
Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Parallel computer models Lesson No. : 01

1.1 Objective

1.2 Introduction

1.3 The state of computing

1.3.1. Evolution of computer system

1.3.2 Elements of Modern Computers

1.3.3 Flynn's Classical Taxonomy

1.3.4 System attributes

1.4 Multiprocessor and multicomputer,

1.4.1 Shared memory multiprocessors

1.4.2 Distributed Memory Multiprocessors

1.4.3 A taxonomy of MIMD Computers

1.5 Multi vector and SIMD computers

1.5.1 Vector Supercomputer

1.5.2 SIMD supercomputers

1.6 PRAM and VLSI model

1.6.1 Parallel Random Access machines

1.6.2 VLSI Complexity Model

1.7 Keywords

1.8 Summary

1.9 Exercises

1.10 References

1.0 Objective

The main aim of this chapter is to learn about the evolution of computer systems, various

attributes on which performance of system is measured, classification of computers on

their ability to perform multiprocessing and various trends towards parallel processing.

1.1 Introduction

From an application point of view, the mainstream of usage of computer is experiencing

a trend of four ascending levels of sophistication:

 1

• Data processing

• Information processing

• Knowledge processing

• Intelligence processing

With more and more data structures developed, many users are shifting to computer roles

from pure data processing to information processing. A high degree of parallelism has

been found at these levels. As the accumulated knowledge bases expanded rapidly in

recent years, there grew a strong demand to use computers for knowledge processing.

Intelligence is very difficult to create; its processing even more so. Todays computers are

very fast and obedient and have many reliable memory cells to be qualified for data-

information-knowledge processing.

Parallel processing is emerging as one of the key technology in area of modern

computers. Parallel appears in various forms such as lookahead, vectorization

concurrency, simultaneity, data parallelism, interleaving, overlapping, multiplicity,

replication, multiprogramming, multithreading and distributed computing at different

processing level.

1.2 The state of computing

Modern computers are equipped with powerful hardware technology at the same time

loaded with sophisticated software packages. To access the art of computing we firstly

review the history of computers then study the attributes used for analysis of performance

of computers.

1.2.1 Evolution of computer system

Presently the technology involved in designing of its hardware components of computers

and its overall architecture is changing very rapidly for example: processor clock rate

increase about 20% a year, its logic capacity improve at about 30% in a year; memory

speed at increase about 10% in a year and memory capacity at about 60% increase a year

also the disk capacity increase at a 60% a year and so overall cost per bit improves about

25% a year.

 But before we go further with design and organization issues of parallel computer

architecture it is necessary to understand how computers had evolved. Initially, man used

simple mechanical devices – abacus (about 500 BC) , knotted string, and the slide rule for

 2

computation. Early computing was entirely mechanical like : mechanical adder/subtracter

(Pascal, 1642) difference engine design (Babbage, 1827) binary mechanical computer

(Zuse, 1941) electromechanical decimal machine (Aiken, 1944). Some of these machines

used the idea of a stored program a famous example of it is the Jacquard Loom and

Babbage’s Analytical Engine which is also often considered as the first real computer.

Mechanical and electromechanical machines have limited speed and reliability because of

the many moving parts. Modern machines use electronics for most information

transmission.

Computing is normally thought of as being divided into generations. Each successive

generation is marked by sharp changes in hardware and software technologies. With

some exceptions, most of the advances introduced in one generation are carried through

to later generations. We are currently in the fifth generation.

Ist generation of computers (1945-54)

The first generation computers where based on vacuum tube technology. The first large

electronic computer was ENIAC (Electronic Numerical Integrator and Calculator), which

used high speed vacuum tube technology and were designed primarily to calculate the

trajectories of missiles. They used separate memory block for program and data. Later in

1946 John Von Neumann introduced the concept of stored program, in which data and

program where stored in same memory block. Based on this concept EDVAC (Electronic

Discrete Variable Automatic Computer) was built in 1951. On this concept IAS (Institute

of advance studies, Princeton) computer was built whose main characteristic was CPU

consist of two units (Program flow control and execution unit).

In general key features of this generation of computers where

1) The switching device used where vacuum tube having switching time between 0.1 to 1

milliseconds.

2) One of major concern for computer manufacturer of this era was that each of the

computer designs had a unique design. As each computer has unique design one cannot

upgrade or replace one component with other computer. Programs that were written for

one machine could not execute on another machine, even though other computer was also

designed from the same company. This created a major concern for designers as there

were no upward-compatible machines or computer architectures with multiple, differing

 3

implementations. And designers always tried to manufacture a new machine that should

be upward compatible with the older machines.

3) Concept of specialized registers where introduced for example index registers were

introduced in the Ferranti Mark I, concept of register that save the return-address

instruction was introduced in UNIVAC I, also concept of immediate operands in IBM

704 and the detection of invalid operations in IBM 650 were introduced.

4) Punch card or paper tape were the devices used at that time for storing the program. By

the end of the 1950s IBM 650 became one of popular computers of that time and it used

the drum memory on which programs were loaded from punch card or paper tape. Some

high-end machines also introduced the concept of core memory which was able to

provide higher speeds. Also hard disks started becoming popular.

5) In the early 1950s as said earlier were design specific hence most of them were

designed for some particular numerical processing tasks. Even many of them used

decimal numbers as their base number system for designing instruction set. In such

machine there were actually ten vacuum tubes per digit in each register.

6) Software used was machine level language and assembly language.

7) Mostly designed for scientific calculation and later some systems were developed for

simple business systems.

8) Architecture features

Vacuum tubes and relay memories

CPU driven by a program counter (PC) and accumulator

Machines had only fixed-point arithmetic

9) Software and Applications

Machine and assembly language

Single user at a time

No subroutine linkage mechanisms

Programmed I/O required continuous use of CPU

10) examples: ENIAC, Princeton IAS, IBM 701

IInd generation of computers (1954 – 64)

The transistors were invented by Bardeen, Brattain and Shockely in 1947 at Bell Labs

and by the 1950s these transistors made an electronic revolution as the transistor is

 4

smaller, cheaper and dissipate less heat as compared to vacuum tube. Now the transistors

were used instead of a vacuum tube to construct computers. Another major invention was

invention of magnetic cores for storage. These cores where used to large random access

memories. These generation computers has better processing speed, larger memory

capacity, smaller size as compared to pervious generation computer.

The key features of this generation computers were

1) The IInd generation computer were designed using Germanium transistor, this

technology was much more reliable than vacuum tube technology.

2) Use of transistor technology reduced the switching time 1 to 10 microseconds thus

provide overall speed up.

2) Magnetic cores were used main memory with capacity of 100 KB. Tapes and disk

peripheral memory were used as secondary memory.

3) Introduction to computer concept of instruction sets so that same program can be

executed on different systems.

4) High level languages, FORTRAN, COBOL, Algol, BATCH operating system.

5) Computers were now used for extensive business applications, engineering design,

optimation using Linear programming, Scientific research

6) Binary number system very used.

7) Technology and Architecture

Discrete transistors and core memories

I/O processors, multiplexed memory access

Floating-point arithmetic available

Register Transfer Language (RTL) developed

8) Software and Applications

High-level languages (HLL): FORTRAN, COBOL, ALGOL with compilers and

subroutine libraries

Batch operating system was used although mostly single user at a time

9) Example : CDC 1604, UNIVAC LARC, IBM 7090

IIIrd Generation computers(1965 to 1974)

In 1950 and 1960 the discrete components (transistors, registers capacitors) were

manufactured packaged in a separate containers. To design a computer these discrete

 5

unit were soldered or wired together on a circuit boards. Another revolution in computer

designing came when in the 1960s, the Apollo guidance computer and Minuteman

missile were able to develop an integrated circuit (commonly called ICs). These ICs

made the circuit designing more economical and practical. The IC based computers are

called third generation computers. As integrated circuits, consists of transistors, resistors,

capacitors on single chip eliminating wired interconnection, the space required for the

computer was greatly reduced. By the mid-1970s, the use of ICs in computers became

very common. Price of transistors reduced very greatly. Now it was possible to put all

components required for designing a CPU on a single printed circuit board. This

advancement of technology resulted in development of minicomputers, usually with 16-

bit words size these system have a memory of range of 4k to 64K.This began a new era

of microelectronics where it could be possible design small identical chips (a thin wafer

of silicon’s). Each chip has many gates plus number of input output pins.

Key features of IIIrd Generation computers:

1) The use of silicon based ICs, led to major improvement of computer system. Switching

speed of transistor went by a factor of 10 and size was reduced by a factor of 10,

reliability increased by a factor of 10, power dissipation reduced by a factor of 10. This

cumulative effect of this was the emergence of extremely powerful CPUS with the

capacity of carrying out 1 million instruction per second.

2) The size of main memory reached about 4MB by improving the design of magnetic

core memories also in hard disk of 100 MB become feasible.

3) On line system become feasible. In particular dynamic production control systems,

airline reservation systems, interactive query systems, and real time closed lop process

control systems were implemented.

4) Concept of Integrated database management systems were emerged.

5) 32 bit instruction formats

6) Time shared concept of operating system.

7) Technology and Architecture features

Integrated circuits (SSI/MSI)

Microprogramming

Pipelining, cache memories, lookahead processing

 6

8) Software and Applications

Multiprogramming and time-sharing operating systems

Multi-user applications

9) Examples : IBM 360/370, CDC 6600, TI ASC, DEC PDP-82

IVth Generation computer ((1975 to 1990)

The microprocessor was invented as a single VLSI (Very large Scale Integrated circuit)

chip CPU. Main Memory chips of 1MB plus memory addresses were introduced as single

VLSI chip. The caches were invented and placed within the main memory and

microprocessor. These VLSIs and VVSLIs greatly reduced the space required in a

computer and increased significantly the computational speed.

1) Technology and Architecture feature

LSI/VLSI circuits,

semiconductor memory

Multiprocessors,

vector supercomputers,

 multicomputers

Shared or distributed memory

Vector processors

Software and Applications

Multprocessor operating systems,

languages,

compilers,

parallel software tools

Examples : VAX 9000, Cray X-MP, IBM 3090, BBN TC2000

Fifth Generation computers(1990 onwards)

In the mid-to-late 1980s, in order to further improve the performance of the system the

designers start using a technique known as “instruction pipelining”. The idea is to break

the program into small instructions and the processor works on these instructions in

different stages of completion. For example, the processor while calculating the result of

the current instruction also retrieves the operands for the next instruction. Based on this

concept later superscalar processor were designed, here to execute multiple instructions

 7

in parallel we have multiple execution unit i.e., separate arithmetic-logic units (ALUs).

Now instead executing single instruction at a time, the system divide program into

several independent instructions and now CPU will look for several similar instructions

that are not dependent on each other, and execute them in parallel. The example of this

design are VLIW and EPIC.

1) Technology and Architecture features

ULSI/VHSIC processors, memory, and switches

High-density packaging

Scalable architecture

Vector processors

2) Software and Applications

Massively parallel processing

Grand challenge applications

Heterogenous processing

3) Examples : Fujitsu VPP500, Cray MPP, TMC CM-5, Intel Paragon

Elements of Modern Computers

The hardware, software, and programming elements of modern computer systems can be

characterized by looking at a variety of factors in context of parallel computing these

factors are:

• Computing problems

• Algorithms and data structures

• Hardware resources

• Operating systems

• System software support

• Compiler support

Computing Problems

• Numerical computing complex mathematical formulations tedious integer or

floating -point computation

• Transaction processing accurate transactions large database management

information retrieval

• Logical Reasoning logic inferences symbolic manipulations

 8

Algorithms and Data Structures

• Traditional algorithms and data structures are designed for sequential machines.

• New, specialized algorithms and data structures are needed to exploit the

capabilities of parallel architectures.

• These often require interdisciplinary interactions among theoreticians,

experimentalists, and programmers.

Hardware Resources

• The architecture of a system is shaped only partly by the hardware resources.

• The operating system and applications also significantly influence the overall

architecture.

• Not only must the processor and memory architectures be considered, but also the

architecture of the device interfaces (which often include their advanced

processors).

Operating System

• Operating systems manage the allocation and deallocation of resources during

user program execution.

• UNIX, Mach, and OSF/1 provide support for multiprocessors and multicomputers

• multithreaded kernel functions virtual memory management file subsystems

network communication services

• An OS plays a significant role in mapping hardware resources to algorithmic and

data structures.

System Software Support

• Compilers, assemblers, and loaders are traditional tools for developing programs

in high-level languages. With the operating system, these tools determine the bind

of resources to applications, and the effectiveness of this determines the efficiency

of hardware utilization and the system’s programmability.

• Most programmers still employ a sequential mind set, abetted by a lack of popular

parallel software support.

System Software Support

 9

• Parallel software can be developed using entirely new languages designed

specifically with parallel support as its goal, or by using extensions to existing

sequential languages.

• New languages have obvious advantages (like new constructs specifically for

parallelism), but require additional programmer education and system software.

• The most common approach is to extend an existing language.

Compiler Support

• Preprocessors use existing sequential compilers and specialized libraries to

implement parallel constructs

• Precompilers perform some program flow analysis, dependence checking, and

limited parallel optimzations

• Parallelizing Compilers requires full detection of parallelism in source code, and

transformation of sequential code into parallel constructs

• Compiler directives are often inserted into source code to aid compiler

parallelizing efforts

1.2.3 Flynn's Classical Taxonomy

Among mentioned above the one widely used since 1966, is Flynn's Taxonomy. This

taxonomy distinguishes multi-processor computer architectures according two

independent dimensions of Instruction stream and Data stream. An instruction stream is

sequence of instructions executed by machine. And a data stream is a sequence of data

including input, partial or temporary results used by instruction stream. Each of these

dimensions can have only one of two possible states: Single or Multiple. Flynn’s

classification depends on the distinction between the performance of control unit and the

data processing unit rather than its operational and structural interconnections. Following

are the four category of Flynn classification and characteristic feature of each of them.

1. Single instruction stream, single data stream (SISD)

 10

Figure 1.1 Execution of instruction in SISD processors

The figure 1.1 is represents a organization of simple SISD computer having one control

unit, one processor unit and single memory unit.

Figure 1.2 SISD processor organization

• They are also called scalar processor i.e., one instruction at a time and each

instruction have only one set of operands.

• Single instruction: only one instruction stream is being acted on by the CPU

during any one clock cycle

• Single data: only one data stream is being used as input during any one clock

cycle

• Deterministic execution

• Instructions are executed sequentially.

• This is the oldest and until recently, the most prevalent form of computer

• Examples: most PCs, single CPU workstations and mainframes

b) Single instruction stream, multiple data stream (SIMD) processors

• A type of parallel computer

• Single instruction: All processing units execute the same instruction issued by the

control unit at any given clock cycle as shown in figure 13.5 where there are

multiple processor executing instruction given by one control unit.

 11

• Multiple data: Each processing unit can operate on a different data element as

shown if figure below the processor are connected to shared memory or

interconnection network providing multiple data to processing unit

Figure 1.3 SIMD processor organization

• This type of machine typically has an instruction dispatcher, a very high-

bandwidth internal network, and a very large array of very small-capacity

instruction units.

• Thus single instruction is executed by different processing unit on different set of

data as shown in figure 1.3.

• Best suited for specialized problems characterized by a high degree of regularity,

such as image processing and vector computation.

• Synchronous (lockstep) and deterministic execution

• Two varieties: Processor Arrays e.g., Connection Machine CM-2, Maspar MP-1,

MP-2 and Vector Pipelines processor e.g., IBM 9000, Cray C90, Fujitsu VP, NEC

SX-2, Hitachi S820

Figure 1.4 Execution of instructions in SIMD processors

 12

c) Multiple instruction stream, single data stream (MISD)

• A single data stream is fed into multiple processing units.

• Each processing unit operates on the data independently via independent

instruction streams as shown in figure 1.5 a single data stream is forwarded to

different processing unit which are connected to different control unit and execute

instruction given to it by control unit to which it is attached.

Figure 1.5 MISD processor organization

• Thus in these computers same data flow through a linear array of processors

executing different instruction streams as shown in figure 1.6.

• This architecture is also known as systolic arrays for pipelined execution of

specific instructions.

• Few actual examples of this class of parallel computer have ever existed. One is

the experimental Carnegie-Mellon C.mmp computer (1971).

• Some conceivable uses might be:

1. multiple frequency filters operating on a single signal stream

2. multiple cryptography algorithms attempting to crack a single coded message.

Figure 1.6 Execution of instructions in MISD processors

 13

d) Multiple instruction stream, multiple data stream (MIMD)

• Multiple Instruction: every processor may be executing a different instruction

stream

• Multiple Data: every processor may be working with a different data stream as

shown in figure 1.7 multiple data stream is provided by shared memory.

• Can be categorized as loosely coupled or tightly coupled depending on sharing of

data and control

• Execution can be synchronous or asynchronous, deterministic or non-

deterministic

Figure 1.7 MIMD processor organizations

• As shown in figure 1.8 there are different processor each processing different

task.

• Examples: most current supercomputers, networked parallel computer "grids" and

multi-processor SMP computers - including some types of PCs.

Figure 1.8 execution of instructions MIMD processors

 14

Here the some popular computer architecture and there types

SISD IBM 701, IBM 1620, IBM 7090, PDP VAX11/ 780

SISD (With multiple functional units) IBM360/91 (3); IBM 370/168 UP

SIMD (Word Slice Processing) Illiac – IV ; PEPE

SIMD (Bit Slice processing) STARAN; MPP; DAP

MIMD (Loosely Coupled) IBM 370/168 MP; Univac 1100/80

MIMD(Tightly Coupled) Burroughs- D – 825

1.2.4 PERFORMANCE ATTRIBUTES

Performance of a system depends on

• hardware technology

• architectural features

• efficient resource management

• algorithm design

• data structures

• language efficiency

• programmer skill

• compiler technology

When we talk about performance of computer system we would describe how quickly a

given system can execute a program or programs. Thus we are interested in knowing the

turnaround time. Turnaround time depends on:

• disk and memory accesses

• input and output

• compilation time

• operating system overhead

• CPU time

 An ideal performance of a computer system means a perfect match between the machine

capability and program behavior. The machine capability can be improved by using

better hardware technology and efficient resource management. But as far as program

behavior is concerned it depends on code used, compiler used and other run time

conditions. Also a machine performance may vary from program to program. Because

there are too many programs and it is impractical to test a CPU's speed on all of them,

 15

benchmarks were developed. Computer architects have come up with a variety of metrics

to describe the computer performance.

Clock rate and CPI / IPC : Since I/O and system overhead frequently overlaps

processing by other programs, it is fair to consider only the CPU time used by a program,

and the user CPU time is the most important factor. CPU is driven by a clock with a

constant cycle time (usually measured in nanoseconds, which controls the rate of internal

operations in the CPU. The clock mostly has the constant cycle time (t in nanoseconds).

The inverse of the cycle time is the clock rate (f = 1/τ, measured in megahertz). A shorter

clock cycle time, or equivalently a larger number of cycles per second, implies more

operations can be performed per unit time. The size of the program is determined by the

instruction count (Ic). The size of a program is determined by its instruction count, Ic, the

number of machine instructions to be executed by the program. Different machine

instructions require different numbers of clock cycles to execute. CPI (cycles per

instruction) is thus an important parameter.

Average CPI

It is easy to determine the average number of cycles per instruction for a particular

processor if we know the frequency of occurrence of each instruction type.

Of course, any estimate is valid only for a specific set of programs (which defines the

instruction mix), and then only if there are sufficiently large number of instructions.

In general, the term CPI is used with respect to a particular instruction set and a given

program mix. The time required to execute a program containing Ic instructions is just T

= Ic * CPI * τ.

Each instruction must be fetched from memory, decoded, then operands fetched from

memory, the instruction executed, and the results stored.

The time required to access memory is called the memory cycle time, which is usually k

times the processor cycle time τ. The value of k depends on the memory technology and

the processor-memory interconnection scheme. The processor cycles required for each

instruction (CPI) can be attributed to cycles needed for instruction decode and execution

(p), and cycles needed for memory references (m* k).

The total time needed to execute a program can then be rewritten as

T = Ic* (p + m*k)*τ.

 16

MIPS: The millions of instructions per second, this is calculated by dividing the number

of instructions executed in a running program by time required to run the program. The

MIPS rate is directly proportional to the clock rate and inversely proportion to the CPI.

All four systems attributes (instruction set, compiler, processor, and memory

technologies) affect the MIPS rate, which varies also from program to program. MIPS

does not proved to be effective as it does not account for the fact that different systems

often require different number of instruction to implement the program. It does not

inform about how many instructions are required to perform a given task. With the

variation in instruction styles, internal organization, and number of processors per system

it is almost meaningless for comparing two systems.

MFLOPS (pronounced ``megaflops'') stands for ``millions of floating point operations

per second.'' This is often used as a ``bottom-line'' figure. If one know ahead of time how

many operations a program needs to perform, one can divide the number of operations by

the execution time to come up with a MFLOPS rating. For example, the standard

algorithm for multiplying n*n matrices requires 2n3 – n operations (n2 inner products,

with n multiplications and n-1additions in each product). Suppose you compute the

product of two 100 *100 matrices in 0.35 seconds. Then the computer achieves

(2(100)3 – 100)/0.35 = 5,714,000 ops/sec = 5.714 MFLOPS

The term ``theoretical peak MFLOPS'' refers to how many operations per second would

be possible if the machine did nothing but numerical operations. It is obtained by

calculating the time it takes to perform one operation and then computing how many of

them could be done in one second. For example, if it takes 8 cycles to do one floating

point multiplication, the cycle time on the machine is 20 nanoseconds, and arithmetic

operations are not overlapped with one another, it takes 160ns for one multiplication, and

(1,000,000,000 nanosecond/1sec)*(1 multiplication / 160 nanosecond) = 6.25*106

multiplication /sec so the theoretical peak performance is 6.25 MFLOPS. Of course,

programs are not just long sequences of multiply and add instructions, so a machine

rarely comes close to this level of performance on any real program. Most machines will

achieve less than 10% of their peak rating, but vector processors or other machines with

internal pipelines that have an effective CPI near 1.0 can often achieve 70% or more of

their theoretical peak on small programs.

 17

Throughput rate : Another important factor on which system’s performance is measured

is throughput of the system which is basically how many programs a system can execute

per unit time Ws. In multiprogramming the system throughput is often lower than the

CPU throughput Wp which is defined as

Wp = f/(Ic * CPI)

Unit of Wp is programs/second.

Ws <Wp as in multiprogramming environment there is always additional overheads like

timesharing operating system etc. An Ideal behavior is not achieved in parallel computers

because while executing a parallel algorithm, the processing elements cannot devote

100% of their time to the computations of the algorithm. Efficiency is a measure of the

fraction of time for which a PE is usefully employed. In an ideal parallel system

efficiency is equal to one. In practice, efficiency is between zero and one

s of overhead associated with parallel execution

Speed or Throughput (W/Tn) - the execution rate on an n processor system, measured in

FLOPs/unit-time or instructions/unit-time.

Speedup (Sn = T1/Tn) - how much faster in an actual machine, n processors compared to

1 will perform the workload. The ratio T1/T∞is called the asymptotic speedup.

Efficiency (En = Sn/n) - fraction of the theoretical maximum speedup achieved by n

processors

Degree of Parallelism (DOP) - for a given piece of the workload, the number of

processors that can be kept busy sharing that piece of computation equally. Neglecting

overhead, we assume that if k processors work together on any workload, the workload

gets done k times as fast as a sequential execution.

Scalability - The attributes of a computer system which allow it to be gracefully and

linearly scaled up or down in size, to handle smaller or larger workloads, or to obtain

proportional decreases or increase in speed on a given application. The applications run

on a scalable machine may not scale well. Good scalability requires the algorithm and the

machine to have the right properties

Thus in general there are five performance factors (Ic, p, m, k, t) which are influenced by

four system attributes:

• instruction-set architecture (affects Ic and p)

 18

• compiler technology (affects Ic and p and m)

• CPU implementation and control (affects p *t) cache and memory hierarchy

(affects memory access latency, k ´t)

• Total CPU time can be used as a basis in estimating the execution rate of a

processor.

Programming Environments

Programmability depends on the programming environment provided to the users.

Conventional computers are used in a sequential programming environment with tools

developed for a uniprocessor computer. Parallel computers need parallel tools that allow

specification or easy detection of parallelism and operating systems that can perform

parallel scheduling of concurrent events, shared memory allocation, and shared peripheral

and communication links.

Implicit Parallelism

Use a conventional language (like C, Fortran, Lisp, or Pascal) to write the program.

Use a parallelizing compiler to translate the source code into parallel code.

The compiler must detect parallelism and assign target machine resources.

Success relies heavily on the quality of the compiler.

Explicit Parallelism

Programmer writes explicit parallel code using parallel dialects of common languages.

Compiler has reduced need to detect parallelism, but must still preserve existing

parallelism and assign target machine resources.

Needed Software Tools

Parallel extensions of conventional high-level languages.

Integrated environments to provide different levels of program abstraction validation,

testing and debugging performance prediction and monitoring visualization support to aid

program development, performance measurement graphics display and animation of

computational results

1.3 MULTIPROCESSOR AND MULTICOMPUTERS

 Two categories of parallel computers are discussed below namely shared common

memory or unshared distributed memory.

1.3.1 Shared memory multiprocessors

 19

• Shared memory parallel computers vary widely, but generally have in common

the ability for all processors to access all memory as global address space.

• Multiple processors can operate independently but share the same memory

resources.

• Changes in a memory location effected by one processor are visible to all other

processors.

• Shared memory machines can be divided into two main classes based upon

memory access times: UMA , NUMA and COMA.

Uniform Memory Access (UMA):

• Most commonly represented today by Symmetric Multiprocessor (SMP)

machines

• Identical processors

• Equal access and access times to memory

• Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if

one processor updates a location in shared memory, all the other processors know

about the update. Cache coherency is accomplished at the hardware level.

Figure 1.9 Shared Memory (UMA)

 20

Non-Uniform Memory Access (NUMA):

• Often made by physically linking two or more SMPs

• One SMP can directly access memory of another SMP

• Not all processors have equal access time to all memories

• Memory access across link is slower

If cache coherency is maintained, then may also be called CC-NUMA - Cache Coherent

NUMA

figure 1.10 Shared Memory (NUMA)

The COMA model : The COMA model is a special case of NUMA machine in which

the distributed main memories are converted to caches. All caches form a global address

space and there is no memory hierarchy at each processor node.

Advantages:

• Global address space provides a user-friendly programming perspective to

memory

• Data sharing between tasks is both fast and uniform due to the proximity of

memory to CPUs

Disadvantages:

• Primary disadvantage is the lack of scalability between memory and CPUs.

Adding more CPUs can geometrically increases traffic on the shared memory-

 21

CPU path, and for cache coherent systems, geometrically increase traffic

associated with cache/memory management.

• Programmer responsibility for synchronization constructs that insure "correct"

access of global memory.

• Expense: it becomes increasingly difficult and expensive to design and produce

shared memory machines with ever increasing numbers of processors.

1.3.2 Distributed Memory

• Like shared memory systems, distributed memory systems vary widely but share

a common characteristic. Distributed memory systems require a communication

network to connect inter-processor memory.

Figure 1.11 distributed memory systems

• Processors have their own local memory. Memory addresses in one processor do

not map to another processor, so there is no concept of global address space

across all processors.

• Because each processor has its own local memory, it operates independently.

Changes it makes to its local memory have no effect on the memory of other

processors. Hence, the concept of cache coherency does not apply.

• When a processor needs access to data in another processor, it is usually the task

of the programmer to explicitly define how and when data is communicated.

Synchronization between tasks is likewise the programmer's responsibility.

 22

• Modern multicomputer use hardware routers to pass message. Based on the

interconnection and routers and channel used the multicomputers are divided into

generation

o 1st generation : based on board technology using hypercube architecture

and software controlled message switching.

o 2nd Generation: implemented with mesh connected architecture, hardware

message routing and software environment for medium distributed –

grained computing.

o 3rd Generation : fine grained multicomputer like MIT J-Machine.

• The network "fabric" used for data transfer varies widely, though it can be as

simple as Ethernet.

Advantages:

• Memory is scalable with number of processors. Increase the number of processors

and the size of memory increases proportionately.

• Each processor can rapidly access its own memory without interference and

without the overhead incurred with trying to maintain cache coherency.

• Cost effectiveness: can use commodity, off-the-shelf processors and networking.

Disadvantages:

• The programmer is responsible for many of the details associated with data

communication between processors.

• It may be difficult to map existing data structures, based on global memory, to

this memory organization.

• Non-uniform memory access (NUMA) times

1.4 MULTIVECTOR AND SIMD COMPUTERS

A vector operand contains an ordered set of n elements, where n is called the length of

the vector. Each element in a vector is a scalar quantity, which may be a floating point

number, an integer, a logical value or a character.

 23

A vector processor consists of a scalar processor and a vector unit, which could be

thought of as an independent functional unit capable of efficient vector operations.

1.4.1Vector Hardware

Vector computers have hardware to perform the vector operations efficiently. Operands

can not be used directly from memory but rather are loaded into registers and are put

back in registers after the operation. Vector hardware has the special ability to overlap or

pipeline operand processing.

Figure 1.12 Vector Hardware

Vector functional units pipelined, fully segmented each stage of the pipeline performs a

step of the function on different operand(s) once pipeline is full, a new result is produced

each clock period (cp).

Pipelining

The pipeline is divided up into individual segments, each of which is completely

independent and involves no hardware sharing. This means that the machine can be

working on separate operands at the same time. This ability enables it to produce one

result per clock period as soon as the pipeline is full. The same instruction is obeyed

repeatedly using the pipeline technique so the vector processor processes all the elements

of a vector in exactly the same way. The pipeline segments arithmetic operation such as

floating point multiply into stages passing the output of one stage to the next stage as

input. The next pair of operands may enter the pipeline after the first stage has processed

the previous pair of operands. The processing of a number of operands may be carried out

simultaneously.

The loading of a vector register is itself a pipelined operation, with the ability to load one

element each clock period after some initial startup overhead.

