-oriented

projects, this process has the major advantage that the client's organization

does not have to pay for the entire software together; it can get the main part

101

of the software developed and, perform cost-benefit analysis for it before

enhancing the software with more capabilities.

3.2.5 The Spiral Model
This model was originally proposed by Bohem (1988). As it is clear from the

name, the activities in this model can be organized like a spiral that has many

cycles. The radial dimension represents the cumulative cost incurred in

accomplishing the steps done so far, and the angular dimension represents

the progress made in completing each cycle of the spiral. The model is shown

in Figure 3.3.

Figure 3.3 Boehm’s spiral model of the software process

102

Each cycle in the spiral is split into four sectors:

 Objective setting: Each cycle in the spiral begins with the identification of

objectives for that cycle, the different alternatives that are possible for

achieving the objectives, and the constraints that exist. This is the first

quadrant of the cycle (upper-left quadrant).

 Risk Assessment and reduction: The next step in the cycle is to

evaluate these different alternatives based on the objectives and

constraints. The focus of evaluation in this step is based on the risk

perception for the project. Risks reflect the chances that some of the

objectives of the project may not be met.

 Development and validation: The next step is to develop strategies that

resolve the uncertainties and risks. This step may involve activities such

as benchmarking, simulation, and prototyping.

 Planning: Next, the software is developed, keeping in mind the risks.

Finally, the next stage is planned. The project is reviewed and a decision

made whether to continue with a further cycle of the spiral. If it is decided

to continue, plans are drawn up for the next phase of the project.

The development step depends on the remaining risks. For example, if

performance or user-interface risks are considered more important than the

program development risks, the next step may be an evolutionary

development that involves developing a more detailed prototype for resolving

103

the risks. On the other hand, if the program development risks dominate and

the previous prototypes have resolved all the user-interface and performance

risks, the next step will follow the basic waterfall approach.

The risk-driven nature of the spiral model allows it to accommodate any

mixture of a specification-oriented, prototype-oriented, simulation-oriented, or

some other type of approach. An important feature of the model is that each

cycle of the spiral is completed by a review that covers all the products

developed during that cycle, including plans for the next cycle. The spiral

model works for development as well as enhancement projects.

In a typical application of the spiral model, one might start with an extra round

zero, in which the feasibility of the basic project objectives is studied. These

project objectives may or may not lead to a development/enhancement

project. Such high-level objectives include increasing the efficiency of code

generation of a compiler, producing a new full-screen text editor and

developing an environment for improving productivity. The alternatives

considered in this round are also typically very high-level, such as whether the

organization should go for in-house development, or contract it out, or buy an

existing product. In round one, a concept of operation might be developed.

The objectives are stated more precisely and quantitatively and the cost and

other constraints are defined precisely. The risks here are typically whether or

not the goals can be met within the constraints. The plan for the next phase

104

will be developed, which will involve defining separate activities for the project.

In round two, the top-level requirements are developed. In succeeding rounds,

the actual development may be done.

This is a relatively new model; it can encompass different development

strategies. In addition to the development activities, it incorporates some of

the management and planning activities into the model. For high-risk projects,

this might be a preferred model.

3.3 Summary
Software processes are the activities involved in producing a software system.

Software process models are abstract representation of these processes.

There are a number of models with their merits and demerits such as water

fall model, prototyping, iterative enhancement, and spiral model. The central

idea behind waterfall model - time spent early on making sure that

requirements and design are absolutely correct, is very useful in economic

terms. A further argument for the waterfall model is that it places emphasis on

documentation as well as source code; it helps the new team members to be

able to bring themselves "up to speed" by reading the documents themselves.

Waterfall model is preferred for its simple and arguably more disciplined

approach. The waterfall model however is argued by many to be a bad idea in

practice, mainly because of their belief that it is impossible to get one phase of

a software product's lifecycle "perfected" before moving on to the next phases

105

and learning from them. Clients may not be aware of exactly what

requirements they want before they see a working prototype and can

comment upon it - they may change their requirements constantly, and

program designers and implementers may have little control over this. To sort

out the limitations of water fall model, other models are proposed such as

prototyping that helps the user in identifying their requirements better.

Throwaway prototyping involves developing a prototype to understand the

system requirements. In evolutionary prototyping, a prototype evolves through

several versions to the final system.

3.4 Keywords
Iterative enhancement: In this model, the software is developed in

increments, each increment adding some functional capability to the system

until the full system is implemented.

Prototyping: To avoid requirement errors and omission, prototyping is a

technique facilitating requirement elicitation and validation.

Spiral model: This model was proposed by Bohem and in it the activities can

be organized like a spiral that has many cycles.

Waterfall model: It is a sequential software development model in which

development is seen as flowing like a waterfall through the phases of

analysis, design, implementation, testing and maintenance.

106

3.5 Self Assessment Questions
1. What are the advantages of using waterfall model?

2. What are the limitations of water fall model? Explain.

3. What do you understand by prototyping? What is the need of it?

4. Differentiate between evolutionary and throwaway prototyping and discuss

their merits and demerits.

5. Why, for large systems, it is recommended that prototypes should be

throw-away prototype?

6. When should one use the iterative enhancement model?

3.6 Suggested readings/References
9. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

10. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

11. Software Engineering by Sommerville, Pearson Education.

12. Software Engineering – A Practitioner’s Approach by Roger S Pressman,

McGraw-Hill.

107

Lesson IV Writer: Dr. Rakesh Kumar

SOFTWARE PROJECT PLANNING Vetter: Dr. Yogesh Chala

4.0 Objectives

Project planning is an important issue in the successful completion of a

software project. The objective of this lesson is to make the students familiar

with the factors affecting the cost of the software, different versions of

COCOMO and the problems and criteria to evaluate the models.

4.1 Introduction

Software cost estimation is the process of predicting the amount of effort

required to build a software system. Software cost estimation is one of the

most difficult and error prone task in software engineering. Cost estimates are

needed throughout the software lifecycle. Preliminary estimates are required

to determine the feasibility of a project. Detailed estimates are needed to

assist with project planning. The actual effort for individual tasks is compared

with estimated and planned values, enabling project managers to reallocate

resources when necessary.

Analysis of historical project data indicates that cost trends can be correlated

with certain measurable parameters. This observation has resulted in a wide

range of models that can be used to assess, predict, and control software

108

costs on a real-time basis. Models provide one or more mathematical

algorithms that compute cost as a function of a number of variables.

4.2 Presentation of Contents
 4.2.2 Size-Cost factor

 4.2.3 Types of Models

 4.2.4 SLIM (Software Life Cycle Management)

 4.2.5 COCOMO’81

 4.2.5.1 Basic COCOMO 81

 4.2.5.2 Intermediate COCOMO 81

 4.2.5.3 Detailed COCOMO

 4.2.6 COCOMO II (Constructive Cost Model)

 4.2.6.1 The Application Composition Model

 4.2.6.2 The Early Design Model

 4.2.6.3 The Post-Architecture Model

 4.2.7 The Norden-Rayleigh Curve

 4.2.8 The Software Equation

 4.2.9 The Manpower-Buildup Equation

 4.2.10 Criteria for Evaluating a Model

 4.2.11 Problems with Existing Models

 4.2.11.1 Structure

 4.2.11.2 Complexity

 4.2.11.3 Size Estimation

109

4.2.2 Cost factor

There are a number of factors affecting the cost of the software. The major

one are listed below:

 Programmer ability: Results of the experiments conducted by Sackman

show a significant difference in individual performance among the

programmers. The difference between best and worst performance were

factors of 6 to I in program size, 8 to 1 in execution time, 9 to 1 in

development time, 18 to 1 in coding time, and 28 to 1 in debugging time.

 Product Complexity: There are generally three acknowledged category

of the software: application programs, utility programs and system

programs. According to Brook utility programs are three times as difficult to

write as application programs, and that system programs are three times

as difficult to write as utility programs. So it is a major factor influencing the

cost of software.

 Product Size: It is obvious that a large software product will be more

expensive than a smaller one.

 Available time: It is generally agreed that software projects require more

total efforts if development time is compressed or expanded from the

optimal time.

 Required reliability: Software reliability can be defined as the probability

that a program will perform a required function under stated conditions for

110

a stated period of time. Reliability can be improved in a software, but there

is a cost associated with the increased level of analysis, design,

implementation, verification and validation efforts that must be exerted to

ensure high reliability.

 Level of technology: The level of technology is reflected by the

programming language, abstract machine, programming practices and

software tools used. Using a high level language instead of assembly

language will certainly improve the productivity of programmer thus

resulting into a decrease in the cost of software.

Size is a primary cost factor in most models. There are two common ways to

measure software size: lines of code and function points.

Lines of Code

The most commonly used measure of source code program length is the

number of lines of code (LOC). The abbreviation NCLOC is used to represent

a non-commented source line of code. NCLOC is also sometimes referred to

as effective lines of code (ELOC). NCLOC is therefore a measure of the

uncommented length. The commented length is also a valid measure,

depending on whether or not line documentation is considered to be a part of

programming effort. The abbreviation CLOC is used to represent a

commented source line of code. By measuring NCLOC and CLOC separately

we can define:

111

total length (LOC) = NCLOC + CLOC

KLOC is used to denote thousands of lines of code.

Function Points

Function points (FP) measure size in terms of the amount of functionality in a

system. Function points are computed by first calculating an unadjusted

function point count (UFC). Counts are made for the following categories:

 External inputs – those items provided by the user that describe distinct

application-oriented data (such as file names and menu selections)

 External outputs – those items provided to the user that generate distinct

application-oriented data (such as reports and messages, rather than the

individual components of these)

 External inquiries – interactive inputs requiring a response

 External files – machine-readable interfaces to other systems

 Internal files – logical master files in the system

Once this data has been collected, a complexity rating is associated with each

count according to Table 4.1.

 Weighting Factor
Item Simple Average Complex
External inputs 3 4 6
External outputs 4 5 7
External inquiries 3 4 6
External files 7 10 15
Internal files 5 7 10

Table 4.1 Function point complexity weights.

112

Each count is multiplied by its corresponding complexity weight and the

results are summed to provide the UFC. The adjusted function point count

(FP) is calculated by multiplying the UFC by a technical complexity factor

(TCF). Components of the TCF are listed in Table 4.2.

F1 Reliable back-up and recovery F2 Data communications
F3 Distributed functions F4 Performance
F5 Heavily used configuration F6 Online data entry
F7 Operational ease F8 Online update
F9 Complex interface F10 Complex processing
F11 Reusability F12 Installation ease
F13 Multiple sites F14 Facilitate change

Table 4.2 Components of the technical complexity factor

Each component is rated from 0 to 5, where 0 means the component has no

influence on the system and 5 means the component is essential. The TCF

can then be calculated as:

TCF = 0.65 + 0.01(SUM (Fi))

The factor varies from 0.65 (if each Fi is set to 0) to 1.35 (if each Fi is set to

5). The final function point calculation is:

FP = UFC x TCF

4.2.3 Types of Models

There are two types of models that have been used to estimate cost: cost

models and constraint models.

Cost Models

113

Cost models provide direct estimates of effort. These models typically have a

primary cost factor such as size and a number of secondary adjustment

factors or cost drivers. Cost drivers are characteristics of the project, process,

products, or resources that influence effort. Cost drivers are used to adjust the

preliminary estimate provided by the primary cost factor. A typical cost model

is derived using regression analysis on data collected from past software

projects. Effort is plotted against the primary cost factor for a series of

projects. The line of best fit is then calculated among the data points. If the

primary cost factor were a perfect predictor of effort, then every point on the

graph would lie on the line of best fit. In reality however, there is usually a

significant residual error. It is therefore necessary to identify the factors that

cause variation between predicted and actual effort. These parameters are

added to the model as cost drivers.

The overall structure of regression-based models takes the form:

E = A + B x S^C

Where A, B, and C are empirically derived constants, E is effort in person

months, and S is the primary input (typically either LOC or FP). The following

are some examples of cost models using LOC as a primary input:

114

E = 5.2 x (KLOC)^0.91 Walston-Felix Model

E = 5.5 + 0.73 x (KLOC)^1.16 Bailey-Basili Model

E = 3.2 x (KLOC)^1.05 COCOMO Basic Model

E = 5.288 x (KLOC)^1.047 Doty Model for KLOC > 9

Table 4.3 Cost models using LOC as a primary input

E = -12.39 + 0.0545 FP Albrecht and Gaffney Model

E = 60.62 x 7.728 x 10^-8 FP^3 Kemerer Model

E = 585.7 + 15.12 FP Matson, Barnett, and Mellichamp Model

Table 4.4 Cost models using FP as a primary input include:

Constraint Models

Constraint models demonstrate the relationship over time between two or

more parameters of effort, duration, or staffing level. The RCA PRICE S

model and Putnam’s SLIM model are two examples of constraint models.

Most of the work in the cost estimation field has focused on algorithmic cost

modeling. In this process costs are analyzed using mathematical formulas

linking costs or inputs with metrics to produce an estimated output. The

formulae used in a formal model arise from the analysis of historical data. The

accuracy of the model can be improved by calibrating the model to your

specific development environment, which basically involves adjusting the

weightings of the metrics.

Generally there is a great inconsistency of estimates. Kemerer conducted a

115

study indicating that estimates varied from as much as 85 - 610 % between

predicated and actual values. Calibration of the model can improve these

figures; however, models still produce errors of 50-100%.

4.2.4 SLIM (Software Life Cycle Management)

Putnam's SLIM is one of the first algorithmic cost model. It is based on the

Norden / Rayleigh function and generally known as a macro estimation model

(It is for large projects). SLIM enables a software cost estimator to perform the

following functions:

 Calibration Fine tuning the model to represent the local software

development environment by interpreting a historical database of past

projects.

 Build an information model of the software system, collecting software

characteristics, personal attributes, and computer attributes etc.

 Software sizing SLIM uses an automated version of the lines of code

(LOC) costing technique.

The algorithm used is:

K = (LOC / (C * t4/3)) * 3

K is the total life cycle effort in working years, t is development and the C is

the technology constant, combining the effect of using tools, languages,

methodology and quality assurance (QA), time in years.

116

The value of technology constant varies from 610 to 57314. For easy,

experienced projects technology constant is high.

SLIM is not widespreadly used but there is a SLIM tool.

Advantages of SLIM

 Uses linear programming to consider development constraints on both

cost and effort.

 SLIM has fewer parameters needed to generate an estimate over

COCOMO'81 and COCOMO'II

Drawbacks of SLIM

 Estimates are extremely sensitive to the technology factor

 Not suitable for small projects

4.2.5 COCOMO’81

Boehm's COCOMO model is one of the mostly used models commercially.

The first version of the model delivered in 1981 and COCOMO II is available

now. COCOMO 81 is a model designed by Barry Boehm to give an estimate

of the number of man-months it will take to develop a software product. This

"COnstructive COst MOdel" is based on a study of about sixty projects at

TRW, a Californian automotive and IT company, acquired by Northrop

Grumman in late 2002. The programs examined ranged in size from 2000 to

100,000 lines of code, and programming languages used ranged from

assembly to PL/I.

117

COCOMO consists of a hierarchy of three increasingly detailed and accurate

forms.

 Basic COCOMO - is a static, single-valued model that computes software

development effort (and cost) as a function of program size expressed in

estimated lines of code.

 Intermediate COCOMO - computes software development effort as

function of program size and a set of "cost drivers" that include subjective

assessment of product, hardware, personnel and project attributes.

 Detailed COCOMO - incorporates all characteristics of the intermediate

version with an assessment of the cost driver's impact on each step

(analysis, design, etc.) of the software engineering process.

4.2.5.1 Basic COCOMO 81

Basic COCOMO is a form of the COCOMO model. COCOMO may be applied

to three classes of software projects. These give a general impression of the

software project.

 Organic projects – These are relatively small, simple software projects in

which small teams with good application experience work to a set of less

than rigid requirements.

 Semi-detached projects – These are intermediate (in size and

complexity) software projects in which teams with mixed experience levels

must meet a mix of rigid and less than rigid requirements.

118

 Embedded projects – These are software projects that must be

developed within a set of tight hardware, software, and operational

constraints.

 Size Innovation Deadline/constraints Dev. Environment
Organic Small Little Not tight Stable

Semi-detached Medium Medium Medium Medium
Embedded Large Greater Tight Complex H/W

/customer interfaces
Table 4.5 Three classes of S/W projects for COCOMO

The basic COCOMO equations take the form

E=a (KLOC) b

D=c (E) d

P=E/D

where E is the effort applied in person-months, D is the development time in

chronological months, KLOC is the estimated number of delivered lines of

code for the project (expressed in thousands), and P is the number of people

required. The coefficients ab, bb, cb and db are given in the table 4.6.

Software project a b c D

 Organic 2.4 1.05 2.5 0.38

Semi-detached 3.0 1.12 2.5 0.35

 Embedded 3.6 1.20 2.5 0.32

Table 4.6 Coefficients for Basic COCOMO

119

Basic COCOMO is good for quick, early, rough order of magnitude estimates

of software costs, but its accuracy is necessarily limited because of its lack of

factors to account for differences in hardware constraints, personnel quality

and experience, use of modern tools and techniques, and other project

attributes known to have a significant influence on software costs.

4.2.5.2 Intermediate COCOMO 81

The Intermediate COCOMO is an extension of the Basic COCOMO model,

and is used to estimate the programmer time to develop a software product.

This extension considers a set of "cost driver attributes" that can be grouped

into four major categories, each with a number of subcategories:

 Product attributes

 Required software reliability (RELY)

 Size of application database (DATA)

 Complexity of the product (CPLX)

 Hardware attributes

 Execution-time constraints (TIME)

 Main Storage Constraints (STOR)

 Volatility of the virtual machine environment (VIRT)

 Required turnabout time (TURN)

 Personnel attributes

 Analyst capability (ACAP)

120

 Programmer capability (PCAP)

 Applications experience (AEXP)

 Virtual machine experience (VEXP)

 Programming language experience (LEXP)

 Project attributes

 Use of software tools (TOOL)

 Modern Programming Practices (MODP)

 Required development schedule (SCED)

Each of the 15 attributes is rated on a 6-point scale that ranges from "very

low" to "extra high" (in importance or value). Based on the rating, an effort

multiplier is determined from the table below. The product of all effort

multipliers results in an 'effort adjustment factor (EAF). Typical values for EAF

range from 0.9 to 1.4 as shown in table 4.7.

Ratings Cost
Drivers Very Low Low Nominal High Very High Extra High
RELY 0.75 0.88 1.00 1.15 1.40
DATA 0.94 1.00 1.08 1.16
CPLX 0.70 0.85 1.00 1.15 1.30 1.65
TIME 1.00 1.11 1.30 1.66
STOR 1.00 1.06 1.21 1.56
VIRT 0.87 1.00 1.15 1.30
TURN 0.87 1.00 1.07 1.15
ACAP 1.46 1.19 1.00 0.86 0.71
PCAP 1.29 1.13 1.00 0.91 0.82
AEXP 1.42 1.17 1.00 0.86 0.70
VEXP 1.21 1.10 1.00 0.90
LEXP 1.14 1.07 1.00 0.95
TOOL 1.24 1.10 1.00 0.91 0.82
MODP 1.24 1.10 1.00 0.91 0.83
SCED 1.23 1.08 1.00 1.04 1.10

Table 4.7 Effort adjustment factor

The Intermediate COCOMO formula now takes the form...

121

E=a (KLOC) (b).EAF

Where E is the effort applied in person-months, KLOC is the estimated

number of thousands of delivered lines of code for the project and EAF is the

factor calculated above. The coefficient a and the exponent b are given in the

next table.

Software project a b
Organic 3.2 1.05
Semi-detached 3.0 1.12
Embedded 2.8 1.20

Table 4.8 Coefficients for intermediate COCOMO

The Development time D is calculated from E in the same way as with Basic

COCOMO.

The steps in producing an estimate using the intermediate model

COCOMO'81 are:

1. Identify the mode (organic, semi-detached, or embedded) of

development for the new product.

2. Estimate the size of the project in KLOC to derive a nominal effort

prediction.

3. Adjust 15 cost drivers to reflect your project.

4. Calculate the predicted project effort using first equation and the effort

adjustment factor (EAF)

5. Calculate the project duration using second equation.

Example estimate using the intermediate COCOMO'81

122

Mode is organic

Size = 200KDSI

Cost drivers:

 Low reliability => .88

 High product complexity => 1.15

 Low application experience => 1.13

 High programming language experience => .95

 Other cost drivers assumed to be nominal => 1.00

C = .88 * 1.15 * 1.13 * .95 = 1.086

Effort = 3.2 * (2001.05) * 1.086 = 906 MM

Development time = 2.5 * 9060.38

4.2.5.3 Detailed COCOMO

The Advanced COCOMO model computes effort as a function of program

size and a set of cost drivers weighted according to each phase of the

software lifecycle. The Advanced model applies the Intermediate model at the

component level, and then a phase-based approach is used to consolidate

the estimate.

The 4 phases used in the detailed COCOMO model are: requirements

planning and product design (RPD), detailed design (DD), code and unit test

(CUT), and integration and test (IT). Each cost driver is broken down by

phase as in the example shown in Table 4.9.

123

Cost Driver Rating RPD DD CUT IT
Very Low 1.80 1.35 1.35 1.50
Low 0.85 0.85 0.85 1.20
Nominal 1.00 1.00 1.00 1.00
High 0.75 0.90 0.90 0.85

ACAP

Very High 0.55 0.75 0.75 0.70
Table 4.9 Analyst capability effort multiplier for Detailed COCOMO

Estimates made for each module are combined into subsystems and

eventually an overall project estimate. Using the detailed cost drivers, an

estimate is determined for each phase of the lifecycle.

Advantages of COCOMO'81

 COCOMO is transparent; you can see how it works unlike other models

such as SLIM.

 Drivers are particularly helpful to the estimator to understand the impact of

different factors that affect project costs.

Drawbacks of COCOMO'81

 It is hard to accurately estimate KDSI early on in the project, when most

effort estimates are required.

 KDSI, actually, is not a size measure it is a length measure.

 Extremely vulnerable to mis-classification of the development mode

 Success depends largely on tuning the model to the needs of the

organization, using historical data which is not always available

124

4.2.6 COCOMO II (Constructive Cost Model)

Researches on COCOMO II are started in late 90s because COCOMO'81 is

note enough to apply to newer software development practices.

Differences between COCOMO’81 and COCOMO’II

COCOMO'II differs from COCOMO'81 with such differences:

 COCOMO'81 requires software size in KSLOC as an input, but

COCOMO'II provides different effort estimating models based on the stage

of development of the project.

 COCOMO'81 provides point estimates of effort and schedule, but

COCOMO'II provides likely ranges of estimates that represent one

standard deviation around the most likely estimate.

 COCOMO'II adjusts for software reuse and reengineering where

automated tools are used for translation of existing software, but

COCOMO'81 made little accommodation for these factors

 COCOMO'II accounts for requirements volatility in its estimates.

 The exponent on size in the effort equations in COCOMO'81 varies with

the development mode. COCOMO'II uses five scale factors to generalize

and replace the effects of the development mode.

COCOMO II has three different models:

 The Application Composition Model

 The Early Design Model

125

 The Post-Architecture Model

4.2.6.1 The Application Composition Model

The Application Composition model is used in prototyping to resolve potential

high-risk issues such as user interfaces, software/system interaction,

performance, or technology maturity. Object points are used for sizing rather

than the traditional LOC metric.

An initial size measure is determined by counting the number of screens,

reports, and third-generation components that will be used in the application.

Each object is classified as simple, medium, or difficult using the guidelines

shown in following Tables 4.10 and table 4.11.

 Number and source of data tables
Number of views contained Total <4 Total <8 Total 8+
<3 Simple simple medium
3-7 Simple medium difficult
8+ Medium difficult difficult

Table 4.10 Object point complexity levels for screens.

 Number and source of data tables
Number of views contained Total <4 Total <8 Total 8+
<3 Simple simple medium
3-7 Simple medium difficult
8+ Medium difficult difficult

Table 4.11 Object point complexity levels for reports.

The number in each cell is then weighted according to Table 4.12. The

weights represent the relative effort required to implement an instance of that

complexity level.

126

Object type Simple Medium Difficult
Screen 1 2 3
Report 2 5 8
3GL component - - 10

Table 4.12 Complexity weights for object points

The weighted instances are summed to provide a single object point number.

Reuse is then taken into account. Assuming that r% of the objects will be

reused from previous projects; the number of new object points (NOP) is

calculated to be:

NOP = (object points) x (100 – r) / 100

A productivity rate (PROD) is determined using Table 4.13.

Developers' experience and capability

Very LowLowNominal High Very High

ICASE maturity and capability Very LowLowNominal High Very High
PROD 4 7 13 25 50
Table 4.13 Average productivity rates based on developer’s experience and

the ICASE maturity/capability

Effort can then be estimated using the following equation:

E = NOP / PROD

4.2.6.2 The Early Design Model

The Early Design model is used to evaluate alternative software/system

architectures and concepts of operation. An unadjusted function point count

(UFC) is used for sizing. This value is converted to LOC using tables such as

those published by Jones, excerpted in Table 4.14.

127

Language Level Min Mode Max
Machine language 0.10 - 640 -
Assembly 1.00 237 320 416
C 2.50 60 128 170
RPGII 5.50 40 58 85
C++ 6.00 40 55 140
Visual C++ 9.50 - 34 -
PowerBuilder 20.00 - 16 -
Excel 57.00 - 5.5 -

Table 4.14 Programming language levels and ranges of source code

statements per function point

The Early Design model equation is:

E = aKLOC x EAF

where a is a constant, provisionally set to 2.45.

The effort adjustment factor (EAF) is calculated as in the original COCOMO

model using the 7 cost drivers shown in Table 4.15. The Early Design cost

drivers are obtained by combining the Post-Architecture cost drivers.

Cost
Driver

Description Counterpart Combined Post-Architecture
Cost Driver

RCPX Product reliability & complexity RELY, DATA, CPLX, DOCU
RUSE Required reuse RUSE
PDIF Platform difficulty TIME, STOR, PVOL
PERS Personnel capability ACAP, PCAP, PCON
PREX Personnel experience AEXP, PEXP, LTEX
FCIL Facilities TOOL, SITE
SCED Schedule SCED

Table 4.15 Early Design cost drivers.

128

4.2.6.3 The Post-Architecture Model

The Post-Architecture model is used during the actual development and

maintenance of a product. Function points or LOC can be used for sizing, with

modifiers for reuse and software breakage. Boehm advocates the set of

guidelines proposed by The Software Engineering Institute in counting lines of

code. The Post-Architecture model includes a set of 17 cost drivers and a set

of 5 factors determining the projects scaling component. The 5 factors replace

the development modes (organic, semidetached, embedded) of the original

COCOMO model.

The Post-Architecture model equation is:

E = aKLOC^b x EAF

Where a is set to 2.55 and b is calculated as:

b = 1.01 + 0.01 x SUM (Wi)

Where W is the set of 5 scale factors shown in Table 4.16:

W(i) Very Low Low NominalHighVery High Extra High
Precedentedness 4.05 3.24 2.42 1.62 0.81 0.00
Development/Flexibility 6.07 4.86 3.64 2.43 1.21 0.00
Architecture/Risk Resolution 4.22 3.38 2.53 1.69 0.84 0.00
Team Cohesion 4.94 3.95 2.97 1.98 0.99 0.00
Process Maturity 4.54 3.64 2.73 1.82 0.91 0.00

Table 4.16 COCOMO II scale factors

The EAF is calculated using the 17 cost drivers shown in Table 4.17.

129

Rating Cost
Driver

Description
Very Low Low Nominal High Very High Extra

High
Product
RELY Required S/W reliability 0.75 0.88 1.00 1.15 1.39 -
DATA Database size - 0.93 1.00 1.09 1.19 -
CPLX Product complexity 0.70 0.88 1.00 1.15 1.30 1.66
RUSE Required reusability 0.91 1.00 1.14 1.29 1.49
DOCU Documentation 0.95 1.00 1.06 1.13
Platform
TIME Execution time

constraint
- - 1.00 1.11 1.31 1.67

STOR Main storage constraint - - 1.00 1.06 1.21 1.57
PVOL Platform volatility - 0.87 1.00 1.15 1.30 -
Personnel
ACAP Analyst capability 1.50 1.22 1.00 0.83 0.67 -
PCAP Programmer capability 1.37 1.16 1.00 0.87 0.74 -
PCON Personnel continuity 1.24 1.10 1.00 0.92 0.84 -
AEXP Applications experience 1.22 1.10 1.00 0.89 0.81 -
PEXP Platform experience 1.25 1.12 1.00 0.88 0.81 -
LTEX Language & tool

experience
1.22 1.10 1.00 0.91 0.84

Project
TOOL Software Tools 1.24 1.12 1.00 0.86 0.72 -
SITE Multisite development 1.25 1.10 1.00 0.92 0.84 0.78
SCED Development Schedule 1.29 1.10 1.00 1.00 1.00 -

Table 4.17 Post-Architecture cost drivers.

4.2.7 The Norden-Rayleigh Curve

The Norden-Rayleigh curve represents manpower as a function of time.

Norden observed that the Rayleigh distribution provides a good approximation

of the manpower curve for various hardware development processes.

130

SLIM uses separate Rayleigh curves for design and code, test and validation,

maintenance, and management. A Rayleigh curve is shown in following

Figure.

Figure 4.1 A Rayleigh curve.

Development effort is assumed to represent only 40 percent of the total life

cycle cost. Requirements specification is not included in the model. Estimation

using SLIM is not expected to take place until design and coding.

Several researchers have criticized the use of a Rayleigh curve as a basis for

cost estimation. Norden’s original observations were not based in theory but

rather on observations. Moreover his data reflects hardware projects. It has

not been demonstrated that software projects are staffed in the same way.

Software projects sometimes exhibit a rapid manpower buildup which

invalidate the SLIM model for the beginning of the project.

131

4.2.8 The Software Equation

Putnam used some empirical observations about productivity levels to derive

the software equation from the basic Rayleigh curve formula. The software

equation is expressed as:

Size = CE1/3(t4/3)

Where C is a technology factor, E is the total project effort in person years,

and t is the elapsed time to delivery in years.

The technology factor is a composite cost driver involving 14 components. It

primarily reflects:

 Overall process maturity and management practices

 The extent to which good software engineering practices are used

 The level of programming languages used

 The state of the software environment

 The skills and experience of the software team

 The complexity of the application

The software equation includes a fourth power and therefore has strong

implications for resource allocation on large projects. Relatively small

extensions in delivery date can result in substantial reductions in effort.

4.2.9 The Manpower-Buildup Equation

To allow effort estimation, Putnam introduced the manpower-buildup

equation:

132

D = E / t3

Where D is constant called manpower acceleration, E is the total project effort

in years, and t is the elapsed time to delivery in years.

The manpower acceleration is 12.3 for new software with many interfaces and

interactions with other systems, 15 for standalone systems, and 27 for

reimplementations of existing systems.

Using the software and manpower-buildup equations, we can solve for effort:

E = (S / C) 9/7 (D 4/7)

This equation is interesting because it shows that effort is proportional to size

to the power 9/7 or ~1.286, which is similar to Boehm's factor which ranges

from 1.05 to 1.20.

4.2.10 Criteria for Evaluating a Model

Boehm provides the following criteria for evaluating cost models:

 Definition – Has the model clearly defined the costs it is estimating, and

the costs it is excluding?

 Fidelity – Are the estimates close to the actual costs expended on the

projects?

 Objectivity – Does the model avoid allocating most of the software cost

variance to poorly calibrated subjective factors (such as complexity)? Is it

hard to adjust the model to obtain any result you want?

133

 Constructiveness – Can a user tell why the model gives the estimates it

does? Does it help the user understand the software job to be done?

