12. State and prove Extension theorem.

Or

Explain the behaviour of the solution of the IVP, depending upon initial function. 12

13. State and prove the necessary and sufficient condition for a Pfaffian differential equation in three variables to be integrable. Hence solve the equation:

$$(2xyz + z2)dx + x2zdy + (xz+1)dz = 0$$

Or

State and prove Sturm-Liouville theorem. Verify the validity of the conclusion of S-L theorem for the characteristic functions of the following problem:

11

$$\frac{d^2y}{dx^2} + \lambda y = 0; \ y(0) = 0, \ y(n/2) = 0$$

Roll No. Exam Code : J-18

Subject Code—0354

M. Sc. EXAMINATION

(Batch 2011 Onwards)

(First Semester)

MATHEMATICS

MAL-514

Ordinary Differntial Equations-I

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

1. Define an integral equation. Form an Integral equation corresponding to IVP :

$$y''(t) - 5y'(t) + 6y(t) = 0$$
; $y(0) = 0$, $y'(0) = -1$

2. State Lipschitz condition. Given an IVP:

$$x'(t) = x^2 + \cos^2 t, x(0) = 0,$$

$$R = \left\{ (t, x), 0 \le t \le a, |x| \le b, a \ge \frac{1}{2}, b > 0 \right\}$$

Does it possess a unique solution ? Justify your answer.

3. Using Picard's method, find first four iterations of the IVP:

$$\frac{dy}{dx} = x + y^2, \ y(0) = 0$$

4. Using the method of undermined coefficient, solve the IVP :

$$\frac{dy}{dx} = x^3 + y^3, y(1) = 0$$

- **5.** Describe maximal interval of existence in detail.
- **6.** Transform the equation :

$$x'' - 2tx' + 2nx = 0$$

2

into an equivalent first order system.

J-0354

- 7. If a solution of the differential equation [p(t)u'(t)]' + q(t)u(t) = 0 has an infinite number of zeros on [a, b], show that the solution is identically zero on [a, b].
- **8.** Give an example of two differential equations through which you can verify Sturm Comparison Theorem.
- **9.** Prove that eigen values of a Sturm Liouville Boundary Value Problem are real.
- **10.** State and prove Gronwall's differential inequality.

Section B

Note: Attempt all the questions.

11. Define an ∈-approximate solution. State and prove Cauchy Euler construction theorem.

Or

State and prove existence and Uniqueness theorem for a homogeneous system of n first order differential equation. 12