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1.1 INTRODUCTION 
 
 Given a function that has to compute on ‘n’ input the divide and conquer strategy 

suggest splitting k distinct subsets, 1 < K ≤ n, that yields K sub problems. 

 Each of these sub problems must be solved and the solutions are obtained. A 

method must be found to combine the sub solutions into a solution of a whole. If the sub 

problems are still relatively large, the divide and conquer strategy can be reapplied. The 

sub problems are of the same type as the original problem. 

 We can write a control abstraction that gives a flow of the control but whose 

primary operations are specified by other procedures. The meaning of these procedures 

is left undefined. 

  



 D and C (P) where P is the problem to b e solved. A Boolean valued function that 

determines if the input size is small enough that the answer can be computed without 

splitting. If it is so the function S is invoked else the problem P is divided into smaller 

sub problems.  

 The sub problems P1, P2,…..Pk can be solved by recursive applications of D and 

C. Combine is a function that  determines the solution to P, using the solution the K sub 

problems. 

 Algorithm D and C (P) 

{if small (p) the return S (P); 

       else 

{divide P into smaller instances 

P1, P2,…..Pk    K ≥ l 

Apply D and C to each to these sub problems. 

Return combine (D and C (P1), D and C (P2) ….D and C (PK)); 

 } 

} 

 if the size of P is n and the size of K sub problems. are n1, n2…nk respectively the 

computing time of D and C is described by the recurrence relation. 

T(n) = { g(n) where n is the small 

 T(n1) + T(n2)…….+t(nk) + f(n) 

T(n) is the time for D and C is any input n. 

g(n) is the time to compute the sum directly for small inputs. 

f(n) is the time for dividing D and for combining the solutions for the sub problems. 

 When the sub problems are of the same type as the original problems. We 

describe the algorithm using recursion.  

 

 

1.2 BINARY SEARCH 

 

 We assume that we have n ≥ 1 distinct integers which are stored in the 

increasing order. We are required to determine whether a given integer x is present in 

the list if x is present then determine a value J such that x = A[j]. If x is not in the list then 

j is to be set to O. 



 Let A = {n, i,…..ae,x), where n is the number of element in the list (ax,….ae) is the 

list of element and x is the element searched for. 

  

By making use of the divide and conquer that the set is stored, let A(mid) be the middle 

element. 

 There are three possibilities- 

i) x < A (mid) 

In this case x can only occur as A(1) to A(mid-1). 

ii) x > A(mid) 

In this case x can only occur as A(mid +1) to A(n) 

iii) x = A(mid) 

In this case set j to mid and return continue in this way by keeping  two 

pointer, lower and upper, to indicate the range of elements. 

 
Algorithm 
BINSRCH (A, n, x, j) 

1- Lower ←1, i upper ← n  

2- While lower ≤ upper do 

3- Mid ← [lower + upper) 12] 

4- Case 

5- : x > A(mid): lower ← mid + 1 

6- : x < A(mid): upper ← mid – 1 

7- : else : j ← mid; return 

8- end 

9- end 

10-  J ← O 

end 

 

 

 In the binary search method, it is always the key in the middle of the subfile 

currently being searched that is used for comparison. This splitting process can be 

described by drawing a binary decision tree. 



Suppose there are 31 records then the first key tested is K16 since [(1+31)/2] =16. If K is 

less than K16, since K8 is tested, next [(1+15)/2] = 8 or if K is greater than K16 then K24 is 

tested. The binary tree is : 

 

              16 

 

 

            8       24 

 

 

   4                     12                       20          28 

   
 
 
        2  6             10              14          18             22             26   30 
            
 
 
    3    5  7 9      11     13     15     17  19 21     23     25     27    29     31 
 
 
 
 
 
 
1.3 Finding Maximum and Minimum 
 
The Divide-and-Conquer Strategy 

  
e.g. find the maximum of a set S of n numbers 

1 



 
 
time complexity: 

T(n)= 
⎧
⎨
⎩

 
2T(n/2)+1 
1 

, n>2 
, n≤2 

 
assume n = 2k  
T(n)  = 2T(n/2)+1 
  = 2(2T(n/4)+1)+1 
  = 4T(n/4)+2+1 
   : 
  =2k-1T(2)+2k-2+…+4+2+1 
  =2k-1+2k-2+…+4+2+1 
  =2k-1 = n-1 
 
 
 
 
A general divide-and-conquer algorithm: 
Step 1: If the problem size is small, solve this problem directly; otherwise, split the 

original problem into 2 sub-problems with equal sizes. 

Step 2: Recursively solve these 2 sub-problems by applying this algorithm. 

Step 3: Merge the solutions of the 2 sub-problems into a solution of the original 

problem. 

 

time complexity: 

T(n)= 
⎧
⎨
⎩

 
2T(n/2)+S(n)+M(n) 

b 
, n ≥ c 

, n < c 

where S(n): time for splitting 



  M(n): time for merging 

  b: a constant 

  c: a constant. 

 
 2-D maxima finding problem 

Def: A point (x1, y1) dominates (x2, y2) if x1 > x2 and y1 > y2.  A point is called a maxima if 

no other point dominates it. 

 
 

Straightforward method: 

 compare every pair of points 

time complexity: O(n2). 

 

 
The maximal of SL and SR 

 



Algorithm 5.1  A Divide-and-Conquer Approach to Find Maximal Points in the Plane 

Input: A set of n planar points. 

Output: The maximal points of S. 

Step 1. If S contains only one point, return it as the maxima.  Otherwise, find a line L 

perpendicular to the X-axis which separates the set of points into two 

subsets SL and SR, each of which consisting of n/2 points. 

Step 2. Recursively find the maximal points of SL and SR. 

Step 3. Project the maximal points of SL and SR onto L and sort these points according 

to their y-values.  Conduct a linear scan on the projections and discard each 

of the maximal points of SL if its y-value is less than the y-value of some 

maximal point of SR. 

 

time complexity: 

T(n)= 
⎧
⎨
⎩

 
2T(n/2)+O(n)+O(n log n) 

1 

, n > 1 

, n = 1 

Assume n = 2k 

 T(n) = O(n log n) + O(n log2n) 

   = O(n log2n) 

 

Improvement: 

(1)Step 3: Find the largest y-value of SR. 

 time complexity: 

T(n)= 
⎧
⎨
⎩

 
2T(n/2)+O(n)+O(n) 

1 

, n > 1 

, n = 1 

⇒T(n) = O(n log n) 

(2)The sorting of y-values need be done only once( only one presorting). 

 No sorting is needed in Step3. 

 time complexity: 

  O(n log n) + T(n) = O(n log n) 

 where 

T(n)= 
⎧
⎨
⎩

 
2T(n/2)+O(n)+O(n) 

1 

, n > 1 

, n = 1 



 

 
 

 

 

1.4    MERGE SORT 

 
 Using the divide and conquer strategy, sorting algorithm called the merge sort, 

we split a given set of numbers into two equal sized sets and a combining operation is 

the merging of two sorted sets into one. 

  Lets consider a sequence of n elements (a [1] to a [n/2]) and (a [n/2] to a[n]. Each 

set has to be individually sorted and the resulting sorted sequences are merged which 

produce a single sorted sequence of n elements. 

 The merge sort algorithms uses recursion and a function merge, which merges 

two sorted sets. 

Algorithm:- 
 merge sort (low, high) 

 { 

 if (low < high) then 

 { 

 mid: = [(low +high)/2] 

 mergesort (low, mid); 

 mergesort (mid +1, high); 

 mergesort (low, mid, high) ; 

} 

} 

Algorithm merge (low, mid, high) 

{ 

I: = low; j: = low; k: = mid + 1; 

While ((n ≤ mid) and (k ≤ high)) do 

{ 

if (a[n] ≤ a[k]) then  

{ 

b[ j ] : = a[n]; 



n : = n + 1; 

} 

else 

{ 

b [ j ] : =a[ k ]; 

k: = k + 1; 

} 

j : = j + 1; 

} 

if (i > mid) then 

for L : =  k to high do  

{ 

b[ j ] : = a[L]; 

j : = j + 1; 

} 

else 

for L: = i to mid do 

{  

b [ j ]: = a [L]; 

j: = j + 1; 

} 

for L: = low to high do 

a[L]: = b[L]; 

} 

Sorted Sequence 
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Figure : The operation of merge sort on the array A = ( 5,  2,  4,  7,  1,  3,  2,  6). 

 The length of the sorted sequences being merged increase as the algorithm 

progresses from bottom to top. 

The time for merging operation is proportional to n. The computing time for merge sort 

is : 

 T(n) = {a  n = 1, ‘a’ is constant 

  2T(n/2)  + Cn; n>1, C is constant. 

When n is a power of 2 is n = 2k using 

Successive substitutions: 
T(n) = 2{2T(n/4) +(n/2)} +Cn 

        = 4T(n/4) + 2Cn 

        = 22 T (n/22) +2Cn 

        =2K T(n/2k)+K Cn [2K = n]   

        = 2K T(1) + K Cn 

        = 2K a + K Cn 

        = na + Cn log n [K = log 2n] 

Hence merge sort is o [n log n]. 

 

1.5    QUICK SORT 

 
 Quick sort, like merge sort, is based on the divide and conquer paradigm. 

Here is the three step divide and conquer process for sorting a subarray A[P…..r]. 

Divide : Partition (rearrange) the array A[P…..r] into two (possibly empty) subarrays 

A[P….q-1] and A[q+1…..r] such that each element of A[P….q-1] is less than or equal to 

A[q], which is less than or equal to each element of A[q+1….r]. Compute the index q as 

part of this partitioning procedure. 

Conquer : Sort the two subarray A[P….q-1] and A[q+1….r] by recursive calls to 

quicksort. 

5 2 4 7 1 3 2 6



Combine : The subarrays are sorted in place. There is no needed to combine them; the 

entire array A[P….r] is now sorted. 

Algorithm : 
 Quicksort (A, P, r) 

 1-  if P < r 

 2-  then q ← partition (A, P, r) 

 3-  Quicksort (A, P, q-1) 

 4-   Quicksort (A, q+1, r 

 

 

To sort an entire array A, the initial call is quicksort (A, q, length [A]). 

Partitioning the array 
Partition (A, P, r) 

1- x ← A [r] 

2- i ← P-1 

3- for j ← P to r – 1 

4- do if A[j] ≤ x 

5- then i ← i + 1 

6- enchage A[i] ↔ A[j] 

7- exchange A[i + 1] ↔ A[r] 

8- return i + 1 

 

1.6 STRASSEN’S MATRIX MULTIPLICATION 

 
 Let A and B be two n x n matrices. The product matrix C = AB is also an n 

x n matrix. Whose i and  jth elements is formed by taking [i, j] the elements in the 

ith column of B and multiplying them to give c [i j] = ∑ A [i k] B [k,j], 1 ≤ k < n for all 

i and j between 1 and n. To compute c[i, j] using this formula we require n3 

multiplications. 

 The divide and conquer strategy suggest another way to compute the 

product of two n x n matrices. We will assume that n is a power of 2. in case n is 



not a power of 2 then enough rows and columns of zeros may be added to both 

A and B so that the resulting dimensions are a power of 2. 

 Imagine that A and B are each partitioned into 42 sub matrices each having 

dimension n/2 x n/2 then the product AB can be computed by using the above 

formula for the product of 2 x 2 matrices. 

 
  

  A11 A12         B11   B12              C11 C12        

  A21 A22     B21   B22          =     C21 C22
 

 

 

 

Then 

C11 = A11 B11 + A12 B21 

C12 = A11 B12 + A12 B22 

 C21 = A21 B11 + A22 A21 

C22   = A21 B12 + A22 B22 

if n = 2 then the above formula is computed using a multiplication operation for 

the elements of A and B. 

 For n > 2 the elements of C can be computed using matrix multiplication and 

addition operations applied to matrices of size n/2 x n/2. Since n is a recursively 

computed by the same algorithm for n x n case. 

