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1.0 OBJECTIVE
Objective of this Chapter is to study the Linear Transformation on the
finite dimensional vector space V over the field F.
1.1  INTRODUCTION

Let U and V be two given finite dimensional vector spaces over the
same field F. Our interest is to find a relation (generally called as linear
transformation) between the elements of U and V which satisfies certain

conditions and, how this relation from U to V becomes a vector space over the
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field F. The set of all transformation on U into itself is of much interest. On
finite dimensional vector space V over F, for given basis of V, there always
exist a matrix and for given basis and given matrix of order n there always
exist a linear transformation.

In this Chapter, in Section 1.2, we study about linear transformations.
In Section 1.3, Algebra of linear transformations is studied. In next two
sections characteristic roots and characteristic vectors of linear transformations
are studied. In Section 1.6, matrix of transformation is studied. In Section 1.7
canonical transformations are studied and in last section we come to know

about canonical form (Triangular form).

1.2  LINEAR TRANSFORMATIONS

1.2.1 Definition. Vector Space. Let F be a field. A non empty set V with two
binary operations, addition (+)and scalar multiplications(’), is called a vector
space over F if V is an abelian group under + and for ve V, a.ve V. The
following conditions are also satisfied:
(1) a. (vtw)=av+ aw forall «eF andv,win V,
2) (a+B).v=av+pv,
(3) (ap).v=o.(Bv)
@ lv=v
Forall a, B € F and v, w belonging to V. Here v and w are called vectors and

o, B are called scalar.

1.2.2 Definition. Homomorphism. Let V and W are two vector space over the
same field F then the mapping T from V into W is called homomorphism if
(1) (vVitv)T=viT+v, T
(i) (ov)T=a(viT)

for all vy, v, belonging to V and o belonging to F.
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1.2.3

1.24

1.2.5

Above two conditions are equivalent to (av;+pv2)T=ou(v;T)+ B(v,T).
If T is one-one and onto mapping from V to W, then T is called an
isomorphism and the two spaces are isomorphic. Set of all homomorphism

from V to W is denoted by Hom(V, W) or Homg(V, W)

Definition. Let S and Te Hom(V, W), then S+T and AS is defined as:
(1) v(S+T)=vS+vT and
(i1) v(AS)=A(vS) for all veV and AeF

Problem. S+T and AS are elements of Hom(V, W) i.e. S+T and AS are
homomorphisms from V to W.
Proof. For (1) we have to show that
(o +Bv)(SH+T)= a(u(S+D))+ B(v(S+T))
By Definition 1.2.3, (au+pv)(S+T)=(au+pv)S+(au+Bv)T. Since S and T are
linear transformations, therefore,
(u+BV)(SH+T)=a(uS)+B(vS)+a(uT)+B(vT)
=o((uS)Ta(uT)+P((vS)+(vT))
Again by definition 1.2.3, we get that (ou+pv)(S+T)=o(u(S+T))+B(v(S+T)). It
proves the result.
(i1) Similarly we can show that (au+Bv)(AS)=a(u(AS))+B(v(AS)) i.e. AS is also

linear transformation.

Theorem. Prove that Hom(V, W) becomes a vector space under the two
operation operations v(S+T)= vS + vT and v(AS)= A(vS) for all veV, AeF
and S, T eHom(V, W).

Proof. As it is clear that both operations are binary operations on Hom(V, W).

We will show that under +, Hom(V,W) becomes an abelian group. As
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0eHom(V,W) such that v0=0 V ve V(it is call zero transformation), therefore,
v(S+0)= vS+v0 = vS = 0+vS= vO+vS= v(0+S) V veV i.e. identity element
exists in Hom(V, W). Further for SeHom(V, W), there exist -SeHom(V, W)
such that v(S+(-S))= vS+v(-S)= vS-vS=0= v0 V veV i.e. S+(-S)=0. Hence
inverse of every element exist in Hom(V, W). It is easy to see that
T\ +(To+T3)= (T+T)+T; and T+T,= T,+T, V Ty, T», TseHom(V, W). Hence
Hom(V, W) is an abelian group under +.

Further it is easy to see that for all S, T eHom(V, W) and a, BeF, we
have o(S+T)= aS+aT, (a+p)S= aS+BS, (af)S= a(BS) and 1.S=S. It proves

that Hom(V, W) is a vector space over F.

1.2.6 Theorem. If V and W are vector spaces over F of dimensions m and n
respectively, then Hom(V, W) is of dimension mn over F.
Proof. Since V and W are vector spaces over F of dimensions m and n
respectively, let vy, va,..., v, be basis of V over F and wy, ws,..., w, be basis
of W over F. Since v=0|v;+0yVy +...4 0V, Where §; eF are uniquely
determined for ve V. Let us define Tj; from V to W by
B ) _{w j ifi=k )
viTi=d;w j lLe viTi= o . It is easy to see that Tj
0 ifi#k

€Hom(V,W). Now we will show that mn elements T;; 1<1 < m and 1<j<n
form the basis for Hom(V, W). Take

PiiTyiy +Bi2Tia +o -+ BinTin +-- +Bir Ty +BizTig +...+Pin Tin +

B Tt + B2 T2 + -+ Bmn Tinn =0
(Since a linear transformation on V can be determined completely if image of

every basis element of it is determined)

=ViB11 T +B12Tia + -+ BT +---+Bit Tig +BinTiz +--- 4+ Bin Tin +
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...t Bmlel + Bm2Tm2 +...+ anTmn ):ViOZO

W ifi=k
= Bﬂwl +Bi2W2 +...+Bian:0 (.'.ViTkj: o

0 ifizk
But w;, wy, ..., w, are linearly independent over F, therefore,
Bi1 =Piz =-..=PBjn =0. Ranging 1 in 1<i <m, we get each B;; =0. Hence Tj

are linearly independent over F. Now we claim that every element of
Hom(V,W) is linear combination of T;; over F. Let S eHom(V,W) such that
VIS=0 W] +0pWo +...+ 0y Wy,
ViS=0j Wy +0jowo .+ Why
VS =0 W1 + 0 oWo +.+ 0y Wh -
Take Sy =0T+ To +...+ oy, iy + -+ 01T + 00T +..+ay Tip +
O Tt + % m2 T + -+ € T - Then
viSo=vi(oyTj +ooTp +..+ oy, Tiy +.. 4041 Ty +aypTip +...+ i Tin
0 Tt + 02Tz + -+ Gy Tinn )
=0 W] T 0o W) +...+ 0y Wy = V;S.
Similarly we can see that v;Sy=v;S for every 1, 1<i<m.
Therefore, vSp=vS V veV. Hence S¢y=S. It shows that every element of

Hom(V,W) is a linear combination of Tj; over F. It proves the result.

1.2.7 Corollary. If dimension of V over F is n, then dimension of Hom(V,V) over F
=n’ and dimension of Hom(V.F) is n over F.
1.2.8 Note. Hom(V, F) is called dual space and its elements are called linear

functional on V into F. Let vy, va,..., v, be basis of V over F then ¥1,V,,...,V,
. 1 ifi=] : : :
defined by vi(v;j)= 0 ifisi are linear functionals on V which acts as
if i#]
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1.3
1.3.1

1.3.2

1.3.3

basis elements for V. If v is non zero element of V then choose vi=v, vy,..., Vs
as the basis for V. Then there exist V;(v{)=V(v)=1#0. In other words we
have shown that for given non zero vector v in V we have a linear

transformation f(say) such that f(v)=0.

ALGEBRA OF LINEAR TRANSFORMATIONS
Definition. Algebra. An associative ring A which is a vector space over F
such that a(ab)= (aa)b= a(ab) for all a, be A and aeF is called an algebra

over F.

Note. It is easy to see that set of all Hom(V, V) becomes an algebra under the
multiplication of S and T eHom(V, V) defined as:

v(ST)= (vS)T for all ve V.
we will denote Hom(V, V)=A(V). If dimension of V over F i.e. dimgV=n, then
dimg A(V)=n2 over F.

Theorem. Let A be an algebra with unit element and dimpA=n, then every
element of A satisfies some polynomial of degree at most n. In particular if
dimpV=n, then every element of A(V) satisfies some polynomial of degree at
most n’.

Proof. Let e be the unit element of A. As dimgA=n, therefore, for acA, the
n+1 elements ¢, a, az,. ..,a" are all in A and are linearly dependent over F, i.e.
there exist Bo, B1,..., Bn in F , not all zero, such that Boe+Pia+...+ B, a"=0 . But
then a satisfies a polynomial Bo+pix+...+ Bux" over F. It proves the result.
Since the dimpA(V)=n’, therefore, every element of A(V) satisfies some

polynomial of degree at most n’.
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1.3.4 Definition. An element TeA(V) is called right invertible if there exist
SeA(V) such that TS=I. Similarly ST=I (Here I is identity mapping) implies
that T is left invertible. An element T is called invertible or regular if it both
right as well as left invertible. If T is not regular then it is called singular
transformation. It may be that an element of A(V) is right invertible but not

left. For example, Let F be the field of real numbers and V be the space of all

polynomial in x over F. Define T on V by f(x)Tz? and S by
X

X
f(x)S=[f(x)dx. Both S and T are linear transformations. Since
1

f(x)(ST) = f(x) i.e. ST#I and f(x)(TS)=f(x) i.e. TS =I. Here T is right

invertible while it is not left invertible.