 24

1.4.2 SIMD Array Processors

The Synchronous parallel architectures coordinate Concurrent operations in lockstep

through global clocks, central control units, or vector unit controllers. A synchronous

array of parallel processors is called an array processor. These processors are composed

of N identical processing elements (PES) under the supervision of a one control unit (CU)

This Control unit is a computer with high speed registers,

local memory and arithmetic logic unit.. An array processor is basically a single

instruction and multiple data (SIMD) computers. There are N data streams; one per

processor, so different data can be used in each processor. The figure below show a

typical SIMD or array processor

Figure 1.13 Configuration of SIMD Array Processor

These processors consist of a number of memory modules which can be either global or

dedicated to each processor. Thus the main memory is the aggregate of the memory

modules. These Processing elements and memory unit communicate with each other

through an interconnection network. SIMD processors are especially designed for

performing vector computations. SIMD has two basic architectural organizations

a. Array processor using random access memory

b. Associative processors using content addressable memory.

 All N identical processors operate under the control of a single instruction stream issued

by a central control unit. The popular examples of this type of SIMD configuration is

ILLIAC IV, CM-2, MP-1. Each PEi is essentially an arithmetic logic unit (ALU) with

attached working registers and local memory PEMi for the storage of distributed data.

The CU also has its own main memory for the storage of program. The function of CU is

to decode the instructions and determine where the decoded instruction should be

executed. The PE perform same function (same instruction) synchronously in a lock step

fashion under command of CU. In order to maintain synchronous operations a global

 25

clock is used. Thus at each step i.e., when global clock pulse changes all processors

execute the same instruction, each on a different data (single instruction multiple data).

SIMD machines are particularly useful at in solving problems involved with vector

calculations where one can easily exploit data parallelism. In such calculations the same

set of instruction is applied to all subsets of data. Lets do addition to two vectors each

having N element and there are N/2 processing elements in the SIMD. The same addition

instruction is issued to all N/2 processors and all processor elements will execute the

instructions simultaneously. It takes 2 steps to add two vectors as compared to N steps on

a SISD machine. The distributed data can be loaded into PEMs from an external source

via the system bus or via system broadcast mode using the control bus.

The array processor can be classified into two category depending how the memory units

are organized. It can be

a. Dedicated memory organization

b. Global memory organization

A SIMD computer C is characterized by the following set of parameter

C= <N,F,I,M>

Where N= the number of PE in the system . For example the iliac –IV has N=64 , the

BSP has N= 16.

F= a set of data routing function provided by the interconnection network

I= The set of machine instruction for scalar vector, data routing and network

manipulation operations

M = The set of the masking scheme where each mask partitions the set of PEs into

disjoint subsets of enabled PEs and disabled PEs.

1.5 PRAM AND VLSI MODELS

1.5.1 PRAM model (Parallel Random Access Machine):

PRAM Parallel random access machine; a theoretical model of parallel computation in

which an arbitrary but finite number of processors can access any value in an arbitrarily

large shared memory in a single time step. Processors may execute different instruction

streams, but work synchronously. This model assumes a shared memory, multiprocessor

machine as shown:

 26

1. The machine size n can be arbitrarily large

2. The machine is synchronous at the instruction level. That is, each processor is

executing it's own series of instructions, and the entire machine operates at a basic time

step (cycle). Within each cycle, each processor executes exactly one operation or does

nothing, i.e. it is idle. An instruction can be any random access machine instruction, such

as: fetch some operands from memory, perform an ALU operation on the data, and store

the result back in memory.

3. All processors implicitly synchronize on each cycle and the synchronization overhead

is assumed to be zero. Communication is done through reading and writing of shared

variables.

4. Memory access can be specified to be UMA, NUMA, EREW, CREW, or CRCW with

a defined conflict policy.

The PRAM model can apply to SIMD class machines if all processors execute identical

instructions on the same cycle, or to MIMD class machines if the processors are

executing different instructions. Load imbalance is the only form of overhead in the

PRAM model.

The four most important variations of the PRAM are:

• EREW - Exclusive read, exclusive write; any memory location may only be

accessed once in any one step. Thus forbids more than one processor from reading

or writing the same memory cell simultaneously.

• CREW - Concurrent read, exclusive write; any memory location may be read any

number of times during a single step, but only written to once, with the write

taking place after the reads.

• ERCW – This allows exclusive read or concurrent writes to the same memory

location.

• CRCW - Concurrent read, concurrent write; any memory location may be written

to or read from any number of times during a single step. A CRCW PRAM model

must define some rule for resolving multiple writes, such as giving priority to the

lowest-numbered processor or choosing amongst processors randomly. The

PRAM is popular because it is theoretically tractable and because it gives

 27

algorithm designers a common target. However, PRAMs cannot be emulated

optimally on all architectures.

1.5.2 VLSI Model:

Parallel computers rely on the use of VLSI chips to fabricate the major components such

as processor arrays memory arrays and large scale switching networks. The rapid advent

of very large scale intergrated (VSLI) technology now computer architects are trying to

implement parallel algorithms directly in hardware. An AT2 model is an example for two

dimension VLSI chips

1.6 Summary

Architecture has gone through evolutional, rather than revolutional change.

Sustaining features are those that are proven to improve performance. Starting with the

von Neumann architecture (strictly sequential), architectures have evolved to include

processing lookahead, parallelism, and pipelining. Also a variety of parallel architectures

are discussed like SIMD, MIMD, Associative Processor, Array Processor,

multicomputers, Mutiprocessor. The performance of system is measured as CPI, MIPS. It

depends on the clock rate lets say t. If C is the total number of clock cycles needed to

execute a given program, then total CPU time can be estimated as

T= C * t = C / f.

Other relationships are easily observed:

CPI = C / Ic

T =Ic * CPI * t

T =Ic * CPI / f

Processor speed is often measured in terms of millions of instructions per second,

frequently called the MIPS rate of the processor. The multiprocessor architecture can be

broadly classified as tightly coupled multiprocessor and loosely coupled multiprocessor.

A tightly coupled Multiprocessor is also called a UMA, for uniform memory access,

because each CPU can access memory data at the same (uniform) amount of time. This is

the true multiprocessor. A loosely coupled Multiprocessor is called a NUMA. Each of its

node computers can access their local memory data at one (relatively fast) speed, and

 28

remote memory data at a much slower speed. PRAM and VSLI are the advance

technologies that are used for designing the architecture.

1.7 Keywords

multiprocessor A computer in which processors can execute separate instruction

streams, but have access to a single address space. Most multiprocessors are shared

memory machines, constructed by connecting several processors to one or more memory

banks through a bus or switch.

multicomputer A computer in which processors can execute separate instruction

streams, have their own private memories and cannot directly access one another's

memories. Most multicomputers are disjoint memory machines, constructed by joining

nodes (each containing a microprocessor and some memory) via links.

MIMD Multiple Instruction, Multiple Data; a category of Flynn's taxonomy in which

many instruction streams are concurrently applied to multiple data sets. A MIMD

architecture is one in which heterogeneous processes may execute at different rates.

MIPS one Million Instructions Per Second. A performance rating usually referring to

integer or non-floating point instructions

vector processor A computer designed to apply arithmetic operations to long vectors or

arrays. Most vector processors rely heavily on pipelining to achieve high performance

pipelining Overlapping the execution of two or more operations

1.8 Self assessment questions

1. Explain the different generations of computers with respect to progress in

hardware.

2. Describe the different element of modern computers.

3. Explain the Flynn’s classification of computer architectures.

4. Explain performance factors vs system attributes.

5. A 40-MHZ processor was used to execute a benchmark program with the

following instruction mix and clock cycle counts:

 29

Instruction type Instruction count Clock cycle count

Integer arithmetic 45000 1

Data transfer 32000 2

Floating point 15000 2

Control transfer 8000 2

Determine the effective CPI, MIPS rate, and execution time for this program. (10

marks)

6. Explain the UMA, NUMA and COMA multiprocessor models.

7. Differentiate between shared-memory multiprocessors and distributed-memory

multicomputers.

1.9 References/Suggested readings

Advance computer Architecture by Kai Hwang

 30

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Program & Network properties Lesson No. : 02

2.0 Objective

2.1 Introduction

2.2 Condition of parallelism

2.2.1 Data dependence and resource dependence

2.2.2 Hardware and software dependence

2.2.3 The role of compiler

2.4 Program partitioning and scheduling

2.4.1 Grain size and latency

2.4.2 Grain packing and scheduling

2.5 Program flow mechanism

2.6 System interconnect architecture.

2.6.1 Network properties and routing

2.6.2 Static connection network

2.6.3 Dynamic connection network

2.7 Summary

2.8 Keywords

2.9 Exercises

2.10 References

2.0 Objective

In this lesson we will study about fundamental properties of programs how parallelism

can be introduced in program. We will study about the granularity, partitioning of

programs , program flow mechanism and compilation support for parallelism.

Interconnection architecture both static and dynamic type will be discussed.

2.1 Introduction

The advantage of multiprocessors lays when parallelism in the program is popularly

exploited and implemented using multiple processors. Thus in order to implement the

parallelism we should understand the various conditions of parallelism.

 1

What are various bottlenecks in implementing parallelism? Thus for full implementation

of parallelism there are three significant areas to be understood namely computation

models for parallel computing, interprocessor communication in parallel architecture and

system integration for incorporating parallel systems. Thus multiprocessor system poses a

number of problems that are not encountered in sequential processing such as designing a

parallel algorithm for the application, partitioning of the application into tasks,

coordinating communication and synchronization, and scheduling of the tasks onto the

machine.

2.2 Condition of parallelism

The ability to execute several program segments in parallel requires each segment to be

independent of the other segments. We use a dependence graph to describe the relations.

The nodes of a dependence graph correspond to the program statement (instructions), and

directed edges with different labels are used to represent the ordered relations among the

statements. The analysis of dependence graphs shows where opportunity exists for

parallelization and vectorization.

2.2.1 Data and resource Dependence

Data dependence: The ordering relationship between statements is indicated by the data

dependence. Five type of data dependence are defined below:

1. Flow dependence: A statement S2 is flow dependent on S1 if an execution path exists

from s1 to S2 and if at least one output (variables assigned) of S1feeds in as input

(operands to be used) to S2 also called RAW hazard and denoted as

2. Antidependence: Statement S2 is antidependent on the statement S1 if S2 follows S1 in

the program order and if the output of S2 overlaps the input to S1 also called RAW

hazard and denoted as

3. Output dependence : two statements are output dependent if they produce (write) the

same output variable. Also called WAW hazard and denoted as

4. I/O dependence: Read and write are I/O statements. I/O dependence occurs not

because the same variable is involved but because the same file referenced by both I/O

statement.

 2

5. Unknown dependence: The dependence relation between two statements cannot be

determined in the following situations:

• The subscript of a variable is itself subscribed(indirect addressing)

• The subscript does not contain the loop index variable.

• A variable appears more than once with subscripts having different coefficients

of the loop variable.

• The subscript is non linear in the loop index variable.

Parallel execution of program segments which do not have total data independence can

produce non-deterministic results.

Consider the following fragment of any program:

S1 Load R1, A

S2 Add R2, R1

S3 Move R1, R3

S4 Store B, R1

• here the Forward dependency S1to S2, S3 to S4, S2 to S2

• Anti-dependency from S2to S3

• Output dependency S1 toS3

Figure 2.1 Dependence graph

Control Dependence: This refers to the situation where the order of the execution of

statements cannot be determined before run time. For example all condition statement,

where the flow of statement depends on the output. Different paths taken after a

conditional branch may depend on the data hence we need to eliminate this data

dependence among the instructions. This dependence also exists between operations

 3

performed in successive iterations of looping procedure. Control dependence often

prohibits parallelism from being exploited.

Control-independent example:

for (i=0;i<n;i++) {

a[i] = c[i];

if (a[i] < 0) a[i] = 1;

}

Control-dependent example:

for (i=1;i<n;i++) {

if (a[i-1] < 0) a[i] = 1;

}

Control dependence also avoids parallelism to being exploited. Compilers are used to

eliminate this control dependence and exploit the parallelism.

Resource dependence:

Data and control dependencies are based on the independence of the work to be done.

Resource independence is concerned with conflicts in using shared resources, such as

registers, integer and floating point ALUs, etc. ALU conflicts are called ALU

dependence. Memory (storage) conflicts are called storage dependence.

Bernstein’s Conditions - 1

Bernstein’s conditions are a set of conditions which must exist if two processes can

execute in parallel.

Notation

Ii is the set of all input variables for a process Pi . Ii is also called the read set or domain

of Pi. Oi is the set of all output variables for a process Pi .Oi is also called write set

If P1 and P2 can execute in parallel (which is written as P1 || P2), then:

Bernstein’s Conditions - 2

 4

In terms of data dependencies, Bernstein’s conditions imply that two processes can

execute in parallel if they are flow-independent, antiindependent, and output-

independent. The parallelism relation || is commutative (Pi || Pj implies Pj || Pi), but not

transitive (Pi || Pj and Pj || Pk does not imply Pi || Pk) . Therefore, || is not an equivalence

relation. Intersection of the input sets is allowed.

2.2.2 Hardware and software parallelism

Hardware parallelism is defined by machine architecture and hardware multiplicity i.e.,

functional parallelism times the processor parallelism .It can be characterized by the

number of instructions that can be issued per machine cycle. If a processor issues k

instructions per machine cycle, it is called a k-issue processor. Conventional processors

are one-issue machines. This provide the user the information about peak attainable

performance. Examples. Intel i960CA is a three-issue processor (arithmetic, memory

access, branch). IBM RS -6000 is a four-issue processor (arithmetic, floating-point,

memory access, branch).A machine with n k-issue processors should be able to handle a

maximum of nk threads simultaneously.

Software Parallelism

Software parallelism is defined by the control and data dependence of programs, and is

revealed in the program’s flow graph i.e., it is defined by dependencies with in the code

and is a function of algorithm, programming style, and compiler optimization.

2.2.3 The Role of Compilers

Compilers used to exploit hardware features to improve performance. Interaction

between compiler and architecture design is a necessity in modern computer

development. It is not necessarily the case that more software parallelism will improve

performance in conventional scalar processors. The hardware and compiler should be

designed at the same time.

2.3Program Partitioning & Scheduling

2.3.1 Grain size and latency

The size of the parts or pieces of a program that can be considered for parallel execution

can vary. The sizes are roughly classified using the term “granule size,” or simply

“granularity.” The simplest measure, for example, is the number of instructions in a

 5

program part. Grain sizes are usually described as fine, medium or coarse, depending on

the level of parallelism involved.

Latency

Latency is the time required for communication between different subsystems in a

computer. Memory latency, for example, is the time required by a processor to access

memory. Synchronization latency is the time required for two processes to synchronize

their execution. Computational granularity and communication latency are closely

related. Latency and grain size are interrelated and some general observation are

• As grain size decreases, potential parallelism increases, and overhead also

increases.

• Overhead is the cost of parallelizing a task. The principle overhead is

communication latency.

• As grain size is reduced, there are fewer operations between communication, and

hence the impact of latency increases.

• Surface to volume: inter to intra-node comm.

Levels of Parallelism

Instruction Level Parallelism

This fine-grained, or smallest granularity level typically involves less than 20 instructions

per grain. The number of candidates for parallel execution varies from 2 to thousands,

with about five instructions or statements (on the average) being the average level of

parallelism.

Advantages:

There are usually many candidates for parallel execution

Compilers can usually do a reasonable job of finding this parallelism

Loop-level Parallelism

Typical loop has less than 500 instructions. If a loop operation is independent between

iterations, it can be handled by a pipeline, or by a SIMD machine. Most optimized

program construct to execute on a parallel or vector machine. Some loops (e.g. recursive)

are difficult to handle. Loop-level parallelism is still considered fine grain computation.

Procedure-level Parallelism

 6

Medium-sized grain; usually less than 2000 instructions. Detection of parallelism is more

difficult than with smaller grains; interprocedural dependence analysis is difficult and

history-sensitive. Communication requirement less than instruction level SPMD (single

procedure multiple data) is a special case Multitasking belongs to this level.

Subprogram-level Parallelism

Job step level; grain typically has thousands of instructions; medium- or coarse-grain

level. Job steps can overlap across different jobs. Multiprograming conducted at this level

No compilers available to exploit medium- or coarse-grain parallelism at present.

Job or Program-Level Parallelism

Corresponds to execution of essentially independent jobs or programs on a parallel

computer. This is practical for a machine with a small number of powerful processors,

but impractical for a machine with a large number of simple processors (since each

processor would take too long to process a single job).

Communication Latency

Balancing granularity and latency can yield better performance. Various latencies

attributed to machine architecture, technology, and communication patterns used.

Latency imposes a limiting factor on machine scalability. Ex. Memory latency increases

as memory capacity increases, limiting the amount of memory that can be used with a

given tolerance for communication latency.

Interprocessor Communication Latency

• Needs to be minimized by system designer

• Affected by signal delays and communication patterns Ex. n communicating tasks

may require n (n - 1)/2 communication links, and the complexity grows

quadratically, effectively limiting the number of processors in the system.

Communication Patterns

• Determined by algorithms used and architectural support provided

• Patterns include permutations broadcast multicast conference

• Tradeoffs often exist between granularity of parallelism and communication

demand.

2.3.2 Grain Packing and Scheduling

Two questions:

 7

How can I partition a program into parallel “pieces” to yield the shortest execution time?

What is the optimal size of parallel grains?

There is an obvious tradeoff between the time spent scheduling and synchronizing

parallel grains and the speedup obtained by parallel execution.

One approach to the problem is called “grain packing.”

Program Graphs and Packing

A program graph is similar to a dependence graph Nodes = { (n,s) }, where n = node

name, s = size (larger s = larger grain size).

Edges = { (v,d) }, where v = variable being “communicated,” and d = communication

delay.

Packing two (or more) nodes produces a node with a larger grain size and possibly more

edges to other nodes. Packing is done to eliminate unnecessary communication delays or

reduce overall scheduling overhead.

Scheduling

A schedule is a mapping of nodes to processors and start times such that communication

delay requirements are observed, and no two nodes are executing on the same processor

at the same time. Some general scheduling goals

• Schedule all fine-grain activities in a node to the same processor to minimize

communication delays.

• Select grain sizes for packing to achieve better schedules for a particular parallel

machine.

Node Duplication

Grain packing may potentially eliminate interprocessor communication, but it may not

always produce a shorter schedule. By duplicating nodes (that is, executing some

instructions on multiple processors), we may eliminate some interprocessor

communication, and thus produce a shorter schedule.

Program partitioning and scheduling

Scheduling and allocation is a highly important issue since an inappropriate scheduling of

tasks can fail to exploit the true potential of the system and can offset the gain from

parallelization. In this paper we focus on the scheduling aspect. The objective of

scheduling is to minimize the completion time of a parallel application by properly

 8

allocating the tasks to the processors. In a broad sense, the scheduling problem exists in

two forms: static and dynamic. In static scheduling, which is usually done at compile

time, the characteristics of a parallel program (such as task processing times,

communication, data dependencies, and synchronization requirements) are known before

program execution

A parallel program, therefore, can be represented by a node- and edge-weighted directed

acyclic graph (DAG), in which the node weights represent task processing times and the

edge weights represent data dependencies as well as the communication times between

tasks. In dynamic scheduling only, a few assumptions about the parallel program can be

made before execution, and thus, scheduling decisions have to be made on-the-fly. The

goal of a dynamic scheduling algorithm as such includes not only the minimization of the

program completion time but also the minimization of the scheduling overhead which

constitutes a significant portion of the cost paid for running the scheduler. In general

dynamic scheduling is an NP hard problem.

2.4 Program flow mechanism

Conventional machines used control flow mechanism in which order of program

execution explicitly stated in user programs. Dataflow machines which instructions can

be executed by determining operand availability.

Reduction machines trigger an instruction’s execution based on the demand for its

results.

Control Flow vs. Data Flow In Control flow computers the next instruction is executed

when the last instruction as stored in the program has been executed where as in Data

flow computers an instruction executed when the data (operands) required for executing

that instruction is available

Control flow machines used shared memory for instructions and data. Since variables are

updated by many instructions, there may be side effects on other instructions. These side

effects frequently prevent parallel processing. Single processor systems are inherently

sequential.

Instructions in dataflow machines are unordered and can be executed as soon as their

operands are available; data is held in the instructions themselves. Data tokens are passed

from an instruction to its dependents to trigger execution.

 9

Data Flow Features

No need for shared memory program counter control sequencer Special mechanisms are

required to detect data availability match data tokens with instructions needing them

enable chain reaction of asynchronous instruction execution

A Dataflow Architecture – 1 The Arvind machine (MIT) has N PEs and an N -by –N

interconnection network. Each PE has a token-matching mechanism that dispatches only

instructions with data tokens available. Each datum is tagged with

• address of instruction to which it belongs

• context in which the instruction is being executed

Tagged tokens enter PE through local path (pipelined), and can also be communicated to

other PEs through the routing network. Instruction address(es) effectively replace the

program counter in a control flow machine. Context identifier effectively replaces the

frame base register in a control flow machine. Since the dataflow machine matches the

data tags from one instruction with successors, synchronized instruction execution is

implicit.

An I-structure in each PE is provided to eliminate excessive copying of data structures.

Each word of the I-structure has a two-bit tag indicating whether the value is empty, full,

or has pending read requests.

This is a retreat from the pure dataflow approach. Special compiler technology needed for

dataflow machines.

Demand-Driven Mechanisms

Data-driven machines select instructions for execution based on the availability of their

operands; this is essentially a bottom-up approach.

Demand-driven machines take a top-down approach, attempting to execute the

instruction (a demander) that yields the final result. This triggers the execution of

instructions that yield its operands, and so forth. The demand-driven approach matches

naturally with functional programming languages (e.g. LISP and SCHEME).

Pattern driven computers : An instruction is executed when we obtain a particular data

patterns as output. There are two types of pattern driven computers

 10

String-reduction model: each demander gets a separate copy of the expression string to

evaluate each reduction step has an operator and embedded reference to demand the

corresponding operands each operator is suspended while arguments are evaluated

Graph-reduction model: expression graph reduced by evaluation of branches or

subgraphs, possibly in parallel, with demanders given pointers to results of reductions.

based on sharing of pointers to arguments; traversal and reversal of pointers continues

until constant arguments are encountered.

2.5 System interconnect architecture.

Various types of interconnection networks have been suggested for SIMD computers.

These are basically classified have been classified on network topologies into two

categories namely

� Static Networks

� Dynamic Networks

Static versus Dynamic Networks

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in interconnecting the processing elements.

The topological structure of an SIMD array processor is mainly characterized by the data

routing network used in the interconnecting the processing elements. To execute the

communication the routing function f is executed and via the interconnection network the

PEi copies the content of its Ri register into the Rf(i) register of PEf(i). The f(i) the

processor identified by the mapping function f. The data routing operation occurs in all

active PEs simultaneously.

2.5.1 Network properties and routing

The goals of an interconnection network are to provide low-latency high data transfer rate

wide communication bandwidth. Analysis includes latency bisection bandwidth data-

routing functions scalability of parallel architecture

These Network usually represented by a graph with a finite number of nodes linked by

directed or undirected edges.

Number of nodes in graph = network size .

Number of edges (links or channels) incident on a node = node degree d (also note in and

out degrees when edges are directed).

 11

 Node degree reflects number of I/O ports associated with a node, and should ideally be

small and constant.

Network is symmetric if the topology is the same looking from any node; these are easier

to implement or to program.

Diameter : The maximum distance between any two processors in the network or in

other words we can say Diameter, is the maximum number of (routing) processors

through which a message must pass on its way from source to reach destination. Thus

diameter measures the maximum delay for transmitting a message from one processor to

another as it determines communication time hence smaller the diameter better will be

the network topology.

Connectivity: How many paths are possible between any two processors i.e., the

multiplicity of paths between two processors. Higher connectivity is desirable as it

minimizes contention.

 Arch connectivity of the network: the minimum number of arcs that must be removed for

the network to break it into two disconnected networks. The arch connectivity of various

network are as follows

• 1 for linear arrays and binary trees

• 2 for rings and 2-d meshes

• 4 for 2-d torus

• d for d-dimensional hypercubes

Larger the arch connectivity lesser the conjunctions and better will be network topology.

Channel width : The channel width is the number of bits that can communicated

simultaneously by a interconnection bus connecting two processors

Bisection Width and Bandwidth: In order divide the network into equal halves we require

the remove some communication links. The minimum number of such communication

links that have to be removed are called the Bisection Width. Bisection width basically

provide us the information about the largest number of messages which can be sent

simultaneously (without needing to use the same wire or routing processor at the same

time and so delaying one another), no matter which processors are sending to which

other processors. Thus larger the bisection width is the better the network topology is

considered. Bisection Bandwidth is the minimum volume of communication allowed

 12

between two halves of the network with equal numbers of processors This is important

for the networks with weighted arcs where the weights correspond to the link width i.e.,

(how much data it can transfer). The Larger bisection width the better network topology

is considered.

Cost the cost of networking can be estimated on variety of criteria where we consider the

the number of communication links or wires used to design the network as the basis of

cost estimation. Smaller the better the cost

Data Routing Functions: A data routing network is used for inter –PE data exchange. It

can be static as in case of hypercube routing network or dynamic such as multistage

network. Various type of data routing functions are Shifting, Rotating, Permutation (one

to one), Broadcast (one to all), Multicast (many to many), Personalized broadcast (one to

many), Shuffle, Exchange Etc.

Permutations

Given n objects, there are n ! ways in which they can be reordered (one of which is no

reordering). A permutation can be specified by giving the rule for reordering a group of

objects. Permutations can be implemented using crossbar switches, multistage networks,

shifting, and broadcast operations. The time required to perform permutations of the

connections between nodes often dominates the network performance when n is large.

Perfect Shuffle and Exchange

Stone suggested the special permutation that entries according to the mapping of the k-bit

binary number a b … k to b c … k a (that is, shifting 1 bit to the left and wrapping it

around to the least significant bit position). The inverse perfect shuffle reverses the effect

of the perfect shuffle.

Hypercube Routing Functions

If the vertices of a n-dimensional cube are labeled with n-bit numbers so that only one bit

differs between each pair of adjacent vertices, then n routing functions are defined by the

bits in the node (vertex) address. For example, with a 3-dimensional cube, we can easily

identify routing functions that exchange data between nodes with addresses that differ in

the least significant, most significant, or middle bit.

Factors Affecting Performance

 13

Functionality – how the network supports data routing, interrupt handling,

synchronization, request/message combining, and coherence

Network latency – worst-case time for a unit message to be transferred

Bandwidth – maximum data rate

Hardware complexity – implementation costs for wire, logic, switches, connectors, etc.

Scalability – how easily does the scheme adapt to an increasing number of processors,

memories, etc.?

2.5.2 Static connection Networks

In static network the interconnection network is fixed and permanent interconnection

path between two processing elements and data communication has to follow a fixed

route to reach the destination processing element. Thus it Consist of a number of point-

to-point links. Topologies in the static networks can be classified according to the

dimension required for layout i.e., it can be 1-D, 2-D, 3-D or hypercube.

One dimensional topologies include Linear array as shown in figure 2.2 (a) used in some

pipeline architecture.

Various 2-D topologies are

• The ring (figure 2.2(b))

• Star (figure 2.2(c))

• Tree (figure 2.2(d))

• Mesh (figure 2.2(e))

• Systolic Array (figure 2.2(f))

3-D topologies include

• Completely connected chordal ring (figure 2.2(g))

• Chordal ring (figure 2.2(h))

• 3 cube (figure 2.2(i))

 14

Figure 2.2 Static interconnection network topologies.

 Torus architecture is also one of popular network topology it is extension of the mesh by

having wraparound connections Figure below is a 2D Torus This architecture of torus is

a symmetric topology unlike mesh which is not. The wraparound connections reduce the

torus diameter and at the same time restore the symmetry. It can be

o 1-D torus

2-D torus

3-D torus

The torus topology is used in Cray T3E

 15

Figure 2.3 Torus technology

We can have further higher dimension circuits for example 3-cube connected cycle. A D-

dimension W-wide hypercube contains W nodes in each dimension and there is a

connection to a node in each dimension. The mesh and the cube architecture are actually

2-D and 3-D hypercube respectively. The below figure we have hypercube with

dimension 4.

Figure 2.4 4-D hypercube.

2.5.3 Dynamic connection Networks

The dynamic networks are those networks where the route through which data move

from one PE to another is established at the time communication has to be performed.

Usually all processing elements are equidistant and an interconnection path is established

when two processing element want to communicate by use of switches. Such systems are

more difficult to expand as compared to static network. Examples: Bus-based, Crossbar,

Multistage Networks. Here the Routing is done by comparing the bit-level representation

 16

of source and destination addresses. If there is a match goes to next stage via pass-

through else in case of it mismatch goes via cross-over using the switch.

There are two classes of dynamic networks namely

• single stage network

• multi stage

2.5.3.1 Single Stage Networks

A single stage switching network with N input selectors (IS) and N output selectors (OS).

Here at each network stage there is a 1- to-D demultiplexer corresponding to each IS such

that 1<D<N and each OS is an M-to-1 multiplexer such that 1<M<=N. Cross bar network

is a single stage network with D=M=N. In order to establish a desired connecting path

different path control signals will be applied to all IS and OS selectors. The single stage

network is also called as recirculating network as in this network connection the single

data items may have to recirculate several time through the single stage before reaching

their final destinations. The number of recirculation depends on the connectivity in the

single stage network. In general higher the hardware connectivity the lesser is the number

of recirculation. In cross bar network only one circulation is needed to establish the

connection path. The cost of completed connected cross bar network is O(N2) which is

very high as compared to other most recirculating networks which have cost O(N log N)

or lower hence are more cost effective for large value of N.

2.5.3.2 Multistage Networks

Many stages of interconnected switches form a multistage SIMD network. It is basicaaly

consist of three characteristic features

• The switch box,

• The network topology

• The control structure

Many stages of interconnected switches form a multistage SIMD networks. Eachbox is

essentially an interchange device with two inputs and two outputs. The four possible

states of a switch box are which are shown in figure 3.6

• Straight

• Exchange

• Upper Broadcast

 17

• Lower broadcast.

A two function switch can assume only two possible state namely state or exchange

states. However a four function switch box can be any of four possible states. A

multistage network is capable of connecting any input terminal to any output terminal.

