
Page 1 of 138

MCA 504
Modelling and Simulation

Index

Sr.No. Unit Name of Unit
1 UNIT – I SYSTEM MODELS & SYSTEM SIMULATION
2 UNIT – II VRIFICATION AND VALIDATION OF MODEL
3 UNIT – III DIFFERENTIAL EQUATIONS IN SIMULATION
4 UNIT – IV DISCRETE SYSTEM SIMULATION
5 UNIT – V CONTINUOUS SIMULATION
6 UNIT – VI SIMULATION LANGUAGE
7 UNIT –

VII
USE OF DATABASE, A.I. IN MODELLING AND
SIMULATION

Total No of Pages

Page 2 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Dr. Pradeep Bhatia
Lesson : System Models and System Simulation
Lesson No. : 01

Structure
1.0 Objective
1.1 Introduction
1.1.1 Formal Definitions
1.1.2 Brief History of Simulation
1.1.3 Application Area of Simulation
1.1.4 Advantages and Disadvantages of Simulation
1.1.5 Difficulties of Simulation
1.1.6 When to use Simulation?
1.2 Modeling Concepts
1.2.1 System, Model and Events
1.2.2 System State Variables
 1.2.2.1 Entities and Attributes
 1.2.2.2 Resources
 1.2.2.3 List Processing
 1.2.2.4 Activities and Delays
 1.2.2.5
1.2.3 Model Classifications
 1.2.3.1 Discrete-Event Simulation Model
 1.2.3.2 Stochastic and Deterministic Systems
 1.2.3.3 Static and Dynamic Simulation
 1.2.3.4 Discrete vs Continuous Systems
 1.2.3.5 An Example
1.3 Computer Workload and Preparation of its Models
1.3.1Steps of the Modeling Process
1.4 Summary
1.5 Key words
1.6 Self Assessment Questions
1.7 References/ Suggested Reading

Page 3 of 138

1.0 Objective

The main objective of this module to gain the knowledge about system and its behavior
so that a person can transform the physical behavior of a system into a mathematical
model that can in turn transform into a efficient algorithm for simulation purpose.

1.1 Introduction

Computer simulation is a powerful methodology for design and analysis and complex
systems. The overall approach in computer simulation is to represent the dynamic
characteristics of a real world system in a computer model. The model is subjected to
experiments to obtain predictive information useful in making informed decision making
about the characteristics of the real system. Simulations are suitable for problems in
which there are no closed-form analytical solutions. Since most dynamic problems in
practice can not be represented and solved fully using mathematical equations, computer
simulation is a powerful and flexible methodology in complex systems analysis.
Simulations can be classified into continuous and discrete simulations. In continuous
simulations, the state variables, i.e., the collection of variables needed to describe the
system, change continuously over time and the behavior of the system is typically
described by differential equations. Examples of continuous systems include the
modeling of thermal or hydraulic systems. Discrete simulations are event-driven where
the state variables change at discrete time points. Examples of discrete-event simulations
include service industry applications such as queues in a grocery store and manufacturing
applications involving material flow analysis. In general we have three different methods
as shown in Figure 1 to study a real system

Conceptual
Model

Prediction Simulaiom
ModelReal System

Real Data
Simulation

Data

Compare

Theorise

ModelBuilding

E
xp

er
im

en
t

Expirement

Figure 1 : Three Methods of Science

Page 4 of 138

Briefly we can say that Simulation is
• Simulated system imitates operation of actual system over time
• Artificial history of system can be generated and observed
• Internal (perhaps unobservable) behavior of system can be studied
• Time scale can be altered as needed
• Conclusions about actual system characteristics can be inferred
in Figure 2 , actual system (real system) is compared with simulation

Actual System

Simulated System

=?

Output(s)

Outputs(s)

Parameters

Figure 2: Simulation vs Actual System

1.1.1 Formal Definition(s)

Simulation can be broadly defined as a technique for studying real-world dynamical
systems by imitating their behavior using a mathematical model of the system
implemented on a digital computer.

Simulation

Application Field

C
om

pu
te

r
Sc

ie
nc

e

Mathe

matics

Figure 3: Simulation is Interdisciplinary

Page 5 of 138

Simulation can also be viewed as a numerical technique for solving complicated
probability models, ordinary differential equation and partial differential equation,
analogously to the way in which we can use a computer to numerically evaluate the
integral of a complicated function. That’s why science of simulation is considered as an
interdisciplinary subject a shown in Figure 3.

1.1.2 A Brief History of Simulation

1940’s: Monte Carlo method is developed by physicists working on Manhattan project to

study neutron scattering. Researchers include John von Neumann, Stanis law
Ulan, Edward Teller, Herman Kahn

1950’s: First special-purpose simulation languages developed (e.g. IMSCRIPT by Harry

 Markowitz at RAND Institute)
1970’s: Research initiated on mathematical foundations of simulation
1980’s: PC-based simulation software developed, graphical user interfaces, object-

oriented programming
1990’s: Web-based simulation, fancy animated graphics, simulation-based optimization,
Markov-chain Monte Carlo methods Simulation has become ever more prominent as a
method for studying complex systems in which uncertainty is present. In various surveys,
simulation has been found to be the most frequently used tool of Operation Research
practitioners. Simulation is an interdisciplinary subject, using ideas and techniques from
Statistics, Probability, Number Theory, and Computer Science.

1.1.3 Application Areas of Simulation

• Manufacturing
• Computer Systems
• E-business/workflow systems
• Finance
• Telecommunications
• Transportation
• Military

1.1.4 Advantages and Disadvantages of Simulation

Advantages: Simulation arbitrary model complexity, circumvents analytically intractable
models, facilitates what-if and sensitivity analyses, building a model can lead to system
improvements and greater understanding can be used to verify analytic solutions

Disadvantages: Simulation provides only estimates of solution, only solves one
parameter at a time, can take a large amount of development and/or computer time
(“simulation as a last resort”). Don’t use computer simulation if a common-sense or
analytical solution is available, or if resources are insufficient, or if simulation costs
outweigh benefits.

Page 6 of 138

1.1.5 Difficulties of Simulation

• Provides only individual, not general solutions
• Manpower and time-consuming
• Computing memory and time-intensive
• Difficult so experts are required
• Hard to interpret results
• Expensive

1.1.6 When to Use Simulation?

• Study internals of a complex system e.g. biological system
• Optimise an existing design e.g. routing algorithms, assembly line
• Examine effect of environmental changes e.g. weather forecasting
• System is dangerous or destructive e.g. atom bomb, atomic reactor, missile

launching
• Study importance of variables
• Verify analytic solutions (theories)
• Test new designs or policies
• Impossible to observe/influence/build the system
• When it allows inspection of system internals that might not otherwise be

observable
• Observation of the simulation gives insights into system behavior
• System parameters can be adjusted in the simulation model allowing assessment

of their sensitivity (scale of impact on overall system behavior)
• Simulation verifies analysis of a complex system, or can be used as a teaching

tool to provide insight into analytical techniques
• A simulator can be used for instruction, avoiding tying up or damaging an

expensive, actual system (e.g., a flight simulation vs. use of multimillion dollar
aircraft)

1.2 Modelling Concepts

There are several concepts underlying simulation. These include system and model,
events, system state variables, entities and attributes, list processing, activities and delays,
and finally the definition of discrete-event simulation.
The process of making and testing hypotheses about models and then revising designs or
theories has its foundation in the experimental sciences. Similarly, computational
scientists use modeling to analyze complex, real-world problems in order to predict what
might happen with some course of action. For example, Dr. Jerrold Marsden, a
computational physicist at CalTech, models space mission trajectory design (Marsden).
Dr. Julianne Collins, a genetic epidemiologist (statistical genetics) at the Greenwood
Genetics Center, runs genetic analysis programs and analyzes epidemiological studies
using the Statistical Analysis Software (SAS) (Greenwood Genetics Center). Some of the
projects on which she has worked involve analyzing data from a genome scan of

Page 7 of 138

Alzheimer’s disease, performing linkage analyses of X-linked mental retardation
families, determining the recurrence risk in nonsyndromic mental retardation, analyzing
folic acid levels from a nutritional survey of Honduran women, and researching new
methods to detect genes or risk factors involved in autism. Scientists in areas such as
cognitive psychology and social psychology at the Human-Technology Interaction Center
of The University of Oklahoma perform research on the interaction of people with
modern technologies (Human-Technology Interaction Center). Some of the studies
involve “strategic planning in air traffic control” and “designing interfaces for effective
information retrieval from collections of multimedia.” Buried land mines are a serious
danger in many areas of the world (Weldon et al. 2001). Scientists are using a
combination of mathematics, signal processing, and scientific visualization to model,
image, and discover land mines. Lourdes Esteva, Cristobal Vargas, and Jorge Velasco-
Hernandez have modeled the oscillating patterns of the disease dengue fever, for which
an estimated 50 to 100 million cases occur globally each year (Esteva and Vargas 1999).

1.2.1 System, Model and Events

A model is a representation of an actual system (Figure 4) and Figure 5 presents
modelling and simulation concepts as introduced by Zeigler [2].
• A model is an abstraction of the real system
• Simplifying assumptions are used to capture (only) important behaviors
• Linearization, time-bound behaviors, etc., may make analysis tractable

Model

Output(s)

(Simplified) Parameters Model
Environment

Actual System

Output(s)

Parameters System
Environment

Figure 4 : Pictorial Representation of System Model

Formally we can define, Modeling is the application of methods to analyze complex,
real-world problems in order to make predictions about what might happen with various
actions.

Object is some entity in the Real World. Such an object can exhibit widely varying
behavior depending on the context in which it is studied, as well as the aspects of its
behavior which are under study.

Page 8 of 138

Base Model is a hypothetical, abstract representation of the object's properties, in
particular, its behavior, which is valid in all possible contexts, and describes all the
object's facets. A base model is hypothetical as we will never in practice be able to
construct/represent such a total model. The question whether a base model exists at all is
a philosophical one.

System is a well defined object in the Real World under specific conditions, only
considering specific aspects of its structure and behaviour.

Experimental Frame When one studies a system in the real world, the experimental
frame (EF) describes experimental conditions (context), aspects, within which that
system and corresponding models will be used. As such, the Experimental Frame reflects
the objectives of the experimenter who performs experiments on a real system or, through
simulation, on a model.
 Immediately, there is a concern about the limits or boundaries of the model that
supposedly represent the system. The model should be complex enough to answer the
questions raised, but not too complex. Consider an event as an occurrence that changes
the state of the system. In the example, events include the arrival of a customer for
service at the bank, the beginning of service for a customer, and the completion of a
service. There are both internal and external events, also called endogenous and
exogenous events, respectively. For example, an endogenous event in the example is the
beginning of service of the customer since that is within the system being simulated. An
exogenous event is the arrival of a customer for service since that occurrence is outside of
the simulation. However, the arrival of a customer for service impinges on the system,
and must be taken into consideration.

Page 9 of 138

Real World Entity

System S

Experiementt
Observed Data

Model Base

Model M

Simulation Results

Model Base a priori
Knowldge

Reality Model

Validation

Experiment
within context

within
context

only study
behaviour in
experimental

context

Modelling and
Simulation Process

Simulate =
Virtual

Environment

GOALS

Figure 5: Modeling and Simulation

Discrete-event simulation models are contrasted with other types of models such as
mathematical models, descriptive models, statistical models, and input-output models. A
discrete-event model attempts to represent the components of a system and their
interactions to such an extent that the objectives of the study are met. Most mathematical,
statistical, and input output models represent a system's inputs and outputs explicitly, but
represent the internals of the model with mathematical or statistical relationships. An
example is the mathematical model from physics,

Force = Mass × Acceleration

based on theory. Discrete-event simulation models include a detailed representation of
the actual internals.
Discrete-event models are dynamic, i.e., the passage of time plays a crucial role. Most
mathematical and statistical models are static in that they represent a system at a fixed
point of time. Consider the annual budget of a firm. This budget resides in a spreadsheet.
Changes can be made in the budget and the spreadsheet can be recalculated, but the
passage of time is usually not a critical issue. Further comments will be made about
discrete-event models after several additional concepts are presented.

 Models have Many Uses, Typically

• To understand the behaviour of an existing system (why does my network
performance die when more than 10 people are at work?)

Page 10 of 138

• To predict the effect of changes or upgrades to the system (will spending 100,000
on a new switch cure the problem?)

• To study new or imaginary systems (let’s bin the Ethernet and design our own
scalable custom routing network)

1.2.2 System State Variables

The system state variables are the collection of all information needed to define what is
happening within the system to a sufficient level (i.e., to attain the desired output) at a
given point in time. The determination of system state variables is a function of the
purposes of the investigation, so what may be the system state variables in one case may
not be the same in another case even though the physical system is the same.
Determining the system state variables is as much an art as a science. However, during
the modeling process, any omissions will readily come to light. (And, on the other hand,
unnecessary state variables may be eliminated.) Having defined system state variables, a
contrast can be made between discrete-event models and continuous models based on the
variables needed to track the system state. The system state variables in a discrete-event
model remain constant over intervals of time and change value only at certain well-
defined points called event times. Continuous models have system state variables defined
by differential or difference equations giving rise to variables that may change
continuously over time.
Some models are mixed discrete-event and continuous. There are also continuous models
that are treated as discrete-event models after some re-interpretation of system state
variables, and vice versa.

1.2.2.1 Entities and Attributes

An entity represents an object that requires explicit definition. An entity can be dynamic
in that it "moves" through the system, or it can be static in that it serves other entities. In
the example, the customer is a dynamic entity, whereas the bank teller is a static entity.
An entity may have attributes that pertain to that entity alone. Thus, attributes should be
considered as local values. In the example, an attribute of the entity could be the time of
arrival. Attributes of interest in one investigation may not be of interest in another
investigation. Thus, if red parts and blue parts are being manufactured, the color could be
an attribute. However, if the time in the system for all parts is of concern, the attribute of
color may not be of importance. From this example, it can be seen that many entities can
have the same attribute or attributes (i.e., more than one part may have the attribute
“red”).

1.2.2.2 Resources

 A resource is an entity that provides service to dynamic entities. The resource can serve
one or more than one dynamic entity at the same time, i.e., operate as a parallel server. A
dynamic entity can request one or more units of a resource. If denied, the requesting
entity joins a queue, or takes some other action (i.e. diverted to another resource, ejected
from the system). (Other terms for queues include files, chains, buffers, and waiting

Page 11 of 138

lines.) If permitted to capture the resource, the entity remains for a time, then releases the
resource.
There are many possible states of the resource. Minimally, these states are idle and busy.
But other possibilities exist including failed, blocked, or starved.

1.2.2.3 List Processing

 Entities are managed by allocating them to resources that provide service, by attaching
them to event notices thereby suspending their activity into the future, or by placing them
into an ordered list. Lists are used to represent queues. Lists are often processed
according to FIFO (first-in first-out), but there are many other possibilities. For example,
the list could be processed by LIFO (last-in-first out),according to the value of an
attribute, or randomly, to mention a few. An example where the value of an attribute may
be important is in SPT (shortest process time) scheduling. In this case, the processing
time may be stored as an attribute of each entity. The entities are ordered according to the
value of that attribute with the lowest value at the head or front of the queue.

1.2.2.4 Activities and Delays

An activity is duration of time whose duration is known prior to commencement of the
activity. Thus, when the duration begins, its end can be scheduled. The duration can be a
constant, a random value from a statistical distribution, the result of an equation, input
from a file, or computed based on the event state. For example, a service time may be a
constant 10 minutes for each entity, it may be a random value from an exponential
distribution with a mean of 10 minutes, it could be 0.9 times a constant value from clock
time 0 to clock time 4 hours, and 1.1 times the standard value after clock time 4 hours, or
it could be 10 minutes when the preceding queue contains at most four entities and 8
minutes when there are five or more in the preceding queue. A delay is an indefinite
duration that is caused by some combination of system conditions. When an entity joins a
queue for a resource, the time that it will remain in the queue may be unknown initially
since that time may depend on other events that may occur. An example of another event
would be the arrival of a rush order that preempts the resource. When the preempt occurs,
the entity using the resource relinquishes its control instantaneously. Another example is
a failure necessitating repair of the resource. Discrete-event simulations contain activities
that cause time to advance. Most discrete-event simulations also contain delays as entities
wait. The beginning and ending of an activity or delay is an event.

1.2.3 Model Classifications

Several classification categories for models exist. A system we are modeling exhibits
probabilistic or stochastic behavior if an element of chance exists. For example, the
path of a hurricane is probabilistic. In contrast, a behavior can be deterministic, such as
the position of a falling object in a vacuum. Similarly, models can be deterministic or
probabilistic. A probabilistic or stochastic model exhibits random effects, while a
deterministic model does not. The results of a deterministic model depend on the initial
conditions; and in the case of computer implementation with particular input, the output

Page 12 of 138

is the same for each program execution. As we studied this and other modules, we can
have a probabilistic model for a deterministic situation, such as a model that uses random
numbers to estimate the area under a curve .Figure 6 is depicted the classification of
different kinds of models.

Continuous time

Discrete time

DynamicStatic

Deterministic

Stochastics
Model allows

system state to
change any time

System State
changes at distinct

times

System
description as it
changes in time

System
description at
one point in

time

Fixed inputs
yield fixed

outputs

Fixed inputs
yield different

outputs

One or More
random

parameters

Monte
Carlo

S
i

m
u
l
a
t
i
o
n

Figure 6: Classification of Different Types of Model

1.2.3.1 Discrete-Event Simulation Model

 Sufficient modeling concepts have been defined so that a discrete event simulation
model can be defined as one in which the state variables change only at those discrete
points in time at which events occur. Events occur as a consequence of activity times and
delays. Entities may compete for system resources, possibly joining queues while waiting
for an available resource. Activity and delay times may "hold" entities for durations of
time. A discrete-event simulation model is conducted over time ("run") by a mechanism
that moves simulated time forward. The system state is updated at each event along with
capturing and freeing of resources that may occur at that time.

1.2.3.2 Stochastic and Deterministic Systems

Definitions A system exhibits probabilistic or stochastic behavior if an element of
chance exists. Otherwise, it exhibits deterministic behavior. A probabilistic or
stochastic model exhibits random effects, while a deterministic model does not.

Page 13 of 138

Deterministic: Randomness does not affect the behaviour of the system. The output of
the system is not a random variable.
Stochastic: Randomness affects the behaviour of the system. The output of the system is
a random variable.

1.2.3.3 Static and Dynamic Simulations

We can also classify models as static or dynamic. In a static model, we do not consider
time, so that the model is comparable to a snapshot or a map. For example, a model of the
weight of a salamander as being proportional to the cube of its length has variables for
weight and length, but not for time. By contrast, in a dynamic model, time changes, so
that such a model is comparable to an animated cartoon or a movie. For example, the
number of salamanders in an area undergoing development changes with time; and,
hence, a model of such a population is dynamic. Many of the models we consider in this
text are dynamic and employ a static component as part of the dynamic model.
Definitions A static model does not consider time, while a dynamic model changes with
time.

Static: A simulation of a system at one specific time, or a simulation in which time is not
a relevant parameter for example, Monte Carlo & steady-state simulations.
Dynamic: A simulation representing a system evolving over time for examples, the
majority of simulation problems.

1.2.3.4 Discrete vs. Continuous Systems

When time changes continuously and smoothly, the model is continuous. If time changes
in incremental steps, the model is discrete. A discrete model is analogous to a movie. A
sequence of frames moves so quickly that the viewer perceives motion. However, in a
live play, the action is continuous. Just as a discrete sequence of movie frames represents
the continuous motion of actors, we often develop discrete computer models of
continuous situations .
Definitions In a continuous model, time changes continuously, while in a discrete
model time changes in incremental steps.

Continuous: State variables change continuously as a function of time (Figure 7) and
generally analytical method like deductive mathematical reasoning is used to define and
solve the system.

State Variable (S.V.) = f (t)

Page 14 of 138

S.V.

t

Figure 7:Continous Model behavior is shown

Discrete: State variables change at discrete points in time (Figure 8) and generally
numerical method like computational procedures is used to solve mathematical models.

State Variable(S.V.) = f(n t)

S.V.

t

Figure 8: Discrete Model behavior is shown

Examples of Different Systems

• Queue length at a cash machine: Stochastic, Discrete Time, Discrete System
• The motion of the planets: Deterministic, Continuous Time, Discrete System
• Logic circuit in a computer: Deterministic, Discrete Time, Discrete System

Page 15 of 138

• Flow of air around a car: Deterministic, Continuous Time, Continuous System
• Closing prices of the 30 DAX shares: Stochastic, Discrete Time, Discrete System

1.2.3.5 A Classic Example of Queue at Bank Counter

We see queues at everywhere. Queues are buffers to smooth out differences in arrival
rates and service times. Queue Theory is well understood. Closed-form queue-theoretic
models can be used to speed up simulations. Deriving results from such models requires
simulation. Here are we given a example of queue formed at bank counter (Concept of
queue is discussed in more detail in unit IV) .At bank counter customers arrive at random
intervals and suppose there is only one cashier .Customers must wait in a queue. Service
times at the cashier are also random Measured inter-arrival times (seconds):25, 111, 56,
232, 97, 452, 153, 45,...Measured service times (seconds): 45, 32, 11, 61, 93, 56, 30,...

Enter Service

Queue

Figure 7: Classical Example of Queue

Now compute the average length of the queue and the probability that the cashier is busy.

1.3 Computer Workload and Preparation of its Models

Figure 8 outlines the phases of computer simulation development. All simulation studies
begin with a specification of objectives and problem formulation. Model development
including conceptualization and implementation follows the formulation. Data are
collected from the real world early during model development to adequately provide the
parameters of the model entities. Decisions need to be made during the implementation
phase on the choice of the platform, language, analysis methods, etc. The implemented
model must be verified for accuracy and validated for correspondence to the real-world
system being represented. The simulation is run several times and statistical analyses of
the output data are conducted before a modeler provides recommendations based on the
simulation study. The processes involved in simulation modeling and analysis are not
strictly linear. An analyst may iterate between different stages in computer simulation
development including problem formulation, model abstraction, implementation,
verification and validation, and output analysis. The different stages are detailed below

1.3.1 Steps of the Modeling Process

Page 16 of 138

The modeling process is cyclic and closely parallels the scientific method and the
software development life cycle (SDLC) for the development of a major software project.
The process is cyclic because at any step we might return to an earlier stage to make
revisions and continue the process from that point.

Observed problem in
the Real-World

Formulation/Conceptualization/Data Collection

Model Frame
&
Experimental
Frame

Implementation

Make Changes/
Improvements in the
Real-World

Verification

Execution

Simulation output

Recommendation

Output
Analysis

Validation

Simulation Model

Simulation
ProgramRevision

Entities
- State
- Events
Relationships

Results

Figure 8. Phases of Computer Simulation Development and Analysis

The steps of the modeling process are as follows:

1. Analyze the Problem

We must first study the situation sufficiently to identify the problem precisely and
understand its fundamental questions clearly. At this stage, we determine the problem’s
objective and decide on the problem’s classification, such as deterministic or stochastic.
Only with clear, precise problem identification can we translate the problem into
mathematical symbols and develop and solve the model.

2. Formulate a Model

A specific set of goals initiate a simulation study. The goals could be for what-if analysis
of a system being designed or for evaluation of variety of prototypical scenarios of an
existing system. For example, in a service industry application, simulations of banking
systems can be used to evaluate the tradeoffs associated with having an additional teller.
The performance measures of the system being studied must be made explicit during the

Page 17 of 138

problem formulation stage. In the banking system example, performance measures
include average customer waiting time, teller utilization, etc. Decisions on whether
simulation is an appropriate methodology must also be made carefully during this stage.
In this stage, we design the model, forming an abstraction of the system we are modeling.
Some of the tasks of this step are as follows:
a. Gather Data

We collect relevant data to gain information about the system’s behavior.

b. Make Simplifying Assumptions and Document them

In formulating a model, we should attempt to be as simple as reasonably possible. Thus,
frequently we decide to simplify some of the factors and to ignore other factors that do
not seem as important. Most problems are entirely too complex to consider every detail,
and doing so would only make the model impossible to solve or to run in a reasonable
amount of time on a computer. Moreover, factors often exist that do not appreciably
affect outcomes. Besides simplifying factors, we may decide to return to Step 1 to restrict
further the problem under investigation.

3. Model Abstraction

Following problem formulation, the analyst abstracts relevant features of the system to be
represented in the model. Depending on the goals of the simulation study, the analyst
decides on the appropriate level of detail or granularity of the model. Aspects of the
system relevant to the simulation must be specified. Once the scope has been sufficiently
limited, the system boundaries can be drawn. Bounding the system is a very important
analytical step because it defines internal and external factors as well as inputs and
outputs. The process of bounding the system can help to reduce the level of complexity
by reducing the size of the system in some cases. By drawing a boundary around the
system, attention is drawn to the impacts on and by other systems interacting with the
system of interest. Several valuable questions can be raised in the process of delineating
the problem system. The problem focus is sharpened and some attention is drawn to
environmental factors outside the system. Frequently, diagramming techniques such as
flow charts are helpful in pictorially representing the system in terms of entities, their
behavior, and the interactions between entities. The diagrams can be very useful in
communicating about the system and can sometimes reveal additional insights about the
problem.
It is very helpful when conceptualizing a system to have a consistent set of questions to
answer for each element of the system. These questions provide a parallel structure for
the various elements of the system and ensure that all the relevant information is
obtained. Forming these general questions stimulates a broader view of the elements of
the system and stimulates comparisons and contrasts among them. In answering these
general questions about the system, some simplifying assumptions can be made initially.
There are two basic types of assumptions about systems: structural assumptions and data
assumptions. Structural assumptions are made regarding the internal operation of the
system. They concern differences between the way a system is designed to work and the

Page 18 of 138

way it actually operates in practice under a variety of conditions. Some steps may be
shortened or bypassed completely under some circumstances for the sake of expediency.
Alternate routing can occur in cases of blockage or excessive queuing. More realistic
factors can be added to the model gradually as the development proceeds. Data
assumptions are made with respect to the entities being processed. Inputs may cycle
through peak and slack periods. Individual times may vary for different entities in the
same process. These can be included later when they have been more accurately
determined. Assumptions made in the problem formulation should be explicitly listed so
they can be addressed eventually in a meaningful manner.

4. Determine Variables and Units

We must determine and name the variables. An independent variable is the variable on
which others depend. In many applications, time is an independent variable. The model
will try to explain the dependent variables. For example, in simulating the trajectory of
a ball, time is an independent variable; and the height and the horizontal distance from
the initial position are dependent variables whose values depend on the time. To simplify
the model, we may decide to neglect some variables (such as air resistance), treat certain
variables as constants, or aggregate several variables into one. While deciding on the
variables, we must also establish their units, such as days as the unit for time.

a. Establish Relationships Among Variables and Submodels
If possible, we should draw a diagram of the model, breaking it into submodels and
indicating relationships among variables. To simplify the model, we may assume that
some of the relationships are simpler than they really are. For example, we might assume
that two variables are related in a linear manner instead of in a more complex way.

b. Determine Equations and Functions

While establishing relationships between variables, we determine equations and functions
for these variables. For example, we might decide that two variables are proportional to
each other, or we might establish that a known scientific formula or equation applies to
the model. Many computational science models involve differential equations, or
equations involving a derivative.

5. Solve the Model
This stage implements the model. It is important not to jump to this step before
thoroughly understanding the problem and designing the model. Otherwise, we might
waste much time, which can be most frustrating. Some of the techniques and tools that
the solution might employ are algebra, calculus, graphs, computer programs, and
computer packages. Our solution might produce an exact answer or might simulate the
situation. If the model is too
complex to solve, we must return to Step 2 to make additional simplifying assumptions or
to Step 1 to reformulate the problem.

6. Model Implementation

Page 19 of 138

The conceptual model generated during the earlier phase must be implemented in the
form of a simulation program. During implementation, an analyst can use a simulation
language such as SIMAN or GPSS, or standard programming languages such as C, C++,
or Java, or special simulators tailored for specific applications. Typically, most
simulation languages provide software constructs to represent entities, to perform
queuing utilities, and standard statistical analysis. The SIMAN simulation language also
orients the analyst to make decomposition between the model frame, which is used to
represent the structure and overall behavior of the system and experimental frame, which
is used to store data used by the model. Some languages have a graphical front end to
configure a system simulation. The graphical environment is intended for analysts
without programming background to rapidly simulate and analyze a specific system. It
takes longer to use standard programming languages to apply for simulation, but they
provide greater levels of control in representing complex decision making behavior. The
specific simulation software or language selected is dependent on the nature of the
application, expertise of the analysts, and availability of appropriate hardware and
software. The fundamental problem in model implementation is to translate the
conceptual model to a simulation program using the constructs of a simulation or
software package. Model verification and validation typically follow the model
implementation phase.

