Or

(a) If n(r) denotes the number of zeros of the entire function F(z) in the disc $|z| \le r$ and $F(0) \ne 0$ then

 $\int_0^R \frac{n(t)}{t} dt \le \log M(R) - \log |F(0)|.$

- (b) State and prove Hadamard's three circle theorem. 12
- 12. (a) State and prove Monodromy theorem.
 - (b) State and prove Great Picard theorem.

Or

- (a) State and prove Schottky's theorem.
- (b) State and prove Bloch's theorem. 12
- 13. State and prove Harnack's theorem.

Or

Define order of an entire function of finite order. Also, prove that the order ρ of an entire function is given by the formula

$$\rho = \lim_{r \to \infty} \frac{\log \log M(r)}{\log r} (r = |z|).$$
 11

Roll No. Exam Code : J-19

Subject Code—0365

M. Sc. EXAMINATION

(Main & Re-appear For Batch 2011 Onwards)

(Second Semester)

MATHEMATICS

MAL-525

Complex Analysis-II

Time: 3 Hours Maximum Marks: 70

Section A

Note: Attempt any *Seven* questions. $7 \times 5 = 35$

- 1. State and prove Montel theorem.
- **2.** Define Zeta function and prove that for Re s > 1.

$$\Gamma(r)\zeta(s) = \int_0^\infty \frac{t^{s-1}}{e^{t-1}} dt$$

400

3. Define Gamma function. Also discuss the existence of the Euler constant involved in the Gamma function and prove that :

$$\Gamma(z) = \lim_{n \to \infty} \frac{n! n^z}{z(z+1)(z+2)....(z+n)}$$

- 4. State and prove Poisson-Jensen formula.
- 5. The exponent of convergence of the zeros of an entire function of finite order ρ_c is not greater than ρ .
- **6.** Let:

$$|a_n| = r_n \ (0 < r_1 \le r_2 \le r_3 \dots \le r_n \le \dots; r_n \to \infty)$$

then the exponent of convergence is given by

$$\frac{1}{\rho_c} = \lim_{n \to \infty} \frac{\log r_n}{\log n}.$$

7. State and prove Weirestrass Factorization theorem.

2

8. Using Hadamard's factorization theorem show that :

$$\frac{\sin \pi \sqrt{z}}{\pi \sqrt{z}} = \prod_{n=1}^{n} \left(1 - \frac{z}{n^2} \right)$$

- 9. State and prove Montel-Caratheodory theorem.
- **10.** State and prove little Picard's theorem.

Section B

Note: Attempt all the questions.

- 11. (a) State and prove Riemann maping theorem.
 - (b) Let (X, d) be a compact metric space and let $\{g_n\}$ be a sequence of continuous function from X into C such that $\sum g_n(x)$ converges absolutely and uniformly for x in X. Then the product

$$f(x) = \prod_{n=1}^{\infty} (1 + g_n(x))$$
 converges absolutely

and uniformly for x in X. Also there is an integer n_0 such that f(x) = 0 iff $g_n(x) = -1$ for some n, $1 \le n \le n_0$.

3