1.3.5 Note. Since TeA(V) satisfies some polynomial over F, the polynomial of

minimum degree satisfied by T is called the minimal polynomial of T over F

1.3.6 Theorem. If V is finite dimensional over F, then Te A(V) is invertible if and
only if the constant term of the minimal polynomial for T is non zero.
Proof. Let p(x)= BotPix+...+ Bux", B, # 0, be the minimal polynomial for T

over F. First suppose that By # 0, then 0 = p(T)= B+ T+...+ B,T" implies

that -BoI=T(B, T+...+B,T"") or

I:T(—ﬁ—ﬁT—...——ﬁTn_l):(_B_I_B_lT______B_lTn—l)T‘
Bo Bo Bo Bo Bo Bo
Therefore, S = (—ﬁ—ﬁT —...——ﬁTn_l) is the inverse of T.
Bo Po Bo

Conversely suppose that T is invertible, yet By =0. Then B,T+...+
BuT" =0 = (BiT+...+ B, T"T=0 . As T is invertible, on operating T~ on both
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1.3.7

1.3.8

1.3.9

sides of above equations we get (BiT+...+ B, T"')=0 ie. T satisfies a
polynomial of degree less then the degree of minimal polynomial of T,

contradicting to our assumption that 3, =0. Hence By #0. It proves the

result.

Corollary. If V is finite dimensional over F and if T €A(V) is singular, then
there exist non zero element S of A(V) such that ST=TS=0.

Proof. Let p(x)= BotBix+...+ Bux" B, #0 be the minimal polynomial for T
over F. Since T is singular, therefore, constant term of p(x) is zero. Hence
(BiT+...+ BT HT=T(BT+...+ BT"")=0. Choose S=(B;T+...+ B, T™"), then
S=0(if S=0, then T satisfies the polynomial of degree less than the degree of

minimal polynomial of it) fulfill the requirement of the result.

Corollary. If V is finite dimensional over F and if T belonging to A(V) is
right invertible, then it is left invertible also. In other words if T is right
invertible then it is invertible.
Proof. Let UeA(V) be the right inverse of T i.e. TU=I. If possible suppose T
is singular, then there exist non-zero transformation S such that ST=TS=0.
As
S(TU)= (ST)U
= SI=0U = S=0, a contradiction that S is non zero. This

contradiction proves that T is invertible.

Theorem. For a finite dimensional vector space over F, Te A(V) is singular if
and only if there exist a v#0 in V such that vT=0.
Proof. By Corollary 1.3.7, T is singular if and only if there exist non zero

element SeA(V) such that ST=TS=0. As S is non zero, therefore, there exist
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14

14.1

1.4.2

1.4.3

an element ueV such that uS#0. More over 0=u0=u(ST)=(uS)T. Choose

v=uS, then v#0 and vT=0. It prove the result.

CHARACTERISTIC ROOTS

In rest of the results, V is always finite dimensional vector space over F.
Definition. For TeA(V), A€eF is called Characteristic root of T if AI-T is
singular where I is identity transformation in A(V).

If T is singular, then clearly 0 is characteristic root of T.

Theorem. The element A€F is called characteristic root of T if and only there
exist an element v#0 in V such that vI=Av.

Proof. Since A is characteristic root of T, therefore, by definition the mapping
AL-T is singular. But then by Theorem 1.3.9, AI-T is singular if and only if
Vv(AI-T)=0 for some v#0 in V. As v(AI-T)=0=vA-vT=0= vT= Av. Hence A€F
is characteristic root of T if and only there exist an element v#0 in V such that

vT=MAv.

Theorem. If LeF is a characteristic root of T, then for any polynomial q(x)
over F[x], q() is a characteristic root of q[T].

Proof. By Theorem 1.4.2, if LeF is characteristic root of T then there exist an
element v=0 in V such that vT=Av. But then vI°=(vT)T=(Av)T=AAv= A’V. i.e.
vI%=A2y. Continuing in this way we get, vT*=A"v. Let qx)=BotPix+...+ Bux",
then q(T)= PBotpiT+...+ P, I° . Now by above discussion,
vq(T)=v(BotPiT+...+ BaT" )= Bov+Bi(VI)+...+ B (VI™)= Bov+Pi A2V +...+ By
A" = (Bo+P1 A +...+ Bu AM)v=q(L)v. Hence q(L) is characteristic root of q(T).
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1.4.4

1.5
1.5.1

1.5.2

Theorem. If A is characteristic root of T, then A is a root of minimal
polynomial of T. In particular, T has a finite number of characteristic roots in
F.

Proof. As we know that if A is a characteristic root of T, then for any
polynomial q(x) over F, there exist a non zero vector v such that vq(T)=q(A)v.
If we take q(x) as minimal polynomial of T then q(T)=0. But then vq(T)=q(A)v
= q(A)v=0. As v is non zero, therefore, q(A)=0 i.e. A is root of minimal

polynomial of T.

CHARACTERISTIC VECTORS
Definition. The non zero vector veV is called characteristic vector belonging

to characteristic root A €F if vI=Av.

Theorem. If v, v,,...,v, are different characteristic vectors belonging to
distinct characteristic roots Aj, As,..., A, respectively , then vy, va,...,vi are
linearly independent over F.
Proof. Let if possible vy, v,...,v, are linearly dependent over F, then there
exist a relation Byv;+...+ Byvy=0 , where B;,+...+ B, are all in F and not all of
them are zero. In all such relation, there is one relation having as few non zero
coefficient as possible. By suitably renumbering the vectors, let us assume that
this shortest relation be

Bivit...+ Bxvk=0, where 3;#0,..., Bx~0. (1)
Applying T on both sides and using viT=A;v;in (i) we get

A1 Bivit...t Ak Bvi=0 (i1)
Multiplying (i) by A; and subtracting from (ii), we obtain

(A=A 1)Bavat...+ (A1) Prvi=0
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1.5.3

1.5.4

Now (Ai-A1)=0 for i>1 and B,#0, therefore, (A;-A;)Bi#0. But then we obtain a
shorter relation than that in (i) between vy, va,...,v,. This contradiction proves

the theorem.

Corollary. If dimgV=n, then TeA(V) can have at most n distinct
characteristic roots in F.

Proof. Let if possible T has more than n distinct characteristic roots in F, then
there will be more than n distinct characteristic vectors belonging to these
distinct characteristic roots. By Theorem 1.5.2, these vectors will be linearly
independent over F. Since dimgV=n, these n+1 element will be linearly
dependent, a contradiction. This contradiction proves T can have at most n

distinct characteristic roots in F.

Corollary. If dimgpV=n and TeA(V) has n distinct characteristic roots in F.
Then there is a basis of V over F which consists of characteristic vectors of T.
Proof. As T has n distinct characteristic roots in F, therefore, n characteristic
vectors belonging to these characteristic roots will be linearly independent
over F. As we know that if dimgV=n then every set of n linearly independent
vectors acts as basis of V(prove it). Hence set of characteristic vectors will act
as basis of V over F. It proves the result.

Example. If T €A(V) and if q(x) €F[x] is such that q(T)=0, is it true that
every root of q(x) in F is a characteristic root of T? Either prove that this is
true or give an example to show that it is false.

Solution. It is not true always. For it take V, a vector space over F with
dimgV=2 with v; and v, as basis element. It is clear that for veV, we have
unique o, B in F such that v=av;+Bv,. Define a transformation TeA(V) by
viT=v, and v,T=0. let A be characteristic root of T in F, then AI-T is singular.

It mean there exist a vector v(0) in V such that
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VvI=Av = (avi+Bv)T=Aav+ABv, = a(viT)+B(v.T)=hav+ABv, =
avy+p.0=Aav;+ABv, . As v is nonzero vector, therefore, at least one of o or
is nonzero. But then av,+f.0=Aav;+ABv, implies that A=0. Hence zero is the
only characteristic root of T in F. If We take a polynomial q(x)=x2(x-1), then
q(D=TXT-I). Now  viq(T)= (WT)T)(T-I) =(voT)(T-D=0(T-D=0, v>q(T)=
((v2T)T)(T-I) =(0T)(T-1)=0 , therefore, vq(T)=0 V¥ veV . Hence q(T)=0. As

every root of q(x) lies in F yet every root of T is not a characteristic root of T.

Example. If TeA(V) and if p(x) €F[x] is the minimal polynomial for T over
F, suppose that p(x) has all its roots in F. Prove that every root of p(x) is a
characteristic root of T.

Solution. Let p(x)=x"+ B; x™' +...+Bobe the minimal polynomial for T and A
be its root. Then p(x)= (x-A)(x™' + y;x™% +...+y0). Since p(T)=0, therefore,
(T-L)(T™" + v, T +...4y0)=0. If (T-A) is regular then (T™" +y; T™? +...+y)=0,
contradicting the fact that the minimal polynomial of T is of degree n over F.
Hence (T-A) is not regular i.e. (T-A) is singular and hence there exist a non
zero vector v in V such that v(T-A)=0 i.e. vI=Av. Consequently A is

characteristic root of T.