7. Verify and Interpret the Model’s Solution

Once we have a solution, and the model’s solution is used, it may be necessary or
desirable to make corrections, improvements, or enhancements. In this case, the modeler
again cycles through the modeling process to develop a revised solution. We should
carefully examine the results to make sure that they make sense (verification) and that the
solution solves the original problem (validation) and is usable. The process of
verification determines if the solution works correctly, while the process of validation
establishes if the system satisfies the problem’s requirements. Thus, verification concerns
“solving the problem right,” and validation concerns “solving the right problem.” Testing
the solution to see if predictions agree with real data is important for verification. We
must be careful to apply our model only in the appropriate ranges for the independent
data. For example, our model might be accurate for time periods of a few days but
grossly inaccurate when applied to time periods of several years. We should analyze the
model’s solution to determine its implications. If the model solution shows weaknesses,
we should return to Step 1 or 2 to determine if it is feasible to refine the model. If so, we
cycle back through the process. Hence, the cyclic modeling process is a trade-off between
simplification and refinement. For refinement, we may need to extend the scope of the
problem in Step 1. In Step 2, while refining, we often need to reconsider our simplifying
assumptions, include more variables, assume more complex relationships among the
variables and submodels, and use more sophisticated techniques.
Although we described the modeling process as a sequence or series of steps, we may be
developing two or more steps simultaneously. For example, it is advisable to be
compiling the report from the beginning. Otherwise, we can forget to mention significant

Page 20 of 138

points, such as reasons for making certain simplifying assumptions or for needing
particular refinements. Moreover, within modeling teams, individuals or groups
frequently work on different submodels simultaneously. Having completed a submodule,
a team member might be verifying the submodule while others are still working on
solving theirs.
The modeling process is a creative, scientific endeavor. As such, a problem we are
modeling usually does not have one correct answer. The problems are complex, and
many models provide good, although different, solutions. Thus, modeling is a
challenging, open-ended, and exciting venture.
Validation is the process of assuring that the conceptual model accurately represents the
behavior of the real system. Verification is the process of assuring that the implemented
model accurately represents the conceptual model. These two processes are theoretically
distinct but are closely related in practice. The initial conceptual model should have high
face validity. Input should be sought from as wide a range as possible of people
knowledgeable about the system. There are at least three reasons for this. Primarily,
people who work with the system in different ways have different knowledge about the
system. Some of this knowledge overlaps with others, but some are unique to a particular
perspective. The unique perspectives complete the system concept and correct
misconceptions. Secondly, the overlapping areas of knowledge provide crosschecks of
the various inputs for consistency. Thirdly, participation in the modeling process
reinforces confidence in the simulation. It provides the users the opportunity to question
and critique the conceptual model. Involvement enhances acceptance and understanding
among the users of the real system being modeled. Without end-user involvement, user
skepticism and resistance can thwart improvements.

After the face validity of the conceptual model has been established the assumptions
made about the model must be examined. Estimates by those experienced with the
system are the best initial values for both types of assumptions. However, careful data
collection and statistical analyses are required for refinements. The first step in the input
data analysis is the identification of the appropriate statistical distribution for the data.
Second, the parameters relevant to that distribution must be estimated from the sampled
data. Finally, the fit of the selected distribution to the data can be verified by applying
appropriate statistical tests such as the Kolmorgorov – Smirnov (K-S) test or chi-squared
test.

Ultimately, the model must accurately predict the system performance for a range of
input conditions. The simulation should be robust enough to yield accurate results when
assumptions and parameters are varied. The most conclusive test for the model is the
simulation of the system under conditions where the outputs of the real system are
known. The focus during this process is on the overall transformation of the inputs into
outputs. The outputs of the simulation can then be compared with the historical data.
This testing can be only made for situations where historical data are available.

8. Execution

Page 21 of 138

Most simulations represent random or stochastic characteristics where different
quantitative values are obtained for the same model with varying random values. For
such simulations, called non-deterministic systems, the simulation model must be
executed several times and statistical analysis must be performed on the simulation
output to assess variability of the simulation. From an output analysis perspective, there
are two types of execution modes: terminating and steady state. The terminating mode is
appropriate for systems that start and run for a time then stops for some period. An
example of this kind of operation is a store that closes overnight. A steady state
simulation is suitable for a system that operates continuously, such a power generating
plant or a hospital emergency room. The widest possible set of initial conditions should
be tried in both cases.

Initial conditions can have a profound effect on the results of simulations. Initial
conditions include such things as whether or not the system resources start up in the busy
or idle state. Not only should all possible sets of initial conditions be tried for a given set
of conditions, but also the simulations should be run several times for each set of
conditions. For terminating simulations, this means that several runs are required. In the
case of a steady state simulation, data samples should be taken from several subintervals
in each run. The subintervals should be of equal length in all runs for valid statistical
comparisons to be made.

9. Output Analysis

A simulation is a statistical experiment that imitates the real system. Appropriate
statistical methods should be applied to determine the degree of correspondence between
the outputs of the model and those of the real system. These methods will vary
depending upon whether a terminating or steady state simulation is being analyzed. The
basic goal here is to determine the variability in the estimators chosen to evaluate the
system. In general steady state simulations are more difficult to analyze due to the effects
of initial conditions and choice of run time. For steady-state systems, data should not be
used if it is collected before statistical equilibrium is reached. Initial condition bias can
lead to erroneous conclusions, even for long run times and multiple runs. The estimators
may have smaller variation, but they may converge to the wrong value. Typically, a type
of hypothesis testing is conducted using confidence intervals as a function of variability
of the output data from multiple simulation runs.

10. Report on the Model

Reporting on a model is important for its utility. Perhaps the scientific report will be
written for colleagues at a laboratory or will be presented at a scientific conference. A
report contains the following components, which parallel the steps of the modeling
process:

a. Analysis of the problem

Page 22 of 138

Usually, assuming that the audience is intelligent but not aware of the situation, we need
to describe the circumstances in which the problem arises. Then, we must clearly explain
the problem and the objectives of the study.

b. Model design

The amount of detail with which we explain the model depends on the situation. In a
comprehensive technical report, we can incorporate much more detail than in a
conference talk. For example, in the former case, we often include the source code for our
programs. In either case, we should state the simplifying assumptions and the rationale
for employing them. Usually, we will present some of the data in tables or graphs. Such
Figures should contain titles, sources, and labels for columns and axes. Clearly labeled
diagrams of the relationships among variables and submodels are usually very helpful in
understanding the model.

c. Model solution

In this section, we describe the techniques for solving the problem and the solution. We
should give as much detail as necessary for the audience to understand the material
without becoming mired in technical minutia. For a written report, appendices may
contain more detail, such as source code of programs and additional information about
the solutions of equations.

d. Results and conclusions

Our report should include results, interpretations, implications, recommendations, and
conclusions of the model’s solution. We may also include suggestions for future work.

11. Recommendation

Ultimately the results are used to decide what changes to make to the real system, if any.
Naturally, there is a cost associated with changing a system. Any changes will be judged
in the long run by the savings or additional revenue generated. Other systems that
interact with the system being simulated may be affected by changes. After the
simulation has been done and the data has been thoroughly studied, the analyst must look
beyond the system on which the attention has been focused. In some cases a less costly
change in some other system may yield more cost-effective improvements. This
possibility should be detected in the problem analysis phase preceding simulation, but
sometimes elements in the systems environment are overlooked. Finally, although
planning and implementing the changes may not be the responsibility of the analysts, any
recommendations for change should be described in as much detail as possible. Cost and
impact analysis along with a detailed description forms a solid proposal for change. Any
changes made to the real world must be monitored and data must be collected from the

Page 23 of 138

real system to feed into the simulation model. The usefulness of the model does not end
when the analysis is concluded. The model represents an investment of resources and
can continue to provide useful data when changes to the system are proposed again.

1.4 Summary

Simulation is very powerful, problem solving technique. Its applicability is so general
that it would be hard to point out disciplines or system to which simulation has not been
applied. The basics idea behind simulation is simple, namely model the given system by
means of some equations and then determine its time dependent behaviour. In Simulation
we makes a model of conceptual model and then results are compared with real system.
Normally simulation is used when either an exact analytic expression for the behaviour of
the system under investigation is not available or the analytic solution is too time
consuming. Simulation is considered as interdisciplinary subject because it uses concepts
from mathematics computer science and application field. A model is a representation of
an actual system. Models can be of different kinds. Discrete-Event Simulation Model is
defined as one in which the state variables change only at discrete points in time at which
events occur. A deterministic system is defined as in which randomness does not affect
the behaviour of the system. A stochastic system is defined as in which randomness
affects the behaviour of the system. In order to process a simulation of an event first we
have to perform formulation of the problem, and then we have to implement the defined
model in any suitable programming language. Finally we have to perform verification
and validation and then analysis of output results.

1.5 Key Words

System, Model, Base Model, Simulation, Continuous, Discrete, State Variables,
Dynamic, Digital Computer, Statistical Sampling, Stochastic Systems, Numerical
Techniques, Monte Carlo Method, Graphical User Interfaces, Object- Oriented
Programming, Optimization, Entities, Attributes, FIFO, LIFO, Statistical Analysis
Software (SAS), Software Development Life Cycle (SDLC), Probability, Differential
Equation, Face Validity.

1.6 Self Assessment Questions

Q1. Give an example of a nonstochastic simulation?
Q.2 Give an example of each

a. Stochastic Model
b. Continuous Model
c. Discrete Model
d. Static Model
e. Dynamic Model

Page 24 of 138

Q.3 What is Model? Define some model of surrounding events.
Q.4 What is a system? Define kinds of system.
Q.5 What is the difference between static and dynamic model?
Q.6. What is the difference between continuous and discrete model?
Q.7 What is simulation? Give some advantage and disadvantage of simulation.
Q.8 Write some application of simulation.
Q.9 How to Build and Apply Computer Simulations? Explain.
Q.10 What is meant by the “System State” in a simulation.
Q.11 Compare and contrast the modeling process with the scientific method: Make
observations; formulate a hypothesis; develop a testing method for the hypothesis; collect
data for the test; using the data, test the hypothesis; accept or reject the hypothesis.
Q.12 Compare and contrast the modeling process with the software life cycle: Analysis,
design, implementation, testing, documentation, and maintenance.
Q.13 What do you understand by the term face Validity of a conceptual model?

1.7 Reference /Suggested Reading

1. Proceedings of the 1999 Winter Simulation Conference, Jerry Banks, Introduction to

Simulation
2. Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modelling and

Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems.
Academic Press, second edition.

3. Banks, Carson, Nelson & Nichol, Discrete Event System Simulation, Prentice Hall.
4. G.Gorden, “System Simulation”,PHI.
5. N. Deo , “ System Simulation”, PHI.
6. Giordano, Frank R., Maurice D. Weir, and William P. Fox. 2003. A First Course in
 Mathematical Modeling. 3rd ed. Pacific Grove, Calif.: Brooks/Cole-Thompson
 Learning.

Page 25 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Dr. Pradeep Bhatia
Lesson : Verification and Validation of Models
Lesson No. : 02

Structure
2.0 Objective
2.1 Introduction
2.2 Verification and Validation
2.3 Comparing Model Data with Real System Data
2.3.1 Validating Exiting Systems
2.3.2 Validating First Time Model
3 Summary
4 Keywords
5 Self Assessment Questions
6 References/ Suggested Reading

2.0 Objective

The area of experimentation and results analysis for simulation models is briefly
introduced here. By the end of this module you will learn the verification and validation
techniques to compare the defined model with real system’s data.

2.1 Introduction

How do we know that the model we have used, is an accurate representation of the
system being simulated? This is an important question and must be answered
satisfactorily before a simulation study can be made use of. The area of experimentation
and results analysis for simulation models is well developed and a range of rules and
guiding methods can be found in the literature, e.g. are available. Many of the techniques
developed are here to ensure that dangerous mistakes are not made when analyzing and
interpreting the results. In fact , without establishing the validity of the model , if we
accept the(erroneous) simulation results the consequences may be disastrous. Put simply
the power of modern simulation software to generate large quantities of data can leave
the user with the false sense of security that the results generated are credible and truly
representative of the system under study. Like all modelling techniques care needs to be
exercised.
What is a valid model? Since no simulation model will duplicate the given system in
every detail it is not an appropriate question to ask if a simulator is a ‘true’ model of a
real system. We should only ask if the model is a ‘reasonable’ approximation of the real

Page 26 of 138

system. The acceptable levels of reasonableness and approximation will vary from
system to system and simulation to simulation. There is no universally acceptable criteria
for accepting a simulation model as a valid representation. There are only guidelines that
aid in establishing confidence in the model.

There are a number of phases as shown in Figure 1, for checking a simulation model
prior to experimental analysis:

• Verification - the accuracy of transforming a problem formulation into a model
(specification) deals with building the model right

• Validation - model behaves with satisfactory accuracy consistent with the study
objectives deals with building the right model

The above are essential checks performed prior to analysis of the model and are used to
establish what is known as model credibility. Verification and validation is shown in
Figure 2, as cause - effect and input – output terms.

A simulation run typically starts in the empty and idle state. The run is therefore
characterised by a "run-in" phase followed by a "steady state" phase, see Figure 1. The
run-in phase is generally ignored and is only used for investigating the effects of transient
conditions such as starting up a new factory or performing radical changes within an
existing facility.

Work In
Progress

(WIP) Delay

Steady State

EquilibriumRun in

Increase

Figure 1. The two key phases of a simulation run

Typically the steady state phase is of greater interest. At this stage checks must be made
to ensure no long term trends exist, such as continual build up of stock in the factory, that
suggest the model (hence the real system) will be unstable and unworkable.
Generally what is known as multiple replications is performed. This is where the model is
run several times. Each time the random number generators are set to provide different
sequences of random numbers, e.g. in case of manufacturing process the breakdown
patterns of machines are different and the points at which material is scrapped is
different. This allows confidence that the results being compiled represent the average
and the range of conditions that are likely and therefore play down ‘freak’ or ‘unusual’
behaviour.

Page 27 of 138

Structural
Validation

System

Simulation Model

Conceptual Model

Effect
Cause

OutputInput

Behavioural
Validation

Varification

Conceptual
Model

Validation

Figure 2 Verification and Validation Activities

2.2 Verification and Validation

The validation efforts can be grouped into two parts

1. validation of the abstract model itself
2. validation of its implementation

The first part consists of examining all assumptions, which transform the real world
system into the conceptual model. A great deal of judgment and an intimate knowledge
of the real system are involved in this step. The validation of the abstract model is often
highly subjective. Testing the validity of an implementation is a more objective and
easier task. It consists of checking the logic, the flowchart, and the computer program to
ensure that the model has been correctly implemented.

The presentation of an experimental frame, which is shown in Figure 2, enables a
rigorous definition of model validity. Let us first postulate the existence of a unique Base
Model. This model is assumed to accurately represent the behavior of the Real System
under all possible experimental conditions. This model is universally valid as the data
DRealSystem obtainable from the Real System is always equal (symbol ≡ is used for
equality) to the data DBaseModel obtainable from the model.

DBaseModel ≡ DRealSystem --------------------(i)

_ A Base Model is distinguished from a Lumped Model by the limited experimental
context within which the latter accurately represents Real System behavior.
A particular experimental frame E may be applicable to a real system or to a model. In
the first case, the data potentially obtainable within the context of E are denoted by

Page 28 of 138

DRealSystem║E. In the second case, obtainable data are denote by Dmodel ║ E. With this
notation, a model is valid for a real system within Experimental Frame E if

_

DLumpedModel ║ E ≡ DRealSystem ║ E --------------------(ii)

The data equality ≡ must be interpreted as equal to a certain degree of accuracy. It shows
how the concept of validity is not absolute, but is related to the experimental context
within which Model and Real System behavior are compared and to the accuracy metric
used.
One typically distinguishes between the following types of model validity.

Replicative Validity concerns the ability of the Lumped Model to replicate the
input/output data of the Real System. With the definition of a Base Model, a Lumped
Model is replicatively valid in Experimental Frame E for a Real System if

DLumpedModel ║ E ≡ DBaseModel ║E --------------------(iii)

Predictive Validity concerns the ability to identify the state a model should be set into to
allow prediction of the response of the Real System to any (not only the ones used to
identify the model) input segment. A Lumped Model is predicatively valid in
Experimental Frame E for a Real System if it is replicatively valid and

FLumpedModel║ E ⊆ FBaseModel ║E --------------------(iv)

where FS is the set of I/O functions of system S within Experimental Frame E. An I/O
function identifies a functional relationship between Input and Output, as opposed to a
general non-functional relation in the case of replicative validity.

Structural Validity concerns the structural relationship between the Real System and
the Lumped Model. A Lumped Model is structurally valid in Experimental Frame E for a
Real System if it is predictively valid and there exists a morphism ∆ from Base Model to
Lumped Model within frame E.

LumpedModel ║ E ∆ BaseModel ║E --------------------(v)

When trying to assess model validity, one must bear in mind that one only observes, at
any time t, DRealSystem (t) , a subset of the potentially observable data DRealSystem. This
obviously does not simplify the model validation enterprise.
Whereas assessing model validity is intrinsically impossible, the verification of a model
implementation can be done rigorously. A simulator implements a lumped model and is
thus a source of obtainable data DSimulator . If it is possible to prove (often by design) a

Page 29 of 138

structural realtionship (morphism) between Lumped model and Simulator, the following
will hold unconditionally

DSimulator ≡ DLumpedModel --------------------(vi)

 Before we go deeper into predictive validity, the relationship between different
refinements of both Experimental Frames and models is elaborated. In Figure 3, the
derived from relationship for Experimental Frames and the homomorphism.

Relationship for Models is depicted. If we think of an Experimental Frame as a formal
representation of the context within which the model is a valid representation of the
dynamics of the system, a more restricted Experimental Frame means a more specific
behaviour. It is obvious that such a restricted Experimental Frame will match far more
models than a more general Experimental Frame. Few models are elaborate enough to be
valid in a very general input/parameter/performance range. Hence, the large number of
applies to (i.e., match) lines emanating from a restricted Experimental Frame. The
homomorphism between models means that, when modifying/transforming a model (e.g.,
adding some non-linear term to a model), the simulation results (i.e., the behaviour)
within the same experimental frame must remain the same.

homomorphism

ModelsExperimental Frames

applies to

derived from

general

restricted

more
restricted

Figure 3 : Experimental Frame – Model Relationship

Though it is meaningful to keep the above in mind during model development and use,
the highly non-linear nature of many continuous models makes it very difficult to
automate the management of information depicted in Figure 3. Non-linear behaviour
makes it almost impossible, based on a model or experimental frame symbolic
representation, to make a statement about the area in state-space, which will be covered
(i.e., behaviour). A pragmatic approach is to

Page 30 of 138

1. Let an expert indicate what the different relations are. This is based on some insight
into the nonlinear dynamics. Such expert knowledge can be built from a large
number of conducted experiments.

2. Constantly with each experiment validate the expert information.
A crucial question is whether a model has predictive validity, is it capable not only of
reproducing data which was used to choose the model and parameters but also of
predicting new behavior? The predictive validity of a model is usually substantiated by
comparing new experimental data sets to those produced by simulation, an activity
known as model validation. Due to its special importance in the communication between
model builders and users, model validation has received considerable attention in the past
few decades. The comparison of the experimental and simulation data are accomplished
either subjectively, such as through graphical comparison, Turing test, or statistically,
such as through analysis of the mean and variance of the residual signal employing the
standard F statistics, multivariate analysis of variance regression analysis, spectral
analysis, autoregressive analysis, autocorrelation function testing, error analysis, and
some non-parametric methods.
The above-mentioned methods are designed to determine, through comparison of
measured and simulated data, the validity of a model. As one might intuitively expect,
different modelling errors usually cause the behavior of the model to deviate in different
ways from that of the real system or, in other words, different modelling errors
correspond to different pattern in the error signal, the difference between experimental
data and simulated data. These patterns if extractable, can obviously be used to identify
the modelling errors.

2.3 Comparing Model Data with Real System Data

 After development of suitable model of defined problem and simulation of defined
model, we have to perform the comparison of output data with real system data.

2.3.1 Validating Existing Systems

When the simulated system exists in real life, then the most obvious and the best
approach is to use the real world inputs to the model and compare its outputs with that of
the real world inputs to the model and compare its output with that of the real system.
This process of validation is straightforward enough in principal but may present some
difficulties when carried out. Firstly, it may not always be easy to obtain input and output
data from a real life system without distributing it. Secondly, even if we could get actual
input output of an existing model it would not generally be for very long periods. Since
the data are usually probabilistic. For small lengths of simulation runs the variability of
the model output would be large. Therefore designing test that work with small samples
is difficult. What usually is done is to simulate the model several times (replicate) with
different sequences of random numbers and obtain the range of variation amongst these.
Then, if the model is valid, the real output should lie somewhere in the middle of the
range of model output. The third problem is to establish that the model output and the
real system outputs are ‘practically’ from the same population.

Page 31 of 138

If the outputs to be compared are sample means (e.g., average queue length, waiting time,
idle time), one could use any of a number of statistical tests (called ‘goodness’ of fit
tests) available to measure the discrepancy between the two outputs (i.e., model output
and the real system output). One such test is chi-square test. Others are Kolmogorov-
Smirnov test, Cramer - von Mises test and the Moments test. One could also use
hypothesis testing to determine if there is any significant difference between, say the
average of the independent set of observations.

2.3.2 Validating Fist Time Model

If a model is intended to describe a proposed or hypothethetical system (which does not
exist at present or did not exist in the past) then the task of validation is even more
difficult. There are no historical data available to compare its performance with. Since
hypothetical system are , by their very nature , based upon assumptions it is the validity
of these assumptions the simulation model is dependent on. A number of guidelines for
testing validity of such system have been found useful. These are as

1. Subsystem Validity: A model itself may not have any existing system to
compare it with, but it may consist of known subsystem each of that validity can
be tested separately.

2. Internal validity: One tends to rejects a model if it has a high degree of internal
variability. A stochastic system with high variance due to its internal processes
will obscure changes in the output due to input changes. The test can be
performed by replicating a simulation run with several different random number
sequences and then computing the variance of the outputs. If the variance is too
high we reject the model.

3. Sensitivity Analysis: Sensitivity analysis consists of systematically varying the
values of parameters or the input variables one at a time (while keeping all others
constant) over some range of interest and observing the effect upon the model’s
response. Sensitivity analysis will tell to which parameters the system is more
sensitive. The parameters to which the system response is relatively insensitive,
we need not pay very close attention to. The knowledge how far the assumed
parameters values could be from the true one without significantly affecting the
response helps building our confidence in the model.

4. Face Validity: If the model goes against the common sense and logic, it should
be rejected (even if it behaves like the real system). If those with experience and
insight into similar system do not judge the model as reasonable, it has to be
rejected.
These and other validation tests do not completely validate a model. While failure
to pass a validation test would results in rejection of a model, passing these tests
does not guarantee that the model is valid. It only builds up our confidence in the
model.
Ideally errors of a modeling should be separated from the errors in its
implementation (programming errors, etc.) by first validating the abstract

Page 32 of 138

mathematical model before writing a simulator for it. In practice, however, it is
really possible to check the validity of the mathematical model without examining
its computer version. This is because of the mathematical intractability of a
model, which was the reason for simulating it in the first place.

Although validation is often messy, expensive and time consuming, involves
subjective ness and judgments and is rarely conclusive, it must always be
attempted. However inconclusive, it does provide a check against grosser errors
and gives us confidence to use the simulation results for decision making.

2.4 Summary

Verification and validation of defined system is very critical and it provides the testability
to defined system against the real system. Verification is defined as the accuracy of
transforming a problem formulation into a model (specification) deals with building the
model right while Validation is defined as the defined model behaves with satisfactory
accuracy consistent with the study objectives deals with building the right model.
Without establishing the validity of the model, simulation results can be erroneous and
their consequences may be disastrous.

2.5 Keywords

Verification, Validation, System, Model, Conceptual Model, Base Model, Lumped
Model, Real System , Kolmogorov- Smirnov test (KS Test), Cramer -von Mises test,
Moments test , Goodness of Fit, Face Validity, Replicate Validity, Predictive Validity,
Structural Validity, Work-in-Progress (WIP).

2.6 Self Assessment Questions

Q.1 Two similar terms used in the steps of a simulation study are “verification” and
“validation.” One of them refers to the debugging of the simulation code itself. Which
one refers to the process of insuring that the model is a correct representation of the
system?
Q.2 What do you understand the term “Model Validation and Verification”? Explain.
Q.3 What do you understand by the term Face Validity of a Conceptual Model?
Q.4 What is the difference between Validation and Verification?
Q.5 Why Validation is so important in Modelling and Simulation?
Q.6 Give some advantages and disadvantage of Validation in Simulation.

2.7 Reference /Suggested Reading

7. Proceedings of the 1999 Winter Simulation Conference, Jerry Banks, Introduction to

Simulation.
8. Bernard P. Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory of Modelling and

Simulation: Integrating Discrete Event and Continuous Complex Dynamic Systems.
Academic Press, second edition, 2000.

Page 33 of 138

9. Banks, Carson, Nelson & Nichol, Discrete Event System Simulation, Prentice Hall.
10. N. Deo , “ System Simulation”, Prentice Hall of India.

Page 34 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Dr. Pradeep Bhatia
Lesson : Differential Equations In Simulation
Lesson No. : 03

Structure
3.0 Objective
3.1 Introduction
3.2 Ordinary Differential Equations
3.2.1 Modeling via Differential Equation
3.3 Partial Differential Equations
3.3.1 Applications and Related Fields of Partials Differential Equations
3.4 Combined Discrete/Continuous Simulation
3.5 The uses of Simulation in Education
3.6 Summary
3.7 Keywords
3.8 Self Assessment Questions
3.9 References/Suggested Reading

Page 35 of 138

3.0 Objective

The main objective of this unit to introduce the concepts of ordinary and partial
differential equations in continuous system modeling. By the end of this module we will
learn about different kinds of differential equations and their application in modeling. We
will also learn the uses of simulation in education and training.

3.1 Introduction

Modeling of a system whether system is continuous or discrete heavily used the concepts
of Ordinary Differential Equation (ODE), Partial Differential Equation (PDE) and
probability and statistics. Even we can say that without these two branch of mathematics
modeling is just impossible.
Continuous processes occur everywhere as we will learn in unit V. Here, we are
interested in cases with discrete variables, some examples of continuous process are

• An object falling to the ground
• The motion of the planets orbiting the sun
• The current and voltage in an electrical circuit
• The level of alcohol in my blood on January 1st, 2005
• The populations of a predator and its prey

In almost all above cases, the relationships between the variables and its rate of change
i.e. its derivative are defined by an Ordinary Differential Equations (ODEs) are very
important in all branches of Science and Engineering. ODEs form the basis for the
simulation of almost all continuous phenomena. Understanding ODEs is essential for
understanding natural and technical processes.

3.2 Ordinary Differential Equations

A differential equation is an equation involving an unknown function and its
derivatives. The order of the differential equation is the order of the highest derivative of
the unknown function involved in the equation.

),(tyf
dx
dy

= ----------------------------(i)

In addition, we usually know the value of y (0) is 0)0(yy = .

A linear differential equation of order n is a differential equation written in the
following form

)()()(..........)()(011

1

1 xfyxa
dx

ydxa
dx

ydxa
dx

ydxa n

n

nn

n

n =++++ −

−

− ------------------(ii)

Page 36 of 138

where an(x) is not the zero function. Note that some may use the notation
,....,,,)4(yyyy ′′′′′′ for the derivatives. A linear equation obliges the unknown function y to

have some restrictions. Indeed, the only operations which are accepted for the variable y
are:

(i) Differentiating y
(ii) Multiplying y and its derivatives by a function of the variable x
(iii) Adding what you obtained in (ii) and let it is equal to a function of x.

There are several issues related to differential equation solution whether a differential
equation have a solution? Does a differential equation have more than one solution? If
yes, how can we find a solution, which satisfies particular conditions? A problem in
which we are looking for the unknown function of a differential equation where the
values of the unknown function and its derivatives at some point are known is called an
initial value problem (in short IVP). If no initial conditions are given, we call the
description of all solutions to the differential equation the general solution.

