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1.0 Objectives 

The users of this lesson have already gone through some concepts of operating 

system in the first year of the course. So the objectives of this lesson are: 

(a) To review the basic concepts of operating system i.e. definition, types, and 

functions performed by them. 

(b) To review the process scheduling policies. 

1. 1 Introduction 
Operating System may be viewed as collection of software consisting of 

procedures for operating the computer and providing an environment for 

execution of programs. The main goals of the Operating System are: 

(i) To make the computer system convenient to use,  

(ii) To make the use of computer hardware in efficient way. 

Basically, an Operating System has three main responsibilities:  

(a) Perform basic tasks such as recognizing input from the keyboard, sending 

output to the display screen, keeping track of files and directories on the disk, 

and controlling peripheral devices such as disk drives and printers. 

(b) Ensure that different programs and users running at the same time do not 

interfere with each other.  

(c) Provide a software platform on top of which other programs can run.  

1.2 Presentation of Contents 
1.2.1 Operating System as a Resource Manager 

1.2.1.1 Memory Management Functions 

1.2.1.2 Processor/Process Management Functions 

1.2.1.3 I/O Device Management Functions 

1.2.1.4 Information Management Functions 

1.2.1.5 Network Management Functions 
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1.2.2 Types of operating systems 

 1.2.2.1 Batch Operating System 

 1.2.2.2 Multiprogramming Operating System 

1.2.2.3 Multitasking Operating System 

1.2.2.4 Multi-user Operating System 

1.2.2.5 Multithreading 

 1.2.2.6 Time-sharing system 

1.2.2.7 Real-time systems 

1.2.2.8 Combination of operating systems 

1.2.2.9 Distributed Operating Systems 

1.2.3 Process Scheduling 

1.2.3.1 Definition of Process     

1.2.3.2 Process States and Transitions 

1.2.3.3 Types of schedulers  

1.2.3.3.1 The long-term scheduler 

1.2.3.3.2 The medium-term scheduler 

1.2.3.3.3 The short-term scheduler 

1.2.3.4 Scheduling and Performance Criteria 

1.2.3.5 Scheduler Design 

1.2.3.6 Scheduling Algorithms 

1.2.3.6.1 First-Come, First-Served (FCFS) Scheduling 

1.2.3.6.2 Shortest Job First (SJF) 

1.2.3.6.3 Shortest Remaining Time Next (SRTN) Scheduling 

1.2.3.6.4 Round Robin 

1.2.3.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED) 

1.2.3.6.6 Multiple-Level Queues (MLQ) Scheduling 

1.2.3.6.7 Multiple-Level Queues with Feedback Scheduling 

1.2.1 Operating System as a Resource Manager 
We can view an Operating System as a resource manager that manages the 

resources of the computer system such as processor, memory, files storage 

space, input/output devices and so on which are to be required to solve a 
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computing problem. The Operating System allocates them to the specific 

programs and users as needed by their tasks. Since there can be many 

conflicting requests for the resources, the Operating System must decide which 

requests are to be allocated resources to operate the computer system fairly and 

efficiently. So the major functions of each category of Operating System are: 

1.2.1.1 Memory Management Functions 
To execute a program, it must be mapped to absolute addresses and loaded into 

memory. As the program executes, it accesses instructions and data from 

memory by generating these absolute addresses. The Operating System is 

responsible for the following memory management functions: 

(i) Keep track of which segment of memory is in use and by whom.  

(ii) Deciding which processes are to be loaded into memory, where it is to be 

loaded and how much when space becomes available.  

(iii) Allocation or de-allocation the contents of memory when the process request 

for it otherwise reclaim the memory when the process does not require it or 

has been terminated. 

1.2.1.2 Processor/Process Management Functions 
A process is an instance of a program in execution. While a program is just a 

passive entity, process is an active entity performing the intended functions of its 

related program. A process needs certain resources like CPU, memory, files and 

I/O devices. In multiprogramming environment, there will a number of 

simultaneous processes existing in the system. The Operating System is 

responsible for the following processor/ process management functions: 

(i) Provides mechanisms for process synchronization for sharing of resources 

amongst concurrent processes. 

(ii) Keeps track of processor and status of processes.  

(iii) Decide which process will be allocated the processor; the job scheduler 

chooses from all the submitted jobs and decides which one will be allowed 

into the system. If multiprogramming, decide which process gets the 

processor, when, for how much of time.  
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(iv) Allocate the processor to a process by setting up the necessary hardware 

registers. This module is widely known as the dispatcher. 

(v) Providing mechanisms for deadlock handling. 

(vi) Reclaim processor when process ceases to use a processor, or exceeds the 

allowed amount of usage.  

1.2.1.3 I/O Device Management Functions 
The Operating System is responsible for the following I/O Device Management 

Functions: 

(i) Keep track of the I/O devices, I/O channels, etc.  

(ii) Decide what is an efficient way to allocate the I/O resource. If it is to be 

shared, then decide who gets it, how much of it is to be allocated, and for how 

long. This is called I/O scheduling. 

(iii) Allocate the I/O device and initiate the I/O operation. 

(iv) Reclaim device as and when its use is through. In most cases I/O terminates 

automatically. 

1.2.1.4 Information Management Functions 
The major information management functions are: 

(i) File system keeps track of the information, its location, its usage, status, etc.  

(ii) Decides who gets hold of information, enforce protection mechanism, and 

provides for information access mechanism, etc. 

(iii) Allocate the information to a requesting process, e.g., open a file. 

(iv) De-allocate the resource, e.g., close a file. 

1.2.1.5 Network Management Functions 
An Operating System is responsible for the computer system networking via a 

distributed environment. A distributed system is a collection of processors, which 

do not share memory, clock pulse or any peripheral devices. Instead, each 

processor is having its own clock pulse, and RAM and they communicate through 

network. Access to shared resource permits increased speed, functionality and 

reliability.  

1.2.2 TYPES OF OPERATING SYSTEMS 
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Operating System can be classified into various categories on the basis of 

several criteria, viz. number of simultaneously active programs, number of users 

working simultaneously, number of processors in the computer system, etc.  
1.2.2.1 Batch Operating System 
Batch processing requires the program, data, and appropriate system commands 

to be submitted together in the form of a job. Batch operating systems usually 

allow little interaction between users and executing programs. Batch processing 

has a greater potential for resource utilization than simple serial processing in 

computer systems serving multiple users. Due to turnaround delays and offline 

debugging, batch is not very convenient for program development. Programs that 

do not require interaction and need long execution times may be served well by a 

batch operating system. Memory management and scheduling in batch is very 

simple. Jobs are typically processed in first-come first-served fashion. Memory is 

usually divided into two areas. The resident portion of the Operating System 

permanently occupies one of them, and the other is used to load transient 

programs for execution. When a transient program terminates, a new program is 

loaded into the same area of memory. Since at most one program is in execution 

at any time, batch systems do not require any time-critical device management. 

Batch systems often provide simple forms of file management because of serial 

access to files. In it little protection and no concurrency control of file access is 

required. 

1.2.2.2 Multiprogramming Operating System 
A multiprogramming system permits multiple programs to be loaded into memory 

and execute the programs concurrently. Concurrent execution of programs 

results into improved system throughput and resource utilization. This potential is 

realized by a class of operating systems that multiplex resources of a computer 

system among a multitude of active programs. Such operating systems usually 

have the prefix multi in their names, such as multitasking or multiprogramming. 

1.2.2.3 Multitasking Operating System 
A multitasking Operating System is distinguished by its ability to support 

concurrent execution of two or more active processes. An instance of a program 
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in execution is called a process or a task. Multitasking is usually implemented by 

maintaining code and data of several processes in memory simultaneously, and 

by multiplexing processor and I/O devices among them. Multitasking is often 

coupled with hardware and software support for memory protection in order to 

prevent erroneous processes from corrupting address spaces and behavior of 

other resident processes. The terms multitasking and multiprocessing are often 

used interchangeably, although multiprocessing sometimes implies that more 

than one CPU is involved. In multitasking, only one CPU is involved, but it 

switches from one program to another so quickly that it gives the appearance of 

executing all of the programs at the same time. There are two basic types of 

multitasking: preemptive and cooperative. In preemptive multitasking, the 

Operating System parcels out CPU time slices to each program. In cooperative 

multitasking, each program can control the CPU for as long as it needs it. If a 

program is not using the CPU, however, it can allow another program to use it 

temporarily.  
1.2.2.4 Multi-user Operating System 
Multiprogramming operating systems usually support multiple users, in which 

case they are also called multi-user systems. Multi-user operating systems 

provide facilities for maintenance of individual user environments and therefore 

require user accounting. In general, multiprogramming implies multitasking, but 

multitasking does not imply multi-programming. In effect, multitasking operation 

is one of the mechanisms that a multiprogramming Operating System employs in 

managing the totality of computer-system resources, including processor, 

memory, and I/O devices. Multitasking operation without multi-user support can 

be found in operating systems of some advanced personal computers and in 

real-time systems. Multi-access operating systems allow simultaneous access to 

a computer system through two or more terminals. In general, multi-access 

operation does not necessarily imply multiprogramming. An example is provided 

by some dedicated transaction-processing systems, such as airline ticket 

reservation systems, that support hundreds of active terminals under control of a 

single program. 
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In general, the multiprocessing or multiprocessor operating systems manage the 

operation of computer systems that incorporate multiple processors. 

Multiprocessor operating systems are multitasking operating systems by 

definition because they support simultaneous execution of multiple tasks 

(processes) on different processors. Depending on implementation, multitasking 

may or may not be allowed on individual processors. Except for management 

and scheduling of multiple processors, multiprocessor operating systems provide 

the usual complement of other system services that may qualify them as time-

sharing, real-time, or a combination operating system.  

1.2.2.5 Multithreading 
Multithreading allows different parts of a single program to run concurrently. The 

programmer must carefully design the program in such a way that all the threads 

can run at the same time without interfering with each other.  

1.2.2.6 Time-sharing system 
Time-sharing is a popular representative of multi-programmed, multi-user 

systems. One of the primary objectives of multi-user and time-sharing is good 

terminal response time. Time-sharing systems often attempt to provide equitable 

sharing of common resources, giving the illusion to each user of having a 

machine to oneself. Most time-sharing systems use time-slicing scheduling, in 

which programs are executed with rotating priority that increases during waiting 

and drops after the service is granted. In order to prevent programs from 

monopolizing the processor, a program executing longer than the system-defined 

time slice is interrupted by the Operating System and placed at the end of the 

queue of waiting programs. Memory management in time-sharing systems 

provides for isolation and protection of co-resident programs. Some forms of 

controlled sharing are sometimes provided to conserve memory and to exchange 

data between programs. Being executed on behalf of different users, programs in 

time-sharing systems generally do not have much need to communicate with 

each other.  Allocation and de-allocation of devices must be done in a manner 

that preserves system integrity and provides for good performance.  

1.2.2.7 Real-time systems 
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Real time systems are used in time critical environments where data must be 

processed extremely quickly because the output influences immediate decisions. 

A real time system must be responsive in time which is measured in fractions of 

seconds. In real time systems the correctness of the computations not only 

depends upon the logical correctness of the computation but also upon the time 

at which the results is produced. Real-time operating systems are used in 

environments where a large number of events, mostly external to the computer 

system, must be accepted and processed within certain deadlines.  

A primary objective of real-time systems is to provide quick event-response 

times. User convenience and resource utilization are of secondary concern. It is 

not uncommon for a real-time system to be expected to process bursts of 

thousands of interrupts per second without missing a single event.  

The Multitasking operation is accomplished by scheduling processes for 

execution independently of each other. Each process is assigned a certain level 

of priority that corresponds to the relative importance of the event that it services. 

The processor is normally allocated to the highest-priority process. Higher-priority 

processes usually preempt execution of the lower-priority processes. The 

process population in real-time systems is fairly static, and there is comparatively 

little moving of programs between primary and secondary storage. Processes in 

real-time systems tend to cooperate closely, thus necessitating support for both 

separation and sharing of memory. Time-critical device management is one of 

the main characteristics of real-time systems. In addition to providing 

sophisticated forms of interrupt management and I/O buffering, real-time 

operating systems often provide system calls to allow user processes to connect 

themselves to interrupt vectors and to service events directly. File management 

is found only in larger installations of real-time systems. In fact, some embedded 

real-time systems may not even have any secondary storage.  

1.2.2.8 Combination of operating systems 
Different types of Operating System are optimized to serve the needs of specific 

environments. In practice, however, a given environment may not exactly fit any 

of the described molds. For instance, both interactive program development and 
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lengthy simulations are often encountered in university computing centers. For 

this reason, some commercial operating systems provide a combination of 

described services. For example, a time-sharing system may support interactive 

users and also incorporate a full-fledged batch monitor. This allows 

computationally intensive non-interactive programs to be run concurrently with 

interactive programs. The common practice is to assign low priority to batch jobs 

and thus execute batched programs only when the processor would otherwise be 

idle. In other words, batch may be used as a filler to improve processor utilization 

while accomplishing a useful service of its own. Similarly, some time-critical 

events, such as receipt and transmission of network data packets, may be 

handled in real-time fashion on systems that otherwise provide time-sharing 

services to their terminal users. 

1.2.2.9 Distributed Operating Systems 
A distributed computer system is a collection of autonomous computer systems 

capable of communication and cooperation via their hardware and software 

interconnections. Distributed computer systems evolved from computer networks 

in which a number of largely independent hosts are connected by communication 

links and protocols. A distributed Operating System governs the operation of a 

distributed computer system and provides a virtual machine abstraction to its 

users. In distributed Operating System component and resource distribution 

should be hidden from users and application programs unless they explicitly 

demand. Distributed operating systems usually provide the means for system-

wide sharing of resources, such as computational capacity, files, and I/O devices. 

In addition to typical operating-system services, a distributed Operating System 

may facilitate access to remote resources, communication with remote 

processes, and distribution of computations.  
1.2.3 Process Scheduling 
The most often requested resource is processor, so processor management is 

an important function carried out by the operating system.  

One of the most fundamental concepts of modern operating systems is the 

distinction between a program and the activity of executing a program. The 
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former is merely a static set of directions; the latter is a dynamic activity whose 

properties change as time progresses. This activity is knows as a process. A 

process encompasses the current status of the activity, called the process state. 

This state includes the current position in the program being executed (the value 

of the program counter) as well as the values in the other CPU registers and the 

associated memory cells. The process state is a snapshot of the machine at that 

time. At different times during the execution of a program different snapshots will 

be observed. 

The operating system allocates each process (a) a certain amount of time to use 

the processor, (b) various other resources that processes will need such as 

computer memory or disks. To keep track of the state of all the processes, the 

operating system maintains a table known as the process table. Inside this table, 

every process is listed along with the resources the processes are using and the 

current state of the process. Processes can be in one of three states: running, 

ready, or waiting (blocked). The running state means that the process has all the 

resources it need for execution and it has been given permission by the 

operating system to use the processor. Only one process can be in the running 

state at any given time. The remaining processes are either in a waiting state 

(i.e., waiting for some external event to occur such as user input or a disk 

access) or a ready state (i.e., waiting for permission to use the processor). The 

problem of determining when processors should be assigned and to which 

processes, is called processor scheduling or CPU scheduling. A scheduler is an 

Operating System module that selects the next job to be admitted into the system 

and the next process to run.  

1.2.3.1 Definition of Process     
The process has been given many definitions but the most frequently used 

definition is “Process is a program in Execution”. In Process model, all software 

on the computer is organized into a number of sequential processes. The 

process state consist of everything necessary to resume the process execution if 

it is somehow put aside temporarily. The process state consists of at least 

following: 
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(i) Code for the program.  

(ii) Program's static data.  

(iii) Program's dynamic data.  

(iv) Program's procedure call stack.  

(v) Contents of general purpose register.  

(vi) Contents of program counter (PC)  

(vii) Contents of program status word (PSW).  

(viii) Operating Systems resource in use.  

A process goes through a series of discrete process states. 

(a) New State: The process being created.  

(b) Running State: A process is said to be running if process actually using the 

CPU at that particular instant.  

(c) Blocked State: A process is said to be blocked if it is waiting for some event 

to happen before it can proceed.  

(d) Ready State: A process is said to be ready if it use a CPU if one were 

available.  

(e) Terminated state: The process has finished execution.  

1.2.3.2 Process States and Transitions 
The figure 1 contains much information. Consider a running process P that 

issues an I/O request. Then following events can take place: 

(i) The process is blocked i.e. moved from running state to blocked state.  

(ii) At some later point, a disk interrupt occurs and the driver detects that P's 

request is satisfied.  

(iii) P is unblocked, i.e. is moved from blocked to ready  

(iv) At some later time the operating system looks for a ready job to run and picks 

P and P moved to running state. 

A suspended process (i.e. blocked) may be removed from the main memory and 

placed in the backup memory (blocked suspended). Subsequently they may be 

released and moved to the ready state by the medium term scheduler. 
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Figure 1 

1.2.3.3 Types of schedulers  
There are three distinct types of schedulers: a long-term scheduler, a mid-term or 

medium-term scheduler and a short-term scheduler. The names suggest the 

relative frequency with which these functions are performed. Figure 2 shows the 

possible traversal paths of jobs and programs through the components and 

queues, depicted by rectangles, of a computer system. The primary places of 

action of the three types of schedulers are marked with down-arrows. As shown 

in Figure 2, a submitted batch job joins the batch queue while waiting to be 

processed by the long-term scheduler. Once scheduled for execution, processes 

spawned by the batch job enter the ready queue to await processor allocation by 

the short-term scheduler. After becoming suspended, the running process may 

be removed from memory and swapped out to secondary storage. Such 

processes are subsequently admitted to main memory by the medium-term 

scheduler in order to be considered for execution by the short-term scheduler. 
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Figure 2- Process Schedulers 

1.2.3.3.1 The long-term scheduler 
The long-term scheduler decides when to start jobs. The long-term scheduler 

works with the batch queue and selects the next batch job to be executed. Batch 

is usually reserved for resource-intensive, low-priority programs that may be 

used as fillers to keep the system resources busy during periods of low activity of 

interactive jobs. Batch jobs contain all necessary data and commands for their 

execution. Batch jobs usually also contain programmer-assigned estimates of 

their resource needs. Knowledge about the anticipated job behavior facilitates 

the work of the long-term scheduler.  

The primary objective of the long-term scheduler is to provide a balanced mix of 

jobs, such as processor-bound and I/O-bound, to the short-term scheduler so 

that processor utilization can be maximized. In addition, the long-term scheduler 

is usually invoked whenever a completed job departs the system. The frequency 

of invocation of the long-term scheduler is thus both system-and workload-

dependent; but it is generally much lower than for the other two types of 

schedulers. As a result of the relatively infrequent execution and the availability 

of an estimate of its workload's characteristics, the long-term scheduler may 

incorporate rather complex and computationally intensive algorithms for admitting 

jobs into the system.  
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1.2.3.3.2 The medium-term scheduler 
The medium term scheduler swaps out some process if memory is over-

committed. The criteria for choosing a victim may be (a) How long since 

previously suspended? (b) How much CPU time used recently? (c) How much 

memory does it use? (d) External priority etc.  

A running process may become suspended by making an I/O request or by 

issuing a system call. Given that suspended processes cannot make any 

progress towards completion until the related suspending condition is removed, it 

is sometimes beneficial to remove them from main memory to make room for 

other processes. In practice, the main-memory capacity may impose a limit on 

the number of active processes in the system. When a number of those 

processes become suspended, the remaining supply of ready processes in 

systems where all suspended processes remain resident in memory may 

become reduced to a level that impairs functioning of the short-term scheduler by 

leaving it few or no options for selection. In systems with no support for virtual 

memory, moving suspended processes to secondary storage may alleviate this 

problem.  

The medium-term scheduler is in charge of handling the swapped-out processes. 

It has little to do while a process remains suspended. However, once the 

suspending condition is removed, the medium-term scheduler attempts to 

allocate the required amount of main memory, and swap the process in and 

make it ready.  

So the medium-term scheduler controls suspended-to-ready transitions of 

swapped processes. This scheduler may be invoked when memory space is 

vacated by a departing process or when the supply of ready processes falls 

below a specified limit. 

Medium-term scheduling is part of the swapping function of an operating system. 

The success of the medium-term scheduler is based on the degree of 

multiprogramming that it can maintain, by keeping as many processes “runnable” 

as possible. More processes can remain executable if we reduce the resident set 

size of all processes. The medium-term scheduler makes decisions as to which 
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pages of which processes need stay resident and which pages must be swapped 

out to make room for other processes. The sharing of some pages of memory, 

either explicitly or through the use of shared or dynamic link libraries complicates 

the task of the medium-term scheduler, which now must maintain reference 

counts on each page.  

1.2.3.3.3 The short-term scheduler 
The short-term scheduler (aka dispatcher), executes most frequently making 

decisions as to which process to move to Running next. The short-term 

scheduler is invoked whenever an event occurs which provides the opportunity of 

the interruption of the current process and the new (or continued) execution of 

another process. Such opportunities include: 

(a) Clock interrupts, provide the opportunity to reschedule every few 

milliseconds, 

(b) Expected I/O interrupts, when previous I/O requests are finally satisfied, 

(c) Operating system calls, when the running process asks the operating system 

to perform an activity on its behalf, and 

(d) Unexpected, asynchronous, events, such as unexpected input, user-interrupt, 

or a fault condition in the running program. 

The short-term scheduler allocates the processor among the pool of ready 

processes resident in memory. Its main objective is to maximize system 

performance in accordance with the chosen set of criteria. Since it is in charge of 

ready-to-running state transitions, the short-term scheduler must be invoked for 

each process switch to select the next process to be run. In practice, the short-

term scheduler is invoked whenever an event causes the global state of the 

system to change. Given that any such change could result in making the 

running process suspended or in making one or more suspended processes 

ready, the short-term scheduler should be run to determine whether such 

significant changes have indeed occurred and, if so, to select the next process to 

be run.  
Most of the process-management Operating System services require invocation 

of the short-term scheduler as part of their processing. For example, creating a 
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process or resuming a suspended one adds another entry to the ready queue 

and the scheduler is invoked to determine whether the new entry should also 

become the running process. Suspending a running process, changing priority of 

the running process, and exiting or aborting a process are also events that may 

necessitate selection of a new running process.  

As indicated in Figure 2, interactive programs often enter the ready queue 

directly after being submitted to the Operating System, which then creates the 

corresponding process. Unlike-batch jobs, the influx of interactive programs are 

not throttled, and they may conceivably saturate the system. The necessary 

control is usually provided indirectly by deterioration response time, which tempts 

the users to give up and try again later, or at least to reduce the rate of incoming 

requests.  

Figure 2 illustrates the roles and the interplay among the various types of 

schedulers in an operating system. It depicts the most general case of all three 

types being present. For example, a larger operating system might support both 

batch and interactive programs and rely on swapping to maintain a well-behaved 

mix of active processes. Smaller or special-purpose operating systems may have 

only one or two types of schedulers available. Along-term scheduler is normally 

not found in systems without support for batch, and the medium-term scheduler 

is needed only when swapping is used by the underlying operating system. 

When more than one type of scheduler exists in an operating system, proper 

support for communication and interaction is very important for attaining 

satisfactory and balanced performance. For example, the long-term and the 

medium-term schedulers prepare workload for the short-term scheduler. If they 

do not provide a balanced mixed of compute-bound and I/O-bound processes, 

the short-term scheduler is not likely to perform well no matter how sophisticated 

it may be on its own merit.  

1.2.3.4 Scheduling and Performance Criteria 
The success of the short-term scheduler is evaluated against user-oriented 

criteria such as response time or system-oriented criteria such as throughput, the 
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rate at which tasks are completed. The following identifies some goals of a 

scheduling algorithm/policy according to the type of system. 
All systems  
(i) Fairness: all processes should be treated equitably. 

(ii) Predictability: Regardless of the load on the system, it should be possible to 

estimate how long the job will take to complete. 

(iii) Enforce priorities. 

(iv) Avoid indefinite postponement: as a process waits for a resource its priority 

should grow (so-called aging). 

(v) Degrade gracefully under heavy loads. 

(vi) Balance: keep all parts of the system busy; processes using underutilized 

resources should be favored; give preference to processes holding key 

resources. 

Batch systems  
(i) Throughput: complete as many jobs as possible per unit time; 

(ii) Turnaround: minimize time between submission of a job and its completion; 

Interactive systems:  
(i) Response times: maximize the number of interactive users receiving 

acceptable response times; 

(ii) Be predictable: a given job should run in about the same amount of time 

regardless of the load on the system; 

(iii) Give better service to processes exhibiting desirable behavior, e.g. low 

paging rates. 

Real-time systems  
(i) Meet deadlines. 

(ii) Be predictable and degrade gracefully, e.g. if the going is getting really 

tough, retreat into a safety mode. 

1.2.3.5 Scheduler design 
Design process of a typical scheduler consists of selecting one or more primary 

performance criteria and ranking them in relative order of importance. The next 

step is to design a scheduling strategy that maximizes performance for the 
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specified set of criteria while obeying the design constraints. Schedulers typically 

attempt to maximize the average performance of a system, relative to a given 

criterion. However, due consideration must be given to controlling the variance 

and limiting the worst-case behavior.  

One of the problems in selecting a set of performance criteria is that they often 

conflict with each other. For example, increased processor utilization is usually 

achieved by increasing the number of active processes, but then response time 

deteriorates. The design of a scheduler usually requires careful balance of all the 

different requirements and constraints. With the knowledge of the primary 

intended use of a given system, operating-system designers tend to maximize 

the criteria most important in a given environment.  

1.2.3.6 Scheduling algorithms 
The scheduling mechanisms described in this section may be used by any of the 

three types of schedulers although some algorithms are better suited to the 

needs of a particular type of scheduler. The scheduling policies may be 

categorized as preemptive and non-preemptive. Preemption means the operating 

system moves a process from running to ready without the process requesting it. 

Preemption is needed to guarantee fairness and it is found in all modern general-

purpose operating systems.  

Non-pre-emptive:  In non-preemptive scheduling, once a process is executing, it 

will continue to execute until 

(a) It terminates, or 

(b) It makes an I/O request which would block the process, or 

(c) It makes an operating system call. 

Pre-emptive: In the preemptive scheduling, the same three conditions as above 

apply, and in addition the process may be pre-empted by the operating system 

when 

(a) A new process arrives (perhaps at a higher priority), or 

(b) An interrupt or signal occurs, or 

(c) A (frequent) clock interrupt occurs. 
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CPU Scheduling deals with the problem of deciding which of the processes in the 

ready queue is to be allocated the CPU.  

1.2.3.6.1 First-Come, First-Served (FCFS) Scheduling 
The simplest selection function is the FCFS scheduling policy. In it 

(i) The operating system kernel maintains all Ready processes in a single 

queue, 

(ii) The process at the head of the queue is always selected to execute next, 

(iii) The Running process runs to completion, unless it requests blocking I/O, 

(iv) If the Running process blocks, it is placed at the end of the Ready queue. 

Clearly, once a process commences execution, it will run as fast as possible 

(having 100% of the CPU, and being non-pre-emptive), but there are some 

obvious problems. By failing to take into consideration the state of the system 

and the resource requirements of the individual scheduling entities, FCFS 

scheduling may result in poor performance. As a consequence of no preemption, 

component utilization and the system throughput rate may be quite low. 

Processes of short duration suffer when “stuck” behind very long-running 

processes because there is no discrimination on the basis of the required 

service. Compute-bound processes are favored over I/O-bound processes. We 

can measure the effect of FCFS by examining: 

(i) The average turnaround time of each task (the sum of its waiting and running 

times), or 

(ii) The normalized turnaround time (the ratio of running to waiting times). 

1.2.3.6.2 Shortest Job First (SJF) 
In this scheduling policy, the jobs are sorted on the basis of total execution time 

needed and then it run the shortest job first. It is a non-preemptive scheduling 

policy. Now first consider a static situation where all jobs are available in the 

beginning, and we know how long each one takes to run, and we implement “run-

to-completion''. In this situation, SJF has the shortest average waiting time. This 

scheduling policy can starve processes that require a long burst.  

1.2.3.6.3 Shortest Remaining Time Next (SRTN) Scheduling 
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SRTN is a scheduling discipline in which the next process is selected on the 

basis of the shortest remaining execution time. SRTN scheduling may be 

implemented in either the non-preemptive or the preemptive variety. The non-

preemptive version of SRTN is called shortest job first (SJF). In either case, 

whenever the SRTN scheduler is invoked, it searches the corresponding queue 

to find the process with the shortest remaining execution time. The difference 

between the two cases lies in the conditions that lead to invocation of the 

scheduler and, consequently, the frequency of its execution. Without preemption, 

the SRTN scheduler is invoked whenever a job is completed or the running 

process surrenders control to the Operating System. In the preemptive version, 

whenever an event occurs that makes a new process ready, the scheduler is 

invoked to compare the remaining processor execution time of the running 

process with the time needed to complete the next processor burst of the 

newcomer.  

SRTN is optimal scheduling discipline in terms of minimizing the average waiting 

time of a given workload with a bias towards short jobs. With the addition of 

preemption, an SRTN scheduler can accommodate short jobs that arrive after 

commencement of a long job resulting in increased waiting times of long jobs.  

The SRTN discipline schedules optimally assuming that the exact future 

execution times of processes are known at the time of scheduling. Dependence 

on future knowledge tends to limit the effectiveness of SRTN implementations.  

Predictions of process execution requirements are usually based on observed 

past behavior, perhaps coupled with some other knowledge of the nature of the 

process and its long-term statistical properties, if available. A relatively simple 

predictor, called the exponential smoothing predictor, has the following form: 

    P = α0 -1 + (1 - α)P-1 n n

 is the observed length of the (n-1)th execution interval, Pwhere 0n n-1 is the 

predictor for the same interval, and α is a number between 0 and 1. The 

parameter α controls the relative weight assigned to the past observations and 

predictions. For the extreme case of α = 1, the past predictor is ignored, and the 
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new prediction equals the last observation. For α = 0, the last observation is 

ignored. In general, expansion of the recursive relationship yields 

     n - 1 

    P  = α ∑ (1 - α)i0n n-i-1 

     I = 0      

Thus the predictor includes the entire process history, with its more recent history 

weighted more.  

Many operating systems measure and record elapsed execution time of a 

process in its PCB. This information is used for scheduling and accounting 

purposes. Implementation of SRTN scheduling obviously requires rather precise 

measurement and imposes the overhead of predictor calculation at run time. 

Moreover, some additional feedback mechanism is usually necessary for 

corrections when the predictor is grossly incorrect. 

1.2.3.6.4 Round Robin 
In interactive environments the primary requirement is to provide reasonably 

good response time and to share system resources equitably among all users. 

Obviously, only preemptive disciplines may be considered in such environments, 

and one of the most popular is time slicing, also known as round robin (RR). This 

preemptive scheduling policy gives each process a slice of time (i.e., one 

quantum) before being preempted. This scheduler works as follows:  

 The processes that are ready to run are kept in a FIFO "Ready" queue.  

 There is a fixed time quantum which any process runs at a time.  

 The currently active process P runs until one of two things happens:  

• P blocks and put in the "blocked" state.  

• P exhausts its time quantum and pre-empted and put at the end of the 

ready queue. 

 When a process unblocks it is put at the end of the ready queue.  

The key parameter here is the quantum size q. Choice of the value of q is a 

tradeoff (1) Small q makes system more responsive, (2) Large q makes system 

more efficient since less process switching.  
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Round robin scheduling achieves equitable sharing of system resources. Short 

processes may be executed within a single time quantum and thus exhibit good 

response times. Long processes may require several quanta and thus be forced 

to cycle through the ready queue a few times before completion. With RR 

scheduling, response time of long processes is directly proportional to their 

resource requirements. For long processes that consist of a number of interactive 

sequences with the user, primarily the response time between the two 

consecutive interactions matters. If the computational requirements between two 

such sequences may be completed within a single time slice, the user should 

experience good response time. RR tends to subject long processes without 

interactive sequences to relatively long turnaround and waiting times. Such 

processes, however, may best be run in the batch mode, and it might even be 

desirable to discourage users from submitting them to the interactive scheduler.  

RR can be tuned by adjusting q. If q is so high that it exceeds the overall time 

requirements for all processes, RR becomes the same as FCFS. As q tends to 0, 

process switching happens more frequently and eventually context switches 

occupy all available time. Thus q should be set small enough so that RR is fair 

but high enough so that the amount of time spent on context switching is 

reasonable. 

1.2.3.6.5 Priority-Based Preemptive Scheduling (Event-Driven, ED) 
In it each job is assigned a priority and the highest priority ready job is run and if 

many processes have the highest priority, it uses RR among them. Priorities may 

be static or dynamic. In either case, the user or the system assigns their initial 

values at the process-creating time. The level of priority may be determined as 

an aggregate figure on the basis of an initial value, characteristic, resource 

requirements, and run-time behavior of the process. In this sense, many 

scheduling disciplines may be regarded as being priority-driven, where the 

priority of a process represents its likelihood of being scheduled next. Priority-

based scheduling may be preemptive or non-preemptive.  

A common problem with this scheduling is the possibility that low-priority 

processes may be locked out by the higher priority ones and completion of a 
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process within finite time of its creation cannot be guaranteed but the usually 

remedy is provided by the aging priority.  

Another variant of priority-based scheduling is used in hard real-time systems, 

where each process must be guaranteed execution before expiration of its 

deadline. Such processes are assumed to be assigned execution deadlines. The 

system workload consists of a combination of periodic processes, executed 

cyclically with a known period, and of periodic processes, whose arrival times are 

generally not predictable. An optimal scheduling discipline in such environments 

is the earliest-deadline scheduler, which schedules for execution the ready 

process with the earliest deadline. Another form of scheduler, called the least 

laxity scheduler has also been shown to be optimal in single-processor systems. 

This scheduler selects the ready process with the least difference between its 

deadline and computation time.  

Priority aging 
It is a solution to the problem of starvation. As a job is waiting, raise its priority so 

eventually it will have the maximum priority. This prevents starvation. It is 

preemptive policy. If there are many processes with the maximum priority, it uses 

FCFS among those with max priority (risks starvation if a job doesn't terminate) 

or can use RR.  

1.2.3.6.6 Multiple-Level Queues (MLQ) Scheduling 
The scheduling policies discussed so far are suited to particular applications. 

What should one use in a mixed system? A mix of scheduling disciplines may 

best service a mixed environment. For example, operating-system processes 

and device interrupts may be subjected to event-driven scheduling, interactive 

programs to round robin scheduling, and batch jobs to FCFS or STRN. One way 

to implement complex scheduling is to classify the workload according to its 

characteristics, and to maintain separate process queues serviced by different 

schedulers using an approach called multiple-level queues (MLQ) scheduling. A 

division of the workload might be into system processes, interactive programs, 

and batch jobs. 
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Figure 3 Multilevel Queue Scheduling 
 

This would result in three ready queues, as depicted in Figure 3. A process may 

be assigned to a specific queue on the basis of its attributes. Each queue may 

then be serviced by the scheduling discipline best suited to the type of workload 

that it contains. Given a single server, some discipline must also be devised for 

scheduling between queues. Typical approaches are to use absolute priority or 

time slicing with some bias reflecting relative priority of the processes within 

specific queues. In the absolute priority case, the processes from the highest-

priority queue are serviced until that queue becomes empty. The scheduling 

discipline may be event-driven, although FCFS should not be ruled out given its 

low overhead and the similar characteristics of processes in that queue. When 

the highest-priority queue becomes empty, the next queue may be serviced 

using its own scheduling discipline. Finally, when both higher-priority queues 

become empty, a batch-spawned process may be selected. A lower-priority 

process may, of course, be preempted by a higher-priority arrival in one of the 

upper-level queues. This discipline maintains responsiveness to external events 

and interrupts at the expense of frequent preemption’s. An alternative approach 

is to assign a certain percentage of the processor time to each queue, 

commensurate with its priority. 

1.2.3.6.7 Multiple-Level Queues with Feedback Scheduling 
Multiple queues with feedback in a system may be used to increase the 

effectiveness and adaptive ness of scheduling. The idea here is to switch the 

queue of the processes on the basis of its run-time behavior. For example, each 

process may start at the top-level queue and if it is completed within a given time 

slice; it departs the system but if it need more than one time slice, it may be 
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reassigned to a lower-priority queue, which gets a lower percentage of the 

processor time. If the process is still not finished after having run a few times in 

that queue, it may be moved to yet another, lower-level queue. The idea is to 

give preferential treatment to short processes and have the resource-consuming 

ones slowly "sink" into lower-level queues, to be used as fillers to keep the 

processor utilization high.  

On the other hand, if a process surrenders control to the Operating System 

before its time slice expires, it may be moved up in the hierarchy of queues to 

reward it. As in multiple-level queues, different queues may be serviced using 

different scheduling discipline but the introduction of feedback makes scheduling 

adaptive and responsive to the actual, measured run-time behavior of processes.  

1.3 Summary 
The prime responsibility of operating system is to manage the resources of the 

computer system. In addition to these, Operating System provides an interface 

between the user and the bare machine. On the basis of their attributes and 

design objectives, different types of operating systems were defined and 

characterized with respect to scheduling and management of memory, devices, 

and files. The primary concerns of a time-sharing system are equitable sharing of 

resources and responsiveness to interactive requests. Real-time operating 

systems are mostly concerned with responsive handling of external events 

generated by the controlled system. Distributed operating systems provide 

facilities for global naming and accessing of resources, for resource migration, 

and for distribution of computation. Process scheduling is a very important 

function of an operating system. Three different schedulers may coexist and 

interact in a complex operating system: long-term scheduler, medium-term 

scheduler, and short-term scheduler. Of the presented scheduling disciplines, 

FCFS scheduling is the easiest to implement but is a poor performer. SRTN 

scheduling is optimal but unrealizable. RR scheduling is most popular in time-

sharing environments, and event-driven and earliest-deadline scheduling are 

dominant in real-time and other systems with time-critical requirements. Multiple-

level queue scheduling, and its adaptive variant with feedback, is the most 
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general scheduling discipline suitable for complex environments that serve a 

mixture of processes with different characteristics. 
1.4 Keywords 
SPOOL: Simultaneous Peripheral Operations On Line 

Task: An instance of a program in execution is called a process or a task. 

Multitasking: The ability to execute more than one task at the same time is 

called as multitasking.  

Real time: These systems are characterized by very quick processing of data 

because the output influences immediate decisions. 

Multiprogramming: It is characterized by many programs simultaneously 

resident in memory, and execution switches between programs. 

Long-term scheduling: the decisions to introduce new processes for execution, 

or re-execution.  

Medium-term scheduling: the decision to add to (grow) the processes that are 

fully or partially in memory. 

Short-term scheduling: It decides which (Ready) process to execute next. 

Non-preemptive scheduling: In it, process will continue to execute until it 

terminates, or makes an I/O request which would block the process, or makes an 

operating system call. 

Preemptive scheduling: In it, the process may be pre-empted by the operating 

system when a new process arrives (perhaps at a higher priority), or an interrupt 

or signal occurs, or a (frequent) clock interrupt occurs. 

1.5 Self-Assessment Questions (SAQ) 
1. What are the objectives of an operating system? Discuss. 

2. Differentiate between multiprogramming, multitasking, and multiprocessing. 

3. What are the major functions performed by an operating system? Explain. 

4. Discuss various process scheduling policies with their cons and pros. 

5. Define process. What are the different states of a process? Explain using a 

process state transition diagram. 

6. What are the objectives of a good scheduling algorithm? 
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7. Explain the term context switch; how does the cost of a context switch affect 

the choice of scheduling algorithm. 

8. From the point of view of scheduling, briefly explain the different requirements 

imposed by the following types of system: (a) batch, (b) interactive, (c) real-

time. 

9. Explain the need to compromise quantum used in round-robin.  

10. Why round-robin scheduling is not suitable in batch operated computer 

system? 

1.6 Suggested Readings / Reference Material 
1. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B., 

John Wiley and Sons. 

2. Systems Programming and Operating Systems, 2nd Revised Edition, 

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

3. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 

5. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company 

Ltd., New Delhi, 2002. 

Operating System  



 
Lesson Number: 2     Writer: Dr. Rakesh Kumar 

Process Synchronization    Vetter: Dr. Pradeep Bhatia 

 
2.0 Objectives 
The objective of this lesson is get the students acquainted with the concepts of 

process synchronization. This lesson will make them familiar with: 

(a) Critical section 

(b) Mutual exclusion 

(c) Classical coordination problems  

2.1 Introduction 
Since processes in concurrent systems frequently need to communicate with 

other processes therefore, there is a need for a well-structured communication, 

without using interrupts, among processes. Processes use two kinds of 

synchronization to control their activities;  

(a) Control synchronization: it is needed if a process waits to perform some 

action only after some other processes have executed some action,  

(b) Data access synchronization: It is used to access shared data in a 

mutually exclusive manner. The basic technique used to implement this 

synchronization is to block a process until an appropriate condition is fulfilled.  

In this lesson synchronization in concurrent processes is discussed. Some 

classical coordination problems such as dining philosopher problem, producer-

consumer problem etc are also discussed. These classical problems are the 

abstractions of the synchronization problems observed in operating systems. 

2.2 Presentation of contents 
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2.2.1 Threads 

2.2.2 Race Conditions 

2.2.3 Critical Section 

2.2.4 Mutual Exclusion 

2.2.4.1 Mutual Exclusion Conditions 

2.2.4.2 Proposals for Achieving Mutual Exclusion 

2.2.5 Classical Process Co-Ordination Problems 

2.2.5.1 The readers and writers problem  

2.2.5.2 The Bounded Buffer Producers and Consumers 

2.2.6 Semaphores 

2.2.6.1 Producer-Consumer Problem Using Semaphores 

2.2.7 The dining philosophers’ problem 

2.2.1 Threads 
Concurrency has many advantages and can be implemented by structuring an 

application as a set of concurrent processes. But a lot of overhead is involved in 

process switching and a low cost alternative to process is threads for achieving 

concurrency. Despite of the fact that a thread must execute in process, the 

process and its associated threads are different concept. Processes are used to 

group resources together and threads are the entities scheduled for execution on 

the CPU. 