 Detail – Does the model easily accommodate the estimation of a software

system consisting of a number of subsystems and units? Does it give

(accurate) phase and activity breakdowns?

 Stability – Do small differences in inputs produce small differences in

output cost estimates?

 Scope – Does the model cover the class of software projects whose costs

you need to estimate?

 Ease of Use – Are the model inputs and options easy to understand and

specify?

 Prospectiveness – Does the model avoid the use of information that will

not be well known until the project is complete?

 Parsimony – Does the model avoid the use of highly redundant factors, or

factors which make no appreciable contribution to the results?

4.2.11 Problems with Existing Models

There is some question as to the validity of existing algorithmic models

applied to a wide range of projects. It is suggested that a model is acceptable

if 75 percent of the predicted values fall within 25 percent of their actual

values. Unfortunately most models are insufficient based on this criterion.

Kemerer reports average errors (in terms of the difference between predicted

134

and actual project effort) of over 600 percent in his independent study of

COCOMO. The reasons why existing modeling methods have fallen short of

their goals include model structure, complexity, and size estimation.

4.2.11.1 Structure

Although most researchers and practitioners agree that size is the primary

determinant of effort, the exact relationship between size and effort is unclear.

Most empirical studies express effort as a function of size with an exponent b

and a multiplicative term a. However the values of a and b vary from data set

to data set.

Most models suggest that effort is proportional to size, and b is included as an

adjustment factor so that larger projects require more effort than smaller ones.

Intuitively this makes sense, as larger projects would seem to require more

effort to deal with increasing complexity. However in practice, there is little

evidence to support this. Banker and Kemerer analyzed seven data sets,

finding only one that was significantly different from 1 (with a level of

significance of p=0.05). Table 4.18 compares the adjustment factors of

several different models.

135

Model Adjustment
Factor

Walston-Felix 0.91

Nelson 0.98

Freburger-Basili 1.02

COCOMO (organic) 1.05

Herd 1.06

COCOMO (semi-detached) 1.12

Bailey-Basili 1.16

Frederic 1.18

COCOMO (embedded) 1.20

Phister 1.275

Putnam 1.286

Jones 1.40

Halstead 1.50

Schneider 1.83

Table 4.18 Comparison of effort equation adjustment factors

There is also little consensus about the effect of reducing or extending

duration. Boehm’s schedule cost driver assumes that increasing or

decreasing duration increases project effort. Putnam’s model implies that

136

decreasing duration increases effort, but increasing duration decreases effort

(Fenton, 1997). Other studies have shown that decreasing duration decreases

effort, contradicting both models.

Most models work well in the environments for which they were derived, but

perform poorly when applied more generally. The original COCOMO is based

on a data set of 63 projects. COCOMO II is based on a data set of 83

projects. Models based on limited data sets tend to incorporate the particular

characteristics of the data. This results in a high degree of accuracy for similar

projects, but restricts the application of the model.

4.2.11.2 Complexity

An organization’s particular characteristics can influence its productivity. Many

models include adjustment factors, such as COCOMO’s cost drivers and

SLIM’s technology factor to account for these differences. The estimator relies

on adjustment factors to account for any variations between the model’s data

set and the current estimate. However this generalized approach is often

inadequate.

Kemerer has suggested that application of the COCOMO cost drivers does

not always improve the accuracy of estimates. The COCOMO model

assumes that the cost drivers are independent, but this is not the case in

practice. Many of the cost drivers affect each other, resulting in the over

emphasis of certain attributes. The cost drivers are also extremely subjective.

137

It is difficult to ensure that the factors are assessed consistently and in the

way the model developer intended.

Calculation of adjustment factor is also often complicated. The SLIM model is

extremely sensitive to the technology factor, however this is not an easy value

to determine. Calculation of the EAF for the detailed COCOMO model can

also be somewhat complex, as it is distributed between phases of the

software lifecycle.

4.2.11.3 Size Estimation

Most models require an estimate of product size. However size is difficult to

predict early in the development lifecycle. Many models use LOC for sizing,

which is not measurable during requirements analysis or project planning.

Although function points and object points can be used earlier in the lifecycle,

these measures are extremely subjective.

Size estimates can also be very inaccurate. Methods of estimation and data

collection must be consistent to ensure an accurate prediction of product size.

Unless the size metrics used in the model are the same as those used in

practice, the model will not yield accurate results.

4.3 Summary

Software cost estimation is an important part of the software development

process. Models can be used to represent the relationship between effort and

a primary cost factor such as size. Cost drivers are used to adjust the

138

preliminary estimate provided by the primary cost factor. Although models are

widely used to predict software cost, many suffer from some common

problems. The structure of most models is based on empirical results rather

than theory. Models are often complex and rely heavily on size estimation.

Despite these problems, models are still important to the software

development process. Model can be used most effectively to supplement and

corroborate other methods of estimation.

4.4 Keywords

Software cost estimation: is the process of predicting the amount of effort

required to build a software system.

COCOMO: It is a model to give an estimate of the number of man-months to

develop a software product.

Basic COCOMO: It is model that computes software development effort as a
function of program size expressed in estimated lines of code.

Intermediate COCOMO: It computes software development effort as function

of program size and a set of "cost drivers".

Detailed COCOMO: It incorporates all characteristics of the intermediate

version with an assessment of the cost driver's impact on each step of the

software engineering process.

4.5 Self Assessment Questions

139

1. What are the factors affecting the cost of the software?

2. Differentiate between basic, intermediate, and advanced COCOMO.

3. What are the differences between COCOMOII and COCOMO 81? Explain.

4. What do you understand by cost models and constraint models?

3.6 References/Suggested readings

13. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

14. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

15. Software Engineering by Sommerville, Pearson Education.

16. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

140

Lesson No. V Writer: Dr. Rakesh Kumar
Software Requirement Analysis & Specification Vetter: Dr.
Yogesh Chala

5.0 Objectives

The objectives of this lesson are to get the students familiar with software

requirements. After studying this lesson the students will be able:

 To understand the concepts of requirements.

 To differentiate between different types of requirements.

 To know the structure of software requirement specification.

 Characteristics of SRS.

5.1 Introduction

The analysis phase of software development is concerned with project planning and
software requirement definition. To identify the requirements of the user is a tedious
job. The description of the services and constraints are the requirements for the
system and the process of finding out, analyzing, documenting, and checking these
services is called requirement engineering. The goal of requirement definition is to
completely and consistently specify the requirements for the software product in a

141

concise and unambiguous manner, using formal notations as appropriate. The
software requirement specification is based on the system definition. The requirement
specification will state the “what of” the software product without implying “how”.
Software design is concerned with specifying how the product will provide the
required features.

5.2 Presentation of contents

5.2.1 Software system requirements

 5.2.1.1 Functional requirements

 5.2.1.2 Non-functional requirements

5.2.2 Software requirement specification

 5.2.2.1 Characteristics of SRS

 5.2.2.2 Components of an SRS

5.2.3 Problem Analysis

 5.2.3.1 Modeling Techniques

 5.2.3.2 Data Flow Diagrams (DFDs)

 5.2.3.2.1 Data Flow Diagrams show

 5.2.3.2.2 DFD Principles

 5.2.3.2.3 Basic DFD Notations

 5.2.3.2.4 General Data Flow Rules

 5.2.3.2.5 DFD Levels

 5.2.3.2.6 Developing a DFD

 5.2.3.2 Structured Analysis and Design Techniques (SADT)

 5.2.3.3 Prototyping

142

5.2.4 Specification languages

 5.2.4.1 Structured English

 5.2.4.2 Regular expressions

 5.2.4.3 Decision tables

 5.2.4.4 Event tables

 5.2.4.5 Transition table

5.2.1 Software system requirements

Software system requirements are classified as functional requirements and non-
functional requirements.

5.2.1.1 Functional requirements

The functional requirements for a system describe the functionalities or

services that the system is expected to provide. They provide how the system

should react to particular inputs and how the system should behave in a

particular situation.

5.2.1.2 Non-functional requirements

These are constraints on the services or functionalities offered by the system.

They include timing constraints, constraints on the development process,

standards etc. These requirements are not directly concerned with the specific

function delivered by the system. They may relate to such system properties

such as reliability, response time, and storage. They may define the

143

constraints on the system such as capabilities of I/O devices and the data

representations used in system interfaces.

The objective of this phase is to

identify the requirements of the clients

and generate a formal requirement

document.

5.2.2 Software requirement specification
It is the official document of what is required of the system developers. It

consists of user requirements and detailed specification of the system

requirements. According to Henninger there are six requirements that an SRS

should satisfy:

1. It should specify only external system behavior.

2. It should specify constraints on the implementation.

3. It should be easy to change.

4. It should serve as a reference tool for system maintainers.

144

5. It should record forethought about the life cycle of the system.

6. It should characterize acceptable response to undesired events.

The IEEE standard suggests the following structure for SRS:

1. Introduction

 Purpose of the requirement document.

 Scope of the product

 Definitions, acronyms, and abbreviations

 References

 Overview of the remainder of the document

2. General description

 Product perspective

 Product functions

 User characteristics

 General constraints

 Assumption and dependencies

3. Specific requirements covering functional, non-functional and interface

requirements.

4. Appendices

5. Index

5.2.2.1 Characteristics of SRS

145

The desirable characteristics of an SRS are following:

 Correct: An SRS is correct if every requirement included in the SRS

represents something required in the final system.

 Complete: An SRS is complete if everything software is supposed to do

and the responses of the software to all classes of input data are specified

in the SRS.

 Unambiguous: An SRS is unambiguous if and only if every requirement

stated has one and only one interpretation.

 Verifiable: An SRS is verifiable if and only if every specified requirement

is verifiable i.e. there exists a procedure to check that final software meets

the requirement.

 Consistent: An SRS is consistent if there is no requirement that conflicts

with another.

 Traceable: An SRS is traceable if each requirement in it must be uniquely

identified to a source.

 Modifiable: An SRS is modifiable if its structure and style are such that

any necessary change can be made easily while preserving completeness

and consistency.

 Ranked: An SRS is ranked for importance and/or stability if for each

requirement the importance and the stability of the requirements are

indicated.

146

5.2.2.2 Components of an SRS

An SRS should have the following components:

(i) Functionality

(ii) Performance

(iii) Design constraints

(iv) External Interfaces

Functionality

Here functional requirements are to be specified. It should specify which

outputs should be produced from the given input. For each functional

requirement, a detailed description of all the inputs, their sources, range of

valid inputs, the units of measure are to be specified. All the operation to be

performed on input should also be specified.

Performance requirements

In this component of SRS all the performance constraints on the system

should be specified such as response time, throughput constraints, number of

terminals to be supported, number of simultaneous users to be supported etc.

Design constraints

Here design constraints such as standard compliance, hardware limitations,

Reliability, and security should be specified. There may be a requirement that

system will have to use some existing hardware, limited primary and/or

secondary memory. So it is a constraint on the designer. There may be some

147

standards of the organization that should be obeyed such as the format of

reports. Security requirements may be particularly significant in defense

systems. It imposes a restriction sometimes on the use of some commands,

control access to data, require the use of passwords and cryptography

techniques etc.

External Interface requirements

Software has to interact with people, hardware, and other software. All these

interfaces should be specified. User interface has become a very important

issue now a day. So the characteristics of user interface should be precisely

specified and should be verifiable.

5.2.3 Problem Analysis

The objective of problem analysis is to obtain the clear understanding of the

user’s requirements. There are the different approaches to problem analysis

which have been discussed in the following section.

Data flow modeling

It is also known as structured analysis. Here the aim is to identify the functions

performed in the problem and the data consumed and produced by these

function.

148

What is a model?

Douglas T. Ross that a model answers questions; that the definition of a

model is: M models A if M answers questions about A

Why model?

We need to model complex systems in the real world in order to understand

them. For example: we create computerized models of the real world to

manipulate large amounts of data and hence derive information which can

assist in decision making.

An analyst will create diagrammatic models of a target or proposed system in

order to:

 Understand the system, and

 Communicate:

• to demonstrate, or clarify, understanding of the existing system and/or

to obtain feedback from users/clients;

• to describe unambiguously the proposed computer system to

users/clients and to the programming team.

Modeling techniques are extremely useful in tackling the complexity which is

found when attempting to analyze and understand a system. Models are also

extremely useful communication tools; i.e.: complex ideas and concepts can

be captured on paper and can be shown to users and clients for clarification

and feedback; or for distribution to other professionals, team members,

149

contractors etc. In this respect, the final models created in the Design and

Development phases of a system are essentially paper based prototypes.

5.2.3.1 Modeling Techniques

The three most important modeling techniques used in analyzing and building

information systems are:

 Data Flow Diagramming (DFDs): Data Flow Diagrams (DFDs) model

events and processes (i.e. activities which transform data) within a system.

DFDs examine how data flows into, out of, and within the system. (Note:

'data' can be understood as any 'thing' (eg: raw materials, filed information,

ideas, etc.) which is processed within the system as shown in Figure 5.1.

Figure 5.1

 Logical Data Structure modelling (LDSs): Logical Data Structures (LDSs)

represent a system's information and data in another way. LDSs map the

underlying data structures as entity types, entity attributes, and the

relationships between the entities as shown in figure 5.2.

150

Figure 5.2

 Entity Life Histories (ELHs): Entity Life Histories (ELHs) describe the

changes which happen to 'things' (entities) within the system as shown in

figure 5.3.

Figure 5.3

These three techniques are common to many methodologies and are widely

used in system analysis. Notation and graphics style may vary across

methodologies, but the underlying principles are generally the same.

In SSADM (Structured Systems Analysis and Design Methodology - which

has for a number of years been widely used in the UK) systems analysts and

151

modelers use the above techniques to build up three, inter-related, views of

the target system, which are cross-checked for consistency.

5.2.3.2 Data Flow Diagrams (DFDs)

SSADM uses different sets of Data Flow Diagram to describe the target

system in different ways; eg:

 WHAT the system does

 HOW it does it

 WHAT it should do

 HOW it should do it

Another way of looking at it is that, in SSADM, DFDs are used to answer the

following data-oriented questions about a target system:

What processing is done? When? How? Where? By whom?

What data is needed? By whom? for what? When?

5.2.3.2.1 Data Flow Diagrams show

 The processes within the system.

 The data stores (files) supporting the system's operation.

 The information flows within the system.

 The system boundary.

 Interactions with external entities.

152

 However, we are not interested, here, in the development process in detail,

only in the general modeling technique. Essentially, DFDs describe the

information flows within a system.

5.2.3.2.2 DFD Principles

 The general principle in Data Flow Diagramming is that a system can be

decomposed into subsystems, and subsystems can be decomposed into

lower level subsystems, and so on.

 Each subsystem represents a process or activity in which data is

processed. At the lowest level, processes can no longer be decomposed.

 Each 'process' in a DFD has the characteristics of a system.

 Just as a system must have input and output (if it is not dead), so a

process must have input and output.

 Data enters the system from the environment; data flows between

processes within the system; and data is produced as output from the

system

5.2.3.2.3 Basic DFD Notations

In a DFD, a process may be shown as a circle, an oval, or (typically) a

rectangular box; and data are shown as arrows coming to, or going from the

edge of the process box.

(SSADM) DFD Notations

SSADM uses 4 diagramming notations in DFDs as shown in figure 5.4:

153

 Processes transform or manipulate data. Each box has a unique number

as identifier (top left) and a unique name (an imperative - eg: 'do this' -

statement in the main box area) The top line is used for the location of, or

the people responsible for, the process.

 Data Flows depict data/information flowing to or from a process. The

arrows used to represent the flows must either start and/or end at a

process box.

 Data Stores are some location where data is held temporarily or

permanently.

 External Entities, also known as 'External source/recipients, are things

(e.g.: people, machines, organizations etc.) which contribute data or

information to the system or which receive data/information from it.

Figure 5.4

5.2.3.2.4 General Data Flow Rules

154

 Entities are either 'sources of' or 'sinks' for data input and outputs - i.e.

they are the originators or terminators for data flows.

 Data flows from Entities must flow into Processes

 Data flows to Entities must come from Processes

 Processes and Data Stores must have both inputs and outputs (What

goes in must come out!)

 Inputs to Data Stores only come from Processes.

 Outputs from Data Stores only go to Processes.

5.2.3.2.5 DFD Levels

The 'Context Diagram ' is an overall, simplified, view of the target system, which

contains only one process box, and the primary inputs and outputs as shown in figure

5.5.

Figure 5.5

 Context diagram 2

155

Figure 5.6

Both the above figure 5.5 and 5.6 say the same thing. The second makes

use of the possibility in SSADM of including duplicate objects. (In context

diagram 2 the duplication of the Customer object is shown by the line at the

left hand side. Drawing the diagram in this way emphasizes the Input-Output

properties of a system.)

The Context diagram above, and the one which follows (Figure 5.7), are a first

attempt at describing part of a 'Home Catalogue' sales system. In the

modeling process it is likely that diagrams will be reworked and amended

many times - until all parties are satisfied with the resulting model. A model

can usefully be described as a co-ordinated set of diagrams.

The Top (1st level) DFD

The Top or 1st level DFD, describes the whole of the target system. The Top

level DFD 'bounds' the system -and shows the major processes which are

included within the system.

156

Figure 5.7

The next step - the Next Level(s)

Each Process box in the Top Level diagram may itself be made up of a

number of processes, and where this is the case, the process box will be

decomposed as a second level diagram as shown in figure 5.8.

157

Figure 5.8

Each box in a diagram has an identification number derived from the parent.

Any box in the second level decomposition may be decomposed to a third

level. Very complex systems may possibly require decomposition of some

boxes to further levels.

Decomposition stops when a process box can be described with an

Elementary Function Description using, for example, Pseudocode as shown in

figure 5.5.

Figure 5.9

Each box in a diagram has an identification number (derived from the parent -

the Context level is seen as box 0) in the top left corner.

Every page in a DFD should contain fewer than 10 components. If a process

has more than 10 components, then one or more components (typically a

process) should be combined into one and another DFD be generated that

158

describes that component in more detail. Each component should be

numbered, as should each subcomponent, and so on. So for example, a top

level DFD would have components 1, 2, 3, 4, 5, the subcomponent DFD of

component 3 would have components 3.1, 3.2, 3.3, and 3.4; and the

subsubcomponent DFD of component 3.2 would have components 3.2.1,

3.2.2, and 3.2.3

SSADM uses different sets of Data Flow Diagram to describe the target system in
different ways, moving from analysis of the current system to specification of the
required system:

WHAT the system does - Current Physical DFD

HOW it does it - Current Logical DFD

WHAT it should do - Required Logical DFD

HOW it should do it - Required Physical DFD

Table 5.1

5.2.3.2.6 Developing a DFD

In the following section, two approaches to prepare the DFD are proposed.

Top-Down Approach

1. The system designer makes a context level DFD, which shows the

interaction (data flows) between the system (represented by one

process) and the system environment (represented by terminators).

159

2. The system is decomposed in lower level DFD into a set of processes,

data stores, and the data flows between these processes and data

stores.

3. Each process is then decomposed into an even lower level diagram

containing its subprocesses.

4. This approach then continues on the subsequent subprocesses, until a

necessary and sufficient level of detail is reached.

Event Partitioning Approach

This approach was described by Edward Yourdon in "Just Enough Structured

Analysis",

1. Construct detail DFD.

1. The list of all events is made.

2. For each event a process is constructed.

3. Each process is linked (with incoming data flows) directly with

other processes or via data stores, so that it has enough

information to respond to given event.

4. The reaction of each process to a given event is modeled by an

outgoing data flow.

5.2.3.2 Structured Analysis and Design Techniques (SADT)

160

SADT was developed by D.T. Ross. It incorporates a graphical language. An

SADT model consists of an ordered set of SA (Structured Analysis) diagrams.

Each diagram must contain 3 to 6 nodes plus interconnecting arcs. Two basic

types of SA diagram are Actigram (activity diagram) and datagram (data

diagram). In actigram the nodes denote activities and arcs specify the data

flow between activities while in datagrams nodes specify the data objects and

arcs denote activities. The following figure shows the formats of actigram and

datagram. It is important to note that there are four distinct types of arcs. Arcs

coming into the left side of a node show inputs and arcs leaving the right side

of a node convey output. Arcs entering the top of a node convey control and

arcs entering the bottom specify mechanism. Following Figures 5.10 and 5.11

illustrate the activity diagrams and data diagrams. As shown, in actigram arc

coming into the left side shows the input data on that activity works, arc

coming from right indicates the data produced by the activity. Arc entering the

top of the node specifies the control data for the activity arc entering the

bottom specify the processor.

Figure 5.10 Activity diagram

Data Generating activity Using activity

Control

A i i

Storage
device

161

Figure 5.11 Data diagram components

Following SADT diagram (Figure 5.12) illustrate a simple payroll system. It is

making the use of activity diagrams.

Figure 5.12

Activit

Input Output

Con

trol

Pro
cess

Source Object

Sour
ce

data

Inter
prete
r

Source program
interpreter

Interpreter Printer spool

Operatin
g system

Disk

Output data

 Time sheet validity criteria
Timesheet

 Tax deduction rules

 Employee’s record
 Tax deduction record

 Check

VALIDATE
TIME SHEET

DETERMINE
PAY

DEDUCT
TAXES

MAKE
PAYMENT

162

5.2.3.3 Prototyping

Sometimes when the system is a totally new system, the users and clients do

not have a good idea of their requirements. In this type of cases, prototyping

can be a good option. The idea behind prototyping is that clients and users

can assess their needs much better if they can see the working of a system,

even if the system is a partial system. So an actual experience with a

prototype that implements part of the whole system helps the user in

understanding their requirements. So in prototyping approach, first of all a

prototype is built and then delivered to the user to use it.

There are two variants of prototyping: (i) Throwaway prototyping and (ii)

evolutionary prototyping. Throwaway prototyping is used with the objective

that prototype will be discarded after the requirements have been identified. In

evolutionary prototyping, the idea is that prototype will be eventually

converted in the final system. Gradually the increments are made to the

prototype by taking into the consideration the feedback of clients and users.

Figure 5.13

OUTLINE
REQUIREME

EVOLUTIONARY
PROTOTYPING

THROWAWAY
PROTOTYPING

DELIVERED SYSTEM

EXECUTABLE PROTOTYPE +
SYSTEM SPECIFICATION

163

Evolutionary prototyping

It is the only way to develop the system where it is difficult to establish a

detailed system specification. But this approach has following limitations:

(i) Prototype evolves so quickly that it is not cost effective to produce

system documentation.

(ii) Continual changes tend to corrupt the structure of the prototype

system. So maintenance is likely to be difficult and costly.

Figure 5.14

Throwaway prototyping

The principal function of the prototype is to clarify the requirements. After

evaluation the prototype is thrown away as shown in figure 5.15.

DEVELOP ABSTRACT
SPECIFICATION

BUILD PROTOTYPE
SYSTEM

USE PROTOTYPE
SYSTEM

DELIVER
SYSTEM SYSTEM

ADEQUATE?

NO

YES

164

Figure 5.15

Customers and end users should resist the temptation to turn the throwaway

prototype into a delivered system. The reason for this are:

(i) Important system characteristics such as performance, security,

reliability may have been ignored during prototype development so

that a rapid implementation could be developed. It may be

impossible to turn the prototype to meet these non-functional

requirements.

(ii) The changes made during prototype development will probably

have degraded the system structure. So the maintenance will be

difficult and expensive.

5.2.4 Specification languages

Requirement specification necessitates the use of some specification

language. The language should possess the desired qualities like

modifiability, understandability, unambiguous etc. But the language should be

ESTABLISH
ABSTRACT

SPECIFICATIO

DEVELOP
PROTOTYPE

EVALUATE
PROTOTYPE

SPECIFY
SYSTEM

DEVELOP
SOFTWARE

VALIDATE
SYSTEM

DELIVERED
SOFTWARE

SYSTEM

REUSABLE COMPONENTS

165

easy to use. This requirement is sometimes difficult to meet. For example to

avoid the unambiguity, one should use formal language, which is difficult to

use and learn. Natural language is quite easy to use but tends to be

ambiguous. Some of the commonly used specification languages are

discussed below

5.2.4.1 Structured English

The natural languages are most easy to use but it has some drawbacks and the most
important one is that requirements specified in natural language are imprecise and
ambiguous. To remove this drawback some efforts have been made and one is the use
of structured English. In structure English the requirements are broken into sections
and paragraphs. Each paragraph is broken into sub paragraphs. Many organizations
specify the strict use of some words and restrict the use of others to improve the
precision.

5.2.4.2 Regular expressions

Regular expressions are used to specify the syntactic structure of symbol strings.
Many software products involve processing of symbol strings. Regular expressions
provide a powerful notation for such cases. The rules for regular expressions are:

1. Atoms: A basic symbol in the alphabet of interest.

2. Alternations: If R1 and R2 are regular expressions then (R1|R2) is a

regular expression. (R1|R2) denotes the union of the languages

specified by R1 and R2.

166

3. Composition: If R1 and R2 are regular expressions then (R1 R2) is a

regular expression. (R1 R2) denotes the language formed by

concatenating strings from R2 onto strings from R1.

4. Closure: If R1 is a regular expression then (R1)* is a regular

expression. (R1)* denotes the language formed by concatenating zero

or more strings from R1 with zero or more strings from R1. A

commonly used notation is (R1)+, which denotes one or more

concatenation of elements in R1.

5. Completeness: Nothing else is a regular expression.

For example the requirement, a valid data stream must start with an “a”,

followed by “b”s and “c”s in any order but always interleaved by a and

terminated by “b” or “c”, may be represented by following regular expression:

((a (b|c)))+.

5.2.4.3 Decision tables

It is a mechanism for recording complex decision logics. A decision table

consists of four quadrants: condition stub, condition entries, action stub, and

action entries. In the condition stub, all the conditions are specified. Condition

entries are used to combine conditions into decision rules. Action stub

specifies the actions to be taken in response to decision rules. The action

entry relates decision rules to actions as shown in table 5.2.

167

Decision Rules

Rule 1 Rule 2 Rule 3 Rule 4

Condition stub Condition entries

Action Stub Action entries

Table 5.2 Decision table

Following is the decision table (Table 5.3) to find the largest of three numbers.

 Rule 1 Rule 2 Rule 3

A>B Y Y N

A>C Y N N

B>C - N Y

A is largest X

B is largest X

C is largest X

Table 5.3

The above decision table is an example of a limited entry decision table in

which the entries are limited to Y, N, -, X where Y denotes yes, N denotes No,

- denotes don’t care, and X denotes perform action. If more than one decision

rule has identical (Y, N, -) entries, the table is said to be ambiguous.

Ambiguous pair of decision rules that specify identical actions are said to be

168

redundant and those specifying different actions are contradictory. The

contradictory rules permits specification of nondeterministic and concurrent

actions.

 Rule 1 Rule 2 Rule 3 Rule 4

C1 Y Y Y Y

C2 Y N N N

C3 N N N N

A1 X

A2 X

A3 X X

Table 5.4

The above decision table (Table 5.4) illustrates redundant rules (R3 and R4)

and contradictory rules (R2 and R3, R2 and R4).

A decision table is complete if every possible set of conditions has a

corresponding action prescribed. There are 2n combinations of conditions in a

decision table that has n conditions.

5.2.4.4 Event tables

They specify actions to be taken when events occur under different sets of conditions.
A 2-dimensional event table relates action to operating conditions and event of
interest. For example, following table 5.5 specifies that if condition c1 is there and
event E1 occurs, then one must take A1 action. A “-“ entry indicates that no action is
required. “X” indicates impossible system configuration. Two actions separated by “,”

169

(A2, A3) denotes concurrent activation while separated by “;” (A4; A5) denotes A5
follows A4.

Event Conditions

E1 E2 E3 E4 E5

C1 A1 - A4; A5

C2 X A2, A3

C3

C4

Table 5.5

5.2.4.5 Transition table

These are used to specify changes in the state of a system as a function of

driving forces. Following figure shows the format of a transition table (Table

5.6).

Current input
Current state

A B

S0 S0 S1

S1 S1 S0

Table 5.6 Transition Table

It indicates that if B is the input in S0 state then a transition will take place to

s1 state. Transition tables are the representation of finite state automata.

170

Summary

Requirements state what the system should do and define constraints on its

operations and implementation. The requirements may be classified as

functional and non-functional requirements providing the information about the

functionalities and constraints on the system. The requirements are to be

specified in an unambiguous manner. So a number of tools and techniques

are used such as DFD, decision table, event table, transition table, regular

expressions etc. The SRS is the agreed statement of the system

requirements. It should be organized so that both clients and developers can

use it. To satisfy its goal, the SRS should have certain desirable

characteristics such as consistency, verifiability, modifiability, traceability etc.

To ensure the characteristic completeness, the SRS should consist of the

components: Functionality, Performance, Design constraints, and External

interfaces. There are different approaches to problem analysis. The aim of

problem analysis is to have the clear understanding of the requirements of the

user. The approaches discussed are data flow modeling using DFD,

Structured analysis and Design Technique (SADT) and prototyping. Data flow

modeling and SADT focus mainly on the functions performed in the problem

domain and the input consumed and produced by these functions.

171

Keywords

Functional requirements: These are the functionalities or services that the

system is expected to provide.

Non-functional requirements: These are constraints on the services or

functionalities offered by the system.

SRS: It is the official document of what is required of the system developers.

DFD: They model events and processes and examine how data flows into,

out of, and within the system.

Transition table: These are used to specify changes in the state of a system

as a function of driving forces.

Event tables: They specify actions to be taken when events occur under different sets
of conditions.

Decision Table: It is a mechanism for recording complex decision logics

consisting of four quadrants: condition stub, condition entries, action stub, and

action entries.

Self-assessment questions

1. What do you understand by requirements? Differentiate between

functional and non-functional requirements using suitable examples.

2. What do you understand by SRS (Software Requirement

Specification)? What are the components of it?

172

3. What are the desirable characteristics of Software Requirement

Specification? Explain.

4. Why do we need the specification languages to generate the software

requirement specification? What are the merits and demerits of using

the specification languages? Explain.

5. Explain the graphic and text notations used in Data Flow Diagrams

(DFDs).

6. What are the principles of Data Flow Diagram (DFD) modeling?

7. Why is DFD modeling useful?

1.6 References/Suggested readings

17. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

18. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

19. Software Engineering by Sommerville, Pearson Education.

20. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

173

Lesson number: VI Writer: Dr. Rakesh Kumar

Software Design - I Vetter: Dr. Pradeep Bhatia

6.0 Objectives

The objective of this lesson is to make the students familiar with the concepts

of design, design notations and design concepts. After studying the lesson

students will be acquainted with:

1. Design and its quality.

2. Design fundamental concepts

3. Modularization criteria

4. Design notations

6.1 Introduction

Design is an iterative process of transforming the requirements specification

into a design specification. Consider an example where Mrs. & Mr. XYZ want

a new house. Their requirements include,

 a room for two children to play and sleep

 a room for Mrs. & Mr. XYZ to sleep

 a room for cooking

 a room for dining

 a room for general activities

174

and so on. An architect takes these requirements and designs a house. The

architectural design specifies a particular solution. In fact, the architect may

produce several designs to meet this requirement. For example, one may

maximize children’s room, and other minimizes it to have large living room. In

addition, the style of the proposed houses may differ: traditional, modern and

two-storied. All of the proposed designs solve the problem, and there may not

be a “best” design.

Software design can be viewed in the same way. We use requirements

specification to define the problem and transform this to a solution that

satisfies all the requirements in the specification. Design is the first step in the

development phase for any engineered product. The designer goal is to

produce a model of an entity that will later be built.