Strassen formulated a method to reduce the number of matrix multiplication so as to 

reduce the complexity of the algorithm. This method uses only 7 multiplications and 18 

addition or subtractions. The method involves first computing 7 n/2 x n/2 matrices p, q, 

r, s, t, u and v as below : 

P = (A11+ A22) (B11 + B22) 

Q = (A21+ A22) B11 

R = A11 (B12 - B22) 

S = A22 (B21 – B11) 

T = (A11+ A12) B22 

U = (A21 - A11) (B11 + B12) 

V = (A12 – A22) (B21 + B22) 



 C11 = P+S-T+V 

 C12 = R + T 

 C21 = P+R-Q+U 

 The resulting time complexity is  

          bn ≤ 2 
T(n) =   

     7T(n/2) +an2n >2 
Where a and b are constants. 

 

Limitations of Strassen’s Algorithm 

 From a practical point of view , Strassen’s algorithm is often not the method  of 

choice for matrix multiplication, for the following four reason: 

1. The constant factor hidden in the running time of Strassen’s algorithm is larger 

than the constant factor in the native  θ(n3 ) method. 

2. When the matrices are sparse, methods tailored for sparse matrices are faster. 

3. Strassen’s algorithm is not quite as numerically stable as the native method. 

4. The sub matrices formed at the levels of recursion consume space. 

 
 
 
 
 

1.7 SUMMARY 

 
The unit discusses various issues in respect of the technique viz., Divede and Conquer 

for designing and analyzing  algorithms for solving problems. First , the general plan of 

the Divide and conquer technique is explained . the issue of whether at some stage to 

solve a problem directly or whether to further subdivide it, is discussed in terms of the 

relative efficiencies in the two alternative cases. 

 The technique is illustrated with examples of its applications to solving problems 

of Binary Search, Sorting , of finding maximum, of finding minimum of given data and 

matrix multiplication. Under sorting , the well- known techniques viz., Merge-sort and 

quick-sort are discussed in detail. 
 



1.8  KEYWORDS 

 
Divide: the problem into a number of sub problems. 

Conquer:  the sub problems by solving them recursively.  If the sub problem sizes are  

                 small enough , however , just solve the sub problems in a straightforward  

                 manner.  

Combine:  the solutions to the sub problems into the solution for the original problem. 

 

1.9  REVIEW QUESTIONS 

 
1. A sorting method is said to be stable if at the end of the method, identical 

elements occur in the same order as in the original unsorted. Is merge sort a 

stable sorting method? 

2. Apply the Quick sort Algorithm to sort the numbers. 

65,    70,   75,   80,    85,    60,    55,    50,    45. 

3. Explain the method used by Strassen to reduce the complexity for matrix 

multiplication.  

4. What is the worst case complexity of Quick sort and when does it occur? 

5. Apply the divide and conquer strategy to select a particular number x from a 

array of 10 numbers.  
6. Multiply the following two matrices using Strassen’s algorithm 

 
   5       6     and       -7        6 
   -5      3                   5        9  
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2.1  INTRODUCTION 
 
 The Greedy method is a designed technique that can be applied to a wide variety 

of problems. Most of these problems have n inputs and require us to obtain a subset 

that satisfies these constraints. Any subset that satisfies these constraints is called a 

‘feasible solution’. Feasible solutions either maximize or minimize a given ‘objective’ 

function. ‘A feasible solution that does this is called an optimal solution’. 

The Greedy method devices an algorithm that works in stages considering one 

input at a time. At each stage a decision is made regarding whether a particular input is 

in an optimal solution. That is done by considering the inputs in an order determined by 



some selection procedure. If adding that input leads to an infeasible solution then that 

input is not added to the partial solution. Else its added. 

Algorithm Greedy (a, n) 

{ 

 Solution : = Ø ; 

 for  l : = 1 to n do 

 { 

  x : = select (a) ;  

  if  feasible (solution, x) then  

   solution : = Union (solution, x) ; 

 } 

 Return solution; 

 } 

The function select, selects an input from a [ ] and removes it. The selected input 

value is assigned to x. 

Feasible is a Boolean valued function that determines whether x can be included 

into the solution vector. The function union combines x with solution and update the 

objective function.  

Problems that call for the selection of an optimal subset use the version of the 

Greedy technique called as the subset paradigm. 

Problems that make decision by considering the inputs in some order and where 

each decision is made using an optimization criteria that can be computed using 

decisions already made, use the version of Greedy method called as the ordering 

paradigm. 

 

Example 2.1: Let us suppose that we have to go from city A to city E through 

either city B or city C or city D with costs of reaching between pairs of cities as shown 

below : 

 

       A 
                       3000           5000 

                                            4000    D 

       B    C         
              5000 
                    8000                                        4000 
      



 
Figure 2.1.1 

 
 Then the Greedy technique suggests that we take the route from A to B, the cost 

of which Rs. 3,000 is the minimum among the tree costs, (viz., Rs. 3,000, Rs. 4,000 and 

Rs. 5,000) of available routes. 

 However, at B there is only one route available to reach E. Thus, Greedy 

algorithms suggest the route from A to B to E, which costs Rs.11000. But, the route 

from A to C to E, costs only Rs. 9000. Also the route from A to D to E costs also 

Rs.9000. Thus locally better solution, at some stage, suggested by Greedy technique 

yields overall (or globally) costly solution. 

 

2.2 OPTIMAL STORAGE ON TAPES 
 
 There are n programs that are to be sorted on a computer tape of length I. 

Associated with each program i is a length li where 1 ≤ i ≤ n. 

 Programs can be stored on the tape if and only if the sum of the lengths of the 

programs is at the most I. if the programs are stored in the order 

 I = i1  i2  i3 …….in  in the time tj needed to retrieve the program ij is proportional to   
∑lik                   if all programs are retrieved i ≤ k ≤ j 
i ≤ k ≤ j  
 
 Equally often then the expected or mean retrieved time (MRT) is 1/n ∑tj  
                                                                                                                        i ≤ j ≤ n 
 
 In the optimal storage on tape problem we are required to find a permutation for 

the n programs so that when they are stored on the tape in this order the MRT is 

minimized. This problem fits the ordering paradigm. 

 

 Minimizing the MRT is equivalent to minimizing d (l)  ∑ ∑ lik 
                 i ≤j≤n  i≤k≤j  
  
 Using a Greedy approach we choose the next program on the basis of some 

optimization measure. The next program to be stored on the tape would be the one that 

minimizes the increases in ‘d’ if we have already constructed the permutation i1, i2……ir 

then appending program j gives the permutaion i 1 i 2 i 3…..i r+1  = j. 

               
This increases the d value by ∑ lik + li. Since  ∑lik        is fixed an independent  

              i ≤ i ≤ n 



of  j, we trivially observe that the increase  in d is minimized if the next program chosen 

is the one with the least length from among the remaining  programs.  

 The tape storage problem can be extended to several tapes T0, T1…..Tm-1 

 Then the programs are to be distributed over these tapes  

 The total retrieval time (TD) is  

  TD = ∑ d (lj) 
          0 ≤j ≤ m-1  
 
 The objective is to store the programs in such away so as to minimize (TD). If the 

j initially ordered so that  li ≤l2 ≤…≤ln. Then the first n programs are assigned to tapes T0, 

T1….Tm-1 respectively. The next m programs will be assigned to tapes T0, T1…Tm-1 

respectively. The general rule is that program is that program i is stored on tape Ti mod 

m on any given tape the programs are stored in increasing ordered of their length. 

 

2.3 KNAPSACK PROBLEM 
 
 The Knapsack problem calls for selecting a subset of the objects and hence fit 

the subset paradigm. We are given n objects and a knapsack or a bag. Object ‘i’ has a 

weight w, and a knapsack has a capacity ‘m’. If the fraction xi,  0≤ xi ≤ 1 of object i is 

placed into the knapsack then a profit of pi xi is earned. 

 The objective is to obtain a filling of the knapsack that maximizes the total profit 

earned. Since the knapsack capacity is m, we require the total weight of all chosen 

objects to be at most m formally the problem can be stated as: 

   
∑ pi xi 

 Maximize 
    1 ≤ i ≤ n 
 

∑ wi xi 
 Subject to                       ≤m 
    1 ≤ i ≤ n  

 

And    0 ≤ xi ≤ 1,  1 ≤ i ≤ n 

In addition to selecting a subset the problem also involves the selection of an xi 

for each object. Some of the Greedy strategies to obtain feasible solutions are : 

1- Try to fill the knapsack by including the next object with the largest 

profit. If the object doesn’s fit, then a fraction of its included to fill the 



knapsack. Thus each time an object is included into a knapsack we 

obtain the largest possible increase in profit. 

2- Alternatively considering the objects in order of decreasing profit values 

does not yield an optimal solution because even though the objective 

function value takes on large increases at each step, the no. of steps is 

few as the knapsack capacity is used up at a rapid stage. 

3- The next attempt strikes to achieve a balance between the rate at which 

profit increases and the rate at which capacity is used. At each step we 

include that object which has the maximum  profit per unit of capacity 

are considered in order of the ratio pi/wi 

 

Algorithm Greedy Knapsack (m,n) 

{ 

  For  i : = 1 to n do 

  n [i] : = 0.0; 

  u : = m; 

for i : = 1 to n do 

{ 

if (w[i] > u) then break; 

n [i] : =1.0; 

u : = u-w [i]; 

} 

if (i ≤ n) then x [i] : = u / w [i]; 

 

 

2.4 MAKING CHANGE (MONEY) 
 
 First of all, we state a special case of the problem of making change, and then 

discuss the problem in its general form. 

 We, in India, have currency notes or coins of denominations of Rupees 1, 2, 5, 

10, 20, 50, 100, 500 and 1000. Suppose a person has to pay an amount of Rs. 5896 

after having decided to purchase an article. Then, the problem is about how to pay the 

amount using minimum number of coins/notes. 

 



 A simple, frequently and unconsciously used algorithm based on Greedy 

technique is that after having collected an amount A < 5896, choose a note of 

denomination D, which is s.t. 

 (i)  A + D ≤ 5896 and  

 (ii)  D is of maximum denomination for which (i) is satisfied, i.e., if E > D then    

                     A + E > 5896. 

 In general, the Change Problem may be stated as follow : 

 Let d1, d2,……dk with di > 0 for i = 1, 2,…...,k, be the only coins that are available 

such that each coin with denomination di is available in sufficient quantity for the 

purpose of making payments. Further, let A, a positive integer, be the amount to be paid 

using the above-mentioned coins. The problem is to use the minimum number of coins 

for the purpose. 

 

 The problem with above mentioned algorithms based on greedy technique is that 

in some cases, it may either fail or may yield suboptimal solutions. In order to establish 

inadequacy of Greedy technique based algorithms, we consider the following two 

examples. 

 Example 1.2.1 :  Let us assume a hypothetical situation in which we have supply 

of rupee-notes of denominations 5, 3 and 2 and we are to collect an amount of Rs. 9. 

Then using Greedy technique, first we choose a note of Rupees 5. Next we choose a 3-

Rupee note to make a total amount of Rupees 8. But then according to Greedy 

technique, we can not go ahead in the direction of collecting Rupees 9. The failure of 

Greedy technique is because of the fact that there is a solution otherwise, as it is 

possible to make payment of Rupees 9 using notes of denominations of Rupees 5, 

Rupees 3 and Rupees 2, viz., 9 = 5+2+2. 

 

 

 

 

 

2.5 MINIMUM SPANNING TREES 
 



 We apply Greedy technique to develop algorithms to solve some well known 

problems. First of all, we discuss the applications for finding minimum spanning tree for 

a given (undirected) graph. 

 Let G = (V, E). be undirected connected  graph. A sub-graph G’ = (V ’, E ’) of G is 

a spanning tree of G if it is a tree. 

 The cost of a spanning tree of a weighted undirected graph is the sum of the 

costs (Weights) of the edges in the spanning tree. A minimum cost spanning tree is a 

spanning tree of least cost. 

 In the Greedy method, we construct an optimal solution in stages. At each stage, 

we make a decision that is the best decision (using some criterion) at this decision later, 

we make sure that the decision will result in a feasible solution. 

 For spanning trees, we use a least cost criterion. Our solution must satisfy the 

following constraints :  

(i) We must use only edges within the graph. 

(ii) We must use exactly n -1 edges. 

(iii) We may not use edges that would produce a cycle. 