A thread is a single sequence stream within in a process. Because threads have 

some of the properties of processes, they are sometimes called lightweight 

processes. In a process, threads allow multiple executions of streams. In many 

respect, threads are popular way to improve application through parallelism. The 

CPU switches rapidly back and forth among the threads giving illusion that the 

threads are running in parallel. Like a traditional process i.e., process with one 

thread, a thread can be in any of several states (Running, Blocked, Ready or 

terminated). Each thread has its own stack. Since thread will generally call 

different procedures and thus a different execution history. This is why thread 

needs its own stack. An operating system that has thread facility, the basic unit of 

CPU utilization is a thread. A thread has or consists of a program counter (PC), a 
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register set, and a stack space. Threads are not independent of one other like 

processes as a result threads shares with other threads their code section, data 

section, Operating System resources  also known as task, such as open files and 

signals. 

2.2.1.1 Processes Vs Threads 
Some of the similarities and differences between processes and threads are: 

Similarities: 
(i) Like processes threads share CPU and only one thread active at a time.  

(ii) Like processes, threads within a process execute sequentially.  

(iii) Like processes, thread can create children.  

(iv) And like process, if one thread is blocked, another thread can run.  

Differences 

(i) Unlike processes, threads are not independent of one another.  

(ii) Unlike processes, all threads can access every address in the task.  

(iii) Unlike processes, threads are design to assist one other. Note that processes 

might or might not assist one another because processes may originate from 

different users.  

2.2.1.2 Need of Threads 
Following are some reasons why we use threads in designing operating systems: 

(i) A process with multiple threads makes a great server for example printer 

server.  

(ii) Because threads can share common data, they do not need to use 

interprocess communication.  

(iii) Because of the very nature, threads can take advantage of multiprocessors.  

Threads are cheap in the sense that 

(i) They only need a stack and storage for registers therefore, threads are cheap 

to create.  

(ii) Threads use very little resources of an operating system in which they are 

working. That is, threads do not need new address space, global data, 

program code or operating system resources.  
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(iii) Context switching is fast when working with threads. The reason is that we 

only have to save and/or restore PC, SP and registers.  

But this cheapness does not come free - the biggest drawback is that there is no 

protection between threads. 

2.2.1.3 User-Level Threads 
User-level threads implement in user-level libraries, rather than via systems calls, 

so thread switching does not need to call operating system and to cause interrupt 

to the kernel. In fact, the kernel knows nothing about user-level threads and 

manages them as if they were single-threaded processes. 

Advantages: 
The most obvious advantage of this technique is that a user-level threads 

package can be implemented on an Operating System that does not support 

threads. Some other advantages are 

(i) User-level threads do not require modification to operating systems.  

(ii) Simple Representation:  

Each thread is represented simply by a PC, registers, stack and a small control 

block, all stored in the user process address space.  

 Simple Management: This simply means that creating a thread, switching 

between threads and synchronization between threads can all be done 

without intervention of the kernel.  

 Fast and Efficient: Thread switching is not much more expensive than a 

procedure call.  

Disadvantages: 
(i) There is a lack of coordination between threads and operating system kernel. 

Therefore, process as whole gets one time slice irrespective of whether 

process has one thread or 1000 threads within. It is up to each thread to 

relinquish control to other threads.  

(ii) User-level threads require non-blocking systems call i.e., a multithreaded 

kernel. Otherwise, entire process will blocked in the kernel, even if there are 

runable threads left in the processes. For example, if one thread causes a 

page fault, the process blocks.  
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2.2.1.4 Kernel-Level Threads 
In this method, the kernel knows about and manages the threads. No runtime 

system is needed in this case. Instead of thread table in each process, the kernel 

has a thread table that keeps track of all threads in the system. In addition, the 

kernel also maintains the traditional process table to keep track of processes. 

Operating Systems kernel provides system call to create and manage threads. 

Advantages: 
(i) Because kernel has full knowledge of all threads, Scheduler may decide to 

give more time to a process having large number of threads than process 

having small number of threads.  

(ii) Kernel-level threads are especially good for applications that frequently block.  

Disadvantages: 
(i) The kernel-level threads are slow and inefficient. For instance, threads 

operations are hundreds of times slower than that of user-level threads.  

(ii) Since kernel must manage and schedule threads as well as processes. It 

requires a full thread control block (TCB) for each thread to maintain 

information about threads. As a result there is significant overhead and 

increased in kernel complexity.  

2.2.1.5 Advantages of Threads over Multiple Processes 
(i) Context Switching: Threads are very inexpensive to create and destroy, and 

they are inexpensive to represent. For example, they require space to store, 

the PC, the SP, and the general-purpose registers, but they do not require 

space to share memory information, Information about open files of I/O 

devices in use, etc. With so little context, it is much faster to switch between 

threads. In other words, it is relatively easier for a context switch using 

threads. 

(ii) Sharing: Threads allow the sharing of a lot resources that cannot be shared 

in process, for example, sharing code section, data section, Operating 

System resources like open file etc. 
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2.2.1.6 Disadvantages of Threads over Multiprocesses 
(i) Blocking     The major disadvantage if that if the kernel is single threaded, a 

system call of one thread will block the whole process and CPU may be idle 

during the blocking period. 

(ii) Security    Since there is, an extensive sharing among threads there is a 

potential problem of security. It is quite possible that one thread over writes 

the stack of another thread (or damaged shared data) although it is very 

unlikely since threads are meant to cooperate on a single task. 

2.2.1 Race Conditions 
An atomic action is an indivisible action - an action taken by a process than 

cannot be interrupted by a context switch. When accesses to a shared variable 

are not atomic, a race condition may arise. 

Consider the following extremely simple procedure  

void deposit(int amount)  

{ 

        balance = balance + amount; 

 } 

(Where we assume that balance is a shared variable). If two processes try to call 

deposit concurrently, something very bad can happen. Note that although 

balance = balance + amount looks like one statement but it is really 

implemented, on most computers, by a sequence of instructions such as  

    Load  reg, balance  //reg balance 

    Add   reg, amount //reg reg + amount 

    Store reg, balance //balane  reg 

deposit(10) and process P2 calls deposit(20)Suppose process P1 calls . If one 

completes before the other starts, the combined effect is to add 30 to the 

balance, as desired. However, suppose the calls happen at exactly the same 

time, and the executions are interleaved. Suppose the initial balance is 100, and 

the two processes run on different CPUs. One possible result is  

    P1 loads 100 into its register 

    P2 loads 100 into its register 
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    P1 adds 10 to its register, giving 110 

    P2 adds 20 to its register, giving 120 

    P1 stores 110 in balance 

    P2 stores 120 in balance 

and the net effect is to add only 20 to the balance. 

This kind of bug, which only occurs under certain timing conditions, is called a 

race condition. It is an extremely difficult kind of bug to track down (since it may 

disappear when you try to debug it) and may be nearly impossible to detect from 

testing (since it may occur only extremely rarely). The only way to deal with race 

conditions is through very careful coding. To avoid these kinds of problems, 

systems that support processes always contain constructs called synchronization 

primitives. 

In operating systems, processes that are working together share some common 

storage (main memory, file etc.) that each process can read and write. When two 

or more processes are reading or writing some shared data and the final result 

depends on who runs precisely when, are called race conditions. Concurrently 

executing threads that share data need to synchronize their operations and 

processing in order to avoid race condition on shared data. Only one ‘customer’ 

thread at a time should be allowed to examine and update the shared variable. 

Race conditions are also possible in Operating Systems. If the ready queue is 

implemented as a linked list and if the ready queue is being manipulated during 

the handling of an interrupt, then interrupts must be disabled to prevent another 

interrupt before the first one completes. If interrupts are not disabled than the 

linked list could become corrupt.  

So a race condition on a data item arises when many processes concurrently 

update its value. To maintain consistency, any time only one process should 

update the value.  How to avoid race conditions? One solution is critical section. 

2.2.2 Critical Section 
The key to preventing trouble involving shared storage is find some way to 

prohibit more than one process from reading and writing the shared data 

simultaneously. Not all code needs to worry about race conditions. Only code 

Operating System  



that is manipulating shared data needs to worry about them. The most common 

way to avoid race conditions is to mark the sections of code that are accessing 

shared data (That part of the program where the shared memory is accessed is 

called the Critical Section or critical regions) and insure that only one process is 

ever executing code in the critical section or context switched out of code in the 

critical section. This property is called mutual exclusion. To avoid race conditions 

and flawed results, one must identify codes in Critical Sections in each thread. 

 
The characteristic properties of the code that form a Critical Section are 

(i) Codes that reference one or more variables in a “read-update-write” fashion 

while any of those variables is possibly being altered by another thread.  

(ii) Codes that alter one or more variables that are possibly being referenced in 

“read-update-write” fashion by another thread.  

(iii) Codes use a data structure while any part of it is possibly being altered by 

another thread.  

(iv) Codes alter any part of a data structure while it is possibly in use by another 

thread. 

Here, the important point is that when one process is executing shared modifiable data in 

its critical section, no other process is to be allowed to execute in its critical section. 

Thus, the execution of critical sections by the processes is mutually exclusive in time. So 

a critical section for a data item d is defined as a section of code, which cannot be 

executed concurrently with itself or with other critical sections of d. 

Consider a system consisting of n processes {P , P , ..., P0 1 n-i}. Each process has 

a segment of code, called a critical section, in which the process may be 
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changing common variables, updating a table, writing a file, and so on. The 

important feature of the system is that, when one process is executing its critical 

section, no other process is to be allowed to execute in its critical section. Thus, 

the execution of critical sections by the processes is mutually exclusive in time. 

The critical-section problem is to design a protocol that the processes can use to 

co-operate. Each process must request permission to enter its critical section. 

The section of code implementing this request is the entry section. An exit 

section may follow the critical section. The remaining code is the remainder 

section.   
Repeat  

Entry Section 

Critical section

Exit Section 
Remainder section  

Until FALSE

Properties of critical section 

The following properties are to be possessed by an implementation of critical section: 

(i) Correctness: At most one process may execute a critical section at any given 

moment. 

(ii) Progress: When a critical section is not in use, one of the processes visiting to enter it 

will be granted entry to the critical section. If no process is executing in its critical 

section and there exist some processes that wish to enter their critical sections, then 

only those processes that are not executing in their remainder section can participate 

in the decision of which will enter its critical section next. Moreover, this decision 

cannot be postponed indefinitely. So if no process is in critical section, one can decide 

quickly who enters and only one process can enter the critical section so in practice, 

others are put on the queue. 

(iii)Bounded wait: After a process p has indicated its desire to enter a critical section, the 

number of times other processes gain entry to the critical section ahead of p is 

bounded by a finite integer. So there must exist a bound on the number of times that 

other processes are allowed to enter their critical sections after a process has made a 
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request to enter its critical section and before that request is granted. The wait is the 

time from when a process makes a request to enter its critical section until that 

request is granted. In practice, once a process enters its critical section, it does not get 

another turn until a waiting process gets a turn (managed as a queue)  

(iv) Deadlock freedom: The implementation is free of deadlock. 

2.2.3 Mutual Exclusion 
It is a way of making sure that if one process is using a shared modifiable data, 

the other processes will be excluded from doing the same thing. 

Formally, while one process executes the shared variable, all other processes 

desiring to do so at the same time moment should be kept waiting; when that 

process has finished executing the shared variable, one of the processes waiting 

to do so should be allowed to proceed. In this fashion, each process executing 

the shared data (variables) excludes all others from doing so simultaneously. 

This is called Mutual Exclusion. 

Note that mutual exclusion needs to be enforced only when processes access 

shared modifiable data - when processes are performing operations that do not 

conflict with one another they should be allowed to proceed concurrently. 

2.2.3.1 Mutual Exclusion Conditions 
If we could arrange matters such that no two processes were ever in their critical 

sections simultaneously, we could avoid race conditions. We need four 

conditions to hold to have a good solution for the critical section problem (mutual 

exclusion). 

(i) No two processes may at the same moment inside their critical sections.  

(ii) No assumptions are made about relative speeds of processes or number of 

CPUs.  

(iii) No process outside its critical section should block other processes.  

(iv) No process should wait arbitrary long to enter its critical section.  

2.2.3.2 Proposals for Achieving Mutual Exclusion 
The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and 

a post-protocol (or exist protocol) to keep two or more threads from being in their 

critical sections at the same time.  
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Problem  
When one process is updating shared modifiable data in its critical section, no 

other process should allow entering in its critical section. 

Proposal 1 -Disabling Interrupts (Hardware Solution) 
Each process disables all interrupts just after entering in its critical section and 

re-enable all interrupts just before leaving critical section. With interrupts turned 

off the CPU could not be switched to other process. Hence, no other process will 

enter its critical section and mutual exclusion achieved. 

Disabling interrupts is sometimes a useful technique within the kernel of an 

operating system, but it is not appropriate as a general mutual exclusion 

mechanism for users process. The reason is that it is unwise to give user 

process the power to turn off interrupts. It’s a bad idea for several reasons: 

(i) It badly breaks process isolation - a process can prevent other processes 

from hearing from the disk or timers. 

(ii) Turning off interrupts for any period of time is extremely hazardous. The 

Operating System needs to field interrupts to keep the machine running, and 

frequently will be so confused after interrupts are off for a while that it will 

reboot anyway. (Most hardware will send an NMI (non maskable interrupt) 

after too long with interrupts disabled). 

Proposal 2 - Lock Variable (Software Solution) 
In this solution, we consider a single, shared, (lock) variable, initially 0. When a 

process wants to enter in its critical section, it first tests the lock. If lock is 0, the 

process first sets it to 1 and then enters the critical section. If the lock is already 

1, the process just waits until (lock) variable becomes 0. Thus, a 0 means that no 

process in its critical section, and 1 means hold your horses - some process is in 

its critical section. 

Int lock; 

Repeat  

void enter_region (int process)  

{ 

while ( lock == 1 ); // do nothing 
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lock = 1; 

} 

{ Critical section } 

void leave_region(int process)  

{ 

lock = 0; 

} 

{ Remainder Section } 

Forever 
The flaw in this proposal can be best explained by example. Suppose process A 

sees that the lock is 0. Before it can set the lock to 1 another process B is 

scheduled, runs, and sets the lock to 1. When the process A runs again, it will 

also set the lock to 1, and two processes will be in their critical section 

simultaneously. The code fails because lock is as much a shared variable as 

anything in the critical section. The same way that two processes increment 

balance variable in our first example, two processes can both see the lock as 

zero before it is set to one, and both enter the critical section. 

Proposal 3 - Strict Alteration 
In this proposed solution, the integer variable 'turn' keeps track of whose turn is 

to enter the critical section. Initially, process A inspects turn, finds it to be 1, and 

enters in its critical section. Process B also finds it to be 1 and sits in a loop 

continually testing 'turn' to see when it becomes 2. Continuously testing a 

variable waiting for some value to appear is called the Busy-Waiting. 

Algorithm 

Var turn: integer  

Begin   

turn=1  

Concurrent begin  

Repeat Repeat 

  While turn=2   While turn=1 

       Do {nothing}        Do {nothing} 
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  {critical section}   {critical section} 

  turn=2   turn=1 

  {remainder section}   {remainder section}

forever forever 

concurrent end  

end.  

Process p1 Process p2 

The shared variable turn is used to indicate which process can enter the critical 

section next. Let process p1 wish to enter the Critical Section. If turn=1, p1 can 

enter straightway. After completing the Critical Section, it sets turn to 2 so as to 

enable process p2 to enter the Critical Section. If p1 finds turn=2 when it wishes 

to enter Critical Section, it waits in the while loop until p2 exits from the critical 

section and executes the assignment turn=1. Thus processes may encounter a 

busy wait before gaining entry to the Critical Section. 

Taking turns is not a good idea when one of the processes is much slower than 

the other. Suppose process 1 finishes its critical section quickly, so both 

processes are now in their non-critical section. This situation violates above-

mentioned condition 3(i.e. No process outside its critical section should block 

other processes.). E.g. let process p1 be in critical section and p2 in the 

remainder section. If p1 exits from the Critical Section, finishes the remainder 

section and wishes to enter the critical section again, it will face busy wait until 

after p2 uses the Critical Section. So the progress condition is violated since p1 

is not able to enter although critical section is available. The solution of this 

problem can be: 

Var c1, c2: integer  

C1=1;c2=1;  

{  

repeat  Repeat 

 while c2=0 do {nothing}  while c1=0 do {nothing} 

 c1=0;  c2=0; 

 {critical section}  {critical section} 
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 c1=1;  c2=1; 

 {remainder section}  {remainder section} 

forever forever 

} } 

Process p1 Process p2 

In this algorithm, c1 is a status flag for p1. p1 sets this flag to 0 while entering the 

critical section and change it to 1 upon exit. P2 checks the status of c1, if it is 1 

then enter otherwise wait. This check eliminates the progress violation by 

enabling a process to enter critical section again any number of times if other 

process is not interested in entering the Critical Section. However the busy wait 

condition still exists. 

Using Systems calls 'sleep' and 'wakeup' 
Basically, what above-mentioned solution does is this: when a process wants to 

enter in its critical section, it checks to see if the entry is allowed. If it is not, then 

it waits until it is allowed to enter. This approach waste CPU-time. 

Now look at some interprocess communication primitives i.e. the pair of steep-

wakeup. 

(i) Sleep: It is a system call that causes the caller to block, that is, be suspended 

until some other process wakes it up.  
(ii) Wakeup: It is a system call that wakes up the process.  
Both 'sleep' and 'wakeup' system calls have one parameter that represents a 

memory address used to match up 'sleeps' and 'wakeups'.  

2.2.4 Classical process co-ordination problems  
There are a number of different process co-ordination problems arising in 

practical situations that exemplify important associated issues. These problems 

also provide base for solution testing for process co-ordination problems. In this 

section, we will see some of such classical process co-ordination problems.  

2.2.4.1 The readers and writers problem  
Courtois, Heymans, and Pumas posed an interesting synchronization problem 

called the readers-writers problem. Suppose a resource is to be shared among a 

community of processes of two distinct types: readers and writers. A reader 
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process can share the resource with any other reader process but not with any 

writer process. A writer process acquires exclusive access to the resource 

whenever it requires any access to the resource.  

This scenario is similar to one in which a file is to be shared among a set of 

processes, If a process wants only to read the file, then it may share the file with 

any other process that also wants to read the file. If a writer wants to modify the 

file, then no other process should have access to the file writer has access to it.  

The correctness conditions are as follows: 

1. There are two classes of processes: 

(a) Readers, which can work concurrently.  

(b) Writers, which need exclusive access.  

2. Only one writer can write any time. So we must prevent 2 writers from being 

concurrent.  

3. We must prevent a reader and a writer from being concurrent. So reading is 

prohibited while a writer is writing. 

4. We must permit readers to be concurrent when no writer is active. So many 

readers can read simultaneously. 

5. Perhaps we want fairness (i.e., freedom from starvation).  

6. Optional variants can be:  

a. Writer should have priority over readers.  

b. Readers should have priority over writers. 

The “easy way out'' is to treat all processes as writers in which case the problem reduces 

to mutual exclusion. The disadvantage of the easy way out is that you give up reader 

concurrency. A possible solution is as under: 

{ { 

repeat repeat 

if a writer is writing  if readers reading or writer is writing 

then {wait} then {wait} 
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{read} {write} 

If writer waiting If reader or writer waiting 

Then Then 

  Wake a writer if no   Wake all readers 

 Readers are reading.  Or one writer 

forever forever 

} } 

Process Readers Process Writers 

2.2.4.2 The Bounded Buffer Producers and Consumers 
As an example how sleep-wakeup system calls are used, consider the producer-

consumer problem also known as bounded buffer problem. In the producers and 

consumers problem, there are two classes of processes  

(i) Producers, which produce items and insert them into a buffer.  

(ii) Consumers, which remove items and consume them.  

These two processes share a common, fixed-size (bounded) buffer. The 

producer puts information into the buffer and the consumer takes information out. 

Trouble arises when  

1. The producer wants to put a new data in the buffer, but buffer is already full. 

Solution: Producer goes to sleep and to be awakened when the consumer 

has removed data.  

2. The consumer wants to remove data from the buffer but buffer is already 

empty. 

Solution: Consumer goes to sleep until the producer puts some data in buffer 

and wakes consumer up.  

The bounded buffer producers and consumers assume that there is a fixed buffer 

size i.e., a finite numbers of slots is available. 

This approach also leads to same race conditions we have seen in earlier 

approaches. Race condition can occur due to the fact that access to 'count' is 
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unconstrained. The essence of the problem is that a wakeup call, sent to a 

process that is not sleeping, is lost. 

Another solution is the use of monitors. Monitors is a high-level data abstraction tool that 

automatically generates atomic operations on a given data structure. A monitor has:  

(i) Shared data.  

(ii) A set of atomic operations on that data.  

(iii) A set of condition variables.  

Each monitor has one lock. It acquires lock when begin a monitor operation, and 

releases lock when operation finishes. It statically identifies operations that only 

read data, and then allow these read-only operations to go concurrently. Writers 

get mutual exclusion with respect to other writers and to readers. The 

advantages of using monitors are (i) it reduces probability of error (never forget to 

Acquire or Release the lock), (ii) biases programmer to think about the system in 

a certain way (is not ideologically neutral).  

Bounded buffer using monitors and signals  

(i) Shared State data [num] - a buffer holding produced data. num - tells how many 

produced data items there are in the buffer.  

(ii) Atomic Operations Produce (v) called when producer produces data item . v

Consume (v) called when consumer is ready to consume a data item. 

Consumed item put into v.  

(iii) Condition Variables There are two condition variables (1) bufferAvail - 

signalled when a buffer becomes available. (2) dataAvail - signalled when data 

becomes available.  

  Condition *bufferAvail, *dataAvail; 

  int num = 0; 

  int data[10]; 

  Lock *monitorLock; 

  Produce (v)  

{  

  monitorLock->Acquire(); /* Acquire monitor lock - makes operation atomic */ 
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  while (num == 10)  

 {  bufferAvail->Wait(monitorLock);  } 

   put v into data array 

  num++; 

   dataAvail->Signal(monitorLock);  

    monitorLock->Release(); /* Release monitor lock after perform operation */ 

  } 

 Consume(v)  

{  

  monitorLock->Acquire(); /* Acquire monitor lock - makes operation atomic */ 

  while (num == 0)  

      { dataAvail->Wait(monitorLock); }  

  put next data array value into v 

  num--;  

  bufferAvail->Signal(monitorLock); 

  monitorLock->Release(); /* Release monitor lock after perform operation */ 

} 

2.2.5 Semaphores 
E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his 

concepts of semaphores. 

Definition 
A semaphore is a protected variable whose value can be accessed and altered 

only by the operations P and V and initialization operation called 

'Semaphoiinitislize'. Binary Semaphores can assume only the value 0 or the 

value 1, counting semaphores, also called general semaphores, can assume 

only nonnegative values. 

P() or down() decrements the semaphore by one. If the semaphore is zero, the 

process calling P() is blocked until the semaphore is positive again. The P (or 

wait or sleep or down) operation on semaphores S, written as P(S) or wait (S), 

operates as follows: 

P(S): IF S >0 
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 THEN S = S – 1 

 ELSE (wait on S) 

V() or up() increments the semaphore by one. The V (or signal or wakeup or up) 

operation on semaphore S, written as V(S) or signal (S), operates as follows: 

V(S): IF (one or more process are waiting on S) 

 THEN (let one of these processes proceed) 

 ELSE S = S + 1 

Operations P and V are done as single, indivisible, atomic action. It is guaranteed 

that once a semaphore operation has stared, no other process can access the 

semaphore until operation has completed. Mutual exclusion on the semaphore, 

S, is enforced within P(S) and V(S). 

If several processes attempt a P(S) simultaneously, only one process will be 

allowed to proceed. The other processes will be kept waiting, but the 

implementation of P and V guarantees that processes will not suffer indefinite 

postponement. 

Semaphores solve the lost-wakeup problem. 

2.2.5.1 Producer-Consumer Problem Using Semaphores 
The Solution to producer-consumer problem uses three semaphores namely, full, 

empty and mutex. The semaphore 'full' is used for counting the number of slots in 

the buffer that are full. The 'empty' for counting the number of slots that are 

empty and semaphore 'mutex' to make sure that the producer and consumer do 

not access modifiable shared section of the buffer simultaneously. 

Initialization 
(i) Set full buffer slots to 0 i.e., semaphore Full = 0.  

(ii) Set empty buffer slots to N    i.e., semaphore empty = N.  

(iii) For control access to critical section set mutex to 1 i.e., semaphore mutex=1.  

Producer ( )  

WHILE (true)          

            produce-Item ( ); 

        P (empty); 

        P (mutex); 
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        enter-Item ( ) 

        V (mutex) 

        V (full); 

Consumer ( ) 

WHILE (true)  

        P (full) 

        P (mutex); 

        remove-Item ( ); 

        V (mutex); 

        V (empty); 

        consume-Item (Item) 

2.2.6 The Dining philosophers’ problem 
The dining philosophers’ problem is a “classical” synchronization problem. Taken 

at face value, it is a pretty meaningless problem, but it is typical of many 

synchronization problems that you will see when allocating resources in 

operating systems.  

The problem is defined as follows: There are 5 philosophers sitting at a round 

table. Between each adjacent pair of philosophers is a chopstick. In other words, 

there are five chopsticks. Each philosopher does two things: think and eat. The 

philosopher thinks for a while, and then stops thinking and becomes hungry. 

When the philosopher becomes hungry, he/she cannot eat until he/she owns the 

chopsticks to his/her left and right. When the philosopher is done eating he/she 

puts down the chopsticks and begins thinking again.  

Why describe problems this way? Well, the analogous situations in computers 

are sometimes so technical that they obscure creative thought. Thinking about 

philosophers makes it easier to think abstractly. And many of the early students 

of this field were theoreticians who like abstract problems. There are a bunch of 

named problems - Dining Philosophers, Drinking Philiosophers, Byzantine 

Generals, etc. 
The challenge in the dining philosophers problem is to design a protocol so that 

the philosophers do not deadlock (i.e. every philosopher has a chopstick), and so 
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that no philosopher starves (i.e. when a philosopher is hungry, he/she eventually 

gets the chopsticks). Additionally, our protocol should try to be as efficient as 

possible -- in other words, we should try to minimize the time that philosophers 

spent waiting to eat.  

A simple solution to this problem can be of the form 

Repeat 

 Lift the left fork 

 Lift the right fork 

 {Eat} 

 Put the left fork 

 Put the right fork 

 {Think} 

Forever 

But this solution is not acceptable since it is prone to deadlock (If all the 

philosophers lift their left fork).  

 
One solution is to order the forks and require the philosophers to pick up the 

forks in increasing order, which mathematically eliminates the possibility of a 

deadlock. To illustrate this solution, label the philosophers P , P , P , P , and P1 2 3 4 5, 

and label the forks F , F , F , F , and F1 2 3 4 5. Each philosopher must pick up forks in 

a prescribed order and cannot pick up a fork another philosopher already has. 

Upon acquiring two forks, a philosopher may eat. Philosophers P  through P1 4 

follow the rule that P  must pick up fork Fx x first and then may pick up fork Fx+1. 

For example, P  must pick up F  first and F  second. Philosopher P  must, 1 1 2 5
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conversely, pick up fork F  before picking up fork F1 5, to respect the deadlock-

preventing fork ordering rule. 

Although avoiding a deadlock, this solution is inefficient, because one can arrive 

to a situation where only one philosopher is eating and everybody else is waiting 

for him. For example philosophers P  to P  could hold forks F  to F1 3 1 3, waiting to 

get forks F  to F  respectively, philosopher P  could wait on fork F2 4 5 1 having no fork 

yet, while philosopher P  would be eating holding forks F  and F4 4 5. Optimally, 

either philosopher P  or philosopher P1 2 should be able to eat in such 

circumstances. 

Preventing starvation depends on the method of mutual exclusion enforcement 

used. Implementations using spinlocks or busy waiting can cause starvation 

through timing problems inherent in these methods. Other methods of mutual 

exclusion that utilize queues can prevent starvation by enforcing equal access to 

a fork by the adjacent philosophers. 

2.3 Summary 
In operating systems, concurrent processes share some common storage that 

each process can read and write. Since processes frequently need to 

communicate with other processes therefore, there is a need for a well-structured 

communication. Processes use two kinds of synchronization to control their 

activities; Control synchronization, & Data access synchronization. A race 

condition on a data item arises when many processes concurrently update its 

value. One solution to race condition is critical section. If we could arrange 

matters such that no two processes were ever in their critical sections 

simultaneously, we could avoid race conditions. There are four conditions to hold 

to have a good solution for the critical section problem (mutual exclusion). In the 

approaches to mutual exclusion, if a process wants to enter in its critical section, 

it checks to see if the entry is allowed. If it is not allowed to enter, it waits. This 

approach waste CPU-time. To avoid this sleep and wakeup calls are used.  
A semaphore is a protected variable whose value can be accessed and altered 

only by the indivisible operations P and V and initialization operation called 

'Semaphoiinitislize' Semaphores helps in avoiding the race condition 
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2.4 Keywords 
Threads: A thread is a single sequence stream within in a process & they are 

sometimes called lightweight processes. 
Critical section: that part of the program where the shared memory is accessed. 

Mutual Exclusion: each process executing the shared data excludes all others 

from doing so simultaneously.  

Race condition: When two or more processes are reading or writing some 

shared data and the final result depends on who runs precisely when, are called 

race conditions. 

Semaphore: an object that hides an integer value and only allows three 

operations: initialization to a specified value, increment, or decrement. 
2.5 Self assessment questions 
1. What is a thread? Differentiate between user level threads and kernel level 

threads. 

2. What is the difference between a thread and a process? Discuss the 

merits/demerits of threads over processes. 

3. What is a race condition? Explain using a suitable example. 

4. What do you understand by critical section? What are the charcteristic 

properties of it? Explain.  

5. What is mutual exclusion? Discuss the different approaches to solve the 

problem of mutual exclusion. 

6. What do you understand by semphores? Does it satisfy the bounded wait 

condition? Explain. 

7. What is semaphore? How does it help in avoiding the race condition? Explain. 

8. What are the limitations of hardware solutions for achieving mutual exclusion? 

9. What do you understand by: (a) Busy waiting,  (b) Bounded wait 

2.6 Suggested readings/reference material 
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Lesson number: 3     Writer: Dr. Rakesh Kumar 

Deadlocks      Vetter: Dr. Pradeep Bhatia 

 
3.0 Objectives 
The objectives of this lesson are to make the students acquainted with the 

problem of deadlocks. In this lesson, we characterize the problem of deadlocks 

and discuss policies, which an Operating System can use to ensure their 

absence. Deadlock detection, resolution, prevention and avoidance have been 

discussed in detail in the present lesson. 

After studying this lesson the students will be familiar with following: 

(a) Condition for deadlock. 

(b) Deadlock prevention 

(c) Deadlock avoidance 

(d) Deadlock detection and recovery 

3.1 Introduction 
A serious danger of concurrent programming is deadlock. A race condition 

produces incorrect results, where a deadlock results in the deadlocked 

processes never making any progress. In the simplest form it’s a process waiting 

for a resource held by a second process that’s waiting for a resource that the first 

holds. 

In a multiprogramming environment where several processes compete for 

resources, a situation may arise where a process is waiting for resources that are 

held by other waiting processes. This situation is called a deadlock. Generally, a 

system has a finite set of resources (such as memory, IO devices, etc.) and a 

finite set of processes that need to use these resources. A process which wishes 

to use any of these resources makes a request to use that resource. If the 

resource is free, the process gets it. If it is used by another process, it waits for it 

to become free. The assumption is that the resource will eventually become free 

and the waiting process will continue on to use the resource. But what if the other 

process is also waiting for some resource? 
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“A set of processes is in a deadlock state when every process in the set is 

waiting for an event that can only be caused by another process in the set.” 

If a process is in the need of some resource, physical or logical, it requests the 

kernel of operating system. The kernel, being the resource manager, allocates 

the resources to the processes. If there is a delay in the allocation of the 

resource to the process, it results in the idling of process. The deadlock is a 

situation in which some processes in the system faces indefinite delays in 

resource allocation. In this lesson, we identify the problems causing deadlocks, 

and discuss a number of policies used by the operating system to deal with the 

problem of deadlocks.  

3.2 Presentation of contents 
3.2.1 Definition 

3.2.2 Preemptable and Nonpreemptable Resources 

3.2.3 Necessary and Sufficient Deadlock Conditions 

3.2.4 Resource-Allocation Graph 

3.2.4.1 Interpreting a Resource Allocation Graph with Single Resource 

Instances 

3.2.5 Dealing with Deadlock 

3.2.6 Deadlock Prevention 

3.2.6.1 Elimination of “Mutual Exclusion” Condition 

3.2.6.2 Elimination of “Hold and Wait” Condition 

3.2.6.3 Elimination of “No-preemption” Condition 

3.2.6.4 Elimination of “Circular Wait” Condition 

3.2.7 Deadlock Avoidance 

3.2.7.1 Banker’s Algorithm 

3.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm 

3.2.8 Deadlock Detection 

3.2.9 Deadlock Recovery  
3.2.10 Mixed approaches to deadlock handling 

3.2.11 Evaluating the Approaches to Dealing with Deadlock 

3.2.1 Definition 
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A deadlock involving a set of processes D is a situation in which: 

(a) Every process P  in D is blocked on some event E . i i

(b) Event E  can be caused only by action of some process (es) in D. i

In other words, each member of the set of deadlock processes is waiting for a 

resource that can be released only by a deadlock process. None of the 

processes can run, none of them can release any resources, and none of them 

can be awakened. The resources may be either physical or logical. Examples of 

physical resources are Printers, Tape Drivers, Memory Space, and CPU Cycles. 

Examples of logical resources are Files, Semaphores, and Monitors. 

Here’s an example: 

#define N 100 /* Number of free slots */ 

semaphore mutex = 1; 

semaphore empty = N; 

semaphore full = 0; 

void producer()  

{ 

item i; 

while (1)  

{ 

i = produce_item(); 

P (mutex); 

P (empty); 

insert_new_item(i); 

V (mutex); 

V (full); 

} 

} 

void consumer()  

{ 

item i; 

while (1)  
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{ 

P (full); 

P (mutex); 

i = get_next_item(); 

V (mutex); 

V (empty); 

consume_item (i); 

} 

} 

When the producer arrives at a full queue, it will block on empty while holding 

mutex, and the consumer will subsequently block on mutex forever. 

What are the consequences of deadlocks? 
 Response times and elapsed times of processes suffer. 

 If a process is allocated a resource R1 that it is not using and if some other 

process P2 requires the resource, then P2 is denied the resource and the 

resource remains idle. 

3.2.2 Preemptable and Nonpreemptable Resources 
Resources come in two flavors: preemptable and nonpreemptable. A 

preemptable resource is one that can be taken away from the process with no ill 

effects. Memory is an example of a preemptable resource. On the other hand, a 

nonpreemptable resource is one that cannot be taken away from process 

(without causing ill effect). For example, CD resources are not preemptable at an 

arbitrary moment. 

Reallocating resources can resolve deadlocks that involve preemptable 

resources. Deadlocks that involve nonpreemptable resources are difficult to deal 

with. 

3.2.3 Necessary and Sufficient Deadlock Conditions 

Coffman (1971) identified four (4) conditions that must hold simultaneously for 

there to be a deadlock. 

1. Mutual Exclusion Condition  

The resources involved are non-shareable.  
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Explanation: At least one resource must be held in a non-shareable mode, that 

is, only one process at a time claims exclusive control of the resource. If another 

process requests that resource, the requesting process must be delayed until the 

resource has been released. 

2. Hold and Wait Condition  

Requesting process hold already, resources while waiting for requested 

resources.  

Explanation: There must exist a process that is holding a resource already 

allocated to it while waiting for additional resource that are currently being held 

by other processes. 

3. No-Preemptive Condition  

Resources already allocated to a process cannot be preempted.  

Explanation: Resources cannot be removed from the processes are used to 

completion or released voluntarily by the process holding it.  

3. Circular Wait Condition  

The processes in the system form a circular list or chain where each process in 

the list is waiting for a resource held by the next process in the list.  

A set {P0, P1, P2, …, Pn} of waiting processes must exist such that P0 is waiting 

for a resource that is held by P1,  P1 is waiting for a resource that is held by P2, 

…, Pn-1 is waiting for a resource that is held by Pn, and Pn is waiting for a 

resource that is held by P0. 

Conditions 1 and 3 pertain to resource utilization policies, while condition 2 

pertains to resource requirements of individual processes. Only condition 4 

pertains to relationships between resource requirements of a group of processes. 

As an example, consider the traffic deadlock in the following figure: 
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Consider each section of the street as a resource.  

1. Mutual exclusion condition applies, since only one vehicle can be on a 

section of the street at a time.  

2. Hold-and-wait condition applies, since each vehicle is occupying a section 

of the street, and waiting to move on to the next section of the street.  

3. No-preemptive condition applies, since a section of the street that is 

occupied by a vehicle cannot be taken away from it.  

4. Circular wait condition applies, since each vehicle is waiting on the next 

vehicle to move. That is, each vehicle in the traffic is waiting for a section 

of street held by the next vehicle in the traffic.  

The simple rule to avoid traffic deadlock is that a vehicle should only enter an 

intersection if it is assured that it will not have to stop inside the intersection. 

It is not possible to have a deadlock involving only one single process. The 

deadlock involves a circular “hold-and-wait” condition between two or more 

processes, so “one” process cannot hold a resource, yet be waiting for another 
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resource that it is holding. In addition, deadlock is not possible between two 

threads in a process, because it is the process that holds resources, not the 

thread that is, each thread has access to the resources held by the process. 

3.2.4 Resource-Allocation Graph 
The deadlock conditions can be modeled using a directed graph called a 

resource allocation graph (RAG). A resource allocation graph is a directed graph. 

It consists of 2 kinds of nodes: 

Boxes — Boxes represent resources, and Instances of the resource are 

represented as dots within the box i.e. how many units of that resource exist in 

the system. 

Circles — Circles represent threads / processes. They may be a user process or 

a system process. 

An edge can exist only between a process node and a resource node. There are 

2 kinds of (directed) edges: 

Request edge: It represents resource request. It starts from process and 

terminates to a resource. It indicates the process has requested the resource, 

and is waiting to acquire it. 

Assignment edge: It represents resource allocation. It starts from resource 

instance and terminates to process. It indicates the process is holding the 

resource instance. 

When a request is made, a request edge is added. 

When request is fulfilled, the request edge is transformed into an assignment 

edge. 

When process releases the resource, the assignment edge is deleted. 

3.2.4.1 Interpreting a Resource Allocation Graph with Single Resource 
Instances 
 Following figure shows a resource allocation graph. If the graph does not contain 

a cycle, then no deadlock exists. Following figure is an example of a no deadlock 

situation. 
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If the graph does contain a cycle, then a deadlock does exist. As following 

resource allocation graph depicts a deadlock situation. 

O 
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With single resource instances, a cycle is a necessary and sufficient condition   

for deadlock 

So basic fact is that If graph contains no cycles then there is no deadlock. But If 

graph contains a cycle then there are two possibilities: 

(a) If only one instance per resource type, then there is a deadlock. 

(b) If several instances per resource type, possibility of deadlock is there. 

3.2.5 Dealing with Deadlock 
There are following approaches to deal with the problem of deadlock. 

The Ostrich Approach: sticks your head in the sand and ignores the problem. 

This approach can be quite useful if you believe that they are rarest chances of 

deadlock occurrence. In that situation it is not a justifiable proposition to invest a 

lot in identifying deadlocks and tackling with it. Rather a better option is ignore it. 

For example if each PC deadlocks once per 100 years, the one reboot may be 

less painful that the restrictions needed to prevent it. But clearly it is not a good 

philosophy for nuclear missile launchers. 
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Deadlock prevention: This approach prevents deadlock from occurring by 

eliminating one of the four (4) deadlock conditions. 

Deadlock detection algorithms: This approach detects when deadlock has 

occurred. 

Deadlock recovery algorithms: After detecting the deadlock, it breaks the 

deadlock. 

Deadlock avoidance algorithms: This approach considers resources currently 

available, resources allocated to each thread, and possible future requests, and 

only fulfill requests that will not lead to deadlock 

3.2.6 Deadlock Prevention 

Deadlock prevention is based on designing resource allocation policies, which 

make deadlocks impossible. Use of the deadlock prevention approach avoids the 

over- head of deadlock detection and resolution. However, it incurs two kinds of 

costs - overhead of using the resource allocation policy, and cost of resource 

idling due to the policy.  

As described in earlier section, four conditions must hold for a resource deadlock 

to arise in a system:  

 Non-shareable resources  

 Hold-and-wait by processes  

 No preemption of resources  

 Circular waits.  

Havender in his pioneering work showed that since all four of the conditions are 

necessary for deadlock to occur, it follows that deadlock might be prevented by 

denying any one of the conditions. Ensuring that one of these conditions cannot 

be satisfied prevents deadlocks. We first discuss how each of these conditions 

can be prevented and then discuss a couple of resource allocation policies based 

on the prevention approach.  

3.2.6.1 Elimination of “Mutual Exclusion” Condition 
The mutual exclusion condition must hold for non-sharable resources. That is, 

several processes cannot simultaneously share a single resource. This condition 

is difficult to eliminate because some resources, such as the tap drive and 
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printer, are inherently non-shareable. Note that shareable resources like read-

only-file do not require mutually exclusive access and thus cannot be involved in 

deadlock.  