3.2.1 Modeling via Differential Equations

One of the most difficult problems that a scientist deals with in his everyday research is
"How do I translate a physical phenomenon into a set of equations which describes it?''

It is usually impossible to describe a phenomenon totally, so one usually strives for a set
of equations which describes the physical system approximately and adequately.

In general, once we have built a set of equations, we compare the data generated by the
equations with real data collected from the system (by measurement). If the two sets of
data "agree'' (or are close), then we gain confidence that the set of equations will lead to a
good description of the real-world system. For example, we may use the equations to
make predictions about the long-term behavior of the system. It is also important to keep
in mind that the set of equations stays only "valid" as long as the two sets of data are
close. If a prediction from the equations leads to some conclusions which are by no
means close to the real-world future behavior, then we should modify and "correct" the
underlying equations. As you can see, the problem of generating "good" equations is not
an easy exercise.

Note that the set of equations is called a Model for the system.

How do we build a Model?

The basic steps in building a model are as

Step 1: Clearly state the assumptions on which the model will be based. These
assumptions should describe the relationships among the quantities to be studied.
Step 2: Completely describe the parameters and variables to be used in the model.

Page 37 of 138

Step 3: Use the assumptions (from Step 1) to derive mathematical equations relating the
parameters and variables (from Step 2).

The best example of mathematical modeling is the one related to population growth
problems given below (Example 2). Keep in mind that this problem has many
ramifications ranging from population explosion to extinction phenomena.

If there is no analytic solution for systems of ODEs, we are forced to integrate using
numerical methods. The numerical integration of ODEs forms the most important part of
continuous simulation.

Example 1: Balance Equations

Most ODEs are balance equations. A balance equation basically says

Change = Increase – Decrease

For example an ODE for the amount of water x in a tank

Input

Output

OI
dt
dx

−=

Figure 1: Water tank Problem Model by Balance Differential Equation

Example 2: Population Dynamics

Here are some natural questions related to population problems:

• What will the population of a certain country be in ten years?
• How are we protecting the resources from extinction?

More can be said about the problem but, in this brief discussion we will not discuss them
in detail. In order to illustrate the use of differential equations with regard to this problem
we consider the easiest mathematical model offered to govern the population dynamics of
a certain species. It is commonly called the exponential model, that is, the rate of change
of the population is proportional to the existing population. In other words, if P(t)
measures the population, we have

kP
dt
dP

=

Page 38 of 138

where the rate k is constant. It is fairly easy to see that if k > 0, we have growth, and if k
<0, we have decay. This is a linear equation which solves into

ktePtP 0)(=

where P0 is the initial population, i.e. P(0) = P0 . Therefore, we conclude the following:

• if k>0, then the population grows and continues to expand to infinity, that is,

+∞=
+∞→

)(lim tP
t

• if k<0, then the population will shrink and tend to 0. In other words we are facing
extinction.

Clearly, the first case, k>0, is not adequate and the model can be dropped. The main
argument for this has to do with environmental limitations. The complication is that
population growth is eventually limited by some factor, usually one from among many
essential resources. When a population is far from its limits of growth it can grow
exponentially. However, when nearing its limits the population size can fluctuate, even
chaotically. Another model was proposed to remedy this flaw in the exponential model. It
is called the logistic model (also called Verhulst-Pearl model). The differential equation
for this model is

⎟
⎠
⎞

⎜
⎝
⎛ −=

M
PkP

dt
dP 1

where M is a limiting size for the population (also called the carrying capacity). Clearly,
when P is small compared to M, the equation reduces to the exponential one. In order to
solve this equation we recognize a nonlinear equation, which is separable. The constant
solutions are P = 0 and P = M. The non-constant solutions may obtained by separating
the variables.

kdt

M
PP

dP
=

⎟
⎠
⎞

⎜
⎝
⎛ −1

and integration

∫∫ =
⎟
⎠
⎞

⎜
⎝
⎛ −

kdt

M
PP

dP

1

Page 39 of 138

The partial fraction techniques gives

dP
MP

M
P

M
PP

dP
∫∫ ⎟

⎠
⎞

⎜
⎝
⎛

−
+=

⎟
⎠
⎞

⎜
⎝
⎛ − /1

/11

1

which gives

ckt
M
PP +=−− 1lnln

Easy algebraic manipulations give

ktCe
MP

P
=

− /1

where C is a constant. Solving for P, we get

kt

kt

CeM
MCeP

+
=

If we consider the initial condition P(0) = P0 (assuming that P0 is not equal to both 0 or
M), we get

0

0

PM
MP

C
−

=

which, once substituted into the expression for P(t) and simplified, we find

ktePMP
MP

tP −−+
=

)(
)(

00

0

It is easy to see that

MtP
t

=
+∞→

)(lim

However, this is still not satisfactory because this model does not tell us when a
population is facing extinction since it never implies that. Even starting with a small
population it will always tend to the carrying capacity M.

Page 40 of 138

3.3 Partial Differential Equations

Like Ordinary Differential Equations, Partial Differential Equations are equations to be
solved in which the unknown element is a function, but in PDEs the function is one of
several variables, and so of course the known information relates the function and its
partial derivatives with respect to the several variables. Again, one generally looks for
qualitative statements about the solution. For example, in many cases, solutions exist
only if some of the parameters lie in a specific set (say, the set of integers). Various broad
families of PDE's admit general statements about the behaviour of their solutions. This
area has a long-standing close relationship with the physical sciences, especially physics,
thermodynamics, and quantum mechanics, for many of the topics in the field, the origins
of the problem and the qualitative nature of the solutions are best understood by
describing the corresponding result in physics.

Roughly corresponding to the initial values in an ODE problem, PDEs are usually solved
in the presence of boundary conditions. For example, the Dirichlet problem (actually
introduced by Riemann) asks for the solution of the Laplace condition on an open subset
D of the plane, with the added condition that the value of u on the boundary of D was to
be some prescribed function f. (Physically this corresponds to asking, for example, for the
steady-state distribution of electrical charge within D when prescribed voltages are
applied around the boundary.) It is a nontrivial task to determine how much boundary
information is appropriate for a given PDE.

Linear differential equations occur perhaps most frequently in applications (in settings in
which a superposition principle is appropriate.) When these differential equations are
first-order, they share many features with ordinary differential equations. (More
precisely, they correspond to families of ODEs, in which considerable attention must be
focused on the dependence of the solutions on the parameters.)

Historically, three equations were of fundamental interest and exhibit distinctive
behaviour. These led to the clarification of three types of second-order linear differential
equations of great interest. The Laplace equation

 02

2

2

2

=+
dy

ud
dx

ud

applies to potential energy functions u=u(x,y) for a conservative force field in the plane.
PDEs of this type are called elliptic. The Heat Equation

dt
du

dy
ud

dx
ud

=+ 2

2

2

2

applies to the temperature distribution u(x,y) in the plane when heat is allowed to flow
from warm areas to cool ones. PDEs of this type are parabolic. The Wave Equation

2

2

2

2

2

2

dt
ud

dy
ud

dx
ud

=+

Page 41 of 138

applies to the heights u(x,y) of vibrating membranes and other wave functions. PDEs of
this type are called hyperbolic. The analyses of these three types of equations are quite
distinct in character. Allowing non-constant coefficients, we see that the solution of a
general second-order linear PDE may change character from point to point. These
behaviours generalize to nonlinear PDEs as well.

A general linear PDE may be viewed as seeking the kernel of a linear map defined
between appropriate function spaces. (Determining which function space is best suited to
the problem is itself a nontrivial problem and requires careful functional analysis as well
as a consideration of the origin of the equation. Indeed, it is the analysis of PDEs which
tends to drive the development of classes of topological vector spaces.) The perspective
of differential operators allows the use of general tools from linear algebra, including
eigenspace decomposition (spectral theory) and index theory.

Modern approaches seek methods applicable to non-linear PDEs as well as linear ones. In
this context existence and uniqueness results, and theorems concerning the regularity of
solutions, are more difficult. Since it is unlikely that explicit solutions can be obtained for
any but the most special of problems, methods of "solving" the PDEs involve analysis
within the appropriate function space, for example, seeking convergence of a sequence of
functions which can be shown to approximately solve the PDE, or describing the sought
for function as a fixed point under a self-map on the function space, or as the point at
which some real-valued function is minimized. Some of these approaches may be
modified to give algorithms for estimating numerical solutions to a PDE.

Generalizations of results about partial differential equations often lead to statements
about function spaces and other topological vector spaces. For example, integral
techniques (solving a differential equation by computing a convolution, say) lead to
integral operators (transforms on functions spaces); these and differential operators lead
in turn to general pseudo differential operators on function spaces.

3.3.1 Applications and Related Fields of PDE

1. Differential geometry
2. Global analysis, analysis on manifolds
3. Probability theory and stochastic processes
4. Numerical analysis
5. Mechanics of solids
6. Fluid mechanics
7. Optics, electromagnetic theory
8. Classical thermodynamics, heat transfer
9. Quantum Theory
10. Statistical mechanics, structure of matter
11. Relativity and gravitational theory
12. Geophysics
13. Biology and other natural sciences
14. Systems theory; control

Page 42 of 138

15. Presentation of concepts

3.4 Combined Discrete/Continuous Simulation

So far, we saw discrete simulations. This is useful when our problem is like a queue of
events, sorted by the simulation time at which they should occur. While Continuous
simulation concerns the modeling over time of a system by a representation in which
state variables change continuously with respect to time. Typically, we use differential
equations that give relationships for the rates of change of the state variables with time.
Discrete simulation is commonly implemented by setting up some sort of queue of
operations to be performed. An operation can insert other operations into the queue for
immediate execution (appropriate when the consequences of changes to output values
must be evaluated immediately), or it can schedule operations for execution at some later
time. Systems for discrete simulation are most naturally described in imperative terms ,
for example

Operation 23 :
When activated :
Do certain things;
If some condition schedule operation 17 after 0 ticks;
Schedule operation 3 after 25 ticks;
Schedule operation 23 after 10 ticks.

Continuous simulation normally requires that each operation be performed at every “tick”
of a system clock. While it is possible that some operations may be unnecessary in some
cycles because their inputs have not changed, this is an exceptional case. Systems for
continuous simulation are most naturally described in declarative terms :

dm/ dt = 2LA - k2mA - 2k3m2 - k4mr
dr/ dt = k2mA - k4mr - 2k5r2

Our choice of description is not completely determined by the system under investigation
alone, in making the choice, we also take into account the amount of detail we wish to
reproduce in the simulation. The example given above for continuous simulation is a
model of the behaviour of a certain chemical reaction system, at a very fine level of
detail, the same system could be described as a set of colliding, and sometimes reacting,
molecules, when a discrete simulation would be more natural.
(The choice of implementation technique is even less dependent on the system. Any
continuous model, if evaluated on a conventional digital computer, is in fact evaluated
discretely, while, if we choose to inspect every operation of a discrete simulation during
every computing cycle, it is in effect being evaluated continuously.) If we intend to
provide a programme which can simulate anything whatever, we have to provide means
of describing both of these forms, both separately (for systems which are unambiguously
of one type or the other), and together (for systems with properties naturally handled in
both ways). Perhaps it would be easier if we had a model which would help us to
imagine the relationships between the different parts of the system.

Page 43 of 138

A Working Model

We live in a world of events, which have unfolding consequences. If we put a ball onto a
sloping table, it will begin to roll. To simulate that system, it would be natural to think of
the ball’s arrival at the table as an event, and to handle the subsequent motion by
continuous techniques. But there is a sense in which the continuous part of the behaviour
“ rolling along the table “ is “always there”, whenever a ball appears on the table, it will
roll subject to the same laws and constraints.
Can we generalize this view? Can we say that the description of a system which we
expect to simulate continuously is analogous to the “natural law” of our little universe,
which by its nature always applies and must therefore be taken into account continuously,
while the events are means of resetting the universe to a new configuration, and, once
accomplished, can be forgotten?
Consider the example again. What happens when the ball reaches the edge of the table?
We want to switch from the old “natural law” appropriate to rolling along a table to a
new one appropriate to falling through the air. Clearly the arrival at the edge of the table
must constitute an event. Is it reasonable to describe the effect of the event as transferring
the action from one universe (the top of the table) to another (the space between table and
floor) ? If we do, we move towards a picture of a problem space split up into a set of
disjoint universes, each having its own set of natural laws. If a universe is not at
equilibrium, it needs continuous attention; but events can disturb the state of equilibrium
of universes (where “disturb” may include “restore”, consider the table-top universe after
the ball has rolled over the edge).
A description of the ball and table system :

IN UNIVERSE A :
Laws :
Equations of motion for rolling along the table.
If coordinates at edge of table, Schedule Event A2
now.
Event A1 :
Add a ball at coordinates x, y;
Add Universe A to the "continuous attention" set.
Event A2 :
Remove the ball;
Remove Universe A from the "continuous attention"
set;
Schedule Event B1 now.
IN UNIVERSE B :
Laws :
Equations of motion for falling.
If coordinates at floor …
Event B1 :
Add a ball at coordinates x, y, z;
Add Universe B to the "continuous attention" set.

Page 44 of 138

In the chemical system of the continuous example, m and r represent concentrations of
two chemical substances. The point of interest in the system is the behaviour of these
concentrations as the light intensity (L) is switched on and off at different frequencies.
The complete system can be described in terms something like this:

Laws :
dm/ dt = 2LA - k2mA - 2k3m2 - k4mr;
dr/ dt = k2mA - k4mr - 2k5r2.
Event 1 :
Set L to Lmax.
Schedule Event 2 after time ton.
Event 2 :
Set L to 0.
Schedule Event 1 after time toff.

Thus combined applications (such as Extend) can model systems either discretely or
continuously. These hybrid applications combine all the features of both types of
modeling. Some systems, especially when a portion of the flow has a delay or wait time,
can be modeled as either discrete event or continuous. In this case, you choose how to
model the system based on the level of detail required. In general discrete event models
provide much more detail about the workings of a system than continuous models do.

3.5 The Uses of Simulation in Education

The use of simulated activities in education is widely becoming recognized as an
important tool in schools. Schools are finding that activities that promote learning tend to
meet the following criteria.

A. They are "real" or virtually real. They simulate some activity so well that real learning
takes place. In fact, the term "virtual reality" is now a widely recognized term and one
whose implications are important to education. Howard Rheingold's book Virtual Reality
deals with the technology that "...creates the completely convincing illusion that that one
is immersed in a world that exists only inside a computer." Rheingold details his tour
through countless situations in which virtual reality is being explored. Educators are not
known for having access to state of the art educational technology, but the principles of
virtual reality, applied appropriately, are within the grasp of most educators who are
serious about the work they do. Using the principles of virtual reality doesn't have to
involve the headpieces and the 3-D glasses described by Rheingold, but the concept of
simulating reality far educational purposes is an important one.

B They are "hands-on" so that students become participants, not just listeners or
observers.

Page 45 of 138

C. They are motivators. Student involvement in the activity is so great that interest in
learning more about the activity or the subject, matter of the activity develops.

D. They are age appropriate. Since simulations are designed, they can take into

consideration developmental age requirements.

E. They are inspirational. Student input is welcome and activities are designed to
encourage students to enhance the activity through their own ideas.

F. They are developmentally valid. Simulations take into account the developmental

level of the students.

G. They are empowering. Students take on responsible roles, find ways to succeed, and
develop problem- solving tools as a result of the nativity.

The use of simulations puts the teacher into a new role -- a role that is the inevitable
result of the evolution of the role of the teacher in education. Most teachers recognize that
their role is no longer that of a presenter of information and that students are no longer
sponges for facts.

3.6 Summary

Continuous simulations are analogous to a constant stream of fluid passing through a
pipe. The volume may increase or decrease, but the flow is continuous. In continuous
models, values change based directly on changes in time. These values reflect the state of
the modeled system at any particular time, and simulated time advances evenly from one
time-step to the next. For example, an airplane flying on autopilot represents a continuous
system since changes in state (such as position or velocity) change continuously with
respect to time. The time line for a continuous model is evenly spaced. Ordinary and
partially differential equation are extremely useful to model the behavior of the
continuous system. Complex differential equation whether ordinary or partial are
generally solved by using numerical techniques using digital computers. In discrete event
models, discrete entities change state as events occur in the simulation. Orders arriving,
parts being assembled, and customers calling are examples of discrete events. The state
of the model changes only when those events occur; the mere passing of time has no
direct effect. We can combine continuous and discrete event simulation and this
combination some times is called hybrid system simulation. Simulation is extremely
helpful in education and training as a learning tool where real learning environment is
either costly or dangerous to life, like fighter plane training.

3.7 Keywords

Modelling, discrete event simulation, continuous simulation, verification, validation,
system, Ordinary Differential Equation (ODE), Partial Differential Equation (PDE),
Initial Value Problem (IVP), Virtual Reality, Population Model.

Page 46 of 138

3.8 Self Assessment Questions

Q.1 A tank holds 1000 liters of water, in which 15 kg of salt is dissolved. Pure water
enters the tank at the rate of 10 liters per minute. The solution is kept thoroughly mixed
and is drained from the tank at the same rate. If m is the mass of salt in the tank at time t,
which of the following options describes the rate of change of the mass of salt in the
tank?

a.
100

15 m
dt
dm

−= b.
100
m

dt
dm

−=

c.
100
15

−=
dt
dm d.

1000
15 m

dt
dm −

=

Q.2 A tank holds 1000 liters of pure water. Brine which contains 0.05 kg of salt per liter
enters the tank at the rate of 5 liters per minute. The solution is kept thoroughly mixed
and is drained from the tank at the rate of 5 liters per minute. If m is the mass of salt in
the tank at time t, which of the following options describes the rate of change of the mass
of salt in the tank?

a.
200
m

dt
dm

−= b. 25.0=
dt
dm

c.
200

50 m
dt
dm −

= d.
200

05.0 m
dt
dm

−=

Q.3 Let P (t) is the population of a certain animal species. Assume that P(t) satisfies the
logistic growth equation

150)0(,
200

)(1)(2.0 =⎟
⎠
⎞

⎜
⎝
⎛ −= ytPtP

dt
dP

1. Is the above differential equation separable?
2. Is the differential equation autonomous?
3. Is the differential equation linear?
4. Without solving the differential equation, give a sketch of the graph of P(t).
5. What is the long-term behavior of the population P(t)?
6. Show that the solution is of the form

t

t

BeA
etP 2.0

2.0

)(
+

=

Find A and B.
Hint: Use the initial condition and the result of 5.
7. Where is the solution's inflection point?
Hint: This can be done without using the answer of 6.

Page 47 of 138

8. What is special about the growth rate of the population P(t) at the inflection point
(found in 7)?

Q.4 The fox squirrel is a small mammal native to the Rocky Mountains. These squirrels
are very territorial. Note the following observations:
if the population is large, their rate of growth decreases or even becomes negative;
if the population is too small, fertile adults run the risk of not being able to find suitable
mates, so again the rate of growth is negative
The carrying capacity N indicates when the population is too big, and the sparsity
parameter M indicates when the population is too small. A mathematical model, which
agrees with the above assumptions, is the modified logistic model

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛ −= 11

N
P

N
PkP

dt
dP

1. Find the equilibrium (critical) points. Classify them as, source, sink or node. Justify
your answers.
2. Sketch the slope-field.
3. Assume N=100 and M=1 and k = 1. Sketch the graph of the solution which satisfies
the initial condition y(0)=20.
4. Assume that squirrels are emigrating (from a certain region) with a fixed rate E. Write
down the new differential equation.
Also, discuss the equilibrium (critical) points under the parameter E. When do you
observe a bifurcation?

3.9 Reference /Suggested Reading

11. G.Gorden, “System Simulation”,PHI.
12. Erwin Kreyszig,” Advanced Engineering Mathematics”, Wiley

Page 48 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Prof. Dharminder Kumar
Lesson : Discrete System Simulation
Lesson No. : 04

Structure
4.0 Objective
4.1 Introduction
4.2 Time Graph Representation
4.3 Discrete Simulation
 4.3.1 Key Principles
4.4 Simulation Of Queuing System

4.4.1 The Single-Server Queue
4.4.2Queue Parameters
4.4.3 The Multi-Server Queue
4.4.4 Basic Queuing Relationships
4.5 SINGLE-SERVER QUEUES
4.6 MULTISERVER QUEUES
4.7 Performance Measures For Queuing Systems
4.7.1 Average Number Of Customers
4.7.2 Average Response Time
4.7.3Average Waiting Time
4.7.4 Throughput
4.7.5 General Comments
4.8 The Simulation Of Time Sharing Systems
4.9 Summary
4.10 Self Assessment Questions
4.11 References/Suggested Reading

Page 49 of 138

4.0 Objective

As we studied in previous few units that simulation is a powerful technique for solving

wide variety of problems. In this unit we will studied a discrete event simulation in more

detail. As we learn in unit I that the model used in discrete system simulation has a set of

numbers to represent the state of the system is called a state descriptor. We will also learn

about queuing simulation, which is very important aspect in discreet event simulation

along with simulation of time-sharing system.

4.1. Introduction

Simulation involves the development of descriptive computer models of a system and
exercising those models to predict the operational performance of the underlying system
being modeled. Systems that change with time, such as a gas station where cars come
and go (called dynamic systems) and involve randomness. Nobody can guess at exactly
which time the next car should arrive at the station, are good candidates for simulation.
Modeling complex dynamic systems theoretically need too many simplifications and the
emerging models may not be therefore valid.
Suppose we are interested in a gas station. We may describe the behavior of this system
graphically by plotting the number of cars in the station; the state of the system. Every
time a car arrives the graph increases by one unit while a departing car causes the graph
to drop one unit. This graph (called sample path), could be obtained from observation of
a real station, but could also be artificially constructed. Such artificial construction and
the analysis of the resulting sample path (or more sample paths in more complex cases)
consist of the simulation.

4.2 Time Graph Representation

Every System based on the change of time. So in a system model time counting is a
crucial thing. In a graph time is recorded by a number called clock time or time counter.
Initially it is set on zero. Two basic methods exits for updating clock time.

1. Time Slicing: Advances the model by a fixed amount each time, regardless of the
absence of any events to carry out.

2. Next Event: Advances the model to the next event to be executed, regardless of the
time interval. This method is more efficient than Time Slicing, especially where events

Page 50 of 138

are infrequent, but can be confusing when being represented graphically (processes that
take different times will appear to happen in the same time frame if the stop event is the
next event after the start event).
The first method is called “Interval-oriented” and another one is called “Event-oriented”.
Since the early 1960's, Simulation has been one of many methods used to aid strategic
decision-making within industry. Its main strength lies in the ability to imitate complex
real world problems and to analyze the behaviour of the system as time progresses.

4.3 Discrete Simulation

We already learned in unit I, in the classification of simulation, that simulation can be of

• Continuous Simulation and
• Discrete Simulation.

What is Discrete Simulation? The Oxford English Dictionary describes Discrete
Simulation as:

"The technique of imitating the behaviour of some situation or system (Economic, Mechanical etc.) by means of an analogous
model, situation, or apparatus, either to gain information more conveniently or to train personnel."

 In some systems the state changes all the time, not just at the time of some discrete
events. For example, the water level in a reservoir with given in and outflows may
change all the time. In such cases "continuous simulation" is more appropriate, although
discrete event simulation can serve as an approximation. When the number of events is
finite, we call the simulation "discrete event."
Discrete event Simulation is a powerful computing technique for understanding the
behavior of systems. The particular nature of the system and the properties we wish to
understand can vary. Here are three examples:
1. A natural scientist may be interested in a system of wolves and sheep, where the

number of wolves changes with a constant birth rate and a death rate that is inversely
proportional to the number of sheep, and the number of sheep changes with a constant
birth rate and a death rate that is directly proportional to the number of wolves. The
scientist would like to know the following: Do the number of wolves and the number
of sheep stabilize in the long run, and if so to what values? Or do they vary cyclically,
and if so with what period and phase?

2. A computer scientist may be interested in a system of jobs that circulate in a network
of servers (e.g., CPU’s and I/O devices). The computer scientist would like to know
whether a particular server is a ‘‘bottleneck’’, i.e., in the long run, is that server
always busy while the other servers are mostly idle.

3. A classical system example is a queuing system with a single server. Here, customers
arrive with certain service requirements, get served in some order, say first-come-
first-served, and depart when their service is completed. Note that a customer who
arrives when the server is busy has to wait (in a queue). For this system, we would
like to determine the average waiting time for customers, the average number of
customers in the system, the fraction of time the server is busy, etc.

Page 51 of 138

Simulations may be performed manually. Most often, however, the system model is
written either as a computer program as some kind of input into simulator software. The
Figure 1 below shows the key stages in using Discrete Event Simulation. It can be noted
that this bears a strong resemblance to other simulation techniques and other analysis
program development methodologies

Data
Collection

(Incremental)
Build Initial test Experiments

Three key stages used in Discrete Event Simulation

Modification/Refinements

Figure 1: Key Stages in Using Discrete Event Simulation

4.3.1 Key Principles

Although, discrete event simulation could conceivably be carried out by hand it can be
computationally intensive, therefore will invariably involve computers and software. The
software could be a high level programming language such as Pascal, C++ or any
specialized simulation language. The five key features found in the software simulation
model are:
1. Entities: Representations of real-life elements e.g. in manufacturing these could be
parts or machines.
2. Relationships: Link entities together e.g. a part may be processed by a machine.
3. Simulation Executive: Responsible for controlling the time advance and executing
discrete events.
4. Random Number Generator: Helps to simulate different data coming into the
simulation model. Important that the random data can be reproduced in different
simulation runs.
5. Results & Statistics: Important in validating the model and for providing performance
measures.

There are also three approaches to describing the discrete simulation, see the Figure 2 .

1. Event: This approach describes an instantaneous change, usually from a stop event to
a start event. This is the most common one used, easy to understand and efficient and is
acceptable to implement.

2. Activities: Represents duration. Essentially groups a number of events in order to
describe an activity carried out by an entity e.g. a machine loading. This approach is easy
to understand and to implement but is not efficient.

Page 52 of 138

3. Process: This approach groups activities to describe the life cycle of an entity e.g. a
machine. This is less common and more difficult to plan and implement, but is generally
thought to be the most efficient.

Load Machine Run Unload

Time

Activity

Process

Start
Event

Stop
Event

Figure 2: Three Approaches to Describing the Discrete Simulation

A Simple Example: Building a simulation of gas station with a single pump served by a
single service man. Assume that arrival of cars as well their service times are random. At
first identify the:

1. states: number of cars waiting for service and number of cars served at any
moment

2. events: arrival of cars, start of service, end of service
3. entities: these are the cars
4. queue: the queue of cars in front of the pump, waiting for service
5. random realizations: inter-arrival times, service times
6. distributions: we shall assume exponential distributions for both the inter-arrival

time and service time.

Next, specify what to do at each event. The above example would look like this: At event
of entity arrival: Create next arrival. If the server is free, send entity for start of service.
Otherwise it joins the queue. At event of service start: Server becomes occupied.
Schedule end of service for this entity. At event of service end: Server becomes free. If
any entities waiting in queue: remove first entity from the queue; send it for start of
service. Some initiation is still required, for example, the creation of the first arrival.
Lastly, the above is translated into code. This is easy with an appropriate library, which
has subroutines for creation, scheduling, and proper timing of events, queue
manipulations, random variable generation and statistics collection.

Page 53 of 138

Discrete simulation is a technique where the simulation is advanced from event time to

event time rather than using a continuously advancing time clock as in continuous

simulation. Suppose we consider the example of the interaction of the principle and

interest associated with a savings account. This can be represented by a systems thinking

diagram, Figure 3, as follows:

Intrest
Rate

Intrest
S S

Principal
S S

Q
Withdraw

Deposit

Figure 3: Interaction of the Principle and Interest

This diagram indicates that Deposits increase the Principal and Withdraws decrease the
Principal. Also, the Principal interacts with the Interest Rate on some periodic basis to
create Interest. The Interest then serves to increase the Principal. If we then turn this
into a 10-year simulation with the assumptions that the Principal is initially 100, there
are no Deposits or Withdraws, and an Interest Rate of 5% is paid once a year it might
look like this in Extend.
If we draw the graph between principal and time (year) of running the model for 10
years. Note that the Interest is computed and added to the Principal at the end of each
year and the discrete nature of the simulation is very evident.