 

Let us consider the connected weighted graph G given in Figure 2.5.1 

     

     3        
    a                                            b  
                          
 
             7                   4             
  
 
     c       d 
           5 

 
Figure 2.5.1 

 

 For the graph of Figure 2.5.1 given above, each of figure 2.5.2, figure 2.5.3 and 

figure 2.5.4 shows a spanning tree of G, of Weight 3+4+5 =12 
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Figure 2.5.4 
 
 
 

2.5.1. PRIM’S ALGORITHM 
 
 Prim’s algorithm constructs the minimum cost spanning tree, T, That contains a 

single vertex. This vertex may be any of the vertices in the original graph. Next, we add 

a least cost edge (u, v) to T such that TU {(u, v)} is also a tree. We repeat this edge 

addition step until T Contains n -1 edges. 

 To make sure that the added edge does not form a cycle, at each step we 

choose the edge (u, v) such that exactly one of u or v is in T.  

           A formal description of Prim’s algorithms T is the set of tree edges, and Tv is the 

set of tree vertices, that are currently in the tree. 

 Algorithms 
 T  = { } ; 

 TV  = { 0 } ; */ start with vertex 0 and no edge */ while (T contains 

fewer than n -1 edges) 

   { 

   Let (u, v) be a least cost edge such that u € TV and v € TV ; 

   if (there is no such edge) 



    break ; 

   add v to TV ; 

   add (u, v) to T ; 

   } 

   if (T contains fewer than n – 1 edges) 

   Display “no spanning tree”) ; 

 
Example : we will construct a minimum cost spanning tree of the following graph. 
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Figure : Stages in Prim’s Algorithms 
 

  
 



 
 

2.5.2 Kruskal’s Algorithm 
 
 Kruskal’s algorithm builds a minimum cost spanning tree T by adding edges to T 

one at a time. The algorithm selects the edges for inclusion in T in nondecreasing order 

of their cost. An edge is added to T if it does not form a cycle with the edges that are 

already in T. Since G is connected and has n > 0 vertices, exactly n – 1 edge will be 

selected for inclusion in T.  

Algorithm:-  
 T = { }; 

 While (T contains less than n-1 edges x & E is not empty) 

 { 

 choose a least cost edge (v, w) from E; 

 delete (v, w) from E; 

 if ((v, w) does not create a cycle in T) 

   add (v, w) to T; 

  else 

   discard (v, w); 

 } 

 if (T contains fewer than n – 1 edges) 

 display (“no spanning tree”);   

 

 

 

 

 

 

 

 

Example:- Construct a minimum cost spanning tree of the following graph. 
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Working produre for Kruskal’s algorithm:- 
 Adge (a, f) is the first considered for inclusion. Since it cannot create a cycle, it is 

added to the tree. The result is the tree of figure K (ii). Similarly, edge (c, d) is 

considered next to add in the tree, and the result is shown in figure K (iii). 

This process continues until the spanning tree has n – 1 edges (Figure K (vii)). 



The cost of spanning tree is 99. 
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Summary of Kruskal’s Algorithm 

           
    

 
 
 
 
 

2.6 SINGLE SOURCE SHORTEST PATHS 
 

 Graphs may be used to represent the highway structure of country with vertices 

representing cities and edges representing sections of a highway. The edges usually 

assigned weights, which are the distance between the cities, connected by the edge. 

Such a graph can be used to identify the shortest path between two places A and B 

represented by two vertices in the graph. The length of a path is the sum of the weights 

of the edges of that path. The starting vertex of the path is called the source and the last 

vertex the destination. 

 In this problem we have to consider a directed graph G = (v, t) a weighing 

function c (e) for the edges of G and a source vertex v0 to all remaining vertices of G. 
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Figure 2.6 Graph and Shortest paths from V0 
  
 The Greedy method builds up the shortest paths one by one. As an optimization 

measure we can use sum of lengths of all paths so far generated. For this each 

individual path must be of minimum length. That is, if we have already constructed i 

shortest paths then the next shortest minimum length path. The algorithm generates the 

shortest paths from v0 to the remaining vertices to non-decreasing order of path length. 

First a shortest path to the nearest vertex is generated.  

 Then a shortest path to the second nearest vertex is generated and so on. Let  S 

denote set of vertices (including v0 ) to which the shortest path starting from v0  going 

through only those vertices which are in S and ending at W, we can see that :- if the 

next shortest path is to vertex u, v0  then the path begins at v0 , end at u and goes 

through only those vertices which are in S this is because the paths are generated in 

non-decreasing order pf path lengths. 

 The destination of the next path generally must be that vertex u, which has the 

minimum distance DIST (u), among all vertices not in S. 

 Having selected a vertex u and generated the shortest v0 to u path, vertex u 

becomes a number of S. 

 Algorithms shortest paths (v, cost, dist, n) 

            { 



      for i=1 to n do 
        { 
  S [i] : = false ; dist [i] : =cost [v, i]; 

        } 

 S[v] : = true ; dist [v] : =0.0 ; 

 For  num : = 2 to n -1 do 

         {  

 Choose u from among those vertices not in S such that dist [u] is minimum ; 

 S [u] : = true ;  

 For (each w adjacent to u with S [w] = false) do 

 If (dist) [w] > dist [u] + cost [u, w]) 

 Then dist [w] := dist [n] + cost [u,w] 

  } 

 } 

 

 

2.6.1 DIJKSTRA’S ALGORITHM 
 

Directed Graph : 
 So far we have discussed applications of Greedy technique to solve problems 

involving undirected graphs in which each edge (a, b) from a to b is also equally an 

edge from b to a. In other words, the two representations (a, b) and (b, a) are for the 

same edge. Undirected graphs represent symmetrical relations. For example, the 

relation of ‘brother’ between male members of, say a city is symmetric. However, in the 

same set, the relation of ‘father’ is not symmetric. Thus a general relation may be 

symmetric or asymmetric. A general relation is represented by a directed graph, in 

which the (directed) edge, also called an arc, (a, b) denotes an edge from a to b. 

However, the directed edge (a, b) is not the same as the directed edge (b, a). In the 

context of directed graphs, (b, a) denotes the edge from b to a. Next, we formally define 

a directed graph and then solve some problems, using Greedy technique, involving 

directed graphs. 

 Actually, the notation (a, b) is mathematics is used for ordered pair of the two 

elements viz., a and b in which a comes first and then b follows. And the ordered pair 

(b, a) denotes a different ordered set in which b comes first and then a follows. 



  

  // and Distance D (v) of any other vertex v is taken as ∞. 

 // iteratively distances of other vertices are modified taking into consideration the  

 // minimum distances of the various nodes from the node with most recently 

modified 

 // distance 

  D (s) ← 0 

 For each vertex v ≠ s  do 

  D (v) ← ∞ 

//  Let Set-Remaining-Nodes be the set of all those nodes for which the 

final  

  minimum  

// distance is yet to be determined. Initially 

Set-Remaining –Nodes ← V 

while (Set-Remaining –Nodes ≠ Φ) do 

begin 
 choose v £ Set-Remaining-Nodes such that D (v) is minimum 

 Set-Remaining-Nodes ← Set-Remaining-Nodes ~ {v} 

 For each node x £ Set-Remaining-Nodes such that w (v, x) ≠ ∞   do 
 D(x) ← min {D (x), d (v) + w (v, x)} 

end 
 

 Next, we consider an example to illustrate the Dijkstra’s Algorithm   

 

 

 

 

 

 Example:  
 For the purpose, let us take the following graph in which, we take a as the source 
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Figure : 2.7.2 
  

Step  Additional  S = Set-of-   Distance from source of  
     node     Remaining nodes  b, c, d, e 
 
  Initialization             a  (b, c, d, e)   [3, ∞, 7, ∞] 
 
 1                     b    (c, d, e)    [3, 3 + 4, 3 + 2, ∞] 

 2           d       (c, e)  [3, 3+4, 3+2, 3+2+4] 

 3           c         (e)   [3, 7, 5, 9] 

 For minimum distance from a, the node b is directly accessed: the node c is 

accessedthrough b; the node d is accessed through b; and the node is accessed 

through b and d. 

 

2.7 SUMMARY 
 

 In this unit, we have discussed the Greedy technique the essence of which is : 
In the process of solving an optimization problem, and at subsequent stages, 
evaluate the costs/benefits of the various available alternatives for the next step. 
 In this context, it may be noted that the overall solution, yielded by 
choosing locally optimal steps, may not be optimal. Next, well-known algorithms 

viz., Prim’s and Kruskal’s that use Greedy technique, to solving Single-Source-Shortest 

path problem, again using Greedy algorithms, is discussed. 

 

2.8 KEYWORD 
 

 Greedy method : Apply for solving optimization problems x well known problems    

                                         including shortest path problem. 

 Spanning Tree : suppose G = (V, E). be undirected connected  graph. A sub-

graph  



                                       G’ = (V ’, E ’) of G is a spanning tree of G if it is a tree. 
 SSSP :    The problem of finding the shortest distances of each of the vertices of 

a  

                         given weighted connected graph from some fixed vertex of the given 

graph. 

  

2.9 REVIEW QUESTIONS 
 

1- Explain the strategies that can be applied for the Knapsack problem. 

2- Find an optimal solution to the Knapsack instance n = 7, m = 15, (P1, P2, 

P3,…P7) = (10, 5, 15, 7, 6, 18, 3) and (w1, w2, …w7) = (2, 3, 5, 7, 1, 4, 1). 

3- Explain how the prime algorithms can be used to obtain a minimum-cost 

spanning tree. 

4- Using Kruskal’s algorithms, find a minimal spanning tree for the 
following g graph 
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5- Using Dijkstra’s algorithm, find the minimum distances of all the nodes from 

node b which is taken as the source node, for the following graph. 
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3.1  INTRODUCTION 
 
 Dynamic programming is an algorithm design method that can be used when the 

solution to a problem can be viewed as the result of a sequence of decisions. 

 For the Knapsack problem the sequence of decisions decide the values of xi, 1 ≤ 

i ≤ n.  

an optimal sequence of decision maximizes the objective function. 

 One way to solve problems for which it is not possible to make a sequence of 

stepwise decisions leading to an optimal decision sequence is to try all possible 

decision sequence. We could enumerate all decision sequences and then pick out the 

best but the time and space requirement may be prohibited. 

 Dynamic programming often drastically reduces the amount of enumeration by 

avoiding the enumeration of some decision sequences that cannot possibly be optional 

sequences of decision is obtained by making explicit appeal to the principle of 

optimality. 



Principle of optimality. 
 The principle of optimality states that an optimal sequences of decisions has the 

property that what ever the initial state and decision are the remaining decision must 

constitute optimal decision sequences with regards to the stage resulting from the first 

decision. 

 In the Greedy method only one decision sequence is generated. In dynamic 

programming several decision sequences are generated. 

 

3.2  ALL PAIR SHORTEST PATH  
 
In the all pairs shortest path problem we must find the shortest paths between all pairs 

of vertices vi, vj, i ≠ j. We could solve this problem using shortest path with each of the 

vertices in V (G) as the source. Since G has n vertices and shortest path has a time 

complexity of O (n2), the total time required would be O (n3). However, we can obtain a 

conceptually simpler algorithm that works correctly even if some edges in G have 

negative weights. Although this algorithm still has a computing time of O (n3), it has a 

smaller constant factor. The algorithm uses the dynamic programming method. 

 We represent the graph G by its cost adjacency matrix with cost [ i ] [ j ] = 0, i = j. 

If the edge < i, j >, i ≠ j is not in G, we set cost [ i ] [ j ] to some sufficiently large number 

using the same restrictions discussed in the single source problem. Let Ak [ i ] [ j ] be the 

cost of the shortest path from i to j, using only those intermediate vertices with an index 

≤ k. The cost of the shortest path from i to j is A n-1[ i ] [ j ] as no vertex in G has an index 

greater than n – 1. Further, A -1[ i ] [ j ] = cost [ i ] [ j ] since the only i to j paths allowed 

have no intermediate vertices on them. 

 The basic idea in the all pairs algorithm is to begin with the matrix A -1 and 

successively generate the matrices A0, A1, A2, …, An-1. If we have already generated Ak-

1, then we may generate Ak by realizing that for any pair of vertices i, j one of the two 

rules below applies.  

(1)  The shortest path form i to j going through no vertex with index greater than k 

does not go through the vertex with index k and so its cost is Ak-1 [ i ] [ j ]. 