Some resources can be made sharable. Spooling can make devices like printers 

or tape drives sharable. Spooling is storing the output on a shared medium, like 

disk, and using a single process to coordinate access to the shared resource. 

Print spooling is the cannonical example. There are generally some resources 

that cannot be spooled - semaphores, for example. Removing mutual exclusion 

is not always an option. 

3.2.6.2 Elimination of “Hold and Wait” Condition 
There are two possibilities for elimination of the second condition. The first 

alternative is that a process request be granted all of the resources it needs at 

once, prior to execution. The second alternative is to disallow a process from 

requesting resources whenever it has previously allocated resources. This 

strategy requires that all of the resources a process will need must be requested 

at once. The system must grant resources on “all or none” basis. If the complete 

set of resources needed by a process is not currently available, then the process 

must wait until the complete set is available. While the process waits, however, it 

may not hold any resources. Thus the “wait for” condition is denied and 

deadlocks simply cannot occur. This strategy can lead to serious waste of 

resources. For example, a program requiring ten tap drives must request and 

receive all ten derives before it begins executing. If the program needs only one 

tap drive to begin execution and then does not need the remaining tap drives for 

several hours. Then substantial computer resources (9 tape drives) will sit idle for 

several hours. This strategy can cause indefinite postponement (starvation). 

Since not all the required resources may become available at once.  

3.2.6.3 Elimination of “No-preemption” Condition 
The nonpreemption condition can be alleviated by forcing a process waiting for a 

resource that cannot immediately be allocated to relinquish all of its currently 

held resources, so that other processes may use them to finish. Suppose a 

system does allow processes to hold resources while requesting additional 
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resources. Consider what happens when a request cannot be satisfied. A 

process holds resources a second process may need in order to proceed while 

second process may hold the resources needed by the first process. This is a 

deadlock. This strategy requires that when a process that is holding some 

resources is denied a request for additional resources. The process must release 

its held resources and, if necessary, request them again together with additional 

resources. Implementation of this strategy denies the “no-preemptive” condition 

effectively. 

The main drawback of this approach is high cost. When a process releases 

resources the process may lose all its work to that point. One serious 

consequence of this strategy is the possibility of indefinite postponement 

(starvation). A process might be held off indefinitely as it repeatedly requests and 

releases the same resources.  

3.2.6.4 Elimination of “Circular Wait” Condition 
Presence of a cycle in resource allocation graph indicates the “circular wait” 

condition. The last condition, the circular wait, can be denied by imposing a total 

ordering on all of the resource types and than forcing, all processes to request 

the resources in numerical order (increasing or decreasing). With this rule, the 

resource allocation graph can never have a cycle. 

For example, provide a global numbering of all the resources, as shown  

1 Card Reader 

2 Printer 

3 Plotter 

4 Tape Drive  

5 Card Punch 

Now the rule is this: processes can request resources whenever they want to, but 

all requests must be made in numerical order. A process may request first printer 

and then a tape drive (order: 2, 4), but it may not request first a plotter and then a 

printer (order: 3, 2). The problem with this strategy is that it may be impossible to 

find an ordering that satisfies everyone. The resource ranking policy works best 

when all processes require their resources in the order of increasing ranks. 
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However, difficulty arises when a process requires resources in some other 

order. Now processes may tend to circumvent such difficulties by acquiring lower 

ranking resources much before they are actually needed. In the worst case this 

policy may degenerate into the ‘all requests together’ policy of resource 

allocation. Anyway this policy is attractive due to its simplicity once resource 

ranks have been assigned.  

“All requests together” is the simplest of all deadlock prevention policies. A 

process must make its resource requests together-typically, at the start of its 

execution. This restriction permits a process to make only one multiple request in 

its lifetime. Since resources requested in a multiple request are allocated 

together, a blocked process does not hold any resources. The hold-and-wait 

condition is satisfied. Hence paths of length larger than 1 cannot exist in the 

Resource Allocation Graph, a mutual wait-for relationships cannot develop in the 

system. Thus, deadlocks cannot arise.  

Example:  The most common method of preventing deadlock is to prevent the 

circular wait. A simple way to do this, when possible, is to order the resources 

and always acquire them in order. Because a process can’t be waiting on a lower 

numbered process while holding a higher numbered one, a cycle is impossible. 

One can consider the Dining Philosophers to be a deadlock problem, and can 

apply deadlock prevention to it by numbering the forks and always acquiring the 

lowest numbered fork first. 

#define N 5 /* Number of philosphers */ 

#define RIGHT(i) (((i)+1) %N) 

#define LEFT(i) (((i)==N) ? 0 : (i)+1) 

typedef enum { THINKING, HUNGRY, EATING } phil_state; 

phil_state state[N]; 

semaphore mutex =1; 

semaphore f[N]; /* one per fork, all 1*/ 

void get_forks (int i)  

{ 

int max, min; 
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if ( RIGHT(i) > LEFT(i) )  

{ 

max = RIGHT(i); min = LEFT(i); 

} 

else  

{ 

min = RIGHT(i); max = LEFT(i); 

} 

P (f [min]); 

P (f [max]); 

} 

void put_forks (int i)  

{ 

V (f [LEFT (i)]); 

V (f [RIGHT (i)]); 

} 

void philosopher (int process)  

{ 

While (1)  

{ 

think (); 

get_forks (process); 

eat (); 

put_forks (process); 

} 

} 

This solution doesn’t get maximum parallelism, but it is an otherwise valid 

solution. 

3.2.7 Deadlock Avoidance 

This approach to the deadlock problem anticipates deadlock before it actually 

occurs. This approach employs an algorithm to access the possibility that 

Operating System  



deadlock could occur and acting accordingly. This method differs from deadlock 

prevention, which guarantees that deadlock cannot occur by denying one of the 

necessary conditions of deadlock. 

If the necessary conditions for a deadlock are in place, it is still possible to avoid 

deadlock by being careful when resources are allocated. Perhaps the most 

famous deadlock avoidance algorithm, due to Dijkstra [1965], is the Banker’s 

algorithm. So named because the process is analogous to that used by a banker 

in deciding if a loan can be safely made. 

3.2.7.1 Banker’s Algorithm 
In this analogy 

Customers  ≡  processes 

Units  ≡  resources, say, tape drive 

Banker  ≡  Operating System 

 

Customers Used Max  

A 

B 

C 

D 

0 

0 

0 

0 

6 

5 

4 

7 

Available 

Units = 10

In the above figure, we see four customers each of whom has been granted a 

number of credit units. The banker reserved only 10 units rather than 22 units to 

service them. At certain moment, the situation becomes 

Customers Used Max  

A 

B 

C 

D 

1 

1 

2 

4 

6 

5 

4 

7 

Available 

Units = 2 

Safe State    The key to a state being safe is that there is at least one way for all 

users to finish. In other analogy, the state of figure 2 is safe because with 2 units 

left, the banker can delay any request except C's, thus letting C finish and 
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release all four resources. With four units in hand, the banker can let either D or 

B have the necessary units and so on. 

Unsafe State     Consider what would happen if a request from B for one more 

unit were granted in above figure 2. 

We would have following situation 

Customers Used Max  

A 

B 

C 

D 

1 

2 

2 

4 

6 

5 

4 

7 

Available 

Units = 1 

This is an unsafe state. 

If all the customers namely A, B, C, and D asked for their maximum loans, then 

banker could not satisfy any of them and we would have a deadlock. 

Important Note:     It is important to note that an unsafe state does not imply the 

existence or even the eventual existence a deadlock. What an unsafe state does 

imply is simply that some unfortunate sequence of events might lead to a 

deadlock. 

The Banker's algorithm is thus to consider each request as it occurs, and see if 

granting it leads to a safe state. If it does, the request is granted, otherwise, it 

postponed until later. Haberman [1969] has shown that executing of the 

algorithm has complexity proportional to N2 where N is the number of processes 

and since the algorithm is executed each time a resource request occurs, the 

overhead is significant. 

3.2.7.2 Evaluation of Deadlock Avoidance Using the Banker’s Algorithm 
There are following advantages and disadvantages of deadlock avoidance using 

Banker’s algorithm. 

Advantages: 
 There is no need to preempt resources and rollback state (as in deadlock 

detection and recovery) 

 It is less restrictive than deadlock prevention 

Disadvantages: 
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 In this case maximum resource requirement for each process must be stated 

in advance. 

 Processes being considered must be independent (i.e., unconstrained by 

synchronization requirements) 

 There must be a fixed number of resources (i.e., can’t add resources, 

resources can’t break) and processes (i.e., can’t add or delete processes) 

 Huge overhead — Operating system must use the algorithm every time a 

resource is requested. So a huge overhead is involved. 

3.2.8 Deadlock Detection 

Deadlock detection is the process of actually determining that a deadlock exists 

and identifying the processes and resources involved in the deadlock. 

The basic idea is to check allocation against resource availability for all possible 

allocation sequences to determine if the system is in deadlocked state. Of 

course, the deadlock detection algorithm is only half of this strategy. Once a 

deadlock is detected, there needs to be a way to recover. Several alternatives 

exist: 

 Temporarily prevent resources from deadlocked processes.  

 Back off a process to some check point allowing preemption of a needed 

resource and restarting the process at the checkpoint later.  

 Successively kill processes until the system is deadlock free.  

These methods are expensive in the sense that each iteration calls the detection 

algorithm until the system proves to be deadlock free. The complexity of 

algorithm is O (N2) where N is the number of processes. Another potential 

problem is starvation; same process killed repeatedly. 

3.2.9 Deadlock Recovery  
Once you have discovered that there is a deadlock, what do you do about it? 

One thing to do is simply re-boot. A less drastic approach is to yank back a 

resource from a process to break a cycle. As we saw, if there are no cycles, 

there is no deadlock. If the resource is not preemptable, snatching it back from a 

process may do irreparable harm to the process. It may be necessary to kill the 

Operating System  



process, under the principle that at least that's better than crashing the whole 

system.  

So once a deadlock has been detected, one of the 4 conditions must be 

invalidated to remove the deadlock. Generally, the system acts to remove the 

circular wait, because making a system suddenly preemptive with respect to 

resources, or making a resource suddenly sharable is usually impractical. 

Because resources are generally not dynamic, the easiest way to break such a 

cycle is to terminate a process. 

Usually the process is chosen at random, but if more is known about the 

processes, that information can be used. For example the largest or smallest 

process can be disabled or the one waiting the longest. 

Such discrimination is based on assumptions about the system workload. 

Some systems facilitate deadlock recovery by implementing check pointing and 

rollback. Check pointing is saving enough state of a process so that the process 

can be restarted at the point in the computation where the checkpoint was taken. 

Auto saving file edits is a form of check pointing. Check pointing costs depend on 

the underlying algorithm. Very simple algorithms (like linear primality testing) can 

be checkpointed with a few words of data. More complicated processes may 

have to save all the process state and memory. 

Checkpoints are taken less frequently than deadlock is checked for. If a deadlock 

is detected, one or more processes are restarted from their last checkpoint. The 

process of restarting a process from a checkpoint is called rollback. The hope is 

that the resource requests will not interleave again to produce deadlock. 

Deadlock recovery is generally used when deadlocks are rare, and the cost of 

recovery (process termination or rollback) is low. Process check pointing can 

also be used to improve reliability (long running computations), assist in process 

migration (Sprite, Mach), or reduce startup costs (emacs). 

Database systems use checkpoints, as well as a technique called logging, 

allowing them to run processes “backwards,” undoing everything they have done. 

It works like this: Each time the process performs an action, it writes a log record 

containing enough information to undo the action. For example, if the action is to 
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assign a value to a variable, the log record contains the previous value of the 

record. When a database discovers a deadlock, it picks a victim and rolls it back.  

Rolling back processes involved in deadlocks can lead to a form of starvation, if 

we always choose the same victim. We can avoid this problem by always 

choosing the youngest process in a cycle. After being rolled back enough times, 

a process will grow old enough that it never gets chosen as the victim--at worst 

by the time it is the oldest process in the system. If deadlock recovery involves 

killing a process altogether and restarting it, it is important to mark the “starting 

time” of the reincarnated process as being that of its original version, so that it 

will look older that new processes started since then.  

When should you check for deadlock? There is no one best answers to this 

question; it depends on the situation. The most “eager” approach is to check 

whenever we do something that might create a deadlock. Since a process cannot 

create a deadlock when releasing resources, we only have to check on allocation 

requests. If the Operating System always grants requests as soon as possible, a 

successful request also cannot create a deadlock. Thus we only have to check 

for a deadlock when a process becomes blocked because it made a request that 

cannot be immediately granted. However, even that may be too frequent. As we 

saw, the deadlock-detection algorithm can be quite expensive if there are a lot of 

processes and resources, and if deadlock is rare, we can waste a lot of time 

checking for deadlock every time a request has to be blocked.  

What's the cost of delaying detection of deadlock? One possible cost is poor 

CPU utilization. In an extreme case, if all processes are involved in a deadlock, 

the CPU will be completely idle. Even if there are some processes that are not 

deadlocked, they may all be blocked for other reasons (e.g. waiting for I/O). Thus 

if CPU utilization drops, that might be a sign that it's time to check for deadlock. 

Besides, if the CPU isn't being used for other things, you might as well use it to 

check for deadlock!  

On the other hand, there might be a deadlock, but enough non-deadlocked 

processes to keep the system busy. Things look fine from the point of view of the 

Operating System, but from the selfish point of view of the deadlocked 
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processes, things are definitely not fine. If the processes may represent 

interactive users, who can't understand why they are getting no response. Worse 

still, they may represent time-critical processes (missile defense, factory control, 

hospital intensive care monitoring, etc.) where something disastrous can happen 

if the deadlock is not detected and corrected quickly. Thus another reason to 

check for deadlock is that a process has been blocked on a resource request 

“too long.” The definition of “too long” can vary widely from process to process. It 

depends both on how long the process can reasonably expect to wait for the 

request, and how urgent the response is. If an overnight run deadlocks at 11pm 

and nobody is going to look at its output until 9am the next day, it doesn't matter 

whether the deadlock is detected at 11:01pm or 8:59am. If all the processes in a 

system are sufficiently similar, it may be adequate simply to check for deadlock 

at periodic intervals (e.g., one every 5 minutes in a batch system; once every 

millisecond in a real-time control system).  

3.2.10 Mixed approaches to deadlock handling 
The deadlock handling approaches differ in terms of their usage implications. 

Hence it is not possible to use a single deadlock handling approach to govern the 

allocation of all resources. The following mixed approach is found useful: 

1. System control block: Control blocks like JCB, PCB etc. can be acquired in 

a specific order. Hence resource ranking can be used here. If a simpler 

strategy is desired, all control blocks for a job or process can be allocated 

together at its initiation. 

2. I/O devices files: Avoidance is the only practical strategy for these 

resources. However, in order to eliminate the overheads of avoidance, new 

devices are added as and when needed. This is done using the concept of 

spooling. If a system has only one printer, many printers are created by using 

some disk area to store a file to be printed. Actual printing takes place when a 

printer becomes available.  

3. Main memory: No deadlock handling is explicitly necessary. The memory 

allocated to a program is simply preempted by swapping out the program 

whenever the memory is needed for another program. 
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3.2.11 Evaluating the Approaches to Dealing with Deadlock 
 The Ostrich Approach — ignoring the problem 

It is a good solution if deadlock is not frequent. 

 Deadlock prevention — eliminating one of the four (4) deadlock conditions 

This approach may be overly restrictive and results into the under utilization 

of the resources.  

 Deadlock detection and recovery — detect when deadlock has occurred, then 

break the deadlock 

In it there is a tradeoff between frequency of detection and performance / 

overhead added. 

 Deadlock avoidance — only fulfilling requests that will not lead to deadlock 

It needs too much a priori information and not very dynamic (can’t add 

processes or resources), and involves huge overhead 

3.3 Summary 
 A set of process is in a deadlock state if each process in the set is waiting for 

an event that can be caused by only another process in the set. Processes 

compete for physical and logical resources in the system. Deadlock affects 

the progress of processes by causing indefinite delays in resource allocation.  

 There are four Necessary and Sufficient Deadlock Conditions (1) Mutual Exclusion 

Condition: The resources involved are non-shareable, (2) Hold and Wait Condition: 

Requesting process hold already, resources while waiting for requested resources,(3) 

No-Preemptive Condition: Resources already allocated to a process cannot be 

preempted,(4) Circular Wait Condition: The processes in the system form a circular 

list or chain where each process in the list is waiting for a resource held by the next 

process in the list.  

 The deadlock conditions can be modeled using a directed graph called a 

resource allocation graph (RAG) consisting of boxes (resource), circles 

(process) and edges (request edge and assignment edge). The resource 

allocation graph helps in identifying the deadlocks. 

 There are following approaches to deal with the problem of deadlock: (1) The 

Ostrich Approach — stick your head in the sand and ignore the problem, (2) 
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Deadlock prevention — prevent deadlock from occurring by eliminating one of 

the 4 deadlock conditions, (3) Deadlock detection algorithms — detect when 

deadlock has occurred, (4) Deadlock recovery algorithms — break the 

deadlock, (5) Deadlock avoidance algorithms — consider resources currently 

available, resources allocated to each thread, and possible future requests, 

and only fulfill requests that will not lead to deadlock 

 There are merits/demerits of each approach. The Ostrich Approach is a good 

solution if deadlock is not frequent. Deadlock prevention may be overly 

restrictive. In Deadlock detection and recovery there is a tradeoff between 

frequency of detection and performance / overhead added, Deadlock 

avoidance needs too much a priori information and not very dynamic (can’t 

add processes or resources), and involves huge overhead 

3.4 Keywords 
Deadlock: A deadlock is a situation in which some processes in the system face 

indefinite delays in resource allocation. 

Preemptable resource: A preemptable resource is one that can be taken away 

from the process with no ill effects. 

Nonpreemptable resource: It is one that cannot be taken away from process 

(without causing ill effect). 

Mutual exclusion: several processes cannot simultaneously share a single 

resource 

3.5 SELF-ASSESMENT QUESTIONS (SAQ) 

1. What do you understand by deadlock? What are the necessary conditions for 

deadlock? 

2. What do you understand by resource allocation graph (RAG)? Explain using 

suitable examples, how can you use it to detect the deadlock? 

3. What do you mean by pre-emption and non-preemption discuss with an 

example? 

4. Compare and contrast the following policies of resource allocation: 

(a) All resources requests together. 

(b) Allocation using resource ranking. 
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(c) Allocation using Banker’s algorithm 

On the basis of (a) resource idling and (b) overhead of the resource allocation 

algorithm. 

5. How can pre-emption be used to resolve deadlock?  

6. Why Banker’s algorithm is called so?  

7. Under what condition(s) a wait state becomes a deadlock?  

8. Explain how mutual exclusion prevents deadlock.  

9. Discuss the merits and demerits of each approach dealing with the problem of 

deadlock. 

10. Differentiate between deadlock avoidance and deadlock prevention. 

11. A system contains 6 units of a resource, and 3 processes that need to use 

this resource. If the maximum resource requirement of each process is 3 

units, will the system be free of deadlocks for all time? Explain clearly.  

If the system had 7 units of the resource, would the system be deadlock-free?  
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4. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 
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4.0 Objectives 

Memory is a very important resource of the computer system to be managed by the operating system. The objectives of 
this lesson are to get the students familiar with the various concepts of memory management in particular: 

(a) Segmentation 

(b) Paging 

(c) Virtual memory 

4.1  Introduction 

Memory management module is concerned with (a) Keeping track of whether each location is allocated or unallocated, to 
which process and how much, (b) If memory is to be shared by more than one process concurrently, it must be 
determined which process’ request should be satisfied, (c) Once it is decided to allocate memory, the specific locations 
must be selected and allocated. Memory status information is updated, and (d) Handling the deallocation/reclamation of 
memory. After the process holding memory is finished, memory locations held by it are declared free by changing the 
status information. In order to accomplish these, there are varieties of memory management systems. They are: 

1. Contiguous, real memory management system such as: 

 Single, contiguous memory management system 

 Fixed partitioned memory management system 

 Variable Partitioned memory management system 

2. Non-Contiguous, real memory management system 

 Paged memory management system 

 Segmented memory management system 

 Combined memory management system 

3. Non-Contiguous, virtual memory management system 

 Virtual memory management system 

4.2 Presentation of Contents 
4.2.1 Contiguous Memory Management 

4.2.1.1 Single Contiguous Memory Management 

4.2.1.2 Fixed Partitioned Memory Management System 

4.2.1.3 Variable Partitioned Memory Allocation 
4.2.2 Noncontiguous memory management 

4.2.2.1 Segmentation 

4.2.2.1.1 Address Translation 

4.2.2.1.2 Segment Descriptor Caching 

4.2.2.1.3 Protection 
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4.2.2.1.4 Sharing 

4.2.2.2 Paging 

4.2.2.2.1 Page Allocation 

4.2.2.2.2 Hardware Support for Paging  

4.2.2.2.3 Protection and Sharing 

4.2.2.3 Virtual Memory 

4.2.2.3.1 Principles of Operation 

4.2.2.3.2 Management of Virtual Memory 

4.2.2.3.3 Program Behavior 

4.2.2.3.4 Replacement Policies 

4.2.2.3.5 Replacement Algorithms 

4.2.2.3.6 Allocation Policies 

4.2.2.3.7 Hardware Support and Considerations 

4.2.2.3.8 Protection and Sharing 

4.2.2.4 Segmentation and Paging 

4.2.1 Contiguous Memory Management:  
In Contiguous Memory Management each program occupies a single contiguous 

block of storage locations.  

4.2.1.1 Single Contiguous Memory Management 
In this scheme, the physical memory is divided into two contiguous areas. One of 

them is permanently allocated to the resident portion of the OS. The remaining 

memory is allocated to user processes, which are loaded and executed one at a 

time, in response to user commands. This process is run to completion and then 

the next process is brought in memory.  

4.2.1.2 Fixed Partitioned Memory Management System 

In this scheme, memory is divided into number of contiguous regions called 

partitions, could be of different sizes. But once decided, they could not be 

changed. Partitions are fixed at the time of system generation, a process of 

setting the OS to specific requirements. There are two forms of memory 

partitioning (i) Fixed Partitioning and (ii) Variable Partitioning. 
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In fixed partitioning the main memory is divided into fixed number of partitions 

during system startup. The number and sizes of individual partitions are decided 

by the factors like capacity of the available physical memory, desired degree of 

multiprogramming, and the typical sizes of processes most frequently run on a 

given installation. The number of partitions represents an upper limit on degree of 

multiprogramming. On request for partitions due to (1) creations of new 

processes or (2) reactivations of swapped-out processes, the memory manager 

attempts to satisfy these requests from the pool of free partitions. Common 

obstacles faced by it are: (1) All partitions are allocated, or (2) No free partition is 

large enough to accommodate the incoming process i.e. fragmentation. It refers 

to the unused memory that the memory management system cannot allocate. It 

is of two types: External and Internal. External Fragmentation is waste of memory 

between partitions caused by scattered non-contiguous free space. It occurs 

when total available memory space is enough to satisfy the request for a process 

to be allocated, but it is not continuous. It is severe in variable size partitioning 

schemes. Internal fragmentation is waste of memory within a partition caused by 

difference between size of partition and the process allocated. It refers to the 

amount of memory, which is not being used and is allocated along with a process 

request. It is severe in fixed partitioning schemes.  

The main problem with fixed partitioned memory management system is 

determining the best region size to minimize the problem of fragmentation. It is 

difficult to achieve in fixed partitioning because in it the number of partitions and 

their sizes are decided statically and with a dynamic set of job to run there is no 

one right partition of memory.  

4.2.1.3 Variable Partitioned Memory Allocation 
In variable partitions, the number of partitions and their sizes are variable as they 

are not defined at the time of system generation. Starting with the initial state of 

the system, partitions are created dynamically to fit the needs of each requesting 

process. When a process departs, the memory manager returns the vacated 

space to the pool of free memory areas from which partition allocations are 
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made. The OS obviously needs to keep track of both partitions and free memory. 

Once created, a partition is defined by its base address and size. Free areas of 

memory are produced upon termination of partitions and as leftovers in the 

partition creation process. For allocation and for partition creation purpose, the 

OS must keep track of the starting address and size of each free area of 

memory. The highly dynamic nature of both the number and the attributes of free 

areas suggest the use of some sort of a linked list to describe them within the 

free memory itself. Common algorithms for selection of a free area of memory 

are (a) First fit, (b) Best fit, (c) Worst fit, and (d) Next Fit. 

First fit is faster because it terminates as soon as a free block large enough to 

house a new partition is found but it does not minimize wasted memory for a 

given allocation. Best fit searches the entire free list to find the smallest free 

block large enough to hold a partition being created. Best fit is slower, and it 

tends to produce small leftover free blocks that may be too small for subsequent 

allocations. Neither algorithm has been shown to be superior to the other in 

terms of wasted memory. Next fit is a modification of first fit whereby the pointer 

to the free list is saved following an allocation and used to begin the search for 

the subsequent allocation as opposed to always starting from the beginning of 

the free list. The idea is to reduce the search by avoiding examination of smaller 

blocks that tend to be created at the beginning of the free list as a result of 

previous allocations. Worst fit allocates the largest free block to reduce the rate 

of production of small holes. Simulation studies indicate that worst fit allocation is 

not very effective in reducing wasted memory in the processing of a series of 

requests.   
4.2.2 Noncontiguous memory management 

In Non-Contiguous Memory Management a program is divided into several 

blocks that may be placed throughout main storage in pieces not necessarily 

adjacent to one another. It is done in various ways broadly categorized as (a) 
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Non-Contiguous, real memory management system & (b) Non-Contiguous, 

virtual memory management system. 
4.2.2.1 Segmentation 
Segments are formed at program translation time by grouping together logically related items. Programs are collections of 
subroutines, stacks, functions etc. Each of these components is of variable length and are logically related entities. All 
segments of all programs do not have to be of the same length. There is a maximum segment length. Although different 
segments may be placed in separate, noncontiguous areas of physical memory, items belonging to a single segment 
must be placed in contiguous areas of physical memory.    

Segmentation is mapping of user’s view onto physical memory. A logical address 

space is a collection of segments. Each segment has a name and length. User 

specifies each address by segment name or number and offset within segment. 

Segments are numbered and are referenced by segment number. For relocation 

purposes, each segment is compiled to begin at its own virtual address 0. An 

individual item within a segment is then identifiable by its offset relative to the 

beginning of the enclosing segment. Thus, logical address consists of <segment 

no., offset>.  To simplify processing, segment names are usually mapped to 

(virtual) segment numbers. This mapping is static, and systems programs in the 

course of preparation of process images may perform it.  

4.2.2.1.1 Address Translation 
Since physical memory in segmented systems generally retains its linear-array 

organization, some address translation mechanism is needed to convert a two-

dimensional virtual-segment address into its one-dimensional physical 

equivalent. In segmented systems, items belonging to a single segment reside in 

one contiguous area of physical memory. With each segment compiled as if 

starting from the virtual address zero, segments are generally individually 

relocatable. As a result, different segments of the same process need not occupy 

contiguous areas of physical memory. 

When requested to load a segmented process, the OS attempts to allocate 

memory for the supplied segments. Using logic similar to that used for dynamic 

partitioning, it may create a separate partition to suit the needs of each particular 

segment. The base (obtained during partition creation) and size (specified in the 

load module) of a loaded segment are recorded as a tuple called the segment 

descriptor. All segment descriptors of a given process are collected in a table 

called the segment descriptor table (SDT). Two dimensional user defined 
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address is mapped to one dimensional physical address by segment descriptor 

table. Each entry of this table has segment base and segment limit. Segment 

base contains the starting physical address of the segment and segment limit 

specifies the length of the segment.  

Figure 1 illustrates a sample placement of the segments into physical memory, 

and the resulting SDT formed by the Operating System. With the physical base 

address of each segment defined, the process of translation of a virtual, two-

component address into its physical equivalent basically follows the mechanics of 

based addressing. The segment number provided in the virtual address is used 

to index the segment descriptor table and to obtain the physical base address of 

the related segment. Adding the offset of the desired item to the base of its 

enclosing segment then produces the physical address. 

The size of a SDT is related to the size of the virtual address space of a process. 

Given their potential size, SDT are not kept in registers. Being a collection of 

logically related items, the SDTs themselves are often treated as special types of 

segments. Their accessing is usually facilitated by means of a dedicated 

hardware register called the segment descriptor table base register (SDTBR), 

which is set to point to the base of the running process's SDT. Since the size of 

an SDT may vary from a few entries to several thousand, another dedicated 

hardware register, called the segment descriptor table limit register (SDTLR), is 

provided to mark the end of the SDT pointed to by the SDTBR. In this way, an 

SDT need contain only as many entries as there are segments actually defined in 

a given process. Attempts to access nonexistent segments may be detected and 

dealt with as nonexistent-segment exceptions. Mapping each virtual address 

requires two physical memory references for a single virtual (program) reference, 

as follows: 

 Memory reference to access the segment descriptor in the SDT 

 Memory reference to access the target item in physical memory 

In other words, segmentation may cut the effective memory bandwidth in half by 

making the effective virtual-access time twice as long as the physical memory 

access time. 
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Figure 1 – Address translation in segmented systems 
4.2.2.1.2 Segment Descriptor Caching 
As performance of segmented systems is dependent on the address translation 

process, system designers often provide some hardware accelerators to speed 

the translation. Memory references expended on mapping may be avoided by 

keeping segment descriptors in registers. However to keep an entire SDT of the 

running process in register is very costly, hence most frequently used segment 

descriptors are kept in registers. In this way, most of the memory references may 

be mapped with the aid of registers. The rest may be mapped using the SDT in 

memory, as usual. This scheme is dependent on the OS's ability to select the 

proper segment descriptors for storing into registers. In order to provide the 

intuitive motivation for one possible implementation of systematic descriptor 

selection, let us investigate the types of segments referenced by the executing 

process. 
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Memory references may be functionally categorized as accesses to (i) 

Instructions, (ii) Data, and (iii) Stack. A typical instruction execution sequence 

consists of a mixture of the outline types of memory references. In fact, 

completion of a single stack manipulation instruction, such as a push of a datum 

from memory onto stack, may require all three types of references. Thus the 

working space of a process normally encompasses one each of code, data, and 

stack segments. Therefore, keeping the current code, data, and stack segment 

descriptors in registers may accelerate address translation. Depending on its 

type, a particular memory reference may then be mapped using the appropriate 

register. But can we know the exact type of each memory reference as the 

processor is making it? The answer is yes, with the proper hardware support. 

Namely, in most segmented machines the CPU emits a few status bits to indicate 

the type of each memory reference. The memory management hardware uses 

this information to select the appropriate mapping register. 

Register-assisted translation of virtual to physical addresses is illustrated in 

Figure 2. As indicated, the CPU status lines are used to select the appropriate 

segment descriptor register (SDR). The size field of the selected segment 

descriptor is used to check whether the intended reference is within the bounds 

of the target segment. If so, the base field is added with the offset to produce the 

physical address. By making the choice of the appropriate segment register 

implicit in the type of memory reference being made, segment typing may 

eliminate the need to keep track of segment numbers during address 

translations. Though segment typing is certainly useful, it may become restrictive 

at times. For example, copying an instruction sequence from one segment into 

another may confuse the selector logic into believing that source and target 

segments should be of type data rather than code. Using the so-called segment 

override of type prefixes, which allows the programmer to explicitly indicate the 

particular segment descriptor register to be used for mapping the memory 

reference in question, may alleviate this problem. 
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Figure 2 – Segment-descriptor cache registers 

Segment descriptor registers are initially loaded from the SDT. Whenever the 

running process makes an intersegment reference, the corresponding segment 

descriptor is loaded into the appropriate register from the SDT. For example, an 

intersegment JUMP or CALL causes the segment descriptor of the target (code) 

segment to be copied from the SDT to the code segment descriptor register. 

When segment typing is used as described, segment descriptor caching 

becomes deterministic as opposed to probabilistic. Segment descriptors stored in 

the three segment descriptor registers; define the current working set of the 

executing process. Since membership in the working set of segments of a 

process changes with time, segment descriptor registers are normally included in 

the process state. Upon each process switch, the contents of the SDRs of the 

departing process are stored with the rest of its context. Before dispatching the 

new running process, the OS loads segment descriptor registers with their 

images recorded in the related PCB.  

4.2.2.1.3 Protection 
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The base-limit form of protection is obviously the most natural choice for 

segmented systems. The legal address space of a process is the collection of 

segments defined by its SDT. Except for shared segments. Placing different 

segments in disjoint areas of memory enforces separation of distinct address 

space. An interesting possibility in segmented systems is to provide protection 

within the address space of a single process, in addition to the more usually 

protection between different processes. Given that the type of each segment is 

defined commensurate with the nature of information stored in its constituent 

elements, access rights to each segment can be defined accordingly. For 

instance, though both reading and writing of stack segments may be necessary, 

accessing of code segments can be permitted in execute-only or perhaps in the 

read-only mode. Data segments can be read-only, write-only, or read-write. 

Thus, segmented systems may be able to prohibit some meaningless operations. 

Additional examples include prevention of stack growth into the adjacent code or 

data areas, and other errors resulting from mismatching of segment types and 

intended references to them. An important observation is that access rights to 

different portions of a single address space may vary in accordance with the type 

of information stored therein. Due to the grouping of logically related items, 

segmentation is one of the rare memory-management schemes that allow such 

finely grained delineation of access rights. The mechanism for enforcement of 

declared access rights in segmented systems is usually coupled with the address 

translation hardware. Typically, access-rights bits are included in segment 

descriptors. In the course of address mapping, the intended type of reference is 

checked against the access rights for the segment in question. Any mismatch 

results in abortion of the memory reference in progress, and a trap to the OS.  

4.2.2.1.4 Sharing 
Shared objects are usually placed in separate, dedicated segments. A shared 

segment may be mapped, via the appropriate SDTs, to the virtual-address 

spaces of all processes that are authorized to reference it. The deliberate use of 

offsets and of bases addressing facilitate sharing since the virtual offset of a 

given item is identical in all processes that share it. The virtual number of a 
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shared segment, on the other hand, need not be identical in all address spaces 

of which it is a member. These points are illustrated in Figure 3, where a code 

segment EMACS is assumed to be shared by three processes P1, P2 & P3. The 

relevant portions of the SDTs of the participating processes P1, P2 & P3 are 

SDT1, SDT2, and SDT3 respectively, and shown. As indicated, the segment 

EMACS is assumed to have different virtual numbers in the three address 

spaces of which it is part. The placement of access-rights bits in segment 

descriptor tables is also shown. Figure 3 illustrates the fact that different 

processes can have different access rights to the same shared segment. For 

example, whereas processes P1 and P2 can execute only the shared segment 

EMACS, process P3 is allowed both reading and writing. 

Figure 3 also illustrates the ability of segmented systems to conserve memory by 

sharing the code of programs executed by many users. In particular, each 

participating process can execute the shared code from EMACS using its own 

private data segment. Assuming there is an editor, this means that a single copy 

of it may serve the entire user population of a time-sharing system. Naturally, 

execution of EMACS on behalf of each user is stored in a private data segment 

of its corresponding process. For example, users 1, 2, and 3 can have their 

respective texts buffers stored in data segments DATA1, DATA2, and DATA3. 

Depending on which of the three processes is active at a given time, the 

hardware data segment descriptor register points to data segment DATA1, 

DATA2, or DATA3, and the code segment descriptor register points to EMACS in 

all cases. Of course, the current instruction to be executed by the particular 

process is indicated by the program counter, which is saved and restored as a 

part of each process's state. In segmented systems, the program counter register 

usually contains offsets of instructions within the current code segment. This 

facilitates sharing by making all code self-references relative to the beginning of 

the current code segment. When coupled with segment typing, this feature 

makes it possible to assign different virtual segment numbers to the same 

(physical) shared segment in virtual-address spaces of different processes of 
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which it is a part. Alternatively, the problem of making direct self-references in 

shared routines restricts the type of code that may safely be shared. 
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Figure 4 – Sharing in segmented systems 

As described, sharing is encouraged in segmented systems. This presents some 

problems in systems that also support swapping, which is normally done to 

increase processor utilization. For example, a shared segment may need to 

maintain its memory residence while being actively used by any of the processes 

authorized to reference it. Swapping in this case opens up the possibility that a 

participating process may be swapped out while its shared segment remains 

resident. When such a process is swapped back in, the construction of its SDT 

must take into consideration the fact that the shared segment may already be 

resident. In other words, the OS must keep track of shared segments and of 

processes that access them. When a participating process is loaded in memory, 

the OS is expected to identify the location of the shared segment in memory, if 
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any, and to ensure its proper mapping from all virtual address spaces of which it 

is a part. 

4.2.2.2 Paging 
In it, the physical memory is conceptually divided into a number of fixed-size 

slots, called page frames. The virtual-address space of a process is also split into 

fixed-size blocks of the same size, called pages. Memory management module 

identifies sufficient number of unused page frames for loading of the requesting 

process's pages. An address translation mechanism is used to map virtual pages 

to their physical counterparts. Since each page is mapped separately, different 

page frames allocated to a single process need not occupy contiguous areas of 

physical memory.  

Figure 4 demonstrates the basic principle of paging. It illustrates a sample 16 MB 

system where virtual and physical addresses are assumed to be 24 bits long 

each. The page size is assumed to be 4096 bytes. Thus, the physical memory 

can accommodate 4096 page frames of 4096 bytes each. After reserving 1 MB 

of physical memory for the resident portion of the Operating System, the 

remaining 3840 page frames are available for allocation to user processes. The 

addresses are given in hexadecimal notation. Each page is 1000H bytes long, 

and the first user-allocatable page frame starts at the physical address 100000H. 

The virtual-address space of a sample user process that is 14,848 bytes (3A00H) 

long is divided into four virtual pages numbered from 0 to 3. A possible 

placement of those pages into physical memory is depicted in Figure 4. The 

mapping of virtual addresses to physical addresses in paging systems is 

performed at the page level. Each virtual address is divided into two parts: the 

page number and the offset within that page. Since pages and page frames have 

identical sizes, offsets within each are identical and need not be mapped. So 

each 24-bit virtual address consists of a 12-bit page number (high-order bits) and 

a 12-bit offset within the page. 
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Figure 4 – Paging 

Address translation is performed with the help of the page-map table (PMT), 

constructed at process-loading time. As indicated in figure 4, there is one PMT 

entry for each virtual page of a process. The value of each entry is the number of 

the page frame in the physical memory where the corresponding virtual page is 

placed. Since offsets are not mapped, only the page frame number need be 

stored in a PMT entry. E.g., virtual page 0 is assumed to be placed in the 

physical page frame whose starting address is FFD000H (16,764,928 decimal). 

With each frame being 1000H bytes long, the corresponding page frame number 

is FFDH, as indicated on the right-hand side of the physical memory layout in 

Figure 4. This value is stored in the first entry of the PMT. All other PMT entries 

are filled with page frame numbers of the region where the corresponding pages 

are actually loaded. 
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The logic of the address translation process in paged systems is illustrated in 

Figure 4 on the example of the virtual address 03200H. The virtual address is 

split by hardware into the page number 003H, and the offset within that page 

(200H). The page number is used to index the PMT and to obtain the 

corresponding physical frame number, i.e. FFF. This value is then concatenated 

with the offset to produce the physical address, FFF200H, which is used to 

reference the target item in memory. 

The OS keeps track of the status of each page frame by using a memory-map 

table (MMT). Format of an MMT is illustrated in Figure 5, assuming that only the 

process depicted in Figure 5 and the OS are resident in memory. 

000 ALLOCATED
: 
: 
: 

0FF ALLOCATED
100 ALLOCATED
101 FREE 
102 FREE 
103 ALLOCATED

: 
: 
: 

FFC FREE 
FFD ALLOCATED
FFE FREE 
FFF ALLOCATED

Figure 5 – Memory-map table (MMT) 

Each entry of the MMT described the status of page frame as FREE or ALLOCATED. The number of MMT entries i.e. f is 
computed as f = m/p where m is the size of the physical memory, and p is page size. Both m and p are usually an integer 
power of base 2, thus resulting in f being an integer. When requested to load a process of size s, the OS must allocate n 
free page frames, so that n = Round(s/p) where p is the page size. The OS allocates memory in terms of an integral 
number of page frames. If the size of a given process is not a multiple of the page size, the last page frame may be partly 
unused resulting into page fragmentation. 

After selecting n free page frames, the OS loads process pages into them and 

constructs the page-map table of the process. Thus, there is one MMT per 

system, and as many PMTs as there are active processes. When a process 
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terminates or becomes swapped out, memory is deallocated by releasing the 

frame holdings of the departing process to the pool of free page frames. 

4.2.2.2.1 Page Allocation 
The efficiency of the memory allocation algorithm depends on the speed with 

which it can locate free page frames. To facilitate this, a list of free pages is 

maintained instead of the static-table format of the memory map assumed earlier. 

In that case, n free frames may be identified and allocated by unlinking the first n 

nodes of the free list. Deallocation of memory in systems without the free list 

consists of marking in the MMT as FREE all frames found in the PMT of the 

departing process a time consuming operation. Frames identified in the PMT of 

the departing process can be linked to the beginning of the freed list. Linking at 

the beginning is the fastest way of adding entries to an unordered singly linked 

list. Since the time complexity of deallocation is not significantly affected by the 

choice of data structure of free pages, the free-list approach has a performance 

advantage as its time complexity of deallocation is not significantly affected by 

the choice of data structure of free pages, and is not affected by the variation of 

memory utilization.  