1.6 MATRIX OF TRANSFORMATIONS

1.6.1 Notation. The matrix of T under given basis of V is denoted by m(T).
We know that for determining a transformation Te A(V) it is sufficient to find
out the image of every basis element of V. Let vy, va,...,v, be the basis of V
over F and let

VIT =011V] + 2V +...+ AV

ViT =0 V] T QjpVy t...T+ 0V
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VnT =0p1V1 +0uh2Vp +...+0pn Vi

Then matrix of T under this basis is

arq

m(T)=| o

Ont

a2

a2

On2

On

Qin

u‘l’ll’l

nxn

Example. Let F be the field and V be the set of all polynomials in x of degree

n-1 or less. It is clear that V is a vector space over F. The dimension of this

vector space is n. Let {1, x, x%..., X"} be its basis. For BotBix+...+ Ppix™"

eV, Define (BotPix+...+ Ppix™)D=P+2Pox*+...4n-1Pyx"2 . Then D is a

linear transformation on V. Now we calculate the matrix of D under the basis

vi(=1), va(=x), v3(=xD),.., va(=x"") as:

viD=1D=0=0.v; +0.vy +...+0.v,

voD=xD=1=1.v{ +0.vy +...4+0.v,

v3D=x’D=2x= 0.vi+2vy+...+0.v,

viD=x""D=ix"'= 0.vi+0.vy +..0v; +...+0.v,

vaD=x""D=n-1x"?= 0.v; +0.v5 +..+ (n—)v,_; +0.v,,

Then matrix of D is

MAL-521
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000 0 0 0
1000 0 0
020 0 0 0
m(D)={0 0 3 0 0 0
000 . n-=2 0 0
0 0 0 n-1 0]

nxn

Similarly we take another basis vi(=x""), vo(=x"?),..., va(=1), then matrix of D

under this basis is

0 n-1 O
0 0 n-2
0 0 0
my(D)=]0 ..
M M M
0 0 0
0 0 0

0 0 0

0 0 0

n-3 0 0
M MM

0 1

0

nxn

If we take the basis vi(=1), vo(=1+x), v3(=1+x?),.., va(=1+x"") then the matrix

of D under this basis is obtained as:

viD=1D=0=0.v{ +0.vy +...4+ 0.v

voD=(1+x)D=1=1.v{ + 0.v5 +...40.v,,

ViD=(1+x?)D=2x=-242(1+x)=— 2.v| + 2.V +...+ 0.

vaD=x""D=n-1x"?=(n-1)+n-1(1+x" == (n = 1).v; +..+ (n=)v,_; + 0.v,,

Then matrix of D is

MAL-521
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0 0 00 0 0
1 0 00 0 0
-2 2 00 0 0
m3(D)=| -3 0 30 0 O
-n-2) 0 O n-2 0 0
| —-(n-1) 0 O n-1 0]

1.6.3 Theorem. If V is n dimensional over F and if Te A(V) has a matrix m;(T) in
the basis vy, va,...,v, and the matrix in the basis in the basis wi, wa,...,w, of V
over F. Then there is an element CeF, such that my(T)= Cm;(T)C™. In fact C
is matrix of transformation Se A(V) where S is defined by v;S=w; ; 1<i <n.
Proof. Let m(T)=(oy;j) , therefore, for 1<i <n,

viT=0;1vi+aipvat. . . F0inVe= El iV (1)
j=
Similarly, if my(T)=(p3;) , therefore, for 1<i <n,
wiT=Biwi+Biwart... HBinwn= jgl Bijw; (2)
Since viS=w; , the mapping one —one and onto. Using v;S=w; in (2) we get
ViST=B;1(v1S)+Pia(v2S)+...+Bin(VaS)
=(Bir.vitBivat... HPinvn)S
As S is invertible, therefore, on applying S™ on both sides of above equation
we get Vi (STS'I)Z(Bil.VlJrBiszJr. ..1tBinvn). Then by definition of matrix we
get ml(STS_l):(Bij): my(T). As the mapping T—->m(T) is an isomorphism from
A(V) to F,, therefore, m;(STS™)= m;(S)my(T)m;(S™)= m;(S)m;(T)m,(S)" =
my(T). Choose C=m;(S), then the result follows.

MAL-521 15



Example. Let V be the vector space of all polynomial of degree 3 or less over
the field of reals. Let T eA(V) is defined as: (Bo+Bix+Pox’+Psx’)T
=B,+2Box+3P3x". Then D is a linear transformation on V. The matrix of T in
the basis vi(=1), v2(=x), v3(=x%), v4(=x") as:

viT=1T=0=0.v; +0.vy +0v3 +0.v4

VoT=xT =1=1.v{ +0.vy +0v3 +0.v4

v3T=x"T=2x= 0.vi+2.vyp +0v3+0.v4

v4T=x’T=3x’= 0.vi +0.vy +3v3 +0.vy

Then matrix of t is

N OO

my(D)=

S O = O
w o O O
S O o O

Similarly matrix of T in the basis wi(=1), wa(=1+x), w3(=1+x?), wa(=1+x"), is

my(D)=

w O O
S O O

If We set v;S=w;, then
viS=wi= 1=1.vi +0.vy +0v3 +0.v4
VvoS=w; = 14+x=1.v{ +1.vy +0v3 +0.v4
viS=wi=1+x"=1 V1 +0.vy +1vy +0.vy

v4T= wy=1+x"= L.vi+0.vy +0v3y+1l.vy

1 000 1 00 0
1 1 00 -1 1.0 0
But the C=m(S)= and C"'= and
1 01 0 -1 0 1 0
1 00 1 -1 0 0 1
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1.6.3

1.7
1.7.1

1.7.2

1 0 0 0[O O O OffL O O O 0 0 0 O
Cimy(D)C-'= 1o o1 000-1100_|1 0200
1 01 0((f0 2 0 Of|-1 0 1 O |-2 2 0 O
1 0 0 1{{0 0 3 0f|-1 0 O 1 -3 0 3 0

=m,(D) as required.

Note. In above example we see that for given basis of V there always exist a
square matrix of order equal to the dimpV. Converse part is also true. i.e. for
given basis and given matrix there always exist a linear transformation. Let V
be the vector space of all n-tuples over the field F, then F, the set of all nxn
matrix is an algebra over F. In fact if v;=(1,0,0...,0), v»=(0,1,0...,0) ,...,
vp=(0,0,0...,n), then (a;j)€F, acts as: vi(a;)= first row of (o), ..., vi(aj)= ih
row of (a;j). We denote M; is a square matrix of order t such that its each super

diagonal entry is one and the rest of the entries are zero. For example

01 0 O
010
0 010
M3=001 andM4=
0 0 0 1
0003><3
000 0},

SIMILAR TRANSFORMATIONS.
Definition (Similar transformations). Transformations S and T belonging to

A(V) are said to similar if there exist Re A(V) such that RSR™'=T.

Definition. A subspace W of vector space V is invariant under TeA(V) if

WTcW. In other words wT eW V weW.

MAL-521 17



1.7.3 Theorem. If subspace W of vector space is invariant under T, then T induces a

linear transformation T on % , defined by (v+ W)T = vT + W. Further if T

satisfies the polynomial q(x) over F, then so does T .

Proof. Since the elements of % are the cosets of W in V, therefore, T

defined by (v+W)T =vT+W is a mapping on % The mapping is well

defined as vi+W=v,+W = v;-v, € W. Since W is invariant under T,
therefore, vi+ W=v,+W= (vi—v,)Te W which further implies that
viT+W=v,T+W ie. (Vi+W)T=(vo + W)T . Further
(a(vi + W) +B(vy + W)T = ((avy +Bvy) + W)T = (avy +Bvy)T+ W . Since
T is linear transformation, therefore, (oavy+Pvy)T+ W =a(v|T)+B(v,T)

+W=a(vT)+B(voT)+ W = o(viT + W) + B(vo T+ W)=au(v; + W)T
. . A%
+B(vp +W)Tie. T isa linear transformation on — .

Now we will show that for given polynomial q(x) over F,
q(T)=q(T). For given element v+W of %, (V+W)T2=VT2+W

=(VDT+W=GT+W)T=(v+W)TT =(v+ W) T2V v+W e%. ie.

T2 =T2. Similarly we can see that T=T" Vv i If

qx)=og+oyx +...+ayx", then q(T)=oay+oyT+..+a,T" and

(V+W)q(T)=(v+W)ag+oyT+...+a, T =v(og + oy T+...+ o, T") + W
=agv+ W+ (VT + W) +...+a,(VT" + W) = ag(v+ W)+ oy (v+W)T +

...+ocn(v+W)T_n. Using T =T we get
MAL-521 18



1.7.4

1.8
1.8.1

1.8.2

v+ W)Q(T)=0y(v+ W) + a(v+ W)T +...+ o, (v+ W)T"
=(v+ W) +oyT+...+0,T")= (v+W)q(T)ie q(T)=q(T). Since by

given condition q(T)=0, therefore, 0 = q(T)=q(T). Hence T satisfies the

same polynomial as satisfied by T.

Corollary. If subspace W of vector space is invariant under T, then T induces

a linear transformation T on %, defined by (v+W)T=vT+W and

minimal polynomial p;(x)(say) of T divides the minimal polynomial p(x) of
T.

Proof. Since p(x) is minimal polynomial of T, therefore, p(T)=0. But then by
Theorem 1.7.3, p( T )=0. Further, p;(x) is minimal polynomial of T , therefore,
pi(x) divides p(x).

CANONICAL FORM(TRIANGULAR FORM)

Definition. Let T be a linear transformation on V over F. The matrix of T in

the basis vy, vs,...,v, is called triangular if
VIT =011V,

V2T =091 V] +0Q9oy Vo

ViT =0l V] T Ajp Vo +...0i Vi

VnT =0p1 Vi t0uhy V) +...041 Vi

Theorem. If TeA(V) has all its characteristic roots in F, then there exist a

basis of V in which the matrix of T is triangular.
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Proof. We will prove the result by induction on dimgV=n.

Let n=1. By Corollary 1.5.3, T has exactly one distinct root A(say) in F. Let
v(#0) be corresponding characteristic root in V. Then vT= Av. Since n=1. take
{v} as a basis of V. Now the matrix of T in this basis is [A]. Hence the result is
true for n=1.

Choose n>1 and suppose that the result holds for all
transformations having all its roots in F and are defined on vector space V*
having dimension less then 7.