4.4 Simulation of Queuing System

A queue is waiting line for service i.e the combination of all entities in the system-those
being served, and those waiting for service-will be called a queue. People, cars, trucks,
ships, T.V’s, arrive at a certain place to be serviced in some way. The important
parameters in a queuing system are:

1. The arrival pattern of customers
2. The service pattern
3. The no. of servers
4. The queue discipline

4.4.1 The Single-Server Queue

The simplest queuing system is depicted in Figure 4. The central element of the system is
a server, which provides some service to items. Items from some population of items

Page 54 of 138

arrive at the system to be served. If the server is idle, an item is served immediately.
Otherwise, an arriving item joins a waiting line (The waiting line is referred to as a queue
in some treatments in the literature; it is also common to refer to the entire system as a
queue. Unless otherwise noted, we use the term queue to mean waiting line). When the
server has completed serving an item, the item departs. If there are items waiting in the
queue, one is immediately dispatched to the server. The server in this model can represent
anything that performs some function or service for a collection of items. Examples: a
processor provides service to processes; a transmission line provides a transmission
service to packets or frames of data; an I/O device provides a read or writes service for
I/O requests. The Single-Server Queue is described in more detail in section 4.5 of this
unit.

ServerArrivals Dispatching Discipline

Waiting line(queue)

λ=arrival rate

w=Item waiting

Tw=Waiting time

TS=Service time

ρ=Utilisation

r=items resident in queuing System
Tr=residence time

Departures

Figure: 4 Queuing System Structure and Parameters for Single-server Queue

4.4.2Queue Parameters

Figure 4 also illustrates some important parameters associated with a queuing model.
Items arrive at the facility at some average rate (items arriving per second) λ. At any
given time, a certain number of items will be waiting in the queue (zero or more); the
average number waiting is w, and the mean time that an item must wait is Tw. Tw is
averaged over all incoming items, including those that do not wait at all. The server
handles incoming items with an average service time Ts; this is the time interval between
the dispatching of an item to the server and the departure of that item from the server.
Utilization, ρ, is the fraction of time that the server is busy, measured over some interval
of time. Finally, two parameters apply to the system as a whole. The average number of
items resident in the system, including the item being served (if any) and the items
waiting (if any), is r; and the average time that an item spends in the system, waiting and
being served, is Tr; we refer to this as the mean residence time.

If we assume that the capacity of the queue is infinite, then no items are ever lost from
the system; they are just delayed until they can be served. Under these circumstances, the
departure rate equals the arrival rate. As the arrival rate, which is the rate of traffic
passing through the system, increases, and the utilization increases and with it,

Page 55 of 138

congestion. The queue becomes longer, increasing waiting time. At ρ = 1, the server
becomes saturated, working 100% of the time. Thus, the theoretical maximum input rate
that can be handled by the system is:

ST
1

max
=λ

However, queues become very large near system saturation, growing without bound

when ρ = 1. Practical considerations, such as response time requirements or buffer sizes,

usually limit the input rate for a single server to 70-90% of the theoretical maximum. To

proceed, we need to make some assumption about this model:

• Item population: Typically, we assume an infinite population. This means that the
arrival rate is not altered by the loss of population. If the population is finite, then the
number of items reduces the population available for arrival currently in the system;
this would typically reduce the arrival rate proportionally.

• Queue size: Typically, we assume an infinite queue size. Thus, the waiting line can
grow without bound. With a finite queue, it is possible for items to be lost from the
system. In practice, any queue is finite. In many cases, this will make no substantive
difference to the analysis. We address this issue briefly, below.

• Dispatching discipline: When the server becomes free, and if there is more than one
item waiting, a decision must be made as to which item to dispatch next. The simplest
approach is first in, first out; this discipline is what is normally implied when the term
queue is used. Another possibility is last in, first out. One that you might encounter in
practice is a dispatching discipline based on service time. For example, a packet-
switching node may choose to dispatch packets on the basis of shortest first (to
generate the most outgoing packets) or longest first (to minimize processing time
relative to transmission time). Unfortunately, a discipline based on service time is
very difficult to model analytically.

Table 1 and Table 2 summarizes the notation that is used in Figure 4 and introduces some
other parameters that are useful. In particular, we are often interested in the variability of
various parameters, and this is neatly captured in the standard deviation.

Table 1 Notation for Queuing Systems

λ = arrival rate; mean number of arrivals per second
Ts = mean service time for each arrival; amount of time being served, not counting

time waiting in the queue
σTs = standard deviation of service time

ρ = utilization; fraction of time facility (server or servers) is busy
u = traffic intensity
r = mean number of items in system, waiting and being served (residence time)

Page 56 of 138

R = number of items in system, waiting and being served
Tr = mean time an item spends in system (residence time)
TR = time an item spends in system (residence time)
σr = standard deviation of r
σTr = standard deviation of Tr
w = mean number of items waiting to be served
σw = standard deviation of w
Tw = mean waiting time (including items that have to wait and items with waiting

time = 0)
Td = mean waiting time for items that have to wait
N = number of servers
mx(y) = the yth percentile; that value of y below which x occurs y percent of the time

Table 2 Some Basic Queuing Relationships
General Single Server Multi-server

rTr λ= Little's formula
wTw λ= Little's formula

Swr TTT +=

STλρ =
ρ+= wr

N
TSλ

ρ =

 NTu S ρλ ==
 ρNwr +=

4.4.3 The Multi-Server Queue

Figure 5 shows a generalization of the simple model we have been discussing for
multiple servers, all sharing a common queue. If an item arrives and at least one server is
available, then the item is immediately dispatched to that server. It is assumed that all
servers are identical; thus, if more than one server is available, it makes no difference
which server is chosen for the item. If all servers are busy, a queue begins to form. As
soon as one server becomes free, an item is dispatched from the queue using the
dispatching discipline in force.
 With the exception of utilization, all of the parameters illustrated in Figure 4 carry over
to the multiserver case with the same interpretation. If we have N identical servers, then ρ
is the utilization of each server, and we can consider Nρ to be the utilization of the entire
system; this latter term is often referred to as the traffic intensity, u. Thus, the theoretical
maximum utilization is N *100%, and the theoretical maximum input rate is:

ST

N
=λ max

The key characteristics typically chosen for the multi-server queue correspond to those
for the single-server queue. That is, we assume an infinite population and an infinite

Page 57 of 138

queue size, with a single infinite queue shared among all servers. Unless otherwise stated,
the dispatching discipline is FIFO. For the multi-server case, if all servers are assumed
identical, the selection of a particular server for a waiting item has no effect on service
time.

Arrivals
Dispatching
DisciplineWaiting line(queue)

λ=arrival rate

Departures
λ/N

λ/N

λ/N

Server1

Server2

Server N

 Figure 5: Multi-server queue

Server1

Arrivals

Queue

λ= arrival rate Server2

Server N

Queue

Queue

Departures

λ/N

λ/Nλ/N

λ/N

Figure 6: Multi server Versus Multiple Single-server Queues

By way of contrast, Figure 6 shows the structure of multiple single-server queues. As we
shall see, this apparently minor change in structure has a significant impact on
performance. The Multi-Server Queue is described in more detail in section 4.6 of this
unit.

4.4.4 Basic Queuing Relationships

To proceed much further, we are going to have to make some simplifying assumptions.
These assumptions risk making the models less valid for various real-world situations.
Fortunately, in most cases, the results will be sufficiently accurate for planning and
design purposes. There are, however, some relationships that are true in the general case,

Page 58 of 138

and these are illustrated in Table 2. By themselves, these relationships are not particularly
helpful.

Assumptions

The fundamental task of a queuing analysis is as follows: Given the following
information as input:

• Arrival rate
• Service time

Provide as output information concerning:
• Items waiting
• Waiting time
• Items in residence
• Residence time.

What specifically would we like to know about these outputs? Certainly we would like to
know their average values (w, Tw, r, Tr). In addition, it would be useful to know
something about their variability. Thus, the standard deviation of each would be useful
()

rW TrTw σσσσ ,,, . Other measures may also be useful. For example, to design a buffer
associated with a bridge or multiplexer, it might be useful to know for what buffer size
the probability of overflow is less than 0.001. That is, what is the value of M such that
Pr [items waiting < M] = 0.999?
To answer such questions in general requires complete knowledge of the probability
distribution of the arrival rate and service time. Furthermore, even with that knowledge,
the resulting formulas are exceedingly complex. Thus, to make the problem tractable, we
need to make some simplifying assumptions.

The most important of these assumptions is that the arrival rate obeys the Poisson
distribution, which is equivalent to saying that the inter arrival times are exponential,

which is equivalent to saying that the arrivals occur randomly and independent of one

another. This assumption is almost invariably made. Without it, most queuing analysis is

impractical. With this assumption, it turns out that many useful results can be obtained if

only the mean and standard deviation of the arrival rate and service time are known.

Matters can be made even simpler and more detailed results can be obtained if it is

assumed that the service time is exponential or constant.

A convenient notation has been developed for summarizing the principal assumptions
that are made in developing a queuing model. The notation is X/Y/N, where X refers to
the distribution of the inter-arrival times, Y refers to the distribution of service times, and
N refers to the number of servers. The most common distributions are denoted as follows:

Page 59 of 138

G = general independent arrivals or service times
M = negative exponential distribution
D = deterministic arrivals or fixed length service.

Thus, M/M/1 refers to a single-server queuing model with Poisson arrivals and
exponential service times.

4.5 SINGLE-SERVER QUEUES

Table 3 (column a) provides some equations for single server queues that follow the
M/G/1 model. That is, the arrival rate is Poisson and the service time is general. Making
use of a scaling factor, A, the equations for some of the key output variables is
straightforward. Note that the key factor in the scaling parameter is the ratio of the
standard deviation of service time to the mean. No other information about the service
time is needed. Two special cases are of some interest. When the standard deviation is
equal to the mean, the service time distribution is exponential (M/M/1). This is the
simplest case and the easiest one for calculating results. Table 3 (column b) shows the
simplified versions of equations for the standard deviation of r and Tr, plus some other
parameters of interest. The other interesting case is a standard deviation of service time
equal to zero, that is, a constant service time (M/D/1). The corresponding equations are
shown in Table 3(column c).

Figures 4 and 5 plot values of average queue size and residence time versus
utilization for three values of T ST S

/σ . This latter quantity is known as the coefficient

of variation, and gives a normalized measure of variability. Note that the poorest
performance is exhibited by the exponential service time, and the best by a constant
service time. Usually, one can consider the exponential service time to be a worst case.
An analysis based on this assumption will give conservative results. This is nice, because
tables are available for the M/M/1 case and values can be looked up quickly.
What value of T ST S

/σ is one likely to encounter? We can consider four regions:

• Zero: This is the rare case of constant service time. For example, if all transmitted
messages are of the same length, they would fit this category.

• Ratio less than 1: Because this ratio is better than the exponential case, using

M/M/1 tables will give queue sizes and times that are slightly larger than
they should be. Using the M/M/1 model would give answers on the safe
side. An example of this category might be a data entry application for a
particular form.

• Ratio close to 1: This is a common occurrence and corresponds to exponential

service time. That is, service times are essentially random. Consider
message lengths to a computer terminal: a full screen might be 1920
characters, with message sizes varying over the full range. Airline
reservations, file lookups on inquires, shared LAN, and packet-switching
networks are examples of systems that often fit this category.

Page 60 of 138

• Ratio greater then 1: If you observe this, you need to use the M/G/1 model and
not rely on the M/M/1 model. A common occurrence of this is a bimodal
distribution, with a wide spread between the peaks. An example is a
system that experiences many short messages, many long messages, and
few in between.

The same consideration applies to the arrival rate. For a Poisson arrival rate, the
inter-arrival times are exponential, and the ratio of standard deviation to mean is 1. If the
observed ratio is much less than 1, then arrivals tend to be evenly spaced (not much
variability), and the Poisson assumption will overestimate queue sizes and delays. On the
other hand, if the ratio is greater than 1, then arrivals tend to cluster and congestion
becomes more acute.

Table 3 Formulas for Single-Server Queues
Assumptions: 1. Poisson arrival rate.

2. Dispatching discipline does not give preference to items based on service
times.
3. Formulas for standard deviation assume first-in, first-out dispatching.
4. No items are discarded from the queue.

a. General

Service
 Times (M/G/1)

(b) Exponential Service
Times (M/M/1)

(c) Constant Service
Times (M/D/1)

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=Α

2

1
2
1

S

T

T
S

σ

()ρ
ρρ
−

+=
1

2 Ar

ρ
ρ
−

=
1

2 Aw

ρ
ρ

−
+=

1
AT

TT S
Sr

ρ
ρ

−
=

1
AT

T S
w

ρ
ρ
−

=
1

r
ρ

ρ
−

=
1

2

w

ρ−
=

1
S

r
T

T
ρ

ρ
−

=
1

S
w

T
T

ρ
ρ

σ
−

=
1r

ρ
σ

−
=

1
S

T
T

r

[] () NNR ρρ−== 1Pr

[] ()∑
=

−=<=
N

i

iNR
0

1Pr ρρ

[] () STt
R eTT /11Pr ρ−−−=<=

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×=
y

Tym rTr 100
100ln

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×=
y

T
ym w

Tr 100
100ln ρ

ρ

() ρ
ρ

ρ
+

−
=

12

2

r

()ρ
ρ
−

=
12

2

w

()
()ρ

ρ
−
−

=
12
2S

r
T

T

()ρ
ρ

−
=

12
S

w
T

T

126
5

2
3

1
1 432 ρρρρ

ρ
σ −+−

−
=r

1231

2ρρ
ρ

σ −
−

= S
T

T
r

Page 61 of 138

M
ea

n
Q

ue
ue

 S
iz

e(
r)

Figure 7: Mean Queue Size for Single-Server Queue

 Figure 8: Mean Residence time for Single-server queue.

4.6 MULTISERVER QUEUES

Table 4 lists formulas for some key parameters for the multi-server case. Note the
restrictiveness f the assumptions. Useful congestion statistics for this model have been
obtained only for the case of M/M/N, where the exponential service times are identical
for the N servers.

Page 62 of 138

 Table 4 Formulas for Multi-server Queues (M/M/N)
Assumptions:

1. Poisson arrival rate.
2. Exponential service times

 3. All servers equally loaded
4. All servers have same mean service time
5. First-in, first-out dispatching

 6. No items are discarded from the queue

()

∑

∑
−

=

−

==
1

0

1

0

!
)(

!
N

I

I

N

I

I

I
N
I

N

K
ρ

ρ

 Poisson ratio function

Erlang-C function=Probability that all servers are busy =
K

KC
ρ−

−
=

1
1

ρ
ρ

ρ NCr +
−

=
1

ρ

ρ
−

=
1

Cw

S
S

r T
T

N
CT +

−
=

ρ1

ρ−
=

1
S

w
T

N
CT

() () ()22 12
1

ρ
ρ

σ −+−
−

= NCC
N

TS
Tr

() ()ρρρ
ρ

σ CCw −+
−

= 1
1

1

[] () STtN
W CetT /1Pr ρ−−=>

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

×
−

=
y

C
N

T
ym S

TW 100
100ln

1 ρ

ρ−
=

1
1 S

d
T

N
T

4.7 Performance Measures for Queuing Systems

Consider the queuing system with a single server mentioned in section 1.6. Let customer
n denote the nth customer to arrive at the queuing system, for n = 1, 2,

Let us represent the state of the system by the queue of customers in the system, in the
order of their arrival. For example, < 3, 4, 5 > means that customers 3, 4 and 5 are in the
system by convention, the head of the queue is at the left. If the queue is not empty, then
the customer at the head is being served. We use <> to denote an empty queue.

Page 63 of 138

Let the events of the system be Arrival(n) denoting the arrival of customer n, and
Departure(n) denoting the departure of customer n. (This assumes that if a customer
completes service when other customers are waiting then the next customer’s service is
started immediately; otherwise, we would need another event representing the start of
service.)

Let S(n) denote the service time of customer n; i.e., customer n requires the server’s
attention for S(n) seconds (Without loss of generality, we assume that time units are
seconds.) Let TA(n) denote the arrival time of the customer n.

The following sequence represents an evolution of the system, assuming that S(n) equals
2.0 seconds for all n, and TA(n) equals 2.5n- 2. 5 seconds for odd n and 2.5n-4 seconds
for even n (i.e., customers arrive at times0. 0, 1. 0, 5. 0, 6. 0, 10. 0, 11. 0, ...). For
readability, each element of the evolution is listed on a new line. (Observe that the system
evolution is cyclic with a period of 5 seconds.)

States Event Occurrence time
< >

Arrival(1) 0.0
<1>

Arrival(2) 1.0
<1, 2>

Departure(1) 2.0
<2>

Departure(2) 4.0
< >

Arrival(3) 5.0
<3>

Arrival(4) 6.0
<3, 4>

Departure(3) 7.0
<4>

•
•
•

A queuing system has many performance measures of interest. We will look at

some of them, namely, (1) the average number of customers (also called average system
size), (2) the average response time, (3) the average waiting time, and (4) the throughput.

4.7.1 Average Number of Customers

Let N(t) denote the number of customers in the system at time t. N(t) is an integer-valued
discontinuous function that increases by 1 at each arrival and decreases by 1 at each
departure. The following graph shows N(t) versus t.

Page 64 of 138

 Fig: 9 Response graph of customer 1 and 2

For a given evolution, the average number of customers in the system, which we shall
denote by N, is define to be the average of N(t) over time for the evolution. Formally, if
the time duration of the evolution is T seconds,
Then

 ()∫=
T

dttN
T

N
0

1

To illustrate, let us consider the evolution of our queuing system until just after the
departure of customer 2. For this evolution, N equals 1.25. (It is obtained as follows.

Customer 2 departs at time 4. ()∫
4

0

dttN (Which is the area under N(t) from time 0 to 4)

equals 5. Thus, the average system size is, ()∫
5

4

dttN (which is the area under N(t) from

time 4 to 5) equals 1.25.)

In general, we want the ‘‘steady-state’’ value of N, i.e., N for extremely ‘‘long’’
evolutions. Formally, we want

()∫∞→=
T

T dttN
T

LimN
0

1

In the above queuing example, the steady-state N equals 1.0. (We can obtain it
easily by noting that the evolution repeats itself every 5 seconds. Thus, it is sufficient to

obtain N for any contiguous 5 second interval, such as [0, 5]. ()∫
5

0

dttN equals 5. Thus, the

average system size is, ()∫
5

5

dttN (which is the area under N(t) from time 5 to 5) equals

1.0.)

4.7.2 Average Response Time

Page 65 of 138

The response time of customer n, denoted by Rn, is the time spent by the customer in the
system. For a given evolution, the average response time, which we shall denote by R, is
the average of the Rn’s for the customers departing in the evolution. Formally, if K
customers depart in the evolution, then

∑
=

K

i
iR

K 0

1

To illustrate, let us consider the evolution of our queuing system until just after the
departure of customer 2. For this evolution, R equals 2.5. (It is obtained as follows. There
are two departures in this simulation, namely customers 1 and 2. The response time of
customer 1 is 2.0 seconds. The response time of customer 2 is 3.0 seconds. Thus, the

average response time is,
0.30.2

2

+

 which equals 2.5.)

In general, we want the ‘‘steady-state’’ R, i.e., for extremely ‘‘long’’ evolutions. That is,
we want

∑
=

∞→=
K

i
iK R

K
LimR

0

1

For the above queuing example, Rn equals 2.0 seconds for odd n and 3.0 seconds for even
n. Thus steady-state R equals 2.5 seconds per customer.

4.7.3Average Waiting Time

The waiting time of customer n, denoted by Rn n, is defined by Sn = Rn - Sn. For an
evolution, the average waiting time, denoted W, is the average of the Wn’s for the
customers departing in the evolution. (For the above evolution, the steady-state W equals
0.5 seconds per customer.)

4.7.4 Throughput

For an evolution, the throughput, denoted by X, indicates the number of departures over
the total time of the evolution. (For the above evolution, the steady-state X equals 0.4
customers per second.)

4.7.5 General Comments

Note that R and W are customer averages, whereas N and X are time averages. In general,
when we refer to a performance measure we mean its steady-state value, unless otherwise
mentioned. Note that the steady-state averages do not always exist. For example in the
above queuing system, if Sn were greater than 2.5, R, W, N would not exist.
The input parameters of the above queuing system are {Sn} and {TAn}. In the above
description, we have described them deterministically. As mentioned in Section 1, we
typically want to describe them probabilistically.

Page 66 of 138

For example, instead of having Sn equal 2.0 seconds for all n, we may want Sn to
be a value between 1.7 to 2.3 seconds, such that each value in the range is chosen with
uniform probability and successive values of Sn are chosen independently.

Observe that the above values for N, R and X satisfy the following:
N = R × X

This is not a coincidence. In fact, this is a very important relationship, called Little’s
Law. It holds for any general system in steady state!

4.8 The Simulation of Time Sharing Systems

Multiprogrammed batched system provides an environment where various system
resources are utilized effectively. Time-sharing, or Multitasking, is logical extension of
multiprogramming. Multiple jobs are executed by CPU switching between them, but the
switches occur so frequently that the user may interact with each program while it is
running.
 Time-sharing systems were developed to provide interactive use of a computer
system at a reasonable cost. A time sharing system uses CPU scheduling and
multiprogramming to provide each user with a small portion of a time shared system.
Each user has at least one separate program in memory. A time shared operating system
allows the many user to share the computer simultaneously. As the system switches
rapidly from one user to the next, each user is given the impression that she has her own
computer, whereas actually one computer is being shared among many users. Time-
shared operating systems are even more complex then are multiprogrammed operating
systems.
 Multiprogramming and time sharing system are the central term of modern
operating systems. Here we present the one example of simulation of time sharing
system.
One such example is the SimOS simulation environment developed by Stanford
University SimOS is an environment for studying the hardware and software of computer
systems.SimOS simulates the hardware of a computer system in enough detail to boot a
commercial operating system and run realistic workloads on top of it. SimOS includes
multiple interchangeable simulation models for each hardware component. By selecting
the appropriate combination of simulation models, the user can explicitly control the
tradeoff between simulation speed and simulation detail. To handle the large amount of
low-level data generated by the hardware simulation models, SimOS contains flexible
annotation and event classification mechanisms that map the data back to concepts
meaningful to the user. SimOS has been extensively used to study new computer
hardware designs, to analyze application performance, and to study operating systems.
SimOS is a machine simulation environment designed to study large complex computer
systems. SimOS differs from most simulation tools in that it simulates the complete
hardware of the computer system. SimOS simulates the computer hardware with
sufficient speed and detail to run existing system software and application programs. For
example, the current version of SimOS simulates the hardware of multiprocessor
computer systems in enough detail to boot, run, and study Silicon Graphics’ IRIX
operating system as well as any application that runs on it, such as parallel compilation
and commercial relational database systems. Despite its name, SimOS does not model an

Page 67 of 138

operating system or any application software, but rather models the hardware components
of the target machine. SimOS contains software simulation of all the hardware
components of modern computer systems: processors, memory management units
(MMU), caches, memory systems, as well as I/O devices such as SCSI disks, Ethernets,
hardware clocks, and consoles. SimOS currently simulates the hardware of MIPS-based
multiprocessors in enough detail to boot and run an essentially unmodified version of
commercial operating system, Silicon Graphics’ IRIX.

4.9 Summary

 Discrete event Simulation is a powerful computing technique for understanding the
behavior of systems. A discrete event is something that occurs at an instant of time. For
example, pushing an elevator button, starting of a motor, stopping of a motor, and turning
on a light, are all discrete events because there is an instant of time at which each occurs.
Activities such as moving a train from point A to point B are not discrete events because
they have a time duration. Every System based on the change of time. So discrete event
simulation is a set of circumstances. It is possible that two different event s occur
simultaneously. The purpose of a discrete event simulation is to study a complex system
by computing the times that would be associated with real events in a real-life situation.
Two basic methods exits for updating clock time. The first method is called “Interval-
oriented” and another one is called “Event-oriented”. Simulation has many types. But
most important are Discrete Simulation and Continuous Simulation. Basically the five
key features found in the software simulation model. There are also three approaches to
describing the discrete simulation. Well-known examples of Simulation are Flight
Simulators, Fleet Management and Business games. However, there are a large number
of potential areas for Discrete Event Simulation. The combination of all entities in the
system-those being served, and those waiting for service-will be called a queue and
system is called queuing system. Mainly two type of queuing system we face single
server, and multi-server queuing system.

4.9 Key words

Discrete system simulation, Event-oriented, Interval-oriented, Queuing Systems, Single-
Server Queue, Queue Parameters, Item population, Queue size, Dispatching discipline
The Multi-server Queue, Basic Queuing Relationships, Little’s Law,Time Sharing
System.

4.10 Self-Assessment Questions

Q.1 What is meant by the “System State” in a simulation.

Hint: The system state is the information needed to fully describe the system at any point
in time. It is the set of values of all state variables in the system, the state variables being
the attributes of all the entities (or objects of interest) in the system.

Page 68 of 138

Q.2 The customer arrival process at a particular store is exponentially distributed with a
mean arrival rate of 3 customers per hour. No customers have arrived in the last 5 hours.
How many customers are expected to arrive in the next hour?

Hint :3, the expected number of future arrivals is independent of the past arrivals and, in
particular, the time since the last arrival.

Q.3 A certain college has 5 printers in the computer room for the use of the college’s
1500 undergraduate and 2000 graduate students. Print jobs arrive uniformly during the
day and have an exponentially distributed page count. They are spooled on a single hard
disk while waiting for the first printer to be available. In the standard notation of queuing
systems, how would this queuing system be characterized? (e.g., as an M/M/1 queue? Or
some other type?)

Hint: G/M/5/N/3500: General arrival, exponential service (assuming service time ~
length), 5 servers, a limit of N jobs in the queue (it has to be finite, based on the hard
disk) and 3500 students in the population (again, finite). The hard disk is not a server, the
printers are the servers, so c = 5, not 1.

Q.4 You observe the behavior graphed below in a queuing system. What observation can
you make about r?

Te
xt)(tL

Q

t

Hint: The queue length is growing, apparently without bound. The server utilization, r, is
probably greater than 1.

Page 69 of 138

Q.5 Assuming an exponentially distributed service time, which queuing discipline is
likely to have the shortest average waiting time: FIFO, LIFO, Priority, or SPT?

Hint: SPT (Shortest Processing First) will most often have the shortest average waiting
time, since the server can process a large number of short jobs first. The longer jobs move
to the rear of the queue and, although they will have longer waiting times, there are far
fewer of them for exponentially distributed service times.

Q.6 An arrival event occurs in a queuing system when the queue is not empty. What
observation can you make about the status of the server?

Hint: It must be busy. If it were idle, it would have taken a waiting customer from the
queue.

Q.7 What are two events that can cause a change in a queuing system’s state?
Hint: Customer arrival, service completion (customer departure)

Q.8 We are simulating a packet switching system, where a linked list is being used to
simulate the input buffer that stores one character per list record. The list contents at one
point in time are shown in the table below. What is the data stored in the buffer if the
“head” pointer value is 2?

Array Position Record Next
1 space 5
2 C 7
3 C 11
4 E 3
5 I 6
6 N 2
7 O 9
8 R 4
9 R 8
10 S 4
11 T 11

Q.9 You are using a simulation to study the steady-state average waiting time of
customers in a complex system. However, you find that, because of the simulation
complexity, the computer time needed to arrive at a steady-state value is excessive,
leading to poor estimates of the steady-state values. How might you improve the speed at
which the simulation converges?

Hint Use an observation of real system to predict the average queue length. Use this as a
starting position for the simulation. Alternatively, you could use prior steady-state values

as initial conditions for future simulations. As a third alternative, you could create a

Page 70 of 138

simpler, faster simulation to estimate the steady-state values and use these as starting

conditions.

Q.10 The Third National Bank of Podunk has 6 tellers with an exponentially distributed
service rate with a mean of 5 minutes. Customers arrive at the bank with exponentially
distributed inter arrival times with an average inter arrival time of 1 minute. There is a
single queue for customers to wait in, but the queue is restricted to 20 customers. What
observation can you make about the departure rate of customers from the bank?

Hint The system has a limited queue length. Utilization of the tellers is high, but less than
1 – the average utilization is λ/(c*μ)=5/6. The effective arrival rate λe is reduced by
customers who are turned away, so the departure rate must be reduced as well. Extra
credit for calculating the actual departure rate. This would be λ*(1-PN) where N=20.