6.2 Presentation of contents

 6.2.1 Definitions for Design

 6.2.2 Qualities of a Good Design

 6.2.3 Design Constraints

 6.2.4 Fundamental Design Concepts

 6.2.4.1 Abstraction

 6.2.4.2 Information Hiding

 6.2.4.3 Modularity

175

 6.2.5 Modularization criteria
 6.2.5.1 Coupling

 6.2.5.2 Cohesion

 6.2.5.3 Other Modularization Criteria

 6.2.6 Popular Design Methods

 6.2.7 Design Notation

 6.2.7.1 Structure Charts

 6.2.7.2 Data Flow Diagram

 6.2.7.3 Pseudocode

6.2.1 Definitions for Design

 “Devising artifacts to attain goals” [H.A. Simon, 1981].

 “The process of defining the architecture, component, interfaces and other

characteristics of a system or component” [IEEE 160.12].

 The process of applying various techniques and principles for the purpose

of defining a device, a process or a system in sufficient detail to permit its

physical realization.

Without Design, System will be

 Unmanageable since there is no concrete output until coding. Therefore it

is difficult to monitor & control.

176

 Inflexible since planning for long term changes was not given due

emphasis.

 Unmaintainable since standards & guidelines for design & construction are

not used. No reusability consideration. Poor design may result in tightly

coupled modules with low cohesion. Data disintegrity may also result.

 Inefficient due to possible data redundancy and untuned code.

 Not portable to various hardware / software platforms.

Design is different from programming. Design brings out a representation for

the program – not the program or any component of it. The difference is

tabulated below.

Design Programming
Abstractions of operations &

data("What to do")

Device algorithms and data

representations

Establishes interfaces Consider run-time environments

Choose between design alternatives

Make trade-offs w.r.t.constraints etc

Choose functions, syntax of language

Devices representation of program Construction of program

6.2.2 Qualities of a Good Design

Functional: It is a very basic quality attribute. Any design solution should

work, and should be constructable.

177

Efficiency: This can be measured through

 run time (time taken to undertake whole of processing task or transaction)

 response time (time taken to respond to a request for information)

 throughput (no. of transactions / unit time)

 memory usage, size of executable, size of source, etc

Flexibility: It is another basic and important attribute. The very purpose of

doing design activities is to build systems that are modifiable in the event of

any changes in the requirements.

Portability & Security: These are to be addressed during design - so that

such needs are not “hard-coded” later.

Reliability: It tells the goodness of the design - how it work successfully

(More important for real-time and mission critical and on-line systems).

Economy: This can be achieved by identifying re-usable components.

Usability: Usability is in terms of how the interfaces are designed (clarity,

aesthetics, directness, forgiveness, user control, ergonomics, etc) and how

much time it takes to master the system.

6.2.3 Design Constraints

Typical Design Constraints are:

 Budget

 Time

 Integration with other systems

178

 Skills

 Standards

 Hardware and software platforms

Budget and Time cannot be changed. The problems with respect to

integrating to other systems (typically client may ask to use a proprietary

database that he is using) has to be studied & solution(s) are to be found.

‘Skills’ is alterable (for example, by arranging appropriate training for the

team). Mutually agreed upon standards has to be adhered to. Hardware and

software platforms may remain a constraint.

Designer try answer the “How” part of “What” is raised during the requirement

phase. As such the solution proposed should be contemporary. To that extent

a designer should know what is happening in technology. Large, central

computer systems with proprietary architecture are being replaced by

distributed network of low cost computers in an open systems environment

We are moving away from conventional software development based on hand

generation of code (COBOL, C) to Integrated programming environments.

Typical applications today are internet based.

The process of design involves conceiving and planning out in the mind" and “making
a drawing, pattern, or sketch of". In software design, there are three distinct types of
activities: external design, architectural design, and detailed design. Architectural and
detailed designs are collectively referred to as internal design. External design of
software involves conceiving, planning out, and specifying the externally observable
characteristics of a software product. These characteristics include user displays and
report formats, external data sources and data sinks, and the functional characteristics,

179

performance requirements, and high-level process structure for the product. External
design begins during the analysis phase and continues in the design phase. In practice,
it is not possible to perform requirements definition without doing some preliminary
design. Requirements definition is concerned with specifying the external, functional,
and performance requirements for a system, as well as exception handling and the
other items. External design is concerned with refining those requirement and
establishing the high level structural view of the system, Thus, the distinction between
requirements definition and external design is not sharp, but is rather a gradual shift in
emphasis from detailed "what" to high-level 'how".

Internal design involves conceiving, planning out, and specifying the internal

structure and processing details of the software product. The goals of internal

design are to specify internal structure and processing details, to record

design decisions and indicate why certain alternatives and trade-offs were

chosen, to elaborate the test plan, and to provide a blueprint for

implementation, testing, and maintenance activities. The work products of

internal design include a specification of architectural structure, the details of

algorithms and data structures, and the test plan.

Architectural design is concerned with refining the conceptual view of the

system, identifying the internal processing functions, decomposing the high

level functions into sub functions, defining internal data streams and data

stores. Issues of concern during detailed design include specification of

algorithm, concrete data structures that implement the data stores,

interconnection among the functions etc.

The test plan describes the objectives of testing, the test completion criteria,

the integration plan (strategy, schedule, and responsible individuals),

180

particular tools and techniques to be used, and the actual test cases and

expected results. Functional tests and Performance tests are developed

during requirements analysis and are refined during the design phase. Tests

that examine the internal structure of the software product and tests that

attempt to break the system (stress tests) are developed during detailed

design and implementation.

External design and architectural design typically span the Period from

Software Requirements Review (SRR) to Preliminary Design Review (PDR).

Detailed design spans the period from preliminary design review to Critical

Design Review (CDR).

Phases Analysis Design Implementation
Activities Planning

 Requirement Definition
External
 Architectural
 Detailed

Coding
 Debugging
 Testing

Reviews SRR PDR CDR
6.2.4 FUNDAMENTAL DESIGN CONCEPTS

Fundamental concepts of software design include abstraction, structure,

information hiding, modularity, concurrency, verification, and design

aesthetics.

6.2.4.1 Abstraction

Abstraction is the intellectual tool that allows us to deal with concepts apart

from particular instances of those concepts. During requirements definition

and design, abstraction permits separation of the conceptual aspects of a

181

system from the implementation details. We can, for example, specify the

FIFO property of a queue or the LIFO property of a stack without concern for

the representation scheme to be used in implementing the stack or queue.

Similarly, we can specify the functional characteristics of the routines that

manipulate data structures (e.g., NEW, PUSH, POP, TOP, EMPTY) without

concern for the algorithmic details of the routines.

During software design, abstraction allows us to organize and channel our

thought processes by postponing structural considerations and detailed

algorithmic considerations until the functional characteristics, data streams,

and data stores have been established. Structural considerations are then

addressed prior to consideration of algorithmic details. This approach reduces

the amount of complexity that must be dealt with at any particular point in the

design process.

Architectural design specifications are models of software in which the

functional and structural attributes of the system are emphasized. During

detailed design, the architectural structure is refined into implementation

details. Design is thus a process of proceeding from abstract considerations

to concrete representations. Three widely used abstraction mechanisms in

software design are functional abstraction, data abstraction, and control

abstraction. These mechanisms-allow us to control the complexity of the

design process by systematically proceeding from abstract to the concrete.

182

Functional abstraction involves the use of parameterized sub programs. The

ability to parameterize a subprogram and to bind different values on different

invocations of the subprogram is a powerful abstraction mechanism.

Functional abstraction can be generalized to collection of subprograms i.e.

groups. Within a group, certain routines have the visible property, which

allows them to be used by routines in other groups. Routines without the

visible property are hidden from other groups. A group thus provides a

functional abstraction in which the visible routines communicate with other

groups and the hidden routines exist to support the visible ones.

Data abstraction involves specifying a data type or data object by specifying

legal operations on objects. Many modern programming languages provide

mechanisms for creating abstract data types. For example, the Ada package

is a programming language mechanism that provides support for both data

and procedural abstraction. The original abstract data type is used as a

template or generic data structure from which other data structures can be

instantiated.

Control abstraction is the third commonly used abstraction mechanism in

software design. Like procedural and data abstraction, control abstraction

implies a program control mechanism without specifying internal details.

IF statements and WHILE statements in modern programming languages are

abstractions of machine code implementations that involve conditional jump

183

instructions. A statement of the form leaves unspecified the sorting technique,

the nature of S, the nature of the files, and how "for all I in S" is to be handled.

Another example of control abstraction is the monitor construct, which is a

control abstraction for concurrent programming; implementation details of the

operator are hidden inside the construct. At the architectural design level,

control abstraction permits specification of sequential subprograms, exception

handlers, and co-routines and concurrent program units without concern for

the exact details of implementation.

6.2.4.2 Information Hiding

Information hiding is a fundamental design concept for software. When a

software system is designed using the information hiding approach, each

module in the system hides the internal details of its processing activities and

modules communicates only thru well defined interfaces. Design should begin

with a list of difficult design decisions and design decisions that are likely to

change. Each module is designed to hide such a decision from the other

modules. Because these design decisions transcend execution time, design

modules may not correspond to processing steps in the implementation of the

system. In addition to hiding of difficult and changeable design decisions,

other candidates for information hiding include:

184

 A data structure, its internal linkage, and the implementation details of

the procedures that manipulate it (this is the principle of data

abstraction)

 The format of control blocks such as those for queues in an operating

system (a "control-block" module)

 Character codes, ordering of character sets, and other implementation

details

 Shifting, masking, and other machine dependent details

Information hiding can be used as the principal design technique for

architectural design of a system, or as a modularization criterion in

conjunction with other design

6.2.4.3 Modularity

There are many definitions of the term "module." They range from "a module

is a FORTRAN subroutine" to "a module is an Ada package" to "a module is a

work assignment for an individual programmer". All of these definitions are

correct, in the sense that modular systems incorporate collections of

abstractions in which each functional abstraction, each data abstraction, and

each control abstraction handles a local aspect of the problem being solved.

Modular systems consist of well-defined, manageable units with well-defined

interfaces among the units. Desirable properties of a modular system include:

185

 Each processing abstraction is a well-defined subsystem that is potentially

useful in other applications.

 Each function in each abstraction has a single, well-defined purpose.

 Each function manipulates no more than one major data structure.

 Functions share global data selectively. It is easy to identify all routines

that share a major data structure.

 Functions that manipulate instances of abstract data types are

encapsulated with the data structure being manipulated.

Modularity enhances design clarity, which in turn eases implementation,

debugging, testing, documenting, and maintenance of the software product.

6.2.5 Modularization criteria
Architectural design has the goal of producing well-structured, modular

software systems. In this section of the text, we consider a software module to

be a named entity having the following characteristics:

 Modules contain instructions, processing logic, and data structures.

 Modules can be separately compiled and stored in a library.

 Modules can be included in a program.

 Module segments can be used by invoking a name and some parameters.

 Modules can use other modules.

186

Examples of modules include procedures, subroutines, and functions;

functional groups of related procedures, subroutines, and functions; data

abstraction groups; utility groups; and concurrent processes. Modularization

allows the designer to decompose a system into functional units, to impose

hierarchical ordering on function usage, to implement data abstraction, to

develop independently useful subsystems. In addition, modularization can be

used to isolate machine dependencies, to improve the performance of a

software product, or to ease debugging, testing, integration, tuning, and

modification of the system.

There are numerous criteria that can be used to guide the modularization of a

system. Depending on the criteria used, different system structures may

result. Modularization criteria include the conventional criterion, in which each

module and its sub modules correspond to a processing step in the execution

sequence; the information hiding criterion, in which each module hides a

difficult or changeable design decision from the other modules; the data

abstraction criterion, in which each module hides the representation details of

a major data structure behind functions that access and modify the data

structure; levels of abstraction, in which modules and collections of modules

provide a hierarchical set of increasingly complex services; coupling-

cohesion, in which a system is structured to maximize the cohesion of

elements in each module and to minimize the coupling between modules; and

187

problem modeling, in which the modular structure of the system matches the

structure of the problem being solved. There are two versions of problem

modeling: either the data structures match the problem structure and the

visible functions manipulate the data structures, or the modules form a

network of communicating processes where each process corresponds to a

problem entity.

Coupling and cohesion

A fundamental goal of software design is to structure the software product so

that the number and complexity of interconnection between modules is

minimized. A good heuristic for achieving this goal involves the concepts of

coupling and cohesion.

6.2.5.1 Coupling

Coupling is the measure of strength of association established by a

connection from one module to another. Minimizing connections between

modules also minimizes the paths along which changes and errors can

propagate into other parts of the system (‘ripple effect’). The use of global

variables can result in an enormous number of connections between the

modules of a program. The degree of coupling between two modules is a

function of several factors: (1) How complicated the connection is, (2)

Whether the connection refers to the module itself or something inside it, and

(3) What is being sent or received. Coupling is usually contrasted with

188

cohesion. Low coupling often correlates with high cohesion, and vice versa.

Coupling can be "low" (also "loose" and "weak") or "high" (also "tight" and

"strong"). Low coupling means that one module does not have to be

concerned with the internal implementation of another module, and interacts

with another module with a stable interface. With low coupling, a change in

one module will not require a change in the implementation of another

module. Low coupling is a sign of a well structured computer system.

However, in order to achieve maximum efficiency, a highly coupled system is

sometimes needed. In modern computing systems, performance is often

traded for lower coupling; the gains in the software development process are

greater than the value of the running performance gain.

Low-coupling / high-cohesion is a general goal to achieve when structuring

computer programs, so that they are easier to understand and maintain.

The concepts are usually related: low coupling implies high cohesion and vice

versa. In the field of object-oriented programming, the connection between

classes tends to get lower (low coupling), if we group related methods of a

class together (high cohesion). The different types of coupling, in order of

lowest to highest, are as follows:

 Data coupling

 Stamp coupling

 Control coupling

189

 External coupling

 Common coupling

 Content coupling

Where data coupling is most desirable and content coupling least.

Data Coupling

Two modules are data coupled if they communicate by parameters (each

being an elementary piece of data).E.g. sin (theta) returning sine value,

calculate_interest (amount, interest rate, term) returning interest amt.

Stamp Coupling (Data-structured coupling)

Two modules are stamp coupled if one passes to other a composite piece of

data (a piece of data with meaningful internal structure). Stamp coupling is

when modules share a composite data structure, each module not knowing

which part of the data structure will be used by the other (e.g. passing a

student record to a function which calculates the student's GPA)

Control Coupling

Two modules are control coupled if one passes to other a piece of information

intended to control the internal logic of the other. In Control coupling, one

module controls logic of another, by passing it information on what to do (e.g.

passing a what-to-do flag).

External coupling

190

External coupling occurs when two modules share an externally imposed data

format, communication protocol, or device interface.

Common coupling

Two modules are common coupled if they refer to the same global data area.

Instead of communicating through parameters, two modules use a global data

Content coupling

Two modules exhibit content coupled if one refers to the inside of the other in

any way (if one module ‘jumps’ inside another module). E.g. Jumping inside a

module violate all the design principles like abstraction, information hiding and

modularity.

In object-oriented programming, subclass coupling describes a special type of

coupling between a parent class and its child. The parent has no connection

to the child class, so the connection is one way (i.e. the parent is a sensible

class on its own). The coupling is hard to classify as low or high; it can

depend on the situation.

 We aim for a ‘loose’ coupling. We may come across a (rare) case of module

A calling module B, but no parameters passed between them (neither send,

nor received). This is strictly should be positioned at zero point on the scale of

coupling (lower than Normal Coupling itself). Two modules A &B are normally

coupled if A calls B – B returns to A – (and) all information passed between

them is by means of parameters passed through the call mechanism. The

191

other two types of coupling (Common and content) are abnormal coupling and

not desired. Even in Normal Coupling we should take care of following issues:

 Data coupling can become complex if number of parameters

communicated between is large.

 In Stamp coupling there is always a danger of over-exposing irrelevant

data to called module. (Beware of the meaning of composite data. Name

represented as an array of characters may not qualify as a composite

data. The meaning of composite data is the way it is used in the

application NOT as represented in a program)

 “What-to-do flags” are not desirable when it comes from a called module

(‘inversion of authority’): It is alright to have calling module (by virtue of the

fact, is a boss in the hierarchical arrangement) know internals of called

module and not the other way around.

In general, use of tramp data and hybrid coupling is not advisable. When data

is passed up and down merely to send it to a desired module, the data will

have no meaning at various levels. This will lead to tramp data. Hybrid

coupling will result when different parts of flags are used (misused?) to mean

different things in different places (Usually we may brand it as control coupling

– but hybrid coupling complicate connections between modules). Two

modules may be coupled in more than one way. In such cases, their coupling

is defined by the worst coupling type they exhibit.

192

In object-oriented programming, coupling is a measure of how strongly one

class is connected to another.

Coupling is increased between two classes A and B if:

 A has an attribute that refers to (is of type) B.

 A calls on services of a B object.

 A has a method which references B (via return type or parameter).

 A is a subclass of (or implements) B.

Disadvantages of high coupling include:

 A change in one class forces a ripple of changes in other classes.

 Difficult to understand a class in isolation.

 Difficult to reuse or test a class because dependent class must also be

included.

One measure to achieve low coupling is functional design: it limits the

responsibilities of modules. Modules with single responsibilities usually need

to communicate less with other modules, and this has the virtuous side-effect

of reducing coupling and increasing cohesion in many cases.

6.2.5.2 Cohesion

Designers should aim for loosely coupled and highly cohesive modules.

Coupling is reduced when the relationships among elements not in the same

193

module are minimized. Cohesion on the other hand aims to maximize the

relationships among elements in the same module. Cohesion is a good

measure of the maintainability of a module. Modules with high cohesion tend

to be preferable because high cohesion is associated with several desirable

traits of software including robustness, reliability, reusability, and

understandability whereas low cohesion is associated with undesirable traits

such as being difficult to maintain, difficult to test, difficult to reuse, and even

difficult to understand. The types of cohesion, in order of lowest to highest,

are as follows:

1. Coincidental Cohesion (Worst)

2. Logical Cohesion

3. Temporal Cohesion

4. Procedural Cohesion

5. Communicational Cohesion

6. Sequential Cohesion

7. Functional Cohesion (Best)

Coincidental cohesion (worst)

194

Coincidental cohesion is when parts of a module are grouped arbitrarily; the

parts have no significant relationship (e.g. a module of frequently used

functions).

Logical cohesion

Logical cohesion is when parts of a module are grouped because of a slight

relation (e.g. using control coupling to decide which part of a module to use,

such as how to operate on a bank account).

Temporal cohesion

In a temporally bound (cohesion) module, the elements are related in time.

Temporal cohesion is when parts of a module are grouped by when they are

processed - the parts are processed at a particular time in program execution

(e.g. a function which is called after catching an exception which closes open

files, creates an error log, and notifies the user).

Procedural cohesion

Procedural cohesion is when parts of a module are grouped because they

always follow a certain sequence of execution (e.g. a function which checks

file permissions and then opens the file).

Communicational cohesion

Communicational cohesion is when parts of a module are grouped because

they operate on the same data (e.g. a method updateStudentRecord which

operates on a student record, but the actions which the method performs are

not clear).

195

Sequential cohesion

Sequential cohesion is when parts of a module are grouped because the

output from one part is the input to another part (e.g. a function which reads

data from a file and processes the data).

Functional cohesion (best)

Functional cohesion is when parts of a module are grouped because they all

contribute to a single well-defined task of the module (a perfect module).

Since cohesion is a ranking type of scale, the ranks do not indicate a steady

progression of improved cohesion. Studies by various people including Larry

Constantine and Edward Yourdon as well as others indicate that the first two

types of cohesion are much inferior to the others and that module with

communicational cohesion or better tend to be much superior to lower types

of cohesion. The seventh type, functional cohesion, is considered the best

type. However, while functional cohesion is considered the most desirable

type of cohesion for a software module, it may not actually be achievable.

There are many cases where communicational cohesion is about the best that

can be attained in the circumstances. However the emphasis of a software

design should be to maintain module cohesion of communicational or better

since these types of cohesion are associated with modules of lower lines of

code per module with the source code focused on a particular functional

196

objective with less extranous or unnecessary functionality, and tend to be

reusable under a greater variety of conditions.

Example: Let us create a module that calculates average of marks obtained

by students in a class:

calc_stat(){read (x[]); a = average (x); print a}

average (m){sum=0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);}

In average() above, all of the elements are related to the performance of a

single function. Such a functional binding (cohesion) is the strongest type of

binding. Suppose we need to calculate standard deviation also in the above

problem, our pseudo code would look like:

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;}

average(m) // function to calculate average

{sum =0; for i = 1 to N { sum = sum + x[i]; } return (sum/N);}

sd (m, y) //function to calculate standard deviation

{ …}

Now, though average () and sd () are functionally cohesive, calc_stat() has a

sequential binding (cohesion). Like a factory assembly line, functions are

arranged in sequence and output from average () goes as an input to sd().

Suppose we make sd () to calculate average also, then calc_stat() has two

functions related by a reference to the same set of input. This results in

communication cohesion.

197

Let us make calc-stat() into a procedure as below:

calc_stat(){

sum = sumsq = count = 0

for i = 1 to N

read (x[i])

sum = sum + x[i]

sumsq = sumsq + x[i]*x[i]

…}

a = sum/N

s = … // formula to calculate SD

print a, s

}

Now, instead of binding functional units with data, calc-stat() is involved in

binding activities through control flow. calc-stat() has made two statistical

functions into a procedure. Obviously, this arrangement affects reuse of this

module in a different context (for instance, when we need to calculate only

average not std. dev.). Such cohesion is called procedural.

A good design for calc_stat () could be (Figure 6.1):

198

Figure 6.1

A logically cohesive module contains a number of activities of the same kind.

To use the module, we may have to send a flag to indicate what we want

(forcing various activities sharing the interface). Examples are a module that

performs all input and output operations for a program. The activities in a

logically cohesive module usually fall into same category (validate all input or

edit all data) leading to sharing of common lines of code (plate of spaghetti?).

Suppose we have a module with possible statistical measures (average,

standard deviation). If we want to calculate only average, the call to it would

look like calc_all_stat (x[], flag). The flag is used to indicate out intent i.e. if

flag=0 then function will return average, and if flag=1, it will return standard

deviation.

calc_stat(){ read (x[]); a = average (x); s = sd (x, a); print a, s;}

calc_all_stat(m, flag)

199

{

If flag=0{sum=0; for i = 1 to N { sum = sum + x[i]; }return (sum/N);}

If flag=1{ …….; return sd;}

}

6.2.5.3 Other Modularization Criteria

Additional criteria for deciding which functions to place in which modules of

software system include: hiding difficult and changeable design decisions,

limiting the physical size of modules, structuring the system to improve the

observability, and testability, isolating machine dependencies to few routines,

easing likely changes, providing general purpose utility functions, developing

an acceptable overlay structure in a machine with limited memory capacity,

minimizing page faults in a virtual memory machine, and reducing the call

return overhead of excessive subroutine calls. For each software product, the

designer must weigh these factors and develop a consistent set of

modularization criteria to guide the design process. Efficiency of the resulting

implementation is a concern that frequently arises when decomposing a

system into modules. A large number of small modules having data coupling

and functional cohesion implies a large execution time overhead for

establishing run-time linkages between the modules. The preferred technique

for optimizing the efficiency of a system is to first design and implements the

system in a highly modular fashion. System performance is then measured,

200

and bottlenecks are removed by reconfiguring and recombining modules, and

by hand coding certain critical linkages and critical routines in assembly

language if necessary. In these situations, the modular source code should be

retained as documentation for the assembly language routines. The

soundness of this technique is based on two observations. First, most

software systems spend a large portion of processing time in a small portion

of the code; typically 80 percent or more of execution time is spent in 20

percent or less of the code. Furthermore, the region of code where the

majority of time is spent is usually not predictable until the program is

implemented and actual performance is measured. Second, it is relatively

easy to reconfigure and recombine small modules into larger units if

necessary for better performance; however, failure to initially decompose a

system far enough may prevent identification of a function that can be used in

other contexts.

6.2.6 Popular Design Methods

Popular Design Methods include

1) Modular decomposition

 Based on assigning functions to components.

 It starts from functions that are to be implemented and explain how each

component will be organized and related to other components.

201

2) Event-oriented decomposition

 Based on events that the system must handle.

 It starts with cataloging various states and then describes how

transformations take place.

3) Object-oriented design

 Based on objects and their interrelationships

 It starts with object types and then explores object attributes and actions.

Structured Design – It uses modular decomposition

6.2.7 Design Notation

In software design the representation schemes used are of fundamental

importance. Good notation can clarify the interrelationships and interactions

of interest, while poor notation can complicate and interfere with good design

practice. At least, three levels of design specifications exist; external design

specifications, which describe the external characteristics of software

systems; architectural design specifications, which describe the structure of

the system; and detailed design specifications, which describe control flow,

data representation, and other algorithmic details within the modules.

During the design phase, there are two things of interest: the design of the

system, producing which are the basic objective of this phase, and the

process of designing itself. It is for the latter that principles and methods are

needed. In addition, while designing, a designer needs to record his thoughts

202

and decisions, to represent the design so that he can view it and play with it.

For this, design notations are used.

Design notations are largely meant to be used during the process of design

and are used to represent design or design decisions. They are meant largely

for the designer so that he can quickly represent his decisions in a compact

manner that he can evaluate and modify. These notations are frequently

graphical.

Once the designer is satisfied with the design he has produced, the design is

to be precisely specified in the form of a document. To specify the design,

specification languages are used. Producing the design specification is the

ultimate objective of the design phase. The purpose of this design document

is quite different from that of the design notation. Whereas a design

represented using the design notation is largely to be used by the designer, a

design specification has to be so precise and complete that it can be used as

a basis of further development by other programmers. Generally, design

specification uses textual structures, with design notation helping in

understanding.

Here, we first describe a design notation structure charts that can be used to

represent a function-oriented design. Then, we describe a simple design

language to specify a design. Though the design document, the final output of

the design activity, typically also contains other things like design decisions

203

taken and background, its primary purpose is to document the design itself.

We will focus on this aspect only.

6.2.7.1 Structure Charts

Structure charts, a graphic representation of the structure, are used during

architectural design to document hierarchical structure, parameters, and

interconnections in a system. The structure of a program is made up of the

modules of that program together with the interconnections between modules.

Every computer program has a structure, and given a program, its structure

can be determined. In a structure chart, a box represents a module with the

module name written in the box. An arrow from module A to module B

represents that module A invokes module B. B is called the subordinate of A,

and A is called the super-ordinate of B. The arrow is labeled by the

parameters received by B as input and the parameters returned by B as

output, with the direction of flow of the input and output parameters

represented by small arrows. The parameters can be shown to be data

(unfilled circle at the tail of the label) or control (filled circle at the tail).

B C

A

204

Unlike flowcharts, structure chart do not represent the structural information.

So generally decision boxes are not there. However, there are situations

where the designer may wish to communicate certain procedural information

explicitly, like major loops and decisions. Such information can also be

represented in a structure chart. For example, let us consider a situation

where module A has subordinates B, C, and D, and A repeatedly calls the

modules C and D. This can be represented by a looping arrow around the

arrows joining the subordinates C and D to A, as shown in figure 6.2. All the

subordinate modules activated within a common loop are enclosed in the

same looping arrow.

A

B C D

A

B C D

FIGURE 6.2 ITERATION AND DECISION REPRESENTATION

Major decisions can be represented, similarly. For example, if the invocation

of modules C and D in module A depends on the outcome of some decision,

that is represented by a small diamond in the box for A, with the arrows

joining C and D coming out of this diamond, as shown in above Figure.

205

Modules in a system can be categorized into few classes. There are some

modules that obtain information from their subordinates and then pass it to

their super-ordinate. This kind of module is an input module. Similarly, there

are output modules that take information from their super-ordinate and pass it

on to its subordinates. As the name suggests, the input and output modules

are, typically, used for input and output of data, from and to the environment.

The input modules get the data from the sources and get it ready to be

processed, and the output modules take the output produced and prepare it

for proper presentation to the environment. Then, there are modules that exist

solely for the sake of transforming data into some other form. Such a module

is called a transform module. Most of the computational modules typically fall

in this category. Finally, there are modules whose primary concern is

managing the flow of data to and from different subordinates. Such modules

are called coordinate modules. The structure chart representation of the

different types of modules is shown in following Figure.

A module can perform functions of more than one type of module. For

example, the composite module in Figure 6.3 is an input module, from the

point of view of its super-ordinate, as it feeds the data Y to the super-ordinate.

Internally, A is a coordinate module and views its job as getting data X from

one subordinate and passing it to another subordinate, who converts it to Y.

Modules in actual systems are often composite modules.

206

Input
Module

Data to
Superiordinate

Data from
Superiordinate

O utput
Module

y

y

y

x

Coordinate
Module

Transform
Module

Composite
Module

x
x

FIGURE 6.3 DIFFERENT TYPES OF MODULES.

A structure chart is a nice representation mechanism for a design that uses

functional abstraction. It shows the modules and their call hierarchy, the

interfaces between the modules, and what information passes between

modules. It is a convenient and compact notation that is very useful while

creating the design. That is, a designer can make effective use of structure

charts to represent the model he is creating while he is designing. However, it

is not very useful for representing the final design, as it does not give all the

information needed about the design. For example, it does not specify the

scope, structure of data, specifications of each module, etc. Hence, it is

generally not used to convey design to the implementer.

207

We have seen how to determine the structure of an existing program. But,

once the program is written, its structure is fixed; little can be done about

altering the structure. However, for a given set of requirements many different

programs can be written to satisfy the requirements, and each program can

have a different structure. That is, although the structure of a given program is

fixed, for a given set of requirements, programs with different structures can

be obtained. The objective of the design phase using function-oriented

method is to control the eventual structure of the system by fixing the

structure during design.

6.2.7.2 Data Flow diagrams (DFD)

DFD is a directed graph in which node specifies process and arcs specify

data items transmitted between processing nodes. Unlike flowcharts, DFD do

not indicate decision logic under which various processing nodes in the

diagram might be activated. DFD can be used during requirement analysis as

well as in design phase to specify external and top-level internal design

specification. The following symbols(Figure 6.4) are used to construct a DFD:

Data Flow

Process

Data Stores

Data Source/Sink

208

Figure 6.4

An informal Data Flow Diagram

6.2.7.3 Pseudocode

Pseudocode notation can be used in architectural as well as detailed design

phase. In it the designer describes system characteristics using short,

concise, English language phrases that are structured by keywords such as If-

Then-else, While-Do, and End. Keywords and indentation describes the flow

of control, while the English phrases describe processing actions. E.g.

INITIALIZE tables and counters

OPEN files

READ the first ten records

WHILE there are more records DO

 WHILE there are more words in the text record DO

 ENDWHILE at the end of the text record

Compu

Compu

Transfo

Transfo

Input A

A’

Input B B’

C’ Output D

209

ENDWHILE when all the text records have been processed

PRINT ……

CLOSE file

TERMINATE the program

6.3 Summary

Design is the bridge between software requirements and implementation that

specifies those requirements. The goal of architectural design is to specify a

system structure that satisfies the requirements, the external design

specification, and the implementation constraints. Detailed design provides

the algorithmic details, data representation etc. Design is an important phase.

Design principles and concepts establish a foundation for the creation of the

design model that encompasses representation of data, architecture,

interface, and procedures. Design principles and concepts guide the software

engineer. Concept of modularity helps the designer in producing a design,

which is simple and modifiable. Two important criteria for modularity are

coupling and cohesion. Coupling is a measure of interconnection among

modules. Cohesion of a module represents how tightly bound the internal

elements of the module are to one another. Cohesion and coupling are

closely related. Usually, the greater the cohesion of each module in the

system, the lower the coupling between modules is. Structured design uses

the modular decomposition. Design notations discussed in this chapter are

210

data flow diagrams, structured chart and Pseudocode. Structure chart is a

good notation to represent the structured design. The structure chart of a

program is a graphic representation of its structure. In a structure chart, a box

represents a module with the module name written in the box. An arrow from

module A to module B represents that module A invokes module B.