Since T has all its characteristic roots in F; let A; be the root
characteristic roots in F and v; be the corresponding characteristic vector.
Hence v|T=A;v;. Choose W={av; | aeF}. Then W is one dimensional

subspace of V. Since (av))T=a(v; T)= arv; €W, therefore, W is invariant
under T. Let V = % Then Vis a subspace of V such that dimp\7 = dimpV-

dimgpW=n-1. By Corollary 1.7.4, all the roots of minimal polynomial of

induced transformation T being the roots of minimal polynomial of T, lies in

F. Hence the linear transformation T in its action on V satisfies hypothesis of

the theorem. Further dimg V <n, there fore by induction hypothesis, there is a

basis V(= vy + W), V3(=v3+ W), ..., V(= v, + W) of V over F such that
Vo T=apV;,

V3 T = 0(.32V2 + 033 V3 ,

Vi T = OLinZ + 03 V3 +...+ aiivi

Vn T= OLn2V2 +04h3 V3 +...+ annvn

1.e matrix of is triangular
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Take a set B={ vy, vy,...,v, }. We will show that B is the required basis which

fulfills the requirement of the theorem. As the mapping V-V defined by
vV—>V(=v+ W)V veV is an onto homomorphism under which v,, v3, ...,
v, are the images of wv», v3, ..., v, respectively. Since Vv,, V3, ..., V, are

linearly independent over F, then there pre-image vectors i.e. vy, vs, ..., v, are
also linearly independent over F. More over v; can not be linear combination

of vectors vy, v3, ..., v, because if it is so then V,, V3, ..., v, will be linearly
dependent over F. Hence the vectors vy, v, ..., v, are n linearly independent
vectors over F. Choose this set as the basis of V.

Since viT=A1v; =ayv; for o=\ .

Since Vo T =0y or (Vo +W)T = atypvy + W or
voyT+W=09,9vo)+W . But then voT—ayvp e Wand  hence
voT—0yyvy = apvy . Equivalently,

voT =0y vy + vy,
Similarly
V3T =33V + 033 V3= v3T = 0a31v) + 0137V +0l33V3.
Continuing in this way we get that

ViT = anVy + Qi3 V3 +... + V5

= viT =0;v]i +ajpvy +...+q;;v; foreachi, 1<i<n.

Hence B={vy, v, ..., vy} is the required basis in which the matrix of T is

triangular.

1.8.3 Theorem. If the matrix A eF,(=set of all n order square matrices over F) has
all its characteristic roots in F, then there is a matrix CeF,, such that CAC! is

a triangular matrix.
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Proof. Let A=[a;] €F,. Further let F'= {(ou, 0,...,0m)| ai€F} be a vector
space over F and e, e,,..., €, be a basis of basis of V over F. Define T:V—>V
by
e;T =aje) +ajpey +...+ a6 +...+aj,€, .

Then T is a linear transformation on V and the matrix of T in this basis is
m;(T)= [a;]=A. Since the mapping A(V) —F, defined by T->m;(T) is an
algebra isomorphism, therefore all the characteristic roots of A are in F.
Equivalently all the characteristic root of T are in F. Therefore, by Theorem
1.8.2, there exist a basis of V in which the matrix of T is triangular. Let it be

my(T). By Theorem 1.6.3, there exist an invertible matrix C in F, such that

my(T)= Cm(T)C'= CAC™" . Hence CAC™ is triangular.

1.8.4 Theorem. If V is n dimensional vector space over F and let the matrix AeF,
has n distinct characteristic roots in F, then there is a matrix CeF, such that
CAC" is a diagonal matrix.

Proof. Since all the characteristic roots of matrix A are distinct, the linear
transformation T corresponding to this matrix under a given basis, also has
distinct characteristic roots say Aj, Aj,..., Ay in F. Let vy, va,..., v, be the
corresponding characteristic vectors in V . But then

viT =Ajv; VI<i<n (1)

We know that vectors corresponding to distinct characteristic root are linearly
independent over F. Since these are n linearly independent vectors over F and
dimension of V over F is n, therefore, set B={ vy, vs,..., v4 } can be taken as

basis set of V over F. Now the matrix of T in this basis is
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M0 0
0 Xy 0
ol Now By above Theorem, there

0 -

A O 0

. . -1 0 7\'2 0 . . .
exist C in F,, such that CAC = 0 0 is diagonal matrix.
0 O A

n

1.8.5 Theorem. If V is n dimensional vector space over F and TeA(V) has all its
characteristic roots in F, then T satisfies a polynomial of degree n over F.
Proof. By Theorem 1.8.3, we can find out a basis of V in which matrix of T is
triangular i.e. we have a basis vy, vy,..., v, of V over F such that
viT =\vy
voT =0y vy +Apvy

Vi T= Qj1Vi tQjr Vo +...+ ai(i—l) Vit 7\.iVi

Va T= ApiVit0n2 Vo +...+ 0y (n-1) Va-1Tt ann
Equivalently,
W(T=2y)=0

Vo(T=2p) = 0g1vy
Vi (T — 7\,1) =0QV1+ Qi Vp +...+ 04 (i-1) Viol

Va (T - 7\'n) =0QpVi+0Opp Vo +...+ 0, (n-1) Vn-1-
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Take the transformation
S=(T-=2)(T—=2y)...(T=2%p).
Then  viS= vi(T=A (T —=Ap)..(T=A,)=0(T-25)...T-2,)=0
VaS= Vo (T=A (T =2Ap)...(T=A,) =V (T =2 (T =2A)..(T=%,)
= ay V(T =2A;)...T=A,)=0.
Similarly we can see that v;S=0 for 1< 1 <n. Equivalently, vS=0 V ve V. Hence

S=(T-A)T-2Xy)..(T=A,)=0 1e. S 1is zero transformation on V.
Consequently T satisfies the polynomial (x —A;)(x —A;)...(x =L, ) of degree

nover F.

1.9 KEY WORDS
Transformations, similar transformations, characteristic roots, canonical
forms.

1.10 SUMMARY
In this chapter, we study about linear transformations, Algebra of linear
transformations, characteristic roots and characteristic vectors of linear
transformations, matrix of transformation and canonical form (Triangular

form).

1.11 SELF ASSESMENT QUESTIONS
(1) If V is a finite dimensional vector space over the field of real numbers with
basis v; and v,. Find the characteristic roots and corresponding characteristic
vectors for T defined by
OHviT=vi+vy, vyT=vi -
(1) viT =5vy + 6v,, voT =-7v,
(1) viT=v; +2v,, voT =3v; + 6V,
(2) If V is two-dimensional vector space over F, prove that every element in

A(V) satisfies a polynomial of degree 2 over F
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2.0 OBJECTIVE

Objective of this Chapter is to study Nilpotent Transformations and

canonical forms of some transformations on the finite dimensional vector
space V over the field F.

2.1 INTRODUCTION

Let T €A(V), V is finite dimensional vector space over F. In first
chapter, we see that every T satisfies some minimal polynomial over F. If T is
nilpotent transformation on V, then all the characteristic root of T lies in F.
Therefore, there exists a basis of V under which matrix of T has nice form.
Some time all the root of minimal polynomial of T does not lies in F. In that

case we study, rational canonical form of T.
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In this Chapter, in Section 2.2, we study about Nilpotent
transformations. In next Section, Jordan forms of a transformation are studied.

At the end of this chapter, we study, rational canonical forms.

2.2 NILPOTENT TRANSFORMATION

2.2.1 Definiton. Nilpotent transformation. A transformation Te A(V) is called

nilpotent if T"=0 for some positive integer n. Further if T' =0 and T€ 20

for k<r, then T is nilpotent transformation with index of nilpotence r.

2.2.2 Theorem. Prove that all the characteristic roots of a nilpotent transformation T
€A(V) liesin F.
Proof. Since T is nilpotent, let r be the index of nilpotence of T. Then T'=0 .
Let A be the characteristic root of T, then there exist v(0) in V such that
vI=Av. As vI’=(vT)T= (Av)T=A(vT)= AAv =A’v . Therefore, continuing in
this way we get vI°>=A’v ,..., vI'=A'v . Since T'=0 , hence vI'=v0 =0 and

hence A'v=0. But v=0, therefore, A'=0 and hence A=0, which all lies in F.

2.2.3 Theorem. If TeA(V) is nilpotent and B # 0, then B+ T+...+ BT ; B; € F

1s invertible.

Proof. If S is nilpotent then S'=0 for some integer r. Let B # 0, then

I s ¢ 18!
Bo+S)(——-—F+—F5+...+(-1) —)
“"""Bo B2 Bo Bo’
S S S2 SZ - Sr—l - Sr—l - gr
=[-2 4+ 22 412 4 s (-D)T (-] (=)=
Bo Bo Bo> Bo’ - e Bo"! D Bo'

= 1. Hence (B +S) is invertible.

Now if Tk=0, then for the transformation
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224

S=BT+...+ BuT",

VS =v(B T+. ..+ B T™) =vT*(B1+...+ P T™ ) V veV.
Since T*=0, therefore, vI*=0 and hence vS§*=0 V veV i.e. $*=0. Equivalently,
S* is a nilpotent transformation. But then by above discussion

BotS=PotPiT+...+ P T is invertible if By # 0. It proves the result.

Theorem. If V=V ,@V,®...@V\ where each subspace V; of V is of dimension
n; and is invariant under Te A(V). Then a basis of V can be found so that the

Ay 0 0 K 0]

0 Ay 0 K 0

matrix of T in this basis is of the foom | 0 0 A3 K 0 | where each
M M M M
0 0 0 K Ay

Aj is an n;jxn; matrix and is the matrix of linear transformation T; induced by T
on V.