Multi-stage networks are basically constructed by so called shuffle-exchange switching

element, which is basically a 2 x 2 crossbar. Multiple layers of these elements are

connected and form the network.

Figure 2.5 A two-by-two switching box and its four interconnection states

 A multistage network is capable of connecting an arbitrary input terminal to an arbitrary

output terminal. Generally it is consist of n stages where N = 2n is the number of input

and output lines. And each stage use N/2 switch boxes. The interconnection patterns from

one stage to another stage is determined by network topology. Each stage is connected to

the next stage by at least N paths. The total wait time is proportional to the number stages

i.e., n and the total cost depends on the total number of switches used and that is Nlog2N.

The control structure can be individual stage control i.e., the same control signal is used

to set all switch boxes in the same stages thus we need n control signal. The second

control structure is individual box control where a separate control signal is used to set

the state of each switch box. This provide flexibility at the same time require n2/2 control

signal which increases the complexity of the control circuit. In between path is use of

partial stage control.

 18

Examples of Multistage Networks

� Banyan

� Baseline

� Cube

� Delta

� Flip

� Indirect cube

� Omega

Multistage network can be of two types

• One side networks : also called full switch having input output port on the same

side

• Two sided multistage network : which have an input side and an output side. It

can be further divided into three class

o Blocking: In Blocking networks, simultaneous connections of more than

one terminal pair may result conflicts in the use of network

communication links. Examples of blocking network are the Data

Manipulator, Flip, N cube, omega, baseline. All multistage networks that

are based on shuffle-exchange elements, are based on the concept of

blocking network because not all possible here to make the input-output

connections at the same time as one path might block another. The figure

2.6 (a) show an omega network.

o Rearrangeable : In rearrangeable network, a network can perform all

possible connections between inputs and outputs by rearranging its

existing connections so that a connection path for a new input-output pair

can always be established. An example of this network topology is Benes

Network (see figure 2.6 (b) showing a 8** Benes network)which support

synchronous data permutation and a synchronous interprocessor

communication.

o Non blocking : A non –blocking network is the network which can handle

all possible connections without blocking. There two possible cases first

one is the Clos network (see figure 2.6(c)) where a one to one connection

 19

is made between input and output. Another case of one to many

connections can be obtained by using crossbars instead of the shuffle-

exchange elements. The cross bar switch network can connect every input

port to a free output port without blocking.

Figure 2.6 Several Multistage Interconnection Networks

Mesh-Connected Illiac Networks

A single stage recirculating network has been implemented in the ILLiac –IV array with

N= 64 PEs. Here in mesh network nodes are arranged as a q-dimensional lattice. The

 20

neighboring nodes are only allowed to communicate the data in one step i.e., each PEi is

allowed to send the data to any one of PE(i+1) , PE (i-1), Pe(i+r) and PE(i-r) where r=

square root N(in case of Iliac r=8). In a periodic mesh, nodes on the edge of the mesh

have wrap-around connections to nodes on the other side this is also called a toroidal

mesh.

Mesh Metrics

For a q-dimensional non-periodic lattice with kq nodes:

• Network connectivity = q

• Network diameter = q(k-1)

• Network narrowness = k/2

• Bisection width = kq-1

• Expansion Increment = kq-1

• Edges per node = 2q

Thus we observe the output of IS k is connected to inputs of OSj where j = k-1,K+1,k-

r,k+r as shown in figure below.

Figure2.7 routing function of mesh Topology

Similarly the OSj gets input from ISk for K= j-1, j+1,j-r,j+r. The topology is formerly

described by the four routing functions:

• R+1(i)= (i+1) mod N => (0,1,2…,14,15)

• R-1(i)= (i-1) mod N => (15,14,…,2,1,0)

• R+r(i)= (i+r) mod N => (0,4,8,12)(1,5,9,13)(2,6,10,14)(3,7,11,15)

• R-r(i)= (i-r) mod N => (15,11,7,3)(14,10,6,2)(13,9,5,1)(12,8,4,0)

The figure given below show how each PEi is connected to its four nearest neighbors in

the mesh network. It is same as that used for IILiac –IV except that w had reduced it for

N=16 and r=4. The index are calculated as module N.

 21

Figure 2.8 Mesh Connections

Thus the permutation cycle according to routing function will be as follows:

Horizontally, all PEs of all rows form a linear circular list as governed by the following

two permutations, each with a single cycle of order N. The permutation cycles (a b c) (d

e) stands for permutation a->b, b->c, c->a and d->e, e->d in a circular fashion with each

pair of parentheses.

R+1 = (0 1 2 ….N-1)

R–1 = (N-1 ….. 2 1 0).

Similarly we have vertical permutation also and now by combining the two permutation

each with four cycles of order four each the shift distance for example for a network of N

= 16 and r = square root(16) = 4, is given as follows:

R +4 = (0 4 8 12)(1 5 9 13)(2 6 10 14)(3 7 11 15)

R –4 = (12 8 4 0)(13 9 5 1)(14 10 6 2)(15 11 7 3)

Figure 4.9 Mesh Redrawn

 22

Each PEi is directly connected to its four neighbors in the mesh network. The graph

shows that in one step a PE can reach to four PEs, seven PEs in two step and eleven PEs

in three steps. In general it takes I steps (recirculations) to route data from PEi to another

PEj for a network of size N where I is upper –bound given by

I<= square root(N) -1

Thus in above example for N=16 it will require at most 3 steps to route data from one PE

to another PE and for Illiac –IV network with 64 PE need maximum of 7 steps for routing

data from one PE to Another.

Cube Interconnection Networks

The cube network can be implemented as either a recirculating network or as a multistage

network for SIMD machine. It can be 1-D i.e., a single line with two pE each at end of a

line, a square with four PEs at the corner in case of 2-D, a cube for 3-D and hypercube in

4-D. in case of n-dimension hypercube each processor connects to 2n neighbors. This can

be also visualized as the unit (hyper) cube embedded in d-dimensional Euclidean space,

with one corner at 0 and lying in the positive orthant. The processors can be thought of as

lying at the corners of the cube, with their (x1,x2,...,xd) coordinates identical to their

processor numbers, and connected to their nearest neighbors on the cube. The popular

examples where cube topology is used are : iPSC, nCUBE, SGI O2K.

 Vertical lines connect vertices (PEs) whose address differ in the most significant

bit position. Vertices at both ends of the diagonal lines differ in the middle bit position.

Horizontal lines differ in the least significant bit position. The unit – cube concept can be

extended to an n- dimensional unit space called an n cube with n bits per vertex. A cube

network for an SIMD machine with N PEs corresponds to an n cube where n = log2 N.

We use binary sequence to represent the vertex (PE) address of the cube. Two processors

are neighbors if and only if their binary address differs only in one digit place

 23

For an n-dimensional cube network of N PEs is specified by the following n routing

functions

Ci (An-1 …. A1 A0)= An-1…Ai+1 A’i Ai-1……A0 for i =0,1,2,…,n-1

A n- dimension cube each PE located at the corner is directly connected to n neighbors.

The addresses of neighboring PE differ in exactly one bit position. Pease’s binary n cube

the flip flop network used in staran and programmable switching network proposed for

Phoenix are examples of cube networks.

In a recirculating cube network each ISa for 0<=A+< N-1 is connected to n OSs whose

addresses are An-1…Ai+1 A’i Ai-1……A0 . When the PE addresses are considered as

the corners of an m-dimensional cube this network connects each PE to its m neighbors.

The interconnections of the PEs corresponding to the three routing function C0, C1 and

C2 are shown separately in below figure.

• Examples

 24

Figure 2.10 The recirculating Network

It takes n<= log2 N steps to rotate data from any PE to another.

Example: N=8 => n=3

Figure 2.11 Possible routing in multistage Cube network for N = 8

Figure 2.12 A multistage Cube network for N = 8

The same set of cube routing functions i.e., C0,C1, C2 can also be implemented by three

stage network. Two functions switch box is used which can provide either straight and

exchange routing is used for constructing multistage cube networks. The stages are

numbered as 0 at input end and increased to n-1 at the output stage i.e., the stage I

implements the Ci routing function or we can say at ith stage connect the input line to the

output line that differ from it only at the ith bit position.

This connection was used in the early series of Intel Hypercubes, and in the CM-2.

Suppose there are 8 process ring elements so 3 bits are required for there address. and

that processor 000 is the root. The children of the root are gotten by toggling the first

address bit, and so are 000 and 100 (so 000 doubles as root and left child). The children

 25

of the children are gotten by toggling the next address bit, and so are 000, 010, 100 and

110. Note that each node also plays the role of the left child. Finally, the leaves are gotten

by toggling the third bit. Having one child identified with the parent causes no problems

as long as algorithms use just one row of the tree at a time. Here is a picture.

Figure 2.13 A tree embedded in 3-D hypercube

Shuffle-Exchange Omega Networks

A shuffle-exchange network consists of n=2k nodes and it is based on two routing

functions shuffle (S) and exchange (E). Let A= An-1…A1A0be the address of a PE than

a shuffle function is given by:

S(A)=S(An-1…A1A0)=A.n-2…A1A0An-1, 0<A<1

The cyclic shifting of the bits in A to the left for one bit osition is performed by the S

function. Which is effectively like shuffling the bottom half of a card deck into the top

half as shown in figure below.

 26

Figure 2.14 Perfect shuffle and inverse perfect shuffle

There are two type of shuffle the perfect shuffle cuts the deck into two halves from the

centre and intermix them evenly. Perfect shuffle provide the routing connections of node

i with node 2i mod(n-1), except for node n-1 which is connected to itself. The inverse

perfect shuffle does the opposite to restore the original order it is denoted as exchange

routing function E and is defined as :

E(An-1…A1A0)= (An-1…A1A0’)

This obtained by complementing the least significant digit means data exchange

between two PEs with adjacent addresses. The E(A) is same as the cube routing function

as described earlier. Exchange routing function connects nodes whose numbers differ in

their lowest bit.

The shuffle exchange function can be implemented as either a recirculating network or

multistage network. The implementation of shuffle and exchange network through

recirculating network is shown below. Use of shuffle and exchange topology for parallel

processing was proposed by Stone. It is used for solving many parallel algorithms

efficiently. The example where it is used include FFT (fast Fourier transform), sorting,

matrix transposition , polynomial evaluations etc.

 27

Figure2.15 shuffle and exchange recirculating network for N=8

The shuffle –exchange function have been implemented as multistage Omega network by

LAwrie. An N by N omega network, consists of n identical stages. Between two adjacent

column there is a perfect shuffle interconnection. Thus after each stage there is a N/2

four-function interchange boxes under independent box control. The four functions are

namely straight exchange upper broadcast and lower broadcast. The shuffle connects

output P n-l...Pl P0 of stage i to input P n-2...PlP0Pn-l of stage i-1. Each interchange box

in an omega network is controlled by the n-bit destination tags associated with the data

on its input lines.

 28

Figure 2.16

The diameter is m=log_2 p, since all message must traverse m stages. The bisection

width is p. This network was used in the IBM RP3, BBN Butterfly, and NYU

Ultracomputer. If we compare the omega network with cube network we find Omega

network can perform one to many connections while n-cube cannot. However as far as

bijections connections n-cube and Omega network they perform more or less same.

2.6 Summary

Fine-grain exploited at instruction or loop levels, assisted by the compiler.

Medium-grain (task or job step) requires programmer and compiler support.

Coarse-grain relies heavily on effective OS support.

Shared-variable communication used at fine- and medium grain levels.

Message passing can be used for medium- and coarse grain communication, but fine -

grain really need better technique because of heavier communication requirements.

Control flow machines give complete control, but are less efficient than other approaches.

Data flow (eager evaluation) machines have high potential for parallelism and throughput

and freedom from side effects, but have high control overhead, lose time waiting for

unneeded arguments, and difficulty in manipulating data structures. Reduction (lazy

 29

evaluation) machines have high parallelism potential, easy manipulation of data

structures, and only execute required instructions. But they do not share objects with

changing local state, and do require time to propagate tokens

Summary of properties of various static network

Summary of properties of various dynamic networks

Network Characteristics Bus System Multistage Network Crossbar Switch

Minimum Latency for

unit data transfer

Constant O(log k n) Constant

Bandwidth per processor O(w/n) to O(w) O(w) to O(nw) O(w) to O(nw)

Wiring Complexity O(w) O(nw log k n) O(n2w)

Switching complexity O(n) O(n log k n) O(n2)

Connectivity and routing

capability

Only one to one

at a time

Some permutations

and broadcast , if

network unblocked

All permutations

one at a time.

Metrics of dynamic connected nework

2.7 Keywords

Dependence graph : A directed graph whose nodes represent calculations and whose

edges represent dependencies among those calculations. If the calculation represented by

 30

node k depends on the calculations represented by nodes i and j, then the dependence

graph contains the edges i-k and j-k.

data dependency : a situation existing between two statements if one statement can store

into a location that is later accessed by the other statement

granularity The size of operations done by a process between communications events. A

fine grained process may perform only a few arithmetic operations between processing

one message and the next, whereas a coarse grained process may perform millions

control-flow computers refers to an architecture with one or more program counters that

determine the order in which instructions are executed.

dataflow A model of parallel computing in which programs are represented as

dependence graphs and each operation is automatically blocked until the values on which

it depends are available. The parallel functional and parallel logic programming models

are very similar to the dataflow model.

network A physical communication medium. A network may consist of one or more

buses, a switch, or the links joining processors in a multicomputer.

Static networks: point-to-point direct connections that will not change during program

execution

Dynamic networks: switched channels dynamically configured to match user program

communication demands include buses, crossbar switches, and multistage networks

routing The act of moving a message from its source to its destination. A routing

technique is a way of handling the message as it passes through individual nodes.

Diameter D of a network is the maximum shortest path between any two nodes, measured

by the number of links traversed; this should be as small as possible (from a

communication point of view).

Channel bisection width b = minimum number of edges cut to split a network into two

parts each having the same number of nodes. Since each channel has w bit wires, the wire

bisection width B = bw. Bisection width provides good indication of maximum

communication bandwidth along the bisection of a network, and all other cross sections

should be bounded by the bisection width.

Wire (or channel) length = length (e.g. weight) of edges between nodes.

2.8 Self assessment questions

 31

http://www.wotug.org/parallel/acronyms/hpccgloss/M.html#multicomputer

1. Perform a data dependence analysis on each of the following Fortran program

fragments. Show the dependence graphs among the statements with justification.

a.

 S1: A = B + D

 S2: C = A X 3

 S3: A = A + C

 S4: E = A / 2

 b.

 S1: X = SIN(Y)

 S2: Z = X + W

 S3: Y = -2.5 X W

 S4: X = COS(Z)

3 Explain data, control and resource dependence.

4 Describe Bernstein’s conditions.

5 Explain the hardware cum software parallelism and the role of compilers

6 Explain the following a) Instruction level b) Loop level c) Procedure level

d) Subprogram level and e) Job/program level parallelism.

7 Compare dataflow, control-flow computers and reduction computer architectures.

8 Explain reduction machine models with respect to demand-driven mechanism

9 Explain the following a) Node degree and network diameter b) Bisection width

 c) Data-routing functions d) Hyper-cube routing functions.

10 Explain the following static connection network topologies a) Linear array b) Ring

and chordal ring c)Barrel shifter d) Tree and star e) Fat tree f) Mesh and Torus

11. Describe the important features of buses, multistage networks and crossbar switches

in building dynamic networks.

2.9 References/Suggested readings

Advance Computer architecture: Kai Hwang

 32

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Processors and memory hierarchy Lesson No. : 03

3.0 Objective

3.1 Introduction

3.2 Advanced processor technology

3.2.1 Design space of processor

3.2.2 Instruction set architecture

3.2.3 CISC Scalar Processors

3.2.4 RISC Scalar Processors

3.3 Superscalar and Vector Processors

3.3.1 Superscalar Processors

3.3.2 The VLIW Architecture

3.3.3 Vector and symbolic processor

3.4 Memory Hierarchy

3.5 Virtual memory technology

3.6 Summary

3.7 Keywords

3.8 Exercises

3.9 References

3.0 Objective

The present lesson we will discuss the present modern processor technology and the

supporting memory hierarchy.

3.1 Introduction

In today’s era there are large variety of multiprocessor exist. In this lesson we will study

about advances in the processor technology. Superscalar and Vector Processors

architecture will be discussed in detail. We will also discuss memory organization that is

needed to support this technology and finally we will discuss about virtual memory

concept and issues involved in implementing it specially in multiprocessors.

3.2 Advanced processor technology

3.2.1 Design Space of Processors

Processors can be “mapped” to a space that has clock rate and cycles per instruction

(CPI) as coordinates. Each processor type occupies a region of this space. The newer

technologies are enabling higher clock rates. So the various processors are gradually

moving from low to higher speeds towards the right of the design space. Manufacturers

are also trying to lower the number of cycles per instruction. Thus the “future processor

space” is moving toward the lower right of the processor design space.

Figure 3.1 Design space of modern processor families

CISC and RISC Processors

The popular examples of Complex Instruction Set Computing (CISC) processors are Intel

80486, the Motorola 68040, the VAX/8600, and the IBM S/390. CISC architecture

typically use microprogrammed control units, have lower clock rates, and higher CPI and

are located at the upper left of design space.

Reduced Instruction Set Computing (RISC) processors like the Intel i860, SPARC, MIPS

R3000, and IBM RS/6000 have hard-wired control units, higher clock rates, and lower

CPI approximately one to two cycles and are located below CISC processors in design

space. Designed to issue one instruction per cycle RISC and CISC scalar processors

should have same performance if clock rate and program lengths are equal. RISC moves

less frequent operations into software, thus dedicating hardware resources to the most

frequently used operations.

RISC Scalar Processors: A special subclass of RSIC processors are the superscalar

processors which allow multiple instruction to be issued simultaneously during the cycle.

The effective CPI of a superscalar processor should be less than that of a generic scalar

RISC processor.

Clock rates of scalar RISC and superscalar RISC machines are similar.

Superpipelined Processors: These processors typically use a multiphase clock (actually

several clocks that are out of phase with each other, each phase perhaps controlling the

issue of another instruction) running at a relatively high rate. The CPI in these machines

tends to be relatively high (unless multiple instruction issue is used). Processors in vector

supercomputers are mostly superpipelined and use multiple functional units for

concurrent scalar and vector operations.

VLIW Machines Very Long Instruction Word machines typically have many more

functional units that superscalars (and thus the need for longer – 256 to 1024 bits –

instructions to provide control for them). These machines mostly use microprogrammed

control units with relatively slow clock rates because of the need to use ROM to hold the

microcode.

Instruction pipeline

The execution cycle of a typical instruction includes four phases fetch, decode, execute

and write –back. These instructions are executed as instruction pipeline before we discuss

pipeline in details lets see some fundamental definitions associated with instruction

pipeline.

Instruction pipeline cycle – the time required for each phase to complete its operation

(assuming equal delay in all phases)

Instruction issue latency – the time (in cycles) required between the issuing of two

adjacent instructions

Instruction issue rate – the number of instructions issued per cycle (the degree of a

superscalar)

Simple operation latency – the delay (after the previous instruction) associated with the

completion of a simple operation (e.g. integer add) as compared with that of a complex

operation (e.g. divide).

Resource conflicts – when two or more instructions demand use of the same functional

unit(s) at the same time.

Pipelined Processors A base scalar processor: issues one instruction per cycle has a one-

cycle latency for a simple operation has a one-cycle latency between instruction issues

can be fully utilized if instructions can enter the pipeline at a rate on one per cycle

For a variety of reasons, instructions might not be able to be pipelines as aggressively as

in a base scalar processor. In these cases, we say the pipeline is under pipelined. CPI

rating is 1 for an ideal pipeline. Underpipelined systems will have higher CPI ratings,

lower clock rates, or both.

Processors and Coprocessors

Central processing unit (CPU) is essentially a scalar processor which may have many

functional units some systems may include one or more coprocessors which perform

floating point or other specialized operations –

INCLUDING I/O, regardless of what the textbook says. Coprocessors cannot be used

without the appropriate CPU.

Other terms for coprocessors include attached processors or slave processors.

Coprocessors can be more “powerful” than the host CPU.

Figure 3.2 CPU with attached coprocessor

Instruction Set Architectures

Computers are classified on the basis on instruction set they have

CISC

• Many different instructions

• Many different operand data types

• Many different operand addressing formats

• Relatively small number of general purpose registers

• Many instructions directly match high-level language constructions

RISC

• Many fewer instructions than CISC (freeing chip space for more functional units!)

• Fixed instruction format (e.g. 32 bits) and simple operand addressing

• Relatively large number of registers

• Small CPI (close to 1) and high clock rates

Architectural Distinctions

CISC

• Unified cache for instructions and data (in most cases)

• Microprogrammed control units and ROM in earlier processors (hard-wired

controls units now in some CISC systems)

RISC

• Separate instruction and data caches

• Hard-wired control units

RISC Scalar Processors

• Designed to issue one instruction per cycle RISC and CISC scalar processors

should have same performance if clock rate and program lengths are equal.

• RISC moves less frequent operations into software, thus dedicating hardware

resources to the most frequently used operations.

• Representative systems: Sun SPARC, Intel i860, Motorola M88100, AMD 29000

Lets take the case study of RISC scalor processor SPARC

SPARCs and Register Windows

The SPARC architecture makes clever use of the logical procedure concept.

Each procedure usually has some input parameters, some local variables, and some

arguments it uses to call still other procedures.

The SPARC registers are arranged so that the registers addressed as “Outs” in one

procedure become available as “Ins” in a called procedure, thus obviating the need to

copy data between registers. This is similar to the concept of a “stack frame” in a higher

level language.

(a) three overlapping register window and the global registers

(b) Eight register windows forming a circular stack

Figure 3.3 The concept of overlapping register windows in the SPARC architecture

3.3Superscalar and vector processors

3.3.1 Superscalar Processors

Scalar processor: executes one instruction per cycle, with only one instruction pipeline.

Superscalar processor: multiple instruction pipelines, with multiple instructions issued

per cycle, and multiple results generated per cycle.

This subclass of the RISC processors that allows multiple instructions to be issued

simultaneously during each cycle. The effective CPI of a superscalar processor should be

less than that of a generic scalar RISC processor. Clock rates of scalar RISC and

superscalar RISC machines are similar.

A typical superscalar will have multiple instruction pipelines an instruction cache that can

provide multiple instructions per fetch multiple buses among the function units. In theory,

all functional units can be simultaneously active.

Superscalar Constraints

It should be obvious that two instructions may not be issued at the same time (e.g. in a

superscalar processor) if they are not independent.

This restriction ties the instruction-level parallelism directly to the code being executed.

The instruction-issue degree in a superscalar processor is usually limited to 2 to 5 in

practice.

Superscalar Pipelines

One or more of the pipelines in a superscalar processor may stall if insufficient functional

units exist to perform an instruction phase (fetch, decode, execute, write back).

Ideally, no more than one stall cycle should occur.

In theory, a superscalar processor should be able to achieve the same effective parallelism

as a vector machine with equivalent functional units.

A typical superscalar will have multiple instruction pipelines an instruction cache that can

provide multiple instructions per fetch multiple buses among the function units In theory,

all functional units can be simultaneously active.

3.3.2 VLIW Architecture

VLIW = Very Long Instruction Word Instructions usually hundreds of bits long. Each

instruction word essentially carries multiple “short instructions.” Each of the “short

instructions” are effectively issued at the same time. (This is related to the long words

frequently used in microcode.) Compilers for VLIW architectures should optimally try to

predict branch outcomes to properly group instructions.

Pipelining in VLIW Processors

Decoding of instructions is easier in VLIW than in superscalars, because each “region” of

an instruction word is usually limited as to the type of instruction it can contain.

Code density in VLIW is less than in superscalars, because if a “region” of a VLIW word

isn’t needed in a particular instruction, it must still exist (to be filled with a “no op”).

Superscalars can be compatible with scalar processors; this is difficult with VLIW

parallel and non-parallel architectures.

VLIW Opportunities

“Random” parallelism among scalar operations is exploited in VLIW, instead of regular

parallelism in a vector or SIMD machine.

The efficiency of the machine is entirely dictated by the success, or “goodness,” of the

compiler in planning the operations to be placed in the same instruction words.

Different implementations of the same VLIW architecture may not be binary-compatible

with each other, resulting in different latencies.

3.3.3 Vector Processors

Vector processors issue one instructions that operate on multiple data items (arrays). This

is conducive to pipelining with one result produced per cycle.

A vector processor is a coprocessor designed to perform vector computations. A vector is

a one-dimensional array of data items (each of the same data type). Vector processors are

often used in multipipelined supercomputers.

Architectural types include:

• register-to-register (with shorter instructions and register files)

• memory-to -memory (longer instructions with memory addresses)

Register-to-Register Vector Instructions

Assume Vi is a vector register of length n, si is a scalar register, M(1:n) is a memory

array of length n, and “ï” is a vector operation.

The ISA of a scalar processor is augmented with vector instructions of the following

types:

Vector-vector instructions:

f1: Vi -> Vj (e.g. MOVE Va, Vb)

f2: Vj x Vk -> Vi (e.g. ADD Va, Vb, Vc)

Vector-scalar instructions:

f3: s x Vi -> Vj (e.g. ADD R1, Va, Vb)

Vector-memory instructions:

f4: M -> V (e.g. Vector Load)

f5: V -> M (e.g. Vector Store)

Vector reduction instructions:

f6: V -> s (e.g. ADD V, s)

f7: Vi x Vj ->s (e.g. DOT Va, Vb, s)

Pipelines in Vector Processors

Vector processors can usually effectively use large pipelines in parallel, the number of

such parallel pipelines effectively limited by the number of functional units.

As usual, the effectiveness of a pipelined system depends on the availability and use of an

effective compiler to generate code that makes good use of the pipeline facilities.

Symbolic Processors

Symbolic processors are somewhat unique in that their architectures are tailored toward

the execution of programs in languages similar to LISP, Scheme, and Prolog.

In effect, the hardware provides a facility for the manipulation of the relevant data objects

with “tailored” instructions.

These processors (and programs of these types) may invalidate assumptions made about

more traditional scientific and business computations.

Superpipelining

Superpipelining is a new and special term meaning pipelining. The prefix is attached to

increase the probability of funding for research proposals. There is no theoretical basis

distinguishing superpipelining from pipelining. Etymology of the term is probably similar

to the derivation of the now-common terms, methodology and functionality as pompous

substitutes for method and function. The novelty of the term superpipelining lies in its

reliance on a prefix rather than a suffix for the pompous extension of the root word.

3.4 Hierarchical Memory Technology

As we now variety of memories are available in market. These memories are

categorized according to their properties like speed of accessing the data, capacity to

storage of data, whether it is volatile or non volatile nature, how data are stored and how

it is accessed, rate with data are transferred etc. As an end user the most important points

that one consider while designing the memory organization for a computer are: Its size

(capacity), speed (access time), cost and how frequently it will be accessed by the

processor.

If we want the increase the speed of the system the major concern it to improve the

performance of the two important and most used components of the system that are

processor and memory. If the relative speed of processors and memories are considered,

it is observed technology present today are so that the processors speed increase by a

factor of about 10000 if the speed of memory is doubled. Hence even if the speed of

processor is increased the overall speed of system will not increase in same ratio because

of bottle neck created by memory. The main choice of memory designers is establish a

balance between speed and capacity.

The common used devices for storage are registers, RAM, ROM, Hard disk, Magnetic

tape, CD ROM etc. Among these fastest memory units are registers having access times

below 10ns but has the lowest capacity of few KB of words while the slow devices are

like magnetic disk and magnetic tape can storage large amount of data i.e., have high

capacity of few GBytes but same time access times of several seconds. Thus to

implement a balance between speed and capacity we should employ a memory hierarchy

in a system such that high speed memories, which are expensive and faster and

comparatively smaller size should hold preferably the most recently accessed items kept

that need to be close to the CPU and successively large and slow memories are kept away

from the CPU to hold complete back up of data. This way of designing a memory system

is called a memory hierarchy as shown in figure 3.4. Memory in system is usually

characterized as appearing at various levels (0, 1, …) in a hierarchy, with level 0 being

CPU registers and level 1 being the cache closest to the CPU. Each level is characterized

by following parameters:

• access time ti (round-trip time from CPU to ith level)

• memory size si (number of bytes or words in the level)

• cost per byte ci

• transfer bandwidth bi (rate of transfer between levels)

• unit of transfer xi (grain size for transfers)

As one goes down the hierarchy the following occur:

• Decrease in cost per bit

• Increase in capacity

• Increase in access time

• Decrease in frequency of access of the memory by the processor

Figure 3. 4The memory hierarchy

The following three principles which let to an effective implementation memory

hierarchy for a system are:

1 Make the Common Case Fast : This principle says the data which is more frequently

used should be kept in faster device. It is based on a fundamental law, called Amdahl's

Law , which states that the performance improvement to be gained from using some

faster mode of execution is limited by the fraction of the time the faster mode can be used.

Thus if faster mode use relatively less frequent data then most of the time faster mode

device will not be used hence the speed up achieved will be less than if faster mode

device is more frequently used.

2. Principle of Locality : It is very common trend of Programs to reuse data and

instructions that are used recently. Based on this observation comes important program

property called locality of references: the instructions and data in a program that will be

used in the near future is based on its accesses in the recent past. There is a famous 40/10

rule that comes from empirical observation is:

"A program spends 40% of its time in 10% of its code"

These localities can be categorized of three types:

a. Temporal locality: states that data items and code that are recently accessed are likely

to be accessed in the near future. Thus if location M is referenced at time t, then it

(location M) will be referenced again at some time t+Dt.

b. Spatial locality: states that items try to reside in proximity in the memory i.e., the

items whose addresses are near to each other are likely to be referred together in time.

Thus we can say memory accesses are clustered with respect to the address space. Thus

if location M is referenced at time t, then another location M±Dm will be referenced at

time t+Dt.

c. Sequential locality: Programs are stored sequentially in memory and normally these

programs has sequential trend of execution. Thus we say instructions are stored in

memory in certain array patterns and are accessed sequentially one memory locations

after another. Thus if location M is referenced at time t, then locations M+1, M+2, …

will be referenced at time t+Dt, t+Dt’, etc. In each of these patterns, both Dm and Dt are

“small.”