6.4 Key words

Abstraction, coupling, cohesion, Design, Data Flow Diagram, Information

hiding, Modularity, Structured Chart, Pseudocode.

6.5 Self-assessment questions

1. Define design. What are the desirable qualities of a good design?

Explain.

2. What is a module? What are the advantages of a modular design?

3. What do you understand by coupling and cohesion? What is the

relationship between them?

4. Define coupling. What are the different types of coupling? Explain.

5. Define cohesion. Discuss the different types of cohesion using suitable

examples.

6. What can be the other criteria for modularization apart from coupling

and cohesion?

7. What do you understand by design notations? Discuss the difference

between flowchart and data flow diagrams.

211

6.6 References/Suggested readings

21. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

22. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

23. Software Engineering by Sommerville, Pearson Education.

24. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

212

Lesson number: VII Writer: Dr. Rakesh Kumar

Software Design II Vetter: Dr. Pradeep K.Bhatia

7.0 Objectives

The objective of this lesson is to get the students acquainted with the design

activities, to provide a systematic approach for the derivation of the design -

the blueprint from which software is constructed. This lesson will help them in

understanding how a software design may be represented as a set of

functions. This lesson introduces them with the notations, which may be used

to represent a function-oriented design.

7.1 Introduction

Design is a process in which representations of data structure, program

structure, interface characteristics, and procedural details are synthesized

from information requirements. During design a large system can be

decomposed into sub-systems that provide some related set of services. The

initial design process of identifying these sub-systems and establishing a

framework for sub-system control and communication is called architectural

design. In architectural design process the activities carried out are system

structuring (system is decomposed into sub-systems and communications

between them are identified), control modeling, modular decomposition. In a

213

structured approach to design, the system is decomposed into a set of

interacting functions.

7.2 Presentation of contents

7.2.1 Transition from Analysis to Design

7.2.2 High Level Design Activities

 7.2.2.1 Architectural Design

 7.2.2.2 Architectural design process

 7.2.2.3 Transaction Analysis

 7.2.2.4 Transform Analysis

 7.2.2.4.1 Identifying the central transform

 7.2.2.4.2 First-cut Structure Chart

 7.2.2.4.3 Refine the Structure Chart

 7.2.2.4.4 Verify Structure Chart vis-à-vis with DFD

 7.2.2.5 User Interface Design

 7.2.2.5.1 General Interaction

 7.2.2.5.2 Information Display

 7.2.2.5.3 Data Input

 7.2.2.6 Procedural Design

 7.2.2.7 Structured Programming

 7.2.2.8 Program Design Language

214

7.2.1 Transition from Analysis to Design

The flow of information during design is shown in the following figure (7.1).

The data design transforms the data model created during analysis into the

data structures that will be required to implement the software.

The architectural design defines the relationship between major structural

elements of the software, the design patterns that can be used to achieve the

requirements and the constraints that affect the implementation.

The interface design describes how the software communicates within itself,

and with humans who use it.

Figure 7.1

215

The Procedural design (typically, Low Level Design) elaborates structural

elements of the software into procedural (algorithmic) description.

7.2.2 High Level Design Activities

Broadly, High Level Design includes Architectural Design, Interface Design

and Data Design.

7.2.2.1 Architectural Design

Software architecture is the first step in producing a software design.

Architecture design associates the system capabilities with the system

components (like modules) that will implement them. The architecture of a

system is a comprehensive framework that describes its form and structure,

its components and how they interact together. Generally, a complete

architecture plan addresses the functions that the system provides, the

hardware and network that are used to develop and operate it, and the

software that is used to develop and operate it. An architecture style involves

its components, connectors, and constraints on combining components. Shaw

and Garlan describe seven architectural styles. Commonly used styles include

 Pipes and Filters

 Call-and-return systems

• Main program / subprogram architecture

 Object-oriented systems

 Layered systems

216

 Data-centered systems

 Distributed systems

• Client/Server architecture

In Pipes and Filters, each component (filter) reads streams of data on its

inputs and produces streams of data on its output. Pipes are the connectors

that transmit output from one filter to another. E.g. Programs written in UNIX

shell.

In Call-and-return systems, the program structure decomposes function into a

control hierarchy where a “main” program invokes (via procedure calls) a

number of program components, which in turn may invoke still other

components. E.g. Structure Chart is a hierarchical representation of main

program and subprograms.

In Object-oriented systems, component is an encapsulation of data and

operations that must be applied to manipulate the data. Communication and

coordination between components is accomplished via message calls.

In Layered systems, each layer provides service to the one outside it, and

acts as a client to the layer inside it. They are arranged like an “onion ring”.

E.g. OSI ISO model.

Data-centered systems use repositories. Repository includes a central data

structure representing current state, and a collection of independent

components that operate on the central data store. In a traditional database,

217

the transactions, in the form of an input stream, trigger process execution.

E.g. Database.

A popular form of distributed system architecture is the Client/Server where a

server system responds to the requests for actions / services made by client

systems. Clients access server by remote procedure call.

The following issues are also addressed during architecture design:

 Security

 Data Processing: Centralized / Distributed / Stand-alone

 Audit Trails

 Restart / Recovery

 User Interface

7.2.2.2 Architectural design process

Data flow oriented design is an architectural design method that allows a

convenient transition from the analysis model to a design description of

program structure. The strategy for converting the DFD (representation of

information flow) into Structure Chart is discussed below:

 Break the system into suitably tractable units by means of transaction

analysis

 Convert each unit into a good structure chart by means of transform

analysis

 Link back the separate units into overall system implementation

218

7.2.2.3 Transaction Analysis

The transaction is identified by studying the discrete event types that drive the

system. For example, with respect to railway reservation, a customer may

give the following transaction stimulus (Figure 7.2):

Figure 7.2

The three transaction types here are: Check Availability (an enquiry), Reserve

Ticket (booking) and Cancel Ticket (cancellation). On any given time we will

get customers interested in giving any of the above transaction stimuli. In a

typical situation, any one stimulus may be entered through a particular

terminal. The human user would inform the system her preference by

selecting a transaction type from a menu. The first step in our strategy is to

identify such transaction types and draw the first level breakup of modules in

the structure chart, by creating separate module to co-ordinate various

transaction types. This is shown as follows (Figure 7.3):

219

Figure 7.3

The Main () which is a over-all coordinating module, gets the information

about what transaction the user prefers to do through TransChoice. The

TransChoice is returned as a parameter to Main (). Remember, we are

following our design principles faithfully in decomposing our modules. The

actual details of how GetTransactionType () is not relevant for Main (). It may

for example, refresh and print a text menu and prompt the user to select a

choice and return this choice to Main (). It will not affect any other

components in our breakup, even when this module is changed later to return

the same input through graphical interface instead of textual menu. The

modules Transaction1 (), Transaction2 () and Transaction3 () are the

coordinators of transactions one, two and three respectively. The details of

these transactions are to be exploded in the next levels of abstraction.

We will continue to identify more transaction centers by drawing a navigation

chart of all input screens that are needed to get various transaction stimuli

from the user. These are to be factored out in the next levels of the structure

220

chart (in exactly the same way as seen before), for all identified transaction

centers.

7.2.2.4 Transform Analysis

Transform analysis is strategy of converting each piece of DFD (may be from

level 2 or level 3, etc.) for all the identified transaction centers. In case, the

given system has only one transaction (like a payroll system), then we can

start transformation from level 1 DFD itself. Transform analysis is composed

of the following five steps:

1. Draw a DFD of a transaction type (usually done during analysis phase)

2. Find the central functions of the DFD

3. Convert the DFD into a first-cut structure chart

4. Refine the structure chart

5. Verify that the final structure chart meets the requirements of the

original DFD

Let us understand these steps through a payroll system example:

7.2.2.4.1 Identifying the central transform

The central transform is the portion of DFD that contains the essential

functions of the system and is independent of the particular implementation of

the input and output. One way of identifying central transform is to identify the

centre of the DFD by pruning off its afferent and efferent branches. Afferent

stream is traced from outside of the DFD to a flow point inside, just before the

221

input is being transformed into some form of output (For example, a format or

validation process only refines the input – does not transform it). Similarly an

efferent stream is a flow point from where output is formatted for better

presentation.

Figure 7.4

The processes between afferent and efferent stream represent the central

transform (marked within dotted lines above in figure 7.4). In the above

example, P1 is an input process, and P6 & P7 are output processes. Central

transform processes are P2, P3, P4 & P5 - which transform the given input

into some form of output.

222

7.2.2.4.2 First-cut Structure Chart

To produce first-cut (first draft) structure chart, first we have to establish a

boss module. A boss module can be one of the central transform processes.

Ideally, such process has to be more of a coordinating process

(encompassing the essence of transformation). In case we fail to find a boss

module within, a dummy-coordinating module is created

Figure 7.5

In the above illustration in figure 7.5, we have a dummy boss module

“Produce Payroll” – which is named in a way that it indicate what the program

is about. Having established the boss module, the afferent stream processes

are moved to left most side of the next level of structure chart; the efferent

stream process on the right most side and the central transform processes in

the middle. Here, we moved a module to get valid timesheet (afferent

process) to the left side. The two central transform processes are move in the

223

middle. By grouping the other two central transform processes with the

respective efferent processes, we have created two modules– essentially to

print results, on the right side.

The main advantage of hierarchical (functional) arrangement of module is that

it leads to flexibility in the software. For instance, if “Calculate Deduction”

module is to select deduction rates from multiple rates, the module can be

split into two in the next level – one to get the selection and another to

calculate. Even after this change, the “Calculate Deduction” module would

return the same value.

7.2.2.4.3 Refine the Structure Chart

Expand the structure chart further by using the different levels of DFD. Factor

down till you reach to modules that correspond to processes that access

source / sink or data stores. Once this is ready, other features of the software

like error handling, security, etc. has to be added. A module name should not

be used for two different modules. If the same module is to be used in more

than one place, it will be demoted down such that “fan in” can be done from

the higher levels. Ideally, the name should sum up the activities done by the

module and its sub-ordinates.

7.2.2.4.4 Verify Structure Chart vis-à-vis with DFD

Because of the orientation towards the end-product, the software, the finer

details of how data gets originated and stored (as appeared in DFD) is not

224

explicit in Structure Chart. Hence DFD may still be needed along with

Structure Chart to understand the data flow while creating low-level design.

Some characteristics of the structure chart as a whole would give some clues

about the quality of the system. Page-Jones suggest following guidelines for a

good decomposition of structure chart:

 Avoid decision splits - Keep span-of-effect within scope-of-control: i.e. A

module can affect only those modules which comes under it’s control (All

sub-ordinates, immediate ones and modules reporting to them, etc.)

 Error should be reported from the module that both detects an error and

knows what the error is.

 Restrict fan-out (number of subordinates to a module) of a module to

seven. Increase fan-in (number of immediate bosses for a module). High

fan-ins (in a functional way) improve reusability.

7.2.2.5 User Interface Design

The design of user interfaces draws heavily on the experience of the

designer. Three categories of Human Computer Interface (HCI) design

guidelines are

1. General interaction

2. Information display

3. Data entry

225

7.2.2.5.1 General Interaction

Guidelines for general interaction often cross the boundary into information

/display, data entry and overall system control. They are, therefore, all

encompassing and are ignored at great risk. The following guidelines focus on

general interaction.

 Be consistent: Use a consistent formats for menu selection, command

input, data display and the myriad other functions that occur in a HCI.

 Offer meaningful feedback: Provide the user with visual and auditory

feedback to ensure that two way communications (between user and

interface) is established.

 Ask for verification of any nontrivial destructive action: If a user

requests the deletion of a file, indicates that substantial information is to be

overwritten, or asks for the termination of a program, an “Are you sure …”

message should appear.

 Permit easy reversal of most actions: UNDO or REVERSE functions

have saved tens of thousands of end users from millions of hours of

frustration. Reversal should be available in every interactive application.

 Reduce the amount of information that must be memorized between

actions: The user should not be expected to remember a list of numbers

or names so that he or she can re-use them in a subsequent function.

Memory load should be minimized.

226

 Seek efficiency in dialog, motion, and thought: Keystrokes should be

minimized, the distance a mouse must travel between picks should be

considered in designing screen layout; the user should rarely encounter a

situation where he or she asks, "Now what does this mean."

 Forgive mistakes: The system should protect itself from errors that might

cause it to fail (defensive programming)

 Categorize activities by functions and organize screen geography

accordingly: One of the key benefits of the pull down menu is the ability

to organize commands by type. In essence, the designer should strive for

"cohesive" placement of commands and actions.

 Provide help facilities that are context sensitive

 Use simple action verbs or short verb phrases to name commands: A

lengthy command name is more difficult to recognize and recall. It may

also take up unnecessary space in menu lists.

7.2.2.5.2 Information Display

If information presented by the HCI is incomplete, ambiguous or unintelligible,

the application will fail to satisfy the needs of a user. Information is "displayed"

in many different ways with text, pictures and sound, by placement, motion

and size, using color, resolution, and even omission. The following guidelines

focus on information display.

227

 Display only information that is relevant to the current context: The user

should not have to wade through extraneous data, menus and graphics to

obtain information relevant to a specific system function.

 Don’t bury the user with data; use a presentation format that enables rapid

assimilation of information: Graphs or charts should replace voluminous

tables.

 Use consistent labels, standard abbreviations, and predictable colors: The

meaning of a display should be obvious without reference to some outside

source of information.

 Allow the user to maintain visual context: If computer graphics displays are

scaled up and down, the original image should be displayed constantly (in

reduced form at the corner of the display) so that the user understands the

relative location of the portion of the image that is currently being viewed.

 Produce meaningful error messages

 Use upper and lower case, indentation, and text grouping to aid in

understanding: Much of the information imparted by a HCI is textual, yet,

the layout and form of the text has a significant impact on the ease with

which information is assimilated by the user.

 Use windows to compartmentalize different types of information: Windows

enable the user to "keep" many different types of information within easy

reach.

228

 Use “analog” displays to represent information that is more easily

assimilated with this form of representation: For example, a display of

holding tank pressure in an oil refinery would have little impact if a numeric

representation were used. However, thermometer-like displays were used;

vertical motion and color changes could be used to indicate dangerous

pressure conditions. This would provide the user with both absolute and

relative information.

 Consider the available geography of the display screen and use it

efficiently: When multiple windows are to be used, space should be

available to show at least some portion of each. In addition, screen size

should be selected to accommodate the type of application that is to be

implemented.

7.2.2.5.3 Data Input

Much of the user's time is spent picking commands, typing data and otherwise

providing system input. In many applications, the keyboard remains the

primary input medium, but the mouse, digitizer and even voice recognition

systems are rapidly becoming effective alternatives. The following guidelines

focus on data input:

 Minimize the number of input actions required of the user: Reduce the

amount of typing that is required. This can be accomplished by using the

mouse to select from pre-defined sets of input; using a "sliding scale" to

229

specify input data across a range of values; using "macros" that enable a

single keystroke to be transformed into a more complex collection of input

data.

 Maintain consistency between information display and data input: The

visual characteristics of the display (e.g., text size, color, and placement)

should be carried over to the input domain.

 Allow the user to customize the input: An expert user might decide to

create custom commands or dispense with some types of warning

messages and action verification. The HCI should allow this.

 Interaction should be flexible but also tuned to the user’s preferred mode

of input: The user model will assist in determining which mode of input is

preferred. A clerical worker might be very happy with keyboard input, while

a manager might be more comfortable using a point and pick device such

as a mouse.

 Deactivate commands that are inappropriate in the context of current

actions: This protects the user from attempting some action that could

result in an error.

 Let the user control the interactive flow: The user should be able to jump

unnecessary actions, change the order of required actions (when possible

in the context of an application), and recover from error conditions without

exiting from the program.

230

 Provide help to assist with all input actions

 Eliminate “Mickey mouse” input: Do not let the user to specify units for

engineering input (unless there may be ambiguity). Do not let the user to

type .00 for whole number dollar amounts, provide default values

whenever possible, and never let the user to enter information that can be

acquired automatically or computed within the program

7.2.2.6 Procedural Design

Procedural design occurs after data, architectural, and interface designs have

been established. Procedural design specifies procedural details

unambiguously. It is concerned with specifying algorithmic details, concrete

data representations, interconnections among functions, and data structure.

Detailed design is strongly influenced by implementation language, but it is

not the same as implementation, detailed design is more concerned with

semantic issues and less concerned with syntactic details than is

implementation. Implementation addresses issues of programming language

syntax, coding style, and internal documentation. Detailed design permits

design of algorithm and data representation at a higher level of abstraction

and notation than the implementation language provides. Detailed design

should be carried to a level where each statement in the design notation will

result in a few statements in the implementation language.

231

7.2.2.7 Structured Programming

The goal of structured programming is to
linearize control flow through a computer
program so that the execution sequence
follows the sequence in which the code is
written. The dynamic structure of the
program than resemble the static structure
of the program. This enhances the
readability, testability, and modifiability of
the program. This linear flow of control
can be achieved by restricting the set of
allowed program construct to single entry,
single exit formats. These issues are
discussed in the following section:
Structure Rule One: Code Block

If the entry conditions are correct, but the exit conditions are wrong, the bug

must be in the block. This is not true if execution is allowed to jump into a

block. The bug might be anywhere in the program. Debugging under these

conditions is much harder.

232

Rule 1 of Structured Programming: A code block is structured as shown in

figure 7.6. In flow-charting terms, a box with a single entry point and single

exit point is structured. This may look obvious, but that is the idea. Structured

programming is a way of making it obvious that program is correct.

Figure 7.6

Structure Rule Two: Sequence

A sequence of blocks is correct if the exit conditions of each block match the

entry conditions of the following block. Execution enters each block at the

block's entry point, and leaves through the block's exit point. The whole

sequence can be regarded as a single block, with an entry point and an exit

point.

Rule 2 of Structured Programming: Two or more code blocks in sequence

are structured as shown in figure 7.7.

233

 Figure 7.7 Rule 2: A sequence of

 code blocks is structured

Structure Rule Three: Alternation

If-then-else is sometimes called alternation (because there are alternative

choices). In structured programming, each choice is a code block. If

alternation is arranged as in the flowchart at right, then there is one entry point

(at the top) and one exit point (at the bottom). The structure should be coded

so that if the entry conditions are satisfied, then the exit conditions are fulfilled

(just like a code block).

Rule 3 of Structured Programming: The alternation of two code blocks is

structured as shown in figure 7.8.

An example of an entry condition for an alternation structure is: register $8

contains a signed integer. The exit condition might be: register $8 contains the

absolute value of the signed integer. The branch structure is used to fulfill the

exit condition.

234

Figure 7.8 Rule 3: An alternation of

code blocks is structured

Structure rule four - Iteration

Iteration (while-loop) is arranged as at right. It also has one entry point and

one exit point. The entry point has conditions that must be satisfied and the

exit point has conditions that will be fulfilled. There are no jumps into the

structure from external points of the code.

Rule 4 of Structured Programming: The iteration of a code block is

structured as shown in figure 7.9.

 ?

TRUE

FALSE

ENTRY POINT

EXIT POINT

235

Figure 7.9 Rule 4: The iteration of code block is
structured
Structure Rule Five: Nesting Structures

In flowcharting terms, any code block can be expanded into any of the

structures. Or, going the other direction, if there is a portion of the flowchart

that has a single entry point and a single exit point, it can be summarized as

a single code block.

Rule 5 of Structured Programming: A structure (of any size) that has a

single entry point and a single exit point is equivalent to a code block.

For example, say that you are designing a program to go through a list of

signed integers calculating the absolute value of each one. You might (1)

first regard the program as one block, then (2) sketch in the iteration

required, and finally (3) put in the details of the loop body, as shown in figure

7.10.

236

Figure 7.10

Or, you might go the other way. Once the absolute value code is working,

you can regard it as a single code block to be used as a component of a

larger program.

You might think that these rules are OK for ensuring stable code, but that

they are too restrictive. Some power must be lost. But nothing is lost. Two

researchers, Böhm and Jacopini, proved that any program could be written

in a structured style. Restricting control flow to the forms of structured

programming loses no computing power.

237

The other control structures you may know, such as case, do-until, do-

while, and for are not needed. However, they are sometimes convenient,

and are usually regarded as part of structured programming. In assembly

language they add little convenience

7.2.2.8 Program Design Language

Program design language (PDL), also called structured English or

pseudocode, is "a pidgin language, in that, it uses the vocabulary of one

language (i.e., English) and the overall syntax of another (i.e., a structured

programming language)". PDL is used as a generic reference for a design

language.

At first glance, PDL looks like a modern programming language. The

difference between PDL and a real programming language lies in the use of

narrative text (e.g., English) embedded directly within PDL statements. Given

the use of narrative text embedded directly into a syntactical structure, PDL

cannot be compiled (at least not yet). However, PDL tools currently exist to

translate PDL into a programming language "skeleton" and/or a graphical

representation (e.g., a flowchart) of design. These tools also produce nesting

maps, a design operation index, cross-reference tables, and a variety of other

information.

238

A design language should have the following characteristics:

 A fixed syntax of keywords that provide for all structured constructs, data

declaration, and modularity characteristics.

 A free syntax of natural language that describes processing features.

 Data declaration facilities that should include both simple (scalar, array)

and complex (linked list or tree) data structures.

 Subprogram definition and calling techniques that support various modes

of interface description.

A basic PDL syntax should include constructs for subprogram definition,

interface description, data declaration, techniques for block structuring,

condition constructs, repetition constructs, and I/O constructs. The format and

semantics for some of these POL constructs are presented in the section that

follows.

It should be noted that PDL can be extended to include keywords for

multitasking and/or concurrent processing, interrupt handling, inter-process

synchronization, and many other features. The application design, for which

PDL is to be used should, dictates the final form for the design language.

7.3 Summary

239

Design is a process in which representations of data structure, program

structure, interface characteristics, and procedural details are synthesized

from information requirements. High Level Design activity includes

Architectural Design, Interface Design and Data Design. The architecture of a

system is a framework that describes its form and structure, its components

and how they interact together. An architecture style involves its components,

connectors, and constraints on combining components. Shaw and Garlan

describe seven architectural styles (i) Pipes and Filters (ii) Call-and-return

systems (iii) Object-oriented systems (iv) Layered systems (v) Data-centered

systems (vi) Distributed systems. In the data flow oriented design, DFD

representing the information flow is converted into the structure chart. The

design of user interfaces involves three categories of Human Computer

Interface (HCI) design guidelines (i) General interaction, (ii) Information

display, (iii) Data entry. Procedural design occurs after data, architectural, and

interface designs have been established. It is concerned with specifying

algorithmic details, concrete data representations, interconnections among

functions, and data structure. An important aspect here is structured

programming emphasizing the use of single entry and single exit constructs.

Using structured programming, facilitate the development of testable and

maintainable code. To specify the algorithm during detailed design PDL is a

good tool. PDL resembles a programming language that uses of narrative text

240

(e.g., English) embedded directly within PDL statements. It is easy to translate

a PDL code into an implementation using a programming language.

7.4 Keywords

Design It is a process in which representations of data structure, program

structure, interface characteristics, and procedural details are synthesized

from information requirements.

Architecture design: It defines the relationship between major structural

elements of the software, the design patterns that can be used to achieve the

requirements and the constraints that affect the implementation.

Structured programming: It is a
technique to linearize control flow through
a computer program by restricting the set
of allowed program construct to single
entry, single exit formats so that the
execution sequence follows the sequence
in which the code is written.
7.5 Self Assessment Questions

241

1. What do you understand by structured programming? What are the

different rules of structured programming? Explain.

2. What are the different architectural styles? Give an overview of them.

3. Why should we not go directly from high level design to

implementation? What is the advantage of having a detailed design in

between i.e. writing the algorithms instead of directly writing the

program using a high level language.

4. What are the desirable characteristics of human-comouter interface?

Explain.

5. Discuss the procedure of converting a DFD representing information

flow into a structured chart. Use suitable example.

7.6 References/Suggested readings

25. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

26. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

27. Software Engineering by Sommerville, Pearson Education.

242

28. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

243

Lesson No. 8 Writer: Dr. Rakesh Kumar
Coding Vetter: Dr. Yogesh Chala

8.0 Objectives

The objective of this lesson is to make the students familier

1. With the concept of coding.

2. Programming Style

3. Verification and validations techniques.

8.1 Introduction

The coding is concerned with translating design specifications into source

code. The good programming should ensure the ease of debugging, testing

and modification. This is achieved by making the source code as clear and

straightforward as possible. An old saying is “Simple is great”. Simplicity,

clarity and elegance are the hallmarks of good programs. Obscurity,

cleverness, and complexity are indications of inadequate design. Source code

clarity is enhanced by structured coding techniques, by good coding style, by

appropriate supporting documents, by good internal comments etc.

Production of high quality software requires that the programming team

should have a thorough understanding of duties and responsibilities and

244

should be provided with a well defined set of requirements, an architectural

design specification, and a detailed design description.

8.2 Presentation of contents

 8.2.1 Programming style

 8.2.1.1 Dos of good programming style

8.2.1.1.1 Use a few standard control constructs

8.2.1.1.2 Use GOTO in a disciplined way

8.2.1.1.3 Use user-defined data types to model entities in the

 problem domain

8.2.1.1.4 Hide data structure behind access functions

8.2.1.1.5 Appropriate variable names

8.2.1.1.6 Use indentation, parentheses, blank spaces, and

 blank lines to enhance readability

 8.2.1.1.7 Boolean values in decision structures

 8.2.1.1.8 Looping and control structures

8.2.1.1.9 Examine routines having more than five

formal parameters

 8.2.1.2 Don’ts of good programming style

 8.2.1.2.1 Don’t be too clever

 8.2.1.2.2 Avoid null then statement

245

 8.2.1.2.3 Avod then_If statement

 8.2.1.2.4 Don’t nest too deeply

 8.2.1.2.5 Don’t use an identifier for multiple purposes

 8.2.2 Software Verification and Validation

 8.2.2.1 Concepts and Definitions

 8.2.2.2 Reviews, Inspections, and Walkthroughs

 8.2.2.3 Testing

 8.2.2.3.1 Informal Testing

 8.2.2.3.2 Formal Testing

8.2.2.4 Verification & Validation during Software Acquisition Life

Cycle

 8.2.2.4.1 Software Concept and Initiation Phase

 8.2.2.4.2 Software Requirements Phase

 8.2.2.4.3 Software Architectural (Preliminary) Design Phase

 8.2.2.4.4 Software Detailed Design Phase

 8.2.2.4.5 Software Implementation Phase

 8.2.2.4.6 Software Integration and Test Phase

 8.2.2.4.7 Software Acceptance and Delivery Phase

8.2.2.4.8 Software Sustaining Engineering & Operations

Phase

 8.2.2.5 Independent Verification and Validation

246

 8.2.2.6 Techniques and Tools

8.2.1 Programming style

Programming style refers to the style used in writing the source code for a

computer program. Most programming styles are designed to help

programmers quickly read and understands the program as well as avoid

making errors. (Older programming styles also focused on conserving screen

space.) A good coding style can overcome the many deficiencies of a

primitive programming language, while poor style can defeat the intent of en

excellent language. The goal of good programming style is to provide

understandable, straightforward, elegant code.

The programming style used in a particular program may be derived from the

coding standards or code conventions of a company or other computing

organization, as well as the preferences of the actual programmer.

Programming styles are often designed for a specific programming language

(or language family) and are not used in whole for other languages. (Style

considered good in C source code may not be appropriate for BASIC source

code, and so on.) Good style, being a subjective matter, is difficult to

concretely categorize; however, there are several elements common to a

large number of programming styles. Programming styles are often designed

for a specific programming language and are not used in whole for other

languages. So there is no single set of rules that can be applied in every

247

situation; however there are general guidelines that are widely applicable.

These are listed below:

8.2.1.1 Dos of good programming style

1. Use a few standards, agreed upon control constructs.

2. Use GOTO in a disciplined way.

3. Use user-defined data types to model entities in the problem domain.

4. Hide data structure behind access functions

5. Isolate machine dependencies in a few routines.

6. Use appropriate variable names

7. Use indentation, parentheses, blank spaces, and blank lines to

enhance readability.

8.2.1.1.1 Use a few standard control constructs

There is no standard set of constructs for structured coding. For example to

implement loops, a number of constructs are available such as repeat-until.

While-do, for loop etc. If the implementation language does not provide

structured coding constructs, a few stylistic patterns should be used by the

programmers. This will make coding style more uniform with the result that

programs will be easier to read, easier to understand, and easier to modify.

248

8.2.1.1.2 Use GOTO in a disciplined way

The best time to use GOTO statement is never. In all the modern

programming languages, constructs are available which help you in avoiding

the use of GOTO statement, so if you are a good programmer then you can

avoid the use of GOTO statement. But if it is warranted then the acceptable

uses of GOTO statements are almost always forward transfers of control

within a local region of code. Don’t use GOTO to achieve backward transfer of

control.

8.2.1.1.3 Use user-defined data types to model entities in the problem

domain

Use of distinct data types makes it possible for humans to distinguish between

entities from the problem domain. All the modern programming languages

provide the facilities of enumerated data type. For example, if an identifier is

to be used to represent the month of a year, then instead of using integer data

type to represent it, a better option can be an enumerated data type as

illustrated below:

enum month = (jan, feb, march, april, may, june, july, aug, sep, oct, nov, dec);

month x;

Variables x is declared of month type. Using such types makes the program

much understandable.

X = july;

249

 is more meaningful than

x = 7;

8.2.1.1.4 Hide data structure behind access functions

It is the manifestation of the principle of information hiding. It is the approach

taken in data encapsulation, wherein data structures and its accessing

routines are encapsulated in a single module. So a module makes visible only

those features that are required by other modules.

8.2.1.1.5 Appropriate variable names

Appropriate choices for variable names are seen as the keystone for good

style. Poorly-named variables make code harder to read and understand. For

example, consider the following pseudo code snippet:

get a b c

if a < 24 and b < 60 and c < 60

 return true

else

 return false

Because of the choice of variable names, the function of the code is difficult to

work out. However, if the variable names are made more descriptive:

get hours minutes seconds

if hours < 24 and minutes < 60 and seconds < 60

 return true

250

else

 return false

the code's intent is easier to discern, namely, "Given a 24-hour time, true will

be returned if it is a valid time and false otherwise."

A general guideline is “use the descriptive names suggesting the purpose of

identifier”.

8.2.1.1.6 Use indentation, parentheses, blank spaces, and blank

lines to enhance readability

Programming styles commonly deal with the appearance of source code, with

the goal of improving the readability of the program. However, with the advent

of software that formats source code automatically, the focus on appearance

will likely yield to a greater focus on naming, logic, and higher techniques. As

a practical point, using a computer to format source code saves time, and it is

possible to then enforce company-wide standards without religious debates.

Indenting

Indent styles assist in identifying control flow and blocks of code. In

programming languages that use indentation to delimit logical blocks of code,

good indentation style directly affects the behavior of the resulting program. In

other languages, such as those that use brackets to delimit code blocks, the

251

indent style does not directly affect the product. Instead, using a logical and

consistent indent style makes one's code more readable. Compare:

if (hours < 24 && minutes < 60 && seconds < 60){

 return true;

} else {

 return false;

}

or

if (hours < 24 && minutes < 60 && seconds < 60)

{

 return true;

}

else

{

 return false;

}

with something like

if (hours < 24 && minutes < 60 && seconds < 60) {return true;}

else {return false;}

252

The first two examples are much easier to read because they are indented

well, and logical blocks of code are grouped and displayed together more

clearly.