0.
!.

P
cc
aP cN

N

N −= ,PN = 7.929×10-3

λρ =λ.(1- PN) ,λρ

Q.11 For the Third National Bank example in problem 10, what is the probability that a
customer shows up at the bank and is immediately served?

Hint :This is an M/M/c/N queue. We can calculate P0 to find the chance of no wait time
C = 0 , λ =1 , μ = 1/5 , a = λ / μ, N = 20
ρ = λ / c.μ , ρ=0.083

1

1 1
0 !!

1
−

= +=

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∑ ∑

c

n

N

cn

cn
cn

c
a

n
aP ρ P0 = 4.691×10-3

Q.12 Customers calls arrive at a software support center with exponentially distributed
inter arrival times with an average time between arrivals of 15 minutes. What is the
probability that 5 customers will arrive between 1 and 2:30 p.m.?

Hint: Customer arrival process is exponential with arrival rate λ = 4/hour. This means
that the number of customers arriving in a given time period is Poisson distributed.

[]
[]

!
)()(

)()(

n
ensNtNP

nstst −−−

==−
λλ

the probability of 5 arrivals in 11/2 hous is : 1606.
120

7776*0025.
!5

]6[56

==
−e

4.11 References/ Suggested Readings

Page 71 of 138

1. Emshoff, J.R.and R.L.Sisson, Desing and Use of Computer Simulation Models,

Macmillan Co. New York, 1970.
2. G.Gordon. “System Simulation”,PHI.
3. N.Ddeo, ‘System Simulation with Digital Computer”,PHI.
4. Ball, P.: 'Introduction to Discrete Event Simulation', University of Strathclyde.
5. Pidd, M.: 'Computer Simulation in Management Science', John Wiley & Sons,

Inc.
6. Robinson, S.: 'Successful Simulation: A Practical Approach to Simulation

Projects', McGraw-Hill International (UK) Ltd.
7. Mendel Rosenblum , Edouard Bugnion , Scott Devine , and Stephen A Herrod ,”

Using the SimOS Machine Simulator to Study Complex Computer Systems”,
Computer Systems Laboratory, Stanford University.

Page 72 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Dr. Pradeep Bhatia
Lesson : Continuous Simulation
 Lesson No. : 05

Structure
5.0 Objective
5.1 Introduction
5.2 Continuous Simulation
 5.2.1 Examples Related to Continuous Simulation
 5.2.2 Why do we use Continuous Simulation?
5.3 The Uses of Simulation
5.4 Summary
5.5. Keywords
5.6 Self Assessments Questions
5.7 References/Suggested Reading

5.0 Objective

Up to last few units we have studied that simulation is of two kinds, discrete and continuous. In last unit we
already know about discrete event simulation, in this unit we will study about continuous simulation.

5.1 Introduction

So far, we saw discrete event simulations. This is useful when our problem is like a queue
of events, sorted by the simulation time at which they should occur. Things are not
always that simple. A continuous system is one in which the predominant activities of the
system cause smooth changes in the attributes of the system entities. When such a system
is modeled mathematically, the variables of the model representing the attributes are
controlled by continuous functions. More generally in continuous system the
relationships described the rates at which attributes change so that the model consists of
differential equations.
Continuous simulation is something that can only really be accomplished with an analog
computer. Using a digital computer one can approximate a continuous simulation by
making the time step of the simulation sufficiently small so there are no transitions within
the system between time steps. The premise for a continuous simulation is that there is a
continuous time flow and the simulation is stepped in time increments.
Differential equations, both linear, nonlinear, ordinary and partial occur repeatedly in
scientific and engineering studies. The reasons for this prominence is that most physical
and chemical processes involve rates of change, which require differential equations for
their mathematical description.

Page 73 of 138

5.2 Continuous Simulation

Formal Definition: Continuous simulation concerns the modeling over time of a system
by a representation in which state variables change continuously with respect to time.

Typically, we use differential equations (already discussed in Unit III) that give
relationships for the rates of change of the state variables with time. So, how do we solve
these systems of deferential equations? in very easy cases these can be solved
analytically otherwise solved numerically.
The simplest differential equation models have one or more linear differential equations
with constant coefficients. It is then often possible to solve the model without the use of
simulation. Even so, the labor involved may be so great that it is preferable to use
simulation techniques. However, when nonlinearities are introduced into the model, it
frequently becomes impossible or, at least, very difficult to model these systems. The
methods of applying simulation to models where the differential equations are linear and
have constant coefficients, and then generalizing to more complex equations.

5.2.1 Examples of Continuous Simulation

Example 1 : Consider an easy predator-prey model. Let the prey population at time t be
given by x(t), and the predator population by y(t). Assume that, in the absence of
predators, the prey will grow exponentially according to axx =′ for a certain a > 0. We
also assume that the death rate of the prey due to interaction is proportional to x(t)y(t),
with a positive proportionality constant. So:

)()()()(tytbxtaxtx −=′

Without prey, predators will die exponentially according to cyy −=′ for a certain c > 0.
Their birth strongly depends on both population sizes, so we finally find for a certain d >
0:

)()()()(tytdxtcyty +−=′

⎭
⎬
⎫

⎩
⎨
⎧

+−=′
−=′

)()()()(
)()()()(
tytdxtcyty

tytbxtaxtx

We immediately see that both (eat, 0) and (0,e-ct) are solution of (x(t),y(t)). From this
system we find that for every solution we must have

0=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−′+⎟

⎠
⎞

⎜
⎝
⎛ −′ b

y
ayd

x
cx

Integrating both sides of above equation gives us
c log x(t) –dx(t) + a log y(t) – by(t) = constant
Solutions for a = b = c = d = 1

Page 74 of 138

The given model is considered very simple. Why? the integrating we did two above is
possible, rest of the world has no influence, no randomness involved. Usually we cannot
find closed-form solutions for the system of differential equations.
How do we deal with this problem? Solve numerically.

Example 2
Suppose we consider the example of the interaction of the principle and interest
associated with a savings account. This can be represented by a systems thinking Figure 1
as follows:

Intrest
Rate

Intrest
S S

Principal
S S

Q
Withdraw

Deposit

Figure 1: Interaction of the Principle and Interest

This diagram indicates that Deposits increase the Principal and Withdraws decrease the
Principal. Also, the Principal interacts with the Interest Rate (Refer Figure 2) on some
periodic basis to create Interest. The Interest then serves to increase the Principal.
If we then turn this into a 10 year simulation with the assumptions that the Principal is
initially 100, there are no Deposits or Withdraws, and an Interest Rate of 5% is paid
once a year it might look like this in Extend.

Page 75 of 138

Interest Rate

Principal

Interest

Figure 2: Interaction between Interest rate and Principal

With the following equations:

• Principal(t) = Principal(t - dt) + (interest) * dt
• Principal = 100
• interest = Principal * Interest_Rate
• Interest_Rate = .05

After a period of 10 years the Principal is about 155, and if we draw the graph between
principal and time (year) that will looks continuous. This is because the simulation was
stepped in increments of 1 year which is the same period over which the Interest is
computed and applied to the Principal.
If we take the same simulation and run it in increments of 1 month, which means the Interest is calculated
every 12 months the equation set becomes

• Principal (t) = Principal (t - dt) + (interest) * dt
• Principal = 100

o interest = if ((TIME/12)*12=TIME) then Principal * Interest_Rate
else 0

• Interest_Rate = .05

The indication is that the operation of this simulation appears continuous or discrete
depending on the time frame over which we view the interaction even though each run is
essentially a continuous simulation because of the equal time steps used.

5.2.2 Why do we do this (Continuous Simulation)?

We have discussed continuous systems whose process of evolution depends on differential equations. Such
a system contains a number of parameters that must be estimated (for instance, the a, b, c, d > 0 in the

Page 76 of 138

example of predator-prey model). Usually point estimates are calculated and used in the model. These
estimates typically have uncertainty associated with them. We can incorporate uncertainty in our
differential equations. Using fuzzy numbers as estimates of the unknown parameters, which will be
discussed in unit VII.

5.3 The Uses of Simulation

There are differennt uses of simulation in almost all branches of science and engineering ,
social sciences , education etc., some of uses are decreibed in following section.

1. Simulation in Science and Engineering Research

Simulation has changed in a very fundamental sense, the way in which research is conducted today. Earlier
most experiment carried out physically in the labs. Thousands and even millions were spending on physical
model. Today a majority of these experiments are simulated on a computer. ‘Computer experiments’
besides being much faster, cheaper, easier, frequently provide better insight into the system then labs
experiments do. Not all labs experiments, of course, can be replaced with the computer simulation. But 80-
90 per sent of the experiment has been done on the computer. Best example of nuclear bomb simulation in
a lab environment, which do not require any physical experiment of nuclear bomb in reality. For such kind
of simulation we have to collect data from real experiment and then model the bomb and perform
simulation. India having such capability to perform such kind of lab simulation of a nuclear bomb .

2. Simulation in Soft Science

Simulation can be expected to play even a more vital role in biology, sociology, economics, medicine,
psychology, etc., where experimenting could be vary expensive, dangerous, or even impossible. In these
area, the mathematical theories are even has less developed then in physical sciences. Moreover, in the field
such as biology and economics the problem truly large, involving ten of thousand of variables. The
complication causes by uncertainty are also greater in these areas than in physical sciences. The simulation
has become an indispensable tool for a modern researcher in most social, biological and life sciences. Best
example of simulation in medical sciences is drug design. Earlier after invention of a drug it took lot of
time to experiments on monkeys, rats, and horses. After suitable experiments drugs launches in market. But
now a days all the experiments performed using simulation and modelling techniques, which save, not only
time but also save life of innocent animals, which frequently die during drug testing.

3. Simulation in Business

There are many problem faced by management that cannot be solved by standard
operations research tool like linear and dynamic programming, inventory and queuing
theory. Therefore, a business executive had to make decisions based solely on his
intuitions and experience. Now he can use computer simulation to make better more
meaningful decisions. Utilizing the power of a digital computer, he can build and study a
simulation model containing high order complexities and a huge number of
interdependencies, as well as uncertainty.
Some more uses in business process

• Impact of connection bank redesign on airport gate assignment
• Product development program planning

Page 77 of 138

• Reconciliation of business and systems modeling
• Personnel forecasting and strategic workforce planning

4. Use of Simulation in Medical Education

Simulation training has become an integral part of medical education at the best schools
in America, which is why West Virginia University (WVU) plans to build its own
comprehensive Clinical Simulation Center. Whether it's computer-based systems for
improving intubations, simulated OR suites or virtual humans who mimic cardiac
distress, WVU simulation labs will help medical, nursing, pharmacy and dentistry
students improve their analytical, diagnostic and intervention skills. Center plans also
include mobile units that will travel to rural settings, offering hundreds of healthcare
practitioners the opportunity to learn skills that enhance the proactive of medicine.
In the same way flight simulators make real-life decisions easier for pilots and astronauts,
mannequins, who look and act like real patients, enhance the real-world skills of all
medical learners.
In India also, CBSE board banned the dissection of frog for biology students, instead of
this fog dissection is performed in simulated environment, which save money, time and
above all it save life of innocent fog.

5. The Use of Simulation in Road Transport Incident Detection

Automatic incident detection is becoming one of the core tools of urban traffic

management, enabling more rapid identification and response to traffic incidents and
congestion. Existing traffic detection infrastructure within urban areas (often installed for
traffic signal optimization) provides urban traffic control systems with a near continuous
stream of data on the state of traffic within the network. The creation of a simulation to
replicate such a data stream therefore provides a facility for the development of accurate
congestion detection and warning algorithms.

It describes firstly the augmentation of a commercial traffic model to provide an urban
traffic control simulation platform and secondly the development of a new incident
detection system (RAID—Remote Automatic Incident Detection), with the facility to use
the simulation platform as an integral part of the design and calibration process.

6.Simulation in Ground Water Management Process

No body can know the status of ground water unless other wise we dig the earth deeply . The problem is
more sever in drought-affected areas especially in India but now we can studied the status of ground water
by modelling and simulation techniques.
Several computer codes have been developed during the past two decades to facilitate ground-water
simulation-optimization modeling these codes differ in the numerical model used to represent the ground-
water flow system and the types of ground-water management problems that can be solved.
The new process, which is called the Ground-Water Management (GWM) process can be
applied to a broad range of ground-water management problems, such as limiting ground-
water-level declines or stream flow depletions, managing ground-water withdrawals, and
conjunctively using ground water and surface water. Management variables that can be
specified in GWM include withdrawal and injection wells, artificial-recharge basins, and
imports and exports of water. The types of constraints that can be specified include upper

Page 78 of 138

and lower bounds on pumping and injection rates, water-supply demands, hydraulic-head
constraints such as draw downs and hydraulic gradients, and stream flow and stream
flow-depletion constraints. GWM uses a widely applied technique called the response-
matrix approach to solve ground-water management problems.
Simulation can also be used in estimation of the runoff from rain fall, calculation of soil
moisture, infiltration and the movement of moisture in overland flow of stream, crop
modelling and weather forecast.

7. The Use of Simulation in Manufacturing System Design and Operation

Manufacturing system design involves making long-term decisions. As such, it is
practical to spend more time analyzing alternatives than would be the case for operational
decisions. It was in the general manufacturing system design area that simulation initially
gained popularity. Initially, models used for these projects were typically coded using
general-purpose programming languages. The successful application of simulation in this
area led to the development of specialized subroutine libraries and, later, comprehensive
simulation languages and software packages. These developments have significantly
simplified the use of simulation and have led to its more general use. The general class of
manufacturing system design has been further subdivided into facility design, material
handling system design, manufacturing cell design, and flexible manufacturing system
design.
Some more uses of simulation in manufacturing

• Analysis of electronics assembly operations
• Design and evaluation of a selective assembly static for high-precision scroll

compressor bells
• Comparison of dispatching rules for semiconductor manufacturing using large-

facility models
• Evaluation of cluster tool throughput for thin-film head production
• Determining optimal lot size for a semiconductor back-end factory
• Optimization of cycle timer and utilization in semiconductor test manufacturing
• Analysis of storage and retrieval strategies in a warehouse
• Investigation of dynamics in a service oriented supply chain
• Model for an Army chemical munitions disposal facility

8. Simulation Techniques in the Social Sciences

Computer simulation as an idea has a history that goes back to the beginning of
computers, but if we look specifically at the history of the simulation of societies, the
history is much shorter. During the late fifties and early sixties, there was quite a lot of
research that tried to model macro-processes embracing the whole world. The best-
known example is the Club of Rome work by Meadows et al (1972) using ideas
developed by Forrester (1971). This constructed a model interrelating population,
pollution levels, the availability of natural resources and capital stocks. There were also
other efforts to do social simulation during this period. These all efforts are conducted
to know the questions like, what would happen to the ecology of the world over the

Page 79 of 138

next fifty years. To achieve such predictions, however, you have to make a great
number of assumptions about how people would live and thus about the values of the
many parameters in the model. The majority of these assumptions could not easily be
justified. One of the major innovations in the late 1980s and 90s was the development
of simulations based on multiage modeling, in particular bringing in ideas from
artificial intelligence and cellular automata.

There are so many other areas where we can use the simulation techniques

1. Construction Engineering
• Construction of a dam embankment
• Trenchless renewal of underground urban infrastructures
• Activity scheduling in a dynamic, multi-project setting.
• Investigation of the structural steel erection process
• Special-purpose template for utility tunnel construction

 2. Military Applications

• Modeling leadership effects and recruit type in an army recruiting
station

• Design and test of an intelligent controller for autonomous underwater
vehicles

• Modeling military requirements for non-war-fighting operations.
• Multi-trajectory performance for varying scenario sizes
• Simulation of a missile trajectory
• Simulation of a fighter aircraft training

3. Logistics, Transportation, and Distribution

• Evaluating the potential benefits of a real-traffic planning algorithm
• Evaluating strategies to improve railroad performance
• Parametric modeling in rail-capacity planning
• Analysis of passenger flows in an airport terminal
• Proactive flight-schedule evaluation
• Logistics issues in autonomous food production systems for extended-

duration space exploration
• Sizing industrial rail-car fleets
• Product distribution in a newspaper industry
• Design of a toll plaza
• Choosing between rental-car locations

4. Human Systems

• Modeling human performance in complex systems
• Studying the human element in air traffic control.

Page 80 of 138

5.4 Summary

Simulation is generally more adequate because it involves fewer approximations than
conventional methods. Simulation allows adjustment for change, which conventional
methods cannot do effectively. In any case, if the time and cost are measured against the
quality and completeness of the results, simulation is far ahead of the conventional
techniques. Even though the available data are limited, simulation can still be useful
because the data are used in a physically rational computational program.

5.5 Key Words

Manufacturing Systems Design,Artificial evolution,Virtually Reality ,Soft Science,
Automatic Incident Detection,Hydrology, Continuous Simulation.

5.6 Self-Assessment Questions

Q.1 In a chemical reaction one molecule of a substance X is produced for one molecule
each of substance A and B. The initial concentrations of A and B are a and b,
respectively. Let x be the concentration of X and assume that it is initially zero. The are
at which x increases is 0.1 times the product of the current concentration of A and B.
Assume a and b initially 0.8 and 0.4, respectively, simulate the production of X.

Q.2 Identify six different problems from your own experience that you think should be

solved using continuous simulation.
Q.3 Describe the use of simulation in education area.
Q.4 Describe the use of simulation in area of weather forecasting.
Q.5 Describe the use of simulation in Medical Science?.
Q.6 In a field there are four animals – a dog, a mongoose, a snake and a mouse. Dogs

kill mongooses, mongooses kill snakes, and snakes kill mice. The speeds of the

mouse snake mongoose are, respectively, 8,12,18 and 30 km/hr. Simulate the

chase with the different starting position to see which animal gets kill first.

Q.7 Write the benefits of simulation in daily life.

Page 81 of 138

5.7 References/ Suggested Readings

8. Axel rod, R. (1997) ‘Advancing the art of simulation in the social sciences’ in R.

Conte, R.
9. Ray K. Linsley and Norman H. Crawford ‘Earliest hydrologic simulation models’
10. Emshoff, J.R.and R.L.Sisson, Desing and Use of Computer Simulation Models,

Macmillan Co. New York, 1970.
11. G.Gordon. ‘System Simulation’
12. N. Deo, ‘System Simulation with Digital Computer”, PHI.

Page 82 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Prof. Dharminder Kumar
Lesson : Simulation Language
 Lesson No. : 06

Structure
6.0 Objective
6.1 Introduction
6.2 Continuous Simulation Language
6.2.1 Classification of Continuous Simulation Languages
6.3 Discrete Simulation Language
6.3.1 Classification of Discrete Simulation Languages
6.4 Other Simulation Languages
6.5 Introduction of SIMULA
6.5.1 Basic Building Block of SIMULA
6.5.2 Declarations
6.5.3 Statements
6.5.4 Syntax Rules
6.5.5 Expressions
6.5.6 Type Cast Actors
6.5.7 Conditional Statements
6.5.8 Compound Statements and Blocks as Statements
6.5.9.Declaring Procedures
6.5.10 File Handling in SIMULA
6.5.11 Arrays in SIMULA
6.5.12 Sub-Classes (Inheritance)
6.6 Case Study I
6.7 Case Study II
6.8 Disadvantage of SIMULA
6.9 Summary
6.10 Key Words
6.11 Self Assessments Questions
6.12 References/Suggested Reading

Page 83 of 138

6.0 Objective

As we learn from previous units, computer simulation is useful technique, to study a wide
variety of problems related to almost all fields, ranges from science and engineering to
business and social science. The abstract model of the system converted into suitable
algorithm and finally converted into an executable computer program in a suitable
programming language, then after only the system behaviour is understood by analyzing
the output results, as the program runs. General-purpose high-level language can be used
for simulation but now a day specific simulation languages are also available in market.
In this unit we will learn the overview of different simulation language with detailed
study of SIMULA 67.

6.1 Introduction

As we learn in previous units about the continuous and discrete event simulation. These

are two important type of simulation. The simulation language depending around these

two types where one is continuous simulation languages and another one is discrete

simulation language. Continuous simulation languages developed in late fifties as

simulators of analogue computers. Continuous and discreet simulation language can be

classified in several ways.

6.2 Continuous Simulation Language

Continuous simulation languages developed in late fifties as simulators of Analogue
computers. Simulation on analogue computers is based on creating an analogue electronic
system whose behavior is described by the same mathematical model (set of differential
equations) as the system being investigated. The main problem of analogue computers is
an analogue implementation of certain operations like multiplication, generation of some
functions, generation of delays and others. Digital computers perform all these functions
very easily and today continuous simulation is performed only on them. Nevertheless
there is one operation where the analogue computers are better, which is integration.
Digital computers use numerical integration that is generally slower and less accurate
compared with the integration of an analogue integrator. Some special applications based
on fast response use therefore the so-called hybrid computers that contain analogue and
digital parts connected by Analog/Digital and Digital/Analog converters. The digital part
does everything except integration. It computes inputs of integrators that converted by
Digital/Analog converters to analogue signals inputted to analogue integrators. Their
outputs are treated in the opposite way. The digital part also controls the interconnection
of the analogue part that might thus change during computation.

Page 84 of 138

6.2.1 Classification of Continuous Simulation Languages

Continuous simulation language can be classified in two ways, as

1. Block oriented simulation languages
2. Expression oriented continuous languages

1. Block Oriented Simulation Languages

Block oriented simulation languages are based on the methodology of analogue
computers. The system must be expressed as a block diagram that defines the
interconnection of functional units and their quantitative parameters. "Programming”
means entering the interconnection of the blocks and their description. Then the user adds
statements and/or directives that control the simulation. If the system is described as a set
of equations, they must be converted to a block diagram. This conversion is a simple
straightforward process. The typical blocks available in most continuous block oriented
languages are integrators, limiters, delays, multipliers, constant values, adders, holders,
gain (coefficient) and other.

2. Expression Oriented Continuous Languages

Expression oriented continuous languages are based on writing expressions (equations)
that represent the mathematical model. So the system simulated must be expressed by a
set of equations. Then the user adds statements and/or directives that control the
simulation. Some languages enable both block and expression based ways of system
definition. Simulation control means selection of the integration method (because some
languages offer more), the integration step, the variables (outputs of blocks) that should
be observed, the intervals for collecting data for printing and/or plotting, scaling of
outputs (that may be also done automatically), duration of the simulation runs, number of
repetitions and the way certain values are changed in them.
Models are created using a simple continuous simulation environment based on
Expression oriented approach and can be easily modified to model any other systems
described by differential equations.

6.3 Discrete Simulation Language

Discrete simulation deals with systems whose dynamics can be considered (due to the
level of abstraction) as a sequence of events at discrete time points. The key point of a
discrete simulation language is the way it controls the proper sequencing of activities in
the model. This is also the way a user must "view the world" when using the language
and a base for classification of discrete simulation languages.

6.3.1 Classification of Discrete Simulation Languages

Discrete simulation language can be classified in four ways which described below

Page 85 of 138

1. Flowchart Oriented Languages
2. Activity Oriented Languages
3. Event Oriented Languages
4. Process Oriented Languages

1. Flowchart Oriented Languages

Flowchart oriented languages are represented by the language GPSS (General Purpose
Simulation System), that exists in many versions on various computers. The user must
view the dynamics of the system as a flow of the so-called transactions through a block
diagram. Transactions are generated, follow a path through a network of blocks, and are
destroyed on exit. In blocks transactions may be delayed, processed, and passed to other
blocks. Blocks are in the program represented by statements that perform the activities of
the model.

2. Activity Oriented Languages

Activity oriented languages are not based on explicit scheduling of future activities. For
each activity the user describes the condition under which the activity can take place (that
also covers scheduling if the condition is reaching certain time). The algorithm of the
simulation control repeatedly increments time and tests conditions of all activities. The
disadvantage of this approach is obvious. It is necessary to evaluate all conditions in
every step that may be very time consuming. On the other hand it is conceptually very
simple and the algorithm can be easily implemented in general high-level languages
(there are simulation languages based on this approach, but not widely used). The models
of a simple queuing system that demonstrate the activity oriented approach. These
models are accompanied by several units that implement operations on two way linked
lists that are later used to implement stacks and queues.

3. Event Oriented Languages

Event oriented languages are based on direct scheduling and canceling of future event.
The approach is very general. The user must view the dynamics of the system simulated
as a sequence of relatively independent events. Every event may schedule and/or cancel
another event. The system routine must keep record of scheduled events. That's why
every event is represented by the so-called event notice that contains the time, the event
type, and other user data. Event notices are kept in the so-called calendar, where the event
notices are ordered by the scheduled time. After completion of an event routine, the
system removes the event notice with the lowest time from the calendar, updates the
model time by its time, and starts the corresponding routine. This is repeated until the
calendar becomes empty or the program stops because of other reason. Scheduling means
inserting event notices to the calendar by the scheduled time, canceling removes them.
The approach based on explicit expressing of events is called Discrete Event Simulation
that is sometimes generalized to discrete simulation as such. A typical representative of
this group of languages is the language SIMSCRIPT.

Page 86 of 138

4. Process Oriented Languages

Process oriented languages are based on the fact, that events are not independent. An
event is typically a consequence of other previous events. In other words it is often
possible to define sequences of events that may be viewed as entities of a simulation
model at higher level of hierarchy. A sequence of events is called process. Unlike events
process has a dimension in time. Process based abstract systems are very close to reality
that is always made of various objects that exist and act in parallel interfering with each
other. Process way of viewing system dynamics is thus very natural. Mostly a process
models an activity of a real object. It is believed, that process oriented discrete simulation
is the best way how to create discrete simulation models. Typical representatives of this
group of languages are MODSIM, SIMSCRIPT II.5, and the system class SIMULATION
of the Simula language.

6.4 Other Simulation Languages

There are other simulation languages exists

1. Object Oriented Simulation language
2. On Line Simulation language
3. Advanced Continuous Simulation Language
4. Graphic Simulation Language (GSL) - a combined continuous and discrete

simulation language

1. Object Oriented Simulation

Object Oriented Simulation (OOS) can be considered as a special case of Object Oriented
Programming (OOP). Some principles of OOP like existence of a varying number of
instances of interfering objects have been in standard use in simulation environment for a
long time, often using other terminology. The Simula language (used to be called Simula
67) is the first true object oriented language. OOPS like classes, inheritance, virtual
methods, etc. have been defined in Simula. MODSIM is another object oriented
simulation language.

These are the most commonly accepted features of OOS

a. The algorithm or system dynamics is expressed in terms of objects (actors) that exist
in parallel and that interact with each other. Every object is represented by:

1. Parameters
2. Attributes
3. Methods
4. Life, that represents the activity started upon object creation.

Page 87 of 138

Objects can interact in these ways

1. Direct access to parameters and attributes
2. Mutual calling of methods
3. Communication and synchronization of objects lives.

b. Conceptually a object is defined as Object = Data + Procedures that is called
Encapsulation. Generally the object's data or a part of it, is hidden and values can be
accessed and modified only through (well defined) methods. This concept is called
Information hiding.

c. Similar objects (actors) are grouped by to the classes also called prototypes. A class
describes objects that have the same parameters, attributes, methods, and lives. A class
can be also interpreted as knowledge of certain type of objects. Such knowledge is
represented by a data part and by operations that can be performed on the data. This is
similar to abstract data types, but classes are much richer.

d. Objects can be classified hierarchically generally called inheritance. Very often the
term subclass is introduced. A subclass Y of a class X inherits all parameters, attributes,
and methods from the class X. Its declaration can add any number of additional
parameters, attributes, and methods. A subclass may also add some activity to the life of
the parent class. A subclass can be used as a parent class of other subclasses. Some OOP
languages (not Simula) enable the so-called multiple inheritance. In this case a subclass
can inherit from more than one parent classes. It might be desirable, that certain methods
then behave in different way according to the current object instance being referenced
that may change dynamically during program execution. This concept called
polymorphism is supported by the mechanism called late binding and the methods
involved are called virtual methods that may change at every level of hierarchy.

2. On Line Simulation

Internet together with Java and JavaScript offer incredible possibilities in problem
solving. Instead of time consuming downloading and installation of software packages, it
is possible to open directly various solvers, especially for problems that are not frequent
and that do not require time consuming computation.