H&P suggest that 90 percent of the execution time in most programs is spent executing

only 10 percent of the code. One of the implications of the locality is data and

instructions should have separate data and instruction caches. The main advantage of

separate caches is that one can fetch instructions and operands simultaneously. This

concept is basis of the design known as Harvard architecture, after the Harvard Mark

series of electromechanical machines, in which the instructions were supplied by a

separate unit.

3. Smaller is Faster : Smaller pieces of hardware will generally be faster than larger

pieces.

This according to above principles suggested that one should try to keep recently

accessed items in the fastest memory.

While designing the memory hierarchy following points are always considered

Inclusion property : If a value is found at one level, it should be present at all of the

levels below it.

The implication of the inclusion property is that all items of information in the

“innermost” memory level (cache) also appear in the outer memory levels.The inverse,

however, is not necessarily true. That is, the presence of a data item in level Mi+1 does

not imply its presence in level Mi. We call a reference to a missing item a “miss.”

The Coherence Property

The value of any data should be consistent at all level. The inclusion property is, of

course, never completely true, but it does represent a desired state. That is, as information

is modified by the processor, copies of that information should be placed in the

appropriate locations in outer memory levels. The requirement that copies of data items at

successive memory levels be consistent is called the “coherence property.”

Coherence Strategies

Write-through

As soon as a data item in M i is modified, immediate update of the corresponding data

item(s) in M i+1, Mi+2, … Mn is required. This is the most aggressive (and expensive)

strategy.

Write-back

The update of the data item in M i+1 corresponding to a modified item in Mi is not

updated unit it (or the block/page/etc. in M i that contains it) is replaced or removed. This

is the most efficient approach, but cannot be used (without modification) when multiple

processors share Mi+1, …, Mn.

Locality: As any program use mainly some portion of it at a given time i.e., the programs

access a restricted portion of their address space in any time. So the portion that program

may need should kept at higher level and remaining program at lower level. Locality is

entirely program-dependent. Most caches implement locality assuming sequential code.

In most programs, memory references are assumed to occur in patterns that are strongly

related (statistically) to each as discussed in reference of locality.

Working Sets

The set of addresses (bytes, pages, etc.) referenced by a program during the interval from

t to t+w, where w is called the working set parameter, changes slowly.

This set of addresses, called the working set, should be present in the higher levels of M

if a program is to execute efficiently (that is, without requiring numerous movements of

data items from lower levels of M). This is called the working set principle.

Hit Ratios

When a needed item (instruction or data) is found in the level of the memory hierarchy

being examined, it is called a hit. Otherwise (when it is not found), it is called a miss (and

the item must be obtained from a lower level in the hierarchy).

The hit ratio, h, for Mi is the probability (between 0 and 1) that a needed data item is

found when sought in level memory Mi. The miss ratio is obviously just 1-hi. We assume

h0 = 0 and hn = 1.

 To evaluate the effectiveness of the memory hierarchy the following formula is

used:

 Memory_stall_cycles = IC * Mem_Refs * Miss_Rate * Miss_Penalty

 Where IC = Instruction count

 Mem_Refs = Memory References per Instruction

 Miss_Rate = the fraction of accesses that are not in the given

memory

 Miss_Penalty = the additional time to service the miss

The hit ratio is an important measure of the performance of a memory level and is the

probability that a reference is to a value already in a given level of the hierarchy. The

miss ratio is 1 - h. Thus if any data is not present in given level of memory it should

go to lower hierarchy level. The Miss penalty time is the sum of the access

frequencies times their corresponding access times where the access frequency is the

product of the hit ratio for the given level with the miss ratios of all higher levels

Memory Generalities

It is almost always the case that memories at lower-numbered levels, when compare to

those at higher-numbered levels are faster to access, are smaller in capacity, are more

expensive per byte, have a higher bandwidth, and have a smaller unit of transfer.

In general, then, ti-1 < ti, si-1 < si, ci-1 > ci, bi-1 > bi, and xi-1 < xi.

Access Frequencies

The access frequency fi to level Mi is

(1-h1) * (1-h2)* … * hi.

Note that f1 = h1, and

Effective Access Times

There are different penalties associated with misses at different levels in the memory

hierarchy. A cache miss is typically 2 to 4 times as expensive as a cache hit (assuming

success at the next level).

A page fault (miss) is 3 to 4 magnitudes as costly as a page hit. The effective access time

of a memory hierarchy can be expressed as

The first few terms in this expression dominate, but the effective access time is still

dependent on program behavior and memory design choices.

Hierarchy Optimization

Given most, but not all, of the various parameters for the levels in a memory hierarchy,

and some desired goal (cost, performance, etc.), it should be obvious how to proceed in

determining the remaining parameters.

3.5 Virtual Memory

The virtual memory is a method of using the hard disk as if it is part of main memory, so

that the program with size can be larger than the actual physical memory available can

even execute. This technique is especially useful for the multiprogramming system where

more than one program reside in main memory, such a system is managed efficiently

with help of operating system. The objective of virtual memory is to have as much as

possible of the program in main memory and remaining on the hard disk and the

operating system with some hardware support, swaps data between memory and disk

such that it interfere the running of the program minimum. If swapping in and out of

main storage becomes the dominant activity, then the situation is referred as thrashing,

and it reduces the efficiencies greatly. Virtual memory can be thought as a way to provide

an illusion to the user that disk is an extension of main memory. A virtual memory

system provides a mechanism for translating a program generated address into main

memory location. Program uses virtual memory addresses. This virtual address is

converted to a physical address which indicates physical location of data in main memory

as shown in figure 3.5. Virtual memory can be defined as

A mapping from a virtual address space to a physical address space.

Figure 3.5 Mapping from virtual address to physical address

Virtual memory is used by almost all uniprocessors and multiprocessors, but is

not available on some array processors and multicomputers, which still employ real

memory storage only on each node. Any program under execution should reside in the

main memory as CPU cannot directly access hard disk. The main memory usually starts

at physical address 0. Certain locations may be reserved for special purposes program;

like the operating system that usually reside at the low addresses. The rest of physical

store may be partitioned into pieces for the processes that are in the ready list. Each

process may have its own virtual memory i.e., the memory perceived by the process.

Each process virtual memory is limited only by the machine address size.

The key term here is mapping. The processor generates an address that is sent

through a mapping function to produce the physical address of the memory. Different

processes are mapped to different physical memory. The principles behind virtual

memory are as follows:

• Load as much as possible of the process into the main memory;

• Keep a copy of the complete process (its memory image) in a disk file; this is

called the swap file.

• The virtual memory manager (in the kernel) organises the process's (virtual)

memory into chunks called pages; pages are normally 512, 1024, 2048 or 4096

bytes or it can unequal size segments.

• Some pages are in main memory, others are not -- but all are in the swap file.

• If only part of the process be loaded is sufficient to complete the process. The

memory manager with the hardware that supports do address translation;

• However, during execution if the process needs some data that is not in main

memory a page fault. When a page fault occurs, the memory manager must read

in from the swap file the page that is needed. Although it reduces speed as reading

a disk file takes a minimum of 10-millisec. while reading memory takes maybe

only 10-nanosec. Which page to replaced is decided by the page replacement

policy .

The use of the mapping function between the processor and the memory adds

flexibility, because it allows to store data in different places in the memory although it

appears differently for different logical arrangement from the perspective of the program.

The various advantages are :

1. Due this flexibility programs can be compiled for a standard address space, and can

then be loaded into the available memory and run without modification. For example, in a

multitasking environment more than one program can be to fit into memory with an

arbitrary combination of other programs.

2. Virtual memory provides a way to make main memory appear larger than it is. It saves

the programmer from having to explicitly move portions of the program or data in and

out from disk. It is thus most useful for running large programs on small machines.

Mapping Efficiency

The efficiency with which the virtual to physical mapping can be accomplished

significantly affects the performance of the system.

Efficient implementations are more difficult in multiprocessor systems where additional

problems such as coherence, protection, and consistency must be addressed.

Virtual Memory Models (1)

Private Virtual Memory

In this scheme, each processor has a separate virtual address space, but all processors

share the same physical address space.

Advantages:

• Small processor address space

• Protection on a per -page or per-process basis

• Private memory maps, which require no locking

Disadvantages

• The synonym problem – different virtual addresses in different/same virtual spaces

point to the same physical page

• The same virtual address in different virtual spaces may point to different pages in

physical memory

Virtual Memory Models (2)

Shared Virtual Memory

All processors share a single shared virtual address space, with each processor being

given a portion of it. Some of the virtual addresses can be shared by multiple processors.

Advantages:

• All addresses are unique

• Synonyms are not allowed

Disadvantages

• Processors must be capable of generating large virtual addresses (usually > 32 bits)

• Since the page table is shared, mutual exclusion must be used to guarantee atomic

updates

• Segmentation must be used to confine each process to its own address space

• The address translation process is slower than with private (per processor) virtual

memory

Implementing Virtual Memory

There are basically three approaches to implementing virtual memory: Paging,

segmentation, and a combination of the two called paged segmentation.

3.5.1 Paging memory management:

Memory is divided into fixed-size blocks called pages. Main memory contains some

number of pages which is smaller than the number of pages in the virtual memory. For

example, if the page size is 2K and the physical memory is 16M (8K pages) and the

virtual memory is 4G (2 M pages) then there is a factor of 254 to 1 mapping. A page map

table is used for implementing a mapping, with one entry per virtual page. The entry of a

page table is as following:

The Presence Bit indicates that page is in the main memory substitutes the physical page

from the table for the virtual page portion of the address. When the presence bit indicates

that the page is not in main memory, it triggers a page fault exception, and the operating

System (OS) initiate the disk transfer and brings the page into memory. While a disk

transfer is in progress, the OS may cause another task to execute or it may simply stall the

current task and sit idle. In either case, once the transfer is complete, the OS stores the

new physical page number into the page table and jumps back to the instruction causing

the page fault so that the access can be reissued.

The secondary storage address is used to locate the data on disk. Physical page

address is substituted for the virtual page address as a result of the lookup. The virtual

address from the CPU is split into the offset and page number. The page number is the

index of the table from where data to be fetched. A virtual address takes the following

form for a page of 4K words:

Thus, any virtual page may be stored at any physical page location and the addressing

hardware performs the translation automatically.

Figure 3.6 Translational of virtual address into physical address

The pages are not necessarily stored in contiguous memory locations, and

therefore every time a memory reference occurs to a page which is not the page

previously referred to, the physical address of the new page in main memory must be

determined. In fact, most paged memory management systems (and segmented memory

management systems as well) maintain a ``page translation table'' using associative

memory to allow a fast determination of the physical address in main memory

corresponding to a particular virtual address. The page offset (low order 12 bits) is the

location of the desired word within a page. Thus, the virtual address translation hardware

appears as follows:

Figure 3.6 Virtual mapping technique

Figure 3.7 page mapping technique

The following is an example of a paged memory management configuration using

a fully associative page translation table: Consider a computer system which has 16 M

bytes (224 bytes) of main memory, and a virtual memory space of 232 bytes. Figure 3.6

shows a sketch of the page translation table required to manage all of main memory if the

page size is 4K 212bytes. Note that the associative memory is 20 bits wide (32 bits - 12

bits, the virtual address size -- the page size). Also to manage 16 M bytes of memory with

a page size of 4 K bytes, a total of associative

memory locations are required.

 Figure 3.8 Paged memory management address translation

Some other attributes are usually included in a page translation table as well, by adding

extra fields to the table. For example, pages or segments may be characterized as read

only, read-write, etc. Another common information included is the access privileges, that

ensures that no program inadvertently corrupt data for another program. It is also usual to

have a bit (the ``dirty'' bit) which indicates whether or not a page has been written to, so

that the page will be written back onto the disk if a memory write has occurred into that

page.

There is a kind of trade-off between the page size for a system and the size of the

page translation table (PTT). If a processor has a small page size, then the PTT must be

quite large to map all of the virtual memory space. For example, if a processor has a 32

bit virtual memory address, and a page size of 512 bytes (bytes), then there are

possible page table entries. If the page size is increased to 4 Kbytes (bytes), then the

PTT requires ``only'' , or 1 M page table entries. These large page tables will normally

not be very full, since the number of entries is limited to the amount of physical memory

available. One way these large, sparse PTT's are managed is by mapping the PTT itself

into virtual memory.

One problem found in virtual memory systems, particularly paged memory

systems, is that when there are a large number of processes executing ``simultaneously''

as in a multiuser system, the main memory may contain only a few pages for each

process, and all processes may have only enough code and data in main memory to

execute for a very short time before a page fault occurs. This situation, often called

``thrashing,'' severely degrades the throughput of the processor because it actually must

spend time waiting for information to be read from or written to the disk.

Pages are usually loaded in this manner, which is called "on demand". However,

schemes have also been devised in which the historical behavior of a task is recorded, and

when the task is suspended, its working set of pages is reloaded before it restarts. Once

main memory pages are all allocated to virtual pages, and then any accesses to additional

virtual pages force pages to be replaced (or "swapped") using an appropriate replacement

policy.

3.5.2 Segmented memory management

In a segmented memory management system the blocks to be replaced in main memory

are potentially of unequal length and here the segments correspond to logical blocks of

code or data for example, a subroutine or procedure. Segments, then, are ``atomic,'' in

the sense that either the whole segment should be in main memory, or none of the

segment should be there. The segments may be placed anywhere in main memory, but the

instructions or data in one segment should be contiguous, as shown in Figure 3.9.

Figure 3.9: A segmented memory organization

Segmentation is implemented in a manner much like paging, through a lookup

table. The difference is that each segment descriptor in the table contains the base address

of the segment and a length. Each process can be assigned a different segment, and so it

is completely unaware that other processes are sharing the memory with it. Relocation is

effectively done dynamically at run time by the virtual memory mapping mechanism.

The maximum number of segments is typically small compared to the virtual address

range (for example 256), in order to keep the size of the segment tables small

A virtual address in the segmentation scheme consists of a segment number and a

segment offset. A segment descriptor also typically carries some protection information,

such as the read/write permission of the segment and the process ID. It will also have

some housekeeping information such as a presence bit and dirty bit. In a pure

segmentation scheme the segment offset field grows and shrinks (logically) depending on

the length of the segment.

Figure 3.10 Memory allocation using segmentation technique

When segments are replaced, it can only be replaced by a segment of the same

size, or by a smaller segment. Each swap may results in a ``memory fragmentation'', with

many small segments residing in memory, having small gaps between them this is called

external fragmentation. The allocation and deallocation of space for processes with

segments of different sizes leaves a collection of holes that are too small for a new

process to be fit into, yet there may be more than enough empty memory if all of the

holes were collected into one space This situation is also known as checkerboarding.

External fragmentation is addressed through a process known as compaction in which all

active processes are temporarily suspended and then relocated in order to gather together

all of the memory holes. Compaction is a costly process, especially in machines that have

large amounts of physical memory. Because the main memory is being completely

rearranged, many memory access operations are required, and few of them can take any

advantage of the cache. Segmentation also suffers from the large unbroken nature of a

segment. It is very costly to swap processes because an entire segment must be written

out.

This organization appears to be efficient if two processes to share the same code

in a segmented memory system for example a same procedure is used by two processes

concurrently, there need only be a single copy of the code segment in memory. Although

segmented memory management is not as popular as paged memory management, but

most processors which presently claim to support segmented memory management

actually support a hybrid of paged and segmented memory management, where the

segments consist of multiples of fixed size blocks.

3.5.4 Paged Segmentation

Both paged and segmented memory management provide the users of a computer system

with all the advantages of a large virtual address space. The principal advantage of the

paged memory management system over the segmented memory management system is

that it is simpler to implement. Also, the paged memory management does not suffer

from external fragmentation in the same way as segmented memory management.

Although internal fragmentation does occur i.e., the fragmentation is within a page. As

whole page is swapped in or out of memory, even if it is not full of data or instructions.

Paged memory management is really a special case of segmented memory management.

In the case of paged memory management, all of the segments are exactly the same size

(typically 256 bytes to 16 K bytes) virtual ``pages'' in auxiliary storage (disk) are mapped

into fixed page-sized blocks of main memory with predetermined page boundaries. The

pages do not necessarily correspond to complete functional blocks or data elements, as is

the case with segmented memory management. As with segmentation, the logical size of

the page number portion of the address grows and shrinks according to the size of the

segment.

Figure 3.11 page segmented translation

To facilitate the use of memory hierarchies, the memory addresses normally generated by

modern processors executing application programs are not physical addresses, but are

rather virtual addresses of data items and instructions.

Physical addresses, of course, are used to reference the available locations in the real

physical memory of a system.

Virtual addresses must be mapped to physical addresses before they can be used.

3.5.3 page replacement algorithms

 If the size of the process is of ten pages actually only five of them will be

currently in use. According to principle of demand paging only five pages are loaded as

memory requirement for each page is less so load more number of program in memory or

we can say degree of multiprogramming increase. As only some part of the program that

is needed for execution is in memory. Thus logical address space which is address

generated by CPU and correspond to complete program can therefore be much larger

than physical address space. If a page is required and not present in main memory a page

fault occur which result a hard trap. The operating system determines where the desired

page resides in the hard disk and load into main memory. What will happens if there is no

free frame to load the page. As the page miss result a interrupt which reduce the system

efficiency and hence it is advisable to design a algorithm to reduce the frequency of page

fault. Although inclusive of this algorithm result in increase in complexity but improve

overall efficiency increase. The page algorithm finds a page that is not use or not will be

used in near future and swaps it with page required by memory. The aim of any page

replacement is to result minimum of page fault. There are two classes of replacement

schemes;

 a. fixed replacement schemes : in these algorithm the number of pages allocated

to a in process is fixed

 b. variable replacement schemes, in these algorithm the number of pages available

for a process varies during whole life cycle of the process.

 Now we should modify the page fault handling technique to incorporate page

replacement algorithm as follows

 1. Find the desired page on the hard disk

 2. Find a free frame to load the page

 a. if frame available use it

 b. If no frame is free select a page using page replacement algorithm to be

swapped to the hard disk

 c. Write the victim page on hard disk and load the required page to main memory

and make change in frame table accordingly.

 3. restart the processor.

In this section we will study various page replacement algorithms. The aim of

designing the replacement algorithm is minimize the page fault. We study the system of

pure demand paging where each page is brought to main memory only if it is required.

We evaluate an algorithm by calculating the page fault for particular memory reference

sequences also called reference string. Let us assume the reference string be

0,1,2,3,1,0,1,4,0,1,2,3,4,6,1

Let there are 3 frames in the system i.e., 3 pages can be in the memory at a time per

process.

The first and the simplest algorithm is First In First out (FIFO) algorithm. The algorithm

suggests that the oldest page should be removed. The concept is implemented through a

fixed size queue, thus a page is inserted at the tail in queue and all elements should move

one step such that the head of the queue is taken out. Lets see how many page fault are

reported for page replacement algorithm

Reference string

0 1 2 3 1 0 1 4 0 1 2 3 4 6 1

0 0 0 3 3 3 4 4 4 6 6

 1 1 1 0 0 0 2 2 2 1

 2 2 2 1 1 1 3 3 3

1 2 3 4 5 6 7 8 9 10 11

The last row show the page fault

Let now consider a case there are 4 frames available for pages. The obvious observation

should be that if we increase the number of pages the page fault should reduce.

Reference string

0 1 2 3 1 0 1 4 0 1 2 3 4 6 1

0 0 0 0 4 4 4 4 3 3 3 3

 1 1 1 1 0 0 0 0 4 4 4

 2 2 2 2 1 1 1 1 6 6

 3 3 3 3 2 2 2 2 1

1 2 3 4 5 6 7 8 9 10 11 12

But from above table we see that number of page fault has been increased from 11 to 12

on increasing the available frames. This is called BELADY ANOMALY : For some page

replacement scheme the page fault rate increase with increase in frame number. However

we should not choose the algorithm which has belady anomaly.

Optimal Page replacement algorithm

This algorithm is based on the principle that replaces the page that will not be used for

longest time period.

Reference string

0 1 2 3 1 0 1 4 0 1 2 3 4 6 1

0 0 0 0 0 2 3 6

 1 1 1 1 1 1 1

 2 3 4 4 4 4

1 2 3 4 5 6 7 8

The optimal algorithm gives the minimum number of page fault but at the same time it is

difficult to implement as it is not possible to have complete knowledge of reference string

in advance i.e., it is difficult to project which page will referred next. Thus optimal

algorithms give best result but are theoretical concept.

Random page replacement

Random replacement algorithm will select the page to be replaced randomly from the

pages present in main memory. It is very simple technique and does not require any

additional hardware overhead but its performance is unpredictable as there is no strategy

adopted for choosing a page to be replaced from the memory.

LRU Page replacement

This algorithm is based on the principle to reference of locality which states that if a page

is used in recent past there are good chances that it will be used in near future. Thus for

choosing a page for replacement the choice will be the page that has not been used for the

longest period of time.

Reference string

0 1 2 3 1 0 1 4 0 1 2 3 4 6 1

0 0 0 3 3 4 2 2 2 6 6

 1 1 1 1 1 1 1 4 4 4

 2 2 0 0 0 3 3 3 1

1 2 3 4 5 6 7 8 9 10 11

Thus number of page fault is 11. LRU does not suffer from Belady anomaly and

considered to a good page replacement algorithm. Now the question arise how to

implement it through the hardware.

3.6 Summary

Various types of processor architecture has been discussed like superscalar processor and

VLIW processor RISC, CISC. Difference between RISC and CISC architecture is

CISC RISC

Variable length Instruction Fixed length Instruction

Variable format Fixed field decoding

Memory operands Load/store architecture

Complex operations Simple operations

 Superscalar processor can initiate multiple instructions in the same clock cycle; typical

superscalar processor fetches and decodes several instructions at the same time. Nearly

all modern microprocessors, including the Pentium, PowerPC, Alpha, and SPARC are

superscalar

VLIW reduces the effort required to detect parallelism using hardware or software

techniques. The main advantage of VLIW architecture is its simplicity in hardware

structure and instruction set. Unfortunately, VLIW does require careful analysis of code

in order to “compact” the most appropriate ”short” instructions into a VLIW word.

The mismatch, speed of CPU and main memory continues to worsen, resulting CPUs are

continually held back by slow memory. The only solution to above problem is to

organize the memory in hierarchy in a computer. The key idea is to improve the

performance by using the principle Locality of reference, i.e., to keep the things that are

used frequently up in the pyramid, and things that rarely needed to access at the lower

levels. This principle can be implemented using the concept of

(a) cache memory a small block of high-speed memory placed between main memory

and CPU. (b) Virtual memory where main memory acts as a read/write buffer for disk

storage. The key term here is mapping. The processor generates an address that is sent

through a mapping function to produce the physical address of the memory.

3.7 keywords

RISC Reduced instruction set computer;

CISC Complex instruction set computers

RAM Random Access Memory; computer memory which can be written to and read

from in any order

virtual memory A system that stores portions of an address space that are not being

actively used in some medium other than main high-speed memory, such as a disk or

slower auxiliary memory medium. When a reference is made to a value not presently in

main memory, the virtual memory manager must swap some values in main memory for

the values required.

locality of reference the observation that references to memory tend to cluster.

Temporal locality refers to the observation that a particular datum or instruction, once

referenced, is often referenced again in the near future.

Spatial locality refers to the observation that once a particular location is referenced, a

nearby location is often referenced in the near future.

3.8 Self assessment questions

1. Define the following basic terms related to modern processor technology.

a) Processor design space b) Instruction issue latency c) Instruction issue rate

d) Simple operation latency e) Resource conflicts f) Processor versus coprocessor

g) General-purpose registers h) Addressing modes i) Unified versus split caches

j) Hardwired versus microcoded control.

2. Describe the design space of modern processor families.

3. With diagrams, explain the pipelined execution of successive instructions in a
base scalar processor and in two underpipelined cases.

4. Explain the architectural models of a basic scalar computer system using block
diagrams.

5. Differentiate the characteristics of CISC and RISC architectures.

6. Describe the structure of a superscalar pipeline with the help of a diagram.

7. Draw and explain the block diagram of a typical superscalar RISC processor
architecture consisting of an integer unit and a floating-point unit.

8. Explain the architecture of VLIW processor and its pipeline operations with the
help of diagrams.

3.9 References/Suggested readings

Advance Computer architecture: Kai Hwang

Computer system architecture Morris Mano

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Bus, cache and shared memory Lesson No. : 04

4.0 Objective

4.1 Introduction

4.2 Backplane bus

4.2.1 Backplane bus specification

4.2.2 ASYNCHRONOUS DATA TRANSFER

4.2.3 Arbitration, transaction and interrupt

4.3 Cache memory organization

4.3.1 Cache addressing models

4.3.2 Direct mapping

4.3.3 Associative mapping

4.3.4 Set associative mapping

4.3.5 Cache performance

4.4 Shared Memory organization

4.4.1 Interleaved memory organization

4.4.2 Band width and fault tolerance

4.4.3 Memory Allocation Scheme

4.5 Sequential and weak consistency

4.6 Summary

4.7 Keywords

4.8 Exercises

4.9 References

4.0 Objective

In this lesson we had discussed about bus that is used for interconnection between

different processor. We will discussed about use of cache memory in multiprocessor

environment and various addressing scheme used for cache memory. Also we will

discuss how shared memory concept is used in multiprocessor. Various issues regarding

event ordering specially in case of memory events that deal with shared memory creates

synchronization problem we will also discuss various models designed to overcome these

issues.

4.1 Introduction

We will deal with physical address caches, virtual address cache, cache implementation

using direct fully associative and sector mapping. We had already studied the about the

basic of memory is last lesson. In this lesson we will study about how the memory is

shared between in multiprocessor and various consistency issues like atomicity event

ordering and strong and weak consistency.

 4.2 Backplane Buses — A backplane bus interconnects processors, data storage and

peripheral devices in a tightly coupled hardware. The system bus must be designed to

allow communication between devices on the devices on the bus without disturbing the

internal activities of all the devices attached to the bus. These are typically `intermediate'

buses, used to connect a variety of other buses to the CPU-Memory bus. They are called

Backplane Buses because they are restricted to the backplane of the system.

4.2.1 Backplane bus specification

They are generally connected to the CPU-Memory bus by a bus adaptor, which handles

translation between the buses. Commonly, this is integrated into the CPU-Memory bus

controller logic. While these buses can be used to directly control devices, they are used

as 'bridges` to other buses. For example, AGP bus devices – i.e. video cards – act as

bridges between the CPU-Memory bus and the actual display device: the monitor(s).) For

this reason, these buses are sometimes called mezzanine buses.

• Allow processors, memory and I/O devices to coexist on single bus

• Balance demands of processor-memory communication with demands of I/O

device-memory communication

• Interconnects the circuit boards containing processor, memory and I/O interfaces

an interconnection structure within the chassis

• Cost advantage: one single bus for all components

• The backplane bus is divided into four groups

• Data address and control lines form the data transfer bus (DTB) in VME bus.

• DTB Arbitration bus that provide control of DTB to requester using the

arbitration logic.

• Interrupt and Synchronization bus used for handling interrupt

• Utility bus include signals that provide periodic timing and coordinate the power

up and power down sequence of the system.

figure 4.1 VMEbus System

The backplane bus is made of signal lines and connectors. A special bus controller board

is used to house the backplane control logic, such as the system clock driver, arbiter, bus

timer and power driver.

Functional module : A functional module is collection of electronic circuitry that reside

on one functional board and works to achieve special bus control function. These

functions are:

A arbitrator is a functional module that accepts bus request from the requester module

and grant control of the DTB to one request at a time.

A bus timer measures the time each data transfer takes on the DTB and terminates the

DTB cycle if a transfer take too long.

An interrupter module generates an interrupt request and provide status /ID information

when an interrupt handler module request it.

A location monitor is a functional module that monitors data transfer over the DTB.

A power monitor watches the status of the power source and signals when power

unstable.

A system clock driver is a module that provides a clock timing signal on the utility bus.

In addition, board interface logic is needed to match the signal line impedence, the

propagation time and termination values between the backplane and the plug in board.

4.2.2 ASYNCHRONOUS DATA TRANSFER

All the operations in a digital system are synchronized by a clock that is generated by a

pulse generator. The CPU and I/O interface can be designed independently or they can

share common bus. If CPU and I/O interface share a common bus, the transfer of data

between two units is said to synchronous. There are some disadvantages of synchronous

data transfer, such as:

• It is not flexible, as all bus devices run on the same clock rate.

• Execution times are the multiples of clock cycles (if any operation needs 3.1 clock

cycles, it will take 4 cycles).

• Bus frequency has to be adapted to slower devices. Thus, one cannot take full

advantage of the faster ones.

• It is particularly not suitable for an I/O system in which the devices are

comparatively much slower than processor.

In order to overcome all these problems, an asynchronous data transfer is used for

input/ output system.

The word ‘asynchronous’ means ‘not in step with the elapse of time’. In case of

asynchronous data transfer, the CPU and I/O interface are independent of each other.

Each uses its own internal clock to control its registers. There are two popular techniques

used for such data transfer: strobe control and handshaking.

Strobe Control

In strobe control, a control signal, called strobe pulse, which is supplied from one unit to

other, indicates that data transfer has to take place. Thus, for each data transfer, a strobe is

activated either by source or destination unit. A strobe is a single control line that informs

the destination unit that a valid data is available on the bus. The data bus carries the

binary information from source unit to destination unit.

Data transfer from source to destination

The steps involved in data transfer from source to destination are as follows:

(i) The source unit places data on the data bus.

(ii) A source activates the strobe after a brief delay in order to ensure that data values are

steadily placed on the data bus.

(iii) The information on data bus and strobe signal remain active for some time that is

sufficient for the destination to receive it.

(iv) After this time the sources remove the data and disable the strobe pulse, indicating

that data bus does not contain the valid data.

(v) Once new data is available, strobe is enabled again.

Figure 4.2 Source- Initiated Strobe for Data Transfer

Data transfer from destination to source

The steps involved in data transfer from destination to source are as follows:

1. The destination unit activates the strobe pulse informing the source to provide the

data.

2. The source provides the data by placing the data on the data bus.

(iii) Data remains valid for some time so that the destination can receive it.

(iv) The falling edge of strobe triggers the destination register.