Proof. Since each V; is of dimension n; let {V%l),V(zl),...,Vgl)},

{ng),v(zz),...,vgzz) baeens {V%i),Vg),...,VS? Foeiond ng),V(zk),---,Vfli)} are the basis

of Vi , Vy ,..., Vi..., Vi respectively, over F. We will show that
{v(l) O D 2 L2)  ((2) @ O 0 (k) (k) v(k)}
S| n, > n:° ny

1 ’VZ geeey nl ’VZ geeey ey Vl ,V2 PREEY ; ...,Vl ’V2 PREET

is the basis of V. First we will show that these vectors are linearly independent

over F. Let

6444447444448 64444447 44444 48
B N N O e R

6444447444448 64444447 4444448
av + oV + 4oV 4OV oI 4y ocg;)vg;) =0.
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But V is direct sum of V;’s therefore, zero has unique representation i.e.

6444447444448
0=0+0+...4+0+...0. Hence agl)vgl)+a(21)v(21)+...+ag)v(l? =0 for 1<i<k. But

1 1

for 1< i<k V{i),V(zi),...,Vg_) are linearly independent over F. Hence

ocfi) _ ag) =.=a® =0 and hence Vfl),V(zl),---,V(l)a ng)
n; m

,V(zz),...,V(z) yeees
nj

V%i),V(zi),...,V(i) , ...,V%k),v(zk),...,v(k) are linearly independent over F. More
n; ny

over for veV, there exist v; € V; such that v=v; + vo+...+v; +...+vi . But for 1<

i< ko ov=ag"W eV +aV); for a’ eF . Hence

v= ail)vgl) +...+ag)v(l) +...+a{k)vgk) +...+a(k)v(k). In other words we can
1 Iy nx 1Ny

@ M

say that every element of V is linear combination of v;”’,v; ,...,Vgl),

W@ 2 i) )

V5 ,...,ngz),...,vl V5 ,...,Vgi), .,ng) (k) (k)

3Vy seesV over F. Hence
ny

S

1 1 2 2 2 i i i k k k .
{V{ ), ...,V;I),Vg ),V(2 ),...,ng),..., V%l),V(zl),...,VS), ...,V% ),Vg ),...,V;k)} 1

a basis for V over F. Define T on V; by setting viTi=viT V vieV;. Then Tj is a
linear transformation on V;. Since V; are linealy independent, therefore, For

obtaining m(T) we proceed as:

1 1. @ 1. (1 1 1
N O NUPONUBSONU

6444447 444448
= agll)vgl) + oc%lz)vgl) .t ocﬂl) v 4 O.ng) +ot 0.V 4 O.ng) ot 0.V
1M 03 0k

1 1. @ 1. A 1 1
VT = G + ) . o) O

6444447444448
S O O L N R O B Y B R SR )
1 m nj Ny
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2.25

YOT = Oy 4 O O M
n; nll 1 n12 1 nn; nm

6444447444448

=W v 4 W D 4o O 1o y@ oy Lo v@ oy yo.v®)
nl'l n2°1 nn;  n; 1 n, 1 ny

Since it is easy to see that m(T;)= [oc-(l)

i In,xn, =A1. Therefore, role of T on V,

produces a part of m(T) given by [A; 0], here 0 is a zero matrix of order n;xn-

n;. Similarly part of m(T) obtained by the roll of T on V; is [0 A, 0], here first

0 is a zero matrix of order n;xn; , Azz[ai(jz)]nzxnz and the last zero is a zero

matrix of order n;xn-n;-n,. Continuing in this way we get that

‘A, 0 0 K 0]
0 Ay 0 K 0
0 0 A3 K 0 |asrequired.
M M M M
0 0 0 K Ag]

Theorem. If TeA(V) is nilpotent with index of nilpotence n;, then there
always exists subspaces V| and W invariant under T so that V=V ,®&W.
Proof. For proving the theorem, first we prove some lemmas:

Lemma 1. If TeA(V) is nilpotent with index of nilpotence n;, then there

always exists subspace V| of V of dimension n; which is invariant under T.

Proof. Since index of nilpotence of T is n; , therefore, T"! =0 and TK 20 for
1< k <n;-1. Let v(#0)eV. Consider the elements v, vT, vT? ... VI of VL
Take aqv+a,vT+...+avTE D4+ anlanl_l =0, a; €F and let agbe

the first non zero element in  above equation. Hence
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o vTE D4 4 anlanl_l =0. But then vI*™D (a4 +...+an1Tn1_s) =0. As
og#0 and T is nilpotent, therefore, (ocs+...+ocn1Tn1_s)is invertible and

hence vI® D =0vveVvie. TC™D =0 for some integer less than nj, a

.. ny—1
contradiction. Hence each o; =0 . It means elements v, vT, VT2,. vl are

linearly independent over F. Let V, be the space generated by the elements v,

n;

-1 . . .
vT, VTZ, .o, VT . Then the dimension of V; over F is n;. Let ueVy, then

nl—l

-2
u:B1V+...+Bn1_1VTn1 +Bn, VT and

- nl—l np 1'11-1
uT—B1V+...+Bn1_1VT +Bn1VT —B1V+...+Bn1_1VT

. . . .. ny—1
i.e. uT is also a linear combination of v, vT, VTZ, ..,vT''"" over F. Hence

uTeV,. i.e. V, is invariant under T.
Lemma(2). If V, is subspace of V spanned by v, vT, vT? ..., v , TeA(V)
is nilpotent with index of nilptence n; and ueV; is such that uTnl_k =0;0<

k <n;, then u=u0Tk for some upeV;.

- n;-1
Proof. For ue Vi, u=ov +...+ a vIK 1)+Otk+1VTk...+Otn1VT ", a;eF.

_ ik k-1 k n -1, n-k
and 0=uT —(a1V+...+ava( )+ak+1VT ooy VT )T

n;—-k n,;—1 2n;-k-1
ZOLIVT ! +...+OLkVT ! +0Lk+1VTn1...+OLn1VT !

n;—k n; -1 . - - .
= avT' ' "+ 4o, vl ' . Since vI" “ T are linearly

independent  over F, therefore, o]=..=0a=0. But then
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-1 -k
u= ock+1VTk +otoy VI = (QpqV+...+ anlanl )Tk . Put

-k
Ol 4]V +ot Oy VI = u(. Then u=u,T. It proves the lemma.

Proof of Theorem. Since T is nilpotent with index of nilpotence n;, then by

Lemma 3, there always exist a subspace V| of V generated by v, vT, VTZ,...,

VI Let W be the subspace of V of maximal dimension such that
(1) ViNnW=(0) and (ii) W is invariant under T.
We will show that V=V |+W. Let if possible V£V +W. then there exist zeV

such that z¢ V|+W. Since ™ =0, therefore, ZT" =0 . But then there exist an
integer 0 < k <n; such that 2TX Vi+W and 7T ¢ Vi + W for 0<i<k. Let
ZT* =u+w. Since 0=zT" =Z(Tan1_k) = (ZTk)Tnl_k =(u+ w)Tnl_k:
uTh kK +WTn1_k, therefore, uT" K = W™K Byt then uT™ X ¢ V| and
W. HenceuTnl_k =0. By Lemma 2, u=u0ka0r some upeV;. Hence
sz :uOTk +WwW or (z—uO)Tk e W. Take z;=z-uy, then lek € W. Further,
for i<k, ZITi ¢ W because if lei eW, then zT' —uOTi e W. Equivalently,
7Tl e V| +W, a contradiction to our earlier assumption that for i<k,

ZT & V| + W.
Let W, be the subspace generated by W, z;, zT, Zsz,...,

ZlTk_l . Since z; does not belongs to W, therefore, W is properly contained in

W and hence dimgW > dimgW. Since W is invariant under T, therefore, W is

also invariant under T. Now by induction hypothesis, V;nW;#(0). Let

Wtz +opziT+...+ ocklek_l be a non zero element belonging to VinWj.
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2.2.6

Here all o ’s are not zero because then VinW=#(0). Let ag be the first non

zero o . Then
w+ OLSZITS_I +..+ ocklek_l =w+ ZlTS_l (og +...+ ocka_S) eVv].
Since ag # 0, therefore , R = (og +...+ aka_s) is invertible and hence

wR ™+ 2 T8 leviR™! < V. Equivalently, ;TS € V; + W, a contradiction.

This contradiction proves that V=V +W. Hence V=V ®&W.

Theorem. If Te A(V) is nilpotent with index of nilpotence n;, then there exist
subspaces Vi, Va, ..., V,, of dimensions nj, ny,...,n, respectively, each V; is
invariant under T such that V= V,@®V,®...®V,, n;=2n, >...2n, and dim V =

n;+ny+...+n,. More over we can find a basis of V over F in which matrix of T

M, 0 0 K 0
0 My, 0 K 0
0 0 My; K 0
M M M M
0 0 0 K My]|

1s of the form

Proof. First we prove a lemma. If TeA(V) is nilpotent with index of

. . -1
nilpotence n; , V| is a subspace of V spanned by v, vT, vI?, ..., VI where

veV. Then Mnl will be the matrix of T on V; under the basis v;=v,

vy =vT, .., vy =vTT,

Proof. Since

viT = 0.vi+l.vo+...+0. Vi,

VaT=(vVT) T=vT’= v3= 0.v+0.vo+ Lvst.. +0. vy
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an_sz(VTnl_2 )T =vT"™" =Vy, =0.vy+0.vy +...+ 1.y, and

v, T =(T" )T =vI" =0=0y,+0v, +...+ 0, , therefore,

. . -1 .
the matrix of T wunder the basis v, VT, VTZ, ...,VTnl is

010K 0
001K 0
000K 0 = My, .
MMM 1
000K 0

—HIXHI
Proof of main theorem. Since by Theorem 2.2.5, If T€A(V) is nilpotent
with index of nilpotence n;, then there always exists subspaces V; and W,

invariant under T so that V =V;®W. Now let T, be the transformation
induced by T on W. Then T; I'= (0 on W. But then there exist an integer n,
such that n,<n; and n; is index of nilpotene of T,. But then we can write W=
V,®W, where V; is subspace of V spanned by u, uTy, uT22 e .,uTé1 21 where

ueV and W, is invariant subspace of V. Continuing in this way we get that
V= Vl@Vz@. .. Vk
Where each V; is n; dimensional invariant subspace of V on which the matrix

of T (i.e. matrix of T obtained by using basis of V;) is Mni where n;i>2n, >...>

ng and n;+ np +...4+n=n=dim V. Since V= V,®V,D...®V\, therefore, by
Theorem 2.2.4, the matrix of T i.e.