This example is somewhat contrived, of course - all the above are more

complex (less stylish) than

return hours < 24 && minutes < 60 && seconds < 60;

Spacing

Free-format languages often completely ignore white space. Making good use

of spacing in one's layout is therefore considered good programming style.

Compare the following examples of C code.

 int count;

 for(count=0;count<10;count++)

 {

 printf("%d",count*count+count);

 }

with

 int count;

 for(count = 0; count < 10; count++)

 {

 printf("%d", count * count + count);

 }

253

In the C-family languages, it is also recommended to avoid using tab

characters in the middle of a line as different text editors render their width

differently.

Python uses indentation to indicate control structures, so correct indentation is

required. By doing this, the need for bracketing with curly braces ({ and }) is

eliminated, and readability is improved while not interfering with common

coding styles. However, this frequently leads to problems where code is

copied and pasted into a Python program, requiring tedious reformatting.

Additionally, Python code is rendered unusable when posted on a forum or

webpage that removes white space.

8.2.1.1.7 Boolean values in decision structures

Some programmers think decision structures such as the above, where the

result of the decision is merely computation of a Boolean value, are overly

verbose and even prone to error. They prefer to have the decision in the

computation itself, like this:

return hours < 12 && minutes < 60 && seconds < 60;

The difference is often purely stylistic and syntactic, as modern compilers

produce identical object code for both forms.

254

8.2.1.1.8 Looping and control structures

The use of logical control structures for looping adds to good programming

style as well. It helps someone reading code to understand the program's

sequence of execution (in imperative programming languages). For example,

in pseudocode:

 count = 0

 while count < 5

 print count * 2

 count = count + 1

 endwhile

The above snippet obeys the two aforementioned style guidelines, but the

following use of the "for" construct makes the code much easier to read:

 for count = 0, count < 5, count=count+1

 print count * 2

In many languages, the often used "for each element in a range" pattern can

be shortened to:

 for count = 0 to 5

 print count * 2

8.2.1.1.9 Examine routines having more than five formal parameters

Parameters are used to exachange the information among the functions or

routines. Use of more than five formal parameters gives a feeling that

255

probably the function is comples. So it is to be carefully examined. The choice

of number five is not arbitrary. It is well known that human beings can deal

with approximately seven items at one time and ease of understanding a

subprogram call or the body of subprogram is a function of the number of

parameters.

8.2.1.2 Don’ts of good programming style

1. Don’t be too clever.

2. Avoid null Then statement

3. Avoid Then If statement

4. Don’t nest too deeply.

5. Don’t use an identifier for multiple purposes.

6. Examine routines having more than five formal parameters.

8.2.1.2.1 Don’t be too clever

There is an old saying “Simple engineering is great engineering”. We should

try to keep our program simple. By making the use of tricks and showing

cleverness, sometimes the complexity is increased. This can be illustrated

using following example:

//Code to swap the values of two integer variables.

A=A+B;

256

B=A-B;

A=A-B;

You can observe the obscurity in the above code. The better approach can

be:

T=A;

A=B;

B=T;

The second version to swap the values of two inegers is more clear and

simple.

8.2.1.2.2 Avoid null then statement

A null then statement is of the form

If B then ; else S;

Which is equivalent to

If (not B) the S;

8.2.1.2.3 Avod then_If statement

A then_if statement is of the form

If(A>B) then
 if(X>Y) then
 A=X
 Else
 B=Y
 Endif
Else
 A=B
Endif

257

Then_if statement tend to obscure the conditions under which various actions

are performed. It can be rewritten in the following form:

If(A<B) then

 A=B
Elseif (X>Y) then
 B=Y
Else
 A=X
endif

8.2.1.2.4 Don’t nest too deeply

Consider the following code

While X loop

 If Y then

 While Y loop

 While Z loop

 If W then S

In the above code, it is difficult to identify the conditions under which

statement S will be executed. As a general guideline, nesting of program

constructs to depths greater than three or four levels should be avoided.

8.2.1.2.5 Don’t use an identifier for multiple purposes

Using an identifier for multiple purposes is a dangerous practice because it

makes your program highly sensitive to future modification. Moreover the

variable names should be descriptive suggesting their purposes to make the

258

program understandable. This is not possible if the identifier is used for

multiple purposes.

8.2.2 Software Verification and Validation

8.2.2.1 Concepts and Definitions

Software Verification and Validation (V&V) is the process of ensuring that

software being developed or changed will satisfy functional and other

requirements (validation) and each step in the process of building the

software yields the right products (verification). The differences between

verification and validation (shown in table 8.1) are unimportant except to the

theorist; practitioners’ use the term V&V to refer to all of the activities that are

aimed at making sure the software will function as required.

V&V is intended to be a systematic and technical evaluation of software and

associated products of the development and maintenance processes.

Reviews and tests are done at the end of each phase of the development

process to ensure software requirements are complete and testable and that

design, code, documentation, and data satisfy those requirements.

Table 8.1 Difference between verification and validation

Validation Verification

Am I building the right product? Am I building the product right?

Determining if the system complies The review of interim work steps and

259

with the requirements and

performs functions for which it is

intended and meets the

organization’s goals and user

needs. It is traditional and is

performed at the end of the

project.

interim deliverables during a project to

ensure they are acceptable. To

determine if the system is consistent,

adheres to standards, uses reliable

techniques and prudent practices, and

performs the selected functions in the

correct manner.

Am I accessing the right data (in

terms of the data required to

satisfy the requirement)

Am I accessing the data right (in the

right place; in the right way).

High level activity Low level activity

Performed after a work product is

produced against established

criteria ensuring that the product

integrates correctly into the

environment

Performed during development on key

artifacts, like walkthroughs, reviews and

inspections, mentor feedback, training,

checklists and standards

Determination of correctness of the

final software product by a

development project with respect

to the user needs and

Demonstration of consistency,

completeness, and correctness of the

software at each stage and between

each stage of the development life cycle.

260

requirements

Activities

The two major V&V activities are reviews, including inspections and

walkthroughs, and testing.

8.2.2.2 Reviews, Inspections, and Walkthroughs

Reviews are conducted during and at the end of each phase of the life cycle

to determine whether established requirements, design concepts, and

specifications have been met. Reviews consist of the presentation of material

to a review board or panel. Reviews are most effective when conducted by

personnel who have not been directly involved in the development of the

software being reviewed.

Informal reviews are conducted on an as-needed basis. The developer

chooses a review panel and provides and/or presents the material to be

reviewed. The material may be as informal as a computer listing or hand-

written documentation.

Formal reviews are conducted at the end of each life cycle phase. The

acquirer of the software appoints the formal review panel or board, who may

make or affect a go/no-go decision to proceed to the next step of the life

cycle. Formal reviews include the Software Requirements Review, the

Software Preliminary Design Review, the Software Critical Design Review,

and the Software Test Readiness Review.

261

An inspection or walkthrough is a detailed examination of a product on a step-

by-step or line-of-code by line-of-code basis. The purpose of conducting

inspections and walkthroughs is to find errors. The group that does an

inspection or walkthrough is composed of peers from development, test, and

quality assurance.

8.2.2.3 Testing

Testing is the operation of the software with real or simulated inputs to

demonstrate that a product satisfies its requirements and, if it does not, to

identify the specific differences between expected and actual results. There

are varied levels of software tests, ranging from unit or element testing

through integration testing and performance testing, up to software system

and acceptance tests.

8.2.2.3.1 Informal Testing

Informal tests are done by the developer to measure the development

progress. "Informal" in this case does not mean that the tests are done in a

casual manner, just that the acquirer of the software is not formally involved,

that witnessing of the testing is not required, and that the prime purpose of the

tests is to find errors. Unit, component, and subsystem integration tests are

usually informal tests.

262

Informal testing may be requirements-driven or design- driven. Requirements-

driven or black box testing is done by selecting the input data and other

parameters based on the software requirements and observing the outputs

and reactions of the software. Black box testing can be done at any level of

integration. In addition to testing for satisfaction of requirements, some of the

objectives of requirements-driven testing are to ascertain:

 Computational correctness.

 Proper handling of boundary conditions, including extreme inputs and

conditions that cause extreme outputs.

 State transitioning as expected.

 Proper behavior under stress or high load.

 Adequate error detection, handling, and recovery.

Design-driven or white box testing is the process where the tester examines

the internal workings of code. Design-driven testing is done by selecting the

input data and other parameters based on the internal logic paths that are to

be checked. The goals of design-driven testing include ascertaining

correctness of:

 All paths through the code. For most software products, this can be

feasibly done only at the unit test level.

 Bit-by-bit functioning of interfaces.

 Size and timing of critical elements of code.

263

8.2.2.3.2 Formal Testing

Formal testing demonstrates that the software is ready for its intended use. A

formal test should include an acquirer- approved test plan and procedures,

quality assurance witnesses, a record of all discrepancies, and a test report.

Formal testing is always requirements-driven, and its purpose is to

demonstrate that the software meets its requirements.

Each software development project should have at least one formal test, the

acceptance test that concludes the development activities and demonstrates

that the software is ready for operations.

In addition to the final acceptance test, other formal testing may be done on a

project. For example, if the software is to be developed and delivered in

increments or builds, there may be incremental acceptance tests. As a

practical matter, any contractually required test is usually considered a formal

test; others are "informal."

After acceptance of a software product, all changes to the product should be

accepted as a result of a formal test. Post acceptance testing should include

regression testing. Regression testing involves rerunning previously used

acceptance tests to ensure that the change did not disturb functions that have

previously been accepted.

8.2.2.4 Verification and Validation during the Software Acquisition Life

Cycle

264

The V&V Plan should cover all V&V activities to be performed during all

phases of the life cycle. The V&V Plan Data Item Description (DID) may be

rolled out of the Product Assurance Plan DID contained in the SMAP

Management Plan Documentation Standard and DID.

8.2.2.4.1 Software Concept and Initiation Phase

The major V&V activity during this phase is to develop a concept of how the

system is to be reviewed and tested. Simple projects may compress the life

cycle steps; if so, the reviews may have to be compressed. Test concepts

may involve simple generation of test cases by a user representative or may

require the development of elaborate simulators and test data generators.

Without an adequate V&V concept and plan, the cost, schedule, and

complexity of the project may be poorly estimated due to the lack of adequate

test capabilities and data.

8.2.2.4.2 Software Requirements Phase

V&V activities during this phase should include:

 Analyzing software requirements to determine if they are consistent with,

and within the scope of system requirements.

 Assuring that the requirements are testable and capable of being satisfied.

265

 Creating a preliminary version of the Acceptance Test Plan, including a

verification matrix, which relates requirements to the tests used to

demonstrate that requirements are satisfied.

 Beginning development, if needed, of test beds and test data generators.

 The phase-ending Software Requirements Review (SRR).

8.2.2.4.3 Software Architectural (Preliminary) Design Phase

V&V activities during this phase should include:

 Updating the preliminary version of the Acceptance Test Plan and the

verification matrix.

 Conducting informal reviews and walkthroughs or inspections of the

preliminary software and data base designs.

 The phase-ending Preliminary Design Review (PDR) at which the

allocation of requirements to the software architecture is reviewed and

approved.

8.2.2.4.4 Software Detailed Design Phase

V&V activities during this phase should include:

 Completing the Acceptance Test Plan and the verification matrix,

including test specifications and unit test plans.

266

 Conducting informal reviews and walkthroughs or inspections of the

detailed software and data base designs.

 The Critical Design Review (CDR), which completes the software, detailed

design phase.

8.2.2.4.5 Software Implementation Phase

V&V activities during this phase should include:

 Code inspections and/or walkthroughs.

 Unit testing software and data structures.

 Locating, correcting, and retesting errors.

 Development of detailed test procedures for the next two phases.

8.2.2.4.6 Software Integration and Test Phase

This phase is a major V&V effort, where the tested units from the previous

phase are integrated into subsystems and then the final system. Activities

during this phase should include:

 Conducting tests per test procedures.

 Documenting test performance, test completion, and conformance of test

results versus expected results.

 Providing a test report that includes a summary of non-conformances

found during testing.

 Locating, recording, correcting, and retesting non-conformances.

267

 The Test Readiness Review (TRR), confirming the product's readiness for

acceptance testing.

8.2.2.4.7 Software Acceptance and Delivery Phase

V&V activities during this phase should include:

 By test, analysis, and inspection, demonstrating that the developed system

meets its functional, performance, and interface requirements.

 Locating, correcting, and retesting nonconformance.

 The phase-ending Acceptance Review (AR).

8.2.2.4.8 Software Sustaining Engineering and Operations Phase

Any V&V activities conducted during the prior seven phases are conducted

during this phase as they pertain to the revision or update of the software.

8.2.2.5 Independent Verification and Validation

Independent Verification and Validation (IV&V) is a process whereby the

products of the software development life cycle phases are independently

reviewed, verified, and validated by an organization that is neither the

developer nor the acquirer of the software. The IV&V agent should have no

stake in the success or failure of the software. The IV&V agent's only interest

should be to make sure that the software is thoroughly tested against its

complete set of requirements.

268

The IV&V activities duplicate the V&V activities step-by-step during the life

cycle, with the exception that the IV&V agent does no informal testing. If

there is an IV&V agent, the formal acceptance testing may be done only once,

by the IV&V agent. In this case, the developer will do a formal demonstration

that the software is ready for formal acceptance.

8.2.2.6 Techniques and Tools

Perhaps more tools have been developed to aid the V&V of software

(especially testing) than any other software activity. The tools available

include code tracers, special purpose memory dumpers and formatters, data

generators, simulations, and emulations. Some tools are essential for testing

any significant set of software, and, if they have to be developed, may turn out

to be a significant cost and schedule driver.

An especially useful technique for finding errors is the formal inspection.

Michael Fagan of IBM developed formal inspections. Like walkthroughs,

inspections involve the line-by-line evaluation of the product being reviewed.

Inspections, however, are significantly different from walkthroughs and are

significantly more effective. A team, each member of which has a specific

role, does inspections. A moderator, who is formally trained in the inspection

process, leads the team. The team includes a reader, who leads the team

through the item; one or more reviewers, who look for faults in the item; a

269

recorder, who notes the faults; and the author, who helps explain the item

being inspected.

This formal, highly structured inspection process has been extremely effective

in finding and eliminating errors. It can be applied to any product of the

software development process, including documents, design, and code. One

of its important side benefits has been the direct feedback to the

developer/author, and the significant improvement in quality that results.

8.3 Summary

A primary goal of software implementation is production of source code that is

easy to read and understand. Clarity of source code ease debugging, testing

and modification and these activities consume a large portion of most

software budgets.

In this lesson, structured coding techniques, coding styles, standards and

guidelines have been discussed. The essential aspect of structured

programming is linearity of control flow. Linearity is assured by use of single

entry and single exit program constructs.

Programming style is manifest in the patterns of choice made amomg

alternative ways of expressing an algorithm. Consistent programming style

among different programmers enhance project communication and eases

debugging, testing and modification of the source code. Several guidelines for

270

good programming style were presented. Dos and don’ts of good

programming style were also illustrated.

8.4 Keywords

Coding: It is concerned with translating design specifications into source

code.

Programming style: It refers to the style used in writing the source code for a

computer program.

Software Validation: It is the process of ensuring that software being

developed will satisfy functional and other requirements.

Verification: it is the process to ensure that each step in the process of

building the software yields the right products.

Walkthrough: It is a detailed examination of a product on a step-by-step

basis to find errors.

8.5 Self Assessment Questions

1. What do you understand by structured programming? Why should we

do structured programming?

2. What constructs should be there in a structured programming

language?

3. Why should we avoid the use of GOTO statement?

4. What are the advantages of structured prgramming?

271

5. What do you understand by programming style? What are the dos and

don’ts of good programming style?

6. Define verification and validation. What are the differences between

them? Explain.

8.6 References/Suggested readings

29. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

30. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

31. Software Engineering by Sommerville, Pearson Education.

32. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

272

Lesson number: IX Writer: Dr. Rakesh Kumar

Software Testing - I Vetter:Dr. Dinesh Kumar

9.0 Objectives

The objective of this lesson is to make the students familiar with the concepts

and activities carried out during testing phase. After studying this lesson the

students will be familiar with following:

 Testing Fundamentals

 Test Cases and Test Criteria

 Psychology of testing

 Test Plan Activities During Testing

 Strategic Issues in Testing

 Unit testing

 Integration Testing

 Acceptance testing

9.1 Introduction

Until 1956 it was the debugging oriented period, where testing was often

associated to debugging: there was no clear difference between testing and

debugging. From 1957-1978 there was the demonstration oriented period

where debugging and testing was distinguished now - in this period it was

273

shown, that software satisfies the requirements. The time between 1979-1982

is announced as the destruction oriented period, where the goal was to find

errors. 1983-1987 is classified as the evaluation oriented period: intention

here is that during the software lifecycle a product evaluation is provided and

measuring quality. From 1988 on it was seen as prevention oriented period

where tests were to demonstrate that software satisfies its specification, to

detect faults and to prevent faults.

Software testing is the process used to help identify the correctness,

completeness, security, and quality of developed computer software. Testing

is a process of technical investigation, performed on behalf of stakeholders,

that is intended to reveal quality-related information about the product with

respect to the context in which it is intended to operate. This includes the

process of executing a program or application with the intent of finding errors.

Quality is not an absolute; it is value to some person. With that in mind,

testing can never completely establish the correctness of arbitrary computer

software; testing furnishes a criticism or comparison that compares the state

and behaviour of the product against a specification. An important point is that

software testing should be distinguished from the separate discipline of

software quality assurance, which encompasses all business process areas,

not just testing.

274

There are many approaches to software testing, but effective testing of

complex products is essentially a process of investigation, not merely a matter

of creating and following routine procedure. One definition of testing is "the

process of questioning a product in order to evaluate it", where the

"questions" are operations the tester attempts to execute with the product,

and the product answers with its behavior in reaction to the probing of the

tester. Although most of the intellectual processes of testing are nearly

identical to that of review or inspection, the word testing is connoted to mean

the dynamic analysis of the product—putting the product through its paces.

The quality of the application can, and normally does, vary widely from system

to system but some of the common quality attributes include capability,

reliability, efficiency, portability, maintainability, compatibility and usability. A

good test is sometimes described as one which reveals an error; however,

more recent thinking suggests that a good test is one which reveals

information of interest to someone who matters within the project community.

275

9.2 Presentation of contents

9.2.1 Error, fault and failure

9.2.2 Software Testing Fundamentals

9.2.3 A sample testing cycle

9.2.4 Testing Objectives

9.2.5 Testing principles

9.2.6 Psychology of Testing

9.2.7 Test Levels

9.2.8 System Testing

 9.2.8.1 Integration Testing

 9.2.8.1.1 Bottom-up integration

 9.2.8.1.2 Top-down integration

 9.2.8.2 Regression testing

 9.2.8.3 Recovery testing

 9.2.8.4 Stress testing

 9.2.8.5 Performance Testing

9.2.9 Acceptance testing

 9.2.9.1 Alpha testing

 9.2.9.2 Beta testing

276

9.2.1 Error, fault and failure

In general, software engineers distinguish software faults from software

failures. In case of a failure, the software does not do what the user expects.

A fault is a programming bug that may or may not actually manifest as a

failure. A fault can also be described as an error in the correctness of the

semantic of a computer program. A fault will become a failure if the exact

computation conditions are met, one of them being that the faulty portion of

computer software executes on the CPU. A fault can also turn into a failure

when the software is ported to a different hardware platform or a different

compiler, or when the software gets extended.

The term error is used to refer to the discrepancy between a computed,

observed or measured value and the true, specified or theoretically correct

value. Basically it refers to the difference between the actual output of a

program and the correct output.

Fault is a condition that causes a system to fail in performing its required

functions.

Failure is the inability of a system to perform a required function according to

its specification. In case of a failure the observed behavior of the system is

different from the specified behavior. Whenever there is a failure, there is a

fault in the system but vice-versa may not be true. That is, sometimes there is

a fault in the software but failure is not observed. Fault is just like an infection

277

in the body. Whenever there is fever there is an infection, but sometimes body

has infection but fever is not observed,

9.2.2 Software Testing Fundamentals

Software testing may be viewed as a sub-field of software quality assurance

but typically exists independently (and there may be no SQA areas in some

companies). In SQA, software process specialists and auditors take a broader

view on software and its development. They examine and change the

software engineering process itself to reduce the amount of faults that end up

in the code or deliver faster.

Regardless of the methods used or level of formality involved the desired

result of testing is a level of confidence in the software so that the developers

are confident that the software has an acceptable defect rate. What

constitutes an acceptable defect rate depends on the nature of the software.

A problem with software testing is that the number of defects in a software

product can be very large, and the number of configurations of the product

larger still. Bugs that occur infrequently are difficult to find in testing. A rule of

thumb is that a system that is expected to function without faults for a certain

length of time must have already been tested for at least that length of time.

This has severe consequences for projects to write long-lived reliable

software.

278

A common practice of software testing is that it is performed by an

independent group of testers after the functionality is developed but before it

is shipped to the customer. This practice often results in the testing phase

being used as project buffer to compensate for project delays. Another

practice is to start software testing at the same moment the project starts and

it is a continuous process until the project finishes.

Another common practice is for test suites to be developed during technical

support escalation procedures. Such tests are then maintained in regression

testing suites to ensure that future updates to the software don't repeat any of

the known mistakes.

It is commonly believed that the earlier a defect is found the cheaper it is to fix

it.

In counterpoint, some emerging software disciplines such as extreme

programming and the agile software development movement, adhere to a

"test-driven software development" model. In this process unit tests are

written first, by the programmers. Of course these tests fail initially; as they

are expected to. Then as code is written it passes incrementally larger

 Time Detected
Time

Introduced
Requirements Architecture Construction System

Test
Post-

Release
Requirements 1 3 5-10 10 10-100
Architecture - 1 10 15 25-100
Construction - - 1 10 10-25

279

portions of the test suites. The test suites are continuously updated as new

failure conditions and corner cases are discovered, and they are integrated

with any regression tests that are developed.

Unit tests are maintained along with the rest of the software source code and

generally integrated into the build process (with inherently interactive tests

being relegated to a partially manual build acceptance process).

The software, tools, samples of data input and output, and configurations are

all referred to collectively as a test harness.

Testing is the process of finding the differences between the expected behavior
specified by system models and the observed behavior of the system. Software
testing consists of the dynamic verification of the behavior of a program on a finite set
of test cases, suitably selected from the usually infinite executions domain, against the
specified expected behavior.

9.2.3 A sample testing cycle

Although testing varies between organizations, there is a cycle to testing:

1. Requirements Analysis: Testing should begin in the requirements

phase of the software development life cycle.

2. Design Analysis: During the design phase, testers work with

developers in determining what aspects of a design are testable and

under what parameter those tests work.

3. Test Planning: Test Strategy, Test Plan(s), Test Bed creation.

4. Test Development: Test Procedures, Test Scenarios, Test Cases, Test

Scripts to use in testing software.

280

5. Test Execution: Testers execute the software based on the plans and

tests and report any errors found to the development team.

6. Test Reporting: Once testing is completed, testers generate metrics

and make final reports on their test effort and whether or not the

software tested is ready for release.

7. Retesting the Defects

9.2.4 Testing Objectives

Glen Myres states a number of rules that can serves as testing objectives:

 Testing is a process of executing a program with the intent of finding an

error.

 A good test case is one that has the high probability of finding an as-

yet undiscovered error.

 A successful test is one that uncovers an as-yet undiscovered error.

9.2.5 Testing principles

Davis suggested the following testing principles:

 All tests should be traceable to customer requirements.

 Tests should be planned long before testing begins.

 The Pareto principle applies to software testing. According to this

principle 80 percent of all errors uncovered during testing will likely to

be traceable to 20 percent of all program modules. The problem is to

isolate these 20 percent modules and test them thoroughly.

281

 Testing should begin “in the small” and progress toward testing “in the

large”.

 Exhaustive testing is not possible.

 To be most effective, testing should be conducted by an independent

third party.

9.2.6 Psychology of Testing

“Testing cannot show the absence of defects, it can only show that software

errors are present”. So devising a set of test cases that will guarantee that all

errors will be detected is not feasible. Moreover, there are no formal or

precise methods for selecting test cases. Even though, there are a number of

heuristics and rules of thumb for deciding the test cases, selecting test cases

is still a creative activity that relies on the ingenuity of the tester. Due to this

reason, the psychology of the person performing the testing becomes

important.

The aim of testing is often to demonstrate that a program works by showing

that it has no errors. This is the opposite of what testing should be viewed as.

The basic purpose of the testing phase is to detect the errors that may be

present in the program. Hence, one should not start testing with the intent of

showing that a program works; but the intent should be to show that a

program does not work. With this in mind, we define testing as follows: testing

is the process of executing a program with the intent of finding errors.

282

This emphasis on proper intent of testing is a trivial matter because test cases

are designed by human beings, and human beings have a tendency to

perform actions to achieve the goal they have in mind. So, if the goal is to

demonstrate that a program works, we may consciously or subconsciously

select test cases that will try to demonstrate that goal and that will beat the

basic purpose of testing. On the other hand, if the intent is to show that the

program does not work, we will challenge our intellect to find test cases

towards that end, and we are likely to detect more errors. Testing is the one

step in the software engineering process that could be viewed as destructive

rather than constructive. In it the engineer creates a set of test cases that are

intended to demolish the software. With this in mind, a test case is "good" if it

detects an as-yet-undetected error in the program, and our goal during

designing test cases should be to design such "good" test cases.

Due to these reasons, it is said that the creator of a program (i.e.

programmer) should not be its tester because psychologically you cannot be

destructive to your own creation. Many organizations require a product to be

tested by people not involved with developing the program before finally

delivering it to the customer. Another reason for independent testing is that

sometimes errors occur because the programmer did not understand the

specifications clearly. Testing of a program by its programmer will not detect

such errors, whereas independent testing may succeed in finding them.

283

9.2.7 Test Levels

 Unit testing: It tests the minimal software item that can be tested. Each

component is tested independently.

 Module testing: A module is a collection of dependent components. So it is

component integration testing and it exposes defects in the interfaces and

interaction between integrated components.

 Sub-system testing: It involves testing collection of modules which have

been integrated into sub-systems. The sub-system test should concentrate

on the detection of interface errors.

 System testing: System testing tests an integrated system to verify that it

meets its requirements. It is concerned with validating that the system

meets its functional and non-functional requirements.

 Acceptance testing: Acceptance testing allows the end-user or customer to

decide whether or not to accept the product.

284

Figure 9.1 Test levels

9.2.8 SYSTEM TESTING

System testing involves two kinds of activities: integration testing and

acceptance testing. Strategies for integrating software components into a

functioning product include the bottom-up strategy, the top-down strategy, and

the sandwich strategy. Careful planning and scheduling are required to

ensure that modules will be available for integration into the evolving software

product when needed. The integration strategy dictates the order in which

modules must be available, and thus exerts a strong influence on the order in

which modules are written, debugged, and unit tested.

UNIT
TESTING

MODULE
TESTING

SUB-SYSTEM
TESTING

SYSTEM
TESTING

ACCEPTANCE
TESTING

285

Acceptance testing involves planning and execution of functional tests,

performance tests, and stress tests to verify that the implemented system

satisfies its requirements. Acceptance tests are typically performed by the

quality assurance and/or customer organizations. Depending on local

circumstances, the development group may or may not be involved in

acceptance testing. Integration testing and acceptance testing are discussed

in the following sections.

9.2.8.1 Integration Testing

Three are two important variants of integration testing, (a) Bottom-up

integration and top-down integration, which are discussed in the following

sections:

9.2.8.1.1 Bottom-up integration

Bottom-up integration is the traditional strategy used to integrate the

components of a software system into a functioning whole. Bottom-up

integration consists of unit testing, followed by subsystem testing, followed by

testing of the entire system. Unit testing has the goal of discovering errors in

the individual modules of the system. Modules are tested in isolation from one

another in an artificial environment known as a "test harness," which consists

of the driver programs and data necessary to exercise the modules. Unit

testing should be as exhaustive as possible to ensure that each

representative case handled by each module has been tested. Unit testing is

286

eased by a system structure that is composed of small, loosely coupled

modules. A subsystem consists of several modules that communicate with

each other through well-defined interfaces. Normally, a subsystem

implements a major segment of the total system. The primary purpose of

subsystem testing is to verify the operation of the interfaces between modules

in the subsystem. Both control and data interfaces must be tested. Large

software may require several levels of subsystem testing; lower-level

subsystems are successively combined to form higher-level subsystems. In

most software systems, exhaustive testing of subsystem capabilities is not

feasible due to the combinational complexity of the module interfaces;

therefore, test cases must be carefully chosen to exercise the interfaces in the

desired manner.

System testing is concerned with subtleties in the interfaces, decision logic,

control flow, recovery procedures, throughput; capacity, and timing

characteristics of the entire system. Careful test planning is required to

determine the extent and nature of system testing to be performed and to

establish criteria by which the results will be evaluated.

Disadvantages of bottom-up testing include the necessity to write and debug

test harnesses for the modules and subsystems, and the level of complexity

that result from combining modules and subsystems into larger and larger

units. The extreme case of complexity results when each module is unit tested

287

in isolation and all modules are then linked and executed in one single

integration run. This is the "big bang" approach to integration testing. The

main problem with big-bang integration is the difficulty of isolating the sources

of errors.

Test harnesses provide data environments and calling sequences for the

routines and subsystems that are being tested in isolation. Test harness

preparation can amount to 50 percent or more of the coding and debugging

effort for a software product.

9.2.8.1.2 Top-down integration

Top-down integration starts with the main routine and one or two immediately

subordinate routines in the system structure. After this top-level "skeleton" has

been thoroughly tested, it becomes the test harness for its immediately

subordinate routines. Top-down integration requires the use of program stubs

to simulate the effect of lower-level routines that are called by those being

tested.

Figure 9.2

MAIN

GET PUT PROC

SUB1 SUB2

288

1. Test MAIN module, stubs for GET, PROC, and PUT are required.

2. Integrate GET module and now test MAIN and GET

3. Integrate PROC, stubs for SUBI, SUB2 are required.

4. Integrate PUT, Test MAIN, GET, PROC, PUT

5. Integrate SUB1 and test MAIN, GET, PROC, PUT, SUBI

6. Integrate SUB2 and test MAIN, GET, PROC, PUT, SUBI, SUB2

Above Figure 9.2 illustrates integrated top-down integration testing.

Top-down integration offers several advantages:

1. System integration is distributed throughout the implementation phase.

Modules are integrated as they are developed.

2. Top-level interfaces are tested first and most often.

3. The top-level routines provide a natural test harness for lower-Level

routines.

4. Errors are localized to the new modules and interfaces that are being

added.

While it may appear that top-down integration is always preferable, there are

many situations in which it is not possible to adhere to a strict top-down

coding and integration strategy. For example, it may be difficult to find top-

Level input data that will exercise a lower level module in a particular desired

manner. Also, the evolving system may be very expensive to run as a test

harness for new routines; it may not be cost effective to relink and re-execute

289

a system of 50 or 100 routines each time a new routine is added. Significant

amounts of machine time can often be saved by testing subsystems in

isolation before inserting them into the evolving top-down structure. In some

cases, it may not be possible to use program stubs to simulate modules below

the current level (e.g. device drivers, interrupt handlers). It may be necessary

to test certain critical low-level modules first.

The sandwich testing strategy may be preferred in these situations. Sandwich

integration is predominately top-down, but bottom-up techniques are used on

some modules and subsystems. This mix alleviates many of the problems

encountered in pure top-down testing and retains the advantages of top-down

integration at the subsystem and system level.