(2) The shortest such path does go through vertex k. Such a path consists of a path 

from i to k followed by one from k to j. Neither of these goes through a vertex with 

index greater than k -1. Hence, their costs are Ak-1[ k ] [ j ] 

 



The roles yield the following formulas for Ak [ i ] [ j ]: 

 Ak [ i ] [ j ] = min {Ak-1 [ i ] [ j ], Ak-1 [ i ] [ k ] + {Ak-1 [ k ] [ j ], k ≥ 0 

and 

 A-1 [ i ] [ j ] = cost [ i ] [ j ] 

 Example:- Figure  below shows a digraph together with it’s A-1 matrix. For this 

graph A1 [0][2] ≠ min {A1[0][2], A0 [0][1] + A0 [1][2]} = 2. Instead, A1 [0][2] = - ∞ 

because the length of the path : 

0 1  0  1  0  1 ………0  1  2 

 

can be made arbitrarily small. This situation occurs because we have a cycle, 0, 1, 0, 

that has a negative length (- 1). 

 
 
         0 1 ∞ 

          - 2       -2 0 1 

    0        1        2   ∞ ∞ 0 
  1   1 
 
  (a) Directed Graph                 (b) A -1 
  
 
 
Floyd–Warshall algorithm 
 
the Floyd–Warshall algorithm  is a graph analysis algorithm for finding shortest paths in a 

weighted, directed graph. A single execution of the algorithm will find the shortest paths 

between all pairs of vertices. 

Algorithm 

The Floyd-Warshall algorithm compares all possible paths through the graph between each pair 

of vertices. It is able to do this with only V3 comparisons. This is remarkable considering that 

there may be up to V2 edges in the graph, and every combination of edges is tested. It does so by 

incrementally improving an estimate on the shortest path between two vertices, until the estimate 

is known to be optimal. 



Consider a graph G with vertices V, each numbered 1 through N. Further consider a function 

shortestPath(i,j,k) that returns the shortest possible path from i to j using only vertices 1 

through k as intermediate points along the way. Now, given this function, our goal is to find the 

shortest path from each i to each j using only nodes 1 through k + 1. 

There are two candidates for this path: either the true shortest path only uses nodes in the set 

(1...k); or there exists some path that goes from i to k + 1, then from k + 1 to j that is better. 

We know that the best path from i to j that only uses nodes 1 through k is defined by 

shortestPath(i,j,k), and it is clear that if there were a better path from i to k + 1 to j, then the 

length of this path would be the concatenation of the shortest path from i to k + 1 (using 

vertices in (1...k)) and the shortest path from k + 1 to j (also using vertices in (1...k)). 

Therefore, we can define shortestPath(i,j,k) in terms of the following recursive formula: 

This formula is the heart of Floyd Warshall. The algorithm works by first computing 

shortestPath(i,j,1) for all (i,j) pairs, then using that to find shortestPath(i,j,2) for all 

(i,j) pairs, etc. This process continues until k=n, and we have found the shortest path for all (i,j) 

pairs using any intermediate vertices. 

 

 

 Pseudocode 

Conveniently, when calculating the kth case, one can overwrite the information saved from the 

computation of k − 1. This means the algorithm uses quadratic memory. Be careful to note the 

initialization conditions: 

 1 /* Assume a function edgeCost(i,j) which returns the cost of the edge from 

i to j 

 2    (infinity if there is none). 



 3    Also assume that n is the number of vertices and edgeCost(i,i)=0 

 4 */ 

 5 

 6 int path[][]; 

 7 /* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is 

the shortest path 

 8    from i to j using intermediate vertices (1..k-1).  Each path[i][j] is 

initialized to 

 9    edgeCost(i,j) or infinity if there is no edge between i and j. 

10 */ 

11 

12 procedure FloydWarshall () 

13    for k: = 1 to n 

14       for each (i,j) in {1,..,n}2 

15          path[i][j] = min ( path[i][j], path[i][k]+path[k][j] ); 

  
 

  
 
 
3.3  OPTIMAL BINARY SEARCH TREES. 
 
 A binary search tree is a tree, which has a finite set of nodes that is either empty 

of a root, and two disjoint binary trees called the left and right sub trees. 

 For a binary: - 
 

1- All identifiers in the left sub-tree are less than the identifiers in the root node 

2- All identifiers in the right sub-tree are greater than the identifiers in the root 

node 

3- The left and right sub-trees are also binary search trees. 

 

 In a general situation we expect different identifiers to be searched for with 

different frequencies (probabilities). In addition we can expect unsuccessful searches 

also to made. 

 Let us assume that the given set of identifiers in {a1, a2, ...an} with a1 < a2 <….<an 

Let p ( i ) be the probability with which we search for a i . Let q (i) be the probability that 

the identifier x being searched for is such that ai < x< a i + 1 where I is between o and n. 

 Then ∑ q (i) is the probability of an 0 i ≤ n 



 Unsuccessful search. Clearly 

 ∑ p (i) + ∑ q (i) = 1 

 1 ≤ i ≤ n      0 ≤ i ≤ b 

 

  

 

 

 
 
         FOR 

 
  
  

 
        DO               WHILE 
 
 
 
 
 
             INT 
      
 
 
 
 
       
      IF  
 
 
 
 
 
 
 
 

Figure 3.1 Binary Search Trees with external nodes 
 
 In obtaining a cost function for binary search trees its useful to add a fictitious 

node in place for every empty sub-tree in the search tree. Such nodes are called 

external node identifiers then the x will be exactly n internal nodes and n +1 fictitious or 

external nodes. Every internal node represents a point where an unsuccessful search 

may terminate. 

 If a successful search terminates at an internal node at level ‘I’ then ‘I’ iterations 

of the while loop are needed. Hence the expected cost contribution from the internal 

node for ai is  

 P (i) * level (ai). 



 The identifiers not in the binary tree can be partitioned into n +1 equivalence 

classes; Ei, 0 ≤ i ≤ n. the class Eo contains all identifiers x, such that x, a1, Ei contains 

all x, such that ai < x < ai < 1, 1 ≤ l ≤ n. Ex contains x such that x  >an. For identifiers in 

the same class Ei, the search terminates at the same external node. 

 Procedure Search (T, x, I) 

 { 

  i ← T 

  While i ≠ 0 do 

  Case 

  : x < IDENT (i); 

   i ← LCHILD (i); // Search left sub-tree 

  : x = IDENT (i); 

      return; 

  : x > IDENT (i); 

   i ← RCHILD (i); 

 end case 

 

3.4  O/I KNAPSACK 
 

 A solution to the knapsack problem can be obtained by making a sequence of 

decisions on the variables X1, X2, …Xn. A decision on variable Xi involves determining 

which of the values 0 or 1 is to be assigned to it. 

 Let us assume the decisions on the Xi, are made in the order Xn, Xn-1….x1. 

Following a decision on Xn, we may be in one of the two possible states.  

1. The capacity remaining in the Knapsack is m and no profit has occurred. 

2. The capacity remaining is m-wn and the profit P, has to be accured. 

It is clear that the remaining decisions xn-1…x1 must be optimum with respect to 

the problem state resulting from the decision on xn. 
 

 Let Fj(y) be the value of an optimal solution to KNAP (1, j, y). Since the principle 

of optimality holds we obtain : 

 Fn(n) = max {Fn-1 (m), Fn-1 (m-w0) + Pn} 

  That can be solved with knowledge 

 That FO(y) = O for all y 



  Fi(y) = -∞, y < 0. 

 When the Wi are integers we need to compute Fi(y) for integers y, 0, y, m. Since 

each Fi can be computed from Fi-1 in 0(n) times it takes 0(m n) time to compute Fn. 

 The explicit 0(m n) computation of Fn may not be the most efficient computation 

so we consider an alternative. 

 F1(y) is an ascending step function that is there are a finite numbers of Y’s, 0 = 

y1, < y2 <…<yk. Such that Fi(y1), <Fi(y2) <…<Fi(Yk). 

 We used an ordered set 

 Si = (F(yi), yi/1 ≤ j ≤ k} to  

 Represent Fi (y) 

 S i is pair (P, W) where P = Fi(y j). Notice that S 0 = {(0, 0)} we cab compute S i+1 

from S by the first computing 

 Si 1 = {(P, W)/ (P-Pi, W-Wi ) Є Si } 

 S i+1 can be computed by merging the pairs Si and S i1 together. If S i+1 contains 

two pairs (Pj , Wj) and (Pk, Wk) with the property that Pj ≤ Pk and Wj ≤ Wk, then the pair Pj 

Wj can be discarded. 

 Discarding or perging rules are known as dominance rules. To obtain S i+1 the 

possibilities for X i+1 = 0 or X i+1 = 1, the resulting stage when X i+1 = 0 is same as for S i . 

When X i+1 = 1 the resulting stage are obtained by adding (P i+1, W i+1 ) to each stage is S 
i . We call these set of additional stage are S i 1. 

 Algorithm DKP (p, w, n, m) 

{ 

 S0: = {(0, 0)}; 

 For i: = 1 to n-1 do 

 {S1i-1: = {(p, w) / (p-q), w-w1) Є S i-1 and w ≤ m}; 

 S i : = merge Purge (S i-1, S1 i-1); 

} 

 (P x, Wx1) : = last pair in S n-1; 

 (P y, W y) : = (P1+Pn , W1+Wn) where W1 is the largest W in any pair in S n-1 such 

that W + W n  ≤ m; 

 If (P x > P y) then xn: = 0 

 Else x n : = 1; 

 Trace back for (x n-1, …x1); 

 



 

 

 

3.5  THE TRAVELING SALESPERSON PROBLEM 
 

Travelling saleperson problem 

The Travelling Salesman Problem (TSP) is a problem in combinatorial optimization 

studied in operations research and theoretical computer science. Given a list of cities 

and their pairwise distances, the task is to find a shortest possible tour that visits each 

city exactly once. 

The problem was first formulated as a mathematical problem in 1930 and is one of the 

most intensively studied problems in optimization. It is used as a benchmark for many 

optimization methods. Even though the problem is computationally difficult, a large 

number of heuristics and exact methods are known, so that some instances with tens of 

thousands of cities can be solved. 

In the theory of computational complexity, the decision version of TSP belongs to the 

class of NP-complete problems. Thus, it is assumed that there is no efficient algorithm 

for solving TSP problems. In other words, it is likely that the worst case running time for 

any algorithm for TSP increases exponentially with the number of cities, so even some 

instances with only hundreds of cities will take many CPU years to solve exactly. 

As a graph problem 

Symmetric TSP with four cities 

TSP can be modelled as a graph: the graph’s vertices correspond to cities and the 

graph’s edges correspond to connections between cities, the length of an edge is the 

corresponding connection’s distance. A TSP tour is now a Hamiltonian cycle in the 

graph, and an optimal TSP tour is a shortest Hamiltonian cycle. 

Often, the underlying graph is a complete graph, so that every pair of vertices is 

connected by an edge. This is a useful simplifying step, because it makes it easy to find 

a solution, however bad, because the Hamiltonian cycle problem in complete graphs is 



easy. Instances where not all cities are connected can be transformed into complete 

graphs by adding very long edges between these cities, edges that will not appear in 

the optimal tour. 

Exact algorithms 

The most direct solution would be to try all permutations (ordered combinations) and 

see which one is cheapest (using brute force search). The running time for this 

approach lies within a polynomial factor of O(n!), the factorial of the number of cities, 

so this solution becomes impractical even for only 20 cities. One of the earliest 

applications of dynamic programming is an algorithm that solves the problem in time 

O(n22n) 

The dynamic programming solution requires exponential space. Using inclusion–

exclusion, the problem can be solved in time within a polynomial factor of 2n and 

polynomial space.[15] 

Improving these time bounds seems to be difficult. For example, it is an open problem if 

there exists an exact algorithm for TSP that runs in time O(1.9999n) 

Other approaches include: 

• Various branch-and-bound algorithms, which can be used to process TSPs 

containing 40-60 cities.  

• Progressive improvement algorithms which use techniques reminiscent of linear 

programming. Works well for up to 200 cities.  

• Implementations of branch-and-bound and problem-specific cut generation; this 

is the method of choice for solving large instances. This approach holds the 

current record, solving an instance with 85,900 cities. 

 Special cases 

 Metric TSP 



A very natural restriction of the TSP is to require that the distances between cities form 

a metric, i.e., they satisfy the triangle inequality. That is, for any 3 cities A, B and C, the 

distance between A and C must be at most the distance from A to B plus the distance 

from B to C. Most natural instances of TSP satisfy this constraint. 