4.2.2.2.2 Hardware Support for Paging  
Hardware support for paging, concentrates on saving the memory necessary for 

storing of the mapping tables, and on speeding up the mapping of virtual to 

physical addresses. In principle, each PMT must be large enough to 

accommodate the maximum size allowed for the address space of a process in a 

given system. In theory, this may be the entire physical memory. So in a 16 MB 

system with 256-byte pages, the size of a PMT should be 64k entries. Individual 

PMT entries are page numbers that are 16 bits long in the sample system, thus 

requiring 128 KB of physical memory to store a PMT. With one PMT needed for 

each active process, the total PMT storage can consume a significant portion of 

physical memory.  

Since the actual address space of a process may be well below its allowable 

maximum, it is reasonable to construct each PMT with only as many entries as 

its related process has pages. This may be accomplished by means of a 
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dedicated hardware page-map table limit register (PMTLR). A PMTLR is set to 

the highest virtual page number defined in the PMT of the running process. 

Accessing of the PMT of the running process may be facilitated by means of the 

page-map table base register (PMTBR), which points to the base address of the 

PMT of the running process. The respective values of these two registers for 

each process are defined at process-loading time and stored in the related PCB. 

Upon each process switch, the PCB of the new running process provides the 

values to be loaded in the PMTBR and PMTLR registers. 

Even with the assistance of these registers, address translations in paging 

systems still require two memory references; one to access the PMT for 

mapping, and the other to reference the target item in physical memory. To 

speed it up, a high-speed associative memory for storing a subset of often-used 

page-map table entries is used. This memory is called the translation look aside 

buffer (TLB), or mapping cache. 

Associative memories can be searched by contents rather than by address. So, 

the main-memory reference for mapping can be substituted by a TLB reference. 

Given that the TLB cycle time is very small, the memory-access overhead 

incurred by mapping can be significantly reduced. The role of the cache in the 

mapping process is depicted in Figure 6.  

As indicated, the TLB entries contain pairs of virtual page numbers and the 

corresponding page frame numbers where the related pages are stored in 

physical memory. The page number is necessary to define each particular entry, 

because a TLB contains only a subset of page-map table entries. Address 

translation begins by presenting the page-number portion of the virtual address 

to the TLB. If the desired entry is found in the TLB, the corresponding page frame 

number is combined with the offset to produce the physical address.                  

Alternatively, if the target entry is not in TLB, the PMT in memory must be 

accessed to complete the mapping. This process begins by consulting the 

PMTLR to verify that the page number provided in the virtual address is within 

the bounds of the related process's address space. If so, the page number is 

added to the contents of the PMTBR to obtain the address of the corresponding 
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PMT entry where the physical page frame number is stored. This value is then 

concatenated with the offset portion of the virtual address to produce the physical 

memory address of the desired item. 

Virtual address  . 

Figure 6 – Translation-lookaside buffer (TLB) 
Figure 6 demonstrates that the overhead of TLB search is added to all mappings, 

regardless of whether they are eventually completed using the TLB or the PMT in 

main memory. In order for the TLB to be effective, it must satisfy a large portion 

of all address mappings. Given the generally small size of a TLB because of the 

high price of associative memories, only the PMT entries most likely to be 

needed ought to reside in the TLB.  
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The effective memory-access time, teff in systems with run-time address 

translation is the sum of the address translation time, tTR and the subsequent 

access time needed to fetch the target item from memory, t . So tM eff = t  + tTR M.

With TLB used to assist in address translation, t  becomes  TR

T  = h t + (1 - h) (t  + t ) = t  + (1 - h)tTR TLB TLB M TLB M; where h is the TLB hit ratio, that 

is, the ratio of address translations that are contained the TLB over all 

translations, and thus 0≤h≤1;t  is the TLB access time; and tTLB M is the main-

memory access time. Therefore, effective memory-access time in systems with a 

TLB is teff = t  + (2 - h)tTLB M; It is observed that the hardware used to accelerate 

address translations in paging systems (TLB) is managed by means of 

probabilistic algorithms, as opposed to the deterministic mapping-register typing 

described in relation to segmentation. The reason is that the mechanical splitting 

of a process’s address space into fixed-size chunks produces pages. As a result, 

a page, unlike a segment, in general does not bear any relationship to the logical 

entities of the underlying program. For example, a single page may contain a 

mixture of data, stack, and code. This makes typing and other forms of 

deterministic loading of TLB entries extremely difficult, in view of the stringent 

timing restrictions imposed on TLB manipulation. 

4.2.2.2.3 Protection and Sharing 
Unless specifically declared as shared, distinct address spaces are placed in 

disjoint areas of physical memory. Memory references of the running process are 

restricted to its own address space by means of the address translation 

mechanism, which uses the dedicated PMT. The PMTLR is used to detect and to 

abort attempts to access any memory beyond the legal boundaries of a process. 

Modifications of the PMTBR and PMTLR registers are usually possible only by 

means of privileged instructions, which trap to the OS if attempted in user mode.  

By adding the access bits to the PMT entries and appropriate hardware for 

testing these bits, access to a given page may be allowed only in certain 

programmer-defined modes such as read-only, execute-only, or other restricted 

forms of access. This feature is much less flexible in paging systems than 

segmentation. The primary difference is that paging is supposed to be entirely 
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transparent to programmers. Mechanical splitting of an address space into pages 

is performed without any regard for the possible logical relationships between the 

items under consideration. Since there is no notion of typing, code and data may 

be mixed within one page. As we shall see, specification of the access rights in 

paging systems is useful for pages shared by several processes, but it is of much 

less value inside the boundaries of a given address space. 

Protection in paging systems may also be accomplished by means of the 

protection keys. In principle, the page size should correspond to the size of the 

memory block protected by the single key. This allows pages belonging to a 

single process to be scattered throughout memory-a perfect match for paged 

allocation. By associating access-rights bits with protection keys, access to a 

given page may be restricted when necessary. 

Sharing of pages is quite straightforward with paged memory management. A 

single physical copy of a shared page can be easily mapped into as many 

distinct address spaces as desired. Since each such mapping is performed via a 

dedicated entry in the PMT of the related process, different processes may have 

different access rights to the shared page. Given that paging is transparent to 

users, sharing at the page level must be recognized and supported by systems 

programs. Systems programs must ensure that virtual offsets of each item within 

a shared page are identical in all participating address spaces. 

Like data, shared code must have the same within-page offsets in all address 

spaces of which it is a part. As usual, shared code that is not executed in 

mutually exclusive fashion must be reentrant. In addition, unless the shared code 

is position-independent, it must have the same virtual page numbers in all 

processes that invoke it. This property must be preserved even in cases when 

the shared code spans several pages.  

4.2.2.3 Virtual Memory 
Under Virtual Memory all processes execute code written in terms of virtual 

addresses that are translated by the memory management hardware into the 

appropriate physical address. Each process thinks it has access to the whole 

physical memory of the machine. This solves the relocation problem - no 
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rewriting of addresses is ever necessary, and the protection problem because a 

process can no longer express the idea of accessing another process’s memory.  

Virtual memory allows execution of partially loaded processes. As a 

consequence, virtual address spaces of active processes in a virtual-memory 

system can exceed the capacity of the physical memory. This is accomplished by 

maintaining an image of the entire virtual-address space of a process on 

secondary storage, and by bringing its sections into main memory when needed. 

The OS decides which sections to bring in, when to bring them in, and where to 

place them. Thus, virtual-memory systems provide for automatic migration of 

portions of address spaces between secondary and primary storage.  

Due to the ability to execute a partially loaded process, a process may be loaded 

into a space of arbitrary size resulting into the reduction of external 

fragmentation. Moreover, the amount of space in use by a given process may be 

varied during its memory residence. As a result, the OS may speed up the 

execution of important processes by allocating them more real memory. 

Alternatively, by reducing the real-memory holdings of resident processes, the 

degree of multi-programming can be increased by using the vacated space to 

activate more processes. 

The speed of program execution in virtual-memory systems is bounded from 

above by the execution speed of the same program run in a non-virtual memory 

management system. That is due to delays caused by fetching of missing 

portions of program's address space at run-time. 

Virtual memory provides execution of partially loaded programs. But an 

instruction can be completed only if all code, data, and stack locations that it 

references reside in physical memory. When there is a reference for an out-of-

memory item, the running process must be suspended to fetch the target item 

from disk. So what is the performance penalty? 

An analysis of program behavior provides an answer to the question. Most 

programs consist of alternate execution paths, some of which do not span the 

entire address space. On any given run, external and internal program conditions 

cause only one specific execution path to be followed. Dynamic linking and 
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loading exploits this aspect of program behavior by loading into memory only 

those procedures that are actually referenced on a particular run. Moreover, 

many programs tend to favor specific portions of their address spaces during 

execution. So it is reasonable to keep in memory only those routines that make 

up the code of the current pass. When another pass over the source code 

commences, the memory manager can bring new routines into the main memory 

and return those of the previous pass back to disk. 

4.2.2.3.1 Principles of Operation 
Virtual memory can be implemented as an extension of paged or segmented 

memory management or as a combination of both. Accordingly, address 

translation is performed by means of PMT, SDT, or both.  

The process of address mapping in virtual-memory systems is more formally 

defined as follows. Let the virtual-address space be V = {0, 1, … , v-1}, and the 

physical memory space by M = {0, 1, ….m-1}. The OS dynamically allocates real 

memory to portions of the virtual-address space. The address translation 

mechanism must be able to associate virtual names with physical locations. At 

any time the mapping hardware must realize the function f: V → M such that  

   r if item x is in real memory at location r   
  f(x) =    
   missing-item exception if item x is not in real memory 

Thus, the additional task of address translation hardware in virtual systems is to 

detect whether the target item is in real memory or not. If the referenced item is 

in memory, the process of address translation is completed. 

We present the operation of virtual memory assuming that paging is the basic 

underlying memory-management scheme. The detection of missing items is 

rather straightforward. It is usually handled by adding the presence indicator, a 

bit, to each entry of PMTs. The presence bit, when set, indicates that the 

corresponding page is in memory; otherwise the corresponding virtual page is 

not in real memory. Before loading the process, the OS clears all the presence 
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bits in the related PMT. As and when specific pages are brought into the main 

memory, its presence bit is reset. 

A possible implementation is illustrated in Figure 7. The presented process's 

virtual space is assumed to consisting of only six pages. As indicated, the 

complete process image is present in secondary memory. The PMT contains an 

entry for each virtual page of the related process. For each page actually present 

in real memory, the presence bit is set (IN), and the PMT points to the physical 

frame that contains the corresponding page. Alternatively, the presence bit is 

cleared (OUT), and the PMT entry is invalid. 

      

 X (P3) 
  

 Y (P0) 
  

 Z (P4) 
   

  Main Memory  (P0) 
    (P1) 
    
    

 

 Presence Frame    (P2) 
0 IN Y 0    
1 OUT  1    
2 OUT  2    
3 IN X 3   (P3) 
4 IN Z 4   (P4) 
5 OUT  5   (P5) 
  Page Map Table  File Mp Table  

Secondary Disk 
Memory 

Figure 7: Virtual Memory 
The address translation hardware checks the presence bit during the mapping of 

each memory reference if the bit is set, the mapping is completed as usual. 
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However, if the corresponding presence bit in the PMT is reset, the hardware 

generates a missing-item exception known as page fault. When the running 

process experiences a page fault, it must be suspended until the missing page is 

brought into main memory.  

The disk address of the faulted page is usually provided in the file-map table 

(FMT). This table is parallel to the PMT. Thus, when processing a page fault, the 

OS uses the virtual page number provided by the mapping hardware to index the 

FMT and to obtain the related disk address. A possible format and use of the 

FMT is depicted in Figure 7. 
4.2.2.3.2 Management of Virtual Memory 
The implementation of virtual memory requires maintenance of one PMT per 

active process. Given that the virtual-address space of a process may exceed 

the capacity of real memory, the size of an individual PMT can be much larger in 

a virtual than in a real paging system with identical page sizes. The OS maintains 

one MMT or a free-frame list to keep track of Free/allocated page frames.  

A new component of the memory manager's data structures is the FMT. FMT 

contains secondary-storage addresses of all pages. The memory manager used 

the FMT to load the missing items into the main memory. One FMT is maintained 

for each active process. Its base may be kept in the control block of the related 

process. An FMT has a number of entries identical to that of the related PMT. A 

pair of page-map table base and page-map length registers may be provided in 

hardware to expedite the address translation process and to reduce the size of 

PMT for smaller processes. As with paging, the existence of a TLB is highly 

desirable to reduce the negative effects of mapping on the effective memory 

bandwidth. 

The allocation of only a subset of real page frames to the virtual-address space 

of a process requires the incorporation of certain policies into the virtual-memory 

manager. We may classify these policies as follows: 

1. Allocation policy: How much real memory to allocate to each active process 
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2. Fetch policy: Which items to bring and when to bring them from secondary 

storage into the main memory 

3. Replacement policy: When a new item is to be brought in and there is no free 

real memory, which item to evict in order to make room. 

4. Placement policy: Where to place an incoming item 

4.2.2.3.3 Program Behavior 
By minimizing the number of page faults, the effective processor utilization, 

effective disk I/O bandwidth, and program turnaround times may be improved. It 

is observed that there is a strong tendency of programs to favor subsets of their 

address spaces during execution. This phenomenon is known as locality of 

reference. Both temporal and spatial locality of reference has been observed.  

(a) Spatial locality suggests that once an item is referenced, there is a high 

probability that it or its neighboring items are going to be referenced in the 

near future. 

(b) Temporal locality is the tendency for a program to reference the same 

location or a cluster several times during brief intervals of time. Temporal 

locality of reference is exhibited by program loops.  

Both temporal and spatial locality of reference is dynamic properties in the sense 

that the identity of the particular pages that compose the actively used set varies 

with time. As observed, the executing program moves from one locality to 

another in the course of its execution. Statistically speaking, the probability that a 

particular memory reference is going to be made to a specific page is a time-

varying function. It increases when pages in its current locality are being 

referenced, and it decreases otherwise. The evidence also suggests that the 

executing program moves slowly from one locality to another. Locality of 

reference basically suggests that a significant portion of memory references of 

the running process may be made to a subset of its pages. These findings may 

be utilized for implementation of replacement and allocation policies. 

4.2.2.3.4 Replacement Policies 
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If a page fault is there, then it is to be brought into the main memory 

necessitating creation of a room for it. There are two options for this situation: 

 The faulted process may be suspended until availability of memory. 

 A page may be removed to make room for the incoming one. 

Suspending a process is not an acceptable solution. Thus, removal is commonly 

used to free the memory needed to load the missing items. A replacement policy 

decides the victim page for eviction. In virtual memory systems all pages are kept 

on the secondary storage. As and when needed, some of those pages are 

copied into the main memory. While executing, the running process may modify 

its data or stack areas, thus making some resident pages different from their disk 

images (dirty page). So it must be written back to disk in place of its obsolete 

copy. When a page that has not been modified (clean page) during its residence 

in memory is to be evicted, if can simply be discarded. Tracking of page 

modifications is usually performed in hardware by adding a written-into bit called 

as dirty bit, to each entry of the PMT. It indicates whether the page is dirty or 

clean. 

4.2.2.3.5 Replacement Algorithms 
First-In-First-Out (FIFO):  
The FIFO algorithm replaces oldest pages i.e. the resident page that has spent 

the longest time in memory. To implement the FIFO page-replacement algorithm, 

the memory manager must keep track of the relative order of the loading of 

pages into the main memory. One way to accomplish this is to maintain a FIFO 

queue of pages.  

FIFO fails to take into account the pattern of usage of a given page; FIFO tends 

to throw away frequently used pages because they naturally tend to stay longer 

in memory. Another problem with FIFO is that it may defy intuition by increasing 

the number of page faults when more real pages are allocated to the program. 

This behavior is known as Belady’s anomaly.  

Least Recently Used (LRU): 
The LRU algorithm replaces the least recently used resident page. LRU 

algorithm performs better than FIFO because it takes into account the patterns of 
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program behavior by assuming that the page used in the most distant past is 

least likely to be referenced in the near future. The LRU algorithm belongs to a 

larger class of stack replacement algorithms. A stack algorithm is distinguished 

by the property of performing better, or at least not worse, when more real 

memory is made available to the executing program. Stack algorithms therefore 

do not suffer from Belady's anomaly.  

The implementation of the LRU algorithm imposes too much overhead to be 

handled by software alone. One possible implementation is to record the usage 

of pages by means of a structure similar to the stack. Whenever a resident page 

is referenced, it is removed from its current stack position and placed at the top 

of the stack. When a page eviction is in order, the page at the bottom of the stack 

is removed from memory. 

Maintenance of the page-referencing stack requires it’s updating for each page 

reference, regardless of whether it results in a page fault or not. So the overhead 

of searching the stack, moving the reference page to the top, and updating the 

rest of the stack accordingly must be added to all memory references. But the 

FIFO queue needs to be updated only when page faults occur-overhead almost 

negligible in comparison to the time required for processing of a page fault.  

Optimal (OPT): 
The algorithm by Belady, removes the page to be reference in the most distant 

future i.e. page out the page that will be needed the furthest in the future. This is 

impossible (halting problem), but provides an interesting benchmark. Since it 

requires future knowledge, the OPT algorithm is not realizable. Its significance is 

theoretical, as it can serve as a yardstick for comparison with other algorithms. 

Approximations-Clock: 
One popular algorithm combines the relatively low overhead of FIFO with 

tracking of the resident-page usage, which accounts for the better performance 

of LRU. This algorithm is sometimes referred to as Clock, and it is also known as 

not recently used (NRU). The algorithm makes use of the referenced bit, which is 

associated with each resident page. The referenced bit is set whenever the 

related page is reference and cleared occasionally by software. Its setting 
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indicates whether a given page has been referenced in the recent past. How 

recent this past is depends on the frequency of the referenced-bit resetting. The 

page-replacement routine makes use of this information when selecting a victim 

for removal.  

The algorithm is usually implemented by maintaining a circular list of the resident 

pages and a pointer to the page where it left off. The algorithm works by 

sweeping the page list and resetting the presence bit of the pages that it 

encounters. This sweeping motion of the circular list resembles the movement of 

the clock hand, hence the name clock. The clock algorithm seeks and evicts 

pages not recently used in order to free page frames for allocation to demanding 

processes. When it encounters a page whose reference bit is cleared, which 

means that the related page has not been referenced since the last sweep, the 

algorithm acts as follows:  

(1) If the page is modified, it is marked for clearing & scheduled for writing to 

disk.  

(2) If the page is not modified, it is declared non-resident, and the page frames 

that it occupies are feed.  

The algorithm continues its operation until the required numbers of page frames 

are freed. The algorithm may be invoked at regular time intervals or when the 

number of free page frames drops below a specified threshold. 

Other approximations and variations on this theme are possible. Some of them 

track page usage more accurately by means of a reference counter that counts 

the number of sweeps during which a given page is found to be un-referenced. 

Another possibility is to record the states of referenced bits by shifting them 

occasionally into related bit arrays. When a page is to be evicted, the victim is 

chosen by comparing counters or bit arrays in order to find the least frequently 

reference page. The general idea is to devise an implementable algorithm that 

bases its decisions on measured page usage and thus takes into account the 

program behavior patterns. 

4.2.2.3.6 Allocation Policies 
The allocation policy must compromise among conflicting requirements such as: 
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(a) Reduced page-fault frequency, 

(b) Improved turn-around time, 

(c) Improved processor utilization, etc.  

Giving more real pages to a process will result in reduced page-fault frequency 

and improved turnaround time. But it reduces the number of active processes 

that may coexist in memory at a time resulting into the lower processor utilization 

factor. On the other hand, if too few pages are allocated to a process, its page-

fault frequency and turnaround times may deteriorate. 

Another problem caused by under-allocation of real pages may be encountered 

in systems that opt for restarting of faulted instructions. If fewer pages are 

allocated to a process than are necessary for execution of the restartable 

instruction that causes the largest number of page faults in a given architecture, 

the system might fault continuously on a single instruction and fail to make any 

real progress.  

Consider a two-address instruction, such as Add @X, @Y, where X and Y are 

virtual addresses and @ denotes indirect addressing. Assuming that the 

operation code and operand addresses are encoded in one word each, this 

instruction need three words for storage. With the use of indirect addressing, 

eight memory references are needed to complete execution of this instruction: 

three to fetch the instruction words, two to fetch operand addresses, two to 

access the operands themselves (indirect addressing), and one to store the 

result. In the worst case, six different pages may have to reside in memory 

concurrently in order to complete execution of this instruction: two if the 

instruction crosses a page boundary, two holding indirect addresses, and two 

holding the target operands. A likely implementation of this instruction calls for 

the instruction to be restarted after a page fault. If so, with fewer than six pages 

allocated to the process that executes it, the instruction may keep faulting 

forever. In general, the lower limit on the number of pages imposed by the 

described problem is architecture-dependent. In any particular implementation, 
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the appropriate bound must be evaluated and built into the logic of the allocation 

routine. 

While we seem to have some guidance as to the minimal number of pages, the 

reasonable maximum remains elusive. It is also unclear whether a page 

maximum should be fixed for a given system or determined on an individual 

basis according to some specific process attributes. Should the maximum be 

defined statically or dynamically, in response to system resource utilization and 

availability, and perhaps in accordance with the observable behavior of the 

specific process?  

From the allocation module's point of view, the important conclusion is that each 

program has a certain threshold regarding the proportion of real to virtual pages, 

below which the number of page faults increases very quickly. At the high end, 

there seems to be a certain limit on the number of real pages, above which an 

allocation of additional real memory results in little or in moderate performance 

improvement. Thus, we want to allocate memory in such a way that each active 

program is between these two extremes.  

Being program-specific, the upper and lower limits should probably not be fixed 

but derived dynamically on the basis of the program faulting behavior measured 

during its execution. When resource utilization is low, activating more processes 

may increase the degree of multiprogramming. However, the memory manager 

must keep track of the program behavior when doing so. A process that 

experiences a large number of page faults should be either allocated more 

memory or suspended otherwise. Likewise, a few pages may be taken away 

from a process with a low page-fault rate without great concern. In addition, the 

number of pages allocated to a process may be influenced by its priority (higher 

priority may indicate that shorter turnaround time is desirable), the amount of free 

memory, fairness, and the like. 

Thrashing: Although the complexity and overhead of memory allocation should 

be within a reasonable bound, the use of oversimplified allocation algorithms has 

the potential of crippling the system throughput. If real memory is over-allocated 

to the extent that most of the active programs are above their upper page-fault-
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rate thresholds, the system may exhibit a behavior known as thrashing. With very 

frequent page faults, the system spends most of its time shuttling pages between 

main memory and secondary memory. Although the disk I/O channel may be 

overloaded by this activity, but processor utilization is reduced. 
One way of introducing thrashing behavior is dangerously logical and simple. 

After observing a low processor utilization factor, the OS may attempt to improve 

it by activating more processes. if no free pages are available, the holdings of the 

already-active processes may be reduced. This may drive some of the processes 

into the high page-fault zone. As a result, the processor utilization may drop while 

the processes are awaiting their pages to be brought in. In order to improve the 

still-decreasing processor utilization, the OS may decide to increase the degree 

of multi-programming even further. Still more pages will be taken away from the 

already-depleted holdings of the active processes, and the system is hopelessly 

on its way to thrashing. It is obvious that global replacement strategies are 

susceptible to thrashing. 

Thus a good design must make sure that the allocation algorithm is not unstable 

and inclined toward thrashing. Knowing the typical patterns of program behavior, 

we want to ensure that no process is allocated too few pages for its current 

needs. Too few pages may lead to thrashing, and too many pages may unduly 

restrict the degree of multi-programming and processor utilization.   

Page-Fault Frequency (PFF) 
This policy uses an upper and lower page-fault frequency threshold to decide for 

allocation of new page frames. The PFF parameter P may be defined as: P = 1/T 

Where T is the critical inter-page fault time. P is usually measured in number of 

page faults per millisecond. The PFF algorithm may be implemented as follows: 

1. The OS defines a system-wide (or per-process) critical page-fault frequency, 

P. 

2. The OS measures the virtual (process) time and stores the time of the most 

recent page fault in the related process control block.  

When a page fault occurs, the OS acts as follows: 
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 If the last page fault occurred less than T = 1/P ms ago, the process is 

operating above the PFF threshold, and a new page frame is added from the 

pool to house the needed page. 

 Otherwise, the process is operating below the PFF threshold P, and a page 

frame occupied by a page whose reference bit and written-into bit are not set 

is freed to accommodate the new page. 

 The OS sweeps and resets referenced bits of all resident pages. Pages that 

are found to be unused, unmodified, and not shared since the last sweep are 

released, and the freed page frames are returned to the pool for future 

allocations.  

For completeness, some policies need to be employed for process activation and 

deactivation to maintain the size of the pool of free page frames within desired 

limits.  

4.2.2.3.7 Hardware Support and Considerations 
Virtual memory requires:  

(1) instruction interruptibility and restartability,  

(2) a collection of page status bits associated with each page descriptor,  

(3) And if based on paging - a TLB to accelerate address translations.  

Choice of the page size can have a significant impact on performance of a 

virtual-memory system. In most implementations, one each of the following bits is 

provided in every page descriptor: 

 Presence bit, used to aid detection of missing items by the mapping hardware  

 Written-into (modified) bit, used to reduce the overhead incurred by the 

writing of unmodified replaced pages to disk 

 Referenced bit, used to aid implementation of the replacement policy 

An important hardware accelerator in virtual-memory systems is the TLB. 

Although system architects and hardware designers primarily determine the 

details of the TLB operation, the management of TLB is of interest because it 

deals with problems quite similar to those discussed in the more general 
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framework of virtual memory. TLB hardware must incorporate allocation and 

replacement policies so as to make the best use of the limited number of 

mapping entries that the TLB can hold. An issue in TLB allocation is whether to 

devote all TLB entries to the running process or to distribute them somehow 

among the set of active processes. The TLB replacement policy governs the 

choice of the entry to be evicted when a miss occurs and another entry needs to 

be brought in.  
Allocation of all TLB entries to the running process can lead to relatively lengthy initial 

periods of “loading” the TLB whenever a process is scheduled. This can lead to the 

undesirable behavior observed in some systems when an interrupt service routine (ISR) 

preempts the running process. Since a typical ISR is only a few hundred instructions 

long, it may not have enough time to load the TLB. This can result in slower execution of 

the interrupt service routine due to the need to reference PMT in memory while 

performing address translations. Moreover, when the interrupted process is resumed, its 

performance also suffers from having to load the TLB all over again. One way to combat 

this problem is to use multi-context TLBs that can contain and independently manage 

the PMT entries of several processes. With a multi-context TLB, when a process is 

scheduled for execution, it may find some of its PMT entries left over in the TLB from the 

preceding period of activity. Management of such TLBs requires the identity of the 

corresponding process to be associated with each entry, in order to make sure that 

matches are made only with the TLB entries belonging to the process that produced the 

addresses to be mapped.  

Removal of TLB entries is usually done after each miss. If PMT entries of several 

processes are in the buffer, the victim may be chosen either locally or globally. 

Understandably, some preferential treatment is usually given to holdings of the 

running process. In either case, least recently used is a popular strategy for 

replacement of entries.  

The problem of maintaining consistency between the PMT entries and their TLB 

copies in the presence of frequent page moves must also be tackled by hardware 

designers. Its solution usually relies on some specialized control instructions for 

TLB flushing or for it selective invalidation.  
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Another hardware-related design consideration in virtual-memory systems is 

whether I/O devices should operate with real or virtual addresses. 

A hardware/software consideration involved in the design of paged systems Is 

the choice of the page size. Primary factors that influence this decision are  

(1) Memory utilization and cost.  

(2) Page-transport efficiency.  

Page-transport efficiency refers to the performance cost and overhead of fetching 

page from the disk or, in a diskless workstation environment, across the network. 

Loading of a page from disk consists of two basic components: the disk-access 

time, and the page-transfer time. Head positioning delays generally exceed disk-

memory transfer times by order of magnitude. Thus, total page-transfer time 

tends to be dominated by the disk positioning delay, which is independent of the 

page size. 

Small page size reduces page breakage, and it may make better use of memory 

by containing only a specific locality of reference. On the other hand, small pages 

may result in excessive size of mapping tables in virtual systems with large 

virtual-address spaces. Page-transport efficiency is also adversely affected by 

small page sizes, since the disk-accessing overhead is imposed for transferring a 

relatively small group of bytes.  

Large pages tend to reduce table fragmentation and to increase page-transport 

efficiency. This is because the overhead of disk accessing is amortized over a 

larger number of bytes whenever a page is transferred between disk and 

memory. On the negative side, it may impact memory utilization by increasing 

page breakage and by spanning more than one locality of reference. If multiple 

localities contained in a single page have largely dissimilar patterns of reference, 

the system may experience reduced effective memory utilization and wasted I/O 

bandwidth.  

4.2.2.3.8 Protection and Sharing 
The frequent moves of items between main and secondary memory may 

complicate the management of mapping tables in virtual systems. When several 
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parties share an item in real memory, the mapping tables of all involved 

processes must point to it. If the shared item is selected for removal, all 

concerned mapping tables must be updated accordingly. The overhead involved 

tends to outweigh the potential benefit of removing shared items. Many systems 

simplify the management of mapping tables by fixing the shared objects in 

memory. An interesting possibility provided by large virtual-address spaces is to 

treat the OS itself as a shared object. As such, the OS is mapped as a part of 

each user’s virtual space. To reduce table fragmentation, dedicated mapping 

registers are often provided to access a single physical copy of the page-map 

table reserved for mapping references to the OS. One or more status bits direct 

the mapping hardware to use the public or private mapping table, as appropriate 

for each particular memory reference. In this scheme, different users have 

different access rights to portions of the OS. Moreover, the OS-calling 

mechanism may be simplified by avoiding expensive mode switches between 

users and the OS code. With the protection mechanism provided by mapping, a 

much faster CALL instruction, or its variant, may be used to invoke the OS.  

4.2.2.4 Segmentation and Paging 
It is also possible to implement virtual memory in the form of demand 

segmentation inheriting the benefits of sharing and protection provided by 

segmentation. Moreover, their placement policies are aided by explicit 

awareness of the types of information contained in particular segments. For 

example, a “working set” of segments should include at least one each of code, 

data, and stack segments. As with segmentation, inter-segment references alert 

the OS to changes of locality. However, the variability of segment sizes and the 

within-segment memory contiguity requirement complicate the management of 

both main and secondary memories. Placement strategies are quite complex in 
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segmented systems. Moreover, allocation and deallocation of variable-size 

storage areas to hold individual segments on disk imposes considerably more 

overhead than handling of pages that are usually designed to fit in a single disk 

block. 

On the other hand, paging is very easy for the management of main and 

secondary memories, but it is inferior with regard to protection and sharing. The 

transparency of paging necessitates the use of probabilistic replacement 

algorithms which virtually no guidance from users, they are forced to operate 

mainly on the basis of their observations of program behavior.   

Both segmented and paged implementations of virtual memory have their 

advantages/disadvantages. Some systems combine the two approaches in order 

to enjoy the benefits of both. One approach is to use segmentation from the 

user’s point of view but to divide each segment into pages of fixed size for 

purposes of allocation. In this way, the combined system retains most of the 

advantages of segmentation. At the same time, the problems of complex 

segment placement and management of secondary memory are eliminated by 

using paging. The principle of address translation in combined segmentation and 

paging systems is shown in Figure 8. Both segment descriptor tables and PMT 

are required for mapping. Instead of containing the base and limit of the 

corresponding segment, each entry of the SDT contains the base address and 

size of the PMT to be used for mapping of the related segment’s pages. The 

presence bit in each PMT entry indicates availability of the corresponding page in 

the real memory. Access rights are recorded as a part of segment descriptors, 

although they may be placed or refined in the entries of the PMT. Each virtual 

address consists of three fields: segment number, page number, and offset 

within the page. When a virtual address is presented to the mapping hardware, 

the segment number is used to locate the corresponding PMT. Provided that the 

issuing process is authorized to make the intended type of reference to the target 

segment, the page number is used to index the PMT. If the presence bit is set, 

obtaining the page-frame address from the PMT and combining this with the 

offset part of the virtual address complete the mapping. If the target page is 
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absent from real memory, the mapping hardware generates a page-fault 

exception, which is processed. At both mapping stages, the length fields are 

used to verify that the memory references of the running process lie within the 

confines of it address space. 

Many variations of this powerful scheme are possible. For example, the presence 

bit may be included with entries of the SDT. It may be cleared when no pages of 

the related segment are in real memory. When such a segment is referenced, 

bringing several of lits pages into main memory may process the segment fault. 

In general, page re-fetching has been more difficult to implement in a way that 

performs better than demand paging. One of the main reasons for this is the 

inability to predict the use of previously un-referenced pages. However, 

referencing of a particular segment increases the probability of its constituent 

pages being referenced. 

Virtual Address        To Memory 
Segment  Page Offset  
Number Number 

Presence  
  

                          Segment Size Violation   Illegal Access

  
  
  
  
  

   PMT for segment X 
   
   
   
   
   
Base Size Access 

Rights 

 

Segment Descriptor 
Table 

 
 
C1 is “<LIMT” 
C2 is “Authorized Access”
C3 is “SDTLR” 
 

Figure 8 – Segmentation and paging 
While the combination of segmentation and paging is certainly appealing, it 

requires two memory accesses to complete the mapping of each virtual address 

resulting into the reduction of the effective memory bandwidth by two-thirds.  
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4.3 Summary 
Segmentation allows breaking of the virtual address space of a single process 

into separate entities that may be placed in noncontiguous areas of physical 

memory. As a result, the virtual-to-physical address translation at instruction 

execution time in such systems is more complex, and some dedicated hardware 

support is necessary to avoid a drastic reduction in effective memory bandwidth. 

Since average segment sizes are usually smaller then average process sizes, 

segmentation can reduce the impact of external fragmentation on the 

performance of systems with dynamically partitioned memory. Other advantages 

of segmentation include dynamic relocation, finely grained protection both within 

and between address spaces, ease of sharing, and facilitation of dynamic linking 

and loading.  

No doubt segmentation reduces the impact of fragmentation and offers superior 

protection and sharing by dividing each process's address space into logically 

related entities that may be placed into non-contiguous areas of physical 

memory. But paging simplifies allocation and de-allocation of memory by dividing 

address spaces into fixed-sized chunks. Execution-time translation of virtual to 

physical addresses, usually assisted by hardware, is used to bridge the gap 

between contiguous virtual addresses and non-contiguous physical addresses 

where different pages may reside. 

It is very desirable to execute a process whose logical address space is larger 

than the available physical address space and the option is virtual memory. 

Virtual memory removes the restriction on the size of address spaces of 

individual processes that is imposed by the capacity of the physical memory 

installed in a given system. In addition, virtual memory provides for dynamic 

migration of portions of address spaces between primary and secondary memory 

in accordance with the relative frequency of usage.  

If the total memory requirement is larger than the available physical memory, 

then memory management system has to create the house for new pages by 

replacing some pages from the memory. A number of page replacement policies 

have been proposed such as FIFO, LRU, NRU, etc with their merits and 
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demerits. FIFO implementation is easy but suffers from Belady anomaly. Optimal 

replacement requires future knowledge. LRU is n approximation of optimal but 

difficult to implement. After page replacement, there is the need for frame 

allocation policy. An improper allocation policy may result into thrashing.  

It is also possible to implement virtual memory in the form of demand 

segmentation inheriting the benefits of sharing and protection provided by 

segmentation but placement strategies are complex, allocation and deallocation 

of variable-size storage areas to hold individual segments on disk imposes more 

overhead. On the other hand, paging is very easy for the management of main 

and secondary memories, but it is inferior with regard to protection and sharing. 

Some systems combine the two approaches in order to enjoy the benefits of 

both. 
4.4 Keywords 
External Fragmentation is waste of memory between partitions caused by 

scattered non-contiguous free space.  

Internal fragmentation is waste of memory within a partition caused by 

difference between size of partition and the process allocated. 

Page: The virtual-address space of a process is divided into fixed-size blocks of 

the same size, called pages. 

Page fault: The phenomenon of not finding a referenced page in the memory is 

known a page fault. 

TLB (Translation Look aside Buffer): It is a high-speed associative memory, 

used to speed up memory access, by for storing a subset of often-used page-

map table entries.  

PMT (Page Map Table): It is a table used to translate a virtual address into 

actual physical address in paging system. 

Locality of Reference: There is a strong tendency of programs to favor subsets 

of their address spaces during execution. This phenomenon is known as locality 

of reference. 
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4.5 Self Assessment Questions (SAQ) 

1. Define segmentation and write a detailed note on the address translation 

mechanism in segmentation. 

2. Write a detailed mote on sharing in segmentation. How the access rights are 

implementation in sharing in segmentation. 

3. What is the basic difference between paging and segmentation? Which one is 

better and why? 

4. What is Table Look aside Buffer (TLB)? How is it used to speed up the 

memory access? Explain. 

5. Write short notes on following: 

(a) Thrashing 

(b) Page fault frequency 

(c) Sharing in virtual memory 

6. Differentiate between following: 

a. Dirty page and clean page 

b. Logical Address and Physical Address 

c. Spatial and temporal locality of reference 

d. Segmentation and paging 

7. What is the common drawback of all the real memory management 

techniques? How is it overcome in virtual memory management schemes? 

8. What extra hardware do we require for implementing demand paging and 

demand segmentation? 

9. Show that LRU page replacement policy possesses the stack property. 

10. Differentiate between internal and external fragmentation. 

11. What do you understand by thrashing? What are the factors causing it?  

12. Compare FIFO page replacement policy with LRU page replacement on the 

basis of overhead. 

4.6  Suggested Readings / Reference Material 
th11. Operating Systems Concepts, 5  Edition, Silberschatz A., Galvin P.B., 

John Wiley and Sons. 
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12. Systems Programming and Operating Systems, 2nd Revised Edition, 

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

13. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

14. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 

15. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company 
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Lesson number: 5     Writer: Dr. Rakesh Kumar 

File System - I     Vetter: Dr. Pradeep Bhatia 

 
5.0 Objectives 

A file is a logical collection of information and file system is a collection of files. The 

objective of this lesson is to discuss the various concepts of file system and make the 

students familiar with the different techniques of file allocation and access methods. We also 

discuss the ways to handle file protection, which is necessary in an environment where 

multiple users have access to files and where it is usually desirable to control by whom and 

in what ways files may be accessed. 

5.1 Introduction  

The file system is the most visible aspect of an operating system. While the memory 

manager is responsible for the maintenance of primary memory, the file manager is 

responsible for the maintenance of secondary storage (e.g., hard disks). It provides the 

mechanism for on-line storage of and access to both data and programs of the operating 

system and all the users of the computer system. The file system consists of two distinct 

parts: a collection of files, each storing related data and a directory structure, which 

organizes and provides information about all the files in the system. Some file systems have 

a third part, partitions, which are used to separate physically or logically large collections of 

directories.  

Nutt describes the responsibility of the file manager and defines the file, the 

fundamental abstraction of secondary storage: 

"Each file is a named collection of data stored in a device. The file 

manager implements this abstraction and provides directories for 

organizing files. It also provides a spectrum of commands to read and 

write the contents of a file, to set the file read/write position, to set and 

use the protection mechanism, to change the ownership, to list files in 

a directory, and to remove a file...The file manager provides a 

protection mechanism to allow machine users to administer how 

processes executing on behalf of different users can access the 
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information in files. File protection is a fundamental property of files 

because it allows different people to store their information on a 

shared computer, with the confidence that the information can be kept 

confidential." 

5.2 Presentation of Contents 

5.2.1 File Concepts 

 5.2.1.1 File Operations 

 5.2.1.2 File Naming 

 5.2.1.3 File Types 

 5.2.1.4 Symbolic Link 

 5.2.1.5 File Sharing and Locking 

 5.2.1.6 File-System Structure 

 5.2.1.7 File-System Mounting 

 5.2.1.8 File Space Allocations 

 5.2.1.8.1 Contagious Space Allocation 

 5.2.1.8.2 Linked Allocation 

 5.2.1.8.3 Indexed Allocation 

 5.2.1.8.4 Performance 

 5.2.1.9 File Attributes 

5.2.2 Access Methods 

 5.2.2.1 Sequential Access 

 5.2.2.2 Index-sequential 

 5.2.2.3 Direct Access 

5.2 PRESENTATION OF CONTENTS 

5.2.1 FILE CONCEPTS 

The most important function of an operating system is the effective management of 

information. The modules of the operating system dealing with the management of 

information are known as file system. The file system provides the mechanism for online 

storage and access to both data and programs. The file system resides permanently on 

secondary storage, which has the main requirement that it must be able to hold a large 

amount of data, permanently. The desirable features of a file system are: 
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4. Minimal I/O operations. 

5. Flexible file naming facilities. 

6. Automatic allocation of file space. 

7. Dynamic allocation of file space. 

8. Unrestricted flexibility between logical record size and physical block size. 

9. Protection of files against illegal forms of access. 

10. Static and dynamic sharing of files. 

11.  Reliable storage of files. 

 This lesson is primarily concerned with issues concerning file storage and access on the 

most common secondary storage medium, the disk.   

A file is a collection of related information units (records) treated as a unit. A record is itself 

a collection of related data elements (fields) treated as a unit. A field contains a single data 

item. 

So file processing refers to reading/writing of records in a file and processing of the 

information in the fields of a record.     

5.2.1.1 File operations  

File operations are generally simple and intuitive set of operations on files. Not all of 

these are supported by all file systems. In some file systems, operations are implemented 

in terms of other file operations. Major file operations performed are as follows:  
 Open: This lets the Operating Systems know that the current process will be 

interested in a file soon. In some sense, it’s extraneous, but in cases where the file 

resides on a medium that has significant startup cost not returning the open call 

until the file is ready for access is a good idea.  