9.2.8.2 Regression testing

After modifying software, either for a change in functionality or to fix defects, a

regression test re-runs previously passing tests on the modified software to

ensure that the modifications haven't unintentionally caused a regression of

previous functionality. Regression testing can be performed at any or all of the

above test levels. These regression tests are often automated.

In integration testing also, each time a module is added, the software

changes. New data flow paths are established, new I/O may occur, and new

control logic is invoked. Hence, there is the need of regression testing.

290

Regression testing is any type of software testing which seeks to uncover

regression bugs. Regression bugs occur whenever software functionality that

previously worked as desired stops working or no longer works in the same

way that was previously planned. Typically regression bugs occur as an

unintended consequence of program changes.

Common methods of regression testing include re-running previously run

tests and checking whether previously fixed faults have reemerged.

Experience has shown that as software is developed, this kind of

reemergence of faults is quite common. Sometimes it occurs because a fix

gets lost through poor revision control practices (or simple human error in

revision control), but just as often a fix for a problem will be "fragile" - i.e. if

some other change is made to the program, the fix no longer works. Finally, it

has often been the case that when some feature is redesigned, the same

mistakes will be made in the redesign that were made in the original

implementation of the feature.

Therefore, in most software development situations it is considered good

practice that when a bug is located and fixed, a test that exposes the bug is

recorded and regularly retested after subsequent changes to the program.

Although this may be done through manual testing procedures using

programming techniques, it is often done using automated testing tools. Such

a 'test suite' contains software tools that allows the testing environment to

291

execute all the regression test cases automatically; some projects even set up

automated systems to automatically re-run all regression tests at specified

intervals and report any regressions. Common strategies are to run such a

system after every successful compile (for small projects), every night, or

once a week.

Regression testing is an integral part of the extreme programming software

development methodology. In this methodology, design documents are

replaced by extensive, repeatable, and automated testing of the entire

software package at every stage in the software development cycle.

Uses of regression testing

Regression testing can be used not only for testing the correctness of a

program, but it is also often used to track the quality of its output. For instance

in the design of a compiler, regression testing should track the code size,

simulation time, and compilation time of the test suites.

System testing is a series of different tests and each test has a different

purpose but all work to verify that all system elements have been properly

integrated and perform allocated functions. In the following part a number of

other system tests have been discussed.

292

9.2.8.3 Recovery testing

Many systems must recover from faults and resume processing within a

specified time. Recovery testing is a system test that forces the software to

fail in a variety of ways and verifies that recovery is properly performed.

9.2.8.4 Stress testing

Stress tests are designed to confront programs with abnormal situations.

Stress testing executes a program in a manner that demands resources in

abnormal quantity, frequency, or volume. For example, a test case that may

cause thrashing in a virtual operating system.

9.2.8.5 Performance Testing

For real time and embedded systems, performance testing is essential. In

these systems, the compromise on performance is unacceptable.

Performance testing is designed to test run-time performance of software

within the context of an integrated system.

9.2.9 Acceptance testing

Acceptance testing involves planning and execution of functional tests,

performance tests, and stress tests in order to demonstrate that the

implemented system satisfies its requirements. Stress tests are performed to

test the limitations of the systems. For example, a compiler may be tested to

determine the effect of symbol table overflow.

293

Acceptance test will incorporate test cases developed during unit testing and

integration testing. Additional test cases are added to achieve the desired

level of functional, performance and stress testing of the entire system.

9.2.9.1 Alpha testing

Alpha testing is simulated or actual operational testing by potential

users/customers or an independent test team at the developers’ site. Alpha

testing is often employed for off-the-shelf software as a form of internal

acceptance testing, before the software goes to beta testing.

9.2.9.2 Beta testing

Beta testing comes after alpha testing. Versions of the software, known as

beta versions, are released to a limited audience outside of the company. The

software is released to groups of people so that further testing can ensure the

product has few faults or bugs. Sometimes, beta versions are made available

to the open public to increase the feedback field to a maximal number of

future users.

9.3 Summary
A high quality software product satisfies user needs, conforms to its requirements, and
design specifications and exhibits an absence of errors. Techniques for improving
software quality include systematic quality assurance procedures, walkthroughs,
inspections, static analysis, unit testing integration testing, acceptance testing etc.
Testing plays a critical role in quality assurance for software. Testing is a dynamic
method for verification and validation. In it the system is executed and the behavior of
the system is observed. Due, to this testing observes the failure of the system, from
which the presence of faults can be deduced.

294

The goal of the testing is to detect the errors so there are different levels of

testing. Unit testing focuses on the errors of a module while integration testing

tests the system design. There are a number of approaches of integration

testing with their own merits and demerits such as top-down integration, and

bottom up integration. To goal of the acceptance testing is to test the system

against the requirements. It comprises of alpha testing and beta testing.

The primary goal of verification and validation is to improve the quality of all

the work products generated during software development and modification.

Although testing is an important technique, but high quality cannot be

achieved by it only. High quality is best achieved by careful attention to the

details of planning, analysis, design, and implementation.

9.4 Key words

Fault: It is a programming bug that may or may not actually manifest as a

failure.

Error: It is the discrepancy between a computed, observed or measured

value and the true, specified or theoretically correct value.

Failure: It is the inability of a system to perform a required function according

to its specification.

Unit testing: It tests the minimal software item that can be tested.

295

Regression testing: It is the re-running of previously passing tests on the

modified software to ensure that the modifications haven't unintentionally

caused a regression of previous functionality.

Acceptance testing: It is done to demonstrate that the implemented system

satisfies its requirements.

Alpha testing: It is operational testing by a test team at the developers’ site.

It is a form of internal acceptance testing.

Beta testing: In this testing, the software is released to a limited audience

outside of the company for further testing to ensure the product has few faults

or bugs.

9.5 Self-Assessment Questions

1. Differentiate between

 Alpha testing and beta testing

 Top down integration and bottom up integration

2. Why the programmer of a program is not supposed to be its tester?

Explain.

3. Does simply presence of fault mean software failure? If no, justify your

answer with proper example.

4. What do you understand by regression testing and where do we use it?

5. Define testing. What characteristics are to be there in a good test case?

296

6. Explain why regression testing is necessary and how automated testing

tools can assist with this type of testing.

7. Discuss whether it is possible for engineers to test their own programs in

an objective way.

8. What do you understand by error, fault, and failure? Explain using suitable

examples.

9.6 References/Suggested readings
33. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

34. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing house.

35. Software Engineering by Sommerville, Pearson Education.

36. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

297

Lesson number: X Writer: Dr. Rakesh Kumar

Software Testing - II Vetter: Dr. Dinesh Kumar

10.0 Objectives

The objective of this lesson is to make the students familiar with the process

of test case design, to show them how program structure analysis can be

used in the testing process. After studying this lesson the students will have

the knowledge of test case design using functional and structural testing

techniques.

10.1 Introduction

Testing of the software is most time and efforts consuming activity. On

average 30 to 40 percent of total project efforts are consumed in testing. In

some real time, embedded software figure may be higher. During the

software development, errors may be introduced in any phase of the

development. Because of the human inability to perform and communicate

with perfection, software development is accompanied by quality assurance

activity. Testing is a critical element of software quality assurance. In this

chapter a number of strategies are discussed to design the test cases.

According to Myres a good test is one that reveals the presence of defects in

the software being tested. So a test suit does not detect defects, this means

298

that the test chosen have not exercised the system so that defects are

revealed. It does not mean that program defects do not exists.

10.2 Presentation of contents

 10.2.1 Test case design

 10.2.2 White-box and black-box testing

 10.2.2.1 White box testing

 10.2.2.1.1 Code coverage

 10.2.2.1.2 Data Flow testing

 10.2.2.1.3 Loop testing

 10.2.2.2 Black Box testing

 10.2.2.2.1 Equivalence class partitioning

 10.2.2.2.2 Boundary value analysis

 10.2.2.2.3 Cause-Effect Graphing

 10.2.3 Black box and white box testing compared

 10.2.4 Mutation Testing

10.2.1 Test case design

A test case is usually a single step, and its expected result, along with various

additional pieces of information. It can occasionally be a series of steps but

with one expected result or expected outcome. The optional fields are a test

case ID, test step or order of execution number, related requirement(s), depth,

test category, author, and check boxes for whether the test is automatable

299

and has been automated. Larger test cases may also contain prerequisite

states or steps, and descriptions. A test case should also contain a place for

the actual result. These steps can be stored in a word processor document,

spreadsheet, database or other common repository. In a database system,

you may also be able to see past test results and who generated the results

and the system configuration used to generate those results. These past

results would usually be stored in a separate table.

The most common term for a collection of test cases is a test suite. The test

suite often also contains more detailed instructions or goals for each collection

of test cases. It definitely contains a section where the tester identifies the

system configuration used during testing. A group of test cases may also

contain prerequisite states or steps, and descriptions of the following tests.

Collections of test cases are sometimes incorrectly termed a test plan. They

might correctly be called a test specification. If sequence is specified, it can be

called a test script, scenario or procedure.

There are two basic approaches to test case design: functional (black box)

and structural (white box). In functional testing, the structure of the program is

not considered. Structural testing, on the other hand, is concerned with testing

the implementation of the program.

300

10.2.2 White-box and black-box testing

White box and black box testing are terms used to describe the point of view a

test engineer takes when designing test cases. Black box is an external view

of the test object and white box, an internal view.

In recent years the term grey box testing has come into common usage. The

typical grey box tester is permitted to set up or manipulate the testing

environment, like seeding a database, and can view the state of the product

after her actions, like performing a SQL query on the database to be certain of

the values of columns. It is used almost exclusively of client-server testers or

others who use a database as a repository of information, but can also apply

to a tester who has to manipulate XML files (DTD or an actual XML file) or

configuration files directly. It can also be used of testers who know the internal

workings or algorithm of the software under test and can write tests

specifically for the anticipated results. For example, testing a data warehouse

implementation involves loading the target database with information, and

verifying the correctness of data population and loading of data into the

correct tables.

10.2.2.1 White box testing

White box testing (also known as clear box testing, glass box testing or

structural testing) uses an internal perspective of the system to design test

cases based on internal structure. It requires programming skills to identify all

301

paths through the software. The tester chooses test case inputs to exercise all

paths and determines the appropriate outputs. In electrical hardware testing

every node in a circuit may be probed and measured, an example is In circuit

test (ICT).

Since the tests are based on the actual implementation, if the implementation

changes, the tests probably will need to also. For example ICT needs updates

if component values change, and needs modified/new fixture if the circuit

changes. This adds financial resistance to the change process, thus buggy

products may stay buggy. Automated optical inspection (AOI) offers similar

component level correctness checking without the cost of ICT fixtures,

however changes still require test updates.

While white box testing is applicable at the unit, integration and system levels,

it's typically applied to the unit. So while it normally tests paths within a unit, it

can also test paths between units during integration, and between

subsystems during a system level test. Though this method of test design can

uncover an overwhelming number of test cases, it might not detect

unimplemented parts of the specification or missing requirements. But you

can be sure that all paths through the test object are executed.

Typical white box test design techniques include:

 Control flow testing

 Data flow testing

302

10.2.2.1.1 Code coverage

The most common structure based criteria are based on the control flow of

the program. In this criterion, a control flow graph of the program is

constructed and coverage of various aspects of the graph is specified as

criteria. A control flow graph of program consists of nodes and edges. A node

in the graph represents a block of statement that is always executed together.

An edge frm node i to node j represents a possible transfer of control after

executing the last statement in the block represented by node i to the first

statement of the block represented by node j. Three common forms of code

coverage used by testers are statement (or line) coverage, branch coverage,

and path coverage. Line coverage reports on the execution footprint of testing

in terms of which lines of code were executed to complete the test. According

to this criterion each statement of the program to be tested should be

executed at least once. Using branch coverage as the test criteria, the tester

attempts to find a set of test cases that will execute each branching statement

in each duirection at least once. A path coverage criterion acknowledges that

the order in which the btanches are executed during a test (the path

traversed) is an important factor in determining the test outcome. So tester

attempts to find a set of test cases that ensure the traversal of each logical

path in the control flow graph.

303

A Control Flow Graph (CFG) is a diagrammatic representation of a program

and its execution. A CFG shows all the possible sequences of statements of a

program. CFGs consist of all the typical building blocks of any flow diagrams.

There is always a start node, an end node, and flows (or arcs) between

nodes. Each node is labeled in order for it to be identified and associated

correctly with its corresponding part in the program code.

CFGs allow for constructs to be nested in order to represent nested loops in

the actual code. Some examples are given below in figure 10.1:

If loop While Loop Do While Loop

Figure 10.1

In programs where while loops exist, there are potentially an infinite number of

unique paths through the program. Every path through a program has a set of

associated conditions. Finding out what these conditions are allows for test

data to be created. This enables the code to be tested to a suitable degree.

The conditions that exist for a path through a program are defined by the

values of variable, which change through the execution of the code. At any

Star

1
32

End

Star

2

1

End

Star

End

1

2

304

point in the program execution, the program state is described by these

variables. Statements in the code such as "x = x + 1" alter the state of the

program by changing the value of a variable (in this case, x).

Infeasible paths are those paths, which cannot be executed. Infeasible paths

occur when no values will satisfy the path constraint.

Example:

//Program to find the largest of three numbers:

input a,b,c;

max=a;

if (b>max) max=b;

if(c=max) max=c;

output max;

The control flow graph of this program is given below in figure 10.2. In this

flowgraph node 1 represents the statements [input a,b,c;max=a;if(b>max)],

node 2 represents [max=b], node 3 represents [if(c>max)], node 4 represents

[max=c] and node 5 represents [output max].

Figure 10.2

1

4

5 3

2

305

To ensure the Statement coverage [1, 2, 3, 4, 5] one test case a=5, b=10, and

c=15 is sufficient.

To ensure Branch coverage [1, 3, 5] and [1, 2, 3, 4, 5], two test cases are

required (i) a=5, b=10, c=15 and (ii) a=15, b=10, and c=5.

To ensure Path coverage ([1,2,3,4,5], [1,3,5], [1,2,3,5], and [1,3,4,5]), four test

cases are required:

(i) a=5, b=10, c=15

(ii) a=15, b=10, and c=5.

(iii) a=5, b=10, and c=8

(iv) a=10, b=5, c=15

Path coverage criteria leads to a potentially infinite number of paths, some

efforts have been made to limit the number of paths to be tested. One such

approach is the cyclomatic complexity. The cyclomatic complexity of a path

represents the logically independent path in a program as in the above case

the cyclomatic complexity is three so three test cases are sufficient. As these

are the independent paths, all other paths can be represented as a

combination of these basic paths.

10.2.2.1.2 Data Flow testing

The data flow testing is based on the information about where the variables

are defined and where the definitions are used. During testing the definitions

of variables and their subsequent use is tested. Data flow testing looks at how

306

data moves within a program. There are a number of associated test criteria

and these should complement the control-flow criteria. Data flow occurs

through assigning a value to a variable in one place accessing that a value in

another place.

To illustrate the data flow based testing; let us assume that each statement in

the program has been assigned a unique statement number and that each

function does not modify its parameters or global variables. For a statement

with S as its statement number,

DEF(S) = { X| statement S contains a definition of X}

USE(S) = { X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set

is based on the condition of statement S. The definition of variable X is said to

be live at the statement S’ if there exists a path from statement S to statement

S’ that does not contain any other definition of X. A Definition Use chain (DU

chain) of variable X is of the form [X, S, S’], where S and S’ are statement

numbers, X is in DEF(S) and USE(S’), and the definition of X in the statement

S is live at the statement S’.

One simple data flow testing strategy is to require that every DU chain be

covered at least once. This strategy is known as DU testing strategy.

307

10.2.2.1.3 Loop testing

Loops are very important constructs for generally all the algorithms. Loop

testing is a white box testing technique. It focuses exclusively on the validity of

loop constructs. Four different types of loops are: simple loop, concatenated

loop, nested loop, and unstructured loop as shown in figure 10.3.

Simple loop: The following set of tests should be applied to simple loop

where n is the maximum number of allowable passes thru the loop:

- Skip the loop entirely.

- Only one pass thru the loop.

- Two passes thru the loop.

- M passes thru the loop where m < n.

- N-1, n, n+1 passes thru the loop.

308

Simple loop Nested loop Concatenated loop Unstructured loop

Figure 10.3

Nested loop: Beizer approach to the nested loop is:

- Start at the innermost loop. Set all other loops to minimum value.

- Conduct the simple loop test for the innermost loop while holding the

outer loops at their minimum iteration parameter value.

- Work outward, conducting tests for next loop, but keeping all other

outer loops at minimum values and other nested loops to typical

values.

- Continue until all loops have been tested.

309

Concatenated loops: These can be tested using the approach of simple

loops if each loop is independent of other. However, if the loop counter of loop

1 is used as the initial value for loop 2 then approach of nested loop is to be

used.

Unstructured loop: This class of loops should be redesigned to reflect the

use of the structured programming constructs.

10.2.2.2 Black Box testing

Black box testing takes an external perspective of the test object to derive test

cases. These tests can be functional or non-functional, though usually

functional. The test designer selects valid and invalid input and determines

the correct output. There is no knowledge of the test object's internal

structure.

This method of test design is applicable to all levels of development - unit,

integration, system and acceptance. The higher the level, and hence the

bigger and more complex the box, the more we are forced to use black box

testing to simplify. While this method can uncover unimplemented parts of the

specification, you can't be sure that all existent paths are tested. Some

common approaches of black box testing are equivalence class partitioning,

boundary value analysis etc.

310

10.2.2.2.1 Equivalence class partitioning

Equivalence partitioning is software testing related technique with the goal:

1. To reduce the number of test cases to a necessary minimum.

2. To select the right test cases to cover all possible scenarios.

Although in rare cases equivalence partitioning is also applied to outputs of a

software component, typically it is applied to the inputs of a tested component.

The equivalence partitions are usually derived from the specification of the

component's behaviour. An input has certain ranges which are valid and other

ranges which are invalid. This may be best explained at the following example

of a function which has the pass parameter "month" of a date. The valid range

for the month is 1 to 12, standing for January to December. This valid range is

called a partition. In this example there are two further partitions of invalid

ranges. The first invalid partition would be <= 0 and the second invalid

partition would be >= 13.

-2, -1, 0 1,2,……..12 13, 14, 15

Invalid partition 1 Valid partition Invalid partition 2

The testing theory related to equivalence partitioning says that only one test

case of each partition is needed to evaluate the behaviour of the program for

the related partition. In other words it is sufficient to select one test case out of

each partition to check the behaviour of the program. To use more or even all

test cases of a partition will not find new faults in the program. The values

311

within one partition are considered to be "equivalent". Thus the number of test

cases can be reduced considerably.

An additional effect by applying this technique is that you also find the so

called "dirty" test cases. An inexperienced tester may be tempted to use as

test cases the input data 1 to 12 for the month and forget to select some out

of the invalid partitions. This would lead to a huge number of unnecessary test

cases on the one hand, and a lack of test cases for the dirty ranges on the

other hand.

The tendency is to relate equivalence partitioning to the so called black box

testing which is strictly checking a software component at its interface, without

consideration of internal structures of the software. But having a closer look

on the subject there are cases where it applies to the white box testing as

well. Imagine an interface to a component which has a valid range between 1

and 12 like in the example above. However internally the function may have a

differentiation of values between 1 and 6 and the values between 7 and 12.

Depending on the input value the software internally will run through different

paths to perform slightly different actions. Regarding the input and output

interfaces to the component this difference will not be noticed, however in

your white-box testing you would like to make sure that both paths are

examined. To achieve this it is necessary to introduce additional equivalence

312

partitions which would not be needed for black-box testing. For this example

this would be:

-2, -1, 0 1,…..6 7,……12 13, 14, 15

P1 P2
Invalid Partition 1

Valid Partition
Invalid Partition 2

To check for the expected results you would need to evaluate some internal

intermediate values rather than the output interface.

Equivalence partitioning is no stand alone method to determine test cases. It

has to be supplemented by boundary value analysis. Having determined the

partitions of possible inputs the method of boundary value analysis has to be

applied to select the most effective test cases out of these partitions.

10.2.2.2.2 Boundary value analysis

Boundary value analysis is software testing related technique to determine

test cases covering known areas of frequent problems at the boundaries of

software component input ranges. Testing experience has shown that

especially the boundaries of input ranges to a software component are liable

to defects. A programmer who has to implement e.g. the range 1 to 12 at an

input, which e.g. stands for the month January to December in a date, has in

his code a line checking for this range. This may look like:

 if (month > 0 && month < 13)

313

But a common programming error may check a wrong range e.g. starting the

range at 0 by writing:

 if (month >= 0 && month < 13)

For more complex range checks in a program this may be a problem which is

not so easily spotted as in the above simple example.

Applying boundary value analysis

To set up boundary value analysis test cases you first have to determine

which boundaries you have at the interface of a software component. This has

to be done by applying the equivalence partitioning technique. Boundary

value analysis and equivalence partitioning are inevitably linked together. For

the example of the month in a date you would have the following partitions:

-2, -1, 0 1,2,……..12 13, 14, 15

Invalid partition 1 Valid partition Invalid partition 2

Applying boundary value analysis you have to select now a test case at each

side of the boundary between two partitions. In the above example this would

be 0 and 1 for the lower boundary as well as 12 and 13 for the upper

boundary. Each of these pairs consists of a "clean" and a "dirty" test case. A

"clean" test case should give you a valid operation result of your program. A

"dirty" test case should lead to a correct and specified input error treatment

such as the limiting of values, the usage of a substitute value, or in case of a

program with a user interface, it has to lead to warning and request to enter

314

correct data. The boundary value analysis can have 6 textcases.n,n-1,n+1 for

the upper limit and n,n-1,n+1 for the lower limit.

A further set of boundaries has to be considered when you set up your test

cases. A solid testing strategy also has to consider the natural boundaries of

the data types used in the program. If you are working with signed values this

is especially the range around zero (-1, 0, +1). Similar to the typical range

check faults programmers tend to have weaknesses in their programs in this

range. E.g. this could be a division by zero problems when a zero value is

possible to occur although the programmer always thought the range starting

at 1. It could be a sign problem when a value turns out to be negative in some

rare cases, although the programmer always expected it to be positive. Even

if this critical natural boundary is clearly within an equivalence partition it

should lead to additional test cases checking the range around zero. A further

natural boundary is the natural lower und upper limit of the data type itself.

E.g. an unsigned 8-bit value has the range of 0 to 255. A good test strategy

would also check how the program reacts at an input of -1 and 0 as well as

255 and 256.

The tendency is to relate boundary value analysis more to the so called black

box testing which is strictly checking a software component at its interfaces,

without consideration of internal structures of the software. But having a

315

closer look on the subject there are cases where it applies also to white box

testing.

After determining the necessary test cases with equivalence partitioning and

the subsequent boundary value analysis it is necessary to define the

combinations of the test cases in case of multiple inputs to a software

component.

10.2.2.2.3 Cause-Effect Graphing

One weakness with the equivalence class partitioning and boundary value

methods is that they consider each input separately. That is, both concentrate

on the conditions and classes of one input. They do not consider

combinations of input circumstances that may form interesting situations that

should be tested. One way to exercise combinations of different input

conditions is to consider all valid combinations of the equivalence classes of

input conditions. This simple approach will result in an unusually large number

of test cases, many of which will not be useful for revealing any new errors.

For example, if there are n different input conditions, such that any

combination of the input conditions is valid, we will have 2n test cases.

Cause-effect graphing is a technique that aids in selecting combinations of

input conditions in a systematic way, such that the number of test cases does

not become unmanageably large. The technique starts with identifying causes

and effects of the system under testing. A cause is a distinct input condition,

316

and an effect is a distinct output condition. Each condition forms a node in the

cause-effect graph. The conditions should be stated such that they can be set

to either true or false. For example, an input condition can be "file is empty,"

which can be set to true by having an empty input file, and false by a

nonempty file. After identifying the causes and effects, for each effect we

identify the causes that can produce that effect and how the conditions have

to be combined to make the effect true. Conditions are combined using the

Boolean operators "and", "or", and "not", which are represented in the graph

by Λ, V and zigzag line respectively. Then, for each effect, all combinations of

the causes that the effect depends on which will make the effect true, are

generated (the causes that the effect does not depend on are essentially

"don't care"). By doing this, we identify the combinations of conditions that

make different effects true. A test case is then generated for each

combination of conditions, which make some effect true.

Let us illustrate this technique with a small example. Suppose that for a bank

database there are two commands allowed:

credit acct-number transaction_amount

debit acct-number transaction_amount

The requirements are that if the command is credit and the acct-number is

valid, then the account is credited. If the command is debit, the acct-number is

valid, and the transaction_amount is valid (less than the balance), then the

317

account is debited. If the command is not valid, the account number is not

valid, or the debit amount is not valid, a suitable message is generated. We

can identify the following causes and effects from these requirements:

Cause:

c1. Command is credit

c2. Command is debit

c3. Account number is valid

c4. Transaction_amt. is valid

Effects:

el. Print "invalid command"

e2. Print "invalid account-number"

e3. Print "Debit amount not valid"

e4. Debit account

e5. Credit account

The cause effect of this is shown in following Figure 10.4. In the graph, the

cause-effect relationship of this example is captured. For all effects, one can

easily determine the causes each effect depends on and the exact nature of

the dependency. For example, according to this graph, the effect E5 depends

on the causes c2, c3, and c4 in a manner such that the effect E5 is enabled

when all c2, c3, and c4 are true. Similarly, the effect E2 is enabled if c3 is false.

318

From this graph, a list of test cases can be generated. The basic strategy is to

set an effect to I and then set the causes that enable this condition. The

condition of causes forms the test case. A cause may be set to false, true, or

don't care (in the case when the effect does not depend at all on the cause).

To do this for all the effects, it is convenient to use a decision table (Table

10.1). This table lists the combinations of conditions to set different effects.

Each combination of conditions in the table for an effect is a test case.

Together, these condition combinations check for various effects the software

should display. For example, to test for the effect E3, both c2 and c4 have to be

set. That is, to test the effect "Print debit amount not valid," the test case

should be: Command is debit (setting: c2 to True), the account number is valid

(setting c3 to False), and the transaction money is not proper (setting c4 to

False).

319

Figure 10.4 The Cause Effect Graph

SNo. 1 2 3 4 5

Cl 0 1 x x 1

C2 0 x 1 1 x

C3 x 0 1 1 1

C4 x x 0 1 1

El 1

E2 1

E3 1

E4 1

E5 1

Table 10.1 Decision Table for the Cause-effect Graph

E4

C1

C4

C3

C2

E2

E3

E5

E1

320

Cause-effect graphing, beyond generating high-yield test cases, also aids the

understanding of the functionality of the system, because the tester must

identify the distinct causes and effects. There are methods of reducing the

number of test cases generated by proper traversing of the graph. Once the

causes and effects are listed and their dependencies specified, much of the

remaining work can also be automated.

10.2.3 Black box and white box testing compared

White box testing is concerned only with testing the software product; it

cannot guarantee that the complete specification has been implemented.

Black box testing is concerned only with testing the specification; it cannot

guarantee that all parts of the implementation have been tested. Thus black

box testing is testing against the specification and will discover

faults of omission, indicating that part of the specification has not been

fulfilled. White box testing is testing against the implementation and will

discover faults of commission, indicating that part of the implementation is

faulty. In order to fully test a software product both black and white box testing

are required.

White box testing is much more expensive than black box testing. It requires

the source code to be produced before the tests can be planned and is much

more laborious in the determination of suitable input data and the

determination if the software is or is not correct. The advice given is to start

321

test planning with a black box test approach as soon as the specification is

available. White box planning should commence as soon as all black box

tests have been successfully passed, with the production of flow graphs and

determination of paths. The paths should then be checked against the black

box test plan and any additional required test runs determined and applied.

The consequences of test failure at this stage may be very expensive. A

failure of a white box test may result in a change which requires all black box

testing to be repeated and the re-determination of the white box paths. The

cheaper option is to regard the process of testing as one of quality assurance

rather than quality control. The intention is that sufficient quality will be put into

all previous design and production stages so that it can be expected that

testing will confirm that there are very few faults present, quality assurance,

rather than testing being relied upon to discover any faults in the software,

quality control. A combination of black box and white box test considerations

is still not a completely adequate test rationale; additional considerations are

to be introduced.

10.2.4 Mutation Testing

Mutation testing is another white box testing technique. Mutation testing is a

fault-based testing technique that is based on the assumption that a program

is well tested if all simple faults are predicted and removed; complex faults are

322

coupled with simple faults and are thus detected by tests that detect simple

faults.

Mutation testing is used to test the quality of your test suite. This is done by

mutating certain statements in your source code and checking if your test

code is able to find the errors. However, mutation testing is very expensive

to run, especially on very large applications. There is a mutation testing tool,

Jester, which can be used to run mutation tests on Java code. Jester looks

at specific areas of your source code, for example: forcing a path through an

if statement, changing constant values, and changing Boolean values

The idea of mutation testing was introduced as an attempt to solve the

problem of not being able to measure the accuracy of test suites. The thinking

goes as follows: Let’s assume that we have a perfect test suite, one that

covers all possible cases. Let’s also assume that we have a perfect program

that passes this test suite. If we change the code of the program (this process

is called mutation) and we run the mutated program (mutant) against the test

suite, we will have two possible scenarios:

1. The results of the program were affected by the code change and the

test suite detects it. If this happens, the mutant is called a killed mutant.

2. The results of the program are not changed and the test suite does not

detect the mutation. The mutant is called an equivalent mutant.

323

The ratio of killed mutants to the total mutants created measures how

sensitive the program is to the code changes and how accurate the test suite

is.

The effectiveness of Mutation Testing depends heavily on the types of faults

that the mutation operators are designed to represent. By mutation operators

we mean certain aspects of the programming techniques, the slightest change

in which may cause the program to function incorrectly. For example, a simple

condition check in the following code may perform viciously because of a little

change in the code.

1. Original Code: for (x==1) { ….}

2. Mutated Code: for (x<=1) { ….}

In the example above the ‘equality condition’ was considered as a mutation

operator and a little change in the condition is brought into effect as shown in

the mutated code and the program is tested for its functionality.

Mutation Operators

Following could be some of the Mutation Operators for Object-Oriented

languages like Java, C++ etc.

 Changing the access modifiers, like public to private etc.

 Static modifier change.

 Argument order change.

 Super keyword deletion.

324

Summary
A high quality software product satisfies user needs, conforms to its requirements, and
design specifications and exhibits an absence of errors. Techniques for improving
software quality include systematic quality assurance procedures, walkthroughs,
inspections, static analysis, unit testing integration testing, acceptance testing etc.
Testing plays a critical role in quality assurance for software. Testing is a dynamic
method for verification and validation. In it the system is executed and the behavior of
the system is observed. Due, to this testing observes the failure of the system, from
which the presence of faults can be deduced.

There are two basic approaches to testing: white box testing and black box

testing. In white box testing the structure of the program i.e. internal logic is

considered to decide the test cases while in black box testing the examples of

which are boundary value analysis, equivalence partitioning, the test cases

are deduced on the basis of external specification of the program. So the

functionality of the program is tested.

The goal of the testing is to detect the errors so there are different levels of

testing. Unit testing focuses on the errors of a module while integration testing

tests the system design. To goal of the acceptance testing is to test the

system against the requirements.

The primary goal of verification and validation is to improve the quality of all

the work products generated during software development and modification.

Although testing is an important technique, but high quality cannot be

achieved by it only. High quality is best achieved by careful attention to the

details of planning, analysis, design, and implementation.

Key words

325

White box testing: It uses an internal perspective of the system to design

test cases based on internal structure.

Mutation testing: It is used to test the quality of your test suite by mutating

certain statements in your source code and checking if your test code is able

to find the errors.

Boundary value analysis It is a technique to determine test cases covering

known areas of frequent problems at the boundaries of software component

input ranges.