In this case, there is a constant-factor approximation algorithm due to Christofides that 

always finds a tour of length at most 1.5 times the shortest tour. In the next paragraphs, 

we explain a weaker (but simpler) algorithm which finds a tour of length at most twice 

the shortest tour. 

The length of the minimum spanning tree of the network is a natural lower bound for the 

length of the optimal route. In the TSP with triangle inequality case it is possible to prove 

upper bounds in terms of the minimum spanning tree and design an algorithm that has 

a provable upper bound on the length of the route. The first published (and the simplest) 

example follows. 

• Construct the minimum spanning tree.  

• Duplicate all its edges. That is, wherever there is an edge from u to v, add a 

second edge from u to v. This gives us an Eulerian graph.  

• Find a Eulerian cycle in it. Clearly, its length is twice the length of the tree.  

• Convert the Eulerian cycle into the Hamiltonian one in the following way: walk 

along the Eulerian cycle, and each time you are about to come into an already 

visited vertex, skip it and try to go to the next one (along the Eulerian cycle).  

It is easy to prove that the last step works. Moreover, thanks to the triangle inequality, 

each skipping at Step 4 is in fact a shortcut, i.e., the length of the cycle does not 

increase. Hence it gives us a TSP tour no more than twice as long as the optimal one. 

Human performance on TSP 

The TSP, in particular the Euclidean variant of the problem, has attracted the attention 

of researchers in cognitive psychology. It is observed that humans are able to produce 



good quality solutions quickly. The first issue of the Journal of Problem Solving is 

devoted to the topic of human performance on TSP. 

 TSP path length for random pointset in a square 

It is known that, for N points in a unit square, the TSP always has length at most 

proportional to the square root of N, and that randomly distributed point sets will have 

length that is (in expectation) at least proportional to the square root. However, the 

constants of proportionality, both for worst-case point sets and for random point sets, 

are not known. 

Consider N stations randomly distributed in a 1 x 1 square with N>>1. 

 Lower bound 

A lower bound of the shortest tour length is , obtained by assuming the mover stands on 

station j and always visits j's nearest as next.  

A better lower bound is , obtained by assuming j's next is j's nearest, and j's previous is 

j's second nearest. This can be written as  

A similar result obtained by dividing the points into equal disjoint sets and considering 

steps forwards and backwards from point j on the shortest path gives a lower bound  

 Upper bound 

By applying simulated annealing method on samples of N=40000, computer shows an 

upper bound 

, where 0.72 comes from boundary effect. 

Because the actual solution is only the shortest path, for the purposes of programmatic 

search another upper bound is the length of any previously discovered approximation. 

 

 

 



3.6  FLOW SHOP SCHEDULING 
 

 In a general flow – shop we may have n jobs each requiring n tasks. T1, T2, …Tni 

is to be performed on processor Pj, 1 ≤ j ≤ n task T ji is to be performed on processor P i 
. The time required to complete the task T ji is t ji. A schedule for the n jobs is an 

assignment of tasks, to time the intervals on the processors. Task T ji must be assigned 

to processor Pj . 

 No processor may have more than one task assigned to it in any time interval. 

Additionally for any job i the processing of task T ji with j >l cannot be stared until task T ji 

has been completed. 

 A non pre-emptive schedule is a schedule in which the processing of a task on 

any processor is not terminated until the task is complete. A schedule for which theis 

condition need not be true is called pre-emptive. The finish time Fi(s) of job I is the time 

at which all task of job I have been competed in schedule s is given by : 

 F (s) = max {Fi (s)} 

 1 ≤ i ≤ n 

the mean flow time MFT (s) is defined to be : 

MFT (s) = 1/n ∑ /1si ≤ n Fi (s) 

 An optimal finish time (OFT) schedule for a given set of jobs is a non pre-emptive 

schedule S for which F(s) is a minimum over all non-preemptive schedules S. 

 Two jobs have to be scheduled on three processors. The task time are given by 

matrix J 

 

       2           0 

J =    3 3 

         5            2 

 

 

   

 

 

 

 The two possible schedules are 

 Time 0  2  5    6             10  12 



               .       . 
               .       . 
                  .       . 
          P1       T11            .       . 
          P2                . 
          P3     T22  T21   T22       . 
         T31      T32 
 
 
 
 
 
 Time 0 2  3  5  6   11 
 
 
  P1       T11 
  P2        T22   T21 
  P3   
      T32     T31 
 

 
Figure : Two possible schedules. 

 
   
 
 
 
 
3.7  SUMMARY 
 

1- In order that Dynamic Programming technique is applicable in solving an 

optimisation problem, it is necessary that the principle of optimality is 

applicable to the problem domain. 

2- The Knapsack Problem: We are given n objects and a Knopsack. For I = 1, 

2,…., n, object i has a positive weight wi and a positive value vi. The 

Knapsack can carry a weight not exceeding W. The problem requires that the 

Knapsack is filled in a way that maximizes the value of the objects included in 

the knapsack. 

Further, a special case of Knapsack problem may be obtained in which the 

objects may not be broken into pieces. In other words, either a whole object is 

to be included or it has to be excluded. 

 

3.8  KEYWORDS 
 



• Dynamic Programming: - It is that we should avoid calculating the 

same quantity more than once by keeping a table of known results 

for simple instances. 

• Principle of Optimality: - States that components of a globally 

optimum solution must themselves be optimal. 

• Knapsack Problem: - Can be obtained by making a sequence of 

decisions on n variables. 

• Flow Shop Scheduling:- flow  shop we may have n jobs each 

requiring n tasks, is to be performed on n processor. 

 

 

3.9  REVIEW QUESTIONS. 
 

1. Explain the terms: 

a. Principle of optimality. 

b. Pre-emptive scheduling. 

c. Mean flow time. 

2. Explain how dynamic programming is used to obtain an optimal binary search 

tree. 

3. Use an example and show a pre-emptive and a non-pre-emptive schedule. 
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4.1  INTRODUCTION 
 
 In the search for fundamental principles of algorithm design, backtracking 

represents one of the most general techniques. In many applications of the backtrack 

method, the desired solution is expressible as an n-triple (x,……, xn), where the xi are 

chosen from some finite set Si. After the problem to be solved calls for finding one 

vector that maximizes (or minimizes or satisfies) a criterion function P (x,…, xn). Some 

times it seeks all vectors that satisfy P. 

 Suppose mi is the size of the set Si. Then there are M = M1, M2…Mn, M-triples 

that are possible candidates for satisfying the function P. The brute force approach 

would be to form track algorithm has as its virtue the ability to yield the same answer 

with far fewer than ‘m’ trials. Its basic idea is to build up the solution vector one 

component at a time and to use modified criterion functions Pi (x1,……x i) [ called 

bounding functions] to test whether the vector being formed has any chance of success. 



 The major advantage of the method is this: if is realized that the partial vector (x1, 

x2, ….xi) can in no way lead to an optimal solution, then Mi +1 ……mn possible test 

vectors can be ignored entirely. 

 Many of the problems solved using backtracking requires that all the solutions 

satisfy a complex set of constraints can be divided into two categories: explicit and 
implicit. 
 Explicit constraints are rules that restrict each x i to take on values only from a 

given set. They depend on the particular instance I of the problem being solved. All 

types that satisfy the explicit constraints define a possible solution space for I. 

 The implicit constraints are rules that determine which of the triple in criterion 

function. Thus implicit constraints describe the way in which the x i must relate to each 

other. 

 Backtracking algorithm determine problem solutions by systematically searching 

the solution space for the given for the given problem instance. This search is facilitated 

by using a tree organization for the solution space. 

  Algorithm Backtrack (k) 

  { 

    for leach x [k] E t (x[1], …….., x [k-1])  do 

   { 

    if (Bk (x [1], x [2], …….., x [k]) ≠ 0) then 

     { 

  if (x[1], x [2], ……x [k] is a path to an answer node) then write (x [1:k]; 

  if (k < n) then Backtrack (k = 1); 

    } 

   } 

  } 

 Recursive backtracking algorithm. An iterative version of the backtrack algorithm 

is a follow: 

  Algorithm I Back track (n) 

  { 

      K : = 1; 

       while (K ≠ 0)  do 

        { 

   if (three remains an untried 



   x [K] ET (x [1], x [2]………x [K-1]) 

   and Bk (x [1], ………x [K] is true) then 

 {  

  if (x [1], ….x [k] is a path to an answer node) then write (x [1 :kj); 

  K : = K + 1; 

  } 

  else K : = K-1; 

                 } 

 } 

 

 Each node in this tree defines a problem state. All paths from the root to other 

nodes define the state space of the problem. Solution states are those problem states 

‘s’ for which the path from the root to s defines a triple in the solution space. Answer 
states are those solution states ‘s’ for which the path from the root  to s defines a triple 

that is a member of the set of solutions of the problem. The tree organization of the 

solution space is referred to as the state space tree. 
 State space tree organizations that are independent of the problem instance 

being solved are called as static frees. Tree organizations that are problem instance 

dependant are called dynamic trees.  

 Beginning with the root all other nodes are generated. Anode which has been 

generated & all of whose children have not yet been generated is called a live node. 

Alive node whose children are currently being generated is called E-nod (node being 

expanded). 

 As a new child c or the current E-node R is generated, this child will become the 

new E-node. Then R will become the E-node again when the subtree c has been fully 

explored. This is the depth first generation of the problem states. Depth first node 

generation with bounding functions is called backtracking. 

 

   

4.2  THE 8-QUEENS PROBLEM 
 

 The 8-Queens problem is a classic combinatorial problem to place eight queens 

or an 8 x 8 chessboard so that no two “attack”, that is, so that no two of them are on the 



same row, column or diagonal. All solutions to the same 8-queenss problem can be 

represented as 8-types (x1, x2……x8) where xi is the column on which queen i is placed. 

 We generalize the problem for an n x n chessboard and try to find all ways to 

place n non-attacking queens. We can let (x1, x2, …xn) represent a solution in which xi is 

the column of the i th row  where the i th queen is placed. The x i’s will all be distinct since 

no two queens can be placed in the same column. 

 Considering the chessboard squares being numbered as the indices of the two-

dimensional array a[1:n, 1:n] then every element on the same diagonal that runs from 

upper left to lower right has the same row-column value. Suppose two queens are 

placed at positions (i, j) and (k, l). Then they are on the same diagonal only if 

  i – j = k – l  or  i + j = k + l 

 The first implies 

  j – l = i – k  

 The second implies 

  j – l = k – l 

 Therefore two queens lie on the same diagonal if and only if / j – l / = / i – k /. 

  Place (k, i) returns a Boolean value that is true if the k th queen can be 

placed on column i. It tests both whether i is distinct from all previous values x [1],…x [k-

1] and whether there is no other queen on the same diagonal. Its computing time is 0(k-

1). 

Algorithm place (k, i) 

 { 

 for j : = 1 to  k-1 do 

 if ((x[j] – i) = Abs (j – k))) 

  then return false 

 return true; 

 } 

 Algorithm N Queens (k, n) 

 { 

 for i : = 1 to n do  

 { 

 if place (k, i) then 

 { 

 x [k] : = i; 



 if (k = n) then write (x[1 :n]) ; 

 else N Queens (k + 1); 

  } 

       } 

 } 

 

 
                Column 

                 
          1        2      3       
4       5       6       7      8       
 
  1 

  2 

  3 

 Row  4 

  5 

  6 

  7 

  8 

 

Figure: 4.2 One solution to the 8-queens problem. 

 

 

 

The 8 Queens Problem 
We will solve the 8 Queens problem using   BACKTRACKING. Actually we will solve the 

n Queens problem. 

• What is BACKTRACKING? 

• What is the 8 Queens problem? 

• What is the n Queens problem? 

 

Backtracking 
Backtracking is kind of solving a problem by trial and error. However, it is a well 

organized trial and error. We make sure  that we never try the same thing twice. We 

   Q     

     Q   

       Q 

        

      Q  

Q        

  Q      

    Q    



also make sure that if the problem is finite we will eventually try all  possibilities 

(assuming there is enough computing power to try all possibilities). 

 
The 8 Queens Problem: 
Given is a chess board. A chess board has 8x8 fields. Is it possible to place 8 queens 

on this board, so that no two queens can attack each other? 