Ay, 0 0 K 0
0 A, 0 K O
m(T)=| 0 0 A3 K 0 |whereeach A= M,,.. It proves the theorem.
M M M M
10 0 0 K Ag]
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2.2.10

2.2.11

Definition. Let TeA(V) is nilpotent transformation with index of nilpotence
n;. Then there exist subspaces Vi, V,,...,Vx of dimensions nj, ny,...,ng
respectively, each Vjis invariant under T such that V= V,@V,®...®Vy, n;>
n; >...2ng and dim V = n;+ny+...+ng. These integers nj, ny, ...,ny are called

invariants of T.

Definition. Cyclic subspace. A subspace M of dimension m is called cyclic
with respect to T € A(V) if

(i) MT™=0, MT™'#0 (i) there exist x in M such that x, xT, ..., xT™" forms
basis of M.

Theorem. If M is cyclic subspace with respect to T then the dimension of
MT* is m-k for all k<m.
Proof. Since M is cyclic with respect to T, therefore, there exist x in M such
that x, xT, ..., xT™" is a basis of M. But then zeM,

7= a;x+ axT+ ...+ ap xT™'; a;eF
Equivalently, zT"= a;xT"+ axxT'+ ...+ apaxT™! +.+a, xT™*= a;xTh+
aszkHJr .t am_kme'l. Hence every element z of MTY is linear combination

of m-k elements ka, x T

, ....xT™"  Being a subset of linearly independent
set these are linearly independent also. Hence the dimension of MT* is m-k for

all k.

Theorem. Prove that invariants of a nilpotent transformation are unique.

Proof. Let if possible there are two sets of invariant nj, n, ..., n; and m; , mp,
..., mg of T. Then V=V, @®V,®...® V,; and V= W,@W,®D...® W, where each
Vi and Wj’s are cyclic subspaces of V of dimension n; and m; respectively, We

will show that r=s and n;=m;. Suppose that k be the first integer such that
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Ng#my. 1.€. Nj=mj, Np=mMy,..., Nx.;=My.;. Without loss of generality suppose that
n>my. Consider VT™k . Then
VT = VT @ V,T"k @...® V, T™k and
dim(VT ™k )=dim(V; Tk W+ dim(V, Tk 1. +dim(V, Tk ). As by Theorem
2.2.10,dim(V; Tk }=n;—m,_, therefore,
dim(VT™)>(n—m, ) +...+(n,, —m,) (1)
Similarly ~ dim(VT™k y=dim(W; T }+ dim(W, T )+ .. +dim(W Tk ). As

mj < mg for j > k, therefore, Wijk ={0} subspace and then

dim(WjTrnk )=0. Hence dim(VT™k)>(mj-my)+...+(m_—my). Since
n;=m;, Ny=mMmy,.. ., N1 =M1, therefore,
dim(VT™k) =(n—my ) +...+ (ny_—my ), contradicting (1). Hence n=m;.

Further n;+n,+...#n,= dim V=m;+m,+...+mg and n;=m; for all i implies that

r=s. It proves the theorem.

Theorem. Prove that transformations S and TeA(V) are similar iff they have
same invariants.

Proof. First suppose that S and T are similar i.e. there exist a regular mapping
R such that RTR'=S. Let ny, n,..., n; be the invariants of S and m; , my, ...,
m; are that of T. Then V=V,®V,®...® V,and V= W, ®@W,®D...® W, where
each V; and Wy’s are cyclic and invariant subspaces of V of dimension n; and
m; respectively, We will show that r=s and n;=m;.

As ViS Vi, therefore, V; (RTR )V = (VIR)(TR) < V.. Put V; R= Ui
Since R is regular, therefore, dim Uj=dimV;=n;. Further U;T= V; RT=V; SR.
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As VS Vi, therefore, UiTcU;. Equivalently we have shown that Uj; is
invariant under T. More over

V=VR=V,ROV,R®...® V,R=U,;®U,SD...® U..
Now we will show that each U;j is cyclic with respect to T. Since each V;j is

cyclic with respect to S and is of dimension n;, therefore, for veVi, v,

VS,...,VSni_l is basis of V; over F. As R is regular transformation on V,

therefore, VR, VSR,...,VSni_1 R is also a basis of V. Further S=RTR'! =
SR=RT = S’R=S(SR)=S(RT)=(SR)T=RTT= RT’. Similarly we have
S'R=RT'. Hence {VR, vSR,...,vS" ' R} = {vR, VRT,...,vRT" ! 1. Now vR
lies in U; whose dimension is n; and vR, VRT,...,vRT ™ are n; elements

linearly independent in Uj, the set {VvR, vRT,.. .,VRTni_1 } becomes a basis of
Ui. Hence U is cyclic with respect to T. Hence invariant of T are nj, ny,...,n;.
As by Theorem 2.2.11, the invariants of nilpotents transformations are unique,
therefore, n=m; and r=s.

Conversely, suppose that two nilpotent transformations R and S have
same invariants. We will show that they are similar. As they have same
invariants, therefore, there exist two basis say X={xi, xa,..., X, } and Y={yi,
V2,..., ¥n ;Of V such that the matrix of S under X is equal to matrix of T under

Y is same. Let it be A=[a;j]n«n. Define a regular mapping R:V—V by x;R=y;.

n
As x(RTRY)= x; R(TRY)= y; TR! = (y; TR =('Zlaijyj)R_1=
J:

n n
=X aij(ij_l)Z . aiX; =x;S. Hence RTR'=S i.e. S and T are similar.
=1 =1
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CANONICAL FORM(JORDAN FORM)
Definition. Let W be a subspace of V invariant under TeA(V), then the

mapping T; defined by wT,=wT is called the transformation induced by T on
W.

Note.(i) Since W is invariant under T and wT=wT}, therefore, wT*=(wT)T=
(WT)T1=(WT1)T1=WT12 vV weW. Hence T2=T12 . Continuing in this way we
get T*=T,*. Hence on W, q(T)=q(T)) for all q(x)eF[x].

(11) Further it is easy to see that if p(x) is minimal polynomial of T and r(T)=0,
then p(x) always divides r(x).

Lemma. Let V; and V, be two invariant subspaces of finite dimensional
vector space V over F such that V=V ,@V,. Further let T and T, be the linear
transformations induced by T on V; and V; respectively. If p(x) and q(x) are
minimal polynomials of T; and T, respectively, then the minimal polynomial
for T over F is the least common multiple of p(x) and q(x).

Proof. Let h(x)= lem(p(x), q(x)) and r(x) be the minimal polynomial of T.
Then r(T)=0. By Note 2.3.2(i), r(T;)=0 and r(T,)=0. By Note 2.3.2(ii),
p(X)|r(x) and q(x)[r(x). Hence h(x)[r(x). Now we will show that r(x)|h(x). By
the assumptions made in the statement of lemma we have p(T;)=0 and
q(T2)=0. Since h(x) = lem(p(x), q(x)), therefore, h(x)= p(x)t;(x) and h(x)=
p(x)t2(x), where t;(x) and ty(x) belongs to F[x].

As V=V,@®V,, therefore, for veV we have unique v; €V, and v, €V,
such that v = v; + v,. Now vh(T) = vih(T) + v,h(T) = vih(T;) + v2h(T,) =
vip(T)ti(Ty) +vap(To)ta(T2)=0+0=0. Since the result holds for all veV,
therefore, h(T)=0 on V. But then by Note 2.3.2(ii), r(x)/h(x). Now h(x)[r(x)
and r(x)|h(x) implies that h(x)=r(x). It proves the lemma.
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Corollary. Let V|, V, , ..., Vi are invariant subspaces of finite dimensional
vector space V over F such that V=V,@®V, @... ®Vy. Further let T, , T,, ...,
Tk be the linear transformations induced by T on Vi, V», ..., Vi respectively. If
pi1(x), p2(x),..., pk(x) are their respective minimal polynomials. Then the

minimal polynomial for T over F is the least common multiple of p;(x),

pz(X),. . pk(X).

Proof. It’s proof'is trivial.

Theorem. If p(x)=p1(x)t1pz(x)tz...pk(x)tk; pi(x) are irreducible factors of

p(x) over F, is the minimal polynomial of T, then for 1< i <k, the set
V; = {ve V|vp;(T)i =0} is non empty subspace of V invariant under T.