Black box: It takes an external perspective of the test object to derive test

cases.

Equivalence partitioning: It is a technique with the goal to reduce the

number of test cases to a necessary minimum and to select the right test

cases to cover all possible scenarios. By dividing the input ranges into

equivalent partition and then selecting one representative from each partition.

Self-Assessment Questions

9. Differentiate between

 Black box testing and white box testing.

 Alpha testing and beta testing

 Top down integration and bottom up integration

 Control flow based and data flow based testing

326

10. What is boundary value analysis? Explain using suitable examples.

11. What is equivalence class partitioning? What are the advantages of using this

testing technique?

12. What do you understand by structural testing? Using an example show

that path coverage criteria is stronger than statement coverage and branch

coverage criteria.

13. Write a module to compute the factorial of a given integer N. Design the

test cases using boundary value analysis and equivalence class

partitioning technique.

14. Why the programmer of a program is not supposed to be its tester?

Explain.

15. What types of errors are detected by boundary value analysis and

equivalence class partitioning techniques? Explain using suitable

examples.

16. Using suitable examples show that:

- Path coverage is a stronger criterion than branch coverage.

- Branch coverage is a stronger criterion than statement coverage.

17. Does simply presence of fault mean software failure? If no, justify your

answer with proper example.

18. What do you understand by regression testing and where do we use it?

19. Define testing. What characteristics are to be there in a good test case?

20. What do you understand by loop testing? Write a program for bubble sort

and design the test cases using the loop testing criteria.

327

21. What is cyclomatic complexity? How does cyclomatic complexity number

help in testing? Explain using suitable examples.

References/Suggested readings

37. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

38. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

39. Software Engineering by Sommerville, Pearson Education.

40. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

328

Lesson no. XI Writer: Dr. Rakesh Kumar

Software Reliability Vetter: Dr. PradeepK.Bhatia

11.0 Objectives

The objectives of this lesson are:

1. To introduce the concepts of reliability.

2. To discuss the metrics to measure software reliability.

3. To discuss the approaches to make software fault tolerant.

4. To make the students acquainted with the reliability growth modeling.

11.1 Introduction

With the advent of the computer age, computers, as well as the software

running on them, are playing a vital role in our daily lives. We may not have

noticed, but appliances such as washing machines, telephones, TVs, and

watches, are having their analog and mechanical parts replaced by CPUs and

software. The computer industry is booming exponentially. With a

continuously lowering cost and improved control, processors and software-

controlled systems offer compact design, flexible handling, rich features and

competitive cost. Like machinery-replaced craftsmanship in the industrial

revolution, computers and intelligent parts are quickly pushing their

mechanical counterparts out of the market.

329

People used to believe that "software never breaks". Intuitively, unlike

mechanical parts such as bolts, levers, or electronic parts such as transistors,

capacitor, software will stay "as is" unless there are problems in hardware that

changes the storage content or data path. Software does not age, rust, wear-

out, deform or crack. There is no environmental constraint for software to

operate as long as the hardware processor it runs on can operate.

Furthermore, software has no shape, color, material, and mass. It cannot be

seen or touched, but it has a physical existence and is crucial to system

functionality.

Without being proven to be wrong, optimistic people would think that once

after the software can run correctly, it will be correct forever. A series of

tragedies and chaos caused by software proves this to be wrong. These

events will always have their place in history.

Tragedies in Therac 25, a computer-controlled radiation-therapy machine in

the year 1986, caused by the software not being able to detect a race

condition, alerts us that it is dangerous to abandon our old but well-

understood mechanical safety control and surrender our lives completely to

software controlled safety mechanism.

Software can make decisions, but can just as unreliable as human beings.

The British destroyer Sheffield was sunk because the radar system identified

an incoming missile as "friendly". The defense system has matured to the

330

point that it will not mistaken the rising moon for incoming missiles, but gas-

field fire, descending space junk, etc, were also examples that can be

misidentified as incoming missiles by the defense system.

Software can also have small unnoticeable errors or drifts that can culminate

into a disaster. On February 25, 1991, during the Golf War, the chopping error

that missed 0.000000095 second in precision in every 10th of a second,

accumulating for 100 hours, made the Patriot missile fail to intercept a scud

missile. 28 lives were lost.

Fixing problems may not necessarily make the software more reliable. On the

contrary, new serious problems may arise. In 1991, after changing three lines

of code in a signaling program which contains millions lines of code, the local

telephone systems in California and along the Eastern seaboard came to a

stop.

Once perfectly working software may also break if the running environment

changes. After the success of Ariane 4 rocket, the maiden flight of Ariane 5

ended up in flames while design defects in the control software were unveiled

by faster horizontal drifting speed of the new rocket.

There are much more scary stories to tell. This makes us wondering whether

software is reliable at all, whether we should use software in safety-critical

embedded applications. You can hardly ruin your clothes if the embedded

software in your washing machine issues erroneous commands; and 50% of

331

the chances you will be happy if the ATM machine miscalculates your money;

but in airplanes, heart pace-makers, radiation therapy machines, a software

error can easily claim people's lives. With processors and software

permeating safety critical embedded world, the reliability of software is simply

a matter of life and death.

11.2 Presentation of contents

11.2.1 Definition

11.2.2 Software failure mechanisms

11.2.3 The bathtub curve for Software Reliability

11.2.4 Available tools, techniques, and metrics

11.2.5 Software Reliability Models

11.2.6 Software Reliability Metrics

11.2.6.1 Product metrics

11.2.6.2 Project management metrics

11.2.6.3 Process metrics

11.2.6.4 Fault and failure metrics
11.2.7 Software Reliability Improvement Techniques

11.2.8 Software Fault Tolerance

11.2.9 Software fault tolerance techniques

332

11.2.9.1 Recovery Blocks

11.2.9.2 N-version Software
11.2.9.3 N-version software and recover block - comparison

11.2.10 Reliability Models

11.2.11 J-M Model

11.2.12 Goel-Okumoto model
 11.2.13 Musa’s Basic Execution Time Model

 11.2.14 Markov Model

11.2.1 Definition

According to ANSI, Software Reliability is defined as: the probability of failure-

free software operation for a specified period of time in a specified

environment. Although Software Reliability is defined as a probabilistic

function, and comes with the notion of time, we must note that, different from

traditional Hardware Reliability, Software Reliability is not a direct function of

time. Electronic and mechanical parts may become "old" and wear out with

time and usage, but software will not wear-out during its life cycle. Software

will not change over time unless intentionally changed or upgraded.

Software Reliability is an important attribute of software quality, together with

functionality, usability, performance, serviceability, capability, installability,

maintainability, and documentation. Software Reliability is hard to achieve,

because the complexity of software tends to be high. While any system with a

333

high degree of complexity, including software, will be hard to reach a certain

level of reliability, system developers tend to push complexity into the

software layer, with the rapid growth of system size and ease of doing so by

upgrading the software. For example, large next-generation aircraft will have

over one million source lines of software on-board; next-generation air traffic

control systems will contain between one and two million lines; the upcoming

international Space Station will have over two million lines on-board and over

ten million lines of ground support software; several major life-critical defense

systems will have over five million source lines of software. While the

complexity of software is inversely related to software reliability, it is directly

related to other important factors in software quality, especially functionality,

capability, etc. Emphasizing these features will tend to add more complexity to

software.

11.2.2 Software failure mechanisms

The software failure may be classified as:

 Transient failure: These failures only occur with certain inputs.

 Permanent failure: this failure occurs on all inputs.

 Recoverable failure: System can recover without operator help.

 Unrecoverable failure: System can recover with operator help only.

 Non-corruption failure: Failure does not corrupt system state or data.

 Corrupting failure: It corrupts system state or data.

334

Software failures may be due to errors, ambiguities, oversights or

misinterpretation of the specification that the software is supposed to satisfy,

carelessness or incompetence in writing code, inadequate testing, incorrect or

unexpected usage of the software or other unforeseen problems. While it is

tempting to draw an analogy between Software Reliability and Hardware

Reliability, software and hardware have basic differences that make them

different in failure mechanisms. Hardware faults are mostly physical faults,

while software faults are design faults, which are harder to visualize, classify,

detect, and correct. Design faults are closely related to fuzzy human factors

and the design process, which we don't have a solid understanding. In

hardware, design faults may also exist, but physical faults usually dominate.

In software, we can hardly find a strict corresponding counterpart for

"manufacturing" as hardware manufacturing process, if the simple action of

uploading software modules into place does not count. Therefore, the quality

of software will not change once it is uploaded into the storage and start

running. Trying to achieve higher reliability by simply duplicating the same

software modules will not work, because voting cannot mask off design faults.

A partial list of the distinct characteristics of software compared to hardware is

listed below:

 Failure cause: Software defects are mainly design defects.

335

 Wear-out: Software does not have energy related wear-out phase. Errors

can occur without warning.

 Repairable system concept: Periodic restarts can help fix software

problems.

 Time dependency and life cycle: Software reliability is not a function of

operational time.

 Environmental factors: Do not affect Software reliability, except it might

affect program inputs.

 Reliability prediction: Software reliability cannot be predicted from any

physical basis, since it depends completely on human factors in design.

 Redundancy: Cannot improve Software reliability if identical software

components are used.

 Interfaces: Software interfaces are purely conceptual other than visual.

 Failure rate motivators: Usually not predictable from analyses of

separate statements.

 Built with standard components: Well-understood and extensively

tested standard parts will help improve maintainability and reliability. But in

software industry, we have not observed this trend. Code reuse has been

around for some time, but to a very limited extent. Strictly speaking there

are no standard parts for software, except some standardized logic

structures.

336

11.2.3 The bathtub curve for Software Reliability

Over time, hardware exhibits the failure characteristics shown in following

Figure 11.1, known as the bathtub curve. Period A, B and C stand for burn-in

phase, useful life phase and end-of-life phase respectively.

Figure 11.1 Bathtub curve for hardware reliability

Software reliability, however, does not show the same characteristics similar

as hardware. A possible curve is shown in following Figure 11.2 if we

projected software reliability on the same axes. There are two major

differences between hardware and software curves. One difference is that in

the last phase, software does not have an increasing failure rate as hardware

does. In this phase, software is approaching obsolescence; there are no

337

motivations for any upgrades or changes to the software. Therefore, the

failure rate will not change. The second difference is that in the useful-life

phase, software will experience a drastic increase in failure rate each time an

upgrade is made. The failure rate levels off gradually, partly because of the

defects found and fixed after the upgrades.

Figure 11.2 Revised bathtub curve for software reliability

The upgrades in above Figure imply feature upgrades, not upgrades for

reliability. For feature upgrades, the complexity of software is likely to be

increased, since the functionality of software is enhanced. Even bug fixes may

be a reason for more software failures, if the bug fix induces other defects into

software. For reliability upgrades, it is possible to incur a drop in software

failure rate, if the goal of the upgrade is enhancing software reliability, such as

338

a redesign or reimplementation of some modules using better engineering

approaches, such as clean-room method.

Following Figure shows the testing results of fifteen POSIX compliant

operating systems. From the graph we see that for QNX and HP-UX,

robustness failure rate increases after the upgrade. But for SunOS, IRIX and

Digital UNIX, robustness failure rate drops when the version numbers go up.

Since software robustness is one aspect of software reliability, this result

indicates that the upgrade of those systems shown in following Figure 11.3

should have incorporated reliability upgrades.

Figure 11.3

339

11.2.4 Available tools, techniques, and metrics

Since Software Reliability is one of the most important aspects of software

quality, Reliability Engineering approaches are practiced in software field as

well. Software Reliability Engineering (SRE) is the quantitative study of the

operational behavior of software-based systems with respect to user

requirements concerning reliability.

11.2.5 Software Reliability Models

A proliferation of software reliability models have emerged as people try to

understand the characteristics of how and why software fails, and try to

quantify software reliability. Over 200 models have been developed since the

early 1970s, but how to quantify software reliability still remains largely

unsolved. As many models as there are and many more emerging, none of

the models can capture a satisfying amount of the complexity of software;

constraints and assumptions have to be made for the quantifying process.

Therefore, there is no single model that can be used in all situations. No

model is complete or even representative. One model may work well for a set

of certain software, but may be completely off track for other kinds of

problems.

Most software models contain the following parts: assumptions, factors, and a

mathematical function that relates the reliability with the factors. The

mathematical function is usually higher order exponential or logarithmic.

340

Software modeling techniques can be divided into two subcategories:

prediction modeling and estimation modeling. Both kinds of modeling

techniques are based on observing and accumulating failure data and

analyzing with statistical inference. The major differences of the two models

are shown in following Table 11.1.

ISSUES PREDICTION MODELS ESTIMATION MODELS

DATA REFERENCE Uses historical data Uses data from the current

software development effort

WHEN USED IN

DEVELOPMENT

CYCLE

Usually made prior to

development or test phases; can

be used as early as concept

phase

Usually made later in life cycle

(after some data have been

collected); not typically used in

concept or development phases

TIME FRAME Predict reliability at some future

time

Estimate reliability at either

present or some future time

Table 11.1 Difference between software reliability prediction models and

software reliability estimation models

Representative prediction models include Musa's Execution Time Model,

Putnam's Model, and Rome Laboratory models TR-92-51 and TR-92-15, etc.

Using prediction models, software reliability can be predicted early in the

development phase and enhancements can be initiated to improve the

reliability.

341

Representative estimation models include exponential distribution models,

Weibull distribution model, Thompson and Chelson's model, etc. Exponential

models and Weibull distribution model are usually named as classical fault

count/fault rate estimation models, while Thompson and Chelson's model

belong to Bayesian fault rate estimation models.

The field has matured to the point that software models can be applied in

practical situations and give meaningful results and, second, that there is no

one model that is best in all situations. Because of the complexity of software,

any model has to have extra assumptions. Only limited factors can be put into

consideration. Most software reliability models ignore the software

development process and focus on the results -- the observed faults and/or

failures. By doing so, complexity is reduced and abstraction is achieved,

however, the models tend to specialize to be applied to only a portion of the

situations and a certain class of the problems. We have to carefully choose

the right model that suits our specific case. Furthermore, the modeling results

cannot be blindly believed and applied.

11.2.6 Software Reliability Metrics

Measurement is commonplace in other engineering field, but not in software

engineering. Though frustrating, the quest of quantifying software reliability

has never ceased. Until now, we still have no good way of measuring

software reliability.

342

Measuring software reliability remains a difficult problem because we don't

have a good understanding of the nature of software. There is no clear

definition to what aspects are related to software reliability. We cannot find a

suitable way to measure software reliability, and most of the aspects related

to software reliability. Even the most obvious product metrics such as

software size have not uniform definition.

It is tempting to measure something related to reliability to reflect the

characteristics, if we cannot measure reliability directly. The current practices

of software reliability measurement can be divided into four categories:

11.2.6.1 Product metrics
Software size is thought to be reflective of complexity, development effort and

reliability. Lines Of Code (LOC), or LOC in thousands (KLOC), is an intuitive

initial approach to measuring software size. But there is not a standard way of

counting. Typically, source code is used (SLOC, KSLOC) and comments and

other non-executable statements are not counted. This method cannot

faithfully compare software not written in the same language. The advent of

new technologies of code reuse and code generation technique also cast

doubt on this simple method.

Function point metric is a method of measuring the functionality of a proposed

software development based upon a count of inputs, outputs, master files,

inquires, and interfaces. The method can be used to estimate the size of a

343

software system as soon as these functions can be identified. It is a measure

of the functional complexity of the program. It measures the functionality

delivered to the user and is independent of the programming language. It is

used primarily for business systems; it is not proven in scientific or real-time

applications.

Complexity is directly related to software reliability, so representing complexity

is important. Complexity-oriented metrics is a method of determining the

complexity of a program's control structure; by simplify the code into a

graphical representation. Representative metric is McCabe's Complexity

Metric.

Test coverage metrics are a way of estimating fault and reliability by

performing tests on software products, based on the assumption that software

reliability is a function of the portion of software that has been successfully

verified or tested.

11.2.6.2 Project management metrics
Researchers have realized that good management can result in better

products. Research has demonstrated that a relationship exists between the

development process and the ability to complete projects on time and within

the desired quality objectives. Costs increase when developers use

inadequate processes. Higher reliability can be achieved by using better

344

development process, risk management process, configuration management

process, etc.

11.2.6.3 Process metrics
Based on the assumption that the quality of the product is a direct function of

the process, process metrics can be used to estimate, monitor and improve

the reliability and quality of software. ISO-9000 certification, or "quality

management standards", is the generic reference for a family of standards

developed by the International Standards Organization (ISO).

11.2.6.4 Fault and failure metrics
The goal of collecting fault and failure metrics is to be able to determine when

the software is approaching failure-free execution. Minimally, both the number

of faults found during testing (i.e., before delivery) and the failures (or other

problems) reported by users after delivery are collected, summarized and

analyzed to achieve this goal. Test strategy is highly relative to the

effectiveness of fault metrics, because if the testing scenario does not cover

the full functionality of the software, the software may pass all tests and yet be

prone to failure once delivered. Usually, failure metrics are based upon

customer information regarding failures found after release of the software.

The failure data collected is therefore used to calculate failure density, Mean

Time Between Failures (MTBF) or other parameters to measure or predict

software reliability.

345

Mean Time to Failure (MTTF)

MTTF is a basic measure of reliability for non-repairable systems. It is the

mean time expected until the first failure of a piece of equipment. MTTF is a

statistical value and is meant to be the mean over a long period of time and

large number of units. For constant failure rate systems, MTTF is the inverse

of the failure rate. If failure rate is in failures/million hours, MTTF = 1,000,000 /

Failure Rate for components with exponential distributions.

Technically MTBF should be used only in reference to repairable items, while

MTTF should be used for non-repairable items. However, MTBF is commonly

used for both repairable and non-repairable items.

Mean Time between Failures (MTBF)

MTBF is a basic measure of reliability for repairable items. It can be described

as the number of hours that pass before a component, assembly, or system

fails. It is a commonly-used variable in reliability and maintainability analyses.

MTBF can be calculated as the inverse of the failure rate for constant failure

rate systems. For example: If a component has a failure rate of 2 failures per

million hours, the MTBF would be the inverse of that failure rate.

MTBF = (1,000,000 hours) / (2 failures) = 500,000 hours

Actually MTBF is the summation of MTTF and MTRF (Mean Time To Repair).

MTBF=MTTF+MTTR

346

Availability

It is a measure of the time during which the system is available. It may be

stated as:

Availability = MTBF / (MTBF + MMTR)

Probability of Failure on Demand (POFOD)

It is defined as the probability that the system will fail when a service is

requested.

Rate of occurrence of failure (ROCOF)

It may be defined as the number of failures in unit time interval.

11.2.7 Software Reliability Improvement Techniques

Good engineering methods can largely improve software reliability.

Before the deployment of software products, testing, verification and

validation are necessary steps. Software testing is heavily used to trigger,

locate and remove software defects. Software testing is still in its infant stage;

testing is crafted to suit specific needs in various software development

projects in an ad-hoc manner. Various analysis tools such as trend analysis,

fault-tree analysis, Orthogonal Defect classification and formal methods, etc,

can also be used to minimize the possibility of defect occurrence after release

and therefore improve software reliability.

After deployment of the software product, field data can be gathered and

analyzed to study the behavior of software defects. Fault tolerance or

347

fault/failure forecasting techniques will be helpful techniques and guide rules

to minimize fault occurrence or impact of the fault on the system.

11.2.8 Software Fault Tolerance

Software fault tolerance is the ability for software to detect and recover from a

fault that is happening or has already happened in either the software or

hardware in the system in which the software is running in order to provide

service in accordance with the specification. Software fault tolerance is a

necessary component in order to construct the next generation of highly

available and reliable computing systems from embedded systems to data

warehouse systems.

In order to adequately understand software fault tolerance it is important to

understand the nature of the problem that software fault tolerance is

supposed to solve. Software faults are all design faults. Software

manufacturing, the reproduction of software, is considered to be perfect. The

source of the problem being solely design faults is very different than almost

any other system in which fault tolerance is a desired property. This inherent

issue, that software faults are the result of human error in interpreting a

specification or correctly implementing an algorithm, creates issues, which

must be dealt with in the fundamental approach to software fault tolerance.

Current software fault tolerance methods are based on traditional hardware

fault tolerance. The deficiency with this approach is that traditional hardware

348

fault tolerance was designed to conquer manufacturing faults primarily, and

environmental and other faults secondarily. Design diversity was not a

concept applied to the solutions to hardware fault tolerance, and to this end,

N-Way redundant systems solved many single errors by replicating the same

hardware. Software fault tolerance tries to leverage the experience of

hardware fault tolerance to solve a different problem, but by doing so creates

a need for design diversity in order to properly create a redundant system.

Design diversity is a solution to software fault tolerance only so far as it is

possible to create diverse and equivalent specifications so that programmers

can create software, which has different enough designs that they don't share

similar failure modes. Design diversity and independent failure modes have

been shown to be a particularly difficult problem though. The issue still

remains that for a complex problem, the need for humans to solve that

problem error free is not easily solvable.

Fault tolerance is defined as how to provide, by redundancy, service

complying with the specification in spite of faults having occurred or occurring.

Laprie argues that fault tolerance is accomplished using redundancy. This

argument is good for errors which are not caused by design faults, however,

replicating a design fault in multiple places will not aide in complying with a

specification. It is also important to note the emphasis placed on the

specification as the final arbiter of what is an error and what is not. Design

349

diversity increases pressure on the specification creators to make multiple

variants of the same specification, which are equivalent in order to aid the

programmer in creating variations in algorithms for the necessary redundancy.

The definition itself may no longer be appropriate for the type of problems that

current fault tolerance is trying to solve, both hardware and software.

Randell argues that the difference between fault tolerance versus exception

handling is that exception handling deviates from the specification and fault

tolerance attempts to provide services compliant with the specification after

detecting a fault. This is an important difference to realize between trying to

construct robust software versus trying to construct reliable software. Reliable

software will accomplish its task under adverse conditions while robust

software will be able to indicate a failure correctly, (hopefully without the entire

system failing.)

Software Bugs

Software faults are most often caused by design faults. Design faults occur

when a programmer either misunderstands a specification or simply makes a

mistake. Software faults are common for the simple reason that the

complexity in modern systems is often pushed into the software part of the

system. It is estimated that 60-90% of current computer errors are from

software faults. Software faults may also occur from hardware; these faults

350

are usually transitory in nature, and can be masked using a combination of

current software and hardware fault tolerance techniques.

11.2.9 Software fault tolerance techniques

11.2.9.1 Recovery Blocks
The recovery block method is a simple method developed by Randell from

what was observed as somewhat current practice at the time. The recovery

block operates with an adjudicator, which confirms the results of various

implementations of the same algorithm. In a system with recovery blocks, the

system view is broken down into fault recoverable blocks. The entire system

is constructed of these fault tolerant blocks. Each block contains at least a

primary, secondary, and exceptional case code along with an adjudicator. The

adjudicator is the component, which determines the correctness of the various

blocks to try. The adjudicator should be kept somewhat simple in order to

maintain execution speed and aide in correctness. Upon first entering a unit,

the adjudicator first executes the primary alternate. (There may be N

alternates in a unit which the adjudicator may try.) If the adjudicator

determines that the primary block failed, it then tries to roll back the state of

the system and tries the secondary alternate. If the adjudicator does not

accept the results of any of the alternates, it then invokes the exception

handler, which then indicates the fact that the software could not perform the

requested operation.

351

Recovery block operation still has the same dependency, which most

software fault tolerance systems have: design diversity. The recovery block

method increases the pressure on the specification to be specific enough to

create different multiple alternatives that are functionally the same. This issue

is further discussed in the context of the N-version method.

The recovery block system is also complicated by the fact that it requires the

ability to roll back the state of the system from trying an alternate. This may be

accomplished in a variety of ways, including hardware support for these

operations. This try and rollback ability has the effect of making the software

to appear extremely transactional, in which only after a transaction is

accepted is it committed to the system. There are advantages to a system

built with a transactional nature, the largest of which is the difficult nature of

getting such a system into an incorrect or unstable state. This property, in

combination with check pointing and recovery may aide in constructing a

distributed hardware fault tolerant system.

11.2.9.2 N-version Software
The N-version software concept attempts to parallel the traditional hardware

fault tolerance concept of N-way redundant hardware. In an N-version

software system, each module is made with up to N different implementations.

Each variant accomplishes the same task, but hopefully in a different way.

Each version then submits its answer to voter or decider, which determines

352

the correct answer, and returns that as the result of the module. This system

can hopefully overcome the design faults present in most software by relying

upon the design diversity concept. An important distinction in N-version

software is the fact that the system could include multiple types of hardware

using multiple versions of software. The goal is to increase the diversity in

order to avoid common mode failures. Using N-version software, it is

encouraged that each different version be implemented in as diverse a

manner as possible, including different tool sets, different programming

languages, and possibly different environments. The various development

groups must have as little interaction related to the programming between

them as possible. N-version software can only be successful and successfully

tolerate faults if the required design diversity is met.

The dependence on appropriate specifications in N-version software, (and

recovery blocks,) cannot be stressed enough. The delicate balance required

by the N-version software method requires that a specification be specific

enough so that the various versions are completely inter-operable, so that a

software decider may choose equally between them, but cannot be so limiting

that the software programmers do not have enough freedom to create diverse

designs. The flexibility in the specification to encourage design diversity, yet

maintain the compatibility between versions is a difficult task, however, most

353

current software fault tolerance methods rely on this delicate balance in the

specification.

11.2.9.3 N-version software and recover block - comparison

The differences between the recovery block method and the N-version

method are not too numerous, but they are important. In traditional recovery

blocks, each alternative would be executed serially until an acceptable

solution is found as determined by the adjudicator. The recovery block

method has been extended to include concurrent execution of the various

alternatives. The N-version method has always been designed to be

implemented using N-way hardware concurrently. In a serial retry system, the

cost in time of trying multiple alternatives may be too expensive, especially for

a real-time system. Conversely, concurrent systems require the expense of N-

way hardware and a communications network to connect them. Another

important difference in the two methods is the difference between an

adjudicator and the decider. The recovery block method requires that each

module build a specific adjudicator; in the N-version method, a single decider

may be used. The recovery block method, assuming that the programmer can

create a sufficiently simple adjudicator, will create a system, which is difficult

to enter into an incorrect state. The engineering tradeoffs, especially monetary

costs, involved with developing either type of system have their advantages

354

and disadvantages, and it is important for the engineer to explore the space to

decide on what the best solution for his project is.

11.2.10 Reliability Models

A reliability growth model is a mathematical model of software reliability,

which predicts how software reliability should improve over time as faults are

discovered and repaired. These models help the manager in deciding how

much efforts should be devoted in testing. The goal of project manager is to

test and debug the system until the required level of reliability is reached.

11.2.11 Jelinski-Moranda (J-M) Model

There are various models, which have been derived from reliability

experiments in a number of application domains. These models are usually

based on formal testing data. The quality of their results depends upon the

input data, the better the outcome. The more data points available the better

the model will perform. When using calendar time for large projects, you need

to verify homogeneity of testing effort.

Software reliability growth models fall into two major categories:

 Time between failure models (MTBF)

 Fault count models (faults or time normalized rates)

Jelinski-Moranda model developed by Jelinski and Moranda in 1972 was one

of the first software reliability growth models. It consists of some simple

assumptions:

355

1. At the beginning of testing, there are u0 faults in the software code with u0

being an unknown but fixed number.

2. Each fault is equally dangerous with respect to the probability of its

instantaneously causing a failure. Furthermore, the hazard rate of each fault

does not change over time, but remains constant at φ.

3. The failures are not correlated, i.e. given u0 and φ the times between

failures (Δt1, Δt2, ... Δtu0) are independent.

4. Whenever a failure has occurred, the fault that caused it is removed instantaneously
and without introducing any new fault into the software.

As a consequence of these assumptions, the program hazard rate after

removal of the (i−1)st fault is proportional to the number of faults remaining in

the software with the hazard rate of one fault, za(t) = φ, being the constant of

proportionality:

z(Δt | ti−1) = φ [u0 −M(ti−1)] = φ [u0 − (i − 1)] (1)

The Jelinski-Moranda model belongs to the binomial type of models. For

these models, the failure intensity function is the product of the inherent

number of faults and the probability density of the time until activation of a

single fault, fa(t), i.e.:

dμ(t)/dt = u0fa(t) = u0 φ exp(−φt) (2)

Therefore, the mean value function is

μ(t) = u0[1 − exp(−φt)] (3)

356

It can easily be seen from equations (2) and (3) that the failure intensity can also be
expressed as

dμ(t)/dt = φ [u0 − μ(t)] (4)

According to equation (4) the failure intensity of the software at time t is

proportional to the expected number of faults remaining in the software; again,

the hazard rate of an individual fault is the constant of proportionality. This

equation can be considered the “heart” of the Jelinski-Moranda model. J-M

model assumptions are hard to meet. In J-M model, reliability increases by a

constant increment each time a fault is discovered and repaired.

11.2.12 Goel-Okumoto (GO) model
The model proposed by Goel and Okumoto in 1979 is based on the following

assumptions:

1. The number of failures experienced by time t follows a Poisson distribution

with mean value function μ(t). This mean value function has the boundary

conditions μ(0) = 0 and lim t ∞ μ(t) = N < ∞.

2. The number of software failures that occur in (t, t+Δt] with Δt 0 is

proportional to the expected number of undetected faults, N − μ(t). The

constant of proportionality is φ.

3. For any finite collection of times t1 < t2 < · · · < tn the number of failures

occurring in each of the disjoint intervals (0, t1), (t1, t2), ..., (tn−1, tn) is

independent.

357

4. Whenever a failure has occurred, the fault that caused it is removed

instantaneously and without introducing any new fault into the software.

Since each fault is perfectly repaired after it has caused a failure, the number

of inherent faults in the software at the beginning of testing is equal to the

number of failures that will have occurred after an infinite amount of testing.

According to assumption 1, M(∞) follows a Poisson distribution with expected

value N. Therefore, N is the expected number of initial software faults as

compared to the fixed but unknown actual number of initial software faults u0

in the Jelinski-Moranda model. Indeed, this is the main difference between the

two models.

Assumption 2 states that the failure intensity at time t is given by

dμ(t) / dt = φ[N − μ(t)]

Just like in the Jelinski-Moranda model the failure intensity is the product of the
constant hazard rate of an individual fault and the number of expected faults
remaining in the software. However, N itself is an expected value.

11.2.13 Musa's basic execution time model

Musa's basic execution time model is based on an execution time model, i.e.,

the time taken during modeling is the actual CPU execution time of the

software being modeled. This model is simple to understand and apply, and

its predictive value has been generally found to be good. The model focuses

on failure intensity while modeling reliability. It assumes that the failure

intensity decreases with time, that is, as (execution) time increases, the failure

358

intensity decreases. This assumption is generally true as the following is

assumed about the software testing activity, during which data is being

collected: during testing, if a failure is observed, the fault that caused that

failure is detected and the fault is removed. Even if a specific fault removal

action might be unsuccessful, overall failures lead to a reduction of faults in

the software. Consequently, the failure intensity decreases. Most other

models make a similar assumption, which is consistent with actual

observations.

In the basic model, it is assumed that each failure causes the same amount of

decrement in the failure intensity. That is, the failure intensity decreases with

a constant rate with the number of failures. In the more sophisticated Musa's

logarithmic model, the reduction is not assumed to be linear but logarithmic.

Musa’s basic execution time model developed in 1975 was the first one to

explicitly require that the time measurements be in actual CPU time utilized in

executing the application under test (named “execution time” t in short).

Although it was not originally formulated like that the model can be classified

by three characteristics:

1. The number of failures that can be experienced in infinite time is finite.

2. The distribution of the number of failures observed by time t is of Poisson

type.