 

NOTES: A queen can attack horizontally, vertically, and on both diagonals, so it is pretty 

hard to place several queens on one board so that they don’t attack each other. 
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The n Queens problem: 

 

Given is a board of n by n squares. Is it possible to place n queens (that behave exactly 

like chess queens) on this board, 

without having any one of them attack any other queen? 

 

Example: 2 Queens problem is not solvable. 
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Example 2: The 4-queens problem is solvable: 

 

 

 

 

 

 

 

 

 

 

Basic idea of solution: 

 

· Start with one queen in the first column, first row. 

· Start with another queen in the second column, first row. 

· Go down with the second queen until you reach a permissible situation. 

 

· Advance to the next column, first row, and  do the same thing.  

· If you cannot find a permissible situation in one column and reach the bottom of it, then 

you have to go back to the    

    previous column and move one position down there. (This is the backtracking step.) 

 

· If you reach a permissible situation in the last column of the board, then the problem is 

solved. 

· If you have to backtrack BEFORE the first column, then the problem is not solvable. 

 

 

 

 

4.3  SUM OF SUBSET 
 

  Q  

Q    

   Q 

 Q   



 Suppose we are given n distance positive numbers (usually called weights) and 

we desire to find all combinations of these numbers whose sum are m. This problem 

can be formulated using either the fixed or variable sized tuples. 

 In the variable tuple size formulation, the edges are labeled such that an edge 

from a level i nodes to level i + 1 nodes are labeled with value of xi, which is either zero 

or one. 

 We consider a back tracking solution using the fixed tuple size strategy in this 

case the element xi of the solution vector is either or zero depending on whether the 

weight wi is included or not : The children of any node at level i are the left child 

corresponding to xi = 1 and the right to xi = 0. 

 A simple choice for the bounding function is Bk (x1…..xk) = true iff  

    K n 

    ∑ W i X i + ∑ W i ≥ m 

    i = 11 = k + 1 

 The bounding function can be strengthened if we assume the w i’s are initially in 

non-decreasing order. In this case x1…xk can not lead to an answer node if  

  k 

  ∑ Wi Xi + Wk+1 > m 

  i = 1 

                 K n 

The bounding functions we use are therefore Bk (x1…xk) = true iff ∑ W i X i + ∑ W i ≥ m 

                 i = 11 = k + 1 

 
k 

  ∑ W i X i + W k+1 ≤ m 

  i = 1 

 Algorithms sum of sub (s, k, r) 

 { 

  x [k] : = 1; 

  if (s + w [k] = m) then write (x[1 : k]); 

  else if (s + w[l] + w[k+ 1] ≤ m); 

  then sum of sub (s + w[k], k + 1, r-w[k]); 

  if ((s + r-w[k] ≥ m) and (s + w[k + 1] ≤ m)) then 

  { 



 x [k] : = 0;  

 sum of sub (s, k+1, r-w [k]); 

  } 

 } 

 

 

4.4  KNAPSACK PROBLEM 
 

 Given ‘n’ positive weights wi n positive profits pi, and a positive number m that is 

the Knapsack capacity, this problem calls for crossing a subset of the weights such that. 

 ∑ W i X i ≤   and   ∑ p i x i maximized 

 1 ≤ i ≤ n  1 ≤ i ≤ n 

 The 2^ distinct ways to assign zero or one values to the x’s 

 Backtracking algorithms for the problem use bounding functions that are needed 

to help kill some live nodes without expanding them. A good bounding function for this 

problem is obtained by using an upper bound on the value of the best feasible solution 

obtainable by expanding the given live node and any of its descendants. If this upper 

bound is not higher than the value of the best solution determined so fast, then that live 

node can be killed. Using the fixed tuple size formulation. If at node Z the values of xi, 1 

≤I ≤ k, have already been determined, then an upper bound for Z can be obtained by 

relaxing the requirement xi = 0 or 1 to 0 ≤ xi ≤ 1 for k + 1 < l < n and using the Greedy 

algorithm. 

 Function bound (ip, iw, k) determines an upper bound on the best solution 

obtainable by expanding any node Z at level k+1 of the state space tree. The object 

weights and profits are w[ l ]. 

 Algorithm Bound (cp, cw, k) 

 { 

    b : cp; c: = cw; 

       for i : = k+1 to n do 

  {    c : = c+w [i] 

   if (c<m) then b : = b+p [ i ]; 

   else return b + (1-(c-m) / w [i]) * p [ i ]; 

  } 

  Return b: 



 } 

  From Bound it follow that the bound for a feasible left child of a node Z is 

the same as that for Z. Hence the bounding function need not be used whenever the 

backtracking algorithm makes a move to the left child of a node the resulting algorithm 

is Bknap. Initially set Fp : = -1; 

 This algorithm is invoked as  

  Bknap (1, 0, 0); 

        n 
 When fp ≠ -1 , x [ i ], 1 ≤ l ≤ n, is such that ∑  p[ I ] x [ I ] 
       i =1 
 Algorithm Bknap (k, co, cw) 

 { 

 if (cw + w [k] ≤ m ) then 

 { 

 y [k] : = 1; 

 if (k<x) then Bknap (k+1, cp+p[k], cw +w [k]); 

 if ((cp + p[k]> fp) and (k=n)) then 

 { 

 fp := cp +p[k]; fw : = cw +w [k]; 

` for j : = 1 to k do x [ j ] : =y [ j ]; 

  } 

 } 

 if (Bound (cp, cw, k) ≥ fp) then 

 { 

 Y[k] : = 0; if (j < n) then 

 Bknap (k+1, cp, cw); 

 if ((cp> fp) and (k = n)) then 

 { 

 fp : = cp; fw : = cw; 

 for j : = 1 to k do 

 x [ j ] : = y [ j ]; 

  } 

      } 

 } 

 The path y [ i ], 1 ≤ i ≤ k is the path to the current node. The current weight  



                      k - i 

    cw = ∑w[ i ]* y [ i ] 

                  i -1 
           k - i 

 and  cp = ∑p[ i ]* y [ i ] 

           i -1 
 
 
4.5  GRAPH COLORING 
   
 Let G be a graph and m be a given positive integer. The m- colorability decision 

is to discover whether the nodes of G can be colored in such a way that no two adjacent 

nodes have the same color yet only m colors are used. If d is the degree of the given 

graph, then it can be colored with d+ 1 color. The m-colorability optimization problem 

asks for the smallest integer m for which the graph G can be colored. This integer is 

called as the chromatic number of the graph. 

 A graph is said to be planar iff it can be drawn in a plane in such a way that no 

two edges cross each other.  

 Suppose we represent a graph by its adjacency matrix G [1:n, 1:n] where G [I, j] 

= 1 if (l, j) is an edge of G and G [l, j] = 0 otherwise. The colors are represented by 

integers 1, 2, …..m and the solutions are given by the n tuple (x1,…xn) where xi is the 

color of node i. The state space tree used is a tree of degree m and height n+1. Each 

node at level i have m children corresponding to the m possible arrangements n + 1 is 

leaf node. 

 Function next value produces the possible colors for x k after x 1 through x k-1 

have been defined. An upper bound on the computing time for n coloring can be arrived 

at by noticing that 

         n - 1 

the number of internal nodes in the state space tree is ∑ mi . At each internal node 

0(m,n) 
          i = 0 

time is spent by next value to determine the children corresponding to legal colorings. 

Hence the total time is bounded by 

  n – 1        n 

  ∑ m i+1 n = ∑ mi n = n(m n+1 -2) / (m-1) 

  i = 0         i = 1 



 = 0 (n mn) 

 Algorithm m coloring (K)  

 { 

 Repeat 

 { 

  Next value (K); 

  if (x [K] = 0 then return; 

  if (K = n) then 

  write (x [1 : n]) 

  else nColoring (K+1); 

 } until (false); 

      } 

 Algorithm next value (k) 

 { 

 Repeat 

  {x [k] : = (x [k] + 1) nod (m+1); 

  if (x [k] = 0) then return 

  for j : = 1 to n do 

 { 

  if (( G [k, j] ≠ 0) and (x [k] = x [ j ]  )) 

   then break; 

  } 

  if  (j = n+1) then return; 

  } until (false); 

  } 
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Figure : State Space free for nColoring when n = 3 and m = 3 
 

 
 

 
4.6  SUMMARY 
 
 This unit discusses some backtracking techniques for finding one vector that 

maximizes or minimizes or satisfies a criterion function. 

 The technique is illustrated with examples of its applications to solving 

problems of the 8 queens problem. Sum of subsets, Knapsack problem and graph 

coloring of a given information. 

 

4.7  KEYWORDS 
 

8-Queens problem: the problem for an n x n chessboard and try to find all ways to 

place n non-attacking queens. 

Sum of Subset: n distance positive numbers to find all combinations of these numbers 

whose sum are m.  

Graph Coloring: If d is the degree of the given graph, then it can be colored with d+ 1 

color. 

 

 

4.8  REVIEW QUESTIONS 
 

1. Explain the terms: 

(a) Implicit constraints & explicit constraints. 



(b) Solution space 

(c) Static and Dynamic trees 

2. Explain the backtracking technique as applied to the N Queens problem 

where N = 4. Draw the tree organization. 

3. What is the chromatic number? How is the nColoring algorithm used to 

assign colors to the various nodes? 

4. What is the bounding function that is used for sum of subsets problem? 
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5.1  INTRODUCTION 
 

 In branch and bound method we have state space search methods in which 

all children of the E- node are generated before any other live node can become the E-

node. In branch – and – bound terminology, a BFS like state space search will be called 

FIFO (First in First Out) search as the list of live nodes is a queue.  A D – search – like 

state space search will be called LIFO (Last in First out) Search as the list of live nodes 

is a last-in-first-out list (or stack). Boundary functions are used to help avoid the 

generation of sub trees that do not contain an answer node. 

 
LEAST COST (LC) SEARCH:- 



 The search for an answer node can often be speeded by using an “intelligent” 

ranking function i < > for live nodes. The next E- node is selected on the basis of this 

ranking function. The ideal way to assign ranks would be on the basis of the additional 

computational effort (or cost) needed to reach an answer node from the live node. For 

any node x, this cost could be (i) the number of nodes in the sub tree x that need to be 

generated before an answer node is generated or, more simply (2) the number of levels 

the nearest answer node is from x. if cost measure 1 is used, then the search would 

always generate the minimum no. of nodes every branch and bound type algorithm 

must generate. If cost measure 2 is used, then the only nodes to become E – nodes are 

nodes on the path from the root to the nearest answer node. 

 Search algorithms usually rank nodes only on the basis of an estimate g ( . ) 
of their cost. Leg g (x) be an estimate of the additional effort needed to reach an answer 

node from x. node x is assigned a rank using a function i ( . ) such that I (x) = f ( n (x)) + 

g (x), where n (x) is the cost of reaching x from the root and f ( . ) is any non decreasing 

function. 

 A search strategy that uses a cost function i (x) = f (n (x)) + g (x) to select the 

next E-node a live node with least i ( . ). Hence such a search strategy is called an LC 

search. 

 
BOUNDING:- 
 Each answer node x has a cost c (x) associated with it and that a minimum – 

cost answer node is to be found. Three common search strategies are FIFO, LIFO, and 

LC. 

 A cost function Ĉ ( . ) such that Ĉ (x) ≤ c (x) is used to provide lower bounds on 

solutions obtainable from any node x. if upper is an upper bound on the cost of a 

minimum –cost solution, then all live nodes x with Ĉ (x) > upper may be killed as all 

answer nodes reachable from x have cost c (x) ≥ i (x) > upper. The starting value for 

upper can be set to ∞. Clearly so long as the initial value for upper is no less than the 

cost of a minimum cost answer node, the above rules to kill live nodes will not result in 

the killing of a live node that can reach a minimum cost is found, the value of upper can 

be updated. 

 List ode = record { 

  List node * next, * parent; float cost; 



  } 

 Algorithm < c search (t) 

 { 

     if * t is an answer node then output * t and return; 

 E : = t; 

 Initialize the list of live nodes to be empty; 

 Repeat 

 { 

    for each child x of E do 

  { 

  if x is an answer node then output the path from x to t and return; 

  Add (x); 

  (x → parent) : = E; 

 } 

  if there are no more live nodes then 

  { 

      write (“No answer node”); 

  return; 

  } 

  E : = Least ( ); 

  } until (false); 

  } 

  

 

5.2  I/O KNAPSACK PROBLEM 
 

 The branch – and – bound technique deals with only minimization problems. 