3. Advanced Continuous Simulation Language

The Advanced Continuous Simulation Language, or ACSL (pronounced "axle"), is a
computer language designed for modelling and evaluating the performance of continuous
systems described by time-dependent, nonlinear differential equations. It is a dialect of
the Continuous System Simulation Language (CSSL).
ACSL is an equation-oriented language consisting of a set of arithmetic operators,
standard functions, a set of special ACSL statements, and a MACRO capability which
allows extension of the special ACSL statements. ACSL is intended to provide a simple

Page 88 of 138

method of representing mathematical models on a digital computer. Working from an
equation description of the problem or a block diagram, the user writes ACSL statements
to describe the system under investigation.The important feature of ACSL is its sorting of
the continuous model equations, in contrast to general purpose programming languages
such as FORTRAN where program execution depends critically on statement order.
Applications of ACSL in new areas are being developed constantly. Typical areas in
which ACSL is currently applied include control system design, aerospace simulation,
chemical process dynamics, power plant dynamics, plant and animal growth, toxicology
models, vehicle handling, microprocessor controllers, and robotics.

4. Graphic Simulation Language GSL

GSL is a FORTRAN-oriented language, which combines the activity and process
concepts of a discrete simulation language with continuous simulation concepts, thereby
permitting the simulation of systems, which call for combining continuous and discrete

simulation techniques. The basic structural component of GSL is the simulation block,
which corresponds either to an activity of a discrete system or a dynamic region of a
continuous system. Both discrete and continuous simulation blocks may have multiple

process instances, which may be controlled dynamically at run- time. The result is a
combined language, which retains the features of both continuous and discrete simulation
languages and moreover takes advantage of the desirable features of each to supplement

the other.

6.5 Introduction of SIMULA

The first Object Oriented Language (OOL) Simula 67 was officially introduced by Ole
Johan Dahl and Kristen Nygaard at the IFIP TC 2 Working Conference on Simulation
Languages in Lysebu near Oslo in May 1967. All modern programming work carried out
today is based on principles of OOP introduced for the first time in the Simula definition.

A computer program is a series of instructions, which contains all the information
necessary for a computer to perform some task. It is similar to a knitting pattern, a recipe
or a musical score. Like all of these it uses special shorthand, known in this case as a
programming language. We will learn the programming in SIMULA 67,in SIMULA 67,
67 stood for 1967, the year in which this earlier version was first defined .We will call
SIMULA 67 as SIMULA only in our discussion.

6.5.1 Basic Building Block of SIMULA

SIMULA program is made up of sequences of instructions known as blocks, which act
independently to varying degrees, but which are combined to produce the desired overall
effect. The simplest programs contain only one block, known as the program block. All
other blocks follow the same basic rules, so let us have a look at the single block
program, example 6.1.

Example 6.1: A simple example
 begin

Page 89 of 138

 integer Int1;
 comment The first SIMULA program written for this book;
 Int1:=3;
 OutInt(Int1,4);
 OutImage
 end

This is not the simplest possible program. We could have written
 begin end
and had a complete program block. This tells us the first rule about all blocks. A block
always begins with the word begin and ends with the word end. Begin and end are
called "keywords", since they are reserved for special purposes and may not be used for
anything else.
SIMULA is not a case sensitive language which mean we can use lower case or upper
case or mix of two to write program. Instructions in the SIMULA are of two types,
DECLARATIONS and STATEMENTS. Every executable statements in SIMULA end
with a semicolon. There are also pieces of the text which are ignored by the SIMULA
system and which simply help any human who reads the program to follow what is
happening. These are called comments.

SIMULA comments begins with the keyword comment, is followed by some text and
ends in a semi-colon.
 comment The first SIMULA program written for this book;
comments can also be used in certain places within instructions or combined on the same
line as them. To help everyone understand your programs, you should include comments
in them.

6.5.2 Declarations

In example 6.1, the first instruction after the word begin is a declaration:
 integer Int1;
Declarations in a block show how much of the computer's memory is going to be needed
by that block. They also show into how many sections it is to be divided , how big each is
to be and to what sort of use each will be put. Each of these sections is given a name, by
which the program will refer to it.
The program block in example 6.1 has only one declaration. It starts with the "type"
keyword integer, followed by a name or "identifier", Int1.
In example 6.1 it will be used to hold a whole number, which is called an integer in
SIMULA.
The identifier Int1 is now the name of the space reserved in this way. We may
sometimes refer to the value held in this space as Int1 also.
If we want to use more locations, we can declare them in the same way, being careful to
give the correct type to each. Thus we might write
 begin
 integer Int1;
 real Real1;

Page 90 of 138

 etc.
Which gives us a location of type real and called Real1, which we can use in this block.

6.5.3 Statements

The other instructions in our example are all statements. They tell the SIMULA system
what it is to do.The first one is an "assignment" statement. It tells the system to place
something in one of the locations declared for use by this block. In this case the value
three is to be stored in the integer location declared as Int1. Since this value is of a type
which matches that declared for the location the statement is legal SIMULA.
The next statement uses something called OutInt, which is a "procedure" and is
available in all SIMULA systems. OutInt will write out the first number in the
parentheses - ordinary brackets - after it. It writes it as a whole number at the end of the
line, or "image", which is currently being created. The second number is used to tell the
system how much space to use on the line, when writing out the first number.
The final statement uses OutImage. Like OutInt, OutImage is a procedure and is available
in all SIMULA systems. Such standard procedures are known as "system procedures".
They are not keywords, since you may declare a different meaning for them within a
block if you wish.

6.5.4 Syntax Rules

The commonest errors reported by a compiler are those, which do not obey the grammar
or "syntax" of the language. Often they are the result of typing errors.
The rule that a program block must start with begin and finish with end is a syntax rule.

Syntax of Declarations

The declarations
 integer Int1;
and
 integer Int1,Count;

both follow the syntax rules for declarations. A declaration has to be a keyword giving
the type, followed by an identifier list. An identifier list is either a single identifier or a
series of identifiers, separated by commas, with the option of as many spaces as desired
either side of the commas.
The syntax rules for SIMULA, like those for most programming languages, are very
strict. You cannot omit the space which indicates the end of the keyword integer, without
breaking the syntax rules for a declaration.

Syntax of Identifiers

We have used the word identifier as the technical term for the name given to something
in our programs. So far we have not considered what an identifier must look like.

Page 91 of 138

The identifiers which we have used so far are

 Int1
 Count
 OutInt
 OutImage
 Real1

Notice that procedure names are identifiers and follow the same rules. Keywords have the
same syntax as identifiers, but they are not available for the programmer to define or
redefine.
An identifier is a sequence of letters, numbers and underline characters (the last are
known sometimes as break characters). An identifier must start with a letter.
Some systems set a limit on the number of characters in an identifier. Others allow long
identifiers, but only look at the first so many characters. You should consult the
documentation for any system before using it, especially when moving a program from
one system to another.
Letters are often called "alphabetic characters", numbers "numeric characters" or "digits".
Mixtures of these two types are called "alphanumeric characters".

The following are valid identifiers
 TOTAL
 A1
 NEW4SUB6
 MAX_SIZE
 G43
 I

Syntax of Blocks

A block starts with the keyword begin, which, like all keywords, must have at least one
space following it or be the last word on a line.
This keyword is followed by a list of declarations or a list of statements or a list of
declarations followed by a list of statements. Statements and declarations are separated
by semi-colons or keywords. All declarations must come before any statements in a
block.

The following are valid blocks

Example 6.2
 begin
 integer I;
 real Arc;

Page 92 of 138

 I := 5;
 Arc := 3.2;
 OutInt(I,3);
 OutImage
 end

In addition we can note that a block can be used in place of a simple statement. In this
case it is called a "sub-block" or a block which is "local" to the program block.
A procedure call is an identifier (the name of the procedure) followed in some cases by a
parameter list which is enclosed in brackets. The parameter list is a list of identifiers,
constants and expressions, separated by commas.

Examples 6.3: Procedure calls.

OutImage : No parameters. Moves output to next line.
OutImage : One parameter, a text, which is printed on the current line. In this example a
text constant is used as the parameter.
OutInt(643,3): Two parameters, both integers, separated by a comma. Prints out the first
integer on the current line, padding on the left with spaces if this produces fewer figures
than the second integer. Either or both the integer constants given as parameters in the
example could have been replaced with identifiers or expressions.

Assignment statements have an identifier followed by optional spaces, followed by the
assignment "operator", followed by optional spaces, followed by an expression. The
assignment operator is the sequence colon followed by equal-sign, :=. Before giving an
informal description of expressions, it is probably best to consider the examples of
assignment statements given as 2.5.

Examples 6.4: Assignment statements.

 Res := 3

 Count := Last

 Count := Last + 1

 Message := "PLEASE TYPE YOUR NAME"

 Next := Average*Number + 2

The use of spaces before and after the assignment operator has no effect on the
correctness of the statement. This applies to all "operators" in SIMULA.

6.5.5 Expressions

Page 93 of 138

Several kinds of expressions are shown to the right of the assignment operator in these
examples. The simplest of these is a constant, such as 3 or "PLEASE TYPE YOUR
NAME". An expression can also be a single identifier, such as
 Count := Last
The remaining examples show identifiers and constants separated by operators. Thus
 Last + 1
is the identifier Last followed by the addition operator followed by the constant 1.
 Average*Number + 2
is the identifier Average followed by the multiplication operator followed by the
identifier Number followed by the addition operator followed by the constant 2. We shall
not attempt a complete definition of expressions, but explain them as we need to use
them. These examples should give a feel of what is meant.

A note on operators
The commonest arithmetic operators are given below.

 + Addition
 - Subtraction
 * Multiplication
 / Division with non-whole numbers (reals)
 // Division with whole numbers (integers)
 := Assignment

 Semantics of Declarations

The same identifier cannot be declared twice in a block.
The identifier is used to name a space in the computer's memory which is large enough to
hold a value of the type specified. Whenever the identifier is used subsequently, it refers
to this space and this type of value.

Semantics of procedure calls

A procedure call must have the correct number of parameters.
Each parameter must be of the correct type. The actions of the procedure are performed,
using the parameters to provide information for the procedure if necessary.

Semantics of Assignments

The type of the expression to the right of the assignment operator must be
"compatible" with the type of the identifier on the left.
The value of the expression on the right will be stored in the location reserved for the
identifier on the left.

Page 94 of 138

Semantics of Expressions

The types of the quantities in an expression must be compatible. The type associated
with the value of an expression is determined by the types of the quantities in it,
except when the division operators are used. In this case the type is the same as the
operator, i.e. integer for "//" and real for "/".

Semantics of Blocks

Any identifier used in a statement in a block must already have been declared.
The statements in the block are performed in the order indicated.

Syntax and Semantics of a Comment

A comment is a special sequence in SIMULA which is treated as a space by the
compiler. It contains a message which explains what is going on around it in human
terms. Its syntax is quite simple.
A comment is:
The keyword comment, followed by any sequence of characters ending at the first semi-
colon, ;.
or
the character !, followed by any sequence of characters ending at the first semicolon.
or
Any sequence of characters following the keyword end, ending at the first occurence of
the keyword end, else, when or otherwise or a semi-colon or the end of the program.

Comments, partly to help you understand things and partly to get you into the habit of
using them. They will help you see what is going on, but only in the important places.
Be very careful to end your comments properly. If you forget a semi-colon or keyword,
as appropriate, you will lose some of the following program, since it will be treated as
part of the comment. In particular, remember that the end of a line does not end a
comment . Comments have no meaning in the program.

Example 6.5 : The use of comments.

 begin
 comment Double space removal program,
 first version, Rob Pooley, March 1984;

 text T; ! Holds the text to be processed;

Page 95 of 138

 InImage; ! Reads the text into SysIn.Image;
 inspect SysIn do ! Refer to SysIn not SysOut;
 begin
 T :- Blanks(Image.Length); ! See the next chapter;
 T:=Image; ! Copies the characters into T;
 end;
 if T.GetChar=' ' then ! First character is a space?;
 begin
 if T.GetChar=' ' then ! Second character is also?;
 T:=T.Sub(2,T.Length-1); ! Remove first character;
 end;

 comment Now write out the text;
 OutText(T);
 OutImage
 end Double space remover

6.5.6 Type Cast Actors

So far we have seen three types: integer, real and text. The only one we have looked at in
any detail is integer. In fact SIMULA contains several other types as keywords or
combinations of keywords. In addition it is possible for you to create combinations of
these simple types and give them names, by using the class mechanism.

Types in Assignments

A type is given in a declaration so that the SIMULA system knows how much space to
allow for the declared quantity. The system checks whenever a new value is stored into
this location that the value is of the same type. If the types are different then the system
may do one of two things.
It may "convert" the quantity being stored to that of the location. This is only possible
between the types integer and real and their short and long variants.
If conversion between the types is not specified in SIMULA, the system will report a
semantic error.
SIMULA will only convert one type to another where this has a clear meaning. In
practice this is only the case for arithmetic values, i.e. types which represent numbers
Clearly we must be very careful how we use types. Even where we are allowed to mix
types, we must be careful that we understand what will happen when a value of one type
is converted into a value of another type.

Types of Parameters

Page 96 of 138

Exactly the same rules apply where values are passed as parameters as apply when they
are assigned. In effect the parameter given is assigned to a location with the type
specified for that parameter.

Standard Types

We shall now look at each of the simple types provided in SIMULA.
integer
As we have seen, values are of type integer if they are whole numbers. They may be
positive, negative or zero. On any particular SIMULA system there will be a largest
positive and a smallest negative number, which can be held in an integer location. In our
programs we have used integer constants to represent values being assigned to our integer
locations. An integer constant is a whole number written as a sequence of decimal digits,
i.e. any digit in the range 0-9. This may be preceded by a minus or, less commonly, a plus
sign. A minus sign indicates a negative value; a plus sign has no effect.

Example 6.6: integer constants
 2
 45678231
 -432
 + 1245

Spaces after the plus or minus are ignored. Spaces between digits are not allowed. It is
also possible to give integer constants in other number bases.

Real

A real value is a number, which is not necessarily whole. It is held in a form, which
allows it to contain a fractional part. In common speech it is what is known as a 'decimal'
number or decimal fraction, i.e. it is written with a decimal point separating the whole
and fractional parts of the number. A real value is restricted both by a largest/lowest
range and by the number of significant decimal places, which can be held. Most of us are
used to writing decimal numbers (decimal fractions) in what is technically known as
"fixed point" notation. The examples of decimal constants used in examples so far are
in this form. It can be described as two strings of decimal digits (in the range 0-9)
separated by a full stop or period. Like integers they may be preceded by a minus or plus
sign.

Example 6.7: Legal fixed point real constants.

 5.7
 236.0
 3246.8096
 -45.87

Page 97 of 138

 + 46.876

The use of spaces is not allowed between digits or between a digit and the decimal point.
Mathematicians often use another notation to write decimal values, especially where
these are very large or very small. This way of writing them is known as "floating point"
and is also allowed for writing real constants in SIMULA.

Character

A character holds a value, which represents a single character. SIMULA allows you to
use any of the characters in the "character set" of the computer that you are using plus the
characters defined by the International Standards Organization (ISO) character set
standard. (This is sometimes known as the ASCII character set.). It is important to
stress that a character has a different type from a text.
We normally think of a character as something written on a page. In the computing world
this sort of character is often referred to as a "printing character". It is probably easy
enough for us to accept that a space is also a printing character. It is rather harder to grasp
that a character can produce other effects, such as making the printer start a new line or a
new page. These are non-printing "control characters". Some of these character values
produce very complex effects in certain printers or terminals and no effects or different
effects in others. In general terms the values held in character locations are those, which
are sent as instructions to printers, terminals and other hardware devices. Most of these
instructions control the printing and formatting of written information. The simplest
merely instruct the device to print a visible character. Character constants are normally
written as single characters, enclosed in single quotes. Note carefully that a single
character enclosed in double quotes is a text constant and may not be used as a character.
Control characters cannot be written in this way. They use their internal integer value
written as an integer constant and enclosed in exclamation marks, inside single quotes.
This notation can also be used to write printing characters, but is very clumsy.

Example 6.8: Legal character constants

 'A'
 'b'
 '4'
 '%'
 ' '
 '''
 '!3!' Control character, enclosed in exclamation marks.

Note that case, i.e. the difference between capital and small letters, is significant in
character constants. Thus 'A' and 'a' are not equivalent. Note also how a single quote is
represented as a character constant.

Page 98 of 138

Boolean

A Boolean quantity can only have two values. These are True and False.
A Boolean can be assigned the value of any conditional expression and can be used
wherever a conditional expression might be used, e.g. in an if statement or a while loop.
Boolean constants can only be represented by the keywords True and False.

Text

A text variable is used to refer to and manipulate sequences of characters. A sequence of
characters is often known as a "string". In the examples using text variables so far we
have often assigned strings as the values to be placed in locations declared as type text.
From this it might seem that a text and a string are the same thing.
Text constants are strings, i.e. sequences of characters, surrounded by double quotes.
Each character in a string can be any of those in the ASCII (ISO) standard set.
A character in a string can also be represented by its internal integer value enclosed in
exclamation marks.
When a string is too long to fit onto a single line of your SIMULA program it can be
continued on the following line by typing a double quote at the end of the first line and
again at the start of the second line. These quote characters are ignored and the value of
the constant is the string on the first line followed by the string on the second line.

Example 6.9: Legal text constants.

 "The cat sat on the mat"

 "34.56"

 "%"

 "This string is typed on two lines, but will be treated as if it "
 "was on a single line, without the second and third double quotes."

 "This string has a control character !10! embedded"

 """"
Note that the last string shown in 6.9 will contain only one double quote. When you want
to have a text constant, which contains one double quote, you must type two, so that the
compiler knows that it is not the end of the string. Another example showing this is:

"This string contains only one "", but we must type two."

Note also that the single character text constants "%" and "" "" are not the same as the
character constants '%' and '"'. They have different types.

Page 99 of 138

Initial values

An identifier of a certain type, which is not declared as a constant is often referred to as a
"variable" of that type, since, unlike a constant of the same type, its value can be changed
by assigning to it. When we declare such variable, the SIMULA system places an initial
value in the location identified. This value is the same on all SIMULA systems on all
computers for all variables of a given type.
Thus it is quite legal, and meaningful, in SIMULA to write

 begin
 integer IntVal;
 OutInt(IntVal,4);
 OutImage
 End

since the initial value placed in the location identified by IntVal will be printed. This will
be the value initially given to all integer locations.
The values placed in each type of location are given below.

 integer 0
 short integer 0
 real 0.0
 long real 0.0
 character The ISO NULL character, which is 'invisible'.
 Boolean False
 text NoText, the empty text, referring to an empty string.
 Equivalent to "".

Implicit Conversion of Real and Integer

When a real value is assigned to an integer location or vice versa we have said that the
value will be converted to one with the type of the location. When integers are converted
to real, no problems are involved in understanding what will happen. The values 3 and
3.0 are usually thought of as identical and such a conversion presents no ambiguities.
On the other hand, when real are converted to integers, the result depends on how we deal
with the fractional part of the real value. How do we get rid of the figures to the right of
the decimal point?
If we go back to our earlier examples we might use them to produce example 6.9.
Running this would show the outcome of implicit conversion of real to integer.

Example 6.9: Implicit conversion and rounding.

 begin
 integer I1, I2, I3;
 I1 := 3.2;

Page 100 of 138

 I2 := 3.9;
 I3 := 3.5;
 OutInt(I1,4);
 OutInt(I2,4);
 OutInt(I3,4);
 OutImage
 end

Clearly more than one outcome is possible.
If all reals are rounded up the output will be
 4 4 4
if down
 3 3 3
and if to the nearest integer value
 3 4 4
or
 3 4 3
the last two depending on whether 3.5 is regarded as nearer to 3

Constant Declarations

Constant declarations were introduced into SIMULA very late on and are still regarded as
controversial by older SIMULA programmers. They should be used with some restraint
if you want to move your programs to other systems. Older SIMULA systems will not
have constant declarations.
A constant declaration allows an identifier to be assigned a value in its declaration. This
identifier may not then be assigned another value. This can be very useful when using the
same value frequently in a program, especially when the value is easily mistyped or has
no obvious meaning.

real Pi = 3.14159; ! A constant declaration;

6.5.7 Conditional Statements

The ability that makes computers more than calculators or fancy typewriters is the ability
to perform different actions according to some condition or conditions, which it can
determine to be either true or false. Computers can be told, "Check this condition. If it is
true then do the following, otherwise do this other thing". In some cases the other thing is
nothing. Put crudely, computers can make choices. What they cannot do, or, at least, as
far as the author is aware, not yet, is decide which condition to test, or whether the
actions which follow are really sensible. They must be told these things and programming
languages have mechanisms for doing so. In SIMULA, the most important construction
for making choices is the "conditional statement" or, as it is often known, the if statement.

Example 6.10: Simple use of an if statement.

Page 101 of 138

 begin
 integer Int1;
 Int1:=InInt;
 if Int1=2 then OutText("YES");
 OutImage
 end

This program will read in a whole number and compare its value against 2. If it is equal
to 2 then the program will print YES, otherwise a blank line will be printed. Compile and
run it to make sure. From this example we can see the syntax of an if statement. An if
statement starts with the keyword if, followed by a condition, followed by the keyword
then, followed by a statement. The program checks the condition. If it is true, the
statement is executed (or carried out, if you prefer), but if it is false, the statement is
skipped. The next statement, if there is one, is then executed. An if statement may be used
wherever a simple statement may be used.

The if-then-else statement

Consider example 6.11 which uses if statements.

Example 6.11: Un-combined if statements.

 begin
 integer Int1;
 Int1 := InInt;
 if Int1=2 then OutText("YES");
 if Int1 ne 2 then OutText("NO");
 OutImage
 end

Here we have added a second if statement to our first example, but all that it does is
check the opposite condition to the first. ne is the symbol for "not equal" in SIMULA.
This program will print out YES if the number read in is 2 otherwise it will print out NO.

6.5.8 Compound Statements and Blocks as Statements

As we mentioned in previous section that a block in SIMULA can be used as a statement.
More generally, we can use a sequence of statements enclosed in begin and end wherever
we can use a simple statement. In fact SIMULA uses the term "compound statement" for
such a sequence if it contains only statements and the term block where it contains its
own declarations. We are able to define our own procedures, which we can then use
wherever we like inside the block where we declare them. In fact we can even build a
library of our favorite procedures and use it in all our programs.

6.5.9.Declaring Procedures

Page 102 of 138

It is clearly not enough to declare a procedure in the way we declare an integer. The
declaration
 procedure Concatenate
cannot magically tell the SIMULA system what we want Concatenate to do. We must
also supply the actions to match the name. Here is a valid procedure declaration:
 procedure PrintName;
 OutText("Alice");

The syntax of the simplest procedure declaration is the keyword procedure, followed by
the identifier to be used for the procedure, followed by a semi-colon, followed by a
statement. The statement following the semi-colon is known as the procedure body and
specifies what is to be done each time the procedure is invoked or "called" in the
subsequent program. Calling the procedure is done by using its identifier as a statement
in the program, exactly as we call system procedures.

Example 6.12 shows the use of our procedure, PrintName.

Example 6.12: Simple procedure use.
 begin

 procedure PrintName;
 OutText("Alice");

 Concatenate;
 OutImage
 end

Note the use of blank lines to make it easier to see where the procedure begins and ends.
These are not compulsory, but make the program more readable to humans. We would
normally want to have more than one statement in our procedure body.

Parameters to Procedures

We have already seen how parameters can be used to pass values to system procedures.
Example 6.13 shows how to declare two texts as parameters to the Concatenate
procedure.

Example 6.13: Concatenate with parameters.

 begin
 procedure Concatenate(T1,T2); text T1,T2;
 begin
 text T3;
 T3:-Blanks(T1.Length+T2.Length);
 T3:=T1;

Page 103 of 138

 T3.SetPos(T1.Length+1);
 while T2.More do T3.PutChar(T2.GetChar);
 OutText(T3);
 OutImage
 end;
 text Text1,Text2;
 Text1:-"Fred";
 Text2:-"Smith";
 Concatenate(Text1,Text2)
 end

This passes in our texts, T1 and T2, which are now used as parameters to the procedure.
The identifier given for the procedure in its declaration is followed by a list of all the
parameters to be used, enclosed in parentheses and separated by commas. The declaration
text T1, T2;following the semi-colon and before the begin is known as the type specified
and gives the type of each of the parameters. Where more than one type of parameter is to
be used, more than one type declaration must be given. 6.14 is an example, using one text
and one integer parameter.

Example 6.14: A procedure with more than one type of parameter.

 begin
 procedure TextAndInt(T,I); text T; integer I;
 begin
 OutText(T);
 OutInt(I);
 OutImage
 end;
 TextAndInt("NUMBER",10)
 end

Parameter Modes

The way of specifying parameters that we have used so far will always work for passing
values into a procedure. If we want to get information out, we may have to add a mode
specifier for some parameters. This sounds confusing, but is easy to follow in practice.
Here is a final version of Concatenate.

Example 6.15: Using a name parameter to return a result.

 begin
 procedure Concatenate(T1,T2,T3);
 name T3; text T1,T2,T3;
 begin
 T3:-Blanks(T1.Length + T2.Length);

Page 104 of 138

 T3:=T1;
 T3.SetPos(T1.Length + 1);
 while T2.More do T3.PutChar(T2.GetChar);
 end;
 text Text1,Text2,Text3;
 Text1:-"Fred";
 Text2:-"Smith";
 Concatenate(Text1,Text2,Text3);
 OutText(Text3);
 OutImage
 end

Notice that, as well as specifying that T3 is of type text, we have specified that it is name.
name is not a type but a mode. When a parameter is defined as of name mode, any
assignments to it alter the value of the variable actually passed in the call, rather than a
local copy, as would have happened with the other parameters, which are passed by
value. In fact there are three modes; value, reference and name. Where a mode
specifier is not given for a parameter, a mode of value or reference is assumed, depending
on its type. Some modes are illegal for certain types. Table 6.1 is a complete table of the
assumed (usually referred to as default), legal and illegal modes for parameters to
procedures.

Type Mode Value Reference
Simple type Default Illegal Legal
text Legal Default Legal
Object reference Illegal Default Legal
Simple type array Legal Default Legal
Reference type array Illegal Default Legal
procedure Illegal Default Legal
type procedure Illegal Default Legal
label Illegal Default Legal
switch Illegal Default Legal
 Illegal Default Legal

Table 6.1: Complete table of the modes for parameters to procedures.

A simple type is integer, real, character or Boolean and any long or short variants of
them. Now we can see that name is always legal and reference is the default for all but
simple types. Do not worry about the meaning of those types which are new. We shall
consider their use when we encounter them.

Value Parameters

A value parameter to a procedure acts as if it were a variable of that type declared in the
body of the procedure. The value passed to it when the procedure is called is copied into
it as part of the call statement. Since values declared inside a block cannot be used

Page 105 of 138

outside that block, the value of this mode of parameter is lost on returning from the
procedure. When calling a procedure, any value of the correct type may be passed to a
value mode parameter. Thus constants, expressions and variables are all allowed.

To see the effect of passing a parameter by value, consider example 6.16.

Example 6.16: Passing parameters by value.

 begin
 procedure P(Val); integer Val;
 begin
 OutInt(Val);
 OutImage;
 Val := Val - 1;
 OutInt(Val);
 OutImage
 end..of..P;

 integer OuterVal;
 OuterVal := 4;
 P(OuterVal);
 OutInt(OuterVal);
 OutImage
 end

The value in OuterVal, 4, is copied into the parameter Val's location when P is called.
Thus the first number printed will be 4. When 1 is subtracted from Val, OuterVal is not
changed. Thus the second number printed is 3, but the third is 4. When a text is passed by
value to a procedure (N.B. this is not the default) it has the effect of creating reference to
a local text frame with the same length as the text passed, into which the characters from
the latter text are copied. Consider example 6.17.
OutLine is actually quite a useful procedure. Note that in order to pass our text parameter
by value we have to give a mode specification for it, using the keyword value. When the
procedure is called, the parameter T is initialized as if the following statements had been
executed.
 T :- Blanks(OuterT.Length);
 T := OuterT

Example 6.17: Text parameter passed by value.

 begin
 text OuterT;

 procedure OutLine(T); value(T); text(T);
 begin
 OutText(T.Strip);

Page 106 of 138

 OutImage
 end..of..OutLine;

 OuterT:-"Here's a line";
 OutLine(OuterT)
 end

Reference Parameters

When a parameter is passed by reference, the local parameter points at the location
holding the object passed, rather as if the reference assignment operator had been used.
No local copy is made of the contents of the object. For every reference parameter type
except text, this explanation is sufficient and should be reconsidered for its meaning
when those types are encountered. As we have seen, when a text is assigned by reference
new copies of Pos, Length etc. are made, but the same actual text frame is referenced.
Pos, Length etc. will have the same values as those for the original reference, but will not
change if the originals do. As far as the passing of text parameters by reference is
concerned the following effects occur:

The characters in the frame referenced by the parameter may be changed by the
procedure. Since this is the same actual location as the frame of the reference, which was
copied, the contents of the frame remain changed when execution of the procedure is
complete.
The other attributes have local versions created, with the same values as those current for
the parameter. When those other attributes are changed for the parameter, they remain
unchanged for the original. Thus, any changes to these are lost when execution of the
procedure is complete.
Try rewriting the Concatenate procedure (Example 6.13) with all the parameters passed
by reference. What would be the effect on running the program using it now? .You
should find that it fails since the Length of Text3 cannot be changed by manipulating T3
inside the procedure. The only way to get this program to work would be to set the length
of Text3 before calling the procedure, as shown in example 6.18. Note that as reference
mode is the default for all types where it is legal, it is never necessary to give a mode
specification for reference parameters. Thus there is no keyword reference to match
value and name.