 Close: Let the Operating Systems know that the process is done with this file, and 

that the Operating Systems can reclaim the resources allocated to manipulating 

the file. (The data and meta-data are updated, but remain in the file system, of 

course.) Some systems delay writes or cache data for future reads. Close is an 

indication to them that pending writes must be flushed and that cached reads can 

be discarded. 
 Read operation: This operation read information contained in the file. 

 Write operation: This operation write new information into a file at any point or 
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overwriting existing information in a file. Strictly this means to change existing 

data in the file to a new value, but many systems also use the write system 

call to append data. 

 Deleting file: Delete a file and release its storage space for use in other files. 

 Appending file: Write new information at the end of a file. This shares aspects 

with write, but includes the idea that the underlying file is changing size. 

Append means that the Operating Systems must increase the allocation of 

storage to the file. Some Operating Systems determine whether a write 

system call causes an append or a write based on the current byte and the 

length of the buffer written. 

 Seek: Files have a notion of the current byte (or record) of the file that will 

next be accessed. On files that can be randomly accessed, seek allows the 

calling process to set the current byte (or record). 

 Renaming file: Change a name of the file in the file system. This may be an 

operation on the file or a directory depending on the file system. 

 Creating file: Create a new file. This may allocate space for the file, or just 

reserve the name for future action. 

 Moving file: To move the file from one place to another. 

 Sorting file: To arrange the data in file in some order.  

 Execute a file 

 Coping file 

 Merging files  

 Comparing file  

5.2.1.2 File Naming  

Each file is a distinct entity and therefore a naming convention is required to distinguish one 

from another. The operating systems generally employ a naming system for this purpose. In 

fact, there is a naming convention to identify each resource in the computer system and not 

files alone.  

5.2.1.3 File Types  

The files under UNIX can be categorized as follows:  

 Ordinary files.  
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 Directory files.  

 Special files.  

 FIFO files.  

Ordinary Files  
Ordinary files are the one, with which we all are familiar. They may contain executable 

programs, text or databases. You can add, modify or delete them or remove the file entirely.  

Directory Files  

Directory files, as discussed earlier also represent a group of files. They contain list of file 

names and other information related to these files. Some of the commands, which manipulate 

these directory files, differ from those for ordinary files.  

Special Files  

Special files are also referred to as device files. These files represent physical devices such as 

terminals, disks, printers and tape-drives etc. These files are read from or written into just 

like ordinary files, except that operation on these files activates some physical devices. These 

files can be of two types (i) character device files and (ii) block device file. In character 

device files data are handled character by character, as in case of terminals and printers. In 

block device files, data are handled in large chunks of blocks, as in the case of disks and 

tapes.  

FIFO Files  

FIFO (first-in-first-out) are files that allow unrelated processes to communicate with each 
other. They are generally used in applications where the communication path is in only one 
direction, and several processes need to communicate with a single process. For an example 
of FIFO file, take the pipe in UNIX. This allows transfer of data between processes in a first-
in-first-out manner. A pipe takes the output of the first process as the input to the next 
process, and so on.  

5.2.1.4 Symbolic Link  

A link is effectively a pointer or an alias to another file or subdirectory. For example, a link 

may be implemented as an absolute or relative path name (a symbolic link). When a 

reference to a file is made, we search the directory. The directory entry is marked as a link 

and the name of the real file (or directory) is given. We resolve the link by using the path 

name to locate the real file. Links are easily identified by their format in the directory entry 

(or by their having a special type on systems that support types), and are effectively named 

indirect pointers.  
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A symbolic link can be deleted without deleting the actual file it links. There can be any 

number of symbolic links attached to a single file. 

Symbolic links are helpful in sharing a single file called by different names. Each time a link 

is created, the reference count in its inode is incremented by one. Whereas deletion of link 

decreases the reference count by one. The operating system denies deletion of such files 

whose reference count is not 0, thereby meaning that the file is in use. 

In a system where sharing is implemented by symbolic links, this situation is somewhat 

easier to handle. The deletion of a link does not need to affect the original file; only the link 

is removed. If the file entry itself is deleted, the space for the file is deallocated, leaving the 

links dangling. We can search for these links and remove them also, but unless a list of the 

associated link is kept with each file, this search can be expensive. Alternatively, we can 

leave the links until an attempt is made to use them. At that time, we can determine that the 

file of the name given by the link does not exist, and can fail to resolve the link name; the 

access is treated just like any other illegal file name. (In this case, the system designer should 

consider carefully what to do when a file is deleted and another file of the same name is 

created, before a symbolic link to the original file is used.) In the case of UNIX, symbolic 

links are left when a file is deleted, and it is up to the user to realize that the original file is 

gone or has been replaced. 

Another approach to deletion is to preserve the file until all references to it are deleted. To 

implement this approach, we must have some mechanism for determining that the last 

reference to the file has been deleted. We could keep a list of all references to a file 

(directory entries or symbolic links). When a link or a copy of the directory entry is 

established, a new entry is added to the file-reference list. When a link or directory entry is 

deleted, we remove its entry on the list. The file is deleted when its file-reference list is 

empty. 

The trouble with this approach is the variable and potentially large size of the file-reference 

list. However, we really do not need to keep the entire list - we need to keep only a count of 

the number of references. A new link or directory entry increments the reference counts; 

deleting a link or entry decrements the count. When the count is 0, the file can be deleted; 

there are no remaining references to it. The UNIX operating system uses this approach for 

non-symbolic links, or hard links, keeping a reference count in the file information block or 
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inode). By effectively prohibiting multiple references to directories, we maintain an acyclic-

graph structure.  

To avoid these problems, some systems do not allow shared directories links. For example, 

in MS-DOS, the directory structure is a tree structure.  

5.2.1.5 File Sharing and Locking  

The owner of a file uses the access control list of the file to authorize some other users to 

access the file. In a multi-user environment a file is required to be shared among more than 

one user. There are several techniques and approaches to affect this operation. File sharing 

can occur in two modes (i) sequential sharing and (ii) concurrent sharing. Sequential sharing 

occurs when authorized users access a shared file one after another. So any change made by 

a user is reflected to other users also. Concurrent sharing occurs when two or more users 

access a file over the same period of time. Concurrent sharing may be implemented in one of 

the following three forms: 

(a) Concurrent sharing using immutable files: In it any program cannot modify the file being 

shared. 

(b) Concurrent sharing using single image mutable files: An image is a view of a file. All 

programs concurrently sharing the file see the same image of the file. So changes made 

by one program are also visible to other programs sharing the file. 

(c) Concurrent sharing using multiple image mutable files: Each program accessing the file 

has its own image of the file. So many versions of the file at a time may exist and updates 

made by a user may not be visible to some concurrent user. 

There are three different modes to share a file:  

 Read only: In this mode the user can only read or copy the file.  

 Linked shared: In this mode all the users sharing the file can make changes 

in this file but the changes are reflected in the order determined by the 

operating systems.  

 Exclusive mode: In this mode a single user who can make the changes (while 

others can only read or copy it) acquires the file.  

Another approach is to share a file through symbolic links. This approach poses a couple of 
problems - concurrent updation problem, deletion problem. If two users try to update the 
same file, the updating of one of them will be reflected at a time. Besides, another user must 
not delete a file while it is in use.  

Operating System  



File locking gives processes the ability to implement mutually exclusive access to a file. 

Locking is mechanism through which operating systems ensure that the user making changes 

to the file is the one who has the lock on the file. As long as the lock remains with this user, 

no other user can alter the file. Locking can be limited to files as a whole or parts of a file. 

Locking may apply to any access or different levels of locks may exist such as read/write 

locks etc.  

5.2.1.6 File-System Structure  

Disks provide the bulk of secondary storage on which a file system is maintained. To 

improve I/O efficiency, I/O transfers between memory and disks are performed in units of 

blocks. Each block is one or more sectors. Depending on the disk drive, sectors vary 

from 32 bytes to 4096 bytes; usually, they are 512 bytes. The blocking method 

determines how a file’s records are allocated into blocks: 

Fixed blocking: An integral number of fixed-size records are stored in each block. No 

record may be larger than a block. 

Unspanned blocking: Multiple variable size records can be stored in each block but no 

record may span multiple blocks. 

Spanned blocking: Records may be stored in multiple blocks. There is no limit on the 

size of a record.  

Disks have two important characteristics that make them a convenient medium for 

storing multiple files: 

(a) They can be rewritten in place; it is possible to read a block from the disk, to modify the 

block, and to write it back into the same place.  

(b) One can access directly any given block of information on the disk. Thus, it is simple to 

access any file either sequentially or randomly, and switching from one file to another 

added requires only moving the read-write heads and waiting for the disk to rotate.  

To provide an efficient and convenient access to the disk, the operating system imposes a file 

system to allow the data to be stored, located, and retrieved easily. A file system poses two 

quite different design problems.  

(a) How the file system should look to the user? This task involves the definition of a file 

and its attributes, operations allowed on a file and the directory structure for organizing 

the files.  
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(b) Algorithms and data structure must be created to map the logical file system onto the 

physical secondary storage devices.  

5.2.1.7 File-System Mounting  

Just as a file must be opened before it is used, a file system must be mounted before it can be 

available to processes on the system. The mount procedure is straightforward. The operating 

system is given the name of the device and the location within the file structure at which to 

attach the file system (called the mount point). For instance, on the UNIX system, a file 

system containing user’s home directory might be mounted as /home; then, to access the 

directory structure within that file system, one could precede the directory names with 

/home, as in /home/jane. Mounting that file system under /users would result in the path 

name /users/jane to reach the same directory.  

Next, the operating system verifies that the device contains a valid file system. It does so by 

asking the device driver to read the device directory and verifying that the directory has the 

expected format. Finally, the operating system notes its directory structure that a file system 

is mounted at the specified mount point. This scheme enables the operating system to 

traverse its directory structure, switching among file systems as appropriate. Consider the 

actions of the Macintosh Operating System.  

Whenever the system encounters a disk for the first time (hard disks are found at boot time, 

floppy disks ate seen when they are inserted into the drive), the Macintosh Operating System 

searches for a file system on the device. If it finds one, it automatically mounts the file 

system at the boot-level, adds a folder icon to the screen labeled with the name of the file 

system (as stored in the device directory). The user is then able to click on the icon and thus 

to display the newly mounted file system.  

5.2.1.8 File space allocations 

The direct-access nature of disks allows flexibility in the implementation of files. In 

almost every case, many files will be stored on the same disk. The main problem is how 

to allocate space to these files so that disk space is utilized effectively and files can be 

accessed quickly. There are three major methods of allocating disk space:  

(a) Contiguous space allocation 

(b)  Linked allocation 

(c) Indexed allocation 
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Each method has its advantages and disadvantages. Accordingly some systems support all 

three. More common system will use one particular method for all files.  

5.2.1.8.1 Contiguous space Allocation  

The simplest scheme is contiguous allocation. The logical blocks of a file are stored in a 

partition of contiguous physical blocks. Disk addresses define a linear ordering on the disk. 

With this ordering, assuming that only one job is accessing the disk, accessing block b+1 

after block b normally requites no head movement. When head movement is needed (from 

the last sector of one cylinder to the first sector of the next cylinder), it is only one-track 

movement. Thus, the number of disk seeks required for accessing contiguously allocated 

files is minimal. The disk address and length (in block units) of the first block define 

contiguous allocation of the file. If the file is n blocks long, and starts at location b, then it 

occupies block b, b+1, b+2, ..., b+n-1. The directory entry for each file indicates the address 

of the starting block and the length of the area allocated for this file. Accessing a file that has 

been allocated contiguously is easy. For sequential access, the file system remembers the 

disk address of the last block referenced and, when necessary, reads the next block. For 

direct access to block i of a file that starts at block b, we can immediately access block b+i. 

So contiguous space allocation easily supports both sequential and direct access.  

The major problem with contiguous allocation is locating the space for a new file. The 

contiguous disk space-allocation problem can be seen to be particular application of the 

general dynamic storage-allocation problem, which is how to satisfy a request of size n from 

a list of free holes. First-fit (This strategy allocates the first available space that is big enough 

to accommodate file. Search may start at beginning of set of holes or where previous first-fit 

ended. Searching stops as soon as it finds a free hole that is large enough) and best-fit (This 

strategy allocates the smallest hole that is big enough to accommodate file. Entire list 

ordered by size is searched and matching smallest left over hole is chosen) are the most 

common strategies used to select a free hole from the set of available holes. Simulations have 

shown that both first-fit and best-fit are more efficient than worst-fit (This strategy allocates 

the largest hole. Entire list is searched. It chooses largest left over hole) in terms of both time 

and storage utilization. Neither first-fit nor best-fit is clearly best in terms of storage 

utilization, but first-fit is generally faster. 
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These algorithms suffer from the problem of external fragmentation i.e. the tendency to 

develop a large number of small holes. As files are allocated and deleted, the free disk space 

is broken into little pieces. External fragmentation exists whenever free space is broken into 

chunks. It becomes a problem when the largest contiguous chunk is insufficient for a request; 

storage is fragmented into a number of holes, no one of which is large enough to store the 

data. Depending on the total amount of disk storage and the average file size, external 

fragmentation may be either a minor or a major problem.  

Some older microcomputer systems used contiguous allocation on floppy disks. To prevent 

loss of significant amounts of disk space to external fragmentation, the user had to run a 

repacking routine that copied the entire file system onto another floppy disk or onto a tape. 

The original floppy disk was then freed completely, creating one large contiguous free space. 

The routine then copied the files back onto the floppy disk by allocating contiguous space 

from this one large hole.  

The scheme effectively compacts all free space into one contiguous space, solving the 

fragmentation problem. The cost of this compaction is time. The time cost is particularly 

severe for large hard disks that use contiguous allocation, where compacting all the space 

may take hours and may be necessary on a weekly basis. During this down time, normal 
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system operation generally cannot be permitted, so such compaction is avoided at all costs 

on production machines.  

This is not all, there are other problems with contiguous allocation. A major problem is 

determining how much space is needed for a file. When the file is created, the total amount 

of space it will need must be found and allocated. How does the creator (program or person) 

know the size of the file to be created? In some cases, this determination may be fairly 

simple (copying an existing file, for example); in general, however, the size of an output file 

may be difficult to estimate.  

If too little space is allocated to a file, it may be found that file cannot be extended. 

Especially with only a best-fit allocation strategy, the space on both sides of the file may be 

in use. Hence, we cannot make the file larger in space. Two possibilities then exist. First, the 

user program can be terminated, with an appropriate error message. The user must then 

allocate more space and run the program again. These repeated runs may prove costly. To 

prevent them, the user will normally overestimate the amount of space needed, resulting in 

considerable wasted space.  

The other possibility is to find a larger hole, to copy the contents of the file to the new space 

and release the previous space. This series of actions may be repeated as long as space exists, 

although it can also be time-consuming. Notice, however, that in this case the user never 

needs to be informed explicitly about what is happening; the system continues despite the 

problem, although more and more slowly.  

Even if the total amount of space needed for a file is known in advance, pre-allocation may 

be inefficient. A file that grows slowly over a long period (months or years) must be 

allocated enough space for its final size, even though much of that space may be unused for a 

long time. The file, therefore, has a large amount of internal fragmentation.  

To avoid several of these drawbacks, some operating systems use a modified contiguous 

allocation scheme, in which a contiguous chunk of space is allocated initially, and then, 

when that amount is not large enough, another chunk of contiguous space, called an extent, is 

added to the initial allocation. The location of a file's blocks is then recorded as a location 

and a block count, plus a link to the first block of the next extent. On some systems, the 

owner of the file can set the extent size, but this setting results in inefficiencies if the owner 

is incorrect. Internal fragmentation can still be a problem if the extents are too large, and 
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external fragmentation can be a problem as extents of varying sizes are allocated and de-

allocated in turn.  

5.2.1.8.2 Linked Allocation  

In linked allocation, file is not stored on a contiguous set of blocks, rather the physical blocks 

in which a file is stored may be scattered throughout the secondary storage devices. Linked 

allocation solves all problems of contiguous allocation. With linked allocation, each file is a 

linked list of disk blocks; the disk blocks may be scattered anywhere on the disk. The 

directory contains a pointer to the first and last blocks of the file. For example, a file of five 

blocks might start at block 9, continue at block 16, then block 1, block 10, and finally block 

25. Each block contains a pointer to the next block. These pointers are not made available to 

the user. Thus, if each block is 512 bytes, and a disk address (the pointer) requires 4 bytes, 

then the user sees blocks of 508 bytes. To create anew file, we simply create a new entry in 

the directory. With linked allocation, each directory entry has a pointer to the first disk block 

of the file. This pointer is initialised to nil (the end-of-list pointer value) to signify an empty 

file. The size field is also set to 0. A write to the file causes a free block to be found via the 

free-space management system, and this new block is then written to, and is linked to the end 

of the file. To read a file, we simply read blocks by following the pointers from block to 

block.  

There is no external fragmentation with linked allocation, and any free block on the free-

space list can be used to satisfy a request. Notice also that there is no need to declare the size 

of a file when a file is created. A file can continue to grow as long as there are free blocks. 

Consequently, it is never necessary to compact disk space. Linked allocation suffers from 

some disadvantages, however. The major problem is that it can be used effectively for only 

sequential-access files. To find the ith block of a file, we must start at the beginning of that 

file, and follow the pointers until we get to the ith block. Each access to a pointer requires a 

disk read, and sometimes a disk seek also. Consequently, it is inefficient to support a direct-

access capability for linked allocation files.  
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Space required for the pointers is another disadvantage to linked allocation. If a pointer 

requires 4 bytes out of a 512-byte block, then ((4 / 512) * 100 = 0.78) percent of the disk is 

being used for pointers, rather than for information. Each file requires slightly more space 

than it otherwise would. The usual solution to this problem is to collect blocks into multiples, 

called clusters, and to allocate the clusters rather than blocks. For instance, the file system 

may define a cluster as 4 blocks, and operate on the disk in only cluster units. Pointers then 

use a much smaller percentage of the file's disk space. This method allows the logical-to-

physical block mapping to remain simple, but improves disk throughput (fewer disk head-

seeks) and decreases the space needed for block allocation and free-list management. The 

cost of this approach is an increase in internal fragmentation, because more space is wasted if 

a cluster is partially fully than when a block is partially full. Clusters can be used to improve 

the disk access time for many other algorithms, so they are used in most operating systems.  

Yet another problem is reliability. Since the files are linked together by pointers scattered all 

over the disk, consider what would happen if a pointer were lost or damaged. A bug in the 

operating- system software or a disk hardware failure might result in picking up the wrong 

pointer. This error could result in linking into the free-space list or into another file. Partial 

solutions are to use doubly linked lists or, to store the file name and relative block number in 

each block; however, these schemes require even more overhead for each file.  

An important variation on the linked allocation method is the use of a file-allocation table 

(FAT). This simple but efficient method of disk-space allocation is used by the MS-DOS and 

OS/2 operating systems. A section of disk at the beginning of each partition is reserved to 

contain the table. The table has one entry for each disk block, and is indexed by block 
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number. The FAT is used much as is a linked list. The directory entry contains the block 

number of the first block of the file. The table entry indexed by that block number then 

contains the block number of the next block in the file. This chain continues until the last 

block, which has a special end-of-file value as the table entry. Unused blocks are indicated 

by a 0 table value. Allocating a new block to a file is a simple matter of finding the first 0-

valued table entry, and replacing the previous end-of-file value.  

Note that the FAT allocation scheme can result in a significant number of disk head seeks, 

unless the FAT is cached. The disk head must move to the start of the partition to read the 

FAT and find the location of the block in question, then move to the location of the block 

itself. In the worst case, both moves occur for each of the blocks. A benefit is that random 

access time is improved, because the disk head can find the location of any block by reading 

the information in the FAT. 

5.2.1.8.3 Indexed Allocation  

Although linked allocation solves the external-fragmentation and size-declaration problems 
of contiguous allocation. However, in the absence of a FAT, linked allocation cannot support 
efficient direct access, since the pointers to the blocks are scattered with the blocks 
themselves all over the disk and need to be retrieved in order. Indexed allocation solves this 
problem by bringing all the pointers together into one location, called the index block. 
Indexed allocation is a variant of linked allocation. 

Each file has its own index block, which is an array of disk-block addresses. The ith entry in 

the index block points to the ith block of the file. The directory contains the address of the 

index block (See following figure). To read the ith block, we use the pointer in the ith index-

block entry to find and read the desired block.  

When the file is created, all pointers in the index block are set to nil. When the ith block is 

first written, a block is obtained from the free-space manager, and its address is put in 

the ith index-block entry. 

Indexed allocation supports direct access, without suffering from external fragmentation, 

because any free block on the disk may satisfy a request for more space.   
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Indexed allocation of disk space 
Indexed allocation does suffer from wasted space. The pointer overhead of the index block is 

generally greater than the pointer overhead of linked allocation.  

Note that indexed allocation schemes suffer from some of the same performance problems, 

as does linked allocation. Specifically, the index blocks can be cached in memory, but the 

data blocks may be spread all over a partition. 

5.2.1.8.4 Performance  

To evaluate the performance of allocation methods, two important criteria are storage 

efficiency and data-block access times. Both are important criteria in selecting the proper 

method or methods for an operating system to implement.  

One difficulty in comparing in performance of the various systems is determining how the 

systems will be used – in a sequential access manner or random access. A system with 

mostly sequential access should use a method different from that for a system with mostly 

random access. For any type of access, contiguous allocation requires only one access to get 
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a disk block. Since we can easily keep the initial address of the file in memory, we can 

calculate immediately the disk address of the ith block (or the next block) and read it directly.  

For linked allocation, we can also keep the address of the next block in memory and read it 

directly. This method is fine for sequential access; for direct access, however, an access to 

the ith block might require i disk reads. This problem indicates why linked allocation should 

not be used for an application requiring direct access.  

As a result, some systems support direct-access files by using contiguous allocation and 

sequential access by linked allocation. For these systems, the type of access to be made must 

be declared when the file is created. A file created for sequential access will be linked and 

cannot be used for direct access. A file created for direct access will be contiguous and can 

support both direct access and sequential access, but its maximum length must be declared 

with it.  

5.2.1.9 File attributes  

Attributes are properties of a file. The operating system treats a file according to its 

attributes. Following are a few common attributes of a file:  

 H for hidden  

 A for archive  

 D for directory  

 X for executable  

 R for read only  

These attributes can be used in combination also.  

5.2.2 ACCESS METHODS  

Files store information, which is when required, may be read into the main memory. There 

are several different ways in which the data stored in a file may be accessed for reading and 

writing. The operating system is responsible for supporting these file access methods. The 

fundamental methods for accessing information in the file are (a) sequential access: in it 

information in the file must be accessed in the order it is stored in the file, (b) direct access, 

and (c) index sequential access. 

5.2.2.1 Sequential access  

A sequential file is the most primitive of all file structures. It has no directory and no linking 

pointers. The records are generally organized in a specific sequence according to the key 
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field. In other words, a particular attribute is chosen whose value will determine the order of 

the records. Access proceeds sequentially from start to finish. Operations to read or write the 

file need not specify the logical location within the file, because operating system maintains 

a file pointer that determines the location of the next access. Sometimes when the attribute 

value is constant for a large number of records a second key is chosen to give an order when 

the first key fails to discriminate. Use of sequential file requires data to be sorted in a desired 

sequence according to the key field before storing or processing them. 

Its main advantages are:  

 It is easy to implement  

 It provides fast access to the next record if the records are to be accessed 

using lexicographic order.  

Its disadvantages are:  

 It is difficult to update and insertion of a new record may require moving a large 

proportion of the file  

 Random access is extremely slow.  

Sometimes a file is considered to be sequentially organised despite the fact that it is not 
ordered according to any key. Perhaps the date of acquisition is considered to be the key 
value, the newest entries are added to the end of the file and therefore pose no difficulty to 
updating. Sequential files are advisable if the applications are sequential by nature.  

5.2.2.2 Index-sequential  

An index-sequential file each record is supposed to have a unique key and the set of records 

may be ordered sequentially by a key. An index is maintained to determine the location of a 

record from its key value. Each key value appears in the index with the associated address of 

its record.  To access a record with key k, the index entry containing k is found by searching 

the index and the disk address mentioned in the entry is used to access the record.  

In the following figure an employee file is illustrated where records are arranged in 

ascending order according to the employee #.   

Track #  

1 1  2  5  8 16  20  25  30   32   36 

2 38  40   41   43   44   45   50   52 

3 53  57   59  60   62   64   67   70 

A track index is maintained as shown in the following figure to speed up the search: 
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Track Low High 

1 1 36 

2 38 52 

3 53 70 

For example, to locate the record of employee # 41, index is searched. It is evident from 

the index that the record of employee #41 will be on track no.2 because it has the lowest 

key value 48 and highest key value 52.  

In the literature an index-sequential file is usually 

thought of as a sequential file with a hierarchy of indices. 

For example, there might be three levels of indexing: track, 

cylinder and master. Each entry in the track index will 

contain enough information to locate the start of the track, 

and the key of the last record in the track, which is also 

normally the highest value on that track. There is a track 

index for each cylinder. Each entry in the cylinder index 

gives the last record on each cylinder and the address of the 

track index for that cylinder. If the cylinder index itself is 

stored on tracks, then the master index will give the highest 

key referenced for each track of the cylinder index and the 

starting address of that track. No mention has been made of 

the possibility of overflow during an updating process. 

Normally provision is made in the directory to administer an 

overflow area. This of course increases the number of book-

keeping entries in each entry of the index.  

5.2.2.3 Direct access 

In direct access file organization, any records can be 

accessed irrespective of the current position in the file. 

Direct access files are created on direct access storage 

devices. Whenever a record is to be inserted, its key value is 

mapped into an address using a hashing function. On that 

address record is stored. The advantage of direct access file 

organization is realized when the records are to be accessed 
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randomly (not sequentially). Otherwise this organization has a 

number of limitations such as (a) poor utilization of the I/O 

medium and (b) Time consumption during record address 

calculation.  

5.3 Key words 

Contiguous space Allocation: The logical blocks pf a file are stored in a partition of 

contiguous physical blocks. 

Linked allocation: In it each file is a linked list of disk blocks; the disk blocks may be 

scattered anywhere on the disk. The directory contains a pointer to the first and last blocks of 

the file. 

Indexed Allocation: In Indexed allocation all the pointers together are stored into one 

location, called the index block. Each file has its own index block, which is an array of disk-

block addresses.  

Sequential access: In it information in the file must be accessed in the order it is stored in 

the file. 

Index-sequential: In index-sequential file each record is supposed to have a unique key and 

the set of records may be ordered sequentially by a key. An index is maintained to determine 

the location of a record from its key value. 
Direct access: In direct access file organization, records 

can be accessed randomly. The key value of the record is 

mapped into an address using a hashing function. On that 

address record is stored. 

5.4 SUMMARY 

The file system resides permanently on secondary storage, which has the main requirement 

that it must be able to hold a large amount of data, permanently. 

The various files can be allocated space on the disk in three ways: through contagious, linked 

or indexed allocation. Contagious allocation can suffer from external fragmentation. Direct-

access is very inefficient with linked-allocation. Indexed allocation may require substantial 

overhead for its index block. There are many ways in which these algorithms can be 

optimised. 
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Free space allocation methods also influence the efficiency of the use of disk space, the 

performance of the file system and the reliability of secondary storage.  

5.5 SELF-ASSESSMENT QUESTIONS (SAQ) 

1. What do you understand by a file? What is a file system?  

2. What are the different modes to share a file? 

3. What are the different methods to access the information from a file? Discuss their 

advantages and disadvantages. 

4. What are the advantages of indexed allocation over linked allocation and contiguous 

space allocation? Explain. 

5. Differentiate between first fit, best fit and worst fit storage allocation strategies. 

5.6 SUGGESTED READINGS / REFERENCE MATERIAL 
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6.0 Objectives 

The objectives of this lesson are to make the students familiar with directory system and 

file protection mechanism. After studying this lesson students will become familiar with: 

(a) Different types of directory structures. 

(b) Different protection structures such as: 

 - Access Control Matrix 

 - Access Control Lists 

6.1 Introduction  

A file system provides the following facilities to its users:  

(a) Directory structure and file naming facilities,  

(b) Protection of files against illegal form of access,  

(c) Static and dynamic sharing of files, and  

(d) Reliable storage of files.  

A file system helps the user in organizing the files through the use of directories. A directory 

may be defined as an object that contains the names of the file system objects. Entries in the 

directory determine the names associated with a file system object. A directory contains 

information about a group of files. A typical structure of a directory entry is as under: 

File name – Locations Information – Protection Information – Flags 

The presences of directories enable file system to support file sharing and protection. 

Sharing is simply a matter of permitting a user to access the files of other user stored in 

some other directory. Protection is implemented by permitting the owner of a file to 

specify which other users may access his files and in what manner. All these issues are 

discussed in detail in this lesson.     

6.2 Presentation of Contents 

6.2.1 Hierarchical Directory Systems 

6.2.1.1 Directory Structure 

6.2.1.2 The Logical Structure of a Directory 

6.2.1.2.1 Single-level Directory 
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6.2.1.2.2 Two-level Directory 

6.2.1.2.3 Tree-structured Directories 

6.2.1.2.4 Acyclic-Graph Directories 

6.2.1.2.5 General Graph Directory 

6.2.1.3 Directory Operations 

6.2.2 File Protection and Security  

6.2.2.1 Type of Access 

 6.2.2.2 Protection Structure 

  6.2.2.2.1 Access Control Matrix 

6.2.2.2.2 Access Lists and Groups 

3.2.2.2.3 Other Protection Approaches 

6.2.1 Hierarchical Directory Systems  

Files are generally stored on secondary storage devices. Numerous files are to be stored on 

storage of giga-byte capacity. To handle such a huge size of data, there is a need to properly 

organize the files. The organization, usually, done in two parts. In the first part, a file system 

may incorporate the notion of a partition, which determines on which device a file will be 

stored. The file system is broken into partitions, also known as minidisks or volumes. 

Typically, a disk contains at least one partition, which is a low-level structure in which files 

and directories reside. Sometimes, there may be more than one partition on a disk, each 

partition acting as a virtual disk. The users do not have to concern themselves with the 

translating the physical address; the system does the required job. 
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Figure 1 Directory Hierarchy 
Partitions contain information about itself in a file called partition table. It also contains 

information about files and directories on it. Typical file information is name, size, type, 

location etc. The entries are kept in a device directory or volume table of contents (VTOC). 

Directories may be created within another directory. Directories have parent-child 

relationship as shown in the Figure 1. 

6.2.1.1  Directory Structure  

The file systems of computers can be extensive. Some systems store thousands of files on 

hundreds of gigabytes of disk. To manage all these data, we need to organize them. This 

organization is usually done in two parts; first, the file system is broken into in the IBM 

world or volumes in the PC and Macintosh arenas. Sometimes, partitions are used to provide 

several separate areas within one disk, each treated as a separate storage device, whereas 

other systems allow partitions to be larger than a disk to group disks into one logical 

structure. In this way, the user needs to be concerned with only the logical directory and file 

structure, and can ignore completely the problems of physically allocating space for files. 

For this reason partitions can be thought of as virtual disks.  

Second, each partition contains information about files within it. This information is kept in a 

device directory or volume table of contents. The device directory (more commonly known 
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simply as a "directory") records information such as name, location, size, and type for all 

files on that partition.  

6.2.1.2 The Logical Structure of a Directory  

6.2.1.2.1 Single-Level Directory  

The simplest directory structure is the single-level tree. A single level tree system has only 

one directory.  All files are contained in the same directory, which is easy to support and 

understand. Names in that directory refer to files or other non-directory objects. Such a 

system is practical only on systems with very limited numbers of files. The advantage of this 

structure is its simplicity only. But it has got many limitations: 

Limitations: 

A single-level directory is manageable when the number of files is small. When the number 

of files increases or when there is more than one user, it suffers from the following problems: 

(a) Since all files are stored in the same directory, the name given to each file should be 

unique. If there are two users and they give the same name to their file, then there is a 

problem.  

(b) Even with a single user, as the number of files increase, it becomes difficult to remember 

the names of all the files, so as to create only files with unique names. It is not 

uncommon for a user to have hundreds of files on one computer system and an equal 

number of additional files on another system. In such an environment, keeping track of 

so many files is a daunting task. 
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Figure 2 Single-level Directory 
6.2.1.2.2 Two-Level Directory  

The disadvantage of a single-level directory is confusion of file names. The standard solution 

is to create a separate directory for each user. In a two level system, only the root level 

directory may contain names of directories and all other directories refer only to non-
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directory objects. In the two-level directory structure, each user has his/her own user file 

directory (UFD). Each UFD has a similar structure, but lists only the files of a single user. 

When a user starts or a user logs in, the system's master file directory is searched. The master 

file directory is indexed by user name or account.  

When in a UFD a user refers to a particular file, only his own UFD is searched. Thus, 

different users may have files with the same name, as long as till the filenames within each 

UFD are unique.  To create a file for a user, the operating system searches only that user's 

UFD to ascertain whether another file of that name exists. To delete a file, the operating 

system confines its search to the local UFD; thus, it cannot accidentally delete another user's 

file that has the same name. 
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Figure 3 Two-Level Directory 
The user directories themselves must be created and deleted as necessary. A special system 

program is run with the appropriate user name and account information. The program creates 

a new user file directory and adds an entry for it to the master file directory. The execution of 

this program might be restricted to system administrators.  

The two-level directory structure solves the name-collision problem, but it still has problems. 

This structure effectively isolates one user from another. This isolation is an advantage when 

the users are completely independent, but is a disadvantage when the users co-operate on 

some task and to access one user's account by other users is not allowed.  If access is to be 

permitted, one user must have the ability to name a file in another user's directory.  

A two-level directory can be thought of as a tree, or at least an inverted tree. The root of the 

tree is the master file directory. Its direct descendants are the UFDs. The descendants of the 

user file directories are the files themselves. Thus, a user name and a file name define a path 
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name. Every file in the system has a path name. To name a file uniquely, user must know the 

path name of the file desired.  

For example, if user A wishes to access her own test file named test, he can simply refer to 

test. To access the test file of user B (with directory-entry name userb), however, he might 

have to refer to /userb/test. Every system has its own syntax for naming files in directories 

other than the user's own.  

There is additional syntax to specify the partition of a file. For instance, in MS-DOS a letter 

followed by a colon specifies a partition. Thus, file specification might be "C:\userb\bs.test". 

Some systems go even further and separate the partition, directory name, and file name parts 

of the specification. For instance, in VMS, the file "login.com" might be specified as:  

"u:[sst.deck.1]login.com;"  

where "u" is the name of the partition, "sst" is the name of the directory, "deck" is the name 

of subdirectory, and "1", is the version number. Other systems simply treat the partition 

name as part of the directory name. The first name given is that of the partition, and the rest 

is the directory and file. For instance, "/u/pbg/test" might specify partition "u”, directory 

"pbg", and file "test". A special case of this situation occurs in regard to the system files. 

Those programs provided as parts of the system (loaders, assemblers, compilers, utility 

routines, libraries, and so on) are generally defined as files. When the appropriate commands 

are given to the operating system, these files are read by the loader and are executed. Many 

command interpreters act by simply treating the command as the name of a file to load and 

execute. As the directory system is defined presently, this file name would be searched for in 

the current user file directory .One solution would be to copy the system files into each user 

file directory. However, copying all the system files would be enormously wasteful of space. 

The standard solution is to complicate the search procedure slightly. A special user directory 

is defined to contain the system files.  

Whenever a file name is given to be loaded, the operating system first searches the local user 

file directory. If the file is found, it is used. If it is not found, the system automatically 

searches the special user directory that contains the system files. The sequence of directories 

searched when a file is named is called the search path. This idea can be extended, such that 

the search path contains an unlimited list of directories to search when a command name is 

given. This method is used in UNlX and MS-DOS.  
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6.2.1.2.3  Tree-Structured Directories 

A tree system allows growth of the tree beyond the second level. Any directory may contain 

names of additional directories as well as non-directory objects. This generalization allows 

users to create their own sub-directories and to organize their files accordingly. The MS-

DOS system, for instance, is structured as a tree. In fact, a tree is the most common directory 

structure. The tree has a root directory. Every file in the system has a unique path name. A 

path name is the path from the root, through all the subdirectories, to a specified file. 

a b c 

A1 A2 B1 B2 C1 C2 C3 

A23 A22 A21 C22 C21 

 
Figure 4 Tree-Structured Directories 
A directory (or subdirectory) contains a set of files or subdirectories. A directory is simply 

another file but it is treated in a special way. All directories have the same internal format, 

one bit in each directory entry defines the entry as a file (0) or as a subdirectory (1) Special 

system calls are used to create and delete directories.  

In normal use, each user has a current directory .The current directory should contain most of 

the files that are of current interest to the user. When reference is made to a file, the current 

directory is searched. If a file is needed that is not in the current directory, then the user must 

either specify a path name or change the current directory to be the directory holding that 

file. To change the current directory to a different directory, a system call is provided that 

takes a directory name as a parameter and uses it to redefine the current directory.  

Thus, the user can change his current directory whenever he desires. From one change 

directory system call to the next, all open system calls search the current directory for the 

specified file.  

The initial current directory of a user is designated when the user job starts or the user logs 

in. The operating system searches the accounting file (or ask) other predefined location to 
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find an entry for this user (for accounting). In the accounting file is a pointer to (or the name 

of) the user's initial directory. This pointer is copied to a local variable for this user, which 

specifies the user's initial current directory.   

Path names can be of two types: absolute path names or relative path names.  

(a) Absolute path: An absolute path name begins at the root and follows a path down to the 

desired file, giving the directory names on the path. An absolute path name is an 

unambiguous way of referring to a file. Thus identically named files created by different 

users differ in their absolute path names. 

(b) Relative path: A relative path name defines a path from the current directory.  

Allowing the user to define his own subdirectories permits him to impose a structure on 

his files. This structure might result in separate directories for files associated with 

different topics (for example, a subdirectory was created to hold the text of this book or 

different forms of information for example, the directory programs may contain source 

programs; the directory bin may store all the binary files. An interesting policy decision in 

a tree-structured directory structure is how to handle the deletion of a directory. If a 

directory is empty, its entry in its containing directory can simply be deleted. But if the 

directory to be deleted is not empty, containing files and subdirectories then one of two 

approaches can be taken. As in MS-DOS, if we want to delete a directory then first of all 

we have to empty it i.e. delete its contents and If there are any subdirectories, the 

procedure must be applied recursively to them, so that they can be deleted also. But this 

approach may be time consuming. 

An alternative approach, such as that taken by the UNIX rm command, to provide the option 

that, when a request is made to delete a directory, and that directory's files and subdirectories 

are also to be deleted. Note that either approach is fairly easy to implement; the choice is one 

of policy. The latter policy is more convenient, but more dangerous, because an entire 

director structure may be removed with one command. If that command was issued in error, 

a large number of files and directories would need to be restored from backup tapes.  

With a tree-structured directory system, users can access, in addition their files, the files of 

other users. For example, user B can access files of user A by specifying their path names. 

User B can specify either an absolute or relative path name. Alternatively, user B could 

change her current directory be user A's directory, and access the files by their file names. 

Some systems also allow users to define their own search paths. In this case, user B could 
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define her search path to be (1) her local directory, (2) the system file directory, and user A's 

directory, in that order. As long as the name of a file of user A did not conflict with the name 

of a local file or system file, it could be referred to simply by its name. 

A path to a file in a tree-structured directory can be longer than that in a two-level directory. 

To allow users to access programs without having to remember these long paths, the 

Macintosh operating system automates the search for executable programs. It maintains a file 

called the "Desktop File”, containing the name and location of all executable programs it has 

seen. Where a new hard disk or floppy disk is added to the system, or the network accessed, 

the operating system traverses the directory structure, searching for executable programs on 

the device and recording the pertinent information. This mechanism supports the double-

click execution functionality. A double-click on a file causes its creator attribute to be read, 

and the "Desktop File" to be searched for a match. 

6.2.1.2.4 Acyclic-Graph Directories  

Sharing of file is another important issue in deciding the directory structure. If more than one 

user are working on some common project. So the files associated with that project should be 

placed in a common directory that can be shared among a number of users. 
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Figure 5 Acyclic-Graph Directories 
The important characteristic of sharing is that if a user is making a change in a shared file 

then that is to be reflected to other user also. In this way a shared file is not the same as two 

copies of the file. With two copies, each programmer can view the copy rather than the 

original, but if one programmer changes the file, the changes will not appear in the other's 

copy. With a shared file, there is only one actual file, so any changes made by the person 

would be immediately visible to the other. 

This form of sharing is particularly important for shared subdirectories; a new file created by 

one person will automatically appear in all the shared subdirectories. File sharing is 

facilitated by acyclic graph structure. The tree structure doesn’t permit the sharing of files.  

In a situation where several people are working as a team, all the files to be shared may be 

put together into one directory. The user file directories of all the team members would each 

contain this directory of shared files as a subdirectory. Even when there is a single user, his 

file organization may require that some files be put into several different subdirectories. For 

example, a program written for a particular project should be both in the directory of all 

programs and in the directory for that project.  

Shared files and subdirectories can be implemented in several ways. A common approach 

used in UNIX systems, is to create a new directory entry called a link. A link is a pointer to 

another file or subdirectory. For example, a link may be implemented as an absolute or 

relative path name. When a reference to a file is made, we search the directory. The directory 

entry is marked as a link and the name of the real file (or directory) is given. We resolve the 

link by using the path name to locate the real file. Links are easily identified by their format 

in the directory entry (or by their having a special type on systems that support types), and 

are effectively named indirect pointers. The operating system ignores these links when 

traversing directory trees to preserve the acyclic structure of the system.  