The knapsack however is an maximization problem. This difficulty is overcome by 

replacing the objective function ∑ pi xi by the function - ∑ pi xi. Clearly, ∑ pi xi is 

maximized if f - ∑ pi xi is minimized. The modified knapsack problem is hence 

 

 minimize - ∑ pi xi 

       i = 1 

 subject to ∑ wi xi ≤ m 



        i = 1 

   xi = 0 or 1, 1 ≤ n 

 Every leaf node in the state space tree representing an assignment for which 

∑1 ≤ i ≤ n Wi X i ≤ n is an answer node. All other leaf nodes are infeasible. For a 

minimum cost answer node to correspond to any optimal solution, we need to define 

C(x) = -∑1 ≤ i ≤ n Pi X i for every answer node x. The cost C(x) = for infeasible leaf 

nodes. For non leaf nodes, ((x) is recursively defined to be min {C (1 child (x)), c (r child 

(x))} 

 We need 2 functions i (x) such that i (x) such that i (x) ≤ c (x) ≤ u (x) for every 

node x the cost i (.) and (.) satisfying this requirements may be obtained as follows, Let 

x be a node at level j, 1 ≤ j ≤ n +21. at node x assignments have already been made to x 

i 1 ≤ i ≤ j. the cost of these- 

assignments is -∑pi xi. So c (x) ≤ -∑pi xi and we may use u(x) = -∑ pi xi. if q = -∑ pi xi, 

  1 ≤ i ≤ j         1 ≤ i ≤ j        1 ≤ i ≤ j          1 ≤ i ≤ j 

Then an improved upper bound function u (x) is u (x) = U Bound (q, ∑ wixi), j – 1, m). 

 Algorithm U bound (cp, cw, k, m) 

 { 

  b: cp;  c: = cw; 

  for i : = K+1 to n do 

 { if (c + w [ i ] ≤ m) then 

 { e : = c + w [ i ]; 

 b : = b –p [ i ] 

 } 

 } 

 Return b; 

 } 

 

  

5.3  TRAVELLING SALESPERSON 
  
 Let G = (V, E) be a directed graph defining an instance of the traveling sales-

person problem. Let cij equal the cost of edge < i, j >, cij = α if < i, j > Є ……E, and let/V/ 

=n. We can assume that every tour starts and ends at vertex 1. The solution space S is 

given by S = {1, л, 1/ л is a permutation of (2, 3,…n)}. Then /S/ = (n – 1)! The size of S 



can be reduced by restricting S so that (1, i1, i2, …in-1, 1) E S if <ij, ij+1> EE, 0 jn-1, and i0 

= in = 1.  

 

 To use LCBB to search the the traveling sales person state space tree, we 

need to define a cost function C (.) and two other functions C (.) and u (.) such that C(r) 

≤ u(r) ≤ u (r) for all nodes r. The cost C (.) is such that the solution node with least C (.) 
corresponds to a shortest tour in G. One choice for C (.) is  

  Length of tour defined by the path form root to A, if A if A is a  

      C (A) =  leaf cost of a minimum-cost leaf in the sub tree A, if A is not  

  a leaf. 

 

 A simple C (.) such that C (A) ≤ c (A) for all A is obtained by defining C (A) to 

be the length of the path defined at node A. A row is said to be reduced iff it contains at 

least one zero and all remaining entries are non-negative. A matrix is reduced iff every 

row and column is reduced. 

 We can associate a reduced cost matrix with every node in the traveling 

salesperson state space tree. Let A be the reduced cost matrix for node R. Let S be a 

child of R such that the tree edge (R,S) corresponds to including edge <i, j> in the tour. 

If S is not a leaf, then the reduced cost matrix for S may be obtained as follows: 

(1) Change all entries in row i and column j of A to α. This prevents the 

use of any more edges leaving vertex i or entering vertex j. 

(2) Set A (j, i). to α. This prevents the use of any edge < j, i>. 

(3) Reduce all rows and columns in the resulting matrix except for rows 

and columns containing only α. Let the resulting matrix be B. 

 

 Let the resulting matrix be B. if r is the total amount subtracted in step (3) then 

C (s) = C (r) + A (i, j) +r for leaf nodes (.) = c () is easily computed as each leaf defines a 

unique tour. For the upper bound function u. we can use u (R) = α for all nodes R. 
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Figure: State space tree for the traveling sales person problem with n=4 i0 = is =1 
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Figure: State Space Tree Generated by latest-lost-branch-bound number outside the 
node are C value. 

 
 
 

5.4  LOWER BOUND THEORY 
 

Oour main task is to obtain correct and efficient solutions. If two algorithms for 

solving the same problem were discovered and their times differed by an order of 

magnitude, then the one with the smaller order was generally regarded as 

superior. But still, we are left with the question: is there a faster method? The 

purpose of this chapter is to expose you to some techniques that have been used 

to establish that a given algorithm is the most efficient possible. The way that this 

is done is by discovering a function g(n) that is a lower bound on the time 

algorithm any algorithm must take to solve the given problem. If we take an 

   i 1 =2 
   i 1 =3 

   i 1 =4 
   i 1 =5 

   i 2 =2 
   i 2 =3    i 2 =5 

   i 3 =3    i 3 =5 

   i 4 =3 



algorithm whose computing time is the same order as g(n) , then we know that 

asymptotically we can do no better.  

f (n) - running time of some algorithm  

g (n) - lower bound -- (Omega)  

 
iff there exists positive constants c and no such that f(n) > cg(n) for all n , n > no (g(n) is 

a lower bound for f(n))  

if f(n) > O(g(n)) and  

then asymptotically, we cannot have any improvement. 

Improvement in constant possible.  

Deriving good lower bounds is often more difficult than devising efficient 

algorithms. Perhaps this is because a lower bound states a fact for all possible 

algorithms for solving a problem. Usually we cannot enumerate and analysize all 

these algorithms, so lower bound proofs are often hard to obtain 

Trivial lower bounds:  

Max of set of n numbers  

have to look at all inputs, n-1 comparisons : f(n) is O(n) ; (n)  

n x n matrix multiplicaton: 2n2 inputs , n2 outputs  

(n2)  

but this is lower than the best known algorithm  

Best known algorithm requires f (n) = 0 (n2 + )  

Improvement possible or tighter lower bound exists. (See Chapter 3 for more details.)  

Comparison Trees: Searching/Sorting 
Useful for modeling the way in which a large number of sorting and searching 
algorithms work,  

Comparison-based algorithms - algorithms which work solely by making comparisons 
between elements; no arithmetic involving elements is permitted  

A [1 : n]  



p: permutation of {1, 2, . . . ., n}  

The sorting problem calls for determining p, a permuation of the integers 1 to n, such 
that the n distinct values from S (the Set) stored in A[1:n] satisfy  

A (p (1)) < A (p (2)) < . . .< A (p (n)) (ordering in terms of indices, not values) p(1) is the 
first in the permutation.  

The ordered searching problem : A (1) < A (2) . . .< A (n)  

i      if x = A(i) for some i  
0     otherwise 

again: restriction on class of algorithms for which lower bound applies -  
only comparison between elements - no arithmetic on keys.  

Comparison Trees 
Search  

Linear Search (ordered array)  

 

running time - longest path in tree  
- O(n)  

Binary Search  



 

In general  

f (n) = O(log n)  

If search terminates at interior nodes - success . . . . . external (leaf) nodes - failure  

How do we reason to determine lower bound?  

consider any comparison tree to search A [1 : n]  

there must be n internal nodes corresponding to n possible successful outcomes.  

k = maximum level of any internal node  

then, number of internal nodes < 2k - 1 (proof by induction)  

n < 2k - 1      implies      k > log2 (n+1)  

number of comparisons (worst case)  

= k = log2 (n+1) = 0 (log n)  

f (n) = (log n)        f (n) = O(log n)  

So best - optimal algorithm is binary search since it achieves this  

Note that we did not look at any specific algorithm to detemine the lower bound, instead 

we considered information about the problem and considered what is the best we could 

do.  



And, actually, we would want to consider the worst case of our best algorithm. Why? To 

see if it is the best possible.  

Sort  

comparison tree for sorting  

number of external (leaf) nodes = number of distinct permutations of {1, 2, . . ., n}  

= n!  

let k be max. level of any internal node in tree  

T(n) = k  

If max level of any internal node is k, then at most 2k external nodes  
n! < 2k      ;      k = T(n) > log2(n!)  

By Stirling's approximation (see page 462) = O(n log n)  

Hence any comparison-based sorting algorithm needs (nlog n) time  

 
One of the proof techniques that is useful for obtaining lower bounds consists of 

making use of an oracle. The most famous oracle in history was called the 

Delphic oracle, located in Delphi, Greece. This oracle can still be found situated 

in the side of the hill embedded in some rocks. In olden times people would 

approach the oracle and ask it a question. After some period of time elapsed, the 

oracle would reply and a caretaker would interpret the oracle's answer  

A similar phenomenon takes place when we use an oracle to establish a lower 

bound. Given some model of computation such as comparison trees, the oracle 

tells us the outcome of each comparison. To derive a good lower bound, the 

oracle tries its best to cause the algorithm to work as hard as it can. It does this 

by choosing as the outcome of the next test, the result that causes the most work 

to be required to determine the final answer. And by keeping track of the work 

done, a worse-case lower bound for the problem can be derived.  



Polynomial Reductions  

Here we discuss a very important technique that can be used to derive lower bounds. 

This technique calls for reducing the given problem to another problem for which the 

lower bound is already known.  

Two problems L1 and L2  

T1 (n) = time to solve L1  

T2 (n) = time to solve L2  

L1 L2      L1 reduces to L2     implies T1(n)    <   p(n) * T2(n)     Where p is some 
polynomial  

Definition: Let P1 and P2 be any two problems. We say P1 reduces to P2 in time p(n) if 
an instance of P1 can be converted into an instance of P2 and a solution of P1 can be 
obtained from a solution of P2 in time <   p(n)  

  
proc L1 ( )  proc L2 ( ) 
   call L2 ( ) 
 
end    end  
For each instance l1 of L1 construct an instance l2 of L2 such that a solution to l1 can be 
recovered from a solution to l2.  

(size n2 since we may need to add 
some more structure to our problem in order to cast is as a problem in L2)  

T1 (n1)     =     t12 + T2(n2) + t21    <    p(n1) * T2 (n1)  
n2 = poly (n1) (i.e., must be bounded by a polynomial in n1 - otherwise, t12 non 
polynomial) what?  

T1 (n1)     <    p(n1) * T2 (n1)  



 

L1: single source shortest path in undirected graphs  

L2: single source shortest path in directed graphs  

proc L1 (G = (V,E), c(E), p) 
 // G - undirected graph 
 // c  - edge costs 
 // p - shortest path  
 
 // construction: instance of  l1 making it an instance of l2  
        //   make all directions go both ways 
 
E->= { (u,v)->, (v,u)-> | (u,v)  E} 

 

G-> = (V,E->) 

 

c(u,v)-> = c(v,u)-> = c(u,v) for all (u,v)  E  

 

call L2 (G->=(V,E->), c(E->), p) 

 

// recover // 

 

p = undirected version of p-> 

 

end 



(Notice that part that says undirected version of p->) 
This is important...any directed to undirected does not work - it needs to maintain the 
information (we will see this in next lesson)  

Claim:      p shortest path in G       <==>       p-> shortest path in G->  

not for any directed graph ... for ones considering in such a problem reduction  

Proof:  

==> 
suppose p is a shortest path in G. Then there exists a path p-> in G-> of same 
cost.  

l1 and l2 are optimization problems. Suppose S1 is an optimal solution for 
l1. S->

1 is a solution to l2 such that the value OPT(S->
1) = OPT(S1)  

But, did conversion of l1 to l2 change anything? (is it possible that there 
exists some u -> q -> v in G-> such that the cost(q->) < cost (q)?)  

No. Since we never introduced a path in l2 that does not exist in l1 

<== 
suppose p-> is shortest path in G->. Then the undirected version of p-> has same 
cost.  