Proof. We will show that V; is a subspace of V. Let v; and v, are two elements
of Vi. Then by definition, lei(T)ti =0 and Vzpi(T)ti =0. Now using
linearity property of T we get(v; —Vz)pi(T)ti = lei(T)ti —Vzpi(T)ti =0.
Hence v, - v, €V;. Since minimal polynomial of T over F is p(x), therefore,
h;(T) =py (T)tl Pi1 (T)ti—1 pi+1(T)ti+1 Pk (T)tk # (). Hence there exist uin V
such that uh;(T)=0. But uhi(T)pi(T)ti =0, therefore, uh;(T)eVi. Hence V0.
More over for veVi, vT(p; (T)ti): Vpi(T)ti (T)=0T=0. Hence vT for all

veVi. Hence V; is invariant under T. It proves the lemma.

Theorem. If p(x)zpl(x)tlpz(x)tz...pk(x)tk; pi(x) are irreducible factors of

p(x) over F, is the minimal polynomial of T, then for 1< 1 <k,
Vi={ve V|vp(D) =0}#(0), V= V,®V, ®... ®V,. and the minimal

polynomial for Tj is pi(x)ti .
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Proof. If k=1 i.e. number of irreducible factors in p(x) is one then V=V1 and

the minimal polynomial of T is pl(x)tl i.e. the result holds trivially.

Therefore, suppose k >1. By Theorem 2.3.5, each V; is non zero subspace of V

invariant under T. Define
hy(x) = pa(x)2 p3 ()3 .. py (x) ',

hy(x) = p1(x)"1p3(x)3..pp (),

h@=1]p,".

i
The polynomials h;(x), hy(x),..., hg(x) are relatively prime. Hence we can find
polynomials a;(x), ax(x),...,ax(x) in F[x] such that

a1(x) hi(x)+ ax(x) ho(x)+...+ ax(x) hx(x)=1. Equivalently, we get

a1(T) hy(T)+ ay(T) hy(T)+...+ ax(T) hx(T)=I(identity transformation).
Now forveV,

v=vI=v(a(T) hi(T)+ ay(T) hy(T)+...+ a(T) hi(T))

=va;(T) hy(T)+ vax(T) ho(T)+...+ vax(T) hi(T).

Since va;(T)h;(T)p; (T)ti =0, therefore, va;(T)h;(T)e V;. Let va;(T)h;(T)=
v;. Then v=vi;+vo+...+vi. Thus V=V +V,+...+Vi. Now we will show that if
uptuyt...+u=0, u;eV; then each u=0.

As ujtupt...+u=0 = ujh(T)+uxhi(T)+...+ukh;(T)=0h;(T)=0. Since

hy(T) = po(T)'2p3(T)3 .. (T)"% , therefore, ujh(T)=0 for all j=2,3,...k.

But then u;h(T)+uyh(T)+...+ughi(T)= 0= u;h;(T)= 0. Further l,llpl(T)t1 =0.
Since ged(hi(x), pi(x))=1, therefore, we can find polynomials r(x) and g(x)

such that h(x)r(x) + p; (x)tl g(x)=1. Equivalently,

MAL-521 40



2.3.7

hy(Dr(T) +py(T)1g(T) =L Hence  w=wl=uy(hy(Dr(T) +p;(T)" g(T))
=u1h1(T)r(T)+u1p1(T)tl g(T)=0. Similarly we can show that if
u;tuy+...+u=0 then each u=0. It proves that V=V,@®V, @... ®V.

Now we will prove that pi(x)ti is the minimal polynomial of T; on V;.
Since Vipi(T)ti =(0), therefore, pi(T)ti =0 on V;. Hence the minimal
polynomial of T; divides pi(x)ti. But then the minimal polynomial of T; is
p;(x)"i ; ri<t; for each i=1, 2,...,k. By Corollary 2.3.4, the minimal polynomial
of T on V is least common multiple of p;(x)",py(x)™2,...,pr (x)'’* which is
p1(x)1 pa(x)2 ...p(x)’* . But the minimal polynomial is in fact
pl(x)tlpz(x)tz...pk(x)tk , therefore, t;<r; for each i=1, 2,....k. Hence we get

that the minimal polynomial of T; on Vi is p; (x)ti . It proves the result.

Corollary. If all the distinct characteristic roots Aj, A, ...,Ax of T lies in F,

then V can be  written as V= V&V, ®... ®V, where

Vi={veV|v(T —Ki)ti =0} and where T; has only one characteristic root A;
on V,.

Proof. As we know that if all the distinct characteristic roots of T lies in F,
then every characteristic root of T is a root of its minimal polynomial and vice
versa. Since the distinct characteristic roots Ay, Ay, ...,Ax of T lies in F. Let

the multiplicity of these roots are ty, t, ..., tx. Then the minimal polynomial of
T over F is (x=AD"(x-21))2..(x-2)'%. If we define

Vi={veV|v(T- Ki)ti =0}, then by Theorem 3.6, the corollary follows.
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Definition. The matrix of order t is called Jordan

OZOOP
S = O O O

() E: S = O

() E: oS > =
~

L dtxt

Al
block of order t belonging to A. For example, {0 J is the Jordan block of

order 2 belonging to A.

Theorem. If all the distinct characteristic roots Ay, Aj, ...,Ax of TeA(V) lies

in F, then a basis of V can be found in which the matrix of T is of the form

Jj 0 0 O By 0 0 O
0 J, 0 O 0 Bp 0 O

where each J;= and where B;;, Bis,...,
0 0 0 Jg 0 0 O Biri

Bj;, are basic Jordan block belonging to A.

Proof. Since all the characteristic roots of T lies in F, the minimal polynomial
of T over F will be of the form (x —A;)" (x —A5)"2...(x =&y ) 'k . If we define
Vi={veV|v(T- Ki)ti =0}, then for each 1, Vi#(0) is a subspace of V which

is invariant under T and V= V@V, ®... @V such that (x —Ki)ti will be the

minimal polynomial of T;. As we know that if V is direct sum of its subspaces

invariant under T, then we can find a basis of V in which the matrix of T is of

Jj 0 0 O
0 J, 0 O ) )

the form , where each J; is the njxn; matrix of T; (the
0 0 0 Jg

transformation induced by T on V;) under the basis of V;. Since the minimal
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polynomial of T; on V; is (x —Ki)ti, therefore, (T —A;I) is nilpotent
transformation on V; with index of nilpotence t;. But then we can obtain a
basis X; of V; in which the matrix of (T —2;I)is of the form.

Mi; 0 0 0

0 Mjp 0 0 . L
where 11212 > ... > 1ir;; 11+ 12+ ...

0 0 O Miri noxn,
+ ir;= n=dim V;. Since T=A;I+ T;-A;l, therefore, the matrix of T; in the basis X;

of V; is J7= matrix of A;I under the basis X; + matrix of T; -A;I under the basis

A0 0 0 M; 0 0 0
0 A 0 0 0 Mjp 0 0
X;. Hence Ji= +
00 0 A 0 0 0 M,
n;xXn; 1 n; xXn;

= , Bjj are basic Jordan blocks. It proves the result.

CANONICAL FORM(RATIONAL FORM)

Definition. An abelian group M is called module over a ring R or R-module if
rm € M for all reR and meM and

(1) (r + s)m=rm + rs

(11) r(m; + mp) = rm; + rmp

(i11) (rs)m = r(sm) for all r, s eR and m, m;, myeM.

Definition. Let V be a vector space over the field F and Te A(V). For f(x) €
F[x], define, f(x)v=vf(T), f(x) € F[x] and veV. Under this multiplication V
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becomes an F[x]-module.

Definition. An R-module M is called cyclic module if M ={rm¢ | reR and

some myeM.

Result. If M is finitely generated module over a principal ideal domain R.
Then M can be written as direct sum of finite number of cyclic R-modules. i.e.
there exist X; , X», ..., Xy in M such that

M=Rx; ®Rx; @... ®Rx,.

Definition. Let f(x)= ap + a;x + ...+am x™ + x™ be a polynomial over the

0 1 0 0

0 O 0
field F. Then the companion matrix of f(x) is {

It is a square matrix [bjj] of order m such that b; ;+;=1 for 1 <i<m-1, by, = aj4
for 1 < j < m and for the rest of entries b;=0. The above matrix is called

companion matrix of f(x). It is denoted by C(f(x)). For example companion

0 1 0 O
0 1 O
matrix of 1+2x -5x> +4x> + x* is
0 0 1
-1 -2 5 -4 Axd

Note. Every F[x]-module M becomes a vector space over F.Under the
multiplication f(x)v = v{(T), Te A(V) and v € V, V becomes a vector space

over F.
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2.47 Theorem. Let V be a vector space over F and TeA(V). If f(x) =ap + ajx +

...+am x™! + x™ is minimal polynomial of T over F and V is cyclic F[x]-
module, then there exist a basis of V under which the matrix of T is
companion matrix of f(x).
Proof. Clearly V becomes F[x]-module under the multiplication defined by
f(x)v=vf(T) for all veV , TeA(V). As V is cyclic F[x]-module, therefore,
there exist voeV such that V = F[x]vy ={ {(x)vo | f(x)eF[x]}= { vof(T) |
f(x)e F[x]}. Now we will show that if vos(T)=0, then s(T) is zero
transformation on V. Since v = f(X)vy , then vs(T) = (f(x)vo)s(T)= (vo f(T))s(T)
= (vo s(T)f(T)= 0f(T)=0. i.e. every element of v is taken to 0 by s(T). Hence
s(T) is zero transformation on V. In other words T also satisfies s(T). But then
f(x) divides s(x). Hence we have shown that for a polynomial s(x)eF[x], if
vos(T) =0, then (x) | s(x).