(v) The destination register removes the data from the data bus and disables the

strobe.

Figure 4.3 Destination- Initiated Strobe for Data Transfer

The disadvantage of this scheme is that there is no surety that destination has received the

data before source removes the data. Also, destination unit initiates the transfer without

knowing whether source has placed data on the data bus.

Thus, another technique, known as handshaking, is designed to overcome these

drawbacks.

Handshaking

The handshaking technique has one more control signal for acknowledgement that is used

for intimation. As in strobe control, in this technique also, one control line is in the same

direction as data flow, telling about the validity of data. Other control line is in reverse

direction telling whether destination has accepted the data.

Data transfer from source to destination

In this case, there are two control lines as shown in Figure 3.13: request and reply. The

sequence of actions taken is as follows

(i) Source initiates the data transfer by placing the data on data bus and enable request

signal.

(ii) Destination accepts the data from the bus and enables the reply signal.

(iii) As soon as source receives the reply, it disables the request signal. This also

invalidates the data on the bus.

(iv) Source cannot send new data until destination disables the reply signal.

(v) Once destination disables the reply signal, it is ready to accept new signal.

Figure 4.5 Source-Initiated Data Transfer Using Handshaking Technique

Data transfer from destination to source

The steps taken for data transfer from destination to source are as follows:

(i) Destination initiates the data transfer sending a request to source to send data telling

the latter that it is ready to accept data.

(ii) Source on receiving request places data on data bus.

(iii) Also, source sends a reply to destination telling that it has placed the requisite data

on the data bus and has disabled the request signal so that destination does not have new

request until it has accepted the data.

(iv) After accepting the data, destination disables the reply signal so that it can issue a

fresh request for data.

Figure 4.6 Destination-Initiated Data Transfer Using Handshaking Technique

Advantage of asynchronous bus transaction

• It is not clocked.

• It can accommodate a wide range of devices.

4.2.3 Bus Arbitration

Since at a unit time only one device can transmit over the bus, hence one important issue

is to decide who should access the bus. Bus arbitration is the process of determining the

bus master who has the bus control at a given time when there is a request for bus from

one or more devices.

Devices connected to a bus can be of two kinds:

1. Master: is active and can initiate a bus transfer.

2. Slave: is passive and waits for requests.

Figure 4.7 Bus arbitration

In most computers, the processor and DMA controller are bus masters whereas memory

and I/O controllers are slaves. In some systems, certain intelligent I/O controllers are also

bus masters. Some devices can act both as master and as slave, depending on the

circumstances:

• CPU is typically a master. A coprocessor, however, can initiate a transfer of a parameter

from the CPU here CPU acts like a slave.

• An I/O device usually acts like a slave in interaction with the CPU. Several devices can

perform direct access to the memory, in which case they access the bus like a master.

• The memory acts only like a slave.

In some systems especially one where multiple processors share a bus. When more than

one bus master simultaneously needs the bus, only one of them gains control of the bus

and become active bus master. The others should wait for their turn. The ‘bus arbiter’

decides who would become current bus master.Bus arbitration schemes usually try to

balance two factors:

• Bus priority: the highest priority device should be serviced first

• Fairness: Even the lowest priority device should never be completely locked out from

the bus

Lets understand the sequence of events take place, where the bus arbitration consists are

following:

1. Asserting a bus mastership request

2. Receiving a grant indicating that the bus is available at the end of the current

cycle. A bus master cannot use the bus until its request is granted

3. Acknowledging that mastership has been assumed

4. A bus master must signal to the arbiter after finish using the bus

The 68000 has three bus arbitration control pins:

BR - The bus request signal assigned by the device to the processor intending to use the

buses.

BG - The bus grant signal is assigned by the processor in response to a BR, indicating

that the bus will be released at the end of the current bus cycle. When BG is asserted BR

can be de-asserted. BG can be routed through a bus arbitrator e.g. using daisy chain or

through a specific priority-encoded circuit.

BGACK - At the end of the current bus cycle the potential bus master takes control of the

system buses and asserts a bus grant acknowledge signal to inform the old bus master

that it is now controlling the buses. This signal should not be asserted until the following

conditions are met:

1. A bus grant has been received

2. Address strobe is inactive, which indicates that the microprocessor is not using the bus

3. Data transfer acknowledge is inactive, which indicates that neither memory nor

peripherals are using the bus

4. Bus grant acknowledge is inactive, which indicates that no other device is still

claiming bus mastership.

On a typical I/O bus, however, there may be multiple potential masters and there is a

need to arbitrate between simultaneous requests to use the bus. The arbitration can be

either central or distributed.

Centralized bus arbitration in which a dedicated arbiter has the role of bus arbitration.

In the central scheme, it is assumed that there is a single device (usually the CPU) that

has the arbitration hardware. The central arbiter can determine priorities and can force

termination of a transaction if necessary. Central arbitration is simpler and lower in cost

for a uniprocessor system. It does not work as well for a symmetric multiprocessor design

unless the arbiter is independent of the CPUs.

Figure 4.8 Centralized bus arbitrator

Fiure 4.9 Indepentent request with central arbitrator

Figure 4.10 Central arbitrator

Distributed bus arbitration in which all bus masters cooperate and jointly perform the

arbitration. In this case, every bus master has an arbitration section. For example: there

are as many request lines on the bus as devices; each device monitors each request line

after each bus cycle each device knows if he is the highest priority device which

requested the busy if yes, it takes it. In the distributed scheme, every potential master

carries some hardware for arbitration and all potential masters compete equally for the

bus. The arbitration scheme is often based on some preassigned priorities for the devices,

but these can be changed. Distributed arbitration can be done either by self-selection –

where code indicates identity on the bus for example NuBus 16 devices, or by collision

detection as an example Ethernet. NuBus has four arbitration lines. A candidate to bus

master asserts its arbitration level on the 4-bit open collector arbitration bus. If a

competing master sees a higher level on the bus than its own level, it ceases to compete

for the bus. Each potential bus master simultaneously drives and samples the bus. When

one bus master has gained bus mastership and then relinquished it, it would not attempt to

re-establish bus mastership until all pending bus requests have been dealt with (fairness).

Daisy-chaining technique is a hybrid of central and distributed arbitration. In this

techniques all devices that can request are attached serially. The central arbiter issues

grant signal to the closest device requesting it. Devices request the bus by passing a

signal to their neighbors who are closer to the central arbiter. If a closer device also

requests the bus, then the request from the more distant device is blocked i.e., the priority

scheme is fixed by the device's physical position on the bus, and cannot be changed in

software. Sometimes, multiple request and grant lines are used with daisy-chaining to

enable requests from devices to bypass a closer device, and thereby implement a

restricted software- controllable priority scheme. Daisy-chaining is low cost technique

and also susceptible to faults. It is may lead to starvation for distant devices if a high

priority devices (one nearest to arbitrator) frequently request for Bus.

Figure 4.11 Daisy chaining arbitration scheme.

Polling

Polling is technique that identifies the highest priority resource by means of software.

The program that takes care of interrupt begins at the branch address and poll the

interrupt source in sequence. The priority is determined in the order in which each

interrupt is entered. Thus highest priority resource is first tested if interrupt signal is on

the control branch to the service routine other wise the source having next- lower-priority

will be tested and so on.

Disadvantage : The disadvantage of polling is that if there are many interrupts, the tome

required to poll exceed the time available to service the I/O device. To overcome this

problem hardware interrupt unit can be used to speed up the operation. The hardware unit

accepts the interrupt request and issue the interrupt grant to the device having highest

priority. As no polling is required all decision are done by hardware unit, each interrupt

source has its own interrupt vector to access its own service routine. This hardware unit

can establish priority either by a serial or a parallel connection of interrupt lines.

4.3 Cache memory organization

Cache memory are the fast memory that lies between registers and RAM in memory

hierarchy. It holds recently used data and/or instructions and has a size from few kB to

several MB.

Figure 4.12 Memory structure for a processor

4.3.1Cache addressing models

The figure 4.13 shows a cache and main memory structure. A cache consists of C slots

and each slot in the cache can hold K memory words. Here the main memory with 2n-1

words i.e., M words with each having a unique n-bit address and cache memory having

C*K words where K is the Block size and C are the number of lines. Each word that

resides in the cache is a subset of main memory. Since there are more blocks in main

memory than number of lines in cache, an individual line cannot be uniquely and

permanently dedicated to a particular block. Therefore, each line includes a tag that

identifies which particular block of main memory is currently occupying that line of

cache. The tag is usually a portion of the main memory address. The cache memory is

accessed but by pattern matching on a tag stored in the cache.

Figure 4.13 Cache / Main memory structure

For the doing comparison of address generated by CPU the memory controller use some

algorithm which determines whether the value currently being addressed in memory is

available in the cache. The transformation data from main memory to cache memory is

referred as a mapping process. Let us derive an address translation scheme using cache as

a linear array of entries, each entry having the following structure as shown in figure

below:

Data - The block of data from memory that is stored in a specific line in the cache

Tag - A small field of length K bits, used for comparison, to check the correct address of

data

Valid Bit - A one-bit field that indicates status of data written into the cache.

The N-bit address is produced by the processor to access cache data is divided into three

fields:

Tag - A K-bit field that corresponds to the K-bit tag field in each cache entry,

Index - An M-bit field in the middle of the address that points to one cache entry

Byte Offset – L Bits that finds particular data in a line if valid cache is found.

It follows that the length of the virtual address is given by N = K + M + L bits.

Cache Address Translation. As shown in Figure 4.14, we assume that the cache address

has length 42 bits. Here, bits 12-41 are occupied by the Tag field, bits 2-11 contain the

Index field, and bits 0,1 contain the Offset information. The index points to the line in

cache that supposedly contains the data requested by the processor. After the cache line is

retrieved, the Tag field in the cache line is compared with the Tag field in the cache

address. If the tags do not match, then a cache miss is detected and the comparator

outputs a zero value. Otherwise, the comparator outputs a one, which is and-ed with the

valid bit in the cache row pointed to by the Index field of the cache address. If the valid

bit is a one, then the Hit signal output from the and gate is a one, and the data in the

cached block is sent to the processor. Otherwise a cache miss is registered.

Figure 4.14. Schematic diagram of cache

 Most multiprocessor system use private cache associated with different processor.

Figure 4.15 A memory hierarchy for a shared memory multiprocessor.

Cache can be addressed either by physical address or virtual address.

Physical address cache: when cache is addressed by physical address it is called

physical address cache. The cache is indexed and tagged with physical address. Cache

lookup must occur after address translation in TLB or MMU. No aliasing is allowed

so that the address is always uniquely translated without confusion. This provide an

advantage that we need no cache flushing, no aliasing problem and fewer cache bugs

in OS kernel. The short coming is the slowdown in accessing the cache until the

MMU/TLB finishes translating the address.

Advantage of physically addressed caches

• no cache flushing on a context switch

• no synonym problem (several different virtual addresses can span the same

physical addresses : a much better hit ratio between processes)

Disadvantage of physically addressed caches

• do virtual-to-physical address translation on every access

• increase in hit time because must translate the virtual address before access the

cache

Virtual Address caches: when a cache is indexed or tagged with virtual address it is

called virtual address cache. In this model both cache and MMU translation or validation

are done in parallel. The physical address generated by the MMU can be saved in tags for

later write back but is not used during the cache lookup operations.

Advantage of virtually-addressed caches

• do address translation only on a cache miss

• faster for hits because no address translation

Disadvantage of virtually-addressed caches

cache flushing on a context switch (example : local data segments will get an

erroneous hit for virtual addresses already cached after changing virtual address

space, if no cache flushing).

synonym problem (several different virtual addresses cannot span the same physical

addresses without being duplicated in cache).

Figure 4.16 Virtual address for cache

Aliasing: The major problem with cache organization in multiprocessor is that multiple

virtual addresses can map to a single physical address i.e., different virtual address cache

logically addressed data have the same index/tag in the cache. Most processors guarantee

that all updates to that single physical address will happen in program order. To deliver

on that guarantee, the processor must ensure that only one copy of a physical address

resides in the cache at any given time.

4.3.2 Direct-Mapped Caches

The easiest way of organizing a cache memory employs direct mapping that is based on a

simple algorithm to map data block i from the main memory into data block j in the

cache. There is a one-to-one correspondence between each block of data in the cache and

each memory block thus to find a memory block i, then there is one and only one place in

the cache where i is stored

 If we have 2n words in main memory and 2k words in cache memory. In cache

memory each word consists of data word and its associated tag. The n-bit memory

address is divided into three fields : low order k bits are referred as the index field and

used to address a word in the cache. The remaining n-k high-order bits are called the tag.

The index field is further divided into the slot field, which will be used find a particular

slot in the cache; and the offset field is used to identify a particular memory word in the

slot. When a block is stored in the cache, its tag field is stored in the tag field of the cache

slot.

 When CPU generates an address the index field is used to access the cache. The

tag field of CPU address is compared with the tag in word read from the cache. If the two

tags match, there is a hit and else there is a miss and the required word is read from main

memory. Whenever a ``cache miss'' occurs, the cache line will be replaced by a new line

of information from main memory at an address with the same index but with a different

tag.

 Lets us understand how direct mapping is implemented with following simple

ampl

shows how a direct mapped cache resolves the contention between lines.

ex e Figure 4.17. The memory is composed of 32 words and accessed by a 5-bit

address. Let the address has a 2-bit tag (set) field, a 2-bit slot (line) field and a 1-bit word

field. The cache memory holds 22 = 4 lines each having two words. When the processor

generates an address, the appropriate line (slot) in the cache is accessed. For example, if

the processor generates the 5-bit address 111102, line 4 in set 4 is accessed. The memory

space is divided into sets and the sets into lines. The Figure 4.14 reveals that there are

four possible lines that can occupy cache line 4 lines 4 in set 0, in set 1, in set 2 and set 4.

In this example the processor accessed line 4 in set 4. Now “How does the system resolve

this issue?"

Figure 4.14

Each line in the cache memory has a tag or label that identifies which set this particular

line belongs to. When the processor accesses line 4, the tag belonging to line 4 in the

cache is sent to a comparator. At the same time the set field from the processor is also

sent to the comparator. If they are the same, the line in the cache is the desired line and a

hit occurs. If they are not the same, a miss occurs and the cache must be updated. Figure

4.17 provides a skeleton structure of a direct mapped cache memory system.

Figure 4.17 Resolving contention between lines in a direct-mapped cache

Figure 4.18 Implementation of direct-mapped cache

emory and the cache tag RAM are widely available devices.

ine x in set

e tag RAM

ne restriction a particular memory address can be mapped into only one

f_data

The advantage of direct mapping are as follows

It’s simplicity.

Both the cache m

The direct mapped cache requires no complex line replacement algorithm. If l

y is accessed and a miss takes place, line x from set y in the main store is loaded into the

frame for line x in the cache memory and the tag set to y i.e.,, there is no decision to be

taken regarding which line has to be rejected when a new line is to be loaded.

It inherents parallelism. Since the cache memory holding the data and the cach

are entirely independent, they can both be accessed simultaneously. Once the tag has

been matched and a hit has occurred, the data from the cache will also be valid.

The disadvantage of direct mapping are as follows

it is inflexible

 A cache has o

cache location also, all addresses with the same index field are mapped to the same cache

location. Consider the following fragment of code:

 REPEAT

 Get_data

 Compare

 UNTIL match OR end_o

Let the Get data routine and compare routine use two blocks, both these blocks have

he memory which overcomes the limitations of direct

same index but have different tags are repeated accessed. Consequently, the performance

of a direct-mapped cache can be very poor under above circumstances. However,

statistical measurements on real programs indicate that the very poor worst-case behavior

of direct-mapped caches has no significant impact on their average behavior.

4.3.3 Associative Mapping:

One way of organizing a cac

mapped cache such that there is no restriction on what data it can contain can be done

with associative cache memory. An associative memory is the fastest and most flexible

way of cache organization. It stores both the address and the value (data) from main

memory in the cache. An associative memory has an n-bit input. An address from the

processor is divided into three fields: the tag, the line, and the word.The mapping is done

with storing tag information in n-bit argument register and comparing it with address tag

in each location simultaneously. If the input tag matches a stored tag, the data associated

with that location is output. Otherwise the associative memory produces a miss output.

Unfortunately, large associative memories are not yet cost-effective. Once the associative

cache is full, a new line can be brought in only by overwriting an existing line that

requires a suitable line replacement policy. Associative cache memories are efficient

because they place no restriction on the data they hold, as permits any location of cache

to store any word from main memory.

CPU Address (argument register)

Address Data

01101001 100 10010

10010001 10101010

Figure 4.19 Associative cache

Figure 4.20Associative mapping

All of the comparisons are done simultaneously, so the search is performed very quickly.

This type of memory is very expensive, because each memory location must have both a

comparator and a storage element. Like the direct mapped cache, the smallest unit of data

transferred into and out of the cache is the line. Unlike the direct-mapped cache, there's

no relationship between the location of lines in the cache and lines in the main memory.

 When the processor generates an address, the word bits select a word location in

both the main memory and the cache. The tag resolves which of the lines is actually

present. In an associative cache any of the 64K lines in the main store can be located in

any of the lines in the cache. Consequently, the associative cache requires a 16-bit tag to

identify one of the 216 lines from the main memory. Because the cache's lines are not

ordered, the tags are not ordered, it may be anywhere in the cache or it may not be in the

cache.

Figure 4.21 Associative-mapped cache

4.3.4 Set associative Mapping:

Most computers use set associative mapping technique as it is a compromise between the

direct-mapped cache and the fully associative cache. In a set associative cache memory

several direct-mapped caches connected in parallel. Let to find memory block b in the

cache, there are n entries in the cache that can contain b we say that this type of cache is

called n-way set associative. For example, if n = 2, then we have a two-way set

associative cache. This is the simplest arrangement and consists of two direct-mapped

cache memories. Thus for n parallel sets, a n-way comparison is performed in parallel

against all members of the set. Usually , for k = 1, 2, 4 are chosen for a set

associative cache (k = 0 corresponds to direct mapping). As n is small (typically 2 to 14),

the logic required to perform the comparison is not complex. This is a widely used

technique in practice (e.g. 80486 uses 4-way, P4 uses 2-way for the instruction cache, 4-

way for the data cache).

 Figure 4.22 describes the common 4-way set associative cache. When the

processor accesses memory, the appropriate line in each of four direct-mapped caches is

accessed simultaneously. Since there are four lines, a simple associative match can be

used to determine which (if any) of the lines in cache are to supply the data. In figure

4.22 the hit output from each direct-mapped cache is fed to an OR gate which generates a

hit if any of the caches generate a hit.

Figure 4.22 Set associative-mapped cache

4.3.4 CACHE performance Issues

As far as the performance of cache is considered the trade off exist among the cache size,

set number, block size and memory speed. Important aspect in cache designing with

regard to performance are :

a. the cycle count : This refers to the number of basic machine cycles needed for

cache access, update and coherence control. This count is affected by underlying

static or dynamic RAM technology, the cache organization and the cache hit

ratios. The write through or write back policy also affect the cycle count. The

cycle count is directly related to the hit ratio, which decreases almost linearly with

increasing values of above cache parameters.

b. Hit ratio: The processor generates the address of a word to be read and send it to

cache controller, if the word is in the cache it generates a Hit signal and also

deliver it to the processor. If the data is not found in the cache, then it generates a

MISS signal and that data is delivered to the processor from main memory, and

simultaneously loaded into the cache. The hit ratio is number of hits divided by

total number of CPU references to memory (hits plus misses). When cache size

approaches

c. Effect of Block Size: With a fixed cache size, cache performance is sensitive to

the block size. This block size is determined mainly by the temporal locality in

typical program.

d. Effect of set number in set associative number.

4.4 Shared memory organization

4.4.1 Interleaved memory organization

In multiprocessor with a goal of broaden the effective memory bandwidth a technique

used is ``interleaved memories”. Here several sets of data and address lines connected to

independent ``banks'' of memory, arranged so that adjacent memory words reside in

different memory banks. Such memory system allows simultaneous access to adjacent

memory locations. Memory may be n-way interleaved, where n is usually a power of

two. 2, 4 and 8-way interleaving is common in large mainframes. In such systems, the

cache size typically would be sufficient to contain a data word from each bank. Figure

4.23 shows an example of interleaved memory.

Figure:4.23 4-way interleaved Memory

High order interleaving uses the high order a bits as the module address and the low

order b bits are used as the word address in each module.

4.4.2 Bandwidth and Fault tolerance

A single memory module is assumed to deliver one word per mmeory and thus has a

bandwidth of 1. The memory bamdwidth B of m-way interleaved memory is upper

bounded by m and lower bounded by 1. the Hellerman estimate of B is

B=m0.56

Where m is number of interleaved memory modules.

High and low order interleaving can be combined to yield many different interleaved

memory organizations. When one module is failed the remaining modules can be still

be used by opening window in a address space.

4.4.3 Memory allocation scheme

The idea of using virtual memory is to allow many software processes time shared

use of the main memory which is a precious resource with limited capacity. The

portion of OS kernel which handles the allocation and deallocation of main memory

to executing process is called the memory manager. The memory manager monitors

the amount of memory available and decides which processes should reside in main

memory and which should be put back to disk if the main memory reaches the limit.

Allocation scheme: Memory swapping is the process of moving blocks of information

between the level of memory hierarchy. This swapping policy can be made either

preemptive or non preemptive. A non preemptive allocation the incoming process

can be placed only in a free region of the main memory. A preemptive allocation

scheme allows the placement of an incoming block in a region presently occupied by

another process. A swap device is a configurable section of a disk which is set aside

for temporary storage of information being swapped out of memory. The portion of

the disk memory space set aside for a swap device is called the swap space.

4.5 Sequential and weak Consistency Model

When we are dealing with shared-memory multiprocessor systems many problems

may rise like

• memory access to shared writable data (e.g. critical sections) may occur out of

program order

• may cause deadlock or incorrect program behavior

• some limitations needed

• In systems with caches, problem is more severe since multiple copies of a data

may exist

In order to overcome this problem we need to design Memory consistency model

that may lead to a set of allowable memory access orderings The major tradeoff

these models are stricter memory consistency models are easier to program with, but

performance is limited in such models

 Memory System Coherence: A memory scheme is coherent if the value returned on a

Load instruction is always the value given by the latest Store with the same address

Before we discuss them in details lets study few commonly used terms

Memory Requests Initiating A memory access is initiated when a processor has

sent the request and the completion of the request is out of its control.

Memory Requests issued An initiated request is issued when it has left the processor

(including buffers) and is in transit in the memory system.

The event ordering can be used to declare whether a memory event is legal or illegal

when several processes are accessing a common set of memory location. A program

order is the order by which memory accesses occur for the execution of a single

process, provided that no program reordering has taken place. There are three

primitive memory operations for the purpose of specifying memory consistency

model

a) A load by a processor Pi is considered performed with respect to processor Pk at a

point of time when issuing of store to same location by Pk cannot affect the value

returned by the load.

b) A store by Pi is performed with respect to Pk at one time when we issued load to

the same address by Pk returns the value by this store.

For simplicity, we denote Li(X) and Si(X) as Load and Store accesses by processor i

on variable X, and {Si(X)}+ as the sequence of Stores following the Store Si(X),

including Si(X).

c) Load Globally: A Load is globally performed if it is performed and if the Store that

is the source of the returned value has been performed with respect to all processor.

For a multiprocessor system this event ordering is very important of obtaining a correct

and predictable execution. A correctly written shared-memory parallel program will use

mutual exclusion to guard access to shared variables.

P1 P2

x = x + 1;

S; S;

 x = x + 2;

In general, in a correct parallel program we obtain exclusive access to a set of shared

variables, manipulate them any way we want, and then relinquish access, distributing the

new values to the rest of the system. The other processors don't need to see any of the

intermediate values; they only need to see the final values.

Here's a figure that shows a classification of shared memory accesses:

Figure 4.24 classification of shared memory

The various types of memory accesses are defined as follows:

Shared Access

Actually, we can have shared access to variables vs. private access. But the

questions we're considering are only relevant for shared accesses, so that's all

we're showing.

Competing vs. Non-Competing

If we have two accesses from different processors, and at least one is a write, they

are competing accesses. They are considered as competing accesses because the

result depends on which access occurs first (if there are two accesses, but they're

both reads, it doesn't matter which is first).

Synchronizing vs. Non-Synchroning

Ordinary competing accesses, such as variable accesses, are non-synchronizing

accesses. Accesses used in synchronizing the processes are (of course)

synchronizing accesses.

Acquire vs. Release

Finally, we can divide synchronization accesses into accesses to acquire locks,

and accesses to release locks.

Remember that synchronization accesses should be much less common than other

competing accesses. So we can further weaken the memory models we use by treating

synchronize accesses differently from other accesses.

Atomicity: a shared memory access is atomic if the memory updates are known to all

processors at the same time. Memory systems in which accesses are atomically

performed for all and any copies of the data are referred to as systems with atomic

accessibility . As far as atomicity is considered the multiprocessor memory behavior can

be described in three categories:

1. program order are preserved and uniform observation sequence by all processor.

2. Out –of- program-order allowed and uniform observation sequence by all

processor.

3. out –of-program-order allowed and nonuniform sequences observed by different

processors.

Event ordering

If two accesses are to the same memory location, they are conflicting and if these

conflicting accesses a1 and a2 on different processors are not ordered and executes

simultaneously, causing a race condition, then they form a competing pair, and a1 and a2

are competing accesses in order overcome this problem consistency model is designed

strict model

 In the strict model, any read to a memory location X returns the value stored by the

most recent write operation to X. If we have a bunch of processors, with no caches,

talking to memory through a bus then we will have strict consistency. The point here is

the precise serialization of all memory accesses. In a multiprocessor system, storage

accesses are strongly ordered if (1) access to global data by any processor are initiated,

issued and performed in program order, and if (2) at the time when a Store on global data

by processor i is observed by processor k, all access to global data performed with respect

to i before issuing of the Store must be performed with respect to k.

Sequential Consistency (SC) : Sequential consistency is a slightly weaker model than

strict consistency. It was defined by Lamport as the result of any execution is the same

as if the reads and writes occurred in some order, and the operations of each

individual processor appear in this sequence in the order specified by its program.

Figure 4.25 Sequential consistency memory model

A system is sequentially consistent if the result of any execution is the same as if the

operations of all the processors were executed in some sequential order, and the

operations of each individual processor appear in this sequence in the order specified by

its program. In system with caches, one must be careful to maintain SC. If the memory

has no atomic accessibility, the condition “the order in which all Stores are performed is

the same with respect to all processors” must be added, otherwise it may not guarantee

sequential consistency

Sufficient Conditions for Sequential Consistency

Every processor issues memory ops in program order

• Processor must wait for store to complete before issuing next memory operation

• After load, issuing processor must waits for load to complete, and store that produced

the value to complete before issuing next operation

– Ensures write atomicity (2 conditions)

• Writes to same location are serialized

• Can’t read result of store until all processors will see new value

• Easily implemented with shared bus

In brief we can say

• before a LOAD is allowed to perform with respect to any other processor, all

previous LOAD accesses must be globally performed and all previous STORE

accesses must be performed

• before a STORE is allowed to perform with respect to any other processor, all

previous LOAD accesses must be globally performed and all previous STORE

accesses must be performed

To main SC, potential dependencies on every data access to shared memory have to be

assumed. However, most of these data are not synchronizing variables (shared variables

used to control the concurrency between several processes). In these system there is weak

consistency, two types of shared variables are distinguished:

• the shared operands appearing in algorithms whose value do not control the

concurrent execution;

• synchronizing variables which protect the access to shared writable operands or

implement synchronization among different processes

It is assumed that at run time, the system can distinguish between accesses to

synchronizing variables and to other variables. Synchronizing variables can be

distinguished by the type of instruction

Weak consistency results if we only consider competing accesses as being divided into

synchronizing and non-synchronizing accesses, and require the following properties:

1. Accesses to synchronization variables are sequentially consistent.

2. No access to a synchronization variable is allowed to be performed until all

previous writes have completed everywhere.

3. No data access (read or write) is allowed to be performed until all previous

accesses to synchronization variables have been performed.

Conditions of Weak Consistency: In a multiprocessor system, memory accesses are

weakly ordered if

• accesses to global synchronizing variables are strongly ordered

• no access to a synchronizing variable is issued by a processor before all its

previous global data access have been globally performed

• no access to global data is issued by a processor before its previous access to a

synchronizing variable has been globally performed

• Dependency conditions on shared variables are not checked continuously but only

at explicit synchronizing points. Between two consecutive operations on

hardware-recognized synchronization variables, no assumption can be made by

the programmer of a process about the order in which Stores are observed by

other process. However, the order of successive Stores by a processor to the same

address must be respected

Here's a valid scenario under weak consistency, which shows its real strength:

P1: W(x)1 W(x)2 S

P2: R(x)0 R(x)2 S R(x)2

P3: R(x)1 S R(x)2

In other words, there is no requirement that a processor broadcast the changed values of

variables at all until the synchronization accesses take place. In a distributed system

based on a network instead of a bus, this can dramatically reduce the amount of

communication needed (notice that nobody would deliberately write a program that

behaved like this in practice; you'd never want to read variables that somebody else is

updating. The only reads would be after the S. I've mentioned in lecture that there are a

few parallel algorithms, such as relaxation algorithms, that don't require normal notions

of memory consistency. These algorithms wouldn't work in a weakly consistent system

that really deferred all data communications until synchronization points).

The DSB model : the DSB model is specified by the following three conditions:

1. All pervious synchronization accesses must be performed before load or store

access is allowed to perform with respect to any other processor.

2. all pervious load and store accesses must be performed before synchronization

access is allowed to perform with respect to any other processor.

3. synchronization accesses are sequentially consistent with respect to one another.

4.6 Keywords

bus A single physical communications medium shared by two or more devices. The

network shared by processors in many distributed computers is a bus, as is the shared

data path in many multiprocessors.

cache A high-speed memory, local to a single processor , whose data transfers are carried

out automatically in hardware. Items are brought into a cache when they are referenced,

while any changes to values in a cache are automatically written when they are no longer

needed, when the cache becomes full, or when some other process attempts to access

them. Also To bring something into a cache.

shared memory: Memory that appears to the user to be contained in a single address

space and that can be accessed by any process. In a uniprocessors or multiprocessor there

is typically a single memory unit, or several memory units interleaved to give the

appearance of a single memory unit..

atomic operation Not interruptible. An atomic operation is one that always appears to

have been executed as a unit.

