Or

Derive the velocity equation for Rayleigh waves propagating along the plane free boundary of a half-space. Also show that the particle motion is elliptic retrograde.

13. State and prove theorem of minimum complementary energy.

Or

- (a) Discuss the problem of deflection of an elastic membrane by transverse load.
- (b) Using Ritz's method, find the extremum of problem:

$$I = \int_0^1 (y'^2 + y^2) dx; \ y(0) = 0, \ y(1) = 1$$

Roll No. Exam Code : J-19

Subject Code—0368-X

M. Sc. EXAMINATION

(Prior 2011 Re-appear)

(Fourth Semester)

MATHEMATICS

MAL-643

Mechanics of Solids-II

Time: 3 Hours Maximum Marks: 100

Section A

Note: Attempt any *Seven* questions. $7 \times 7 = 49$

- 1. What do you mean by Plane stress? Derive the field equations for a plane stress problem.
- 2. Derive general solution of a Biharmonic equation $\nabla^4 \phi = 0$.

130

- **3.** Define physical models for elastic and viscous materials. Derive the stress-strain relations for a Kelvin model.
- **4.** Discuss the relation between creep compliance and relaxation modulus.
- 5. Show that in the torsion of an elliptic cylinder:

$$\tau = 2\mu\alpha \frac{ab}{a^2 + b^2} \sqrt{a^2 - e^2 x^2}$$
;

where $e = \frac{1}{a}\sqrt{a^2 - b^2}$ and maximum shearing stress occurs on the end points of minor axes.

- **6.** Write a short note on lines of shearing stress.
- 7. Explain P, SV and SH-waves of seismology.
- **8.** State and prove reciprocal theorem of Betti and Rayleigh.
- **9.** Discuss the problem of deflection of an elastic string by transverse load.

2

10. Use Galerkin method to find an approximate solution of the problem :

$$\nabla^2 \phi = -2$$
 in R

 $\phi = 0$ on the boundary of R, where R is rectangle $|x| \le a$, $|y| \le b$.

Section B

Note: Attempt all the questions. $3\times17=51$

11. Assuming plane strain conditions, obtain the expressions for the stresses in terms of two analytic functions.

Or

Derive the stress-strain relations for a standard linear solid model. Discuss its creep and relaxation phases.

12. Discuss the torsional problem of a cylinder with cross-section of equilateral triangle.