12. (a) Prove that for every pair of elements a and b in Boolean algebra :

$$(a+b)+(a'*b')=1$$

and $(a+b)*(a'*b')=0$

- (b) Prove that the following are equivalent in Boolean algebra:
 - (i) a+b=b
 - (ii) a * b = a
 - (iii) a' + b = 1
 - (iv) a * b' = 0

Or

- (a) Explain AND, OR and NOT gates.
- (b) Write a short note on Karnaugh map for case of two variables. 12
- 13. (a) Define the following along with one example for each: matrix representation of graphs, weighted graphs, strong connectivity and directed tree.
 - (b) Prove that the graph $K_{3,3}$ is not planar.

4

Roll No. Exam Code: J-19

Subject Code—0360

M. Sc. EXAMINATION

(Batch 2011 Onwards)

(Third Semester)

MATHEMATICS

MAL-635

Advance Discrete Mathematics

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

- 1. Explain tautology and contradiction. Check whether the proposition $(p \lor q) \lor \sim p$ is a tautology or not ?
- **2.** Construct the truth tables for the following:

$$\sim (p \vee q) \vee (\sim p \vee q)$$
 and

$$\sim (p \vee q) \vee \sim (q \leftrightarrow p)$$

- 3. What do you mean by propositional function? Let $A = \{1, 2, 3, 4, 5\}$, determine the truth value of each of the following statement:
 - (i) $(\exists x \in A) (x + 3 = 10)$
 - (ii) $(\forall x \in A) (x + 3 \le 7)$
 - (iii) $(\exists x \in A) (x + 3 < 5)$
 - (iv) $(\forall x \in A) (x + 3 < 10)$
- **4.** Define partially ordered sets and prove that "less than or equal to" is a partial ordering on the set of positive integers.
- 5. Show that if L_1 and L_2 are distributive lattices then $L = L_1 \times L_2$ is also distributive.
- **6.** Define a literal and fundamental product. Express the Boolean expression E(x, y, z) = z(x' + y) + y' in its complete sum of products form.
- 7. Explain the following terms in graph theory:
 Directed graph; Indegree and outdegree of a vertex; Simple graph and cycle.

- **8.** State and prove Euler's formula for planar graphs.
- **9.** Define Spanning tree and Minimal spanning tree. Give an example for each.
- **10.** Let G be a non-empty graph with at least two vertices, the graph G is bipartite if and only if it has no odd cycle.

Section B

Note: Attempt all the questions.

- 11. (a) Explain the basic logical connectives:

 Conjunction, disjunction and negation along with one example for each.
 - (b) What are the different types of quantifiers? Using quantifiers, prove that $\sqrt{2}$ is an irrational number.

Or

- (a) State and prove associate laws in a lattice.
- (b) Show that every chain is a distributive lattice. 12

3

(2-79-10-0119) **J-0360**

P.T.O.

Or

- (a) Write a short note on Dijkstra's algorithm.
- (b) Prove that a connected graph G with n vertices is a tree iff it has exactly (n-1) edges.

Or

- (a) Write a short note on Dijkstra's algorithm.
- (b) Prove that a connected graph G with n vertices is a tree iff it has exactly (n-1) edges.

J-0360 5 700 (2-79-11-0119) J-0360 5 700