Event Ordering: Used to declare whether a memory event is legal when several

processes access a common set of memory locations.

4.7 Summary

In this lesson we had learned how the various processor are connected to each other

through the bus. how the data transfer take place from one processor to another in

asynchronous transfer mode. In this method of transmission does not require a

common clock, but separates fields of data by stop and start bits. How through arbitration

one system get control over the network and message transmission take place. How cache

memory in multiprocessor is organized and how its address are generated both for

physical and virtual address. Lastly we had discussed about the shared memory

organization and how consistency is maintained in it. There are various issues of

synchronization and event handling on which various consistency models are designed.

4.8 Self assessment questions

1. With the help of a diagram, explain the backplane buses, system interfaces, and

slot connections to various functional boards in a multiprocessor system.

2. Discuss the typical time sequence for information transfer between a master and

a slave over a system bus.

3. Differentiate between synchronous and asynchronous bus timing protocols.

4. With the bus transaction timing diagram, explain the daisy-chained bus

arbitration.

5. Explain the 2 interleaved memory organizations with m= 2a modules and w= 2b

words per module.

6. With diagrams, explain the eight-way low-order interleaving and pipelined

access of eight consecutive words in a C- access memory.

4.9 References/Suggested readings

Advance Computer architecture: Kai Hwang

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Pipelining and Superscalar Techniques Lesson No. : 05

5.0 Objective

5.1 Introduction

5.2 Linear pipeline

5.3 Nonlinear pipeline

5.3.1 Reservation Tables and latency analysis

5.4 Instruction pipeline

5.5 Arithmetic pipeline

 5.6 Superscalar and Superpipeline design

5.6.1 Superpipeline design

5.6.2 Superscalar design

5.6.3 Superscalar - Superpipeline design

5.7 Summary

5.8 Keywords

5.9 Exercises

5.10 References

5.0 Objective

The main objective of this lesson is to known the basic properties of pipelining,

classification of pipeline processors and the required memory support. The main aim this

lesson is to learn the how pipelining is implemented in vector processors, and various

limitations of pipelining and how they are overcame by using superscalar pipeline

architecture.

5.1 Introduction

Pipeline is similar to the assembly line in industrial plant. To achieve pipelining one must

divide the input process into a sequence of sub tasks and each of which can be executed

concurrently with other stages. The various classification or pipeline line processor are

arithmetic pipelining, instruction pipelining, processor pipelining have also been briefly

discussed. Limitations of pipelining are discussed and shift to Pipeline architecture to

Superscalar architecture is also discussed. Superscalar pipeline organization and design

are discussed.

5.2 Linear pipelining

Pipelining is a technique of that decompose any sequential process into small

subprocesses, which are independent of each other so that each subprocess can be

executed in a special dedicated segment and all these segments operates concurrently.

Thus whole task is partitioned to independent tasks and these subtask are executed by a

segment. The result obtained as an output of a segment (after performing all computation

in it) is transferred to next segment in pipeline and the final result is obtained after the

data have been through all segments. Thus it could understand if take each segment

consists of an input register followed by a combinational circuit. This combinational

circuit performs the required sub operation and register holds the intermediate result. The

output of one combinational circuit is given as input to the next segment.

The concept of pipelining in computer organization is analogous to an industrial

assembly line. As in industry there different division like manufacturing, packing and

delivery division, a product is manufactured by manufacturing division, while it is packed

by packing division a new product is manufactured by manufacturing unit. While this

product is delivered by delivery unit a third product is manufactured by manufacturing

unit and second product has been packed. Thus pipeline results in speeding the overall

process. Pipelining can be effectively implemented for systems having following

characteristics:

• A system is repeatedly executes a basic function.

• A basic function must be divisible into independent stages such that each stage

have minimal overlap.

• The complexity of the stages should be roughly similar.

The pipelining in computer organization is basically flow of information. To understand

how it works for the computer system lets consider an process which involves four steps /

segment and the process is to be repeated six times. If single steps take t nsec time then

time required to complete one process is 4 t nsec and to repeat it 6 times we require 24t

nsec.

Now let’s see how problem works behaves with pipelining concept. This can be

illustrated with a space time diagram given below figure 5.1, which shows the segment

utilization as function of time. Lets us take there are 6 processes to be handled

(represented in figure as P1, P2, P3, P4, P5 and P6) and each process is divided into 4

segments (S1, S2, S3, S4). For sake of simplicity we take each segment takes equal time

to complete the assigned job i.e., equal to one clock cycle. The horizontal axis displays

the time in clock cycles and vertical axis gives the segment number. Initially, process1 is

handled by the segment 1. After the first clock segment 2 handles process 1 and segment

1 handles new process P2. Thus first process will take 4 clock cycles and remaining

processes will be completed one process each clock cycle. Thus for above example total

time required to complete whole job will be 9 clock cycles (with pipeline organization)

instead of 24 clock cycles required for non pipeline configuration.

 1 2 3 4 5 6 7 8 9

P1 S1 S2 S3 S4

P2 S1 S2 S3 S4

P3 S1 S2 S3 S4

P4 S1 S2 S3 S4

P5 S1 S2 S3 S4

P6 S1 S2 S3 S4

Figure 5.1 Space –time diagram for pipeline

Speedup ratio : The speed up ratio is ratio between maximum time taken by non

pipeline process over process using pipelining. Thus in general if there are n processes

and each process is divided into k segments (subprocesses). The first process will take k

segments to complete the processes, but once the pipeline is full that is first process is

complete, it will take only one clock period to obtain an output for each process. Thus

first process will take k clock cycles and remaining n-1 processes will emerge from the

pipe at the one process per clock cycle thus total time taken by remaining process will be

(n-1) clock cycle time.

Let tp be the one clock cycle time.

The time taken for n processes having k segments in pipeline configuration will be

= k*tp + (n-1)*tp= (k+n-1)*tp

the time taken for one process is tn thus the time taken to complete n process in non

pipeline configuration will be

= n*tn

Thus speed up ratio for one process in non pipeline and pipeline configuration is

= n*tn / (n+k-1)*tp

if n is very large compared to k than

=tn / tp

if a process takes same time in both case with pipeline and non pipeline configuration

than tn = k*tp

Thus speed up ratio will Sk =k*tp/tp =k

Theoretically maximum speedup ratio will be k where k are the total number of

segments in which process is divided. The following are various limitations due to which

any pipeline system cannot operate at its maximum theoretical rate i.e., k (speed up ratio).

a. Different segments take different time to complete there suboperations, and in

pipelining clock cycle must be chosen equal to time delay of the segment with

maximum propagation time. Thus all other segments have to waste time waiting

for next clock cycle. The possible solution for improvement here can if possible

subdivide the segment into different stages i.e., increase the number of stages and

if segment is not subdivisible than use multiple of resource for segment causing

maximum delay so that more than one instruction can be executed in to different

resources and overall performance will improve.

b. Additional time delay may be introduced because of extra circuitry or additional

software requirement is needed to overcome various hazards, and store the result

in the intermediate registers. Such delays are not found in non pipeline circuit.

c. Further pipelining can be of maximum benefit if whole process can be divided

into suboperations which are independent to each other. But if there is some

resource conflict or data dependency i.e., a instruction depends on the result of

pervious instruction which is not yet available than instruction has to wait till

result become available or conditional or non conditional branching i.e., the

bubbles or time delay is introduced.

Efficiency : The efficiency of linear pipeline is measured by the percentage of time when

processor are busy over total time taken i.e., sum of busy time plus idle time. Thus if n is

number of task , k is stage of pipeline and t is clock period then efficiency is given by

η = n/ [k + n -1]

Thus larger number of task in pipeline more will be pipeline busy hence better will be

efficiency. It can be easily seen from expression as n →∞, η →1.

η = Sk/k

Thus efficiency η of the pipeline is the speedup divided by the number of stages, or one

can say actual speed ratio over ideal speed up ratio. In steady stage where n>>k, η

approaches 1.

Throughput: The number of task completed by a pipeline per unit time is called

throughput, this represents computing power of pipeline. We define throughput as

W= n/[k*t + (n-1) *t] = η/t

In ideal case as η -> 1 the throughout is equal to 1/t that is equal to frequency. Thus

maximum throughput is obtained is there is one output per clock pulse.

Que 5.1. A non-pipeline system takes 60 ns to process a task. The same task can be

processed in six segment pipeline with a clock cycle of 10 ns. Determine the speedup

ratio of the pipeline for 100 tasks. What is the maximum speed up that can be achieved?

Soln. Total time taken by for non pipeline to complete 100 task is = 100 * 60 = 6000 ns

 Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

Thus speed up ratio will be = 6000 / 1050 = 4.76

 The maximum speedup that can be achieved for this process is = 60 / 10 = 6

Thus, if total speed of non pipeline process is same as that of total time taken to complete

a process with pipeline than maximum speed up ratio is equal to number of segments.

Que 5.2. A non-pipeline system takes 50 ns to process a task. The same task can be

processed in a six segment pipeline with a clock cycle of 10 ns. Determine the speedup

ratio of the pipeline for 100 tasks. What is the maximum speed up that can be achieved?

Soln. Total time taken by for non pipeline to complete 100 task is = 100 * 50 = 5000 ns

 Total time taken by pipeline configuration to complete 100 task is

= (100 + 6 –1) *10 = 1050 ns

Thus speed up ratio will be = 5000 / 1050 = 4.76

 The maximum speedup that can be achieved for this process is = 50 / 10 = 5

The two areas where pipeline organization is most commonly used are arithmetic pipeline

and instruction pipeline. An arithmetic pipeline where different stages of an arithmetic

operation are handled along the stages of a pipeline i.e., divides the arithmetic operation

into suboperations for execution of pipeline segments. An instruction pipeline operates on

a stream of instructions by overlapping the fetch, decode, and execute phases of the

instruction cycle as different stages of pipeline. RISC architecture supports pipelining

more than a CISC architecture does. There are three prime disadvantages of pipeline

architecture.

1. The first is complexity i.e., to divide the process into dependent subtask

2. Many intermediate registers are required to hold the intermediate information as

output of one stage which will be input of next stage. These are not required for

single unit circuit thus it is usually constructed entirely as combinational circuit

3. The third disadvantage is its inability to continuously run the pipeline at full

speed, i.e. the pipeline stalls for some cycle. There are phenomena called pipeline

hazards which disrupt the smooth execution of the pipeline if these hazards are

not handled properly they may gave wrong result. Often it is required insert

delays in the pipeline flow in order to manage these hazards such delays are called

bubbles. Often it is managed by using special hardware techniques while

sometime using software techniques such as compiler or code reordering, etc.

Various types of pipeline hazards include:

• structural hazards that happens due to hardware conflicts

• data hazards that happen due to data dependencies

• control hazards that happens when there is change in flow of statement like

due to branch, jump, or any other control flow changes conditions

• Exception hazard that happens due to some exception or interrupt occurred

while execution in a pipeline system.

5.3 Non linear pipeline

A dynamic pipeline can be reconfigured to perform variable function at different

times. The traditional linear pipelines are static pipeline because they used to perform

fixed function. A dynamic pipeline allows feed forward and feedback connections in

addition to streamline connection. A dynamic pipelining may initiate tasks from

different reservation tables simultaneously to allow multiple numbers of initiations of

different functions in the same pipeline.

5.3.1 Reservation Tables and latency analysis

Reservation tables are used how successive pipeline stages are utilized for a specific

evaluation function. These reservation tables show the sequence in which each function

utilizes each stage. The rows correspond to pipeline stages and the columns to clock time

units. The total number of clock units in the table is called the evaluation time. A

reservation table represents the flow of data through the pipeline for one complete

evaluation of a given function. (For example, think of X as being a floating square root,

and Y as being a floating cosine. A simple floating multiply might occupy just S1 and S2

in sequence.) We could also denote multiple stages being used in parallel, or a stage

being drawn out for more than one cycle with these diagrams.

We determine the next start time for one or the other of the functions by lining up the

diagrams and sliding one with respect to another to see where one can fit into the open

slots. Once an X function has been scheduled, another X function can start after 1, 3 or 6

cycles. A Y function can start after 2 or 4 cycles. Once a Y function has been scheduled,

another Y function can start after 1, 3 or 5 cycles. An X function can start after 2 or 4

cycles. After two functions have been scheduled, no more can be started until both are

complete.

Consider another example of non linear pipeline where both feed forward and feedback

connections are given. The pipeline is dual functional denoted as function A and function

B. The pipeline stages are numbered as S1, S2 and S3. The feed forward connection

connects a stage Si to a stage Sj such that j ≥ i + 2 and feedback connection connects to Si

to a stage Sj such that j <= i

A market entry in the (i,j)th square of the table indicates the stage Si will be used j time

units after initiation of the function evaluation. Here is the reservation table for both

Table Reservation Table for function A

Table Reservation Table for function B

Job Sequencing and Collision Prevention

Initiation the start a single function evaluation collision may occur as two or more

initiations attempt to use the same stage at the same time. Thus it is required to properly

schedule queued tasks awaiting initiation in order to avoid collisions and to achieve high

throughput. We can define collision as:

1. A collision occurs when two tasks are initiated with latency (initiation interval) equal

to the column distance between two “X” on some row of the reservation table.

2. The set of column distances F ={l1,l2,…,lr} between all possible pairs of “X” on each

row of the reservation table is called the forbidden set of latencies.

3. The collision vector is a binary vector C = (Cn…C2 C1), Where Ci=1 if i belongs to F

(set of forbidden latencies) and Ci=0 otherwise.

Some fundamental concepts used in it are:

Latency - number of time units between two initiations (any positive integer 1, 2,…)

Latency sequence – sequence of latencies between successive initiations

Latency cycle – a latency sequence that repeats itself

Control strategy – the procedure to choose a latency sequence

Greedy strategy – a control strategy that always minimizes the latency between the

current initiation and the very last initiation

Example: Let us consider a Reservation Table with the following set of forbidden

latencies F and permitted latencies P (complementation of F).

It has been observed that

1. The collision vector shows both permitted and forbidden latencies from the same

reservation table.

2. One can use n-bit shift register to hold the collision vector for implementing a control

strategy for successive task initiations in the pipeline. Upon initiation of the first task, the

collision vector is parallel-loaded into the shift register as the initial state. The shift

register is then shifted right one bit at a time, entering 0’s from the left end. A collision

free initiation is allowed at time instant t+k a bit 0 is being shifted at of the register after k

shifts from time t.

A state diagram is used to characterize the successive initiations of tasks in the pipeline

in order to find the shortest latency sequence to optimize the control strategy. A state on

the diagram is represented by the contents of the shift register after the proper number of

shifts is made, which is equal to the latency between the current and next task initiations.

3. The successive collision vectors are used to prevent future task collisions with

previously initiated tasks, while the collision vector C is used to prevent possible

collisions with the current task. If a collision vector has a “1” in the ith bit (from the

right), at time t, then the task sequence should avoid the initiation of a task at time t+i.

4. Closed logs or cycles in the state diagram indicate the steady – state sustainable latency

sequence of task initiations without collisions. The average latency of a cycle is the sum

of its latencies (period) divided by the number of states in the cycle.

5. The throughput of a pipeline is inversely proportional to the reciprocal of the average

latency. A latency sequence is called permissible if no collisions exist in the successive

initiations governed by the given latency sequence.

6. The maximum throughput is achieved by an optimal scheduling strategy that achieves

the (MAL) minimum average latency without collisions.

Simple cycles are those latency cycles in which each state appears only once per each

iteration of the cycle. A single cycle is a greedy cycle if each latency contained in the

cycle is the minimal latency (outgoing arc) from a state in the cycle. A good task-

initiation sequence should include the greedy cycle.

Procedure to determine the greedy cycles

1. From each of the state diagram, one chooses the arc with the smallest latency label

unit; a closed simple cycle can formed.

2. The average latency of any greedy cycle is no greater than the number of latencies in

the forbidden set, which equals the number of 1’s in the initial collision vector.

3. The average latency of any greedy cycle is always lower-bounded by the

MAL in the collision vector

Two methods for improving dynamic pipeline throughput have been proposed by

Davidson and Patel these are

• The reservation of a pipeline can be modified with insertion of non complete

delays

• Use of internal buffer at each stage.

Thus high throughput can be achieved by using the modified reservation table yielding a

more desirable latency pattern such the each stage is maximum utilized. Any computation

can be delayed by inserting a non compute stage.

Reconfigurable pipelines with different function types are more desirable. This requires

an extensive resource sharing among different functions. To achieve this one need a more

complicated structure of pipeline segments and their interconnection controls like bypass

techniques to avoid unwanted stage.

A dynamic pipeline would allow several configurations to be simultaneously present like

arithmetic unit performing both addition as well as multiplication at same time. But to

achieve this tremendous control overhead and increased interconnection complexity

would be expected.

5.4 Instruction pipeline

As we know that in general case, the each instruction to execute in computer undergo

following steps:

• Fetch the instruction from the memory.

• Decode the instruction.

• Calculate the effective address.

• Fetch the operands from the memory.

• Execute the instruction (EX).

• Store the result back into memory (WB).

For sake of simplicity we take calculation of the effective address and fetch operand from

memory as single segment as operand fetch unit. Thus below figure shows how the

instruction cycle in CPU can be processed with five segment instruction pipeline.

Figure 5.14 (a) A five stage instruction pipeline (b) Space time diagram of pipeline

While the instruction is decoded (ID) in segment 2 the new instruction is fetched (IF)

from segment 1. Similarly in third time cycle when first instruction effective operand is

fetch (OF), the 2nd instruction is decoded and the 3rd instruction is fetched. In same

manner in fourth clock cycle, and subsequent cycles all subsequent instructions can be

fetched and placed in instruction FIFO. Thus up to five different instructions can be

processed at the same time. The figure show how the instruction pipeline works, where

time is in the horizontal axis and divided into steps of equal duration. Although the major

difficulty with instruction pipeline is that different segment may take different time to

operate the forth coming information. For example if operand is in register mode require

much less time as compared if operand has to be fetched from memory that to with

indirect addressing modes. The design of an instruction pipeline will be most effective if

the instruction cycle is divided into segments of equal duration. As there can be resource

conflict, data dependency, branching, interrupts and other reasons due to pipelining can

branch out of normal sequence these will be discussed in unit 5.7.

Que 5.3 Consider a program of 15,000 instructions executed by a linear pipeline

processor with a clock rate of 25MHz. The instruction pipeline has five stages and one

instruction is issued per clock cycle. Calculate speed up ratio, efficiency and throughput

of this pipelined processor?

Soln: Time taken to execute without pipeline is = 15000 * 5* (1/25) microsecs

 Time taken with pipeline = (15000 + 5 -1)*(1/ 25) microsecs

 Speed up ratio = (15000*5*25) / (15000+ 5 -1)*25 = 4.99

 Efficiency = Speed up ratio/ number of segment in pipeline = 4.99/5= 0.99

 Throughput = number of task completed in unit time = 0.99 * 25 = 24.9 MIPS

Principles of designing pipeline processor

Buffers are used to speed close up the speed gap between memory access for either

instructions or operands. Buffering can avoid unnecessary idling of the processing stages

caused by memory access conflicts or by unexpected branching or interrupts. The

concepts of busing eliminates the time delay to store and to retrieve intermediate results

or to from the registers.

The computer performance can be greatly enhanced if one can eliminate unnecessary

memory accesses and combine transitive or multiple fetch-store operations with faster

register operations. This is carried by register tagging and forwarding.

Another method to smooth the traffic flow in a pipeline is to use buffers to close up the

speed gap between the memory accesses for either instructions or operands and

arithmetic and logic executions in the functional pipes. The instruction or operand buffers

provide a continuous supply of instructions or operands to the appropriate pipeline units.

Buffering can avoid unnecessary idling of the processing stages caused by memory

access conflicts or by unexpected branching or interrupts. Sometimes the entire loop

instructions can be stored in the buffer to avoid repeated fetch of the same instructions

loop, if the buffer size is sufficiently large. It is very large in the usage of pipeline

computers.

Three buffer types are used in various instructions and data types. Instructions are fetched

to the instruction fetch buffer before sending them to the instruction unit. After decoding,

fixed point and floating point instructions and data are sent to their dedicated buffers. The

store address and data buffers are used for continuously storing results back to memory.

The storage conflict buffer is used only used when memory

Busing Buffers

The sub function being executed by one stage should be independent of the other sub

functions being executed by the remaining stages; otherwise some process in the pipeline

must be halted until the dependency is removed. When one instruction waiting to be

executed is first to be modified by a future instruction, the execution of this instruction

must be suspended until the dependency is released.

Another example is the conflicting use of some registers or memory locations by

different segments of a pipeline. These problems cause additional time delays. An

efficient internal busing structure is desired to route the resulting stations with minimum

time delays.

In the AP 120B or FPS 164 attached processor the busing structure are even more

sophisticated. Seven data buses provide multiple data paths. The output of the floating

point adder in the AP 120B can be directly routed back to the input of the floating point

adder, to the input of the floating point multiplier, to the data pad, or to the data memory.

Similar busing is provided for the output of the floating point multiplier. This eliminates

the time delay to store and to retrieve intermediate results or to from the registers.

Internal Forwarding and Register Tagging

To enhance the performance of computers with multiple execution pipelines

1. Internal Forwarding refers to a short circuit technique for replacing unnecessary

memory accesses by register -to-register transfers in a sequence of fetch-arithmetic-store

operations

2. Register Tagging refers to the use of tagged registers, buffers and reservations stations

for exploiting concurrent activities among multiple arithmetic units.

The computer performance can be greatly enhanced if one can eliminate unnecessary

memory accesses and combine transitive or multiple fetch-store operations with faster

register operations. This concept of internal data forwarding can be explored in three

directions. The symbols Mi and Rj to represent the ith word in the memory and jth fetch,

store and register-to register transfer. The contents of Mi and Rj are represented by (Mi)

and Rj

Store-Fetch Forwarding

The store the n fetch can be replaced by 2 parallel operations, one store and one register

transfer.

2 memory accesses

Mi -> (R1) (store)

R2 -> (Mi) (Fetch)

Is being replaced by

Only one memory access

Mi -> (R1) (store)

R2 -> (R1) (register Transfer)

Fetch-Fetch Forwarding

The following fetch operations can be replaced by one fetch and one register transfer.

One memory access has been eliminated.

2 memory accesses

R1 -> (Mi) (fetch)

R2 -> (Mi) (Fetch)

Is being replaced by

Only one memory access

R1 -> (Mi) (Fetch)

R2 -> (R1) (register Transfer)

Figure .2 Internal Forwarding Examples thick arrows for memory accesses and

dotted arrows for register transfers

Store-Store Overwriting

The following two memory updates of the same word can be combined into one; since

the second store overwrites the first. 2 memory accesses

Mi -> (R1) (store)

Mi -> (R2) (store)

Is being replaced by

Only one memory access

Mi -> (R2) (store)

The above steps shows how to apply internal forwarding to simplify a sequence of

arithmetic and memory access operations

Forwarding and Data Hazards

Sometimes it is possible to avoid data hazards by noting that a value that results from one

instruction is not needed until a late stage in a following instruction, and sending the data

directly from the output of the first functional unit back to the input of the second one

(which is sometimes the same unit). In the general case, this would require the output of

every functional unit to be connected through switching logic to the input of every

functional unit.

Data hazards can take three forms:

Read after write (RAW): Attempting to read a value that hasn't been written yet. This is

the most common type, and can be overcome by forwarding.

Write after write (WAW): Writing a value before a preceding write has completed. This

can only happen in complex pipes that allow instructions to proceed out of order, or that

have multiple write-back stages (mostly CISC), or when we have multiple pipes that can

write (superscalar).

Write after read (WAR): Writing a value before a preceding read has completed. These

also require a complex pipeline that can sometimes write in an early stage, and read in a

later stage. It is also possible when multiple pipelines (superscalar) or out-of-order issue

are employed.

The fourth situation, read after read (RAR) does not produce a hazard.

Forwarding does not solve every RAW hazard situation. For example, if a functional unit

is merely slow and fails to produce a result that can be forwarded in time, then the

pipeline must stall. A simple example is the case of a load, which has a high latency. This

is the sort of situation where compiler scheduling of instructions can help, by rearranging

independent instructions to fill the delay slots. The processor can also rearrange the

instructions at run time, if it has access to a window of prefetched instructions (called a

prefetch buffer). It must perform much the same analysis as the compiler to determine

which instructions are dependent on each other, but because the window is usually small,

the analysis is more limited in scope. The small size of the window is due to the cost of

providing a wide enough datapath to predecode multiple instructions at once, and the

complexity of the dependence testing logic.

Out of order execution introduces another level of complexity in the control of the

pipeline, because it is desirable to preserve the abstraction of in-order issue, even in the

presence of exceptions that could flush the pipe at any stage. But we'll defer this to later.

Branch Penalty Hiding

The control hazards due to branches can cause a large part of the pipeline to be flushed,

greatly reducing its performance. One way of hiding the branch penalty is to fill the pipe

behind the branch with instructions that would be executed whether or not the branch is

taken. If we can find the right number of instructions that precede the branch and are

independent of the test, then the compiler can move them immediately following the

branch and tag them as branch delay filling instructions. The processor can then execute

the branch, and when it determines the appropriate target, the instruction is fetched into

the pipeline with no penalty.

Of course, this scheme depends on how the pipeline is designed. It effectively binds part

of the pipeline design for a specific implementation to the instruction set architecture. As

we've seen before, it is generally a bad idea to bind implementation details to the ISA

because we may need to change them later on. For example, if we decide to lengthen the

pipeline so that the number of delay slots increases, we have to recompile our code to

have it execute efficiently -- we no longer have strict binary compatibility among models

of the same "ISA".

The filling of branch delays can be done dynamically in hardware by reordering

instructions out of the prefetch buffer. But this leads to other problems. Another way to

hide branch penalties is to avoid certain kinds of branches. For example, if we have

IF A < 0

 THEN A = -A

we would normally implement this with a nearby branch. However, we could instead use

an instruction that performs the arithmetic conditionally (skips the write back if the

condition fails). The advantage of this scheme is that, although one pipeline cycle is

wasted, we do not have to flush the rest of the pipe (also, for a dynamic branch prediction

scheme, we need not put an extra branch into the prediction unit). These are called

predicated instructions, and the concept can be extended to other sorts of operations, such

as conditional loading of a value from memory.

Branch Prediction

Branches are the bane of any pipeline, causing a potentially large decrease in

performance as we saw earlier. There are several ways to reduce this loss by predicting

the action of the branch ahead of time.

Simple static prediction assumes that all branches will be taken or not. The designer

decides which way is predicted from instruction trace statistics. Once the choice is made,

the compiler can help by properly ordering local jumps. A slightly more complex static

branch prediction heuristic is that backward branches are usually taken and forward

branches are not (backwards taken, forwards not or BTFN). This assumes that most

backward branches are loop returns and that most forward branches are the less likely

cases of a conditional branch.

Compiler static prediction involves the use of special branches that indicate the most

likely choice (taken or not, or more typically taken or other, since the most predictable

branches are those at the ends of loops that are mostly taken). If the prediction fails in this

case, then the usual cancellation of the instructions in the delay slots occurs and a branch

penalty results.

Dynamic instruction scheduling

As discussed above the static instruction scheduling can be optimized by compiler the

dynamic scheduling is achived either by using scoreboard or with Tomasulo’s register

tagging algorithm and discussed in superscalar processors

5.5 Arithmetic pipeline

Pipeline arithmetic is used in very high speed computers specially involved in scientific

computations a basic principle behind vector processor and array processor. They are

used to implement floating – point operations, multiplication of fixed – point numbers

and similar computations encountered in computation problems. These computation

problems can easily decomposed in suboperations. Arithmetic pipelining is well

implemented in the systems involved with repeated calculations such as calculations

involved with matrices and vectors. Let us consider a simple vector calculation like

A[i] + b[i] * c[i] for I = 1,2,3,……,8

The above operation can be subdivided into three segment pipeline such each

segment has some registers and combinational circuits. Segment 1 load contents of b[i]

and c[i] in register R1 and R2 , segment 2 load a[i] content to R3 and multiply content of

R1, R2 and store them R4 finally segment 3 add content of R3 and R4 and store in R5 as

shown in figure 5.12 below.

Clock pulse

number

Segment 1 Segment 2 Segment 3

 R1 R2 R3 R4 R5

1 B1 C1 - - -

2 B2 C2 B1*C1 A1

3 B3 C3 B2*C2 A2 A1+ B1*C1

4 B4 C4 B3*C3 A3 A2+ B2*C2

5 B5 C5 B4*C4 A4 A3+ B3*C3

6 B6 C6 B5*C5 A5 A4+ B4*C4

7 B7 C7 B6*C6 A6 A5+ B5*C5

8 B8 C8 B7*C7 A7 A6+ B6*C6

9 B8*C8 A8 A7+ B7*C7

10 A8+ B8*C8

Figure 5.12 Content of registers in pipeline

To illustrate the operation principles of a pipeline computation, the design of a pipeline

floating point adder is given. It is constructed in four stages. The inputs are

A = a x 2p

B = b x 2q

Where a and b are 2 fractions and p and q are their exponents and here base 2 is assumed.

To compute the sum

C = A+ B = c x 2r = d x 2s

Operations performed in the four pipeline stages are specified.

1. Compare the 2 exponents p and q to reveal the larger exponent r =max(p,q) and to

determine their difference t =p-q

2. Shift right the fraction associated with the smaller exponent by t bits to equalize the

two components before fraction addition.

3. Add the preshifted fraction with the other fraction to produce the intermediate sum

fraction c where 0 <= c <1.

4. Count the number of leading zeroes, say u, in fraction c and shift left c by u bits to

produce the normalized fraction sum d = c x 2u, with a leading bit 1. Update the large

exponent s by subtracting s= r – u to produce the output exponent.