The other approach to implementing shared files is simply to duplicate all information about 

them in both sharing directories. Thus, both entries are identical and equal. A link is clearly 

different from the original directory entry; thus, the two are not equal. Duplicate directory 

entries, however, make the original and the copy indistinguishable. A major problem with 

duplicate directory entries is maintaining consistency if the file is modified. An acyclic-

graph directory structure is more flexible than is a simple tree structure, but is also more 
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complex. Several problems must be considered carefully. Notice that a file may now have 

multiple absolute path names. Consequently, distinct file names may refer to the same file. 

This situation is similar to the aliasing problem for programming languages. If we are trying 

to traverse the entire file system this problem becomes significant, since we do not want to 

traverse shared structures more than once.  

Another problem involves deletion. When can the space allocated to a shared file be de-

allocated and reused? One possibility is to remove the file whenever anyone deletes it, but 

this action may leave dangling pointers to the now non-existent file. Worse, if the remaining 

file pointers contain actual disk addresses, and the space is subsequently reused for other 

files, these dangling pointers may point into the middle of other files.  

In a system where sharing is implemented by symbolic links, this situation is somewhat 

easier to handle. The deletion of a link does not need to affect the original file; only the link 

is removed. If the file entry itself is deleted, the space for the file is de-allocated, leaving the 

links dangling. We can search for these links and remove them also, but unless a list of the 

associated link is kept with each file, this search can be expensive. Alternatively, we can 

leave the links until an attempt is made to use them. At that time, we can determine that the 

file of the name given by the link does not exist, and can fail to resolve the link name; the 

access is treated just like any other illegal file name. (In this case, the system designer should 

consider carefully what to do when a file is deleted and another file of the same name is 

created, before a symbolic link to the original file is used.) In the case of UNIX, symbolic 

links are left when a file is deleted, and it is up to the user to realize that the original file is 

gone or has been replaced.  

Another approach to deletion is to preserve the file until all references to it are deleted. To 

implement this approach, we must have some mechanism for determining that the last 

reference to the file has been deleted. We could keep a list of all references to a file 

(directory entries or symbolic links). When a link or a copy of the directory entry is 

established, a new entry is added to the file-reference list. When a link or directory entry is 

deleted, we remove its entry on the list. The file is deleted when its file-reference list is 

empty. The trouble with this approach is the variable and potentially large size of the file-

reference list.  
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However, we really do not need to keep the entire list -we need to keep only a count of the 

number of references. So a reference count is maintained with shared file, whenever a 

reference is made to it, it is incremented by one. On deleting a link, the reference count is 

decremented by one, when it becomes zero the file can be deleted. The UNIX operating 

system uses this approach for non-symbolic links, or hard links, keeping a reference count in 

the file information block or inode. By effectively prohibiting multiple references to 

directories, we maintain an acyclic-graph structure.  

To avoid these problems, some systems do not allow shared directories links. For example, 

in MS-DOS, the directory structure is a tree structure, rather than an acyclic graph, thereby 

avoiding the problems associated with file deletion in an acyclic-graph directory structure.  

6.2.1.2.5 General Graph Directory 

One serious problem with using an acyclic graph structure is ensuring that there are no 

cycles. If we start with a two-level directory and allow users to create subdirectories, a tree-

structured directory results. It should be fairly easy to see that simply adding new files and 

subdirectories to existing tree structure preserves the tree-structured nature. However, when 

we add links to an existing tree-structured directory, the tree structure is destroyed, resulting 

in a simple graph structure. 

The primary advantage of an acyclic graph is the relative simplicity of the algorithms to 

traverse file in the graph and to determine when there are no more references to a file. We 

want to avoid file traversing shared sections of an acyclic graph twice, mainly for 

performance reasons. If we have just searched a major shared subdirectory for a particular 

file, without finding that file, we want to avoid searching that subdirectory again; the second 

search would be a waste of time.  

To improve the performance of the system we should avoid searching any component twice 

in the systems where cycles are permitted. If cycles are not identified by the algorithm then it 

can be trapped in an infinite loop. One solution is to arbitrarily limit the number of 

directories, which will be accessed during a search. 

A similar problem exists when we are trying to determine when a file can be deleted. As with 

acyclic-graph directory structures, a value zero in the reference count means that there are no 

more references to the file or directory, and the file can be deleted. However, it is also 

possible, when cycles exist, that the reference count may be nonzero, even when it is no 
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longer possible to refer to a directory or file. This anomaly is due to the self-referencing (a 

cycle) in the directory structure. In this case, it is generally necessary to use a garbage 

collection scheme to determine when the last reference has been deleted and the disk space 

can be reallocated. 

A1 A2 A3 

X Y C41 C42 

C1 C2 C3 C4 

C B A 

 
Figure 6 General Graph Directory 
Garbage collection involves traversing the entire file system, marking everything that can be 

accessed. Then, a second pass collects everything that is not marked onto a list of free space. 

Garbage collection for a disk based file system, however, is extremely time-consuming and 

is thus seldom attempted. Garbage collection is necessary only because of possible cycles in 

the graph. Thus, an acyclic-graph structure is much easier to work with. The difficulty is to 

avoid cycles, as new links are added to the structure. There are algorithms to detect cycles in 

graphs. However, they are computationally expensive, especially when the graph is on disk 

storage. Generally, tree directory structures are more common than are acyclic-graph 

structures.  

6.2.1.3 Directory Operations  

The directory can be viewed as a symbol table that translates file names into their directory 

entries. If we take such a view, then it becomes apparent that the directory itself can be 

organized in many ways. The different operations that are to be carried out on directories are: 

(a) To insert entries. 

(b)  To delete entries. 
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(c)  To search for a named entry. 

(d) To list all the entries in the directory.  

When considering a particular directory structure, we need to keep in mind the operations 

that are to be performed on a directory:  

 Search for a directory: We need to be able to search a directory structure to find the 

entry for a particular file. Since files have symbolic names and similar names may 

indicate a relationship between files, we may want to be able to find all files whose 

names match a particular pattern.  

 Create a directory: New files need to be created and added to the directory.  

 Delete a directory: When a file is no longer needed, we want to remove it from the 

directory.  

 List a directory: We need to be able to list the files in a directory and the contents of the 

directory entry for each file in the list.  

 Rename a directory: Because the name of a file represents its contents to its users, the 

name must be changeable when the contents or use of the file changes. Renaming a file 

may also allow its position within the directory structure to be changed.  

 Traverse the file system: It is useful to be able to access every directory and every file 

within a directory structure. For reliability it is a good idea to save the contents and 

structure of the entire file system at regular intervals. This saving often consists of 

copying all files to magnetic tape. This technique provides a backup copy in case of 

system failure or if the file is simply no longer in use. In this case, the file can be copied 

to tape, and the disk space of that file released for reuse by another file.  

 Copying a directory: A directory may be copied from one location to another.  

 Moving a directory: A directory may be moved from one location to a new location 

with all its contents.  

6.2.2 File Protection & Security  

The security of the information is a major issue in file system. The files are to be protected 

from the physical damage as well as improper access. One way of ensuring the security is 

through backup. By maintaining the duplicate copy of the files, the reliability is improved. In 

many systems this is done automatically without human intervention. The backup of the files 
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is done at regular interval automatically. So if a copy of the file is accidentally destroyed, we 

have its backup copy. 

 There are a number of factors causing the damage to the file system such as: 

(a) Hardware problems. 

(b) Power failure 

(c) Head crashes 

(d) Dirt 

(e) Temperature 

(f) Bugs in the software 

These things can result into the loss of contents of files. Protection can be provided in many 

ways. For a small single-user system, we might provide protection by physically removing 

the floppy disks and locking them in a desk drawer or file cabinet. In a multi-user system, 

however, other mechanisms are needed.  

6.2.2.1 Types of Access  

The need for protecting files is a direct result of the ability to access files. On systems that do 

not permit access to the files of other users, protection is not needed. Thus, one extreme 

would be to provide complete protection by prohibiting access. The other extreme is to 

provide free access with no protection. Both of these approaches are too extreme for general 

use. What is needed is the controlled access.  

Protection mechanisms provide controlled access by limiting 

the types of file access that can be made. Access is permitted 

or denied depending on several factors, one of which is the 

type of access requested. Several different types of 

operations may be controlled:  

 Read - Read information contained in the file.  

 Write - Write new information into a file at any point or overwrite existing 

information in a file.  

 Execute - Load the contents of a file into main memory and create a process to 

execute it. 

 Append - Write new information at the end of the file.  

 Delete - Delete the file and release its storage space for use in other files. 
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 List – Read the names contained in a directory. 

 Change access - Change some user’s access rights for some controlled 

operation. 

Other operations, such as renaming, copying, or editing the file, may also be controlled. For 
many systems, however, these higher-level functions (such as copying) may be implemented 
by a system program that makes lower-level system calls. Protection is provided at only the 
lower level. For instance, copying a file may be implemented simply by a sequence of read 
requests. In this case, a user with read access can also cause the file to be copied, printed, and 
so on.  

Many different protection mechanisms have been proposed. Each scheme has its advantages 

and disadvantages and must be selected as appropriate for intended application. A small 

computer system that is used by only a few members of a research group may not need the 

same types of protection as will a large corporate computer that is used for research, finance, 

and personnel iterations.  

6.2.2.2 Protection structures 

An access privilege is a right to make a specific form of access to a file. An access descriptor 

describes access privileges for a file. The common accesses privileges read, write, and 

execute are generally represented by r, w, and x descriptors. A user holds access privileges to 

one or more files and a file is accessible to one or more users. Access control information for 

a file is a collection of access descriptors for access privileges held by various users. Access 

control information can be organized in various forms such as Access Control Matrix, access 

Control Lists etc. which are discussed in the following section: 

3.2.2.2.1 Access Control Matrix 

Access control matrix (ACM) consists of rows and columns as shown in the following 

figure. Each row describes the access privileges held by a user. Each column describes the 

access control information for a file. Thus ACM (u , f ) =a implies that user ui j ij i can access file 

f  in accordance with access privileges aj ij.

Files f f f1 2 3

Users

↓ 
u {r} (r, w} {r, w, x}1

u  {r} {r, x}2
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u {w} {r, w, x} {r} 3

Figure 7 Access Control Matrix 

The important advantages of ACM are: 

(a)  Simplicity and efficiency of access. 

(b) All information is stored in one structure. 

But its main drawback is its size and sparseness. The size can be reduced by assigning access 

privileges to group of users rather than the individual users resulting in the reduction of 

number of rows. The solution of sparseness is the use of lists instead of matrix as discussed 

following. 

3.2.2.2.2. Access control Lists and Groups  

The most common approach to the protection problem is to make access dependent on the 

stems identity of the user. Various users may need different types of access to a file or 

directory. The most general scheme to implement identity-dependent access is to associate 

with each file and directory an access control list (ACL), specifying the user name and the 

types of access allowed for each user.  Each element of the access control list is an access 

control pair (<user name>, <list of access privileges>). 

When a user requests access to a particular file, the operating system checks the access list 

associated with that file. If that user is listed for the requested access, the access is allowed. 

Otherwise, a protection violation occurs, and the user job is denied access to the file.  

The main problem with access lists is their length. It depends on the number of users and the 

number of access privileges defined in the system. Most file systems uses three kinds of 

access privileges: (a) Read - file can be read, (b) write – file can be modified and new data 

can be added, and (c) execute  – permits the execution of the program. If we want to allow 

everyone to read a file, we must list all users with read access. This technique has two 

undesirable consequences:  

(a) Constructing such a list may be a tedious and unrewarding task, especially if we do not 

know in advance the list of users in the system.  

(b) The directory entry that previously was of fixed size needs now to be of variable size, 

resulting in space management being more complicated.  

To reduce the size of protection information, users can be classified in some convenient 
manner and an access control pair can be specified for each class of user rather than for 
individual users. Now an access control list has only as many pairs as the number of user 
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classes. To condense the length of the access list, many systems recognize three 
classifications of users in connection with each file (e.g. in UNIX):  

1. Owner - The user who created the file is the owner 

2. Group - A set of users who are sharing the file and need similar access is a 

group or workgroup.  

3. Universe - All other users in the system constitute the universe.  

Note that, for this scheme to work properly, group membership must be controlled tightly. 

This control can be accomplished in a number of different ways. For example, in the UNIX 

system, groups can be created and modified by only the manager of the facility (or by any 

super-user). Thus, this control is achieved through human interaction. In the VMS system, 

with each file, an access list (also known as an access control list) may be associated, listing 

those users who can access the file. The owner of the file can create and modify this access 

lists are discussed above.  

With this more limited protection classification, only three fields are needed to define 
protection. Each field is often a collection of bits, each of which either allows or prevents the 
access associated with it. For example, the UNIX system defines three fields of 3 bits each: 
rwx, where r controls read access, w controls write access, and x controls execution. A 
separate field is kept for the file owner, for the owner's group and for all other users. In this 
scheme, 9 bits per file are needed to record protection information.  

3.2.2.2.3 Other Protection Approaches  

Another approach to the protection problem is to associate 

a password with each file. Access to each file can be 

controlled by a password.  If the passwords are chosen 

randomly and changed often, this scheme may be effective in 

limiting access to a file to only those users who know the 

password.  

There are several disadvantages to this scheme.  

(a) First, if we associate a separate password with each file, then the number of passwords 

that a user needs to remember may become large, making the scheme impractical. 

(b)  If only one password is used for all the files, then, once it is discovered, all files are 

accessible.  

Some systems allow a user to associate a password with a subdirectory, rather than with an 

individual file, to deal with this problem. The IBM VM/CMS operating system allows three 
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passwords for a minidisk: one each for read, write, and multi write access. Second, 

commonly, only one password is associated with each file. Thus, protection is on an all-or-

nothing basis. To provide protection on a more detailed level, we must use multiple 

passwords.  

Limited file protection is also currently available on single user systems, such as MS-DOS 

and Macintosh operating system. These operating systems, when originally designed, 

essentially ignored dealing with the protection problem. However, since these systems are 

being placed on networks where file sharing and communication is necessary, protection 

mechanisms have to be retrofitted into the operating system. Note that it is almost always 

easier to design a feature into a new operating system than it is to add a feature to an existing 

one. Such updates are usually less effective and are not seamless.  

We note that, in a multilevel directory structure, we need not only to protect individual files, 

but also to protect collections of files contained in a subdirectory, that is, we need to provide 

a mechanism for directory protection.  

The directory operations that must be protected are somewhat different from the file 

operations. We want to control the creation and deletion of files in a directory. In 

addition, we probably want to control whether a user can determine the existence of a 

file in a directory. Sometimes, knowledge of the existence and name of a file may be 

significant in itself. Thus, listing the contents of a directory must be a protected 

operation. Therefore, if a path name refers to a file in a directory, the user must be 

allowed access to both the directory and the file. In systems where files may have 

numerous path names (such as acyclic or general graphs), a given user may have 

different access rights to a file, depending on the path name used.  

3.3 Keywords 

Directory: A directory may be defined as an object that contains the names of the file 

system objects. 

Access Control Matrix: ACM is a matrix in which each row describes the access privileges 

held by a user and each column, access control information for a file. 

Access Control List: It is a structure to implement identity-dependent access to each file and 

directory where each element of the ACL is an access control pair (<user name>, <list of 

access privileges>). 
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3.4 Summary 

A file system helps the user in organizing the files through the use of directories that 

contains information about a group of files. A number of directory structures are used 

such as Single-level Directory Two-level Directory, Tree-structured Directories, Acyclic-

Graph Directories, and General Graph Directory. Each approach has its merits and 

demerits. A number of operations are carried out on directories such as insertion, deletion, 

search, rename, traversal etc. So file system should facilitate these operations. Another 

important issue in file system is the protection of the information from physical damage 

and unauthorized access.  To provide the access privileges to the files to different users 

two common mechanisms Access Control Matrix and Access Control Lists were 

discussed. ACM are characterized by their simplicity and efficiency but suffers from large 

size and sparseness. The problem of size is tackled by using the groups. If there are a 

number of blank entries in the ACM, then ACL can be a preferred solution. 

6.5 Self-Assessment Questions (SAQ)  

1. Define field, record, file, file sharing, and file protection. 

2. What are the limitations of acyclic directory structure?  

3. Which file operations are applicable to directories? Which are not?  

4. How is a directory different from a file?  

5. What are the different logical structures of the directory? Discuss their merits and 

demerits? 

6. Discuss the advantages and disadvantages of Access Control Lists (ACL) and Access 

Control Matrix (ACM). 

7. Discuss the advantages and disadvantages of two-level directory structure over 

single-level directory structure. 
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Lesson number: 7     Writer: Dr. Rakesh Kumar 

Disk Scheduling     Vetter: Dr. Pradeep Bhatia 

 
7.0 Objectives 

The objective of this lesson is to make the students familiar with: 

(a) The characteristics of the disk that affect the performance.  

(b) A number of disk scheduling algorithms to improve the access time. 

(c) Disk scheduling algorithm in fixed-head storage devices.  

(d) RAID Technology 

7.1 Introduction 

We know that the processor and memory of the computer should be scheduled such that 

the system operates more efficiently. Another very important scheduler is the disk 

scheduler. The disk can be considered the one I/O device that is common to every 

computer. Most of the processing of computer system centers on the disk system. Disk 

provides the primary on-line storage of information, both programs and data. All the 

important programs of the system such as compiler, assemblers, loaders, editors, etc. are 

stored on the disk until loaded into memory. Hence it becomes all-important to properly 

manage the disk storage and it scheduling.  

7.2 Presentation of contents 

7.2.1 Storage device characteristics 

7.2.1.1 Seek time 

7.2.1.2 Latency time 

7.2.1.3 Transfer time 

7.2.2 Disk Scheduling 
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7.2.2.1 First come first serve (FCFS) scheduling 
7.2.2.2 Shortest seek time first (SSTF) scheduling 

7.2.2.3 Scan 

7.2.2.4 C-scan (Circular scan) 

7.2.2.5 Look 

7.2.2.6 N-step scan 
7.2.2.7 F-Scan 

7.2.3 Scheduling algorithm selection 
7.2.4 Sector queuing 

7.2.5 RAID 

7.2.5.1 Non-Redundant Disk array (RAID Level 0)  

7.2.5.2 Mirrored (RAID Level 1)  

7.2.5.3 Memory-Style (RAID Level 2)  

7.2.5.4 Bit-Interleaved Parity (RAID Level 3)  

7.2.5.5 Block-Interleaved Parity (RAID Level 4)  

7.2.5.6 Block-Interleaved Distributed-Parity (RAID Level 5)  

7.2.5.7 P+Q redundancy (RAID Level 6)  

7.2.5.8 Striped Mirrors (RAID Level 10)  

7.2.1 Storage device characteristics 

Disk comes in many sizes and speeds, and information may be stored optically or 

magnetically. However, all disks share a number of important features. A disk is a flat 

circular object called a platter. Information may be stored on both sides of a platter 

(although some multiplatter disk packs do not use the top most or bottom most surfaces). 

Platter rotates around its own axis. The circular surface of the platter is coated with a 

magnetic material on which the information is stored. A read/write head is used to 

perform read/write operations on the disk. The read write head can move radially over the 
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magnetic surface. For each position of the head, the recorded information forms a circular 

track on the disk surface. Within a track information is written in blocks. The blocks may 

be of fixed size or variable size separated by block gaps. The variable length size block 

scheme is flexible but difficult to implement. Blocks can be separately read or written. 

The disk can access any information randomly using an address of the record of the form 

(track no, record no.). When the disk is in use a drive motor spins it at high speed. The 

read/write head positioned just above the recording surface stores the information 

magnetically on the surface.  On floppy disks and hard disks, the media spins at a 

constant rate. Sectors are organized into a number of concentric circles or tracks. As one 

moves out from the center of the disk, -the tracks get larger. Some disks store the same 

number of sectors on each track, with outer tracks being recorded using lower bit 

densities. Other disks place more sectors on outer tracks. On such a disk, more 

information can be accessed from an outer track than an inner one during a single rotation 

of the disk.  
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Figure 1: Moving head disk mechanism 

The disk speed is composed of three parts: 

(a) Seek Time 

(b) Latency Time 

(c) Transfer time 

7.2.1.1 Seek time  

To access a block from the disk, first of all the system has to move the read/write 

head to the required position. The time consumed in this operation is known as 

seek time and the head movement is called seek. Seek time (S) is determined in 

terms of: 

I: startup delays in initiating head movement. 

H: the rate at which read/write head can be moved. 

C: How far the head must travel. 

S = H * C + I 
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7.2.1.2 Latency time 

Once the head is positioned at the right track, the disk is to be rotated to move 

the desired block under the read/write head. This delay is known as latency time. 

On average this will be one-half of one revolution. Thus latency can be computed 

by dividing the number of revolution per minute (RPM), R, into 30. 

L = 30 / R 

7.2.1.3 Transfer time 

Finally the actual data is transferred from the disk to main memory. The time 

consumed in this operation is known as transfer time. Transfer time T, is 

determined by the amount of information to be read, B; the number of bytes per 

track, N; and the rotational speed. 

T = 60B/RN 

So the total time (A) to service a disk request is the sums of these three i.e. seek 

time, latency time, and transfer time.  

A = S + L + T 

Since most of the systems depend heavily on the disk, so it become very 

important to make the disk service as fast as possible.  

So a number of variations have been observed in disk organization motivated by 

the desire to reduce the access time, increase the capacity of the disk and to 

make optimum use of disk surface. For example there may be one head for 

every track on the disk surface. Such arrangement is known as fixed-head disk. 

In this arrangement it is very easy for computer to switch from one track to 

another quickly but it makes the disk very expensive due to the requirement of a 

number of heads. Generally there is one head that moves in and out to access 

different tracks because it is cheaper option. 

Higher disk capacities are obtained by mounting many platters on the same 

spindle to form a disk pack. There is one read/write head per circular surface of a 

platter. All heads of the disk are mounted on a single disk arm, which moves 

radially to access different tracks. Since the heads are located on the identically 

positioned tracks of different surfaces, so such tracks can be accessed without 

any further seeks. So placing that data in one cylinder can speed up sequential 
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access. Cylinder is a collection of identically positioned tracks of different 

surfaces.  

The hardware for a disk system can be divided into two parts. The disk drive is 

the mechanical part, including the device motor, the read/write heads and 

associated logic. The other part called the disk controller determines the logical 

interaction with the computer. The controller takes instructions from the CPU and 

orders the disk drive to carry out the instructions.  

Every disk drive has a queue of pending requests to be serviced. Whenever a 

process needs I/O to or from the disk, it issues a request to the operating system, 

which is placed in the disk queue. The request specifies the disk address, 

memory address, amount of information to be transferred, and the type of 

operation (input or output).  

7.2.2 Disk Scheduling 
For a multiprogramming system with many processes, the disk queue may often 

be non-empty. Thus, when a request is complete, the disk scheduler has to pick 

a new request from the queue and service it.  As apparent, the amount of head 

movement needed to satisfy a series of I/O requests could affect the 

performance. For this reason, a number of scheduling algorithms have been 

proposed. 

7.2.2.1 First cum first served (FCFS) scheduling 
This form of scheduling is the simplest one but may not provide the best service. 

The algorithm is very easy to implement. In it the system picks every time the first 

request from the disk queue. In this scheduling the total seek time may be 

substantially high as evident from the following example: 

Considered an ordered disk queue with requests involving tracks: 

86,140, 23, 50, 12, 89, 14, 120, 64 

The following figure shows the movement of read/write head in First Come First 

Serve scheduling. 
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12  14   23                  50   58   64            86  89                    120              140

Queue:  86, 140, 23, 50, 12, 89, 14, 120, 64 
Head  starts at 58

 
Figure 2: First Come First Serve Disk scheduling 
As evident from the above figure, a lot of time (i.e. seek time) is consumed in to 

and fro movement of the head. 

7.2.2.2 Shortest seek time first (SSTF) scheduling 
This scheduling algorithm services the request whose track position is closest to 

the current track position. Shortest-Seek-Time-First selects the request that is 

asking for minimum seek time from the current head position. Since seek time is 

generally proportional to the track difference between the requests, this approach 

is implemented by moving the head to the closest track in the request queue. 

The following figure shows the read/write head movement in Shortest-Seek-

Time-First scheduling for the above example discussed in First Come First Serve 

scheduling. It shows a substantial improvement in disk services i.e. reduction in 

the total movement of the head resulting into the reduced seek time.   

Shortest Seek Time First is just like the Shortest Job First process scheduling. 

So it is having the limitations of Shortest Job First also. It may cause starvation of 

some requests. 
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12  14   23                  50   58   64            86  89                    120              140

Queue:  86, 140, 23, 50, 12, 89, 14, 120, 64 
Head  starts at 58

 
Figure 3: Shortest Seek Time First Scheduling 

7.2.2.3 Scan 

12  14   23                  50   58   64            86  89                    120              140

Queue:  86, 140, 23, 50, 12, 89, 14, 120, 64 
Head  starts at 58

 
Figure 4: Scan scheduling 
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In this algorithm the read/write head moves back and forth between the 

innermost and outermost tracks. As the head gets to each track, satisfies all 

outstanding requests for that track. In this algorithm also, starvation is possible 

only if there are repeated requests for the current track. The scan algorithm is 

sometimes called the elevator algorithm. As it is familiar to the behavior of 

elevators as they service requests to move from floor to floor in a building. 

X.2.2.4 C-scan (Circular scan) 
C-scan is a variant of scan. It is designed to provide a more uniform wait time. C-

scan moves the head from one end of the disk to another, servicing requests as 

it goes. When it reaches the other end, however, it immediately return to the 

beginning of the disk, without servicing any requests on the return trip. C-scan 

treats the disk, as it was circular, with the last track adjacent to the first one. 

12  14   23                  50   58   64            86  89                    120              140

Queue:  86, 140, 23, 50, 12, 89, 14, 120, 64 
Head  starts at 58

 
Figure 5: C-Scan scheduling 

7.2.2.5 Look 
This algorithm is also similar to scan but unlike scan, the head does not 

unnecessarily travel to the innermost track and outermost track on each circuit. In 
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this algorithm, head moves in one direction, satisfying the request for the closest 

track like scan in that direction. When there are no more requests in that direction 

the head is traveling, head reverse the direction and repeat. 

7.2.2.6 N-step scan 
In it the request queue is divided into sub queues with each sub queue having a 

maximum length of N. Sub queues are processed in FIFO order. Within a sub 

queue, requests are processed using Scan. While a sub queue is being serviced, 

incoming requests are placed in the next non-filled sub queue. N-step scan 

eliminates any possibility of starvation.  

7.2.2.7 F-Scan 
The "F" stands for "freezing" the request queue at a certain time. It is just like N-

step scan but there are two sub queues only and each is of unlimited length. 

While requests in one sub queue are serviced, new requests are placed in other 

sub queue. 

7.2.3 Scheduling algorithm selection 
As there are so many disk-scheduling algorithms, an important question is how to 

choose a scheduling algorithm that will optimize the performance. The commonly 

used algorithm is Shortest-Seek-Time-First and it has a natural appeal also. San 

and its variants are more appropriate for system with a heavy load on the disk. It 

is possible to define an optimal scheduling algorithm, but computational 

overheads required for that may not justify the savings over Shortest-Seek-Time-

First and scan. 

No doubt in any scheduling algorithm the performance depends on the number 

and types of the requests. If every time there is only one outstanding request, 

then the performance of all the scheduling algorithms will be more or less 

equivalent. Studies suggest that even First-Come-First-Serve performance will 

also be reasonably well. 

It is also observed that performance of scheduling algorithms is also greatly 

influenced by the file allocation method. The requests generated by the 
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contiguously allocated files will result in minimum movement of the head. But in 

case of indexed access and direct access where the blocks of a file are scattered 

on the disk surface resulting into a better utilization of the storage space, there 

may be a lot of movement of the head.   

In all these algorithms, to improve the performance, the decision is taken on the 

basis of head movement i.e. seek time. Latency time is not considered as a 

factor. Because it is not possible to predict latency time because rotational 

location cannot be determined. However, multiple requests for the same track 

may be serviced based on latency. 

7.2.4 Sector queuing 
In case of disk with one read/write head, the objective of the entire scheduling 

algorithm is to minimize the seek time by minimizing the movement of read/write 

head. The dick scheduling algorithms like First Come First Serve, Shortest-Seek-

Time-First, Scan, and C-scan center on this objective. But in case of the storage 

devices such as drum, which has the fixed head, this is not an issue at all. So 

different scheduling algorithms is used for this type of devices known as sector 

queuing. 

In fixed-head storage devices the tracks are divided into a fixed number of 

blocks, known as sectors. Any I/O requests specify the address composed of 

track number and sector number. As seek time is zero for fixed-head storage 

devices, the important issue is the latency time to improve the performance.  

In sector queuing a separate queue is maintained for each sector of the drum. 

When a request arrives for sector i, it is placed in the queue for sector i. As 

sector i rotates beneath the read/write head, the first request in its queue is 

serviced.  

Formatting  

Before data can be written to a disk, all the administrative data must be written to 

the disks, organizing it into sectors. This low-level formatting or physical 

formatting is often done by the manufacturer. In the formatting process, some 
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sectors may be found to be defective. Most disks have spare sectors, and a 

remapping mechanism substitutes spare sectors for defective ones.  
For sectors that fail after formatting, the operating 

system may implement a bad block mechanism. Such mechanisms 

are usually in terms of blocks and are implemented at a 

level above the device driver. The manner in which sectors 

are positioned on a track can affect disk performance. If 

disk I/O operations are limited to transferring a single 

sector at a time, to read multiple sectors in sequence, 

separate I/O operations must be performed. After the first 

I/O operation completes, its interrupt must be processed 

and the second I/O operation must be issued. During this 

time, the disk continues to spin. If the start of the next 

sector to be read has already spun past the read/write 

head, the sector cannot be read until the next revolution 

of the disk brings the cylinder by the read/write head. In 

a worst-case scenario, the disk must wait almost a full 

revolution. To avoid this problem, sectors may be 

interleaved. The degree of interleaving is determined by 

how far the disk revolves in the time from the end of one 

I/O operation until the controller can issue a subsequent 

I/O operation. The sector layout, given different degrees 

of interleaving, is illustrated in Fig. 6.  

For most modem hard-disk controllers, interleaving is not used. The controller 

contains sufficient memory to store an entire track, so a single I/O operation may 

be used to read all the sectors on a track. Interleaving is more commonly used 

on less sophisticated disk systems, like floppy disks.  
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Figure 6: Interleaving 

Most operating systems also provide the ability for disks to be divided into one or 

more virtual disks called partitions. On personal computers, Unix, Windows, and 

DOS all adhere to a common partitioning scheme so that they all may co-reside 

on a single disk. 

Before files can be written to a disk, an empty file system must be created on a 

disk partition. This requires the various data structures required by the file system 

to be written to the partition, and is known as a high-level format or logical format. 

A file system is not required to make use of a disk. Some operating systems 

allow applications to write directly to a disk device. To an application, a directly 

accessible disk device is just a large sequential collection of storage blocks. In 

such a case, it is the responsibility of the application to impose an order on the 

information written there.  

7.2.5 RAID (Redundant Array of Inexpensive Disks) 
RAID is the organization of multiple disks into a large, high performance logical 

disk. Disk arrays stripe data across multiple disks and access them in parallel to 

achieve higher data transfer rates on large data accesses and higher I/O rates on 

small data accesses. 

Data striping also results in uniform load balancing across all of the disks, 

eliminating hot spots that otherwise saturate a small number of disks, while the 

majority of disks sit idle. But large disk arrays, however are highly vulnerable to 

disk failures. So the solution to the problem of lower reliability (Reliability is how 

well a system can work without any failures in its components) in disk arrays is to 

improve the availability (Availability is how well a system can work in times of a 

failure. If a system is able to work even in the presence of a failure of one or 

more system components, the system is said to be available) of the system. This 
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can be achieved by employing redundancy in the form of error-correcting codes 

to tolerate disk failures. But redundancy has its own limitations. Every time there 

is a write operation, this change has to be reflected in the disks storing redundant 

information, making write operation a time consuming one. Also, keeping the 

redundant information consistent in the presence of concurrent I/O operation can 

be difficult.  

The Need for RAID 
The two keywords, Redundant and Array, are self explanatory.  

 An array of multiple disks accessed in parallel will give greater throughput. 

  Redundant data on multiple disks provides fault tolerance. 

With a single hard disk, you cannot protect yourself against the costs of a disk 

failure, the time required to obtain and install a replacement disk, reinstall the 

operating system, restore files from backup tapes, and repeat all the data entry 

performed since the last backup was made. With multiple disks and a suitable 

redundancy scheme, your system can stay up and running when a disk fails, and 

even while the replacement disk is being installed and its data restored.  

In RAID configuration, we need to simultaneously achieve the following goals:  

 Maximize the number of disks being accessed in parallel. 

 Minimize the amount of disk space being used for redundant data. 

 Minimize the overhead required to achieve the above goals. 

Data striping and Redundancy 
There are 2 important concepts to be understood in the design and 

implementation of disk arrays: (1) Data striping, for improved performance & (2) 

Redundancy for improved availability. Data striping transparently distributes data 

over multiple disks to make them appear as a single fast, large disk and 

improves aggregate I/O performance by allowing multiple I/Os to be serviced in 

parallel. There are 2 aspects to this parallelism.  

 Multiple, independent requests can be serviced in parallel by separate disks. 

This decreases the queuing time seen by I/O requests. 

 Single, multiple block requests can be serviced by multiple disks acting in co-

ordination. This increases the effective transfer rate seen by a single request.  
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Most of the redundant disk array organizations can be distinguished based on 2 

features:  

1. The granularity of data interleaving and  

2. The way redundant data is computed & stored across the disk array.  

Data interleaving can be either fine grained or coarse grained. Fine grained disk 

arrays conceptually interleave data in relatively small units so that all I/O 

requests, regardless of their size, access all of the disks in the disk array. This 

results in very high data transfer rate for all I/O requests but has the 

disadvantages that only one logical I/O request can be in service at any given 

time and all disks must waste time positioning for every request.  Coarse grained 

disk arrays interleave data in relatively large units so that small I/O requests need 

access only a small number of disks while large requests can access all the disks 

in the disk array. This allows multiple small requests to be serviced 

simultaneously while still allowing large requests to see the higher transfer rates 

afforded by using multiple disks.  

Redundancy 
To improve the reliability of the array of disks, redundancy is incorporated in the 

array of disks. This redundancy brings up two problems:  
1. Selecting the method for computing the redundant information.  

2. Selecting a method for distribution of the redundant information across the disk 

array.  

The distribution method can be classified into 2 different schemes:  

•  Schemes that concentrate redundant information on a small number of disks. 

•  Schemes that distribute redundant information uniformly across all of the 

disks. 

It is worth to mention that selecting between the many possible data striping and 

redundancy schemes involves complex tradeoffs between availability, 

performance and cost.  There are many types of RAID organizations which are 

given below: 

7.2.5.1 Non-Redundant Disk array (RAID Level 0)  
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RAID level 0 has the minimum cost because it does not employ redundancy at all 

so it never needs to update redundant information. But it does not have the best 

performance. Redundancy schemes can perform better on reads by selectively 

scheduling requests on the disk with the shortest expected seek and rotational 

delays. Without, redundancy, any single disk failure will result in data-loss  

The size of a data block i.e. "stripe width", varies with the implementation, but is 

always at least as large as a disk's sector size. Sequential blocks of data are 

written across multiple disks in stripes, as follows: 

 Figure 7 - RAID 0 
7.2.5.2 Mirrored (RAID Level 1)  
The mirroring uses twice as many disks as RAID Level 0. Whenever data is 

written to a disk the same data is also written to a redundant disk, so that there 

are always two copies of the information. When data is read, it can be retrieved 

from the disk with the shorter queuing, seek and rotational delays. If a disk fails, 

the other copy is used to service requests.  

 Figure 8 – RAID 1 
7.2.5.3 Memory-Style (RAID Level 2)  
Memory systems have provided recovery from failed components with much less 

cost than mirroring by using Hamming codes. Hamming codes contain parity for 

distinct overlapping subsets of components. In one version of this scheme, four 

disks require three redundant disks, one less than mirroring. Since the number of 

redundant disks is proportional to the log of the total number of the disks on the 

system, storage efficiency increases as the number of data disks increases.  
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If a single component fails, several of the parity components will have 

inconsistent values, and the failed component is the one held in common by each 

incorrect subset. The lost information is recovered by reading the other 

components in a subset, including the parity component, and setting the missing 

bit to 0 or 1 to create proper parity value for that subset. Thus, multiple redundant 

disks are needed to identify the failed disk, but only one is needed to recover the 

lost information.  

A RAID 2 system would normally have as many data disks as the word size of 

the computer, typically 32. In addition, RAID 2 requires the use of extra disks to 

store an error-correcting code for redundancy. With 32 data disks, a RAID 2 

system would require 7 additional disks for a Hamming-code ECC.  

 Figure 9 – RAID 2 

7.2.5.4 Bit-Interleaved Parity (RAID Level 3)  
In this scheme the parity disk is written in the same way as the parity bit in 

normal Random Access Memory (RAM), where it is the Exclusive Or of the 8, 16 

or 32 data bits. In RAM, parity is used to detect single-bit data errors, but it 

cannot correct them because there is no information available to determine which 

bit is incorrect. With disk drives, however, we rely on the disk controller to report 

a data read error. Knowing which disk's data is missing, we can reconstruct it as 

the Exclusive Or (XOR) of all remaining data disks plus the parity disk.  

In a bit-interleaved, parity disk array, data is conceptually interleaved bit-wise 

over the data disks, and a single parity disk is added to tolerate any single disk 

failure. Each read request accesses all data disks and each write request 

accesses all data disks and the parity disk. Thus, only one request can be 

serviced at a time. Because the parity disk contains only parity and no data, the 

parity disk cannot participate on reads, resulting in slightly lower read 

performance than for redundancy schemes that distribute the parity and data 
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over all disks. Bit-interleaved, parity disk arrays are frequently used in 

applications that require high bandwidth but not high I/O rates. They are also 

simpler to implement than RAID levels 4, 5, and 6.  

Here, the parity disk is written in the same way as the parity bit in normal 

Random Access Memory (RAM), where it is the Exclusive Or of the 8, 16 or 32 

data bits. In RAM, parity is used to detect single-bit data errors, but it cannot 

correct them because there is no information available to determine which bit is 

incorrect. With disk drives, however, we rely on the disk controller to report a 

data read error. Knowing which disk's data is missing, we can reconstruct it as 

the Exclusive Or (XOR) of all remaining data disks plus the parity disk.  

 Figure 10 – RAID 3 
7.2.5.5 Block-Interleaved Parity (RAID Level 4)  
The block-interleaved, parity disk array is similar to the bit-interleaved, parity disk 

array except that data is interleaved across disks of arbitrary size rather than in 

bits. The size of these blocks is called the striping unit. Read requests smaller 

than the striping unit access only a single data disk. Write requests must update 

the requested data blocks and must also compute and update the parity block. 

For large writes that touch blocks on all disks, parity is easily computed by 

exclusive-oring the new data for each disk. For small write requests that update 

only one data disk, parity is computed by noting how the new data differs from 

the old data and applying those differences to the parity block. Small write 

requests thus require four disk I/Os: one to write the new data, two to read the 

old data and old parity for computing the new parity, and one to write the new 

parity. This is referred to as a read-modify-write procedure. Because a block-

interleaved, parity disk array has only one parity disk, which must be updated on 

all write operations, the parity disk can easily become a bottleneck. Because of 
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this limitation, the block-interleaved distributed parity disk array is universally 

preferred over the block-interleaved, parity disk array.  

 Figure 11 – RAID 4 
7.2.5.6 Block-Interleaved Distributed-Parity (RAID Level 5)  
The block-interleaved distributed-parity disk array eliminates the parity disk 

bottleneck present in the block-interleaved parity disk array by distributing the 

parity uniformly over all of the disks. An additional, frequently overlooked 

advantage to distributing the parity is that it also distributes data over all of the 

disks rather than over all but one. This allows all disks to participate in servicing 

read operations in contrast to redundancy schemes with dedicated parity disks in 

which the parity disk cannot participate in servicing read requests. Block-

interleaved distributed-parity disk array have the best small read, large write 

performance of any redundancy disk array. Small write requests are somewhat 

inefficient compared with redundancy schemes such as mirroring however, due 

to the need to perform read-modify-write operations to update parity. This is the 

major performance weakness of RAID level 5 disk arrays.  

The exact method used to distribute parity in block-interleaved distributed-parity 

disk arrays can affect performance. Following figure illustrates left-symmetric 

parity distribution.  
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     Figure 12 
Each square corresponds to a stripe unit. Each column of squares corresponds 

to a disk. P0 computes the parity over stripe units 0, 1, 2 and 3; P1 computes 

parity over stripe units 4, 5, 6, and 7 etc. A useful property of the left-symmetric 

parity distribution is that whenever you traverse the striping units sequentially, 

you will access each disk once before accessing any disk device. This property 

reduces disk conflicts when servicing large requests.  

 Figure 13 – RAID 5 

7.2.5.7 P+Q redundancy (RAID Level 6)  
Parity is a redundancy code capable of correcting any single, self-identifying 

failure. As large disk arrays are considered, multiple failures are possible and 

stronger codes are needed. Moreover, when a disk fails in parity-protected disk 

array, recovering the contents of the failed disk requires successfully reading the 

contents of all non-failed disks.  The probability of encountering an uncorrectable 

read error during recovery can be significant. Thus, applications with more 

stringent reliability requirements require stronger error correcting codes.  