3. The functional form of the failure intensity in terms of time is exponential.

359

It shares these attributes with the Goel-Okumoto model, and the two models

are mathematically equivalent. In addition to the use of execution time, a

difference lies in the interpretation of the constant per-fault hazard rate φ.

Musa split φ up in two constant factors, the linear execution frequency f and

the so-called fault exposure ratio K:

dμ(t) / dt = f K [N − μ(t)]

f can be calculated as the average object instruction execution rate of the

computer, r, divided by the number of source code instructions of the

application under test, IS, times the average number of object instructions per

source code instruction, Qx: f = r / IS Qx. The fault exposure ratio relates the

fault velocity f [N − μ(t)], the speed with which defective parts of the code

would be passed if all the statements were consecutively executed, to the

failure intensity experienced. Therefore, it can be interpreted as the average

number of failures occurring per fault remaining in the code during one linear

execution of the program.

11.2.14 Markov Model

This analysis yields results for both, the time dependent evolution of the

system and the steady state of the system. For example, in reliability

engineering, the operation of the system may be represented by a state

360

diagram, which represents the states and rates of a dynamic system. This

diagram consists of nodes (representing a possible state of the system, which

is determined by the states of the individual components & sub-components)

connected by arrows (representing the rate at which the system operation

transitions from one state to the other state). Transitions may be determined

by a variety of possible events, for example the failure or repair of an

individual component. A state-to-state transition is characterized by a

probability distribution. Under reasonable assumptions, the system operation

may be analyzed using a Markov model.

A Markov model analysis can yield a variety of useful performance measures

describing the operation of the system. These performance measures include

the following:

 System reliability.

 Availability.

 Mean time to failure (MTTF).

 Mean time between failures (MTBF).

 The probability of being in a given state at a given time.

 The probability of repairing the system within a given time period

(maintainability).

 The average number of visits to a given state within a given time period.

 And many other measures.

361

The name Markov model is derived from one of the assumptions which allows

this system to be analyzed; namely the Markov property. The Markov property

states: given the current state of the system, the future evolution of the

system is independent of its history. The Markov property is assured if the

transition probabilities are given by exponential distributions with constant

failure or repair rates. In this case, we have a stationary, or time

homogeneous, Markov process. This model is useful for describing electronic

systems with repairable components, which either function or fail. As an

example, this Markov model could describe a computer system with

components consisting of CPUs, RAM, network card and hard disk controllers

and hard disks.

The assumptions on the Markov model may be relaxed, and the model may

be adapted, in order to analyze more complicated systems. Markov models

are applicable to systems with common cause failures, such as an electrical

lightning storm shock to a computer system. Markov models can handle

degradation, as may be the case with a mechanical system. For example, the

mechanical wear of an aging automobile leads to a non-stationary, or non-

homogeneous, Markov process, with the transition rates being time

dependent. Markov models can also address imperfect fault coverage,

complex repair policies, multi-operational-state components, induced failures,

dependent failures, and other sequence dependent events.

362

11.3 Summary

Software reliability is a key part in software quality. Software Reliability is

defined as: the probability of failure-free software operation for a specified

period of time in a specified environment. The study of software reliability can

be categorized into three parts: modeling, measurement and improvement.

Reliability of the software depends on the faults in the software. To assess the

reliability of software, reliability models are required. To use the model, data is

collected about the software. Most reliability models are based on the data

obtained during the system and acceptance testing.

Software reliability modeling has matured to the point that meaningful results

can be obtained by applying suitable models to the problem. There are many

models exist, but no single model can capture a necessary amount of the

software characteristics. Assumptions and abstractions must be made to

simplify the problem. There is no single model that is universal to all the

situations.

Software reliability measurement is naive. Measurement is far from

commonplace in software, as in other engineering field. "How good is the

software, quantitatively?" As simple as the question is, there is still no good

answer. Software reliability cannot be directly measured, so other related

factors are measured to estimate software reliability and compare it among

363

products. Development process, faults and failures found are all factors

related to software reliability.

Software reliability improvement is hard. The difficulty of the problem stems

from insufficient understanding of software reliability and in general, the

characteristics of software. Until now there is no good way to conquer the

complexity problem of software. Complete testing of a moderately complex

software module is infeasible. Defect-free software product cannot be

assured. Realistic constraints of time and budget severely limits the effort put

into software reliability improvement.

As more and more software is creeping into embedded systems, we must

make sure they don't embed disasters. If not considered carefully, software

reliability can be the reliability bottleneck of the whole system. Ensuring

software reliability is no easy task. As hard as the problem is, promising

progresses are still being made toward more reliable software. More standard

components, and better process are introduced in software engineering field.

11.4 Keywords

Software Reliability: It is defined as: the probability of failure-free software

operation for a specified period of time in a specified environment.

Reliability growth model: It is a mathematical model of software reliability,

which predicts how software reliability should improve over time as faults are

discovered and repaired.

364

MTTF: It is a basic measure of reliability for non-repairable systems. It is the

mean time expected until the first failure of a piece of equipment.

MTBF: It is a basic measure of reliability for repairable items. It can be

described as the number of hours that pass before a component, assembly,

or system fails.

Availability: It is a measure of the time during which the system is available.

POFOD: It is defined as the probability that the system will fail when a service

is requested.

ROCOF: It may be defined as the number of failures in unit time interval.

11.5 Self-Assessment Questions
[1] What do you understand by software reliability? Differentiate between

software reliability and hardware reliability.

[2] Differentiate between fault, error and failure. Does testing observe faults

or failures?

[3] What are the different categories of software failure?

[4] What are the assumptions made in Jelinski-Moranda Model? Explain the

J-M model and discuss its limitations.

[5] What is the difference between software reliability and hardware

reliability? Explain.

[6] What do you understand by software fault tolerance? Discuss the

recovery block and N-version software techniques to fault tolerance.

365

[7] What is a metric? Give an overview of the different reliability metrics.

[8] What are the differences between JM model, GO model, and Musa’s

basic execution time model? Explain.

11.6 Suggested readings/References
41. Software Engineering concepts by Richard Fairley, Publication - Tata

McGraw Hill.

42. An integrated approach to Software Engineering by Pankaj Jalote,

Publication - Narosha Publishing houre.

43. Software Engineering by Sommerville, Publication - Pearson

Education.

44. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, Publication - Tata McGraw-Hill.

366

Lesson No. 12 Writer:

Dr. Rakesh Kumar

Object Oriented Design

 Vetter:Dr. Pradeep K. Bhatia

12.0 Objectives

The objective of this lesson is to make the students familiar with object

oriented design. Earlier in chapter 6 and 7 function oriented design was

discussed. This chapter is intended to impart the knowledge of object

modeling, functional modeling, and dynamic modeling. The important

objective of this lesson is to get the student acquainted with OMT, a

methodology for object oriented design.

12.1 Introduction

367

Object oriented approach for software

development has become very popular

in recent years. There are many

advantages of using this approach

over function oriented design such as

reusability, permitting changes more

easily, reduction in development cost

and time etc. There is a fundamental

difference between function oriented

design and object oriented design. The

former is based on procedural

abstraction while later is using data

abstraction. In object oriented design

our focus is to identify the classes in

368

the system and the relationship

between them.

12.2 Presentation of contents

12.2.1 Object Oriented Design

Methodology

12.2.2 Concepts and Notations for OMT methodology

12.2.2.1 Object Modeling

12.2.2.2 Object:

12.2.2.3 Derived object

12.2.2.4 Derived attribute

12.2.2.5 Class:

12.2.2.6 Links and Associations

12.2.2.7 Multiplicity

12.2.2.8 Link attributes

12.2.2.9 Role Names

12.2.2.10 Ordering

12.2.2.11 Qualification

12.2.2.12 Aggregation

12.2.2.13 Generalization

12.2.2.14 Multiple Inheritance

12.2.2.15 Metadata

369

12.2.2.16 Grouping Constructs

12.2.3 Dynamic Modeling

12.2.4 Functional Modeling

12.2.5 OMT method

12.2.5.1 Analysis:

12.2.5.1.1Object Model

12.2.5.1.2 Dynamic Model

12.2.5.1.3 Functional Model

12.2.5.2 System Design

12.2.5.3 Object Design

12.2.1 Object Oriented Design
Methodology

OMT (Object Modeling Technique) is a software development methodology

given by James Rumbaugh et.al. This methodology describes a method for

analysis, design and implementation of a system using object-oriented

technique. It is a fast, intuitive approach for identifying and modeling all the

objects making up a system. The static, dynamic and functional behaviors of

the system are described by object model, dynamic model and functional

model of the OMT. The object model describes the static, structural and data

aspects of a system. The dynamic model describes the temporal, behavioral

and control aspects of a system. The functional model describes the

370

transformational and functional aspects of a system. Every system has these

three aspects. Each model describes one aspect of the system but contains

references to the other models.

12.2.2 Concepts and Notations for OMT methodology
12.2.2.1 Object Modeling
An object model describes the structure of objects in a system: their identity,

relationship to other objects, attributes and operations. The object model is

represented graphically with an object diagram. The object diagram contains

classes interconnected by association lines. Each class represents a set of

individual objects. The association lines establish relationships among

classes. Each association line represents a set of links from the object of one

class to the object of another class.

12.2.2.2 Object: An object is a concept, abstraction, or thing with crisp

boundaries and meaning for the problem in hand. Objects are represented by

the following icon:

12.2.2.3 Derived object: It is defined as a function of one or more objects. It

is completely determined by the other objects. Derived object is redundant but

can be included in the object model.

12.2.2.4 Derived attribute: A derived attribute is that which is derived from

other attributes. For example, age can be derived from date of birth and

current date.

12.2.2.5 Class: A class describes a group of objects with similar properties,

operations and relationships to other objects. Classes are represented by the

rectangular symbol and may be divided into three parts. The top part contains

(ClassName)
Object name

371

the name of the class, middle part attributes and bottom part operations. An

attribute is a data value held by the objects in a class. For example, person is

a class; Mayank is an object while name, age, and sex are its attributes.

Operations are functions or transformations that may be applied to or by

objects in a class. For example push and pop are operations in stack class.

12.2.2.6 Links and Associations: A link is a physical or conceptual

connection between object instances. For example Mayank flies Jaguar. So

‘flies’ is a link between Mayank and Jaguar.

An association describes a group of links with common structure and common

semantics. For example a pilot flies an airplane. So here ‘flies’ is an

association between pilot and airplane. All the links in an association connect

objects from the same classes.

Associations are bidirectional in nature. For example, a pilot flies an airplane

or an airplane is flown by a pilot.

Associations may be binary, ternary or higher order. For example, a

programmer develops a project in a programming language represents a

ternary association among programmer, project and programming language.

Links and associations are represented by a line between objects or classes

as shown in a diagram below:

ClassName

Attribute-name1:data-type1=default-val1
Attribute-name2:data-type2=default-val2

Operation-name1(arguments1):result-type1
Operation-name2(arguments2):result-type2

Person

Car

drives

372

12.2.2.7 Multiplicity: It specifies how many instances of one class may relate

to a single instance of an associated class. Multiplicity is described in the

following manner:

 Line without any ball indicates one-to-one association.

 Hollow ball indicates zero or one.

 Solid ball indicates zero, one or more.

 1,2,6 indicates 1 or 2 or 6.

 1+ indicates 1 or more

12.2.2.8 Link attributes: It is a property of the links in an association. For

example, ‘accessible by’ is an association between class File and class User.

‘Access permission’ is a link attribute.

Link attribute for many to many association

12.2.2.9 Role Names: A role name is a name that uniquely identifies one end

of an association. Binary association has two roles. A role name is written

next to the association line near the class that plays the role. For example,

consider the association ‘a person works for a company’, in this employee and

employer are role names for the classes person and company respectively as

shown in fig below.

File

User

Access permission

Accessible by

Person Company Employee Employer

Works for

373

Role names for an association
12.2.2.10 Ordering: Some times the objects on the many side of an

association have order. An ordered set of objects of an association is

indicated by writing {ordered} next to the multiplicity dot for the role as shown

in figure below. Consider the example of association between Window class

and Screen class. A screen can contain a number of windows. Windows are

explicitly ordered. Only topmost window is visible on the screen at any time.

Ordered sets in an association
12.2.2.11 Qualification: A qualifier is an association attribute. For example, a

person object may be associated to a Bank object. An attribute of this

association is the accoutNo. The accountNo is the qualifier of this association.

A qualifier is shown as a small rectangle attached to the end of an association

as shown in figure below. The qualifier rectangle is part of the association, not

of class.

Qualified association
12.2.2.12 Aggregation: Aggregation is a form of association. It is the “part-

whole” or “a-part-of” relationship in which objects representing the component

of something are associated with an object representing the entire assembly.

A hollow diamond is attached to the end of the path to indicate the

aggregation. For example, a team is aggregation of players.

Bank

Person accountNo

Window

Screen

{Ordered}

Visible on

374

Aggregation

Aggregation can be fixed, variable or recursive.

• In a fixed aggregation number and subtypes are fixed i.e. predefined.

• In a variable aggregation number of parts may vary but number of

levels is finite.

• A recursive aggregate contains, directly or indirectly, an instance of the

same aggregate. The number of levels is unlimited. For example, a

computer program is an aggregation of blocks, with optionally recursive

compound statements. The recursion terminates with simple

statement. Blocks can be nested to arbitrary depth.

Recursive Aggregation

12.2.2.13 Generalization: It is the relationship between a more general class

and a more specific class. The general class is called as super class and

specific class is called as subclass. Generalization is indicated by a triangle

connecting a super class to its subclass as shown in fig below.

Team Players

Program

Block

Simple
statement

Compound
statement

375

Fig. Inheritance
12.2.2.14 Multiple Inheritance: if a class inherits features from more than

one superclass, it is called as multiple inheritance. A class with more than one

superclass is also called as join class. For example, BoatHouse class inherits

features from class Boat and House as shown in fig below:

Multiple Inheritance

12.2.2.15 Metadata: Metadata is data about data. For example, the definition

of a class is metadata. Models, catalogs, blueprints, dictionary etc. are all

examples of metadata.

12.2.2.16 Grouping Constructs: There are two grouping constructs: module

and sheet.

Vehicle

Bus Truck Car

Boat

BoatHouse

House

376

Module is logical construct for grouping classes, associations and

generalizations. An object model consists of one or more modules. The

module name is usually listed at the top of each sheet.

A sheet is a single printed page. Sheet is the mechanism for breaking a large

object model into a series of pages. Each module is contained in one or more

sheets. Sheet numbers or sheet names inside circle contiguous to a class box

indicate other sheets that refer to a class.

12.2.3 Dynamic Modeling
Dynamic model describes those aspects of the system that changes with the

time. It is used to specify and implement control aspects of the system. It

depicts states, transitions, events and actions. The OMT state transition

diagram is a network of states and events. Each state receives one or more

events, at that time it makes the transition to the next state. The next state

depends upon the current state as well as the events.

State: the attribute values and links held by an object are called its state.

Stack is empty or stack is full are different states of object stack. A state

corresponds to interval between two events received by an object. So a state

has duration.

State Icon: A state is drawn as a rounded box containing an optional name as

shown in fig below:

Event: An event is something that happens at a point in time. An individual

stimulus from one object to another is an event. Press a button on mouse,

State Name

377

airplane departs from an airport are examples of event. An event does not

have duration.

State Diagram: It relates events and states. A change of state caused by an

event is called a transition. Transition is drawn as an arrow from the receiving

state to the target state. A state diagram is graph whose nodes are states and

whose directed arcs are transitions labeled by event names. State diagram

specifies the state sequence caused by an event sequence. The state

diagram for the phone line is as shown below:

378

379

12.2.4 Functional Modeling
The functional model specifies the result of a computation without specifying

how or when they are computed. It specifies the meaning of the operations

and any constraints in the object model and the actions in the dynamic model.

The functional model consists of multiple data flow diagram, which specifies

the meaning of operations and constraints.

Data Flow Diagram: A data flow diagram is a graph showing the flow of data

values from their sources in objects through processes that transform them to

their destinations in other objects. A data flow diagram contains four symbols:

processes, actors, data stores and data flows.

Processes: A process transforms data values. It is drawn as an ellipse having

a description of the transformation, generally its name (as shown in figure

below). Each process has a fixed number of input and output data arrows,

each of which carries a value of given type. Inputs and outputs can be labeled

to show their role in computation.

 Multiplicand

 Product

 Multiplier

Actors: An actor is an active object that drives the data flow diagram by

producing or consuming values. Actors are attached to the inputs and outputs

of a data flow diagram. Actors are also called as terminators as they act as

source and sink for data. An actor is represented by rectangle.

Multiply

380

 name

 request

Data Stores: It stores data for later use. It does not generate any operation

on its own but can respond to request. So it is a passive object in a data flow

diagram. It is represented by a pair of parallel lines containing the name of

store as shown in figure below. Input arrow indicates storing data in the data

store and output arrow indicates accessing of data from data store.

 Bank accounts Account

 name

 Request Balance

Customer

Update

Select

Customer

Update

Select

381

Data Flows: A data flow connects the output of an object or process to the

input of another object or process. An arrow between the producer and the

consumer of the data value represents a data flow. Arrow is labeled with

description of data. Sometimes an aggregate value is split into its

constituents, each of which goes to a different process. A fork in the path as

shown below can show this.

Control Flow: It is a Boolean value that affects whether a process is

evaluated. The control flow is not an input value to the process. It represented

by a dotted line from a process originating the Boolean value to the process

being controlled as shown in figure below. This DFD is for a withdrawal from a

bank account. The customer supplies a password and an amount. The update

(withdrawal) can occur only when password is OK, which is shown as control

flow in the diagram.

Street

Address

State

City

382

 Coded password Account

 Password Password OK Balance

 Amount

 Cash

Control flow

12.2.5 OMT method
The OMT method is composed of following four phases:

 Analysis

 System design

 Object design

 Implementation

12.2.5.1 Analysis: In this step, a model of the system is prepared in reference

to what the system will do. The model is expressed in terms of objects and

relationships, control flow and functional transformation. In this phase three

models- object model, dynamic model and functional model are prepared.

These models are iterated in order to refine them. The outcome of this phase

is problem statement, object model, dynamic model and functional model.

Verify

Update Customer

383

 Problem Statement

 User Interviews

 Domain Knowledge

 Real World Experinece

 Object, Dynamic & Fucntional Model

DFD for analysis process

Generate request
Users

Managers

Developers

Build Models

384

12.2.5.1.1Object Model
It consists of object diagrams and data dictionary. Following guidelines are

used to construct the object model:

 Identify objects and classes

 Begin a data dictionary containing descriptions of classes, attributes and

associations.

 Add associations between classes

 Add attributes for objects and links

 Organize and simplify object classes using inheritance

 Test access paths using scenarios and iterate the above step if necessary.

 Group classes into modules, based on close coupling and related

functions.

Identifying Object Classes: The first step in constructing an object model is

to identify relevant object classes from the application domain. Classes

generally correspond to nouns in the problem description. List all the classes

that come to mind. Then identify right classes and discard others. Following

are the guidelines for keeping the right classes:

 Find redundant classes: If two classes have the same information, the

most descriptive name should be kept.

 Find irrelevant classes: If a class has little or nothing to do with the

problem, it should be discarded.

 Find vague classes: A class should be specific. Classes with ill-defined

boundaries and too broad in scope are vague and may be discarded.

 Check for attributes: check name could be an attribute not a class.

 Check for operations: If a name describes an operation that is applied to

objects and not manipulated in its own right, then it is not a class.

 Check for roles: The name of a class should reflect its intrinsic nature and

not a role that it plays in an association.

385

 Check for implementation constructs: A name extraneous to the real world

should be eliminated from the analysis model. That may be needed later

during design, but not now.

Prepare Data Dictionary: Prepare a data dictionary for all modeling entities

by describing each object class. Describe the scope of the class within the

current problem, including any assumptions or restrictions on its membership

or use. The data dictionary also describes associations, attributes, and

operations.

Identifying Associations: Any dependency between two or more classes is

an association. A reference from one class to another is an association. Verb

or verb phrases corresponds to associations in the problem description. For

example, location (next to, part of, contained in), directed actions (drives),

communication (talk to) ownership (has or part of), satisfaction of some

condition (works-for, manages) etc. all associations may not be right.

Unnecessary associations must be discarded. Following guidelines may be

used to discard incorrect associations:

 Associations between eliminated classes: If one of the classes in the

association has been eliminated, then the association must be eliminated

or restated in terms of other classes.

 Irrelevant or implementation associations: Eliminate associations that are

outside the problem domain or deal with implementation constructs.

 Actions. An association should describe a structural property of the

application domain, not a transient event.

 Derived association: Eliminate associations that can be defined in terms of

other associations.

 Add role names to associations, wherever appropriate. Qualify association

if needed.

 Indicate multiplicity, if possible.

386

 Check for any missing association.

Identify attributes: Attributes usually corresponds to nouns followed by

possessive phrases such as color of the car in the problem statement. Some

guidelines for keeping right attributes:

 If independent existence of an entity is important rather than its value then

it is object not attribute.

 If the value of an attribute depends on a particular context then it is

qualifier not attribute.

 If the property depends upon the presence of a link then it is link attribute.

 An attribute that seems different and unrelated from other attributes may

be a class. Make it a separate class.

 Minor attributes and internal attributes must be omitted in the analysis

phase.

Refining with inheritance: In this step, classes are organized by using

inheritance in order to share common structures. This could be done in two

directions: bottom up and top down. For bottom up direction look for classes

with similar attributes, associations or operations and then make a superclass

to share common features. For top-down direction, look for noun phrases

composed of various adjectives on the class name and consider them

subclass. Enumerated sub cases in the application domain are main source of

specialization. Some guidelines are listed below:

 Avoid excessive refinement.

 Multiple inheritance may be used for more sharing but only when

necessary.

 Attributes and associations must be assigned to specific classes in the

class hierarchy.

 Generalize the association classes, if the same association name appears

more than once and almost with the same meaning.

387

Testing access Paths: Using object model diagram, trace access paths to

see whether they give sensible result. Ask the following questions:

 Do they give unique result, when it is expected?

 Is there a way to take unique value out of many when needed?

 Are there useful questions which cannot be answered?

Iterating Object Modeling: Object model is rarely correct in a single go. It

needs many iterations in order to refine it.

Grouping classes into Modules: diagrams may be divided into sheets of

uniform size. A module is a set of classes. Modules may vary in size.

12.2.5.1.2 Dynamic Model:
It consists of state diagrams and event flow diagrams. Following guidelines

are used to construct the dynamic model:

 Prepare scenarios of typical interaction sequences.

 Identify events between objects and prepare an event trace for each

scenario.

 Develop a state diagram for each class that has important dynamic

behavior.

 Check for consistency and completeness of events shared among the

state diagrams.

Prepare scenarios of typical interaction sequences: A scenario is a

sequence of events. Prepare scenarios for major interactions, external display

formats and information exchanges.

Identify events between objects and prepare an event trace for each
scenario: events are signals, inputs, decisions, interrupts, transitions and

actions from users or external devices. Identify all events by using scenarios.

Event trace is an ordered list of events between different objects. Prepare

each scenario as an event trace.

388

Develop a state diagram for each class that has important dynamic
behavior: Start with the event trace diagrams that affect the class being

modeled. Pick a trace showing a particular interaction and only consider the

events affecting single object. Arrange the events into path whose arcs are

labeled by the input and output events found along one column in the trace.

The interval between any two events is state. Give each state a name. if the

scenario can be repeated infinitely, close the path in the state diagram. Then

merge other scenarios into the state diagram.

Check for consistency and completeness of events shared among the
state diagrams: every event should have a sender and a receiver,

occasionally the same object. States without predecessors or successors are

suspicious; ensure they represent starting and terminating points of the

interaction sequence. Make sure that corresponding events on different state

diagrams are consistent.

12.2.5.1.3 Functional Model:
It consists of data flow diagrams and constraints. Following guidelines are

used to construct the functional model:

 Identify input and output values.

 Build data flow diagrams.

 Describe what each function does.

 Identify constraints.

 Specify optimization criteria.

Identify input and output values: List input and output values, which are

parameters of events between the system and the outside world. Check for

missing input/output values through problem statement.

Build data flow diagrams: DFDs specify only dependencies among

operations. They do not show sequencing or decisions. Construct DFD to

show how each value is computed from input values.

389

Describe what each function does: After completing and refining DFDs,

write description of each function in natural language, decision table, pseudo

code or any other appropriate form. The description can be procedural or

declarative.

Identify constraints: Constraints are functional dependencies between

objects that are not related by an input-output dependency. Identify all

constraints between objects. For example, account balance can not be

negative.

Specify optimization criteria: Specify values to be maximized, minimized or

optimized.

12.2.5.2 System Design

In this step the high level structure of the system is chosen. The outcome of

this phase is structure of basic architecture for the system as well as high-

level strategy decisions. Following steps are considered in this phase:

 Organize the system into subsystem.

 Identify concurrency inherent in the problem.

 Allocate subsystems to processors and tasks.

 Choose the basic strategy for implementing data stores in terms of data

structures, files and databases.

 Identify global resources and determine mechanisms for controlling access

to them.

 Choose an approach to implement software control.

 Consider boundary conditions.

 Establish trade off priorities.

390

Organize the system into subsystem: A subsystem is a collection of related

classes, associations, operations, events and constraints having well defined

small interfaces to other subsystems. A subsystem is identified by the

services it provides. A service is group of related functions that share some

common purpose. Each subsystem may be decomposed into smaller

subsystems of its own. The lowest level subsystems are called modules. The

relationship between two subsystems can be client-supplier or peer-to-peer.

The decomposition of systems into subsystems may be organized as

sequence of horizontal layers or vertical partitions.

Identify concurrency inherent in the problem: Two objects are inherently

concurrent if they can receive events at the same time without interacting. The

dynamic model is the guide to identifying concurrency. If events are

unsynchronized, objects cannot be folded into a single thread of control. A

thread of control is path through a set of state diagrams on which only a single

object at a time is active.

Allocate subsystems to processors and tasks: Each concurrent

subsystem must be allocated to a hardware unit. The designer must do the

following:

 Estimate performance needs and resources needed to satisfy them.

 Choose H/W or S/W implementations for subsystems.

 Allocate software subsystems to processors to satisfy performance needs

and minimize interprocessor communication.

 Determine the connectivity of the physical units that implement the

subsystems.

Choose the basic strategy for implementing data stores in terms of data
structures, files and databases: The internal and external data stores in a

system provide clear separation points between subsystems. Each data store

391

may combine data structures, files and databases implemented in primary or

secondary memory.

Identify global resources and determine mechanisms for controlling
access to them: global resources such as processors, tape drives, disk

space, mouse buttons, file names, class names, databases etc. must be

identified. A mechanism for controlling access to the must be determined.

Choose an approach to implement software control: There are two types

of control flows in software: external control and internal control.

External control is the flow of externally-visible events among objects in the

system. There are three types of such control: procedure-driven sequential,

event driven sequential and concurrent. The type of control used depends

upon the language, OS etc.

Internal control is the flow of control within a process. It exists in the

implementation. Commonly used control flow are procedure calls, quasi-

concurrent inter-task calls, concurrent inter-task calls etc.

Consider boundary conditions: The system designer must consider the

boundary conditions of the system such as initialization, termination and

failure.

Establish trade off priorities: the system designer must set priorities that will

be sued to guide trade-offs during the rest of design. The entire character of a

system is affected by the trade-off decisions made by the designer.

12.2.5.3 Object Design

In this phase, the analysis model is elaborated to provide a detailed basis for

implementation. Following steps are considered in this phase:

 Obtain operations for the object model from the other models.

392

 Design algorithms to implement operations.

 Optimize access paths to data.

 Implement software control by fleshing out the approach chosen during

system design.

 Adjust class structure to increase inheritance.

 Design implementations of associations.

 Determine the exact representation of object attributes.

 Package classes and associations into modules.

Obtain operations for the object model from the other models: The

designer must convert the actions and activities of the dynamic model and the

processes of the functional model into operations attached to classes in the

object model.

Design algorithms to implement operations: For each operation in

functional model, an algorithm must be developed. Use following guidelines:

 Choose algorithms that minimize the cost of implementation.

 Select data structures appropriate to the algorithms.

 Define new internal classes and operations as necessary.

 Assign responsibility for operations to appropriate classes.

Optimize access paths to data: The inefficient but semantically-correct

analysis model can be optimized to make implementation more efficient. For

optimization, the designer must:

 Add redundant associations to minimize access cost and maximize

convenience.

 Rearrange the computation for greater efficiency.

 Save derived attributes to avoid recomputation of complicated

expressions.

Implement software control by fleshing out the approach chosen during
system design: There are three basic approaches to implementing the

393

dynamic model: procedure-driven, event-driven and concurrent. Implement

appropriate one.

Adjust class structure to increase inheritance: The definitions of classes

and operations must be adjusted to increase the amount of inheritance. It is

done in the following way:

 Rearrange and adjust classes and operations to increase inheritance.

 Adjust common behavior out of groups of classes.

 Use delegation to share behavior when inheritance is semantically invalid.

Design implementations of associations: We can either choose a global

strategy for implementing all associations uniformly or we can select a

particular technique for each association, taking into account the way it will be

used in the application.

Determine the exact representation of object attributes: Designer must

choose when to use primitive types in representing objects and when to

combine groups of related objects. Classes can be defined in terms of other

classes. But every thing in a class is implemented in terms of primitive data

types.

Package classes and associations into modules: Packaging involves the

following issues: Hiding internal information from outside view, Coherence

entities, constructing physical modules.

12.3 Summary

This chapter is focused on how a software system can be design using

objects and classes while in chapter 6 and chapter 7 the focus was on

function oriented design. In object oriented approach, an object is the basic

design unit. During design the classes for objects are identified. A class

represents the type for the object and defines the possible state space for the

394

objects of that class and the operations that can be performed on the objects.

An object is an instance of the class. Objects do not exist in isolation but are

related to each other. One f the goal of design here is to identify the

relationships between the objects of different classes.

The OMT methodology describes a method for analysis, design and

implementation of a system using object-oriented technique. The static,

dynamic and functional behaviors of the system are described by object

model, dynamic model and functional model. The object model describes the

static, structural and data aspects of a system. The dynamic model describes

the temporal, behavioral and control aspects of a system. The functional

model describes the transformational and functional aspects of a system.

OMT first creates an object model for the system, and then refines it through

dynamic and functional modeling. Identifying the internal classes and

optimization are the final steps in this methodology for creating a design.

12.4 Key words

Object: An object is a concept, abstraction, or thing with crisp boundaries and

meaning for the problem in hand.

Class: A class describes a group of objects with similar properties,

operations and relationships to other objects.

Inheritance & Multiple Inheritance: Inheritance is a relation between

classes that allows for definition of one class based on the definition of

395

existing class. If a class inherits features from more than one superclass, it is

called as multiple inheritance.

Dynamic model: describes those aspects of the system that changes with

the time.

12.5 Self-Assessment Questions

6. What is the difference between object model, dynamic model and

functional model?

7. What do you understand by functional model? What are the guidelines to

construct it?

8. What do you understand by DFD? What are the different symbols used

to construct it? Explain.

9. What do you understand by state diagram? Explain it using suitable

examples.

10. Define the following terms: object, class, inheritance, link, association,

aggregation.

11. If an association between classes has some attributes of its own, how will

you implement it?

12.6 References/Suggested readings

45. Software Engineering concepts by Richard Fairley, Tata McGraw Hill.

46. An integrated approach to Software Engineering by Pankaj Jalote,

Narosha Publishing houre.

396

47. Software Engineering by Sommerville, Pearson Education.

48. Software Engineering – A Practitioner’s Approach by Roger S

Pressman, McGraw-Hill.