Example 6.18: Concatenate using only reference mode parameters.

 begin
 procedure Concatenate(T1, T2, T3); text T1, T2, T3;
 begin
 T3 := T1;
 T3.SetPos(T1.Length + 1);
 while T2.More do T3.PutChar(T2.GetChar);
 end**of**Concatenate**by**reference;

Page 107 of 138

 text Text1, Text2, Text3;

 Text1 :- "Fred";
 Text2 :- " Smith";
 Text3 :- Blanks(Text1.Length+Text2.Length);
 Concatenate(Text1,Text2,Text3);
 OutText(Text3);
 OutImage
 end

Name Parameters

Name parameters are very powerful, but complex. It is sometimes possible to make
serious errors using them, through failing to consider all possible outcomes of their use.
When a variable is passed by name, its use within the procedure has the same effect as
when that variable is used outside the procedure. Thus any actions on the parameter
inside the procedure directly affect the variable passed in the call. This is obviously a
suitable mode for getting values back from a procedure, as we have seen. This contrasts
with the use of reference mode, where the contents of what a variable points at are
changed, but the variable still points at the same location. If a reference assignment is
made to a name parameter, it is actually made to the variable passed originally, not a
local copy.

Example 6.15 returned the concatenated texts in the name parameter T3. When the
procedure was called, the variable Text3 was passed as this parameter and when the
statement following the call was executed, Text3 contained the combined texts. There is
one statement missing from this Concatenate. It is needed because the Pos, Length and
other attributes of Text3 will be changed by the procedure, when it manipulates T3.
What is this missing line? See if you can work out what it is before reading the polished
version below.

Example 6.19 is the version of Concatenate which we can use in all our programs.

Example 6.19: Finished version of Concatenate.

 begin

 procedure Concatenate(T1, T2, T3);
 name T3; text T1, T2, T3;
 begin
 T3 :- Blanks(T1.Length + T2.Length);
 T3 := T1;
 T3.SetPos(T1.Length + 1);
 while T2.More do T3.PutChar(T2.GetChar);

Page 108 of 138

 T3.SetPos(1); ! Did you get this right?;
 end**of**Concatenate;

 text Text1, Text2, Text3;

 Text1 :- "Fred";
 Text2 :- " Smith";
 Concatenate(Text1,Text2,Text3);
 OutText(Text3);
 OutImage
 end

The missing statement must reset the position within T3 to the start of the characters it
now contains, since it is left pointing to their end. Note that, since name mode is never a
default for any type, the mode specifier name must be used in a mode specification for
any parameters, which are to be used in this way. It is worth mentioning that all
parameters passed by name are re-evaluated each time they are used inside the procedure.
This is important in some cases since actions inside the procedure may change the value
of an expression passed in this way, while expressions passed by value or reference are
evaluated and their values copied into the local variables specifying those parameters,
once and for all, at the call. Try compiling and running example 6.20 to see the
difference. Note also that while it is legal to pass expressions by name in this way, an
attempt to assign to a name parameter when an arithmetic expression like those in 6.20 or
anything else which is not a valid left hand side has been passed will cause a runtime
error. The general rule is that the exact text of what is passed replaces each occurrence of
the name parameter within the procedure.

Example 6.20: Expressions by name and by value.

 begin
 procedure Use_Name(Val1, Val2); name Val2; integer Val1, Val2;
 begin
 OuterVal := 3;
 OutInt(Val1,4);
 OutInt(Val2,4);
 OutImage
 end..of..Use_Name;

 integer OuterVal;
 OuterVal := 5;

 Use_Name(OuterVal+3,OuterVal+3)

6.5.10 File Handling in SIMULA

Page 109 of 138

You are probably used to the fact that computers keep permanent information in
collections called files. Some systems use other names such as data sets, but they are
essentially the same thing. These files have names by which you can identify them to the
computer. Programs can read from these collections of information and write to them.
SIMULA has objects called Files as well. When you want to read from or write to a file
on your computer, you must use a SIMULA File object to stand for the external file and
tell the computer which external file you want. The exact way that this works may vary
slightly from one computer to another, but the important points are the same.
In fact a SIMULA File can stand for any source of or destination for information. A
printer can also be written to by using a File object to represent it in your programs. A
magnetic tape reader can be used as a source of input in the same way. In fact you have
already been using two File objects without being told that that was what you were doing.
These are the standard input File, SysIn, and the standard output File, SysOut. Whenever
you have used InInt, OutImage and any other input/output instructions you have been
using File attributes.

Simple Input

To read information from the computer we normally use a type of File object known as
an InFile. In fact InFile is a sub-class(Concept of Class and Sub Class is declared in
subsequent sections) of the object type or class called File. This means that all the
properties of File are properties of InFile or are redefined in InFile, but that InFile has
some extra ones of its own. In fact all types of File objects are sub-classes of File. InFile
is not a direct sub-class of File, however; there is another level between them, called
ImageFile. Put more simply, class File defines a type of object with a number of
attributes used to access sources of and destinations for information on a computer, such
as files, printers, terminals and tape readers. File class ImageFile is a sub-class of File. It
has all the attributes of its parent class File, some of which it redefines, and in addition
some extra attributes used to handle information in certain ways. ImageFile class InFile is
a sub-class of ImageFile. It has all the attributes of both File and ImageFile plus extra
ones for reading information using the ways suited to ImageFile's attributes. This
probably sounds far from simple on first reading, but the idea of thinking of objects as
classes and sub-classes is central to SIMULA and so we use it to describe formally the
relationships of the various sub-types of File.

Example 6.21 is a program using an InFile to provide its information. Notice the familiar
names used for the same purposes, but now prefixed with a File name.

Example 6.21: Simple input using InFile.

 begin

 ref (InFile) Inf;
 text T1;

Page 110 of 138

 Inf :- new InFile("MYRECORDS");
 Inf.Open(Blanks(80));
 Inf.InImage;
 T :- Inf.Image;
 OutText(T);
 OutImage;
 OutInt(Inf.InInt);
 OutImage;
 Inf.Close
 end

There are a few new concepts in this program. Let us look at them one by one. Firstly, we
have a new type of declaration. It declares Inf to be a ref variable, but has the word InFile
in parentheses between the keyword ref and the identifier Inf. A ref variable is a pointer
to an object of a complex type. The class, which defines that type, is given in parentheses
after the keyword ref. Thus Inf is a location, which can be used to hold a pointer to an
object, which is of type InFile. It is initially pointed at an imaginary object called None,
just as text variables initially reference NoText.

SIMULA allows us to use complex objects, made up of attributes, which are already
defined. These attributes may be of the standard SIMULA types or may reference types
defined by the user, i.e. one user defined type may use others as attributes. The
construction in SIMULA which can be used to declare a complex type is the class. We
have already seen predefined system classes when we looked at File and its sub-classes.
Now let us declare a class Lab for use in our program. Example 6.22 shows 6.21
reworked using such a class.

Example 6.22: Simple labels program with classes.

 begin
 integer NumLabs, I;

 procedure OutLine(T); text T;
 begin
 OutText(T);
 OutImage
 end;

 text procedure InLine;
 begin
 InImage;
 inspect SysIn do InLine:- Copy(Image.Strip)
 end;

 class Lab;
 begin

Page 111 of 138

 text Nam, Street, Town, County, Code;
 end--of--class--Lab;

 ref(Lab) Label1;! Declare a pointer to a Lab object;
 Label1:- new Lab;! Create a Lab object and point Label1 at it;
 comment Remote access through dot notation;
 Label1.Nam:- InLine;
 Label1.Street:- InLine;
 Label1.Town:-InLine;
 Label1.County:- InLine;
 Label1.Code:- InLine;
 InImage;
 NumLabs:= InInt;
 comment Now connected access through inspect;
 inspect Label1 do
 begin
 for I:=1 step 1 until NumLabs do
 begin
 OutLine(Nam);
 OutLine(Street);
 OutLine(Town);
 OutLine(County);
 OutLine(Code)
 end
 end
 end

Let us look at the new features used here. First there is the class declaration. This
provides a description for a class of objects which all have the same attributes. In this
case we define Lab (label is a SIMULA keyword and may not be used as an identifier).
In general, a class declaration is very like a procedure declaration, with the keyword class
instead of procedure. The declaration of Lab specifies the name of the complex type
being defined as the identifier following the keyword class. This identifier is followed by
a semi-colon. The attributes of the class are defined in a statement, known as the class
body, which follows. Thus Lab has five attributes, all of type text. Having defined the
attributes of our new type, we can now create an object, or as many objects as we like,
with those attributes. This is done by using an object generator. An object generator can
be used as a statement on its own or as a reference expression, i.e. on the right hand side
of a reference assignment or as a reference parameter. Examples of all these are shown in
6.23.

Examples 6.23: Valid occurrences of object generators.

As a complete statement: new Printer
As the right hand side of a class reference assignment: OutF :- new OutFile
As a class reference parameter: Queue_Up(new Passenger)

Page 112 of 138

A variable is first declared, whose type is ref(Lab). This means that it identifies a location
where a pointer to an object of the type defined by class Lab may be stored. This variable
is used first as the left hand side (destination) of a reference assignment statement. The
effect of this statement is that a new object containing the attributes of Lab is created.
Since Label1 is assigned a pointer to this object (references it), the object's attributes can
be accessed through the variable Label1. As we have seen with objects, which were of
types InFile and OutFile, there are two ways of doing this. Both are shown in example
6.20.
"Remote accessing" of a class object is done by using the identifier of a reference
variable, which currently contains a pointer to the object, Label1 in our example. A
ref(Lab) procedure could also be used, as we have seen with SysIn and SysOut. This
reference is followed by a dot, followed by the name of a visible attribute of the class
which defines the type of the object being accessed. This method of accessing attributes
may be used for both text objects and class objects. This distinction is important, since
the type "text" is not defined by a class. The other way of accessing the attributes of an
object is by "connecting" it first. To connect an object we must use an inspect statement.
In the statement, which follows the keyword do, the use of any identifier which has a
declaration in the class defining the type of the connected object is assumed to refer to
this attribute. If no matching declaration is found in this class or its prefixes, the identifier
is assumed to belong outside the object. Thus, within the inspect statement in example
6.20, the occurences of Nam, Street, Town, County and Code are taken to refer to
attributes of the object Label1, since declarations for them are found in class Lab.

6.5.11 Arrays in SIMULA

Many programs need to read, update and write out long series of data items. These items
are the objects, which we wish to manipulate. It is rarely worthwhile to use a computer to
process one or two items. Even our program, which wrote only a few copies of one label,
used an object with a list of data items within it.
The use of files allows us to read lists from outside the program and to store them at its
end. Unfortunately, as our updating programs show, it is not a good idea to create a new
file, external to the program, each time we add, delete or modify an item in a list. We
soon end up with a multitude of out of date files. The use of objects defined by classes
allows us to hide a number of basic items inside larger, more complex items. It does not
solve the problem of how to refer conveniently to a long list of items in succession. The
need to declare and use a separate identifier for each possible line of a letter, for instance,
makes long letters unwieldy to process and those of indefinite length almost impossible.
This section is dealing with the first of three problems by using of lists. It provides simple
but elegant mechanisms for solving most of the problems mentioned above. Let us start
with the problem of holding a long list of items, which are all of the same type.

Example 6.24 shows the use of an array in a much simplified letter program, where no
addresses are allowed for, only the text and the name of the sender.

Page 113 of 138

First look at the array declaration in class Letter. (The misspelling is deliberate since
there is a system Boolean procedure called Letter, which we might well wish to use in the
same program.

Example 6.24: Letter program using a text array.

 begin
 class Leter;
 begin
 text Sender;
 text array Line(1:60);
 integer Len;

 procedure ReadLetter;
 begin
 InImage;
 inspect SysIn do
 while Image.Strip ne ".end" do
 begin
 Len := Len + 1;
 Line(Len) :- Copy(Image.Strip);
 InImage
 end
 end++of++ReadLetter;

 procedure WriteLetter;
 begin
 integer Current;
 for Current := 1 step 1 until Len do
 begin
 OutText(Line(Current));
 OutImage
 end;
 OutText(" Yours faithfully,");
 OutImage;
 OutText(" ");
 OutText(Sender);
 OutImage
 end++of++WriteLetter;

 OutText("Type your letter, ending with '.end' on a line by itself");
 OutImage;
 ReadLetter;
 OutText("Now type your name on a single line");
 OutImage;
 InImage;

Page 114 of 138

 inspect SysIn do Sender :- Copy(Image.Strip)

 end--of--class--Leter;

 new Leter.WriteLetter

 end**of**program

Simple Array Declarations

The syntax of an array declaration is the type specifier of the items in the list (integer,
ref(Letter) etc.), followed by the keyword array, followed by an identifier, followed by
the "bounds" of the list, enclosed in parentheses. Spaces (or ends of line) are used to
separate keywords and identifiers as usual. They are not required between the identifier
and the left parenthesis, but may be used if you wish. It is legal to omit the type specifier,
in which case the array is assumed to be of type real. The syntax has not included the
form of the bounds. In the commonest case we wish to declare a simple numbered list.
The bounds then are two arithmetic values, which are converted to integers if necessary,
separated by a colon. In example 6.24 the constant integers 1 and 60 are the bounds. This
definition is only the simplest variant, but it covers most uses of arrays for the moment.
The semantics of such a declaration produce information telling the system to reserve
space for a list of items of the specified type. This list is to be numbered consecutively,
starting with the value before the colon and ending with the value after the colon. This
also defines the number of elements in the list. This list as a whole is referred to by its
identifier. Thus a whole array can be passed as a parameter to a class or procedure, by
giving just the identifier. Individual items in the list can be referred to by the identifier
followed by an arithmetic value enclosed in parentheses, giving the number of the
element to be accessed, within the list. Thus the declaration in example 6.24 tells the
SIMULA system to reserve space for a list of sixty text variables. These are to be
declared to be numbered from one to sixty. The list will be referred to in the program by
the identifier Line.
Note that the value of the first bound does not have to be 1. The bounds can have any
values, even negative ones, as long as the first bound is less than the second or equal to it.
The first bound is usually referred to as the lower bound and the second as the upper.Note
also that the values of the bounds may be given as real values. In this case they are
converted to integers in the same way as for assignments. The values can be arithmetic
expressions as well as constants. The normal rules for evaluating expressions apply.

Using Array Elements

The items in an array list are often called its "elements". Example 6.24 shows how an
individual element of Line can be accessed. This is known as a subscripted variable. The
value within the parentheses is called the subscript or the index. Item number Len of the
list is accessed in ReadLetter. It is referred to as Line(Len). Since Len is increased by one

Page 115 of 138

before each Image is copied to Line(Len) the effect is to copy successive lines of input
into successive elements of the text array Line. The syntax of a simple subscripted
variable is an identifier followed by an arithmetic value enclosed in parentheses. The
arithmetic value may be a constant, a variable or a more complicated expression,
including a call on an arithmetic type procedure. Where necessary the value will be
converted to an integer, following the normal rules. The semantics are also simple. The
value of the subscript gives the number used as an index to the elements of the array.
Note that the value of the lower bound is important in determining which element this
refers to. A subscript of six will only refer to the sixth element if the lower bound was
one. If the lower bound was four, indexing by six gives the third element.
A subscripted variable may be used wherever a simple variable of the same type may be
used. The value of the subscript, converted to an integer if necessary, must lie between
the values of the lower and upper bounds, inclusive. If it is out of this range a runtime
error will be reported.

Dynamic Array

Clearly the use of arrays allows large amounts of data to be held in locations declared
within our programs, without the continual need to access files and without declaring
long lists of identifiers. The use of loops, especially for loops, allows us to handle arrays
in concise and clear ways. One problem with the use of arrays is that we must tell the
system in their declarations how many elements they contain and what their bounds are.
Often this may not be known until runtime. This means that example 6.24 can only cope
with letters of up to sixty lines. If someone wanted to use the program for a longer letter,
they would have to alter the source and recompile it. Although the array is not always the
best solution when there is no way of knowing in advance how long the list will be, it can
be made more generally useful by specifying the bounds in other ways. We have defined
the bounds as any expressions giving arithmetic values. This includes constants, as used
in 6.24, but also variables and expressions involving operators and type procedures. The
only restriction is that any variables used must already have their values fixed before
entering the block in which the array is declared. This means that the bounds can changed
each time a block is entered.
The SIMULA system allocates the space used by each block only when that block is
entered. Thus it does not need to know how big an array is until then. If a variable used in
the bounds of an array has been declared in an outer block, this variable can have its
value set in that outer block before the array's space is allocated in the inner block. The
variable must not be declared in the same block as the array, since the system may
allocate the block's arrays before its other variables and, anyway, these variables could
only have their initial zero values, since no statements may come in front of declarations
in a block. As a consequence, the only block which cannot use variables in array bounds
is the program block. This is the outermost block and must use constants in all its array
bounds. All sub-blocks, procedures and classes used in a program are free to use
variables in array bounds so long as these are declared in an enclosing block or, for
classes and procedures, are parameters. Remotely accessed variables may also be used.

Page 116 of 138

The simple examples in 6.25, 6.26 and 6.27 show how "dynamic bounds", as this
mechanism is known, may be used for sub-blocks, procedures and classes respectively.
These trivial examples demonstrate a very powerful facility. One important point to note
is that when the parameters of a procedure or class are used in bounds for arrays declared
in that procedure or class body, they are treated as outside that body. This is the only case
where any distinction is made between parameters and other locally declared variables
inside the procedure or class body. It is very important that this be allowed.

Example 6.25: Dynamic array bounds in a sub-block.

 begin
 integer I1,I2; ! Declared at the outermost block level;
 I1 := 2; ! Sets a non-zero value in I1;
 I2 := 3; ! Sets a non-zero value in I2;
 begin

 comment Start a sub-block which can only be entered after
 I1 and I2 have had their values set;

 integer array A1(I1:I2); ! Declare with I1 and I2 as bounds;
 A1(2) := 6;
 end--of--sub-block;
 comment Array no longer accessible;
 end

Example 6.26: Dynamic array bounds in a procedure.

 begin

 procedure Bounder(Lowest); integer Lowest;
 begin
 comment Parameters may be used as bounds inside a procedure body;

 character array C1(Lowest:4*Lowest); ! Use an expression containing
 Lowest as upper bound;
 C1(Lowest*2+1) := '&'; ! Use an expression in the subscript too;
 OutChar(C1(5)); ! Null unless Lowest is 2;
 OutImage
 end--of--procedure--Bounder;

 Bounder(2); ! Should print &;
 end**of**program

Example 6.27: Dynamic array bounds in a class.

Page 117 of 138

begin
 integer Lower;
 class Cl1(Upper); integer Upper;
 begin
 Boolean array BoolArr(Lower:Upper); ! Use a mixture of enclosing
 block's declarations and parameters to set
 bounds;
 BoolArr(Lower+3) := True
 end--of--class--Cl1;

 ref(Cl1) Cl1Ref;
 Lower := 4; ! Sets lower bound before object generation;
 Cl1Ref :- new Cl1(7); ! Passes upper bound as a parameter;
 if Cl1Ref.BoolArr(5) then OutText("True") else OutText("False");
 OutImage
 end**of**program

6.5.12 Sub-Classes (Inheritance)

One of the important ways we have of making sense of the world is to classify things. We
put them into categories or classes. SIMULA allows us to reflect this very natural way of
thinking in the way we write programs. When classifying things we first group them
either very generally, e.g. as animal, vegetable or mineral, or very specifically, e.g. as
bees or roses, depending on circumstances. These approaches correspond to the
programming techniques known as "top down" and "bottom up" design, respectively. In
practice, it is fairly easy to classify things in general terms, but appearances can be
deceptive when it comes to detail. Things, which look alike, may actually have very
different origins. Thus the hedgehog and the spiny anteater look remarkably similar and
live very similar lives, yet, genetically, they are not closely related at all. SIMULA takes
the top down approach as the safest, just as natural science has tended to. It allows us to
define a CLASS, as we have seen, to represent a general type of object. This may then be
extended, to reflect the special characteristics of sub-types by defining sub-classes of the
original. These retain some or all of the characteristics of the parent type, but include
characteristics, which are only found in certain objects of this type. It is important to
notice that sub-types in SIMULA extend and refine the range of characteristics of the
parent type. The more general the class of objects described, the fewer characteristics that
are given to it. One example of the use of such sub-types, that we have already seen, is
the Class File and its sub-classes.

Page 118 of 138

class File

File class ImageFile

ImageFile class Infile

ImageFile class
DirectFile

 ImageFile class OutFile

 Outfile class PrintFile

Figure 1 : Family tree of class File

The syntax of a sub-class declaration is very simple. The keyword class is preceded by
the name of the parent class. Otherwise the declaration is the same as for a simple class.
The new class is said to be "prefixed" by the parent.

The Types of Class Objects

When a class object is generated it possesses all the attributes of the class whose name is
given in the object generator. This includes any visible attributes from classes on its
prefix chain, following the rules given above concerning name clashes. The type of such
an object is the class specified and this is called its qualification. It can also be thought of
as being qualified by the classes on its prefix chain, except that not all the attributes of
these may be visible. A variable which is declared as a ref to a class which is the
qualification of an object or is on the prefix chain of its qualifying class may be used to
access that object. The type of the refIt is only legal to treat an object which is being
remotely accessed as if it was qualified by the class of the referencing variable. Reference
variable used controls how much of the prefix chain may be so accessed.

6.6 Case Study I

A multi-channel queuing system-Active Customer approach

 Figure 2 shows the system being simulated. It is an abstraction of for example a bank
where the customers wait in one queue for any of the tellers. The interval between
arrivals is random, uniformly distributed between 1 to 3 minutes. All servers have the

Page 119 of 138

same random service time that is normally distributed with the mean value 8 minutes and
the standard deviation 2 minutes. The simulation should find the average time a customer
spends in the system. Simulation of similar systems in Simula (exactly in the system class
Simulation of Simula) always starts by identification of processes. One process is
obviously the generator of customers - it will repeatedly generate a customer, record its
arrival time, and wait a random delay. To express the dynamics of the system, there are
two logical approaches. First (used in this example) is based on active customers and
passive servers. The opposite approach - active servers, passive customers is shown in the
next example. An active customer has life rules represented by the following steps:
If there is a free server, proceed. Wait in the queue otherwise. Seize a server; generate
random delay that represents the service time. Release the server.
If there is a waiting customer (if the queue is not empty), remove it from the queue and
activate it. (The activated customer will start its step 2.)
Update statistics.

G enerato r
O f

custom ers
Servers

Q ueue

Figure 2: Queuing system made of one queue and more servers.

The following program is a simulation model of the above system. Note, that the primary
objective was to show the logic of the model in a program as simple as possible. Real
simulation models of course prompt for all variable parameters and provide more results
(like for example average and maximum queue length, etc). In the following program
there are two processes that exist during the whole experiment: the generator and the
main program (block prefixed by Simulation), that just waits until the experiment is over
and then displays the result. Then there are a varying number of customer processes that
exist temporarily. After updating statistics the customers terminate. Note the use of
standard functions to generate random delays. There are standard functions in Simula for
most commonly used distributions. All are given an integer variable as a seed to be used
by the random generator. So all random values may use separate streams of random
numbers or share a common one.

! Active customer approach;
Simulation Begin
 Real TrialDuration; ! Experiment length [min];
Ref(Head) Queue; ! The queue;
Integer Servers; ! Total number of servers;
Integer BusyServers; ! Numbers of working servers;
 Integer TrialSeedG, TrialSeedS; ! Seeds of random generators;
 Long Real TotalTime, TimeSpent; ! Variables for statistics;
Integer CustomersOut; ! Number of served customers;
 Real MinInt, MaxInt; ! Uniform interval between arrivals;
Real SMean, SStd; ! Normal service duration;
Process Class Generator;

Page 120 of 138

Begin
While true do begin
Activate New Customer(Time); ! Time is the current (arrival) time;
! Interval between arrivals: ;
Hold(Uniform(MinInt, MaxInt, TrialSeedG));
End While;
End of Generator;
Process Class Customer(Arrival); Real Arrival;
Begin
Ref(Customer) Next;
 If not Queue.Empty or (BusyServers >= Servers) then
Wait(Queue); ! Customer has to wait in the Queue;
 ! Service can start: ;
BusyServers := BusyServers + 1; ! Seize a server;
! This is the teller service: ;
Hold(Normal(SMean, SStd, TrialSeedS));
BusyServers := BusyServers - 1; ! Release the server;
If not Queue.Empty then begin
Next :- Queue.First;
Next.Out; ! First from Queue served;
Activate Next after Current;
End If;
CustomersOut := CustomersOut + 1; ! Statistics;
TotalTime := TotalTime + (Time - Arrival);
 End of Customer;
 ! MAIN program body: ;
 TrialSeedG := 7; TrialSeedS := 23; ! Seeds for random variables;
 MinInt := 1; MaxInt := 3; ! Min and Max intervals;
 SMean := 8; SStd := 2; ! Random normal servers;
 OutText("Enter the number of Servers : "); OutImage;
 Servers := InInt; ! Initial numbers;
 TrialDuration := 600; ! Other variables initialized to 0;
 Queue :- New Head; ! Create an empty queue;
 Activate New Generator; ! This starts the experiment;
 Hold(TrialDuration); ! Experiment duration;
 TimeSpent := TotalTime/CustomersOut;
 OutText("Average time spent in the system: ");
 OutFix(TimeSpent, 3, 10); OutImage;
 InImage
End of program;

6.7 Case Study II

A multi-channel queuing system-Active Server approach

Page 121 of 138

The system being simulated is the same, as in the previous example (refer Figure 2). The
difference is the active server that repeatedly serves customers from the queue until the
queue is empty. Then the server passivate . Customers at first activate all idle servers (if
any) and then go into the queue. This is of course not very efficient, but simple. Servers
activate customers after completing the service. In the rest of their lives the customers
just update statistics. The main program creates and activates all servers, but they
immediately passivate, because the queue is empty. Then the main program activates the
generator and waits until the experiment is over.

 ! Active server approach;
Simulation Begin
 Real TrialDuration; ! Experiment length [min];
Ref(Head) Queue; ! The queue;
Integer Servers; ! Total number of servers;
Integer TrialSeedG, TrialSeedS; ! Seeds of random generators;
Long Real TotalTime, TimeSpent; ! Variables for statistics;
Integer CustomersOut; ! Number of served customers;
Real MinInt, MaxInt; ! Uniform interval between arrivals;
Real SMean, SStd; ! Normal service duration;
Ref(Server) Array ServBank(1:10); ! Max. Number of servers is 10;
Integer i;
Process Class Generator;
Begin
While true do begin
Activate New Customer(Time);
! Interval between arrivals: ;
Hold(Uniform(MinInt, MaxInt, TrialSeedG));
End While;
 End of Generator;
 Process Class Server;
 Begin
Ref(Customer) ServedOne;
 While true do
If not Queue.Empty then begin
 ServedOne :- Queue.First;
 ServedOne.Out; ! First from Queue served;
 Hold(Normal(SMean, SStd, TrialSeedS));
 Activate ServedOne after Current
end
Else Passivate;
 End of Server;
 Process Class Customer(Arrival); Real Arrival;
 Begin
For i:=1 step 1 until Servers do
If ServBank(i).Idle then
Activate ServBank(i) after Current;

Page 122 of 138

Wait(Queue);
 ! Service finished: ;
 CustomersOut := CustomersOut + 1; ! Statistics;
 TotalTime := TotalTime + Time - Arrival;
 End of Customer;
 ! MAIN program body: ;
 TrialSeedG := 7; TrialSeedS := 23; ! Seeds for random variables;
 MinInt := 1; MaxInt := 3; ! Min and Max intervals;
 SMean := 8; SStd := 2; ! Random normal servers;
 OutText("Enter the number of Servers : "); OutImage;
 Servers := InInt; ! Initial numbers;
 TrialDuration := 600;
 Queue :- New Head;
 For i:=1 step 1 until Servers do begin
 ServBank(i) :- New Server;
 Activate ServBank(i) ! Create and activate all servers;
 End For;
 Activate New Generator; ! This starts the experiment;
 Hold(TrialDuration); ! Experiment duration;
 TimeSpent := TotalTime / CustomersOut;
 OutText("Average time spent in the system: ");
 OutFix(TimeSpent, 3, 10); OutImage;
 InImage
End of program;

6.8 Disadvantage of SIMULA

SIMULA never became a widely spread commonly used language. There are various
reasons to explain this fact. Even though the reasons all depend on each other, the
following is an attempt to group them from various points of view.