Once such scheme, called P+Q redundancy, uses Reed-Solomon codes to 

protect against up to two disk failures using the bare minimum of two redundant 

disk arrays. The P+Q redundant disk arrays are structurally very similar to the 
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block-interleaved distributed-parity disk arrays and operate in much the same 

manner. In particular, P+Q redundant disk arrays also perform small write 

operations using a read-modify-write procedure, except that instead of four disk 

accesses per write requests, P+Q redundant disk arrays require six disk 

accesses due to the need to update both the `P' and `Q' information.  

7.2.5.8 Striped Mirrors (RAID Level 10)  
RAID 10 was not mentioned in the original 1988 article that defined RAID 1 

through RAID 5. The term is now used to mean the combination of RAID 0 

(striping) and RAID 1 (mirroring). Disks are mirrored in pairs for redundancy and 

improved performance, then data is striped across multiple disks for maximum 

performance. In the diagram below, Disks 0 & 2 and Disks 1 & 3 are mirrored 

pairs.  

Obviously, RAID 10 uses more disk space to provide redundant data than RAID 

5. However, it also provides a performance advantage by reading from all disks 

in parallel while eliminating the write penalty of RAID 5. In addition, RAID 10 

gives better performance than RAID 5 while a failed drive remains unreplaced. 

Under RAID 5, each attempted read of the failed drive can be performed only by 

reading all of the other disks. On RAID 10, a failed disk can be recovered by a 

single read of its mirrored pair.  

    Figure 14 

7.3 Summary 
As processor and main memory speeds increase more rapidly than those of 

secondary storage devices, optimizing disk performance has become important 

to realize optimal performance. As the platters of disk spin, each read-write head 

sketches out a circular track of data on a disk surface to access. The time it takes 

for the head to move from its current cylinder to the one containing the data 

record being accessed is called the seek time. The time it takes for data to rotate 
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from its current position to a position adjacent to the read/write head is called 

latency time. Many processes can generate requests for reading and writing data 

on a disk simultaneously. Because these processes sometimes make requests 

faster than they can be serviced by the disk, queues build up to hold disk 

requests. Some early computing systems simply serviced these requests on a 

first-come-first-served (FCFS) basis which is a fair method, but when the request 

rate becomes heavy, FCFS results in long waiting times. To reduce the time 

spent seeking records, it seems reasonable to order the request queue in some 

other manner. This reordering is called disk scheduling. The two most common 

types of scheduling are seek optimization and rotational optimization which are 

evaluated by comparing their throughput, mean response time and variance of 

response times. 

Shortest-seek-time-first (SSTF) scheduling services the request that is closest to 

the read-write head's current cylinder. By reducing average seek times, SSTF 

achieves higher throughput rates than FCFS, and mean response times tend to 

be lower for moderate loads. The SCAN scheduling strategy reduces unfairness 

and variance of response times by choosing the request that requires the 

shortest seek distance in a preferred direction. Thus, if the preferred direction is 

currently outward, the SCAN strategy chooses the shortest seek distance in the 

outward direction. However, because SCAN ensures that all requests in a given 

direction will be serviced before the requests in the opposite direction, it offers a 

lower variance of response times than SSTF.  

The circular SCAN (C-SCAN) modification to the SCAN strategy moves the arm 

from the outer cylinder to the inner cylinder, servicing requests on a shortest-

seek basis. When the arm has completed its inward sweep, it jumps to the 

outermost cylinder, then resumes its inward sweep processing requests. C-

SCAN maintains high levels of throughput while further limiting variance of 

response times by avoiding the discrimination against the innermost and 

outermost cylinders.  

NThe FSCAN and -Step SCAN modifications to the SCAN strategy eliminate the 

possibility of indefinitely postponing requests. FSCAN uses the SCAN strategy to 
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service only those requests waiting when a particular sweep begins. Requests 

arriving during a sweep are grouped together and ordered for optimum service 

during the return sweep. N-Step SCAN services the first n requests in the queue 

using the SCAN strategy. When the sweep is complete, the next n requests are 

serviced. Arriving requests are placed at the end of the request queue, which 

prevents requests in the current sweep from being indefinitely postponed. The 

LOOK variation of the SCAN strategy "looks" ahead to the end of the current 

sweep to determine the next request to service. If there are no more requests in 

the current direction, LOOK changes the preferred direction and begins the next 

sweep, stopping when passing a cylinder that corresponds to a request in the 

queue. This strategy eliminates unnecessary seek operations experienced by 

other variations of the SCAN strategy by preventing the read/write head from 

moving to the innermost or outermost cylinders unless it is servicing a request to 

those locations.  

The circular LOOK (C-LOOK) variation of the LOOK strategy uses the same 

technique as C-SCAN to reduce the bias against requests located at extreme 

ends of the platters. When there are no more requests on a current sweep, the 

read/write head moves to the request closest to the outer cylinder and begins the 

next sweep.  Sector queuing is a scheduling algorithm for fixed head devices 

such as drums.  

RAID is the organization of multiple disks to achieve higher data transfer rates on 

large data accesses and higher I/O rates on small data accesses. Data striping 

also results in uniform load balancing across all of the disks. To cope with the 

problem of reliability, redundancy is introduced which has its own limitations at 

the time of write operations. A number of RAID organizations are available with 

their merits and demerits. 

7.4 Keywords 
 Seek time: To access a block from the disk, first of all the system has to 

move the read/write head to the required position. The time consumed in 

moving the head to access a block from the disk is known as seek time. 
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 Latency time: the time consumed in rotating the disk to move the desired 

block under the read/write head.  

 Transfer time: The time consumed in transferring the data from the disk 

to the main memory is known as transfer time.  

 RAID: It is the Redundant Array of Inexpensive Disks, an organization of 

multiple disks into a large, high performance logical disk. 

7.5 SELF ASSESMENT QUESTIONS (SAQ) 
1. Compare the throughput of scan and C-scan assuming a uniform 

distribution of requests. 

2. What do you understand by seek time, latency time, and transfer time? 

Explain. 

3. Shortest Seek Time First favors tracks in the center of the disk. On an 

operating system using Shortest Seek Time First, how might this affect the 

design of the file system? 

4. When there is no outstanding request in the queue, all the disk-scheduling 

algorithms reduce to First Come First Serve scheduling? Explain why? 

5. The entire disk scheduling algorithms except First Come First Serve may 

cause starvation and hence not truly fair. 

- Explain why. 

- Come up with a scheme to ensure fairness. 

- Why is fairness an important goal in a time-sharing system?  

6. What do you understand by RAID? What are the objectives of it? Explain. 

7. What are the limitations due to redundancy in RAID? What are the 

advantages of redundancy? Explain. 

8. Write a detailed note on different RAID organizations? Discuss their merits 

and demerits also. 
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8.0 Objectives 

The objectives of this lesson are to identify the factors motivating the use and 

development of distributed and network operating systems and make the 

students familiar with the important issues involved in the development of 

network and distributed operating systems. 

8.1 Introduction 
The inherent evolution of more powerful processors does not to satisfy the 

demand for computation. Most of those computations are highly dependant on 

time. We do not want to wait for an email to arrive at the same time as normal 

mail would or a certain simulation to finish till a competitor has already done it 

and started to ship out the resulting product. As we can see from those 

examples, the computational power needs to meet commercial and time 

constraints. Not the overall average in computational power is important, but how 

deadlines require peak times and how the system scales to such events. 

Although there are examples where response time does not play the crucial role, 

those applications are seldom. In applications where a missing of a deadline 

directly or indirectly leads to a human catastrophe, time is a hard constraint. 

Those hard real-time constraints are getting more important as computer assist 

more and more our daily life. Two approaches are taken to meet the demand for 

computations. One is the steady improvement of hardware. CPU improves in an 

incredible speed, but to do so is quite costly and meets physical barriers. The 

second one tries to relax this situation by working with more than one CPU on a 

problem in parallel. It is useful to distinguish two kinds of CPU interconnections in 

which the response time and data transfer rate are the differing factors. Loosely 

coupled CPUs are those, which work together and possible communication is 

slow, distant and more unreliable. This setup called multicomputer and make up 

distributed systems. An example would be computers connected via modem or 
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LAN. Multiprocessors on the other hand are closely coupled CPUs with a high 

bandwidth and response time often working on a shared memory. The 

communication is based on a multi processor board. These systems are not 

considered to be distributed systems, although it is not uncommon that they are 

used in a distributed environment. Some systems are inherently distributed. An 

example is the inventory and store management of a company. Stores are 

located all over the country and loosely interconnected with each other to be able 

to perform global optimization. It is hardly feasible to centralize this structure. 

8.2 Presentation of Contents 
8.2.1 Evolutions of Modern operating systems 

8.2.2 Networking 

8.2.2.1 Network Topologies

8.2.3 Types of Networks 

8.2.3.1 LAN - Local Area Network 

8.2.3.2 WAN - Wide Area Network 

8.2.4 Network Operating System 

8.2.5 Distributed Operating System 

8.2.5.1 Motivations for distributed systems 

8.2.5.2 Distributed system architectures 

8.2.5.3 Distributed Computation Paradigm 

8.2.5.3.1 Data and Computation Migration 

8.2.5.3.2 Client-server Computing 

  8.2.5.3.3 Remote Procedure Call (RPC) 

8.2.5.3.4 Remote evaluation 

8.2.5.4 Important aspects of distributed systems 

8.2.5.4.1 Transparency 

8.2.5.4.2 Flexibility 

8.2.5.4.3 Reliability 

8.2.5.4.4 Performance 

8.2.5.4.5 Scalability 

8.2.5.4.6 Consistency 
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8.2.5.4.7 Robustness 

8.2.1 Evolutions of Modern operating systems 
The following table provides a brief overview of the evolution of modern operating 

systems. 

Generation System Characteristics Goals 

First  Centralized 

Operating 

System 

Process management Resource management, 

extended machine 

(Virtuality) 

Memory Management 

I/O management 

File management 

Second Network 

operating 

system 

Remote access, information 

exchange, network browsing

Resource sharing 

(Interoperability) 

Third Distributed 

Operating 

system 

Global view of: file system, 

name space, time, security, 

computational power 

Single computer view of 

multiple computer 

systems (Transparency) 

Fourth Cooperative 

autonomous 

System 

Open and cooperative 

distributed applications 

Cooperative work 

(Autonomicity) 

Network operating systems are straightforward extension of a traditional 

operating system to facilitate resource sharing and information exchange. 

Network operating systems are characterized by information exchange divided 

and implemented at various levels i.e. from communication sub-network to 

transport services and by inclusion of a transport layer and the support for 

network applications like remote login, file transfer, messaging, network 

browsing, and remote execution. 

While in Distributed operating systems, sharing of resources and coordination of 

distributed activities in networked environments are the main goals in the design. 

The key distinction between a network Operating System and a distributed 

Operating System is the concept of transparency: concurrency transparency, 

location transparency, parallelism and performance transparency, migration 
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transparency, and replication transparency etc. Distributed operating systems 

consist of three major components: 

 Coordination of distributed processes 

 Management of distributed resources 

 Implementation of distributed algorithms 

8.2.2 Networking 
The key component in network operating system and distributed operating 

system is network. Computer networking enables its users to share the 

resources, speed up computations and communicate with other users in the 

network. The important issues in networking are the types of network, network 

topologies, connection and routing strategies, and communications protocols. 

8.2.2.1 Network Topologies

In computer networking, topology refers to the layout of connected devices. 

Network topologies are categorized into the following basic types: (a) bus, (b) 

ring, (c) star, (d) tree, and (e) mesh. More complex networks can be built as 

hybrids of two or more of the above basic topologies.  

(a) Bus Topology: Bus networks use a common backbone to connect all 

devices. A single cable i.e. backbone functions as a shared communication 

medium to which devices are attached with an interface connector. A device 

wanting to communicate with another device on the network sends a broadcast 

message onto the wire that all other devices see, but only the intended recipient 

actually accepts and processes the message.  

 
Ethernet bus topologies are relatively easy to install and don't require much 

cabling compared to the alternatives. 10Base-2 ("ThinNet") and 10Base-5 

("ThickNet") both were popular Ethernet cabling options many years ago for bus 

topologies. However, bus networks work best with a limited number of devices. If 
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more than a few dozen computers are added to a network bus, performance 

problems will likely result. In addition, if the backbone cable fails, the entire 

network effectively becomes unusable.  

(b) Ring Topology: In a ring network, every device has exactly two 

neighbors for communication purposes. All messages travel through a ring in the 

same direction. A failure in any cable or device breaks the loop and can take 

down the entire network. To implement a ring network, one typically uses FDDI, 

SONET, or Token Ring technology. Ring topologies are found in some office 

buildings or school campuses.  

 
(c) Star Topology: Many home networks use the star topology. A star 

network features a central connection point called a "hub" that may be a hub, 

switch or router. Devices typically connect to the hub with Unshielded Twisted 

Pair (UTP) Ethernet. Compared to the bus topology, a star network generally 

requires more cable, but a failure in any star network cable will only take down 

one computer's network access and not the entire LAN.  

 
(d) Tree Topology: Tree topologies integrate multiple star topologies 

together onto a bus. In its simplest form, only hub devices connect directly to the 

tree bus and each hub functions as the "root" of a tree of devices. This bus/star 
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hybrid approach supports future expandability of the network much better than a 

bus or a star alone.  

 
(e) Mesh Topology: Mesh topologies involve the concept of routes. 

Unlike each of the previous topologies, messages sent on a mesh network can 

take any of several possible paths from source to destination. Some WANs, most 

notably the Internet, employ mesh routing. A mesh network in which every device 

connects to every other is called a full mesh. As shown in the illustration below, 

partial mesh networks also exist in which some devices connect only indirectly to 

others.  

 
8.2.3 Types of Networks 
Networks have been broadly categorized as LAN and WAN. 

8.2.3.1 LAN - Local Area Network 
A LAN connects network devices over a relatively short distance. A networked 

office building, school, or home usually contains a single LAN, though sometimes 
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one building will contain a few small LANs (perhaps one per room), and 

occasionally a LAN will span a group of nearby buildings. In TCP/IP networking, 

a LAN is often but not always implemented as a single IP subnet. In addition to 

operating in a limited space, LANs are also typically owned, controlled, and 

managed by a single person or organization. They also tend to use certain 

connectivity technologies, primarily Ethernet and Token Ring.  

8.2.3.2 WAN - Wide Area Network 
As the term implies, a WAN spans a large physical distance. The Internet is the 

largest WAN, spanning the Earth.  A WAN is a geographically-dispersed 

collection of LANs. A network device called a router connects LANs to a WAN. In 

IP networking, the router maintains both a LAN address and a WAN address.  A 

WAN differs from a LAN in several important ways. Most WANs (like the Internet) 

are not owned by any one organization but rather exist under collective or 

distributed ownership and management. WANs tend to use technology like ATM, 

Frame Relay and X.25 for connectivity over the longer distances.  

8.2.4 Network Operating System 
The objective of network operating system is to share resources across two or 

more computer systems each having its own operating system.  There is a 

network Operating System layer between the kernel and the user in network 

operating system. The processes interact with the network Operating System 

layer which analyze whether its requirements can be furnished by the local OS, 

and if not, then it interacts with network Operating System layer of the other node 

which implements the access to the resource with the help of local Operating 

System of that node as shown in the following figure.  

The main advantage of network operating system is that it is easy to implement it 

on top of a conventional operating system. But there are demerits also. The two 

most important requirements of an Operating System are: (a) Facilitate the 

utilization of resources, (b) Optimize utilization of resources. The Network 

Operating System satisfies the first requirement but it does not satisfy the second 

requirement. 
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8.2.5 Distributed Operating System 
As discussed earlier, the key distinction between a network Operating System 

and a distributed Operating System is the concept of transparency: concurrency 

transparency, location transparency, parallelism and performance transparency, 

migration transparency, and replication transparency 

8.2.5.1 Motivations for distributed systems 
Following are the factors motivation the use and development of distributed 

operating systems: 

(a) Resource Sharing: Resource sharing is required when application running 

on one system may require the resources possessed by some other system; 

such one machine may require the line printer which is attached with some 

other system. 

(b) Computation speed up: The price/service ratio between mainframes and 

PC workstations has changed. Having 10 machines with 100 MIPS than one 

with 1000 MIPS has become more economical. But combining these 10 

computers puts a burden on the system design. Certain parallel algorithms 

and computational problems require high constant interaction of CPUs and 

other do not. So computation speed-up is achieved by decomposing a 

computation into many sub-computations and spreading these sub-

computations across various nodes of the system.  
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(c) Incremental growth: With distributed architecture it is easy to enhance the 

capability of the systems. Distributed architecture facilitates the up gradation 

of existing components as well as addition of new sub-systems.  

(d) Reliability: Another motivation for distributed systems is reliability. The 

probability of the system to fail is decreased by involving more than one 

computer. This redundancy requires the transparency that the different nodes 

in a cluster are able to take over the work of a failing machine and only 

jeopardize the quality of service. Developing software is the most complex 

issue in distributed systems. The correctness of concurrent working 

processes, the detection of faulty nodes and timing constraints in the network 

impose serious problems for the system designer. Distributed operating 

systems should be able to assist the design process by keeping complex 

tasks of synchronization, optimal process allocation and redundancy away 

from the programmers. So transparency to the programmer is another 

requirement for feasible distributed systems. Hiding complexity by 

transparency becomes necessary in such complex systems. 

Although these issues are known for a long time, modern operating systems 

have huge problems accommodating changes towards a distributed 

environment. Traditionally single CPU computers did not require complex 

synchronization and changing these systems to cope with real parallelism has 

shown to be greatly complicated since starting the design of new operating 

systems from scratch is hardly feasible because legacy software is still 

economical to use. This is another reason for transparency. New designed 

operating systems tend to tackle the problems with small interconnected 

modules. These are microkernel systems in which each module tries to solve a 

small part of the big problems. Since development of distributed systems is still 

an unknown issue, micro-kernels are way more flexible to accommodate 

changes in the design. This paradigm of modules is expected to creep into 

monolithic kernels.  

8.2.5.2 Distributed system architectures 
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Two main different models can be distinguished for sharing CPUs. The 

workstation and the processor pool model: 

Workstation-server model:  In it a workstation may serve as a stand-alone 

computer or as a part of an overall network. In the workstation model the 

cooperating CPUs are spread over the entire network. Diskless workstations can 

be used to share common data on a file server while processing is done locally. 

Workstations with disks can be used to increase reliability of persistent data with 

a transparent distributed file system. This has proven to be hard and no standard 

distributed file system exists today which solve all problems of such an approach. 

Consistency in such a configuration is hard to maintain. Some distributed 

databases exist which handle those problems with transactions. Atomic 

transactions are also used to synchronize processes. 

 
Workstation model Processor-pool model 

Processor-pool model: It allows collecting of all processing power in one place 

and leaving the users with only a terminal. The multiprocessor model of a 

processor pool is a centralized approach. X window terminals share a pool of 

processors at a centralized point. The benefit is scalability. As soon as new 

computational needs arise, additional processors can easily be plugged into the 

processor board which is shared evenly among all users. Administration of a 

consistent environment is easily possible. The main disadvantages of this 

approach are the introduction of a single point of failure and high cost of 

multiprocessors. For those reasons processor pools are not considered to be 

distributed systems although it might be argued that the X terminals provide 

computational services to remote locations. Scheduling decisions are far easier 

in processor pools. The locations of processes in a SMP (Symmetric Multi-
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Processing) system do not play a crucial role. It is only slightly beneficial to place 

processes on CPU where they ran on before, to avoid unnecessary cache 

invalidations on the die. In some multiprocessors, NUMA (non-uniform memory 

allocation) architecture makes it necessary to place processes on processors 

close to their memory. But this is far less complex that the considerations in the 

workstation model where heterogeneous architectures have to work together and 

communication is likely to brake down. 

A truly distributed operating system gives the user the illusion to work on a single 

machine. It is not apparent, that the system the system consists out of several 

loosely coupled workstations. Current network operating systems do not deliver 

that. In Windows or Linux the user has to define, on which machines the service 

should run. These systems are slowly maturing in the SMP mode, where 

multiprocessors share a single memory space. Often these operating systems 

still lack efficiency, because global locks where used to make processes run 

consistently on more than on processor. Since locking the whole kernel memory 

is not necessary in all cases of synchronization, fine grained locking is just about 

to get introduced. For multicomputers those systems still lack the single-image 

illusion. They communicate over standard protocols but a centralized control is 

remained. For this to disappear, a single distributed system call interface and file 

system has to emerge. For example all kernels need to cooperate and decide 

where to run a certain process. Decentralized control poses a huge challenge to 

the software design and the mathematical model is hardly understood.  

8.2.5.3 Distributed Computation Paradigm 
The important issue in distributed system is to access and manipulate the data in 

another site of the system because data may be replicated to ensure high 

availability or may be distributed between many sites to optimize performance. In 

this section the fundamental modes are discussed to access computations and 

data in distributed systems. 

8.2.5.3.1 Data and Computation Migration 
Migration is the movement of data and/or code from one location to another in a 

distributed environment. Irrespective of granularity of the distributed systems the 
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ultimate aim of migration is efficient program execution with optimal use of 

resources and tolerable performance. On a distributed system when a 

computation attempts to access data from another processor, communication 

has to be performed to satisfy the reference. For example one of the important 

factors for efficient program execution on a distributed memory parallel system is 

the locality of data accesses. If there are many non-local memory accesses it is 

unlikely that the program would exhibit good speedup. Two mechanisms for 

accessing remote data are computation migration and data migration, which may 

be viewed as duals. Computation migration takes the advantage of spatial 

locality of the objects while data migration takes advantage of the temporal 

locality of the data objects. Data migration involves moving remote data to the 

host/processor where a request is made. For example in case of Distributed File 

System when a client requests access to file that is residing on the server the file 

is moved to the client’s host where it gets cached. In fact more number of file 

blocks are moved than what is requested and hence subsequent requests are 

satisfied locally on client’s host. Data migration can perform poorly when the size 

of the data is large. In addition it performs poorly for write shared data because of 

the communication involved in maintaining consistency: when there are many 

writes to a replicated datum, it is expensive to ensure consistency. Some of the 

advantages are that data migration can improve the locality of accesses since 

after the data is fetched subsequent accesses are local and this model is good 

when there is high volume of read shared data. 

Computation migration involves moving a thread of computation to 

host/processor where the data is located. It provides a flexible framework for 

designing distributed systems where the desired non-local computations need 

not be known in advance at the execution site. But spatial locality of data is not 

the only reason for doing computation migration. Computation migration can also 

be used for load balancing and fault recovery. Computation migration is also 

referred to as mobile computation or mobile agents where code along with its 

execution state travels on a heterogeneous network until it achieves its goal. This 
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does not include cases where the code is loaded from the shared disk or from 

the web (e.g. Java applet). Some of the advantages of this model include: 

Efficiency: If repeated interactions with the remote site are required, it can be 

more effective to send the code to remote site and make it interact locally. This 

reduces the inter-machine communication cost thus using the network bandwidth 

efficiently even with high latency. Also it is possible to do load balancing in this 

model by dynamically assessing the system load and redistributing the work 

during their lifetime. This helps in achieving better throughput with efficient use of 

host resources. 

Storage: Storage requirements are reduced by not having to store a copy of the 

program at all sites. In this model loading is done on demand. 

Fault Recovery: Unit of execution (which includes code and execution state) can 

be moved during gradual degradation of performance of the system. If the state 

of the program can be stored persistently it also possible to move the program 

even after it crashes. 

Flexibility: With this model it is possible for automatic update of the software, as 

soon it is available at the software vendor irrespective of the number of clients. It 

could also be very well used in the web push model instead of the traditional pull 

model. 

Simplified Programming: Distributed programming can be simplified by 

implementing the migration constructs into the programming languages. This 

provides maximum portability and high transparency to the programmer since 

explicit distribution of the application into client and server pieces is no longer 

required. It also allows the programmer to write the programs in a shared-

memory style. 

The disadvantages of computation migration are that the cost of using it depends 

on the amount of computation state that must be moved. If the amount of state is 

large then migration might be fairly expensive. Also when computation migration 

is used satisfying locality of data and if the data is read shared then data 

migration might outperform computation migration. Also in heterogeneous 

distributed environment the differences in the architectures would make 
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computation migration a difficult task. Both data and computation migration can 

reduce the communication overhead by making repeated accesses to the local 

data. As seen data migration involves communication overhead to maintain 

cache-coherency, which is not involved in computation migration. 

8.2.5.3.2 Client-server Computing 

Client-server computing is a distributed application architecture that partitions 

tasks or work loads between service providers (servers) and service requesters, 

called clients. Often clients and servers operate over a computer network on 

separate hardware. A server machine is a high-performance host that is running 

one or more server programs which share its resources with clients. A client does 

not share any of its resources, but requests a server's content or service function. 

Clients therefore initiate communication sessions with servers which await 

incoming requests. 

Client-server describes the relationship between two computer programs in 

which one program, the client program, makes a service request to another, the 

server program. For example, a web browser is a client program at the user 

computer that may access information at any web server in the world. To check 

your bank account from your computer, a web browser client program in your 

computer forwards your request to a web server program at the bank. That 

program may in turn forward the request to its own database client program that 

sends a request to a database server at another bank computer to retrieve your 

account balance. The balance is returned to the bank database client, which in 

turn serves it back to the web browser client in your personal computer, which 

displays the information for you. 

Each instance of the client software can send data requests to one or more 

connected servers. In turn, the servers can accept these requests, process them, 

and return the requested information to the client. Although this concept can be 

applied for a variety of reasons to many different kinds of applications, the 

architecture remains fundamentally the same. 

The most basic type of client-server architecture employs only two types of hosts: 

clients and servers. This type of architecture is sometimes referred to as two-tier. 
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It allows devices to share files and resources. The two tier architecture means 

that the client acts as one tier and application in combination with server acts as 

another tier. 

Advantages
 In most cases, client-server architecture enables the roles and responsibilities 

of a computing system to be distributed among several independent 

computers that are known to each other only through a network. This creates 

an additional advantage to this architecture: greater ease of maintenance. For 

example, it is possible to replace, repair, upgrade, or even relocate a server 

while its clients remain both unaware and unaffected by that change. 

 All data is stored on the servers, which generally have far greater security 

controls than most clients. Servers can better control access and resources, 

to guarantee that only those clients with the appropriate permissions may 

access and change data. 

 Since data storage is centralized, updates to that data are far easier to 

administer than what would be possible under a P2P paradigm. Under a P2P 

architecture, data updates may need to be distributed and applied to each 

peer in the network, which is both time-consuming and error-prone, as there 

can be thousands or even millions of peers. 

 Many mature client-server technologies are already available which were 

designed to ensure security, friendliness of the user interface, and ease of 

use. 

 It functions with multiple different clients of different capabilities. 

Disadvantages
 Traffic congestion on the network has been an issue since the inception of the 

client-server paradigm. As the number of simultaneous client requests to a 

given server increases, the server can become overloaded.  

 The client-server paradigm lacks the robustness of a good P2P network. 

Under client-server, should a critical server fail, clients’ requests cannot be 

fulfilled. In P2P networks, resources are usually distributed among many 

nodes. Even if one or more nodes depart and abandon a downloading file, for 
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example, the remaining nodes should still have the data needed to complete 

the download. 

8.2.5.3.3 Remote Procedure Call (RPC) 

It is an Inter-process communication technology that allows a computer program 

to cause a procedure to execute in another address space (commonly on 

another computer on a shared network) without the programmer explicitly coding 

the details for this remote interaction. That is, the programmer would write 

essentially the same code whether the subroutine is local to the executing 

program, or remote. When the software in question is written using object-

oriented principles, RPC may be referred to as remote invocation or remote 

method invocation. 

RPC is an obvious and popular paradigm for implementing the client-server 

model of distributed computing. An RPC is initiated by the client sending a 

request message to a known remote server in order to execute a specified 

procedure using supplied parameters. A response is returned to the client where 

the application continues along with its process. While the server is processing 

the call, the client is blocked (it waits until the server has finished processing 

before resuming execution). 

An important difference between remote procedure calls and local calls is that 

remote calls can fail because of unpredictable network problems. Also, callers 

generally must deal with such failures without knowing whether the remote 

procedure was actually invoked. 

Working of RPC 
The RPC tools make it appear to users as though a client directly calls a 

procedure located in a remote server program. The client and server each have 

their own address spaces; that is, each has its own memory resource allocated 

to data used by the procedure. The following figure illustrates the RPC 

architecture. 

As the illustration shows, the client application calls a local stub procedure 

instead of the actual code implementing the procedure. Stubs are compiled and 

Operating System  



linked with the client application. Instead of containing the actual code that 

implements the remote procedure, the client stub code: 

 Retrieves the required parameters from the client address space. 

 Translates the parameters as needed into a standard NDR format for 

transmission over the network. 

 Calls functions in the RPC client run-time library to send the request and its 

parameters to the server. 

 
The server performs the following steps to call the remote procedure. 

1. The server RPC run-time library functions accept the request and call the 

server stub procedure. 

2. The server stub retrieves the parameters from the network buffer and 

converts them from the network transmission format to the format the server 

needs. 

3. The server stub calls the actual procedure on the server. 

The remote procedure then runs, possibly generating output parameters and a 

return value. When the remote procedure is complete, a similar sequence of 

steps returns the data to the client. 

1. The remote procedure returns its data to the server stub. 

2. The server stub converts output parameters to the format required for 

transmission over the network and returns them to the RPC run-time library 

functions. 

3. The server RPC run-time library functions transmit the data on the network to 

the client computer. 
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The client completes the process by accepting the data over the network and 

returning it to the calling function. 

1. The client RPC run-time library receives the remote-procedure return values 

and returns them to the client stub. 

2. The client stub converts the data from its NDR to the format used by the client 

computer. The stub writes data into the client memory and returns the result 

to the calling program on the client. 

3. The calling procedure continues as if the procedure had been called on the 

same computer. 

The run-time libraries are provided in two parts: an import library, which is linked 

with the application and the RPC run-time library, which is implemented as a 

dynamic-link library (DLL). 

The server application contains calls to the server run-time library functions 

which register the server's interface and allow the server to accept remote 

procedure calls. The server application also contains the application-specific 

remote procedures that are called by the client applications. 

8.2.5.3.4 Remote evaluation 

Remote evaluation is a general term for any technology that involves the 

transmission of executable software programs from a client computer to a server 

computer for subsequent execution at the server. After the program has 

terminated, the results of its execution are sent back to the client. 

Remote evaluation belongs to the family of mobile code technologies. An 

example for remote evaluation is grid computing: An executable task may be 

sent to a specific computer in the grid. After the execution has terminated, the 

result is sent back to the client. The client in turn may have to reassemble the 

different results of multiple concurrently calculated subtasks into one single 

result. 

8.2.5.4 Important aspects of distributed systems 
Five important aspects of true distributed systems are transparency, flexibility, 

reliability, performance and scalability: 

8.2.5.4.1 Transparency 
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Achieving true transparency requires fooling both the user and the programmer 

with a single-image of the system. This Goal is motivated by the desire to hide all 

irrelevant system-dependent details from the user, whenever possible. Shielding 

the system-dependent information from the users is a trade-off between 

simplicity and effectiveness. The different types of transparency are: 
Access transparency: It is characterized by accessing both local and remote 

system objects in a uniform way. 

Location transparency: In it there is no awareness of object locations. It is 

sometimes also called name transparency. Location transparency forbids the 

definition of single machines. Having names specifying a server like 

/serverhostA/news is not transparent. 

Migration transparency: It is the ability to move an object to a different location 

without changing its name. This is also called location independence. Migration 

transparency involves that for example processes are free to move from 

workstation to workstation with their complete state and no implication for the 

program. Local resources need to be proxied to the new location in this case. 

Concurrency transparency: It allows the sharing of objects without 

interference. 

Replication transparency: It may be defined as consistency of multiple 

instances (or partitioning) of files and data. 

Parallelism transparency: It permits parallel activities without users knowing 

how, when and where. Parallel transparency even requires that the programmer 

should not be bothered on how to make his algorithms to run in parallel. 

Achieving this is the holy grail of distributed systems and no current existing 

systems even touch this. 

Failure transparency: It makes the system fault tolerance. 

Performance transparency: It attempts to achieve a consistent and predictable 

performance level even with changes of the system structure or load distribution. 

Size transparency: It permits modularity and scalability. 

Revision transparency: It results into vertical growth of the system. 

8.2.5.4.2 Flexibility 
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Flexibility is very important for a distributed system since changes in this 

environment is inherent and not all design decisions yield to a possible system. It 

should be easy to reverse decisions without losing previous work. Since nobody 

can argue against flexibility it leaves to define what it means for operating 

systems. Two concepts exist today. Micro kernels are mainly responsible for 

sending messages to the user level processes. On the other hand the monolithic 

kernel tries to solve user program requirements under the security shield of the 

kernel space. The performance of micro-kernels may be worse since more 

context switches are required. Also the task of providing security is harder in this 

system, since the security has to be valid in the user space and can not be 

hidden in the kernel space. But once security is achieved in micro kernel, it is no 

problem to extend that to multiple computer. Flexibility includes the friendliness of 

the system and the freedom of the user in using the system - ease of use of the 

system interface and the ability to relate the computation processes in the user’s 

problem domain to the system. The object-oriented strategy is a commonly used 

strategy in achieving this goal. From the system’s view flexibility is the system’s 

ability to evolve and migrate - modularity, scalability, portability and 

interoperability. 
8.2.5.4.3 Reliability 
The goal of reliability is one of the main reasons for a distributed system. 

Availability of services is a main aspect. This can be achieved by decoupling 

dependant services in the design and redundancy. As soon as one machine fails 

another takes over the task. These services and their usage should be fault-

tolerant. The failure of one composed should not bring down the entire program. 
8.2.5.4.4 Performance 
Transparency and reliability are very expensive in terms of performance. Adding 

or multiplying integers remotely is never reasonable, since the message 

overhead eliminates the benefit of doing this remotely. In some cases it is 

impossible to predict, whether a remote operation is a gain in performance, 

because the computation may depend on external events. 
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Efficiency is more complex in distributed systems than in centralized systems 

due to the effect of communication delays. With respect to system load 

distribution, problems such as bottlenecks and congestion either in the physical 

networks or software components must be addressed. Computation speed and 

system throughput can be enhanced through distributed processing and load 

sharing if the communication system is carefully designed. 
8.2.5.4.5 Scalability 
Considerable amount of design effort has to deal on how to extend a system. 

Centralized structures like a database which serves all incoming request may 

soon turn out to be a bottleneck for the whole system. Congestions in network 

traffic prevent the system to grow further in size. A good example of a scalable 

system is the DNS. Here database entries and requests to the root servers are 

highly decentralized in a hierarchical structure. This scalability is paid with the 

price of very slow changes of entries. It sometimes takes days for changes to 

propagate, but even Denial of Service attacks have proven to be hard to conduct 

against the DNS. 
8.2.5.4.5 Consistency 
It is more difficult to achieve in a distributed system due to the lack of global 

information, potential replication and partitioning of data, the possibility of 

component failures and the complexity of interaction among modules. The 

system must be capable of maintaining its integrity with proper concurrency 

control mechanisms and failure handling and recovery procedures. 
8.2.5.4.7 Robustness 
Failures (in communication links, processing nodes and client/server processes) 

are more frequent than in a centralized single computer system. Meaning of 

robustness is (a) fault tolerance: ability to reinitialize itself to a consistent state 

with only some possible degradation of its performance, and (b) security 

8.3 Summary 
Network operating systems, abbreviated as NOS, are characterized by 

information exchange divided and implemented from communication sub-network 

to transport services and by inclusion of a transport layer and the support for 
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network applications like remote login, file transfer, messaging, network 

browsing, and remote execution. NOS include special functions for connecting 

computers and devices into a local-area network (LAN). Some operating 

systems, such as UNIX and the Mac OS, have networking functions built in. The 

term network operating system, however, is generally reserved for software that 

enhances a basic operating system by adding networking features.  

Distributed operating systems are characterized by sharing of resources and 

coordination of distributed activities in networked environments but the key 

distinction between a network Operating System and a distributed Operating 

System is the concept of transparency which hides all the unnecessary details 

from the user. Flexibility, reliability, and scalability are some other important 

aspects of distributed operating systems. Data migration, computation migration, 

Remote Procedure Call, Remote evaluation, and client-server computing are the 

fundamental modes which are used to manipulate the data in distributed 

systems. 

8.4 Keywords 
Data migration: It is moving of remote data to the host/processor where a 

request is made. 

Computation migration: It is moving of a thread of computation to 

host/processor where the data is located. 

Client-server computing: It is a distributed application architecture that 

partitions tasks between service providers (servers) and service requesters, 

called clients. 

Remote Procedure Call: It is an Inter-process communication technology that 

allows a computer program to cause a procedure to execute on another 

computer on a shared network without the programmer explicitly coding the 

details for this remote interaction. 

Remote evaluation: It is the transmission of executable software programs from 

a client computer to a server computer for subsequent execution at the server. 

After the program has terminated, the results of its execution are sent back to the 

client. 
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8.5 Self Assessment Questions (SAQ) 

1. What do you understand by Remote Procedure Call (RPC)? Write a detailed 

note on its implementation. 

2. What do you understand by distributed operating system? What are the 

factors motivating the development of distributed operating systems. 

3. What are the important differences between network operating system and 

distributed operating system? 

4. Write a detailed note on the transparency aspect of distributed operating 

systems. 

5. What is client-server computing? Explain. 

6. What are the different architecture models of distributed operating systems? 

Explain. 

7. Write short notes on following: 

(a) Data and Computation migration 

(b) Remote evaluation 

(c) Network topologies 

(d) LAN and WAN 

8.6 Suggested Readings / Reference Material 
6. Operating System Concepts, 5th Edition, Silberschatz A., Galvin P.B., John 

Wiley & Sons. 
nd7. Systems Programming & Operating Systems, 2  Revised Edition, 

Dhamdhere D.M., Tata McGraw Hill Publishing Company Ltd., New Delhi. 

8. Operating Systems, Madnick S.E., Donovan J.T., Tata McGraw Hill 

Publishing Company Ltd., New Delhi. 

9. Operating Systems-A Modern Perspective, Gary Nutt, Pearson Education 

Asia, 2000. 

10. Operating Systems, Harris J.A., Tata McGraw Hill Publishing Company Ltd., 

New Delhi, 2002. 
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Lesson Number: 9     Writers: Dr. Rakesh Kumar 

UNIX Operating System    Vetter: Dr. Pradeep Bhatia 

 
9.0 Objectives 

The objective of this lesson is  

(A) To give an overview of the important features of UNIX operating system to 

the students. 

(B)  To make the students familiar with some important UNIX commands. 
9.1 Introduction 

UNIX is written in a high-level language giving it the benefit 

of machine independence, portability, understandability, and 

modifiability. Multi-tasking and multi-user are the two most 

important characteristics of UNIX helping it in gaining 

widespread acceptance among a large variety of users.  It was 

the first operating system to bring in the concept of 

hierarchical file structure. It uses a uniform format for 

files called the byte stream making the application programs 

to be written easily. UNIX treats every file as a stream of 

bytes so the user can manipulate his file in the manner he 

wants. It provides primitives that allow more complex and 

complicated programs to be built from the simpler ones. It 

provides very simple user interface both character-based and 

graphical based. It hides the machine architecture from the 

user. This helps the programmer to write different programs 

that can be made to run on different hardware configurations. 

It provides a simple, uniform interface to peripheral devices.  

9.2 Presentation of contents 
9.2.1 Versions   

9.2.2 UNIX Architecture  

9.2.3 Features of UNIX 
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9.2.4 Implementation of Operating System Functions 

9.2.4.1 Process management functions 

9.2.4.2 Memory Management   

9.2.4.3 Device and File functions 

9.2.5 UNIX Kernel 

9.2.5.1 Assumptions about Hardware  

9.2.5.2 Interrupts and Exceptions 

9.2.5.3 Processor Execution Levels 

9.2.6 File System and Internal Structure of Files 

9.2.6.1 Representation of Data in a File 

9.2.6.2 Directories 

9.2.6.3 Blocks and Fragments 

9.2.7 UNIX Shell 

9.2.8 User Interaction with UNIX Operating System 

9.2.8.1 Steps to Login 

9.2.8.2 Changing your Password 

9.2.8.3 UNIX Command Structure 

9.2.9 Common UNIX Commands 

9.2.10 File System, Permissions Changing Order and Group 

9.2.11 UNIX Editors 

9.2.1 Versions   

Some popular versions of UNIX are AIX IBM, XENIX, ULTRIX, 

Sun OS, and BSD.  The original version of UNIX came in the 

late 1960's designed by Ken Thompson at AT&T Bell 

Laboratories. At that time, Bell Labs were busy in designing 

an operating system called Multics with an objective to 

provide a very sophisticated and complex multi-user operating 

system that had support for many advanced features. However, 

Multics failed because the state of art provided by it at that 

time was too complex. So Ken Thompson then started working on 
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a simpler project and he named it UNIX. Dennis Ritchie rewrote 

the source code of UNIX operating system in C language.  

By the year 1977, UNIX I system found its major contribution in the telephone 

companies, providing a good environment for program development, network 

transaction services and real time services. In the year 1977, the UNIX system was 

first ported from a PDP to a non-PDP machine. As the popularity of UNIX grew, 

many other companies came out with their own versions of UNIX and ported it onto 

other new machines. From the year 1977 to 1982, Bell Laboratories combined many 

AT & T variants into a single system and gave it a name UNIX System III. Bell 

Laboratories in this version brought out many new features and advancements. It 

was given the name UNIX System V. The people at University of California at 

Berkeley developed a variant to the UNIX System. Its recent version is called 4.3 

BSD for VAX machines.   

