(b) Define equal tensors and isotropic tensor. If a_{ik} and b_{mj} are second order tensors, then prove that $a_{ij}b_{ij}$ is a scalar. **6+6**

Or

Obtain Saint-Venant's equations of compatibility along its physical interpretation. Also explain physical interpretation of cubical dilation $v = e_{kk}$.

- **12.** (a) Derive the necessary and sufficient condition for an infinitesimal affine transformation to represent a rigid body motion.
 - (b) Derive the equation of equilibrium for a deformed elastic body. **6+6**

Or

Discuss Mohr's diagram for finding the maximum shearing stresses. 12

4

Roll No. Exam Code : J-19

Subject Code—0358

M. Sc. EXAMINATION

(Batch 2011 Onwards)

(Third Semester)

MATHEMATICS

MAL-633

Mechanics of Solids-I

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

1. If A_{ij} is a skew-symmetric second order tensor, prove :

$$(\delta_{ij}\delta_{lk} + \delta_{il}\delta_{jk})A_{ik} = 0$$

Also define symmetric and skew-symmetric tensors.

- **2.** Prove that gradient of a scalar field is a first order tensor.
- 3. State and prove quotient law of tensors.
- **4.** Refer the quadric of deformation to a set of principal axes and discuss the nature of deformation when the quadric is an ellipsoid and when it is hyperboloid.
- 5. Give geometrical interpretation of shear component of strain e_{13} .
- **6.** Write a short note on stress quadric of Cauchy.
- 7. The state of stress at a point is given by:

$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Show that the normal component of the stress-vector on a plane with normal in the direction (1, 1, 2) has unit magnitude. Also find the shear stress.

2

8. Show that if $\sigma = 0$, then $\lambda = 0$, $2\mu = E$, 3k = E and the generalized Hooke's law becomes :

$$\tau_{ij} = Ee_{ij} = \frac{1}{2}E(u_{i,j} + u_{j,i})$$

Further, show that:

$$\tau_{ij,ij} = \frac{1}{2} (\tau_{ii,jj} + \tau_{jj,ii})$$

- **9.** Define Lame's constants and Poisson's ratio. Also explain physical significance of Poisson's ratio.
- **10.** If $\vec{E} = \nabla \phi$ and $\tau_{ij} = E_i E_j \frac{1}{2} \delta_{ij} E^2$, show that the equations of equilibrium are satisfied provided $\vec{F} = -\nabla \phi (\nabla^2 \phi)$.

Section B

Note: Attempt all the questions.

11. (a) Prove the relation :

$$\in_{ijm}\in_{klm}=\delta_{ik}\delta_{jl}-\delta_{il}\delta_{jk}$$

(2-71-4-0119) J-0358

3

P.T.O.

13. State generalized Hooke's law. Derive its form for a medium with one plane of elastic symmetry.11

Or

Prove that:

$$\nabla^2 \theta = -\left(\frac{1+\sigma}{1-\sigma}\right) \text{div } \vec{F}$$

where symbols have their usual meanings.

11

13. State generalized Hooke's law. Derive its form for a medium with one plane of elastic symmetry.11

Or

Prove that:

$$\nabla^2 \theta = -\left(\frac{1+\sigma}{1-\sigma}\right) \text{div } \vec{F}$$

where symbols have their usual meanings.

11