The given below is figure 5.5 show how pipeline can be implemented in floating

point addition and subtraction. Segment 1 compare the two exponents this is done using

subtraction. Segment2 we chose the larger exponents the one larger exponent as exponent

of result also it align the other mantissa by viewing the difference between two and

smaller number mantissa should be shifted to right by difference amount. Segment 3

performs addition or subtraction of mantissa while segment 4 normalize the result for that

it adjust exponent care must be taken in case of overflow, where we had to shift the

mantissa right and increment exponent by one and for underflow the leading zeros of

mantissa determines the left shift in mantissa and same number should be subtracted for

exponent. Various registers R are used to hold intermediate results.

In order to implement pipelined adder we need extra circuitry but its cost is compensated

if we have implement it for large number of floating point numbers. Operations at each

stage can be done on different pairs of inputs, e.g. one stage can be comparing the

exponents in one pair of operands at the same time another stage is adding the mantissas

of a different pair of operands.

Que 5.3 How faster will be addition of 1000 floating point vector element using above

pipeline as compared to non pipeline adder?

Soln: The above pipeline has four segment and lets assume each segment require one

clock cycle time to execute. To add 1000 pairs of numbers, without a pipelined

adder would require 4000 cycles.

With 4-stage pipelined adder, the last sum will appear after 1000 +4 cycles, so the

pipeline is 4000/ 1004 = 3.98 times faster.

Lets take another example of multiplication

The multiplication of 2 fixed point numbers is done by repeated add-shift operations,

using ALU which has built in add and shift functions. Multiple number additions can be

realized with a multilevel tree adder. The conventional carry propagation adder (CPA)

adds 2 input numbers say A and B, to produce one output number called the sum A+B

carry save adder (CSA) receives three input numbers, say A,B and D and two output

numbers, the sum S and the Carry vector C.

A CSA can be implemented with a cascade of full adders with the carry-out of a lower

stage connected to the carry-in of a higher stage. A carry-save adder can be implemented

with a set of full adders with all the carry-in terminals serving as the input lines for the

third input number D, and all the carry-out terminals serving as the output lines for the

carry vector C. This pipeline is designed to multiply two 6 bit numbers. There are five

pipeline stages. The first stage is for the generation of all 6 x 6 = 36 immediate product

terms, which forms the six rows of shifted multiplicands. The six numbers are then fed

into two CSAs in the second stage. In total four CSAs are interconnected to form a three

level merges six numbers into two numbers: the sum vector S and the carry vector C. The

final stage us a CPA which adds the two numbers C and S to produce the final output of

the product A x B.

5.6 superpipeline and Superscalar technique

Instruction level parallelism is obtained primarily in two ways in uniprocessors: through

pipelining and through keeping multiple functional units busy executing multiple

instructions at the same time. When a pipeline is extended in length beyond the normal

five or six stages (e.g., I-Fetch, Decode/Dispatch, Execute, D-fetch, Writeback), then it

may be called Superpipelined. If a processor executes more than one instruction at a time,

it may be called Superscalar. A superscalar architecture is one in which several

instructions can be initiated simultaneously and executed independently These two

techniques can be combined into a Superscalar pipeline architecture.

5.6.1 Superpipeline

Superpipelining is based on dividing the stages of a pipeline into substages and thus

increasing the number of instructions which are supported by the pipeline at a given

moment. For example if we divide each stage into two, the clock cycle period t will be

reduced to the half, t/2; hence, at the maximum capacity, the pipeline produces a result

every t/2 s. For a given architecture and the corresponding instruction set there is an

optimal number of pipeline stages; increasing the number of stages over this limit reduces

the overall performance. A solution to further improve speed is the superscalar

architecture.

 Given a pipeline stage time T, it may be possible to execute at a higher rate by starting

operations at intervals of T/n. This can be accomplished in two ways:

 � Further divide each of the pipeline stages into n substages.

 � Provide n pipelines that are overlapped.

The first approach requires faster logic and the ability to subdivide the stages into

segments with uniform latency. It may also require more complex inter-stage interlocking

and stall-restart logic.

The second approach could be viewed in a sense as staggered superscalar operation, and

has associated with it all of the same requirements except that instructions and data can

be fetched with a slight offset in time. In addition, inter-pipeline interlocking is more

difficult to manage because of the sub-clock period differences in timing between the

pipelines.

Even so, staggered clock pipelines may be necessary with superscalar designs in the

future, in order to reduce peak power and corresponding power-supply induced noise.

Alternatively, designs may be forced to shift to a balanced mode of circuit operation in

which logic transitions are balanced by reverse transitions -- a technique used in the Cray

supercomputers that resulted in the computer presenting a pure DC load to the power

supply, and greatly reduced noise in the system.

Inevitably, superpipelining is limited by the speed of logic, and the frequency of

unpredictable branches. Stage time cannot productively grow shorter than the interstage

latch time, and so this is a limit for the number of stages.

The MIPS R4000 is sometimes called a superpipelined machine, although its 8 stages

really only split the I-fetch and D-fetch stages of the pipe and add a Tag Check stage.

Nonetheless, the extra stages enable it to operate with higher throughput. The

UltraSPARC's 9-stage pipe definitely qualifies it as a superpipelined machine, and in fact

it is a Super-Super design because of its superscalar issue. The Pentium 4 splits the

pipeline into 20 stages to enable increased clock rate. The benefit of such extensive

pipelining is really only gained for very regular applications such as graphics. On more

irregular applications, there is little performance advantage.

5.6.2 Superscalar

Superscalar processing has its origins in the Cray-designed CDC supercomputers, in

which multiple functional units are kept busy by multiple instructions. The CDC

machines could pack as many as 4 instructions in a word at once, and these were fetched

together and dispatched via a pipeline. Given the technology of the time, this

configuration was fast enough to keep the functional units busy without outpacing the

instruction memory.

Current technology has enabled, and at the same time created the need to issue

instructions in parallel. As execution pipelines have approached the limits of speed,

parallel execution has been required to improve performance. As this requires greater

fetch rates from memory, which hasn't accelerated comparably, it has become necessary

to fetch instructions in parallel -- fetching serially and pipelining their dispatch can no

longer keep multiple functional units busy. At the same time, the movement of the L1

instruction cache onto the chip has permitted designers to fetch a cache line in parallel

with little cost.

In some cases superscalar machines still employ a single fetch-decode-dispatch pipe that

drives all of the units. For example, the UltraSPARC splits execution after the third stage

of a unified pipeline. However, it is becoming more common to have multiple fetch-

decode-dispatch pipes feeding the functional units.

The choice of approach depends on tradeoffs of the average execute time vs. the speed

with which instructions can be issued. For example, if execution averages several cycles,

and the number of functional units is small, then a single pipe may be able to keep the

units utilized. When the number of functional units grows large and/or their execution

time approaches the issue time, then multiple issue pipes may be necessary.

Having multiple issue pipes requires

• being able to fetch instructions for that many pipes at once

• inter-pipeline interlocking

• reordering of instructions for multiple interlocked pipelines

• multiple write-back stages

• multiport D-cache and/or register file, and/or functionally split register file

Reordering may be either static (compiler) or dynamic (using hardware lookahead). It can

be difficult to combine the two approaches because the compiler may not be able to

predict the actions of the hardware reordering mechanism.

Superscalar operation is limited by the number of independent operations that can be

extracted from an instruction stream. It has been shown in early studies on simpler

processor models, that this is limited, mostly by branches, to a small number (<10,

typically about 4). More recent work has shown that, with speculative execution and

aggressive branch prediction, higher levels may be achievable. On certain highly regular

codes, the level of parallelism may be quite high (around 50). Of course, such highly

regular codes are just as amenable to other forms of parallel processing that can be

employed more directly, and are also the exception rather than the rule. Current thinking

is that about 6-way instruction level parallelism for a typical program mix may be the

natural limit, with 4-way being likely for integer codes. Potential ILP may be three times

this, but it will be very difficult to exploit even a majority of this parallelism.

Nonetheless, obtaining a factor of 4 to 6 boost in performance is quite significant,

especially as processor speeds approach their limits.

Going beyond a single instruction stream and allowing multiple tasks (or threads) to

operate at the same time can enable greater system throughput. Because these are

naturally independent at the fine-grained level, we can select instructions from different

streams to fill pipeline slots that would otherwise go vacant in the case of issuing from a

single thread. In turn, this makes it useful to add more functional units. We shall further

explore these multithreaded architectures later in the course.

Hardware Support for Superscalar Operation

There are two basic hardware techniques that are used to manage the simultaneous

execution of multiple instructions on multiple functional units: Scoreboarding and

reservation stations. Scoreboarding originated in the Cray-designed CDC-6600 in 1964,

and reservation stations first appeared in the IBM 360/91 in 1967, as designed by

Tomasulo.

Scoreboard

A scoreboard is a centralized table that keeps track of the instructions to be performed

and the available resources and issues the instructions to the functional units when

everything is ready for them to proceed. As the instructions execute, dependences are

checked and execution is stalled as necessary to ensure that in-order semantics are

preserved. Out of order execution is possible, but is limited by the size of the scoreboard

and the execution rules. The scoreboard can be thought of as preceding dispatch, but it

also controls execution after the issue. In a scoreboarded system, the results can be

forwarded directly to their destination register (as long as there are no write after read

hazards, in which case their execution is stalled), rather than having to proceed to a final

write-back stage.

In the CDC scoreboard, each register has a matching Result Register Designator that

indicates which functional unit will write a result into it. The fact that only one functional

unit can be designated for writing to a register at a time ensures that WAW dependences

cannot occur. Each functional unit also has a corresponding set of Entry-Operand

Register Designators that indicate what register will hold each operand, whether the value

is valid (or pending) and if it is pending, what functional unit will produce it (to facilitate

forwarding). None of the operands is released to a functional unit until they are all valid,

precluding RAW dependences. In addition , the scoreboard stalls any functional unit

whose result would write a register that is still listed as an Entry-Operand to a functional

unit that is waiting for an operand or is busy, thus avoiding WAR violations. An

instruction is only allowed to issue if its specified functional unit is free and its result

register is not reserved by another functional unit that has not yet completed. Four Stages

of Scoreboard Control

1. Issue—decode instructions & check for structural hazards (ID1) If a functional

unit for the instruction is free and no other active instruction has the same destination

register (WAW), the scoreboard issues the instruction to the functional unit and updates

its internal data structure. If a structural or WAW hazard exists, then the instruction issue

stalls, and no further instructions will issue until these hazards are cleared.

2. Read operands—wait until no data hazards, then read operands (ID2) A source

operand is available if no earlier issued active instruction is going to write it, or if the

register containing the operand is being written by a currently active functional unit.

When the source operands are available, the scoreboard tells the functional unit to

proceed to read the operands from the registers and begin execution. The scoreboard

resolves RAW hazards dynamically in this step, and instructions may be sent into

execution out of order.

3. Execution—operate on operands (EX) The functional unit begins execution upon

receiving operands. When the result is ready, it notifies the scoreboard that it has

completed execution.

4. Write result—finish execution (WB) Once the scoreboard is aware that the

functional unit has completed execution, the scoreboard checks for WAR hazards.

If none, it writes results. If WAR, then it stalls the instruction. Example:

DIVD F0,F2,F4

ADDD F10,F0,F8

SUBD F8,F8,F14

CDC 6600 scoreboard would stall SUBD until ADDD reads operands

Three Parts of the Scoreboard

1. Instruction status—which of 4 steps the instruction is in

2. Functional unit status—Indicates the state of the functional unit (FU). 9 fields for

each functional unit

Busy—Indicates whether the unit is busy or not

Op—Operation to perform in the unit (e.g., + or –)

Fi—Destination register

Fj, Fk—Source-register numbers

Qj, Qk—Functional units producing source registers Fj, Fk

Rj, Rk—Flags indicating when Fj, Fk are ready and not yet read. Set to

No after operands are read.

3. Register result status—Indicates which functional unit will write each register, if one

exists. Blank when no pending instructions will write that register

Scoreboard Implications

• provide solution for WAR, WAW hazards

• Solution for WAR – Stall Write in WB to allow Reads to take place; Read registers only

during Read Operands stage.

• For WAW, must detect hazard: stall in the Issue stage until other completes

• Need to have multiple instructions in execution phase

 • Scoreboard keeps track of dependencies, state or operations

– Monitors every change in the hardware.

– Determines when to read ops, when can execute, when can wb.

– Hazard detection and resolution is centralized.

Reservation Stations The reservation station approach releases instructions directly to a

pool of buffers associated with their intended functional units (if more than one unit of a

particular type is present, then the units may share a single station). The reservation

stations are a distributed resource, rather than being centralized, and can be thought of as

following dispatch. A reservation is a record consisting of an instruction and its

requirements to execute -- its operands as specified by their sources and destination and

bits indicating when valid values are available for the sources. The instruction is released

to the functional unit when its requirements are satisfied, but it is important to note that

satisfaction doesn't require an operand to actually be in a register -- it can be forwarded to

the reservation station for immediate release or to be buffered (see below) for later

release. Thus, the reservation station's influence on execution can be thought of as more

implicit and data dependent than the explicit control exercised by the scoreboard.

Tomasulo Algorithm

The hardware dependence resolution technique used For IBM 360/91 about 3 years

after CDC 6600. Three Stages of Tomasulo Algorithm

1. Issue—get instruction from FP Op Queue

If reservation station free, then issue instruction & send operands (renames registers).

2. Execution—operate on operands (EX)

When both operands ready then execute; if not ready, watch CDB for result

3. Write result—finish execution (WB)

Write on Common Data Bus to all awaiting units; mark reservation station available.

Here the storage of operands resulting from instructions that completed out of order is

done through renaming of the registers. There are two mechanisms commonly used for

renaming. One is to assign physical registers from a free pool to the logical registers as

they are identified in an instruction stream. A lookup table is then used to map the logical

register references to their physical assignments. Usually the pool is larger than the

logical register set to allow for temporary buffering of results that are computed but not

yet ready to write back. Thus, the processor must keep track of a larger set of register

names than the instruction set architecture specifies. When the pool is empty, instruction

issue stalls.

The other mechanism is to keep the traditional association of logical and physical

registers, but then provide additional buffers either associated with the reservation

stations or kept in a central location. In either case, each of these "reorder buffers" is

associated with a given instruction, and its contents (once computed) can be used in

forwarding operations as long as the instruction has not completed.

When an instruction reaches the point that it may complete in a manner that preserves

sequential semantics, then its reservation station is freed and its result appears in the

logical register that was originally specified. This is done either by renaming the

temporary register to be one of the logical registers, or by transferring the contents of the

reorder buffer to the appropriate physical register.

Out of Order Issue

To enable out-of-order dispatch of instructions to the pipelines, we must provide at least

two reservation stations per pipe that are available for issue at once. An alternative would

be to rearrange instructions in the prefetch buffer, but without knowing the status of the

pipes, it would be difficult to make such a reordering effective. By providing multiple

reservation stations, however, we can continue issuing instructions to pipes, even though

an instruction may be stalled while awaiting resources. Then, whatever instruction is

ready first can enter the pipe and execute. At the far end of the pipeline, the out-of-order

instruction must wait to be retired in the proper order. This necessitates a mechanism for

keeping track of the proper order of instructions (note that dependences alone cannot

guarantee that instructions will be properly reordered when they complete).

5.6.3 Superscalar-Superpipeline

Of course we may also combine superscalar operation with superpipelining. The result is

potentially the product of the speedup factors.

However, it is even more difficult to interlock between parallel pipes that are divided into

many stages. Also, the memory subsystem must be able to sustain a level of instruction

throughput corresponding to the total throughput of the multiple pipelines -- stretching

the processor/memory performance gap even more. Of course, with so many pipes and so

many stages, branch penalties become huge, and branch prediction becomes a serious

bottleneck (offsetting this somewhat is the potential for speculative branch execution that

arises with a large number of pipes).

But the real problem may be in finding the parallelism required to keep all of the pipes

and stages busy between branches. Consider that a machine with 12 pipelines of 20

stages must always have access to a window of 240 instructions that are scheduled so as

to avoid all hazards, and that the average of 40 branches that would be present in a block

of that size are all correctly predicted sufficiently in advance to avoid stalling in the

prefetch unit. This is a tall order, even for highly regular code with a good balance of

floating point to integer operations, let alone irregular code that is typically unbalanced in

its operation mix. As usual, scientific code and image processing with their regular array

operations often provide the best performance for a super-super processor. However, a

vector unit could more directly address the array processing problems, and what is left to

the scalar unit may not benefit nearly so greatly from all of this complexity. Scalar

processing can certainly benefit from ILP in many cases, but probably in patterns that

differ from vector processing.

5.7 Summary

1. The job-sequencing problem is equivalent to finding a permissible latency cycle with

the MAL in the state diagram.

2. The minimum number of X’s in array single row of the reservation table is a lower

bound of the MAL.

Pipelining allows several instructions to be executed at the same time, but they have to be

in different pipeline stages at a given moment. Superscalar architectures include all

features of pipelining but, in addition, there can be several instructions executing

simultaneously in the same pipeline stage. They have the ability to initiate multiple

instructions during the same clock cycle. There are two typical approaches today, in order

to improve performance:

1. Superpipelining

2. Superscalar

5.8 Keywords

pipelining Overlapping the execution of two or more operations. Pipelining is used

within processors by prefetching instructions on the assumption that no branches are

going to preempt their execution; in vector processors, in which application of a single

operation to the elements of a vector or vectors may be pipelined to decrease the time

needed to complete the aggregate operation; and in multiprocessors and multicomputers,

in which a process may send a request for values before it reaches the computation that

requires them..

scoreboard A hardware device that maintains the state of machine resources to enable

instructions to execute without conflict at the earliest opportunity.

instruction pipelining strategy of allowing more than one instruction to be in some stage

of execution at the same time.

5.9 Self assessment questions

1. Explain an asynchronous pipeline model, a synchronous pipeline model and

reservation table of a four-stage linear pipeline with appropriate diagrams.

2. Define the following terms with regard to clocking and timing control.

a) Clock cycle and throughput b) Clock skewing c) Speedup factor

3. Describe the speedup factors and the optimal number of pipeline stages for a linear

pipeline unit.

4. Explain the features of non-linear pipeline processors with feedforward and

feedbackward connections.

5. With state diagrams, explain the transition diagram for a pipeline unit.

6. Explain the pipelined execution of the following instructions with the following

instructions:

a) X = Y + Z b) A = B X C

7. What are the possible hazards that can occur between read and write operations in

an instruction pipeline?

8. Explain the Tomasulo’s algorithm for dynamic instruction scheduling.

9. With diagrams, explain branch history buffer and a state transition diagram used in

dynamic branch prediction.

10. Differentiate between a carry-propagate adder (CPA) and a carry-save adder

5.10 References/Suggested readings

Advance Computer architecture: Kai Hwang

Author: Dr. Deepti Mehrotra Vetter: Dr. Sandeep Arya

Lesson: Multiprocessor and Multicomputers Lesson No. : 06

6.0 Objective

6.1 Introduction

6.2 Multiprocessor system interconnect

6.2.1 Hierarchical bus system

6.2.2 Crossbar Switch and Multiport Memory

6.3 Cache coherence and synchronization problem

6.3.1 The cache coherence problem

6.3.2 Snoopy bus protocols

6.3.3 Directory based protocols\

6.3.4 Hardware synchronization mechanism

6.4 Three generations of multicomputer

6.5 Message passing mechanism

6.6 Summary

6.7 Keywords

6.8 Exercises

6.9 References

6.0 Objective

In this lesson we will study about system architectures of multiprocessor and

mulicomputer. Various cache coherence protocols, synchronization methods, and other

important concepts involved in building a multiprocessor. Finally we will discuss the

mulitcomputers with distributed memories which are not globally shared.

6.1 Introduction

There are various architecture supporting parallel processing exists these are boardly

classified as Multiprocessors and Multicomputers. The common classification are

Shared-Memory Multiprocessors Models which include all UMA: uniform memory

access (all SMP servers), NUMA: nonuniform-memory-access (Stanford DASH,

SGI Origin 2000, Cray T3E) and COMA: cache-only memory architecture (KSR)

Which have very low remote memory access latency.

Figure 6.1 Shared memory multiprocessor

The Distributed-Memory Multicomputers Model must have a message-passing

network, highly scalable like NORMA model (no-remote-memory-access), IBM

SP2, Intel Paragon, TMC CM-5, INTEL ASCI Red, PC cluster

Figure 6.2 Distributed memory multiprocessor

6.2 Multiprocessor system interconnect

In the multiprocessor architecture each processor Pi is attached to its own local memory

and private cache. These multiple processors connected to share memory through

interprocessor memory network (IPMN). Processors share access to I/O and peripherals

through processor-I/O network (PION). Both IPMN and PION are necessary in a shared-

resource multiprocessor. An optional interprocessor communication network (IPCN) can

permit processor communication without using shared memory.

Interconnection Network Choices

The networks are designed with many choices like timing, switching and control strategy

like in case of dynamic network the multiprocessors interconnections are under program

control.

• Timing

o Synchronous – controlled by a global clock which synchronizes all

network activity.

o Asynchronous – use handshaking or interlock mechanisms for

communication and especially suitable for coordinating devices with

different speed.

• Switching Method

o Circuit switching – a pair of communicating devices control the path for

the entire duration of data transfer

o Packet switching – large data transfers broken into smaller pieces, each of

which can compete for use of the path

• Network Control

o Centralized – global controller receives and acts on requests

o Distributed – requests handled by local devices independently

6.2.1Hierarchical bus system

Digital buses are the fundamental interconnects adopted in most commercial

multiprocessor systems with less than 100 processors. The principal limitation to the bus

approach is packaging technology.

Complete bus specifications include logical, electrical and mechanical properties,

application profiles, and interface requirements.

Bus Systems

A bus system is a hierarchy of buses connection various system and subsystem

components. Each bus has a complement of control, signal, and power lines. In a bus-

based network, processors share a single communication resource. A bus is a highly non-

scalable architecture, because only one processor can communicate on the bus at a time.

Used in shared-memory parallel computers to communicate read and write requests to a

shared global memory

Figure 6.3Bus system

There is usually a variety of buses in a system:

Local bus – (usually integral to a system board) connects various major system

components (chips)

Memory bus – used within a memory board to connect the interface, the controller, and

the memory cells

Data bus – might be used on an I/O board or VLSI chip to connect various components

Backplane – like a local bus, but with connectors to which other boards can be attached

 Hierarchical Bus Systems

There are numerous ways in which buses, processors, memories, and I/O devices can be

organized. One organization has processors (and their caches) as leaf nodes in a tree, with

the buses (and caches) to which these processors connect forming the interior nodes.

A bus-based interconnection network, used here to implement a shared-memory parallel

computer. Each processor (P) is connected to the bus, which in turn is connected to the

global memory. A cache associated with each processor stores recently accessed memory

values in an effort to reduce the bus traffic.

This generic organization, with appropriate protocols to ensure cache coherency, can

model most hierarchical bus organizations.

Bridges

The term bridge is used to denote a device that is used to connect two (or possibly more)

buses. The interconnected buses may use the same standards, or they may be different

(e.g. PCI and ISA buses in a modern PC). Bridge functions include

• Communication protocol conversion

• Interrupt handling

• Serving as cache and memory agents

6.2.2 Crossbar Switch and Multiport Memory

Single stage networks are sometimes called recirculating networks because data items

may have to pass through the single stage many times. The crossbar switch and the

multiported memory organization (seen later) are both single-stage networks.

This is because even if two processors attempted to access the same memory module (or

I/O device at the same time, only one of the requests is serviced at a time.

Multistage Networks

Multistage networks consist of multiple sages of switch boxes, and should be able to

connect any input to any output. A multistage network is called blocking if the

simultaneous connections of some multiple inputoutput pairs may result in conflicts in

the use of switches or communication links.

A nonblocking multistage network can perform all possible connections between inputs

and outputs by rearranging its connections.

Crossbar Networks

Crossbar networks connect every input to every output through a crosspoint switch.

A crossbar network is a single stage, non-blocking permutation network.

In an n-processor, m-memory system, n * m crosspoint switches will be required. Each

crosspoint is a unary switch which can be open or closed, providing a point-to-point

connection path between the processor and a memory module.

Figure 6.4 Cross bar network

Lets for example consider a 4*4 nonblocking crossbar, used here to connect 4 processors

to four memory. Like in below figure processor P1 is connected to memory M3 and P3 is

communicating with M2. Pairs of processors can communicate without preventing other

processor pairs from communicating.

Figure 6.5 Example of 4*4 crossbar network

Crosspoint Switch Design

Out of n crosspoint switches in each column of an n *m crossbar mesh, only one can be

connected at a time. Crosspoint switches must be designed to handle the potential

contention for each memory module. A crossbar switch avoids competition for bandwidth

by using O(N2) switches to connect N inputs to N outputs.

Although highly non-scalable, crossbar switches are a popular mechanism for connecting

a small number of workstations, typically 20 or fewer.

Each processor provides a request line, a read/write line, a set of address lines, and a set

of data lines to a crosspoint switch for a single column. The crosspoint switch eventually

responds with an acknowledgement when the access has been completed.

Multiport Memory

Since crossbar switches are expensive, and not suitable for systems with many processors

or memory modules, multiport memory modules may be used instead. A multiport

memory module has multiple connections points for processors (or I/O devices), and the

memory controller in the module handles the arbitration and switching that might

otherwise have been accomplished by a crosspoint switch.

A two function switch can assume only two possible state namely state or exchange

states. However a four function switch box can be any of four possible states. A

multistage network is capable of connecting any input terminal to any output terminal.

Multi-stage networks are basically constructed by so called shuffle-exchange switching

element, which is basically a 2 x 2 crossbar. Multiple layers of these elements are

connected and form the network.

Figure 6.6 A switching element of multistage mnetwork

Multiport Memory Examples Omega Networks

The basic building block of an omega network is a switch with two inputs and two

outputs. When a message arrives at this switch, the first bit is stripped off and the switch

is set to: straight through if the bit is '0' on the top input or '1' on the bottom input else

cross connected. Note that only one message can pass, the other being blocked, if two

messages arrive and the exclusive or of the first bits is not '1'.

Figure 6.7 switching element for omega network

Then omega networks for connecting two devices, four devices or eight devices are built

from this switch are shown below. The messages are sent with the most significant bit of

the destination first.

Figure 6.8 Omega network connecting two device, four device and eight device

For 16 devices connected to the same or different 16 devices, the omega network is built

from the primitive switch as:

Figure 6.9 Omega network connecting 16 devices

Note that connecting N devices requires N log2(N) switches.

Given a set of random connections of N devices to N devices with an omega network,

this is mathematically a permutation, then statistically 1/2 N connections may be made

simultaneously. N-input Omega networks, in general, have log2n stages, with the input

stage labeled 0.

The interstage connection (ISC) pattern is a perfect shuffle. Routing is controlled by

inspecting the destination address. When the i-th highest order bit is 0, the 2*2 switch in

stage i connects the input to the upper output. Otherwise it connects the input to the lower

output. 2 k = N inputs and a like number of outputs. Between these are log2N stages each

having N/2 exchange elements at each stage. An Omega network is typically a (semi-)

blocking network. When an exchange element is in use, the next message or data packet

that needs this element must wait.

Omega Network without Blocking Effects

Blocking exists in an Omega network when the requested permutation would require that

a single switch be set in two positions simultaneously. Obviously this is impossible, and

requires that one of the permutation requests be blocked and tried in a later pass.

In general, with 2*2 switches, an Omega network can implement n n/2 permutations in a

single pass. For n = 8, this is about 10% of all possible permutations.

In general, a maximum of log2n passes are needed for an n-input Omega network.

 Omega Broadcast

An Omega network can be used to broadcast data to multiple destinations by using upper

broadcast or lower broadcast switch settings. The switch to which the input is connected

is set to the broadcast position (input connected to both outputs). Each additional switch

(in later stages) to which an output is directed is also set to the broadcast position.

Omega Broadcast Larger Switches

Larger switches (more inputs and outputs, and more switching patterns) can be used to

build an Omega network, resulting in fewer stages. For example, with 4*4 switches, only

log416 stages are required for a 16-input switch. A k-way perfect shuffle is used as the

ISC for an Omega network using k * k switches.

Figure 6.10 Omega network with large switch

Omega Network with 4*4 Switches Butterfly Networks

Butterfly networks are built using crossbar switches instead of those found in Omega

networks. There are no broadcast connections in a butterfly network, making them a

restricted subclass of the Omega networks.

Figure 6.11 a butterfly switch

Hot Spots

When a particular memory module is being heavily accessed by multiple processors at

the same time, we say a hot spot exists. For example, if multiple processors are accessing

the same memory location with a spin lock implemented with a test and set instruction,

then a hot spot may exist. Obviously, hot spots may significantly degrade the network

performance.

Dealing With Hot Spots

To avoid the hot spot problems, we may develop special operations that are actually

implemented partially by the network.

Consider the instruction Fetch&Add(x,e), which has the following definition (x is a

memory location, and the returned value is stored in a processor register):

temp <- x

x <- x + e

return temp

Implementing Fetch&Add

When n processors attempt to execute Fetch&Add on the same location simultaneously,

the network performs a serialization on the requests, performing the following steps

atomically. x is returned to one processor, x+e1 to the next, x+e1+e2, to the next, and so

forth. The value x+e1+e2+…+en is stored in x. Note that multiple simultaneous test and

set instructions could be handled in a similar manner.

The Cost of Fetch&Add

Clearly a feature like Fetch&Add is not available at no cost.

Each switch in the network must be built to detect the Fetch&Add requests (distinct from

other requests), queuing them until the operation can be atomically completed.

Additional switch cycles may be required, increasing network latency significantly.

A multiprocessor may have distributed memory, shared memory or a combination of

both.

6.3 Cache Coherence and Synchronization

6.3.1 Cache coherence problem

An important problem that must be addressed in many parallel systems - any system that

allows multiple processors to access (potentially) multiple copies of data - is cache

coherence. The existence of multiple cached copies of data creates the possibility of

inconsistency between a cached copy and the shared memory or between cached copies

themselves.

Figure 6.12 cache coherence problem in multiprocessor

There are three common sources of cache inconsistency:

• Inconsistency in data sharing : In a memory hierarchy for a multiprocessor system

data inconsistency may occur between adjacent levels or within the same level.