9.2.2  UNIX Architecture  
The high level architecture of the UNIX system is shown in Figure 9.1.  

 

Figure 9.1 System Architecture of UNIX 
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The UNIX system is organized as a set of layers. The Kernel surrounds the 

hardware. The user programs are independent of the hardware on which they are 

running. The programs such as the shell and editors interact with the Kernel by 

invoking a well-defined set of system calls. The system calls get various actions 
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done from the Kernel for the calling program. They interchange data between the 

Kernel and the program. There are many other programs in this layer which from a 

part of the standard system configurations. These programs are known as 

commands. There are several other user created programs present in the same 

layer. The outer-most layer contains other application programs, which can be built 

on top of lower level programs. For instance, the C compiler appears in the 

outermost layer of the figure. It invokes a C preprocessor, compiler, assembler and 

link loader. These are all separate lower level programs. The programming style 

offered by the UNIX system helps us to fulfill a task by combining the existing 

programs.  

9.2.3 Features of UNIX  
The popularity of UNIX is due to the following reasons:  

Portability: UNIX is a portable operating system i.e. it can run successfully on all 

types of computers. The reason of this is that it is written in a high-level language. 

PCs, Macintoshes, Workstations, Minicomputers, Super Computers and Mainframes 

run the UNIX operating system with equal ease.  

Machine Independent: The UNIX system does not expose the machine 

architecture to the user. Thus, it becomes very easy to write applications that can 

run on micros, minis or mainframes.  

Multi-user Capability: UNIX is a multi-user system in which the same computer 

resources like hard disk; memory etc can be used or accessed by many users 

simultaneously. Each user is given a terminal. Each terminal is an input and an 

output device for the user. All the terminals are connected to the main computer. So, 

a user sitting at any terminal can not only uses the data or the software of the main 

computer but also the peripherals like printers attached to it. The main computer is 

called the server or the console. The number of terminals that can be connected to 

the server depends upon the number of parts present in the controller card.  

Multitasking Capability: UNIX has the facility to carry out more than one job at the 

same time. Multitasking is achieved by dividing the CPU time in the order of 

milliseconds/microseconds for execution between all the jobs that are being carried 
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out. Each job is carried out according to its priority number. It gives the impression 

that the tasks are being carried out simultaneously.  

Software Development Tools: UNIX offers an excellent environment for 

developing new software. It provides a variety of tools ranging from editing a 

program to maintenance of software. It exploits the power of hardware to the 

maximum extent of effectiveness and efficiency.  

Built-in Networking: UNIX has got built in networking support with a large number 

of programs and utilities. It also offers an excellent media for communication with 

other users. The users have the liberty of exchanging mail, data, programs, etc. You 

can send your data at any place irrespective of the distance over a computer 

network.  

Security: UNIX enforces security at three levels.  

(a) Each user is assigned a login name and a password. So, only the valid users 

can have access to the files and directories.  

(b) Each file is bound around permissions (read, write, execute). The file 

permissions decide who can read/ modify/ execute a particular file. The 

permissions once decided for a file can also be changed from time to time.  

(c) Then file encryption comes into picture. It encodes file in a format that cannot be 

very easily read. So, if anybody happens to open file, even then he will not be 

able to read the text of the file. However, you can decode the file for reading its 

contents.  

9.2.4 Implementation of Operating System Functions 
UNIX operating system performs following designated 

functions:  

(a) Process management: creating, destroying & manipulating processes.  

(b) Memory management: allocating, de-allocating and manipulating memory. 

(c) Input/Output: communicating and controlling I/O device and file system. 

(d) Miscellaneous: Network functions etc.  

The UNIX System V offers somewhere around 64 system calls, which carry very 

simple options with them. So, it becomes easy to make use of these system calls. 

The body of the Kernel is formed by the set of system calls and the internal 
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algorithms that implement them. Kernel provides all the services to the application 

programs in the UNIX system. In UNIX, the programs do not have any knowledge of 

the internal format in which the Kernel stores file data.  

9.2.4.1 Process management functions 
The behavior of a UNIX process is defined by its text segment, data segment and 

stack segment as shown in Figure 9.2. 
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Figure 9.2: A Process in UNIX 
The text segment contains the compiled object instructions, the data segment 

contains static variables, and the stack segment holds the runtime stack used to 

store temporary variables. A set of source file that is compiled and linked-into an 

executable form is stored in a file with the default name of a.out. If the program 

references statically define data, such as C static variables, a template for the data 

segment is maintained in the executable file. The data segment will be created and 

initialized to contain values and space for variables when the executable file is 

loaded and executed. The stack segment is used to allocate storage for dynamic 

elements of the program, such as automatic C variables that are created when they 

come into scope and are destroyed when pass out of scope.  

The compiler and linker create the executable file. These utilities do not define a 

process; they define only the program text and a template for the data component 

that the process will use when it executes the program. When the loader loads a 

program into the computer's memory, the system creates appropriate data and stack 

segments, called a process.  

A process has a unique process identifier (PID), a pointer to a table of process 

descriptors used by the UNIX Operating System kernel to reference the process's 

UNIX KERNEL
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descriptor. Whenever one process references another process in a system call, it 

provides the pointer of the target process. The UNIX pa command lists each pm 

associated with the user executing the command. The pm of each process appears 

as a field in the descriptor of each process.  

UNIX command for creating a new process is the fork system call. Whenever a 

process calls fork, a child process is created with its descriptor, including its own 

copies of the parent's program text, data, and segments, and access to all open file 

descriptors (in the kernel). The child and parent processes execute in their own 

separate address spaces. This means that even though they have access to the 

same information, both the child and its parent each reference their own copy of the 

data. No part of the address space of either process is shared.  

Hence, the parent and child cannot communicate by referencing variables stored at 

the same address in their respective address space. UNIX systems also provide 

several forms of the execve system call to enable a process to reload its address 

space with a different program:  

execve (char *path, char *argv[], char *envp[] );  

This system call causes the load module stored in the file at path to replace the 

program currently being executed by the process. After execve has completed 

executing, the program that called it is no longer loaded. Hence, there is no notion of 

returning from an execve call, since the calling program is no longer loaded in 

memory. When the new program is started, it is passed the argument list, argv, and 

the process uses a new set of environment variables, envp.  

UNIX also provides a system call, wait (and a variant, waitpid), to enable a parent 

process to detect when one of its child processes terminates. Details of the 

terminating child's status may be either returned to the parent via a value parameter 

passed to wait or ignored by the parent. The waitpid allows the parent to wait for a 

particular child process (based on its PID) to terminate, while the wait command 

does not discriminate among child processes. When a process exits, its resources, 

including the kernel process descriptor, are released. The operating system signals 

the parent that the child has died, but it will not release the process descriptor until 
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the parent has received the signal. The parent executes the wait call to 

acknowledge the termination of a child process.  
Following are the rest of UNIX system calls related to 

process management:  

 acct enable/disable process accounting  

 alarm set a process alarm clock  

 exit terminate a process  

 fork create a new process  

 getpid get process, process group and parent process ID  

 getuid get real user, effective user real group and effective group ID  

 kill send a signal to a process or group of processes  

 msgctl message control operation msgop message operation  

 nice change priority of a process pause suspend until  

 pipe create an inter-process channel  

 profil execution time profile ptrace process trace  

 semctl semaphor control operations  

 semget get set of semaphor  

 semop semaphor operations  

 setpgrp: set process group ID  

 setuid set group and user ID  

 signal specify what to do when a signal is received  

 stime set time  

 sync update super block time get time  

 times get process and child process times  

 ulimit get user upper limits  

 uname get the name of the current operating system  

 ulink remove directory entry  

 Wait wait for the child process to stop or terminate  

9.2.4.2 Memory Management   
Kernel resides in the main memory so long as computer is operational. When a 

program is compiled, a set of addresses is generated in the program by the 
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compiler. These represent addresses of variables or addresses of instructions such 

as functions. The addresses generated by the compiler are for a virtual machine. 

The addresses are not absolute in terms of memory addresses where they will be 

loaded eventually. It assumes that no other program will be executing concurrently.  

However, when you run the program the Kernel allocates some space to it in the 

main memory. But the virtual addresses generated by the compiler might not 

resemble the physical addresses occupied in the machine. Then the Kernel maps 

the compiler-generated address with the physical machine addresses.  

UNIX divides the available memory into system memory and application memory. It 

loads itself into system memory and creates data structures it will use in its 

operation into this area of memory. The application memory area contains the user's 

programs. The application memory area is divided into global stack, local stack and 

heap. The global and static type of variables, functions etc. are assigned space in 

these memory areas. UNIX provides system calls to affect loading and unloading of 

programs into and out of the processes.  Internally UNIX uses paging with 

segmentation methods to manage memory. In addition to these primitive operations, 

UNIX provides library functions like malloc, for allocating memory to a process and 

objects dynamically. Other memory related system calls are:  

 brk change data segment space allocation  

 shmop shared memory operations  

 shmctl shared memory control operation  

 shmget get shared memory segment  

 plock lock process, text or data memory addresses,  

 msgget get message queue  

 UNIX uses non-contiguous memory allocation with paging hence memory 

allocators use an integral number of pages. 

 McKusick_Karels allocator 
 This is used in UNIX 4.4 BSD and uses an integral number of pages. In it 

each page is divided into blocks of equal size and stores this size information 

along the logical address of the page so size need not to be stored in each 

free block. While freeing a block the free lit to which the block should be 
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added is found by finding the address of the page to which the block belongs. 

So there is no need of header element. Unlike the buddy system this allocator 

does not coalesce adjacent free blocks. In stead it makes the page as free 

when all the blocks in it become free.  

 Lazy Buddy Allocator 
 In buddy system, one or more splitting or coalescing takes place whenever 

there is some allocation or release of memory block takes place respectively. 

Some of these splitting/coalescing could be avoided because a coalesced 

block may split in future again resulting in the improvement of performance. 

Unix 5.4 lazy buddy allocator. Here the states of a block of class are 

characterized as lazy, reclaiming, and accelerated. In the lazy state allocation 

and release of a blocks of a class occur with matching frequencies. Hence 

coalescing may lead to split so both can be avoided by delaying the 

coalescing. In the reclaiming state, releases occur at a faster rate than 

allocation so it is a good idea to coalesce at every release. In the accelerated 

state, releases occur at much faster rate than allocation, so allocator not only 

tries to coalesce the block being released but also those blocks which have 

been released in the past.  

 UNIX virtual memory 

 It differentiates between three kinds of pages, (i) Resident page – that exists 

in memory, (ii) Un-accessed page – that has not been accessed even once 

during execution of the process, and (iii) swapped out – this page exists in 

the swap space. 

9.2.4.3 Device and File functions 
For each device it has device drivers for low-level communication. UNIX treats every 

device the same way as it treats the files. Device drivers are intended to be 

accessed by user space code. If an application accesses a driver, it uses one of two 

standardized interfaces: the block device interface or the character device interface. 

Both interfaces provide a fixed set of functions to the user programs.  

When a user program calls the driver, it performs a system call. The kernel searches 

the entry point for the device in the block or character in direct reference table (the 
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jump table) and then calls the entry point. The exact semantics of each function 

depends on the nature of the device and the intent of the driver design. Hence, the 

function names suggest only a purpose for each. The logical contents of the jump 

table are kept in the file system in the dev directory.  

A UNIX driver has three parts:  

 Code to initiate derive operations 

 Device interrupt handlers  
The initialisation code is run when the system is booted or 

started first time. It tests for the physical presence of 

respective devices and then initializes them. The API 

implements functions for a subset of the entry points. This 

part of the code also provides information to the kernel as to 

which functions are implemented. The system interrupt handler 

that corresponds to the physical device causing the interrupt 

calls the device interrupt handler.  

System administrators are responsible for installing devices and drivers. The 

information necessary to install a driver can be incorporated into a configuration file 

by the administrator and then processed by the configuration builder tool /etc/conf.  

UNIX has system calls to effect I/O manipulation. Some of them are:  

 write - write on a file  

 utime - set file access and modification times  

 fstat - get file system statistics  

 ulink - remove directory entry  

 umount - unmount a file system  

 umask - set and get file creation mask  

 stat - get file status  

 read - read from a file  

 open - open for reading or writing h  

 mount - mount a file system  

 mknod - make a directory or special or ordinary file  

 lseek - move read/write pointer link link to a file  
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 bfcntl - file control  

 nexec - execute a file 

 lytodup - duplicate an open file descriptor  

 dbycreat - create a new file or rewrite an existing one  

 close - close a file descriptor let of chroot change to root  

 chown - change owner or group of file entry  

 chmod - change mode of file  

 chdir - change directory device access determine accessibility of a file  

9.2.5 UNIX Kernel  

The services provided by the Kernel are given below:  

1. It controls the fate and state of various processes such as their creation, 

termination and I/O suspension.  

2. The Kernel allocates main memory for an executing process. The Kernel allows 

the processes to share portions of their address space. It keeps the private 

space of processes secure and does not allow tampering from other processes. 

However, if the free memory is low with the system, then the Kernel frees out 

some memory by writing a process temporarily to secondary memory. In case 

the Kernel writes all the processes to the secondary memory, it is called a 

swapping system. However, if only the pages of memory are written onto the 

secondary memory, then it is called the paging system.  

3. The Kernel schedules processes for execution on the CPU. The time-sharing 

concept allows the processes to share the CPU. When the time of a process has 

finished, the Kernel suspends it and puts some other ready process for execution 

in the CPU. It is again the work of the Kernel to reschedule the suspended 

process.  

4. Kernel permits different processes to make use of the peripheral devices such as 

terminals, tape drives, disk drives & network devices as & when requested.  

5. The Kernel allocates the secondary memory for efficient storage and retrieval of 

user data. The Kernel allocates secondary storage for user files, organizes the 

file system in a well-planned manner and provides security to user files from 

illegal access.  
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6. The services provided by the Kernel are absolutely transparent to the user. For 

instance, the Kernel formats the data present in a file for internal storage. 

However, it hides the internal format from user processes. Similarly, it makes a 

distinction between the regular file and a device but hides the distinction from 

user processes. Finally, the Kernel provides the services so that the user level 

processes can support the services they must provide. For instance, the Kernel 

provides the services that the shell requires to act as a command interpreter. 

Therefore, the Kernel allows the shell to read terminal input, to create pipes and 

to redirect I/O. 

9.2.5.1 Assumptions about Hardware  
Whenever the user on the UNIX system executes a process, it 

is divided into two levels: User level and Kernel level. So, 

as and when a process executes a system call, the execution 

mode of the process changes from the user mode to Kernel mode. 

The Kernel tries to process the requests made by the user. It 

returns an error message if the process fails. However, if no 

requests are given to the operating system to service, even 

then the operating system keeps itself busy with other 

operations such as handling interrupts, scheduling processes, 

managing memory and so on. The main differences between the 

user mode and the Kernel mode are given below:  

1. Process in a user mode can access their own instructions and data but they 

cannot access the instructions and data of the Kernel. But all the processes 

present in the Kernel can have the access to both the Kernel and the user 

addresses.  

2. Some machine instructions give an error message when executed in user mode. 

For instance, a machine may contain an instruction that manipulates the 

processor status register. This instruction is not allowed to be executed in user 

mode. Processes executing in user mode should not have this capability 

otherwise they may corrupt the kernel loaded.  
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The following three situations result in switching to kernel mode from user mode 

of operation: 

1. The scheduler allocates a user process a slice of time (about 0.1 second) and 

then system clock interrupts. This entails storage of the currently running 

process status and selecting another runnable process to execute. This 

switching is done in kernel mode. A point that ought to be noted is: on being 

switched the current process's priority is re-evaluated (usually lowered). The 

Unix priorities are ordered in decreasing order as follows: 

 HW errors 

 Clock interrupt 

 Disk I/O 

 Keyboard 

 SW traps and interrupts 

2. Services are provided by kernel by switching to the kernel mode. So if a user 

program needs a service (such as print service, or access to another file for 

some data) the operation switches to the kernel mode. If the user is seeking a 

peripheral transfer like reading a data from keyboard, the scheduler puts the 

currently running process to “sleep" mode. 

3. Suppose a user process had sought a data and the peripheral is now ready to 

provide the data, then the process interrupts. The hardware interrupts are 

handled by switching to the kernel mode. In other words, the kernel acts as 

the via-media between all the processes and the hardware. 

9.2.5.2 Interrupts and Exceptions  
The UNIX system allows devices such as I/O peripherals or the system clock to 

interrupt the CPU abruptly. Whenever the Kernel receives the interrupt, it saves the 

current work it is doing and services the interrupt. After the interrupt is processed, 

the Kernel resumes the interrupted work and proceeds as if nothing had happened. 

The hardware gives a priority weightage according to the order in which the 

interrupts should be handled. Thus, when the Kernel looks into an interrupt, it keeps 

the lower priority interrupts waiting and services the higher priority interrupts.  
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The term exception is different from the term interrupt. An exception is a condition in 

which a process causes an unexpected event. For example: dividing a number by 

zero, illegal address, out of memory, etc. Exceptions occur in the middle of the 

execution of an instruction and are the similar to interrupts. The system tries to start 

the instruction again after handling the exception. However, interrupts are 

considered to happen between the executions of two instructions. The system 

continues working on the next instruction after servicing the interrupt.  

9.2.5.3 Processor Execution Levels  
Sometimes, the Kernel must stop the interrupt from occurring during critical activity 

preventing data corruption. For instance, the Kernel might not want to handle an 

interrupt when it is working with linked lists because handling the interrupt at this 

point of time might lead to corruption of pointers. Therefore, a better technique has 

been worked out. The processor execution levels can be set with the help of certain 

instructions. If you set the processor execution level to certain value, then it can 

keep away the interrupt from that level and lower levels. It will only allow the high 

level interrupts to disturb the process.  

9.2.6 File System and Internal Structure of Files  
Kernel does not impose any structure on files, and no meaning is attached to its 

contents - the meaning of bytes depends solely on the program that interprets the 

file. This is not true of just disc files but of peripherals devices as well. Magnetic 

tapes, mail messages, character typed on the keyboard, line printer output, data 

flowing in pipes - each of these is just a sequence of bytes as far as the system and 

the programs in it are concerned.  

Files are organized in tree-structured directories. Directories are themselves files 

that contain information on how to find other files. A path name to a file is a text 

string that identifies a file by specifying a path through the directory structure to the 

file. Syntactically it contains of individual file name elements separated by the slash 

character.  

The UNIX file system supports two main objects: files and directories. Directories 

are nothing but files, which have a special format.  

9.2.6.1  Representation of Data in a File  
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All the data entered by the user is kept in files. Internally the data blocks take up most of the 

data that has been put in files. Each block on the disk is addressable by a number. Associated 

with each file in UNIX is a little table called inode, which contains the table of contents to 

locate a file's data on disk. The table of contents consists of a set of disk block numbers. An 

inode maintains the attributes of a file, including the layout of its data on disk. Disk inodes 

consists of the following fields: 

 Last modification date  

 Last access date  

 Time the file last read  

 Last inode modification  

 Time the file was last modified  

 Reference count  

 Block reference pointer and indirect pointer to blocks in the file  

The data on a file is not stored in a contiguous section of the disk. The reason 

behind is that the Kernel will have to allocate and reserve continuous space in the 

file system before allowing operations that would increase the file size. For instance, 

let us suppose that there are three files A, B and C. Each file consists of 10 blocks 

of storage and supposes the system allocated storage for the three files 

contiguously as shown in Figure 9.3.  
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Figure 9.3 

However, if the user now wishes to add 5 blocks of data in the file B, then the Kernel 

will have to copy the file to such a place where a file of 15 blocks can be 

accommodated. Moreover, the previously occupied disk block by file B's data can 

only be used in a case where the files have data less than 10 blocks.  

The Kernel allocates the file space of one block at a time. This allows the data to be 

spread throughout the file system. In this case, locating the data of a file becomes a 

Operating System  



complicated process. If a block contains 10K bytes, then such a file would need an 

index of 100 block numbers and as the block of 100K bytes would need an index of 

1000 block numbers. Thus, the size of the inode would keep varying according to 

the size of the file.  

9.2.6.2 Directories  
The directories are files that give the file system a hierarchical structure. In a 

directory the data is put in a sequence of entries. Each such entry contains an inode 

number and the name of a file present in the directory .The pathname is a null 

terminated character string. The pathname is divided into separate parts by the / 

(slash) character. Each component of the pathname should hold the name of a 

directory. However, the very last component can be a non-directory file. The 

component names can have a maximum of 14 characters, with a 2 byte entry for the 

inode number, the size of a directory entry is 16 bytes. Each directory contains the 

file names dot and dot-dot. The inode numbers of these directories are those of the 

directory and its parent directory respectively. The inode number of "." in "\etc" 

directory is present at offset 0 in the file and its value is 83. The inode number of "..” 

is present at the offset 16 and its value is 2. Any directory entry can also be kept 

empty. Its inode number is indicated by 0.  

The data stored by the Kernel for a directory is similar to the data stored for an 

ordinary file. For the directory also the Kernel makes use of the inode structure and 

direct and indirect blocks. The access permission of a directory has the following 

meaning: the read permission allows a process to read a directory. Write permission 

allows a process to create new directory entries and remove the old directory 

entries. It accounts for altering the contents of a directory. The execute permission 

allows a process to search the directory for a filename.  
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Figure 9.4 shows a typical UNIX File System. The file system is organized as a tree 

with a single root node called the root (written "/ "); every non-leaf node of the file 

system structure is a directory, and leaf nodes of the tree are either directories or 

regular files or special devices.  

 The /bin directory contains the executable files for most UNIX commands.    

 The /etc directory contains other additional commands that related to system 

maintenance and administration. It also contains several files, which store the 

relevant information about the users of the system, the terminals and devices 

connected to the system.  

 The /lib directory contains all the library functions provided by UNIX for the 

programmers.  

 The /dev directory stores files that are related to the devices. UNIX has a file 

associated with each of the I/O devices.   

 The /user directory is created for each user to have a private work area where 

the user can store his files. This directory can be given any name. Here it is 

named as "user".  

 The /tmp directory is the directory into which temporary files are kept. The files 

stored in this directory are deleted as soon as the system is shutdown and 

restarted.  

Create, open, read, write are system calls, which are used for basic file 

manipulation. The create system call; given a path name creates an empty file. An 

existing file opened by the open system call, which takes a path name and a node 

and returns a small descriptor which may then be passed to a read or write system 

call to perform data transfer to or from the file.  

A file descriptor is an index into a small table of open files for this process. 

Descriptors start at 0 and seldom get higher than 6 or 7 for typical programs, 

depending on the maximum number of simultaneously open files. Each read or write 

updates the current offset into the file, which is associated with file table entry and is 

used to determine the position in the field for the next read or write.  

9.2.6.3 Blocks and Fragments  
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Most of the file system is taken up by data blocks, which contain whatever the users 

have put in their files. The hardware disk sector is usually 512 bytes. A block size 

larger than 512 bytes is desirable for a speed. However, because UNIX file system 

usually contain a very large number of small files, much larger blocks would cause 

excessive internal fragmentation. That is why the earlier 4.1 BSD  file system was 

limited to 1024-byte block. The 4.2 BSD solution is to use two block sizes for files 

which have no indirect blocks: all the blocks of the file are large block size except 

the last. The last block is an appropriate multiple of a smaller fragment size to fill out 

the file. Thus, a file of size 18000 bytes would have two 8K blocks and one 2K block 

fragment.  

The block and fragment sizes are set during the file creation according to the intended use of 

the file system: if many small files are expected, the fragment size should be small; if 

repeated transfer of large files are expected, the basic block size should be large. 

9.2.7 UNIX Shell  

A shell is the user-interface to the UNIX. A shell could use many different strategies to 

execute a user's computation. The approach used in modern shells is to create a new process 

to execute new computation. For example, if a user decides to compile a program, the 

process interacting with the user creates a new child process to carry out the compilation task 

to execute the compiler program. The initial process (the OS) can use this same technique 

when it decides to service a new interactive user in a timesharing environment. That is, when 

the user attempts to establish an interactive session, the Operating System treats this as a new 

computation. It awakens a previously created process for the login port or creates a new 

process to handle the interaction with the user. 

This idea of creating a new process to execute a computation is a very important 

characteristic. When the original process decides to execute a new computation, it protects 

itself from any fatal errors that might arise during that execution. If it did not use a child 

process to execute the command, a chain of fatal errors could cause the initial process to fail, 

thus crashing the entire system. 

The Bourne shell and others accept a command line from the user, parse the command line, 

and then invoke the Operating System to run the specified command with the specified 
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arguments. When a user passes a command line to the shell, it is interpreted as a request to 

execute a program in the specified file - even if the file contains a program that the user 

wrote.  

For example, you could write a C program in a file named main.c, then compile and execute 

it with shell commands like 

$ cc main.c 

$ a.out 

The shell finds the cc command (the C compiler) in the /bin directory, and then 

passes it the string "main.c" when it creates a child process to execute the cc 

program. The C compiler, by default, translates the C program that is stored in 

main.c, then writes the resulting executable program into a file named a.out in the 

current directory. In the second command, the command line is just the name of the 

file to be executed, a.out. The shell finds the a.out file in the current directory and 

then executes it. 

Consider the detailed steps that a shell must take to accomplish its job: 

 Printing a prompt: There is a default prompt string, e.g., the single character 

string "%", "#", ">" or other. When the shell is started, it can look up the name of 

the machine on which it is running, and prepare this string name to the standard 

prompt character.  

 Once the prompt string is determined, the shell prints it to screen whenever it is 

ready to accept a command line. 

 Getting the command line: To get a command line, the shell performs a blocking 

read operation so that the process that executes the shell will be blocked until 

the user types a command line in response to the prompt. When the command 

has been provided by the user and terminated with a NEWLINE character, the 

command line string is returned to the shell. 

 Parsing the command: The parser begins at the left side of the command line 

and scans until it sees a white space character. The first word is treated as the 

command name, and subsequent words are treated as parameter string. 

 Finding the file: The shell provides a set of environment variables for each user- 

this variable is first defined in the user's login file, though it can be modified at 

Operating System  



any time with the set command. The PATH environment variable is an ordered 

list of absolute pathnames that specifies where the shell should search for 

command files. If the login file has a line such as set path=(.:/bin:/usr/bin) 

The shell will first look in the current directory (since the first pathname is "." for 

the current directory), then in /bin, and finally in /usr/bin. If there is no file with the 

same name as the command in any of the specified directories, the sheII 

responds to the user that it is unable to find the command. 

 Preparing the parameters: The shell simply passes the string parameters to the 

command as the argv array of pointers to strings. 

 Executing the command: Finally the shell must execute the binary object 

program in the specified file. UNIX shells have always been designed to protect 

the original process from crashing when it executes a program. That is, since a 

command can be any executable file, the process that is executing the shell 

must protect itself in case the executable file has a fatal error in it. Somehow, the 

shell wants to "launch" the executable so that even if the executable contains a 

fatal error (which destroys the process executing it), the shell will remain 

unharmed. 

The Bourne shell uses multiple processes to accomplish what the UNIX-style system calls 

fork, execve, and wait. This system call creates a new process, which is a copy of the calling 

process except that it has its own process identification (with the correct relationships to the 

other processes) and its own pointers to shared kernel entities such as file descriptors. After 

fork has been called, two processes will execute the next statement after the fork in their own 

address spaces - the parent and the child. If the call succeeds in the parent process, fork 

returns the process identification of the newly created child process, and in the child process, 

fork() returns a zero value. 

execve. This system call is used to change the program that the process is currently 

executing. It has the form execve (char *path, char *argv[], char *envp[]. The path 

argument is the pathname of a file that contains the new program to be executed. 

The argv array is a list of parameter strings, and the envp array is a list of 

environment variable strings and values that should be used when the process 

begins executing the new program. When a process encounters the execve system 
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call, the next instruction it executes will be the one at the entry point of the new 

executable file. This means that the kernel performs a considerable amount of work 

in this system call. It must find the new executable file, load it into the address space 

currently being used by the calling process (overwriting area and discarding the 

previous program), set the argv array and environment variables for the new 

program execution, then start the process executing at the new program’s entry 

point. 

wait. A process uses this system call to block itself until the kernel signals the 

process to execute again. For example, because one of its children processes has 

terminated. When the wait call returns as a result of a child process terminating, the 

status of the terminated child is returned as a parameter to the calling process. 

9.2.8 User Interaction with UNIX Operating System 
To interact with UNIX, the first step is login process in which we use a name and 

password initially assigned by the system administrator. 

9.2.8.1  Steps to Login 
Logging in is a procedure that tells the UNIX System who you 

are. On power on you would find the Login prompt on the 

screen. Each user on the UNIX system is assigned an account 

name (combination of eight or less characters), which 

identifies him as a unique user. Once the login name is 

entered, UNIX prompts you to enter a password. If you give 

either the login name or the password wrong, then UNIX denies 

you the permission to access its resources & shows an error 

message on the screen. Once you have successfully logged on, 

you will find $ prompt (It is the default prompt in Korn or 

Bourne shells). Now it is ready to accept commands from the 

user.  

When you are done working on your system and decide to leave, you can log off the 

system by typing the following command in Bourne or Korn shell: 

$ exit 

However, if you are working on C shell, you can give another command to log off. 
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$ logout 

9.2.8.2  Changing your Password 
To change your password, issue the 'passwd' command at the UNIX prompt. 

Syntax: passwd [user-name] Options  

Only the super user can use the options given below: 

-d   Deletes your password 

-x days  This sets the maximum number of days that the password will be date 

active. After the specified number of days you will be required to give a 

new password. 

-n days.  This sets the minimum number of days the password has to be active, 

before it can be changed. 

-s   This gives you the status of the user's password. 

UNIX also offers a variety of tools to maintain security .One such tool is the 'lock' 

command that locks your keyboard till the time you enter a valid password. 

9.2.8.3  UNIX Command Structure 

The UNIX commands follow the following format:  

Command [options] [arguments] 

The options/arguments are specified within square brackets if they are optional. The 

options are normally specified by a “-“ (hyphen) followed by letter. 

9.2.9 Common UNIX Commands 

 Some commonly used UNIX commands are discussed below: 

cal Command 
The cal command creates a calendar of the specified month for the specified year, if 

you do not specify the month, it creates a calendar for the entire year. By default this 

command shows the calendar for the current month based on the system date. The 

cal writes its output to the standard output. 

Syntax: cal [ [mm] yy ] 

Where mm is the month, an integer between 1 and 12 and yy is the year; an integer 

between 1 and  9999.S 

date Command 
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It shows or sets the system date and time. If no argument is specified, it displays the 

current date and the current time. 

Syntax: date [+options] Options: 

%d displays date as mm/dd/yy 

%a displays abbreviated weekday (Sun to Sat) 

%t displays time as HH:MM:SS 

%r displays time as HH:MM:SS(A.M/P.M.) 

%d displays only dd 

%m displays only mm 

If you are working in the superuser mode, you can set the date as shown below: 

$ date MMddhhmm[yy] 

where MM = Month (1-12), dd = day (1-31), hh = hour (1-23), mm = minutes (1-59), 

yy = Year 

who Command 

The who command lists the users that are currently logged into the system. 

Syntax: who [options] 

Options:  

 u - lists the currently logged-in users. 

 t - gives the status of all logged-in users, am  

 i - this lists login-id and terminal of the user invoking this command. 

finger Command 
The finger command with an argument gives you more information about the user. 

The finger command followed by an argument can give a complete information for a 

user who is not logged onto the system. 

Syntax: finger [user-name] Options: none 

Examples 

(i) $ finger xyz 

If you want to know about everyone currently logged onto the system, give the 

following command: 

$finger 

The ls Command 
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The ls command is used for listing information about files and directories. 

Syntax: ls [-options] [filename] 

Options: 

 -a  List all directory entries including dot (.) entries. 

 -d   Give the name of directories only. 

 -g   Print group id only in the long listing. 

 -i  It Print inode number of each file in the first column. 

 -l  Lists in the long or detailed format owner's id only in the long listing. 

 -s  This lists the disk blocks (of 512 bytes each), occupied by a file. Sort file

 names by time since last access. 

 -t  Sort file names by time since last modified. 

 -r  Recursively lists all subdirectories. 

 -f  Marks type of each file. 

The cp Command 

The cp command creates a duplicate copy of a file. 

Syntax: cp file1 file2 

Here, the file1 is copied as file2. If file2 already exists, the new file overwrites it. The 
mv Command 
This command moves or renames files. 

Syntax: mv file1 file2 

Here file1 refers to the source filename and 'file2' to the destination filename. 

Moving a file to another within the same directory is equivalent to renaming the file. 

mv doesn't really move the file, it just renames it and changes directory entries. 

The ln Command 
The 'ln' command adds one or more links to a file. Syntax: ln file1 file2 

The ln command here establishes a link to an existing file. 'file1' specifies the file 

that has to be linked and 'file2' specifies the directory into which the link has to be 

established. If the 'file2' is in the same directory as file1 then the file seems to carry 

names, but physically there is only one copy. If you use the ls -li command, you will 

find that the link count has been incremented by one and that both the files have the 

same inode number, as they refer to the same data blocks in the disk. Any changes 
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that are made to one file will be reflected in the other. And if 'file2' specifies a 

different directory, the file will be physically present at one place but will appear as if 

it is present in other directory, thereby allowing different users to access the file. It 

saves a lot of disk space because the file is not duplicated. But you should note that 

you should have write permission to the directory under which the link is to be 

created. 

The rm Command 
The 'rm' command removes files or directories. Syntax: rm [options] file(s) 

When you remove a file, you are actually removing a link. The space occupied by 

the file on the disk is freed only when you remove the last link to a file. The Options 

are: 

c -confirms on each file before deleting it. 

f - removes only those files which do not have write permission. 

r - deletes the directory & its contents along with sub-directories & their contents. 

The cat Command 

The cat writes the contents of one of more files, onto the screen in the sequence 

specified. If you do not specify an input file, cat reads its data from the standard 

input file, generally the keyboard. 

Syntax: cat file. 

Examples: $ cat /usr/mkt/new-mkt.c 

This command will display the contents of new-mkt.c file onto the screen. 

chmod command 
Using this command only a super user can change permissions (read (r), write (w), 

execute (x)) of user, group or others for any file on the system using the operations 

add (+), remove (-), and assign (=). 

Examples - First see the file permissions using the ls -l command for mkt.c:  

$ls -l mkt.c  

Output:  -rwx --x --x 2 root other 1428 May 1507:34 mkt.c 

Its meaning is user has rwx, group has x and others also have x permission. 

Now use the chmod command as illustrated below:  

$chmod u-x g+w o+r mkt.c 
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The above command remove execute permission for user, give write permission to group and 

give read permission to all others. 

Alternatively, you could have also used the following commands to do the same: 

$chmod u=rw g=wx o=rx mkt.c 

To assigns read, write and execute permission to all users we can use a=rwx: 

$ chmod a=rwx mkt.c " 

The chown Command 
The chown command changes the owner of the specified file(s).  

Syntax: chown new-owner filename.  

This command requires you to be in the super user mode. The new owner can be 

the user ID of the new owner or the new owner's user number. You can also specify 

the owner by his name. But the new owner should have an entry in the /etc/passwd 

file. The filename is the name(s) of the file(s), whose owner is to be changed. 

Examples: $chown bobby sales.c 

The above command now makes bobby the owner of sales.c file. 

The chgrp Command 
The chgrp is used to change the group of a file. 

Syntax: chgrp group filename. 

Only the superuser can use this command. This command changes the group 

ownership of a file. Here group denotes the new group-ID and filename denotes the 

file whose group-ID is desired to be changed. 

9.2.10 File System, Permissions Changing Order and Group 

File is a unit of storing information. All utilities, applications and data are represented 

as files. The file may contain executable programs, texts or databases.  

Naming Files 
Filenames can be up to 14 characters long and may contain alphabets, digits and a 

few special characters. Files in UNIX do not have the concept of primary or 

secondary name as in DOS, and therefore file names may contain more than one 

period(.). However, UNIX file names are case sensitive.  

Types 
The files under UNIX can be categorized as follows:  
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1. Ordinary files. 

2. Directory files. 

3. Special files. 

4. FIFO files. 

Ordinary Files: They may contain executable programs, text or databases. You can 

add, modify or delete them or remove the file entirely. 
Directory Files: Directory files represent a group of files. They contain list of file 

names and other information related to these files.  
Special Files: Special files are also referred to as device files. These files represent 

physical devices such as terminals, disks, printers and tape-drives etc. These files 

are read from or written into just like ordinary files, except that operation on these 

files activates some physical devices. These files can be of two types Character 

device files and block device files. In character device files data is handled character 

by character, as in case of terminals and printers. In block device files, data is 

handled in large chunks of blocks, as in the case of disks and tapes. 
FIFO (first-in-first-out) Files: FIFO are files that allow unrelated processes to 

communicate with each other. They are generally used in applications where the 

communication path is in only one direction, and several processes need to 

communicate with a single process. For example pipe in UNIX which allows transfer 

of data between processes in a FIFO manner. A pipe takes the output of the first 

process as the input to the next process, and so on. 
File Names and Meta characters: In UNIX, we can refer to a group of files with the 

help of METACHARACTERS. The valid meta characters are ?, [, and ]. It replaces 

any number of characters including a null character. 
? - used in place of one and only one character. 

[] - brackets are used to specify a set of a range of characters. 

Examples 

(i) $ls []c 

It will list all files starting with any character or characters and ending with the 

character c. 

(ii) $ ls robin[] 
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It will list all the files starting with robin and ending with any character. 

(iii) $ ls x?yz[] 

It will list all those files, in which the first character is x, the second character can be 

anything; the third and fourth characters should be respectively y and z and that the 

rest of the name can be anything. 

(iv) $ls I[abc]mn 

It will list all those files, in which the first character is I, the second character can be 

a, b or c, the last two characters should be m and n respectively. Alternatively the 

above command can also be given in the following manner. 

$ ls I[a-c]mn 

File Security and Ownership 
The data is centralized on a system working with UNIX. The first step towards data 

security is the usage of passwords. The next step should be to guard the data 

among users. If the number of users is small, it is not much of a problem. But it can 

be problematic on a large system supporting many users. 

UNIX can thus differentiate files belonging to an individual, the owner of a file or 

group of users or the others with different limited accesses, as the case may be. The 

different ways to access a file are: 

Read(r) - You can just look through the file. 

Write(w) - You can also modify it. 

Execute(x) - You can just execute it 

Therefore if you have a file called vendor.c and that you are the owner of it, you may 

provide; yourself with all the rights rwx [read, write and execute]. You can provide rx (read, 

and execute) rights to the members of your group and only the x (execute) right to all others. 

Normally, when you create a file, you are the owner of the file and your group 

becomes the group id for the file. The user can also change these permissions at his 

will. But only a super user can change these permissions (rwx), ownership and 

group id's of any file in the system. 

9.2.11 UNIX Editors 
UNIX text editors can be classified into two types -Line Editors & Screen Editors. 
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(a) Line Editors: The early UNIX editors that edit processes one line at a time are 

called Line Editors. The common examples of UNIX line editors are ed and ex. 

(i) ed - ed was the first line editor of UNIX. ed was popular in those days when most 

UNIX commands consisted of only two or three letters. It has become outdated now 

due to the use of screen editors that provides much more features. 

(ii) ex - ex is more powerful and comprehensive than ed line editor. Some ex line-

oriented commands are also used in few screen editors (such as vi). 

(b) Screen Editors: Editors that make use of the whole screen for editing or 

processing more than one line at a time, are called screen editors. With screen 

editors, you can display and edit many lines by giving a single command. The 

common examples of screen editors are vi and emacs. 

- vi -vi stands for 'Visual editor'. vi is the standard full-screen UNIX tool and is the 

only editor available on SCO UNIX.  

-  emacs - Although most vendors distribute emacs with UNIX system, emacs is 

not a part of UNIX. 

9.3 Keywords 
Multi-tasking: More than one program can be made to run at the same time. 

Multi-user: More than one user can work at the same computer system at the same 

time. 

Kernel: This is the actual operating system, a single large program that always 

resides in memory. Sections of the code in this program are executed on behalf of 

users to do needed tasks. Strictly speaking, the kernel is UNIX. 
UNIX shell: A shell is the user-interface to the UNIX. 

9.4 Summary 
Unix is a multi-user, multi tasking operating system written in high-level language. It 

is portable, modifiable and understandable. Some popular versions of UNIX are AIX 

IBM, XENIX, ULTRIX, Sun OS, and BSD. The UNIX is organized as a set of layers. 

In the center, Kernel surrounds the hardware, which is surrounded by shell and 

editors that interact with the Kernel by invoking a well-defined set of system calls. 

Another important feature of UNIX is its security implemented by password, file 

permissions, and encryption. Files are organized in tree-structured directories. 
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Directories are also files that contain information on how to find other files. Kernel 

does not impose any structure on files; the meaning of bytes depends solely on the 

program that interprets the file. This is not true of just disc files but of peripherals 

devices as well, each of these is just a sequence of bytes.  

UNIX provides a number of line and screen editors such as ed, ex, and vi. 

9.5 SELF-ASSESSMENT QUESTIONS (SAQ) 
1. How many types of files there can be in UNIX? 

2. How can security of files be maintained? 

3. What are different types of users in UNIX for files? 

4. What is function of ls command? Give various options. 

5. Differentiate between cp & mv Command. 

6. What is rm command used for? 

7. Differentiate between chmod & chown Command. 

8. What is meant by a multi-user and multi-tasking operating system? Is UNIX 

multi-user, how?  

9. What are various Features of UNIX? What makes UNIX portable and secure? 

10. Give different layers of UNIX Architecture. Explain the intended purposes of 

each.  

11. What do you understand by Kernel? What are the functions provided by it?  

12. How can the exceptions be resolved in UNIX?  

13. How are file organized in UNIX? What is the difference between a directory & 

a file in Unix?  

14. What do you understand by Editor? Why it is needed? How many types of 

Editors are present? 
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