• Born in a small European country
• Expensive
• Does not have a modern Interactive development Environment (IDE)
• Too complicated
• Not enough publications
• Limited file access facilities (typed files)
• Missing data types (records, sets)
• No advanced parallelism and real time support
• No GUI support
• Long executable files for short programs
• No multiple inheritance
• No interfaces
• No automatic collection of statistics
• No report generator

Page 123 of 138

6.9 Summary

In this unit we have learn different kinds of simulation languages. SIMULA is studied in

detailed .SIMULA is first object oriented programming language , which having all

OOPS features like concepts of encapsulation, data hiding, classes, objects and

inheritance together the features of any high level language i.e. procedures, loops

conditional statements etc. SIMULA’s syntax and semantics is almost similar to other

high level object oriented programming language i.e. C++ and Java .At the end of unit we

have discussed two case studies which will be helpful to apply the reader’s knowledge.

6.10 Key Words

Continuous simulation languages, discrete simulation languages, Block oriented
simulation languages, Expression oriented continuous languages, Flowchart oriented
languages, Activity oriented languages, Event oriented languages, Process oriented
languages SIMULA, SIMULA I, SIMULA 67, SIMULA Data types, SIMULA
Statements, SIMULA Procedures, SIMULA classes, Nested classes, SIMULA
STANDARD PACKAGES, QP.

6.11 Self-Assessment Questions

Q.1 What is the Simulation language? Discuss the different kinds of simulation language.

Q.2 Flow chart simulation language comes in which category? Give an example of it.

Q.3 Describe the discrete and continuous simulation language with one daily life
 example.

Q.4 In each of the following program blocks, find and correct the syntax errors.

a) begin
 integer I1.I2;
 I1 := 3;
 I2 := I1
 OutInt(I2,4);
 OutImage

Page 124 of 138

 end

b)
 begin
 Res := 4;
 integer Res;
 OutInt(Res,6);
 OutImage
 end

Q.5 Correct the following programs.

a) begin
 integer IntVal;
 IntVal := '3'
 end

b) begin
 character LETTER;
 LETTER := "J"
 end

 begin
 OutInt("34",2);
 OutImage
 end

Q.6 A computer fault has changed some small letter a's into ampersands, '&'. Write a
program to scan a text and correct this.

Q.7 A similar fault has changed every occurrence of the word "and" to the word "boe".
Write a program to correct texts, which have suffered this fate.

Q.8 Use a recursive procedure to write a program which scans a text for a occurrences of
a sequence of characters and replaces them with another.

Q.9 Write a program which reads the names of a group of students and creates an array of
pupil records, holding name, age, address and marks in math, English and physics. Allow
student details to be filled in any order, copying the details into the correct entry in the
array. Print out the contents in the order in which the list of names was first given.

6.9 References/ Suggested Readings

Page 125 of 138

1. Kirkerud, B., “Object-Oriented Programming with SIMULA”, Addison-Wesley
2. Pooley, R.J., “An Introduction to Programming in SIMULA”, Oxford, Blackwell

Scientific Publications
3. N. Deo , “ System Simulation”,PHI.

Page 126 of 138

Subject : System Simulation and Modeling Author : Jagat Kumar
Paper Code: MCA 504 Vetter : Dr. Pradeep Bhatia
Lesson : Use Of Database, A.I. In Modeling And Simulation
 Lesson No. : 07

Structure
7.0 Objective
7.1 Introduction
7.2 Database in Modeling and Simulation
7.2.1 Definition of Simulation Data Model
7.2.2 Data Representation of Simulation Event
7.2.3 Data Representation for Input files for a Simulation
7.2.4 Data Representation for Output files for a Simulation
7.3 A.I. in Modeling and Simulation
7.3.1 Neural Network in Modeling and Simulation
7.3.2 Fuzzy Sets in Modeling and Simulation
7.3.3 Simulation of Fuzzy Continuous Systems
7.4 Summary
7.5 Keywords
7.6 Self Assessments Questions
7.7 References/ Suggested Readings

Page 127 of 138

7.0 Objective

Data Base and Artificial Intelligence having their wide applications in almost all branches in Science and
Engineering, so these subjects having their impact in modeling and simulation also. In this unit you will
learn how database served as input to defined model and output data is stored in database to further
analysis. The application of Artificial Intelligence (A.I.) concepts like Fuzzy Sets to solve complex partial
differential equations, and application of neural networks in modeling of complex system is also discussed
in this unit.

7.1 Introduction

Database mainly used in modeling and simulation for a complex system modeling. A complex system
requires a large amount of input data and simultaneously produce large output data for analysis purpose.

How can Simulation and A.I. (Artificial Intelligence) be used to help invent these new technologies and
improve the use of the existing ones? in fact, they already are in used . Team-training simulators have had a
considerable impact on the tactical performance of military and emergency response personnel, and
wargaming simulations are routinely used to assist strategic planning by their leaders. Simulation and A.I.
are also being used to assist contingency planning for military operations and their logistic support. There
would seem to be many other ways in which AI could be used to expand and enhance the benefits of
simulation both in training and in the execution of system in which decision is required. One of the most
promising may be one that at first seems the most improbable and counter-intuitive – the use of A.I. as a
tool for innovation.
However, it may be possible to use genetic algorithms, or a similar evolutionary technique, to build
scenarios with problems that we have not yet considered. To get started, we would need to break up our
existing threat scenarios into component parts and reassemble these parts, randomly or systematically, into
new candidate scenarios without regard for their viability or perceived usefulness. The algorithm would test
these candidates against our current or planned defenses, and evolve ever more dangerous scenarios by
combining parts from the most fit, where “fitness” was defined as ability to overcome our defenses.
Modeling and simulation would be used to test the candidate scenarios against those defenses and to
evaluate the fitness of each scenario.

7.2.Database in Modeling and Simulation

 The objective of the database and its data model in simulation is to provide a flexible representation of data
for conducting computational simulations. The simulation data model is closely related to the data model
for experimental testing .A data model is a specific description of the type of information and relationships
between the information needed for a problem domain. For computational simulation, the simulation data
model encompasses input data needed to define a simulation model and computational procedure, the
output data from a simulation, and information about the simulation software and its execution that
transformed the input data to the output data. To enable searching and querying in the data repository, the
data model includes information that will be useful for a wide variety of queries. Generally the data model
for simulation has been developed to allow development of simulation applications within independently of
any specific simulation program.

The modeling of data is a critical activity for the database or repository to meet the needs
of applications and users . The term data model was first introduced by the Codd in 1980
to include:
1. A collection of data object types that form the basic building blocks for a database
system that defines the information of a problem domain.
2. Rules for define the constraints on the data in the objects.

Page 128 of 138

3. Operators that can be applied to the objects for retrieving data or other purposes.

Data models and the process of data modeling have become an essential first step in
designing databases and repositories. Most data modeling is based on the concept of
entities and relations, which were first developed as the so-called entity-relationship (ER)
model. Entities are types of information of data and relationships represent the
associations between entities. The modern approaches for data modeling use the concepts
of object-oriented design in which entities are represented as classes, which are templates
for the software behavior of the objects generated by a class. A class has a name,
attributes, constraints, and relationships with objects of other classes. In an object-
oriented sense, classes define valid operations on objects of the class. Relationships
between classes may be associations with cardinality, an inheritance relationship, or other
advanced relationships such as aggregation or composition.
The object-oriented approach is used for developing the high-level view of the simulation
data model.

7.2.1 Definition of the Simulation Data Model

In defining a data model for simulation applications, the first decision was on the granularity of the data to
be represented. The decision is primarily based on what are the most important user needs for querying,
searching, and accessing computational simulation information. The decision was made to use a high-level
view as interrelated files used in a simulation, along with descriptive information about the content of the
files. This approach allows users to search for files for simulations that meet search criteria about the
problem, software, project, and other high-level attributes. An alternative would be to provide a
representation of the structural or geotechnical systems being analyzed. This latter approach would require
a very detailed data on all aspects of a simulation including element types, materials, geometry, constraints,
etc. It is not expected that many users would browse or query a database for simulation using search criteria
that requires such specific information. The difficulty of the development of a detailed data model and
implementation in a database system would outweigh the benefits to users.
Figure 1 is a basic view of the database required for simulation. The primary concepts are
a simulation event, input files that may be parameterized, and output files produced by a
software program.

There is a tradeoff between removing redundant data from the database. The functional relationships
between the data and efficiency in the implementation of a database system. Redundant data or
relationships should not be represented because such data are difficult to update and can lead to
inconsistent information. Normalization theory is used to analyze the functional relationships and reduce
redundancy. However, highly normalized data requires joins between data types, which may be inefficient
unless the database system has very efficient query optimization. For the data model for simulation,
redundancies are avoided, and most of the information is in at least third normal form.
An important aspect of a data model is constraints, which can take the form of valid
ranges or values of attributes, cardinality, or on rules governing relationships. Database
systems have varying capabilities for defining and enforcing constraints specified in a
data model. In general, the data model for simulation has only the essential constraints
needed for the integrity of the data. In the following subsections, the classes in the data
model and their relationships are described. The assist in the definition, the description
proceeds from simple classes to the more complicated classes.

Page 129 of 138

Stored Data for Input Output Data For Analysis

Simulation Model
Input Output

Analyst

Figure 1:A basic database concepts for Simulation

7.2.2 Data Representation for a Simulation Event

Using the notion of an event as defined in the data model for experiments, Simulation
Event has attributes describing the event and time stamp information. Simulation Event
is represents the execution of a specific computational simulation using a set of input
data and producing a set of output data as computed on a computational resource. A
simulation event is conducted by a Person for a Project. Simulation is executed on a
computer hardware and software. The input for a Simulation Event is represented by an
association with an Input File Parameter Set. The results of the simulation are stored in
multiple files associated with Data Files.

7.2.3 Data Representation for Input Files for a Simulation

A key concept in conducting a computational simulation is that a problem may have a
number of parameters and a specific simulation can be executed with a defined set of
parameter values. This is represented in the data file by allowing input files to have
parameter sets associated with them.
Input File is the top-level file that defines the input for a simulation. The input file is
associated with a Person, Project. Since most models are defined with a number of files
(such as using a source or include command), the data model represents the referenced
files by an association with a Data File.

7.2.4 Data Representation for Output Files for a Simulation

A Simulation Event produces a number of output files, of which each is represented as a
Data File. A Data File can be associated with two files, one representing the numerical
values and the second containing descriptive information (such as an XML description)
for the contents of the numerical file. Each type of file has a name, description, and a
universal locator.

Page 130 of 138

7.3 A.I. in Modeling and Simulation

A.I. has an equally valuable role to play in avoiding misunderstandings between human
and machine so that the two can be real partners in planning not only for efficient and
safe routine operations, but also for recovering from unavoidable faults in simulation.

 A.I. techniques, such as evolutionary algorithms and influence diagrams, can be used to
detect kind of incremental degradation in the automated process of simulation before it
rises up to bite us. However, its correction depends on human awareness. Considerably
more creativity is needed for intelligent adaptation to the truly unexpected equipment
failures or sudden changes in the external environment.

The planning system by which the operator and the software interact needs to include, or
even emphasize, contingency planning. Keeping risk under control requires analysis both
of what can go wrong (for instance, transient disturbances and component failures) and of
what strategies are available to reduce the likelihood of disturbances or mitigate their
effects. The system should make plans against a variety of high-risk contingencies, but it
is an intractable problem to compute all possible contingencies for all possible states of
even a simple system, let alone one that is worth automating.
Instead, starting with the current state of the plant and the next planned transition, genetic
algorithms can use the system’s concurrent simulation to play the “devil’s advocate” by
finding the worst-case scenarios and their likelihood.
The planning system should follow the same rule as medical treatment: “First, do no
harm.” Planning for recovery is further complicated by the fact that most real systems are
not Markovian their current state does not tell us everything we need to know about them.

AI techniques such as procedural heuristics and constraint resolution can be used to guide
the simulation in deciding when and if automatic protective devices can be overridden, in
planning restart and workaround, As recovery proceeds, planning should always be
working toward optimization (using evolutionary algorithms or other hill-climbing
techniques), while engaging in a continual trade-off with the demands of reliable
operation. These calculations generate a set of Pareto-optimum choices for each level of
risk. The choices form a surface in the space of system parameters. Although this space
has very high dimensionality, only those dimensions need be displayed that represent
parameters directly controllable by the operator. Despite all that AI and simulation can
do, human creativity may be the best source of adaptation to the unexpected. The
planning system needs to take advantage of that while still protecting the automated plant
from human error. The human needs to be warned, and sometimes even forcibly stopped,
from taking actions that, based on the concurrent simulation, are detrimental, or
downright dangerous. Mixed initiative human/machine planning in real time finally
comes down to making the human aware of the total situation without information
overload. Warnings and alerts are only a part of that, but they are a large part. Early
warnings are needed and prediction will always be less than perfect. One possibility is to
issue probabilistic warnings or “fuzzy alerts.” These may be satisfactory for suggesting to

Page 131 of 138

the user where to look for problems and with what priority, but not for alarms that require
immediate action. It is not clear how much we can expect of pre-attentive processing on
the part of the operator. A small change in the display is too easy to ignore, but the
operator will also learn to ignore a whole series of alarms if their threat is seldom
realized. The precision and reliability of the warnings require good design practice and
careful implementation of the concurrent simulation and any A.I. methods that are
employed.

The main current real use of artificial intelligence methods in social science for
theoretical work is the development of explicit theoretical models of cognitive processes.
For Cognitive Sciences, theoretical based simulations are essential. Computational
cognitive science is directly relevant for sociological work: For example as a theory basis
of data collection, for the theory of personal identity, emotions and for the theory of
interaction structures. Data structures like frames and scripts can be directly imported and
included as part of the working model of the actors of a sociological simulation.
Therefore, the possible applications of artificial intelligence for theory construction in
the social sciences may be more in the domain of using data structures of A.I.
,simulations for the organization of every day knowledge required by individual actors.

The power and usefulness of artificial neural networks have been demonstrated in several applications
including speech synthesis, diagnostic problems, medicine, business and finance, robotic control, signal
processing, computer vision and many other problems that fall under the category of pattern recognition.
For some application areas, neural models show promise in achieving human-like performance over more
traditional artificial intelligence techniques.

7.3.1 Neural Network in Modelling and Simulation

What, then, are neural networks? And what can they be used for? Although von-
Neumann-architecture computers are much faster than humansin numerical computation,
humans are still far better at carrying out low-level tasks such as speech and image
recognition. This is due in part to the massive parallelism employed by the brain, which
makes it easier to solve problems with simultaneous constraints. It is with this type of
problem that traditional artificial intelligence techniques have had limited success. The
field of neural networks, however, looks at a variety of models with a structure roughly
analogous to that of the set of neurons in the human brain.

The branch of artificial intelligence called neural networks dates back to the 1940s, when
McCulloch and Pitts developed the first neural model. This was followed in 1962 by the
perceptron model, devised by Rosenblatt, which generated much interest because of its
ability to solve some simple pattern classification problems. This interest started to fade
in 1969 when Minsky and Papert provided mathematical proofs of the limitations of the
perceptron and pointed out its weakness in computation. In particular, it is incapable of
solving the classic exclusive-or (XOR) problem. Such drawbacks led to the temporary
decline of the field of neural networks.

The last decade, however, has seen renewed interest in neural netivorks, both among
researchers and in areas of application. The development of more-powerful networks,

Page 132 of 138

better training algorithms, and improved hardware have all contributed to the revival of
the field. Neural-network paradigms in recent years include the Boltzmann machine,
Hopfield's network, Kohonen's network, Rumelhart's competitive learning model,
Fukushima's model, and Carpenter and Grossberg's Adaptive Resonance Theory model .
The field has generated interest from researchers in such diverse areas as engineering,
computer science, psychology, neuroscience, physics, and mathematics.

An Artificial Neural Network is a network of many very simple processors ("units"), each
possibly having a (small amount of) local memory. The units are connected by
unidirectional communication channels ("connections"), which carry numeric (as
opposed to symbolic) data. The units operate only on their local data and on the inputs
they receive via the connections.

The design motivation is what distinguishes neural networks from other mathematical
techniques: A neural network is a processing device, either an algorithm, or actual
hardware, whose design was motivated by the design and functioning of human brains
and components thereof.

There are many different types of Neural Networks, each of which has different strengths
particular to their applications. The abilities of different networks can be related to their
structure, dynamics and learning methods.
Neural Networks offer improved performance over conventional technologies in areas
which includes: Machine Vision, Robust Pattern Detection, Signal Filtering, Virtual
Reality, Data Segmentation, Data Compression, Data Mining, Text Mining, Artificial
Life, Adaptive Control, Optimization and Scheduling, Complex Mapping and more.
Neural networks have been applied to a wide variety of different areas including speech
synthesis, pattern recognition, diagnostic problems, medical illnesses, robotic control and
computer vision.
Neural networks have been shown to be particularly useful in solving problems where
traditional artificial intelligence techniques involving symbolic methods have failed or
proved inefficient. Such networks have shown promise in problems involving low-level
tasks that are computationally intensive, including vision, speech recognition, and many
other problems that fall under the category of pattern recognition. Neural networks, with
their massive parallelism, can provide the computing power needed for these problems. A
major shortcoming of neural networks lies in the long training times that they require,
particularly when many layers are used. Hardware advances should diminish these
limitations, and neural-network-based systems will become greater complements to
conventional computing systems.
Researchers at Ford Motor Company are developing a neural-network system that
diagnoses engine malfunctions. While an experienced technician can analyze engine
malfunction given a set of data, it is extremely complicated to design a rule-based expert
system to do the same diagnosis. Marko et al. trained a neural net to diagnose engine
malfunction, given a number of different faulty states of an engine such as open plug,
broken manifold, etc. The trained network had a high rate of correct diagnoses. Neural
nets have also been used in the banking industry, for example, in the evaluation of credit
card applications.

Page 133 of 138

Most neural network applications, however, have been concentrated in the area of pattern
recognition, where traditional algorithmic approaches have been ineffective. Such nets
have been used for classifying a given input into one of a number of categories and have
demonstrated success, even with noisy input, when compared to other more conventional
techniques.
Since the 1970s, work has been done on monitoring the Space Shuttle Main Engine (SSME), involving the
development of an Integrated Diagnostic System (IDS). The IDS is a hierarchical multilevel system, which
integrates various fault detection algorithms to provide a monitoring system that works for all stages of
operation of the SSME. Three fault-detection algorithms have been used, depending on the SSME sensor
data. These employ statistical methods that have a high computational complexity and a low degree of
reliability, particularly in the presence of noise. Systems based on neural networks offer promise for a fast
and reliable real-time system to help overcome these difficulties. Neural networks in this application allow
for better performance and for the diagnosis to be accomplished in real time. Furthermore, because of the
parallel structure of neural networks, better performance is realized by parallel algorithms running on
parallel architectures.
At Boeing Aircraft Company, researchers have been developing a neural network to
identify aircraft parts that have already been designed and manufactured, in efforts to
help them with the production of new parts. Given a new design, the system attempts to
identify a previously designed part that resembles the new one. If one is found, it may be
able to be modified to conform to the new specifications, thus saving time and money in
the manufacturing process.
Neural networks have also been used in biomedical research, which often involves the analysis and
classification of an experiment's outcomes. Traditional techniques include the linear discriminant function
and the analysis of covariance. The outcome of the experiment is in some cases dependent on a number of
variables, with the dependence usually a nonlinear function that is not known. Such problems can, in many
cases, be managed by neural networks.
Stubbs presents three biomedical applications in which neural networks have been used,
one of which involves drug design. Nonsteroidal antiinflammatory drugs (NOSAIDs)
are a commonly prescribed class of drugs, which in some cases may cause adverse
reactions. The rate of adverse reactions (ADR) is about 10%, with 1% of these involving
serious cases and 0.1% being fatal. A three-layer backpropagation neural network was
developed to predict the frequency of serious ADR cases for 17 particular NOSAIDs,
using four inputs, each representing a particular property of the drugs. The predicted rates
given by the model matched within 5% the observed rates, a much better performance
than by other techniques. Such a neural network might be used to predict the ADR rate
for new drugs, as well as to determine the properties that tend to make for "safe" drugs.

7.3.2 Fuzzy Sets in Modelling and Simulation

We have discussed continuous systems in unit V in that we have already learnt the
process of evolution depends on differential equations. Such a system contains a number
of parameters that must be estimated (for instance, the a, b, c, d > 0 in the predator-prey
model, discussed in unit V). Usually point estimates are calculated and used in the model.
These estimates typically have uncertainty associated with them.
We can incorporate uncertainty in our differential equations. This is done by using fuzzy
numbers as estimates of the unknown parameters.

Fuzzy Sets (1/3)

Page 134 of 138

In a classical set, an element is either a member of the set or not. Fuzzy sets are defined
in terms of classical sets.
Definition: A fuzzy set A on a classical set X is defined as:

()(){ }XxxxA A ∈= |, μ

The membership function µA(x) quantifies the grade of membership of the elements x of
the fundamental set X. For the functional values of µA(x), we have the following
properties

() 0≥∀ ∈ xAXx μ
(){ } 1sup =

∈
xA

Xx
μ

Fuzzy Sets (2/3)

If the fuzzy set B is defined as B = {(3, 0.3), (4, 0.7), (5, 1), (6, 0.4)}, it is a standard
fuzzy notation to write
B = {0.3/3, 0.7/4, 1/5, 0.4/6}
Any value with a membership grade of zero does not appear in the expression of the set.
Classical sets are called crisp sets, to distinguish between them and fuzzy sets.

Fuzzy Sets (3/3)

0.0

1.0

membership function)(xμ

Classical Crips set A

Fuzzy Set
~
A

x

)(xμ

Figure 2: Relationship Between Fuzzy Set and Classical Crisp Set

Fuzzy sets are used in fuzzy logic, which is an extension of Multi-valued logic. This is
used for “approximated reasoning”. Apart from that, fuzzy sets also form the basis for
fuzzy numbers.

Fuzzy Numbers

Page 135 of 138

A fuzzy number is a convex, normalized fuzzy set RA ⊆ , where R is a set of Real
numbers, whose membership function is at least segmentally continuous and has the
functional value µA (x) at precisely one element. This element is called the vertex.
Usually we will be using triangular, or triangular shaped fuzzy numbers. A triangular
fuzzy number is defined by three numbers m < n < p, where the base of the triangle is on

the interval [m, p] and the vertex is at x = n. We write)//(pnmN =
−

 for triangular

Fuzzy number
−
N . A triangular shaped fuzzy number, written)//(pnmN ≈

−
, has curves

for its side instead of straight-line segments.

Alpha-cuts

Let
−
N be a fuzzy number. For 0 ≤ α ≤ 1, the alpha- cut of

−
N written as []α

_
N ,is defined

as ()

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≥ αxNx
_

|

[]0
_
N is defined as the closure of the union of []α

_
N for]1,0(∈α

7.3.3 Simulation of Fuzzy Continuous Systems

In order to solve fuzzy differential equations, one could only fuzzify the initial values,
because the fuzzy solution became too difficult to obtain when more parameters became
fuzzy. Instead, we can apply our knowledge about continuous simulation. Then, we can
fuzzify more parameters. For instance, in the predator-prey model we may use fuzzy
numbers 0,0,,,, yxdcba .

Types of Fuzzy Estimators

We will consider only two methods of fuzzy estimators:

1. expert opinion
2. from data using confidence intervals.

Fuzzy Estimators Based on Expert Opinion

We want to estimate the value for a certain parameter b. First, assume that we have only
one expert. Let b1 be the smallest possible value for b, let b3 be the largest possible value
for b, and let b2 be the most likely value. We can ask the expert to give values for b1, b2,

Page 136 of 138

b3, and we construct the triangular fuzzy estimator)3,2,1(bbbb = for b. Now suppose
we have N experts. We still want to construct a triangular fuzzy estimator

)3/2/1(bbbb = . The easiest way to do this is to ask the experts for their b1i, b2i, b3i for
all 1 ≤ i ≤ N, and then take average of each component.

Fuzzy Estimators Based on Data

Let X be a random variable with probability density function f(x; θ) for single parameter
θ . Assume that θ is unknown, and must be estimated from a random sample X1,…..Xn.
From statistics, we can learn to construct point estimation θ* and (1 - β) 100% confidence
interval θ. Β is usually set to 0.10,0.05, or 0.01.
The trick is to find all (1 - β) 100% confidence intervals for 0.01≤ β ≤ 1(starting at 0.01 is
arbitrary). To this we add the interval [θ*, θ*] for the 0% confidence interval. Now we
place these intervals on top of each other, to produce a triangular shaped fuzzy number θ
whose α – cuts are the confidence intervals. To make it a complete fuzzy numbers, we
will drop the graph of θ straight down (Figure 2).

Example of a Data-Based Fuzzy Estimator

Consider X~N(μ,σ2),with σ known and μ unknown. Suppose the mean of a random
sample from N(μ,σ2) turns out to be x . We know that ()nx /,N~ 2σμ , so

() () ()1,0~// Nnx σμ− . So β
σ

μ
ββ −=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≤

−
≤− 1

/ 22

z
n

xzP .

This leads to the (1 - β) 100% confidence intervals for
μ: () ()[] []nzxnzx /,/, 2/2/21 σσβθβθ ββ +−=

X-Axis

Y
-A

xi
s

0

0.2

0.4

0.6

0.8

1

alpha

26 27 28 29 30 31
Figure 2:Data Based Fuzzy Estimation

Example 1: Bungee Jumping Model

Page 137 of 138

A bungee jumper jumps from 240 ft above the ground. The length of the unstretched
bungee cord is 90 feet. The differential equation of motion is

where F(x) = kx is the force on the jumper exerted by the bungee cord, and R(v) = cv is
air resistance with velocity v. Notice that v = x0(t).
A cord we plan to use has k = 2.5 pounds per foot. Is this cord good enough?

7.4 Summary

Database is very important in modeling and simulation ,when developed model is used large number of
inputs data and produce large number of output.
Artificial Intelligence (AI) is to play an important role in the development of complex system simulation
where decision support system is required. In addition, AI formalisms support the integration of knowledge
from multiple sources at different levels of granularity, which could play an important role. Not only A.I. is
used its newly born sub-fields like neural network and fuzzy sets are also used in modelling and simulation
of very complex systems.

7.5 Key words

Database, Information Model, Simulation, Extensible Markup Language (XML),
Artificial Intelligence, Computer Simulation, Genetic Algorithm, Cognitive Science,
Neural Network, Fuzzy Sets, Agent, Crisp Set, Alpha Cuts.

7.6 Self-Assessment Questions

Q.1 Why we used database in Modelling and Simulation?. Explain with suitable example.

Q.2 Discuss the role of Artificial Intelligence in Modelling and Simulation.

Q.3 How Neural Network is applied in Modelling and Simulation of a complex system.

Q.4 How Fuzzy Set is applied in Modelling and Simulation of a complex system.

Q.5 Simulate the Bungee Jumping Model in a suitable language and analysis the results.

Page 138 of 138

7.7 References/ Suggested Readings

1. Gregory L. Fenves, Frank McKenna Axel rod, R. (1997) ‘Data Model for Simulation
2. N. Deo , “ System Simulation”, Prentice Hall of India