In human words...why does this work?  

We have an undirected graph and want the shortest path. If we have something 

undirected, it can be interpreted as directed both ways. Since we have a way to 

find a solution for a shortest path when we have directions, what is the harm (or 

difference) in pretending that we do have directions? Pretend, Solve, stop 

Pretending. We did not change anything in the definition of the original graph.  

Cost of construction + recover = O(|V| + |E|)  

T1 (n1) < poly (n1) * T2 (n2)       number of edges in directed is at most twice what it was 
before  

If T2(n) is also polynomial in n then we go one step further  
T1(n1) <     t12 + T2(n2) + t21    <   t12 + t21 + poly(n) * T2(n1)   < poly2 (n1) * T2(n1)  

and T1(n1) is hence some poly. in n.  

 
 
 



5.5  NP HARD & NP COMPLETE PROBLEM 
 
 Earlier we (informally) explained that a problem is called NP-Complete if P has 

at least one Non-Deterministic polynomial-time solution and further, so far, no 

polynomial-time Deterministic TM is known that solves the problem. 

 In this section, we formally define the concept and then describe a general 

technique of establishing the NP-Completeness of problems and finally apply the 

technique to show some of the problems as NP-Complete. We have already explained 

how a problem can be thought of as a language L over some alphabet ∑. Thus the tems 

problem and language may be interchangeably used. 

 

 For the formal definition of NP-Completeness, polynomial-time reduction, as 

defined below, plays a very important role. 

 In the previous unit, we discussed reduction technique to establish some of 

the problems as undecidable. The method that was used for establishing undecidability 

of a language using the technique of reduction may be briefly described as follows: 

 Let P1 be a problem which is already known to be undecidable. We want to 

check whether a problem P2 is undecidable or not. If we are able to design an algorithm 

which transforms or constructs an instance of P2 for each instance of P1, then P2 is also 

undecidable. 

 The process of transformation of the instaces of the problem already known 
to the undecidable to instances of the problem, the undecidability is to checked, is 

called reduction. 

 Some-what similar, but, slightly different, rather special, reduction called 

polynomial-time reduction is used to establish NP-Completeness of problems P1. 

 A Polynomial-time reduction is a polynomial-time algorithm which 

constructs the instances of a problem P2 from the instances of some other problems P1. 

 A method of establishing the NP-Completeness (to be formally defined 
later) of a problem P2 constitutes of designing a polynomial time reduction that 
constructs an instance of P2 for each instance of P1, where P1 is already known to 
be NP-Complete.  
 The direction of mapping must be clearly understood as shown below: 

 
    Polynomial-time 

P2 P1 



        Reduction 

(Problem already known to be undecidable                    (Problem whose NP-Complete  

           is to be established) 

 

 Though we have already explained the concept of NP-Completeness, yet for 

the sake of completeness, we give below the formal definition of NP-Completeness. 

 Definition: NP-Complete Problem: A Problem P or equivalently its language 

L1 is said to be NP-Complete if the following two conditions are satisfied: 

(i) The problem L2 is in the class NP 

(ii) For any problem L2 in NP, there is a polynomial-time reduction of L1 to 

L2. 

 

 In this context, we introduce below another closely related and useful concept. 

 

 Definition: NP-Hard Problem: A problem L is said to be NP-hard if for any 

problem L1 in NP, there is a polynomial-time reduction of L1 to L. 

 In other words, a problem L is hard if only condition (ii) of NP-Completeness is 

satisfied. But the problem has may be so hard that establishing L as an NP-class 

problem is so far not possible. 

 However, from the above definitions, it is clear that every NP-complete 

problem L must be NP-Hard and additionally should satisfy the condition that L is an 

NP-class problem. 

 In the next section, we discuss NP-completeness of some of problems 

discussed in the previous section.  
 
ESTABLISHING NP-COMPLETENESS OF PROBLEMS 
 

 In general, the process of establishing a problem as NP-Complete is a two-

step process. The first step, which in most of the cases is quite simple, constitutes of 

guessing possible solutions of the instance at a time, of the problem and then verifying 

whether the guess actually is a solution or not. 

  



 The second step involves designing a polynomial-time algorithm which 

reduces instances of an already known NP-Complete problem to instances of the 

problem, which is intended to be shown as NP-Complete. 

 However, to begin with, there is a major hurdle in execution of the second 

step. The above technique of reduction can not be applied unless we already have 

established at least one problem as NP-Complete. Therefore, for the first NP-Complete 

problem, the NP-Completeness has to be established in a different manner. 

 As mentioned earlier, Stephen Cook (1971) established Satisfiability as  the 

first NP-Complete problem. The proof was based on explicit reduction of the language 

of any non-deterministic, polynomial-time TM to the satisfiability problem. 

 The proof of Satisfiability problem as the first NP-Complete problem is quite 

lengthy and we skip the proof. Interested readers may consult any of the text given in 

the reference. 

 Assuming the satisfiality problem as NP-Complete, the rest of the problems 

that we establish as NP-complete, are established by reduction method as explained 

above. A diagrammatic notation of the form. 

 

 

 

      

 Indicates: Assuming P is already established as NP-Complete, the NP-

Completeness of Q is established by through a polynomial-time reduction from P to Q. 

 A scheme for establishing NP-Completeness of some the problems mentioned 

in Section 2.2 is suggested by Figure. 3.1 given below: 

 

 

 

 

 

 

 

 

 

 

P

Q 

SAT 

3-CNF-SAT 

Clique Problem

Vertex Cover

Hamiltonian Cycle 

Traveling Salesman

Subset-Sum



 

 

 

 

 Example: Show that the Clique problem is an NP-Complete Problem. 

 Proof: The verification of whether every pairs of vertices is connected by an 

edge in E, is done for different paris of vertices by a Non-deterministic TM, i.e., in 

parallel. Hence, it takes only polynomial time because for each of n vertices we need to 

verify at most n (n+1)/2 edge, the maximum number of edges in a graph with n vertices. 

  

 We next show that 3-CNF-SAT problem can be transformed to clique problem 

in polynomial time. 

 Take an instance of 3CNF-SAT. An instance of 3CNF-SAT consists of a set of 

n clauses, each consisting of exactly 3 literals, each being either a variable or negated 

variable. It is satisfiable if we can choose literals in such a way that: 

• at least one literal from each clause is chosen 

• if literal of form x is chose, no literal of form ¬x  is considered. 

 

¬x1           x2                             x3 

  

 

 

        x1 

            ¬x1 

 

      ¬x2            ¬x 

 

 

       ¬x3            ¬x 

 

 

 For each of the literals, create a graph node, and connect each node to every 

node in other clauses, except those with the same variable but different sign. This graph 

can be easily computed from a Boolean formula ø in 3-CNF-SAT in polynomial time. 



Consider an example, if we have- 

 

 Ø = (¬ x1V x2 V x3) ^ (x1V ¬x2 V ¬x3) ^ (¬ x1V ¬x2 V ¬x3) 

 then G is the graph shown in Figure 3.2 above 

 In the given example, a satisfying assignment of Ø is (x1=0, x2 = 0, x3 = 1). A 

corresponding clique of k = 3 consists of the vertices corresponding to x2 from the first 

clause, ¬x3 from the second clause, and ¬ x3 from the third clause. 

The problem of finding n-element clique is equivalent to finding a set of literals satisfying 

SAT. Because there are no edges between literals of the same clause, such a clique 

must contain exactly one literal from each clause. And because there are no edges 

between literals of the same variable but different sign, if node of literal x is in the clique, 

no node of literal of form ¬x is. 

This proves that finding n-element clique in 3-n-element graph in NP-Complete. 

Example:5- Show that the Vertex cover problem is an NP-Complete. 

A vertex cover of an undirected graph G = (V, E) is a subset V of the vertices of the 

graph which contains at least one of the two endpoints of each edge. 

 

            B 
           A   B         C      A    C 
 
 
 
 
           E   D  F     E       F 
               
            D 
 
 The vertex cover problem is the optimization problem of finding a vertex cover 

of minimum size is a graph. The problem can also be stated as a decision problem: 

 VERTEX-COVER = {<G, k>| graph G has a vertex cover of size k}. 



 A deterministic a algorithm to find a vertex cover in a graph is to list all subsets 

of vertices of size k and check each one to see whether it forms a vertex cover. This 

algorithm is exponential in k. 

 Proof: To show that Vertex cover problem  Є NP, for a given graph G = (V, E), 
we take V’ �  V and verifies to see if it forms a vertex cover. Verification can be done by 
checking for each edge (u, v) Є E whether u Є V’ or v Є V’. This verification can be 
done in polynomial time. 
 Now, we show that clique problem can be transformed to vertex cover 

problem in polynomial time. This transformation is based on the notion of the 

complement of a graph G. Given an undirected graph G = (V, E), we define the 

complement of G as G’ = (V, E’) where E’ = {(u, v) | (u, v) Є E}. i.e. G’ is the graph 

containing exactly those edges that are not in G. The transformation takes a graph G 

and k of the clique problem. It computes the complement G’ which can be done in 

polynomial time. 

 To complete the proof, we can show that this transformation is indeed 

reduction: the graph has a clique of size k if and only if the graph G’ has vertex cover of 

size |v| - k. 

 Suppose that G has a clique V’ � V with |V’| = k. We claim that V – V’ is a 

vertex cover in G’. Let (u, v) be any edge in E’. Then, (u, v) Є E, which implies that 

atleast one of u or v does not belong to V’, since every pair of vertices in V’ is connected 

by an edge of E. Equivalently, atleast one of u or v is n V – V’. Since (u, v) was chosen 

arbitrarily from E’, every edge of E’ is covered by a vertex in V – V’. Hence, the set V – 

V’, which has size |V| - k, forms a vertex cover for G’. 

 Conversely, suppose that G’ has a vertex cover V’ � V, where |V’| = |V| - k, 

then, for all v, v Є V, if (u, v) Є E’, then u Є V’ or v Є V’ or both. The contra positive of 

this implication is that for all u, v Є V, if u Є V’ and v Є V’, then (u, v) Є  E. In other 

words, V – V’ is a clique, and it has size |V| - |V’| = k. 

 For example, the graph G (V, E) has a clique {A, B, E}. The complement of 

graph G is given by G’ and have independent set given by {C, D, F}. 

 This proves that finding the vertex cover is NP-Complete. 
 
 
 

5.6  EFFICIENCY OF BRANCH AND BOUND 
 



 The efficiency of the branch & bound algorithms is determined by the following 

things. 

1. The starting value of u (upperbound ) can’t be decreased by expanding x, 

hence such an expansion cannot affect the operation of the algorithms of 

the remainder of the tree. 

2. If u1 and u2 are two initial upper bounds on the cost of a minimum cost 

solution node in the states space tree T1 and u1 < u2, then branch and 

bound algorithms beginning with u1 will generate no more nodes than they 

would if they started with u2 as the initial upper bound. 

3. The use of a better c function in conjunction with branch and bound 

algorithms will not increase the number of the nodes generated. 

4. If a better c function is used in branch & bound algorithms, the number of 

nodes generated may increase. 

5. The number of nodes generated during a branch & bound search for a 

least cost solution node may increase when a stranger dominance relation 

is used. 

  

 

5.7  SUMMARY 
 

 This unit discusses some branch and Bound techniques for least cost search, 

for minimization problems. 

 These techniques are illustrated with examples of its applications to solving 

problems of I/O Knapsack problem traveling sales person, lower bound theory and NP-

HARD & NP Complete Problems. 

 

 5.8  KEYWORDS 
 

• Branch and Bound: deals with only minimization problems. 

• NP Hard: A problem L is said to be NP-Hard if for any problem L1 in 

NP, there is a Polynomial time reduction of L1 to L. 
 

 

 



5.9  REVIEW QUESTIONS 
 

1. Explain how function 

C (x) = f ((h) (x)) + g (x) the LC search strategy can also be used for BFS and 

D-search. 

2. Explain the O/I Knapsack problem and how the cost functions are defined 

for the various nodes. 

3. Consider the traveling sales person instance defined by the cost matrix. 

 

   α  7 3 12 8 

    3 α 6 14 9 

   5 8 α 6 18 

   18 14 9 8 α 

 

(a) Obtain the reduced cost matrix 

(b) Generate the state space tree. 

 

4. What is bounding? 
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