The cache inconsistency problem occurs only when multiple private cache are

used. Thus it is, the possible that a wrong data being accessed by one processor

because another processor has changed it, and not all changes have yet been

propagated. Suppose we have two processors, A and B, each of which is dealing

with memory word X, and each of which has a cache. If processor A changes X,

then the value seen by processor B in its own cache will be wrong, even if

processor A also changes the value of X in main memory (which it - ultimately -

should).

Figure 6.13 Cache coherence problem

In above example initially, x1 = x2 = X = 5.

P1 writes X:=10 using write-through.

P2 now reads X and uses its local copy x2, but finds that X is still 5.

Thus P2 does not know that P1 modified X.

Thus the cache inconsistency problem occurs when multiple private cache are used

and especially the problem arose by writing the shared variables.

• Process migration(even if jobs are independent): This problem occurs when a

process containing shared variable X migrates from process 1 to process2 using

the write back cache on the right. Thus another important aspect of coherence is

serialization of writes - that is, if two processors try to write 'simultaneously', then

(i) the writes happen sequentially (and it doesn't really matter who gets to write

first - provided we have sensible arbitration); and (ii) all processors see the writes

as occurring in the same order. That is, if processors A and B both write to X,

with A writing first, then any other processors (C, D, E) all see the same thing.

• DMA I/O – this inconsistency problem occur during the I/O operation that bypass

the cache. This problem is present even in a uniprocessor and can be removed by

OS cache flushes)

In practice, these issues are managed by a memory bus, which by its very nature ensures

write serialization, and also allows us to broadcast invalidation signals (we essentially

just put the memory address to be invalidated on the bus). We can add an extra valid bit

to cache tags to mark then invalid. Typically, we would use a write-back cache, because

it has much lower memory bandwidth requirements. Each processor must keep track of

which cache blocks are dirty - that is, that it has written to - again by adding a bit to the

cache tag. If it sees a memory access for a word in a cache block it has marked as dirty, it

intervenes and provides the (updated) value. There are numerous other issues to address

when considering cache coherence.

One approach to maintaining coherence is to recognize that not every location needs to be

shared (and in fact most don't), and simply reserve some space for non-cacheable data

such as semaphores, called a coherency domain.

Using a fixed area of memory, however, is very restrictive. Restrictions can be reduced

by allowing the MMU to tag segments or pages as non-cacheable. However, that requires

the OS, compiler, and programmer to be involved in specifying data that is to be

coherently shared. For example, it would be necessary to distinguish between the sharing

of semaphores and simple data so that the data can be cached once a processor owns its

semaphore, but the semaphore itself should never be cached.

In order to remove this data inconsistency there are a number of approaches based on

hardware and software techniques few are given below:

• No caches is used which is not a feasible solution

• Make shared-data non-cacheable this is the simplest software solution but produce

low performance if a lot of data is shared

• software flush at strategic times: e.g., after critical sections, this is relatively

simple technique but has low performance if synchronization is not frequent

• hardware cache coherence this can be achieved by making memory and caches

coherent (consistent) with each other, in other words if the memory and other

processors see writes then without intervention of the to software

• absolute coherence all copies of each block have same data at all times

• It is not necessary what is required is appearance of absolute coherence that is

done by making temporary incoherence is OK (e.g., write-back cache)

In general a cache coherence protocols consist of the set of possible states in local caches,

the state in shared memory and the state transitions caused by the messages transported

through the interconnection network to keep memory coherent. There are basically two

kinds of protocols depends on how writes is handled

6.3.2 Snooping Cache Protocol (for bus-based machines);

With a bus interconnection, cache coherence is usually maintained by adopting a "snoopy

protocol", where each cache controller "snoops" on the transactions of the other caches

and guarantees the validity of the cached data. In a (single-) multi-stage network,

however, the unavailability of a system "bus" where transactions are broadcast makes

snoopy protocols not useful. Directory based schemes are used in this case.

In case of snooping protocol processors perform some form of snooping - that is, keeping

track of other processor's memory writes. ALL caches/memories see and react to ALL

bus events. The protocol relies on global visibility of requests (ordered broadcast). This

allows the processor to make state transitions for its cache-blocks.

 Write Invalidate protocol

The states of a cache block copy changes with respect to read, write and replacement

operations in the cache. The most common variant of snooping is a write invalidate

protocol. In the example above, when processor A writes to X, it broadcasts the fact and

all other processors with a copy of X in their cache mark it invalid. When another

processor (B, say) tries to access X again then there will be a cache miss and either

(i) in the case of a write-through cache the value of X will have been updated

(actually, it might not because not enough time may have elapsed for the

memory write to complete - but that's another issue); or

(ii) in the case of a write-back cache processor A must spot the read request, and

substitute the correct value for X.

Figure 6.14 Write back with cache

Figure 6. 15 Write through with cache

An alternative (but less-common) approach is write broadcast. This is intuitively a little

more obvious - when a cached value is changed, the processor that changed it broadcasts

the new value to all other processors. They then update their own cached values. The

trouble with this scheme is that it uses up more memory bandwidth. A way to cut this is

to observe that many memory words are not shared - that is, they will only appear in one

cache. If we keep track of which words are shared and which are not, we can reduce the

amount of broadcasting necessary. There are two main reasons why more memory

bandwidth is used: in an invalidation scheme, only the first change to a word requires an

invalidation signal to be broadcast, whereas in a write broadcast scheme all changes must

be signaled; and in an invalidation scheme only the first change to any word in a cache

block must be signaled, whereas in a write broadcast scheme every word that is written

must be signaled. On the other hand, in a write broadcast scheme we do not end up with a

cache miss when trying to access a changed word, because the cached copy will have

been updated to the correct value.

Figure 6.16 write back with broadcast

If different processors operate on different data items, these can be cached.

1. Once these items are tagged dirty, all subsequent operations can be performed locally

on the cache without generating external traffic.

2. If a data item is read by a number of processors, it transitions to the shared state in the

cache and all subsequent read operations become local.

In both cases, the coherence protocol does not add any overhead.

Write-through vs. Write-back

In a write-back cache, the snooping logic must also watch for reads that access main

memory locations corresponding to dirty locations in the cache (locations that have been

changed by the processor but not yet written back).

At first it would seem that the simplest way to maintain coherence is to use a write-

through policy so that every cache can snoop every write. However, the number of extra

writes can easily saturate a bus. The solution to this problem is to use a write-back policy,

but that leads to additional problems because there can be multiple writes that do not go

to the bus, leading to incoherent data.

One approach is called write-once. In this scheme, the first write is a write-through to

signal invalidation to other caches. After that, further writes can occur in write-back

mode as long as there is no invalidation. Essentially, the first write takes ownership of the

data, and another write from another processor must first deal with the invalidation and

may then take ownership. Thus, a cache line has four states:

Invalid

Valid unwritten (valid)

Valid written once (reserved)

Valid written multiple (dirty)

The last two states indicate ownership. The trouble with this scheme is that if a non-

owner frequently accesses an owned shared value, it can slow down to main memory

speed or slower, and generate excessive bus traffic because all accesses must be to the

owning cache, and the owning cache would have to perform a broadcast on its next write

to signal that the line is again invalid.

One solution is to grant ownership to the first processor to write to the location and not

allow reading directly from the cache. This eliminates the extra read cycles, but then the

cache must write-through all cycles in order to update the copies.

We can change the scheme so that when a write is broadcast, if any other processor has a

snoop hit, it signals this back to the owner. Then the owner knows it must write through

again. However, if no other processor has a copy (signals snooping), it can proceed to

write privately. The processor's cache must then snoop for read accesses from other

processors and respond to these with the current data, and by marking the line as

snooped. The line can return to private status once a write-through results in a no-snoop

response.

One interesting side effect of ownership protocols is that they can sometimes result in a

speedup greater than the number of processors because the data resides in faster memory.

Thus, other processors gain some speed advantage on misses because instead of fetching

from the slower main memory, they get data from another processor's fast cache.

However, it takes a fairly unusual pattern of access for this to actually be observed in real

system performance.

Figure 6.17 write once protocol

 Disadvantages:

If multiple processors read and update the same data item, they generate coherence

functions across processors.

Since a shared bus has a finite bandwidth, only a constant

Rather than flush the cache completely, hardware can be provided to "snoop" on the bus,

watching for writes to main memory locations that are cached.

Another approach is to have the DMA go through the cache, as if the processor is writing

it to memory. This results in all valid cache locations. However, any processor cache

accesses are stalled during that time, and it clearly does not work well in a

multiprocessor, as it would require copies being written to all caches and a protocol for

write-back to memory that avoids inconsistency.

Directory-based Protocols

When a multistage network is used to build a large multiprocessor system, the snoopy

cache protocols must be modified. Since broadcasting is very expensive in a multistage

network, consistency commands are sent only to caches that keep a copy of the block.

This leads to Directory Based protocols. A directory is maintained that keeps track of the

sharing set of each memory block. Thus each bank of main memory can keep a directory

of all caches that have copied a particular line (block). When a processor writes to a

location in the block, individual messages are sent to any other caches that have copies.

Thus the Directory-based protocols selectively send invalidation/update requests to only

those caches having copies—the sharing set leading the network traffic limited only to

essential updates. Proposed schemes differ in the latency with which memory operations

are performed and the implementation cost of maintaining the directory

The memory must keep a bit-vector for each line that has one bit per processor, plus a bit

to indicate ownership (in which case there is only one bit set in the processor vector).

.figure 6.18 Directory based protocol

These bitmap entries are sometimes referred to as the presence bits. Only processors that

hold a particular block (or are reading it) participate in the state transitions due to

coherence operations. Note that there may be other state transitions triggered by

processor read, write, or flush (retiring a line from cache) but these transitions can be

handled locally with the operation reflected in the presence bits and state in the directory.

If different processors operate on distinct data blocks, these blocks become dirty in the

respective caches and all operations after the first one can be performed locally.

 If multiple processors read (but do not update) a single data block, the data block gets

replicated in the caches in the shared state and subsequent reads can happen without

triggering any coherence overheads.

Various directory-based protocols differ mainly in how the directory maintains

information and what information is stored. Generally speaking the directory may be

central or distributed. Contention and long search times are two drawbacks in using a

central directory scheme. In a distributed-directory scheme, the information about

memory blocks is distributed. Each processor in the system can easily "find out" where to

go for "directory information" for a particular memory block. Directory-based protocols

fall under one of three categories:

Full-map directories, limited directories, and chained directories.

This full-map protocol is extremely expensive in terms of memory as it store enough data

associated with each block in global memory so that every cache in the system can

simultaneously store a copy of any block of data.. It thus defeats the purpose of leaving a

bus-based architecture.

A limited-map protocol stores a small number of processor ID tags with each line in main

memory. The assumption here is that only a few processors share data at one time. If

there is a need for more processors to share the data than there are slots provided in the

directory, then broadcast is used instead.

Chained directories have the main memory store a pointer to a linked list that is itself

stored in the caches. Thus, an access that invalidates other copies goes to memory and

then traces a chain of pointers from cache to cache, invalidating along the chain. The

actual write operation stalls until the chain has been traversed. Obviously this is a slow

process .

Duplicate directories can be expensive to implement, and there is a problem with keeping

them consistent when processor and bus accesses are asynchronous. For a write-through

cache, consistency is not a problem because the cache has to go out to the bus anyway,

precluding any other master from colliding with its access.

But in a write-back cache, care must be taken to stall processor cache writes that change

the directory while other masters have access to the main memory.

On the other hand, if the system includes a secondary cache that is inclusive of the

primary cache, a copy of the directory already exists. Thus, the snooping logic can use

the secondary cache directory to compare with the main memory access, without stalling

the processor in the main cache. If a match is found, then the comparison must be passed

up to the primary cache, but the number of such stalls is greatly reduced due to the

filtering action of the secondary cache comparison.

A variation on this approach that is used with write-back caches is called dirty inclusion,

and simply requires that when a primary cache line first becomes dirty, the secondary line

is similarly marked. This saves writing through the data, and writing status bits on every

write cycle, but still enables the secondary cache to be used by the snooping logic to

monitor the main memory accesses. This is especially important for a read-miss, which

must be passed to the primary cache to be satisfied.

The previous schemes have all relied heavily on broadcast operations, which are easy to

implement on a bus. However, buses are limited in their capacity and thus other

structures are required to support sharing for more than a few processors. These

structures may support broadcast, but even so, broadcast-based protocols are limited.

The problem is that broadcast is an inherently limited means of communication. It

implies a resource that all processors have access to, which means that either they

contend to transmit, or they saturate on reception, or they have a factor of N hardware for

dealing with the N potential broadcasts.

Snoopy cache protocols are not appropriate for large-scale systems because of the

bandwidth consumed by the broadcast operations

In a multistage network, cache coherence is supported by using cache directories to store

information on where copies of cache reside.

A cache coherence protocol that does not use broadcast must store the locations of all

cached copies of each block of shared data. This list of cached locations whether

centralized or distributed is called a cache directory. A directory entry for each block of

data contains a number of pointers to specify the locations of copies of the block.

Distributed directory schemes

 In scalable architectures, memory is physically distributed across processors. The

corresponding presence bits of the blocks are also distributed. Each processor is

responsible for maintaining the coherence of its own memory blocks. Since each memory

block has an owner its directory location is implicitly known to all processors. When a

processor attempts to read a block for the first time, it requests the owner for the block.

The owner suitably directs this request based on presence and state information locally

available. When a processor writes into a memory block, it propagates an invalidate to

the owner, which in turn forwards the invalidate to all processors that have a cached copy

of the block. Note that the communication overhead associated with state update

messages is not reduced. Distributed directories permit O(p) simultaneous coherence

operations, provided the underlying network can sustain the associated state update

messages. From this point of view, distributed directories are inherently more scalable

than snoopy systems or centralized directory systems. The latency and bandwidth of the

network become fundamental performance bottlenecks for such systems.

7.4 Multicomputers

In spite of all of the work that had been done on networks, there were very few conscious

design decisions involved with the first generation of multicomputers. For the most part,

these machines (except for the Cosmic Cube and n-Cube) were built from whatever was

at hand, with very little analysis of the design's performance.

In the case of the iPSC/1, Intel used 80286 processors together with off-the-shelf Ethernet

transceivers wired in a 7-cube. The design was thrown together in less than a year in

response to the realization that the group that spun out to form nCube might be onto

something and should be beaten to delivery of their first systems.

The original iPSC had horrible performance, with up to 100ms latency for message

transmission, and I/O only through the host node via another Ethernet link which did not

support broadcast.

The iPSC/2 and Ametek machines were really the second generation, implementing

wormhole routing on a mesh. The iPSC/2 retained the fiction of a hypercube for upward

compatibility, but was implemented with a mesh. The n-Cube was actually more

sophisticated than the first generation, given that it supported direct DMA transfers

through the hypercube, but used store-and-forward for multi-hop messages. It was thus

somewhere between the generations.

Fourth Generation Multicomputers

Now that communication is approaching the point that it is no longer the bottleneck in

these machines, designers are at last beginning to realize that uniprocessors make poor

multicomputer nodes. Thus, research in the area is likely to focus on the nodes, operating

systems, and compilation and languages.

• Microthreading

• Lightweight processes

• Network access bypassing the OS, or more OS support in hardware

• Languages and compilers that handle partitioning and placement of data.

6.5 Message passing mechanisms

A message passing system (also referred to as distributed memory) typically combines

the local memory and processor at each node of the interconnection network. There is no

global memory, so it is necessary to move data from one local memory to another by

means of message passing. This is typically done by a Send/Receive pair of commands,

which must be written into the application software by a programmer. Thus,

programmers must learn the message-passing paradigm, which involves data copying and

dealing with consistency issues. Thus message passing in multicomputer network

demands special hardware and software support.

A message is logical unit for internodes communication and it is assembled by an

arbitrary number of fixed length packets. A packet may be a complete message,

containing one or more data values, or a part of a longer message. In the latter case, the

packet will have a sequence number indicating that it is the ith packet (out of j packets).

Because we often deal with data transfers involving a single data element, we use packet

and message interchangeably. A packet or message typically has a header that holds the

destination address, plus possibly some routing information supplied by its sender, and a

message body (sometimes called payload) that carries the actual data. Depending on the

routing algorithm used, the routing information in the header may be modified by

intermediate nodes. A message may also have various other control and error detection or

correction information.

Message Passing Costs

The major overheads in the execution of parallel programs arise from communication of

information between processing elements. The cost of communication is dependent on a

variety of features including:

• programming model semantics,

• network topology,

• data handling and routing, and

• Associated software protocols.

• Time taken to communicate a message between two nodes in a network

= time to prepare a message for transmission + time taken by the message to traverse the

network to its destination.

 Parameters that determine the communication latency

Startup time (ts):

The startup time is the time required to handle a message at the sending and receiving

nodes. Includes

1. the time to prepare the message (adding header, trailer & error correction information),

2. the time to execute the routing algorithm, and

3. the time to establish an interface between the local node and the router.

This delay is incurred only once for a single message transfer.

Per-hop time (th):

 After a message leaves a node, it takes a finite amount of time to reach the next node in

its path. The time taken by the header of a message to travel between two directly

connected nodes in the network. It is also known as node latency. Is directly related to the

latency within the routing switch for determining which output buffer or channel the

message should be forwarded to.

Per-word transfer time (tw):

If the channel bandwidth is r words per second, then each word takes time tw = 1/r

to traverse the link. This time includes network as well as buffering overheads.

 Message Passing Organization

Message passing systems are a class of multiprocessors in which each processor has

access to its own local memory. Unlike shared memory systems, communications in

message passing systems are performed via send and receive operations. A node in such a

system consists of a processor and its local memory. Nodes are typically able to store

messages in buffers (temporary memory locations where messages wait until they can be

sent or received), and perform send/receive operations at the same time as processing.

Simultaneous message processing and problem calculating are handled by the underlying

operating system. Processors do not share a global memory and each processor has access

to its own address space. Two important design factors must be considered in designing

interconnection networks for message passing systems.

The link bandwidth is defined as the number of bits that can be transmitted per unit time

(bits/s).The network latency is defined as the time to complete a message transfer.

Depending on the multiplicity of data sources and destinations, data routing or

communication can be divided into two classes: one-to-one (one source, one destination)

and collective (multiple sources and/or multiple destinations).

A processor sending a message to another processor, independent of all other processors,

constitutes a one-to-one data routing operation. Such a data routing operation may be

physically accomplished by composing and sending a point-to-point message. Typically,

multiple independent point-to-point messages coexist in a parallel machine and compete

for the use of communication resources. Thus, we are often interested in the amount of

time required for completing the routing operation for up to p such messages, each being

sent by a different processor. We refer to a batch of up to p independent point-to-point

messages, residing one per processor, as a data routing problem instance. If exactly p

messages are sent by the p processors and all of the destinations are distinct, we have a

permutation routing problem.

6.5.1 Message routing scheme

Store-and-Forward Routing packets are the basic unit of information flow in store and

forward network. Each node is required to use a packet buffer and it is transmitted from

the source to designation through a sequence of intermediate node. The intermediate node

store the entire message in buffer before passing it on

When a message is traversing a path with multiple links, each intermediate node on the

path forwards the message to the next node after it has received and stored the entire

message. Suppose that a message of size m is being transmitted through such a network.

Assume that it traverses l links. At each link, the message incurs a cost th for the header

and twm for the rest of the message to traverse the link. Since there are l such links, the

total time is (th + twm)l. Therefore, for store-and-forward routing, the total

communication cost for a message of size m words to traverse l communication links is.

Latency = [(message length / bandwidth) + fixed switch overhead] * #hops

In current parallel computers, the per-hop time th is quite small. For most parallel

algorithms, it is less than twm even for small values of m and thus can be ignored.

 Wormhole routing in message passing was introduced in 1987 as an alternative to the

traditional store-and-forward routing in order to reduce the size of the required buffers

and to decrease the message latency. In wormhole routing, a packet is divided into

smaller units that are called its (flow control bits) such that bits move in a pipeline

fashion with the header bit of the packet leading the way to the destination node. When

the header bit is blocked due to network congestion, the remaining bits are blocked as

well. Switch passes message on before completely arrives and no buffering needed at

switch. Latency (relative) independent of number of intermediate hops gives as below

Latency = (message length / bandwidth) + (fixed switch overhead * #hops)

Asynchronous pipelining: The pipelining of successive flits in a packet is done

asynchronously using a handshaking protocol.

Virtual channels : A virtual channel is logical link between two nodes. It is formed by a

flit buffer in the source node, a physical channel between them and a flit buffer in the

receiver node. Four flit buffers are used at the source node and receiver node

respectively. One source buffer is paired with one receiver buffer to form a virtual

channel when the physical channel is allocated for the pair. Thus the physical channel is

time shared by all the virtual channels. By adding the virtual channel the channel

dependence graph can be modified and one can break the deadlock cycle. Here the cycle

can be converted to spiral thus avoiding a deadlock. Virtual channel can be implemented

with either unidirectional channel or bidirectional channels. However a special

arbitration line is needed between adjacent nodes interconnected by bidirectional channel.

This line determine the direction of information flow. The virtual channel may reduce the

effective channel bandwidth available to each request. There exists a tradeoff between

network throughput and communication latency in determining the degree of using

virtual channels.

Flow control strategies:

A routing mechanism: Determine the path a message takes through the network to get

from source to destination. It takes as input a message's source and destination nodes. It

may also use information about the state of the network. It returns one or more paths

through the network from the source to the destination

Classification based on route selection:

A minimal routing mechanism : Always selects one of the shortest paths between the

source and the destination. Each link brings a message closer to its destination but it can

lead to congestion in parts of the network.

A nonminimal routing scheme: This technique may route the message along a longer path

to avoid network congestion.

 Classification on the basis on information regarding the state of the network:

For messaging passing scheme the for smooth control on network traffic flow that

involve no congestion or deadlock situation we require to develop some strategies such

that if two or more packet collide at a node competing for the buffer the policies must be

set to resolve the conflict. These polices can be deterministic or adaptive routing

algorithm. In deterministic routing the communication path is completely determined by

a unique path for a message, based on its source and destination address. Thus here the

path is uniquely predetermined in advance, independent of network condition. It does not

use any information regarding the state of the network and hence may result in uneven

use of the communication resources in a network.

An adaptive routing scheme : it uses information regarding the current state of the

network to determine the path of the message. It detects congestion in the network and

routes messages around it. Adaptive routing may depend on the network condition and

alternate paths are possible. In both types of routing deadlock free algorithm is desired.

The two deterministic algorithms are

a. Dimension ordering routing requires the selection of successive channels to follow a

specific order based on the dimensions of multidimensional network. In case of two

dimensional mesh networks the scheme is X-Y routing as the routing path along X-

dimension is decided first before choosing a path along Y dimension. For hypercube (n-

cube network) the scheme called E-cube routing is used.

XY-routing:

Consider a two-dimensional mesh without wraparound connections. A message is sent

first along the X dimension until it reaches the column of the destination node and then

along the Y dimension until it reaches its destination. Let PSy,Sx represent the position of

the source node and PDy,Dx represent that of the destination node. Any minimal routing

scheme should return a path of length |Sx - Dx| + |Sy - Dy|. Assume that Dx >= Sx and

Dy >= Sx. The message is passed through intermediate nodes PSy,Sx+1, PSy,Sx+2, ...,

PSy,Dx along the X dimension Then through nodes PSy+1,Dx, PSy+2,Dx, ..., PDy,Dx

along the Y dimension to reach the destination.

E-Cube routing: Consider a d-dimensional hypercube of p nodes.

Let Ps and Pd be the labels of the source and destination nodes. We know that the binary

representations of these labels are d bits long. The minimum distance between these

nodes is given by the number of ones in Ps Pd , where o represents the bitwise

exclusive-OR operation. Node Ps computes Ps Pd and sends the message along

dimension k, where k is the position of the least significant nonzero bit in Ps Pd. At

each intermediate step, node Pi , which receives the message, computes Pi Pd and

forwards the message along the dimension corresponding to the least significant nonzero

bit. This process continues until the message reaches its destination.

Let Ps = 010 and Pd = 111 represent the source and destination nodes for a message.

Node Ps computes 010 111 = 101. In the first step, Ps forwards the message along the

dimension corresponding to the least significant bit to node 011. Node 011 sends the

message along the dimension corresponding to the most significant bit (011 111 = 100).

The message reaches node 111, which is the destination of the message.

 b. Adaptive network using virtual channels: the concept of virtual channels makes

adaptive routing more economical and feasible to implement. The logic used is to extend

the virtual channels in all connections along the same dimension of a mesh connected

network.

Multicast routing algorithm collective data routing, as defined in the Message Passing

Interface (MPI) Standard , may be of three types:

1. One to many. When a processor sends the same message to many destinations, we call

the operation multicasting. Multicasting to all processors (one to all) is called

broadcasting. When different messages are sent from one source to many destinations, a

scatter operation is performed. The multiple destination nodes may be dynamically

determined by problem- and data-dependent conditions or be a topologically defined

subset of the processors (e.g., a row of a 2D mesh).

2. Many to one. When multiple messages can be merged as they meet at intermediate

nodes on their way to their final common destination, we have a combine or fan-in

operation (e.g., finding the sum of, or the maximum among, a set of values).

Combining values from all processors (all to one) is called global combine. If the

messages reach the destination intact and in their original forms, we have a gather

operation. Combining saves communication bandwidth but is lossy in the sense that, in

general, the original messages cannot be recovered from the combined version.

3. Many to many. When the same message is sent by each of several processors to many

destinations, we call the operation many-to-many multicasting. If all processors are

involved as senders and receivers, we have all-to-all broadcasting. When different

messages are sent from each source to many (all) nodes, the operation performed is (all-

to-all) scatter-gather (sometimes referred to as gossiping) .

The efficiency of any routing algorithm is determined by the two parameters mainly

channel traffic and communication latency. The channel traffic at any time is indicated by

the number of channel used to deliver the messages involved. The latency is indicated by

the longest packet transmission time involved. Optimally routed network should achieve

minimum for the both. In order to achieve better result virtual networks are used. Here

the virtual channels can be used to generate virtual networks. These adding channels will

increase the adaptively in making routing decisions at same time increase the cost. The

concept of virtual network leads to portioning of a given physical network into logical

subnetworks for multicast communication.

6.6 Summary

Multiprocessors are based on concept of Shared Memory. There is one shared address

space. Different processors use conventional load/stores to access shared data.

Communication can be complex / dynamic. Simpler programming model that is

compatible with uniprocessors. Hardware controlled caching is useful to reduce latency

and contention. The drawbacks of multiprocessors are

• Synchronization

• More complex hardware needed

Multiprocessors are an attractive way to increase performance.

Multicomputers uses the Message Passing technique for communication. Each processor

has its own address space and processors send and receive messages to and from each

other. Communication patterns explicit and precise Message passing systems: PVM,

MPI, OpenMP. The interconnection networks such as time shared, Crossbar Switch and

multiport memory has been discussed. Crossbar Switch is the most complex

interconnection system. There is a potential for the highest total transfer rate and the

multiport memory is also an expensive memory units since the switching circuitry us

included in the memory unit and the final table which has clearly differentiated among all

three interconnection networks. Bus based systems are not scalable and not efficient for

the processor to snoop and handle the traffic. Directories based system is used in cache

coherence for large MPs Cache coherency protocols maintain exclusive writes in a

multiprocessor. Memory consistency policies determine how different processors observe

the ordering of reads and writes to memory. Snoopy caches are typically associated with

multiprocessor systems based on broadcast interconnection networks such as a bus or a

ring. All processors snoop on (monitor) the bus for transactions. Directory based systems

the global memory is augmented with a directory that maintains a bitmap representing

cache-blocks and the processors at which they are cached

Multicomputers vs. multiprocessors

• They use similar networks; low latency and high bandwidth are crucial for both

architectures

• Traditionally, multiprocessors have been better for fine-grain computations

• Multicomputers have been easier to scale to a large number of processors

• Multiprocessors are easier to program thanks to their shared address space

6.7 Keywords

Multicomputers: A computer in which processors can execute separate instruction

streams, have their own private memories and cannot directly access one another's

memories. Most multicomputers are disjoint memory machines, constructed by joining

nodes (each containing a microprocessor and some memory) via links.

message passing A style of interprocess communication in which processes send discrete

messages to one another. Some computer architectures are called message passing

architectures because they support this model in hardware, although message passing has

often been used to construct operating systems and network software for uniprocessors

and distributed computers.

multiprocessor A computer in which processors can execute separate instruction

streams, but have access to a single address space. Most multiprocessors are shared

memory machines, constructed by connecting several processors to one or more memory

banks through a bus or switch.

cache consistency The problem of ensuring that the values associated with a particular

variable in the caches of several processors are never visibly different.

6.8 Self assessment questions

1. With diagram, explain the interconnection structures in a generalized multiprocessor

system with local memory, private caches, shared memory and shared peripherals.

2. Explain the bus systems at board level, backplane level and I/O level.

3. Explain the following terms associated with multicomputer networks and message-

passing mechanisms: a) Message, packets and flits b) Store-and-forward routing at

packet level c) wormhole routing at flit level d) Buffer deadlock versus channel deadlock

d) Virtual networks and subnetworks e)Hot-spot problem.

4.Explain the hierarchical cache/bus architecture for designing a scalable multi-

processor.

5. Describe the schematic design of a crosspoint switch in a crossbar network.

6. Discuss the multiport memory organizations for multiprocessor systems.

7. Explain the following : a)Two switch settings of an 8 X 8 Omega network built with 2

X 2 switches b) Broadcast capability of an Omega network built with 4 X 4 switches.

8. Describe the modular construction of butterfly switch networks with 8 X 8 crossbar

switches.

9. Describe the Cache coherence problems in data sharing and in process migration.

10. Draw and explain 2 state-transition graphs for a cache block using write-invalidate

snoopy protocols.

11. Explain the Goodman’s write-once cache coherence protocol using the write-

invalidate policy on write-back caches.

12. Discuss the basic concept of a directory-based cache coherence scheme.

13. Mention and explain the three types of cache directory protocols.

14. What is the communication latency and time comparison for a store-and-forward

and wormhole-routed network?

15. Explain the following a) Dimension-order routing b) E-cube routing on hypercube c)

X-Y routing on a 2D mesh and d) Adaptive routing.

6.9 References/Suggested readings

Advance Computer architecture: Kai Hwang

	1.3.2 Distributed Memory