Now consider the set A={vo, v(T,..., Von'1 } of elements of V.
We will show that it is required basis of V. Take rovy + 11 (voT) +...+ 11
( Von'l) =0, rieF. Further suppose that at least one of r; is non zero. Then ryvy
+r1 (voT) + ... + Imet (VOT™ ) =0 = vo(ro+ 1 T+ ... + 1oy T™) =0.
Then by above discussion f(x)| (ro+ r; T + ... + 1 Tm'l), a contradiction.
Hence if rovp + 11 (voT) +...4 111 ( Von'l) =0 then each r; =0. ie the set A is
linearly independent over F.

Take veV. Then v = t(x)vy for some t(x)eF[x]. As we can
write t(x)= f(x)q(x) + 1(x), 1(x) = 1o+ 11X + ... + 1 x™" , therefore, t(T)=
f(T)q(T) + 1(T) where ((T)=ro+ 1, T+ ... + 1y T™'. Hence v = t(x)vo =
vot(T) = vo(f(T)q(T) +r(T)) = vof(T)q(T) + vor(T) = vor(T) = vo (ro+ 11 T + ...
+ I T™D=1ovo + 11 (VoT) + ... + Im1 (VoT™"). Hence every element
of V is linear combination of element of the set A over F. Therefore, A is a

basis of V over F.
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Let vi =vo, v2 =T, v3 =voT%, ..., Vit =VoT™2 , Vin =voT™".
Then

viT=v,=0.vi + 1.v, + 0.v3 + ...4+0. v,y 0V,

voIT=v3=0.vi +0.vp + 1.v3 + ...40. v,y 0V,

Vi1 I= v =0.vy + 0.vo + O.vs + ... +0. vipop v,
Since f(T)=0 = vo f(T) =0 = vo(ao+ ;T + ... +an ™ + T™) =0

=ag Vot a1 vol + ...Fam1 V()Tm_1 + voT"=0

= V()Tm: ;g vy -a; vl - ...-am V()Tm_1 .
As VmT: Von_lTZVon =-a0 Vo - A1 VoT - ...~ dm-1 V()Tm_1
=-a9V] -a41V2-...-dn-1 Vm-
Hence the matrix under the basis v| =vq, v, =voT, v3 =V0T2, ooy Vinol =V0Tm'2 ,

0 I 0 0

_ m-1 - 0 0 O 0 _
Vi =VoT " 18 0 0 0 { = C(f(x)). It proves the result.

—ao —aj A —adm-] mxm

Theorem. Let V be a finite dimensional vector space over F and TeA(V).
Suppose q(x)' is the minimal polynomial for T over F, where q(x) is
irreducible monic polynomial over F . Then there exist a basis of V such that

the matrix of T under this basis is of the form

Cq') 0 A 0
ty
0 Cla(x)2) A 0 where t=t;> t,>...>t,.
0 0 A M
0 0 A Cqx)')]

Proof. Since we know that if M is a finitely generated module over a principal
ideal domain R, then M can be written as direct sum of finite number of cyclic

R-submodules. We know that V is a vector space over F[x] with the scalar
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multiplication defined by f(x)v=vf(T). As V is a finite dimensional vector
space over F, therefore, it is finitely dimensional vector space over F[x] also.
Thus, it is finitely generated module over F[x] (because each vector space is a
module also). But then we can obtain cyclic submodules of V say F[x]vy,
F[x]va, ..., F[Xx]vk suchthat V =F[x]v; @ F[x]v, ® ... ®F[X]vk, vie V.

Since (F(x)vi ) T =(v; F[T]) T = =v; (F[T] T) = =(vi g(T))=
g(x)v; € F[x]v; . Hence each F[x]v; is invariant under T. But then we can find

A 0 A O

Ay

a basis of V in which the matrix of T is where A; is the

-~ > >

0 0 Ay

matrix of T under the basis of Vi. Now we claim that A; = C(q(x)ti). Let
pi(x) be the minimal polynomial of T; (i.e of T on V;). Since w; q(T)' =0 for
all wie F[x]vi, therefore, pi(x) divides q(x)". Thus p; = q(x)ti 1<t <t Re
indexing Vj, we can find t; > t, > ... > t;. Since V = F[x]v; @ F[x]v; © ...
®F[x]vk, therefore, the minimal polynomial of T on V s
lem( q(x)tl , q(x)tz, ...,q(x)tk )= q(x)tl . Then q(x)th(x)tl . Hence t=t;. By
Theorem 2.4.7, the matrix of T on V; is companion matrix of monic minimal

polynomial of T on V;. Hence A; = C(q(x)ti ). It proves the result.

Theorem. Let V be a finite dimensional vector space over F and TeA(V).

Suppose ql(x)tl q2(x)t2 ...qk(x)tk is the minimal polynomial for T over F,

where gi(x) are irreducible monic polynomial over F . Then there exist a basis

of V such that the matrix of T under this basis is of the form
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C(q;(x)"ih) 0 A 0

A, 0 A O

0 A A 0| where A= O C(qi(x)"12) A 0

0 0 A M 0 0 A M
t.

0 0 A A, 0 0 A Cgi(x)™)

. . 5 r
where t=tj] 2 tjp >...2 tj, foreachi, I<i<k, ¥ tjj=n; and ¥n;=n.
j=1 i=1

Proof. Let Vi={ veV |v qi(T)ti =0}. Then each V; is non zero invariant (under

T) subspace of Vand V=V, ® V, ® ... ®Vy. Also the minimal polynomial

of T on Vjis qi(x)ti . For such a V, we can find a basis of V under which the

AL 0 A O
matrix of T is of the form | 0 A, A 0 . In this matrix, each A; is a

0 A M

0 0 A A

nxn

square matrix and is the matrix of T in V;. As T has qi(x)ti as its minimal

polynomial, therefore, by Theorem, 2428, A =
C(gi(x)'") 0 A 0
0 C(qi(x)'2) A 0 . Rest part of the result is easy to
0 0 A M
0 0 A Cq®™)
prove.

2.4.10 Definition. The polynomials q;(x)"", ...,ql(x)tlrl e Qe ()11, ...,qk(x)tkrk are

called elementary divisors of T.

2.4.11 Theorem. Prove that elementary divisors of T are unique.
Proof. Let g(x)=gq (x)l1 9 (x)l2 A (x)lk be the minimal polynomial of T

where each q;(x) is irreducible and /; > 1. Let Vi= { veV| vg;(T )l" =0}. Then

Vi is anon zero invariant subspace of V, V=V; ®V,®...®V\ and the minimal
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polynomial of T on Vji.e. of Tj, is qi(x)li . More over we can find a basis of

R
V such that the matrix of T is [ ! } , where R; is the matrix of T on V;.

k

Since V becomes an F[x] module under the operation f(x)v=vf{(T),
therefore, each V; is also an F[x]-module. Hence there exist vy, va, ..., vy, € Vi
such that V= F[x]v; +... +F[X] v, = Vi+Vp+...+ Vl-,,i where each Vj; is a
subspace of V; and hence of V . More over Vj; is cyclic F[x] module also. Let

q(x)lij be the minimal polynomials of T on Vj. Then q(x)lif becomes

elementary divisors of T, 1 <1<k and 1<j <r;. Thus to prove that elementary

divisors of T are unique, it is sufficient to prove that for all 1, 1< 1 < k, the
polynomials g; (x)l’1 . i (x)l’2 ,-.s g;j(x) " are unique. Equivalently, we have
to prove the result for Te A(V), with q(x)l, q(x) is irreducible as the minimal
polynomial have unique elementary divisor.

Suppose V=V, ®V,8...®&V,and V= W; @ W,D...®W, where each

Vi and W; is a cyclic F[x]-module. The minimal polynomial of T on V; is

have unique elementary divisors q(x)l" where ==, > ... > [, and [=[*> [*%,

> .. 20% . Also Shd=n=dimVand ¥/'d= dim V, d is the degree of
i=1 i=1"'

q(x). We will sow that /; = /* and r=s. Suppose t is first integer such that

L=l*, L =I%, ..., lL.1=[*, and [; # [*. Since each V; and W; are invariant

under T, therefore, Vg(T )l*f =Nq(T )l*f ®..0V,.q(T )l*’ . But then the

dimension Vg(T)"'t = idimqu(T = idimqu(T Yt Since I = 1%,
J=1 J=1

without loss of generality, suppose that [, > [*. As qu(T)l*,z d(l; -1*%),

MAL-521 49



2.5

2.6

2.7

2.8

i—1
therefore,  dim Vg(T)"*> ’;ld(z ;—1%). Similarly dimension of
J:
* -1 ] *
Vq(T)l "ZZZ d(l*;-1%) < i d(l;—1%) < Vq(T)l i, a contradiction. Thus
j=1 j=1
Iy < I*. Similarly, we can show that /i > [*. Hence /; = [*; . It holds for all t.

But thenr =s.

KEY WORDS
Nilpotent Transformations, similar transformations, characteristic roots,

canonical forms.

SUMMARY
For T €A(V), V is finite dimensional vector space over F, we study nilpotent

transformation, Jordan forms and rational canonical forms.

SELF ASSESMENT QUESTIONS

(1) Show that all the characteristic root of a nilpotent transformations are zero
(2) If S and T are nilpotent transformations, then show that S+T and ST are
also nilpotent.

(3) Show that S and T are similar if and only they have same elementary

divisors.
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3.0 OBJECTIVE

Objective of this chapter is to study another algebraic system

(modules over an arbitrary ring R) which is generalization of vector spaces
over field F.

3.1 INTRODUCTION

A vector space is an algebraic system with two binary operations over
a field F which satisfies certain conditions. If we take an arbitrary ring, then
vector space V becomes an R-module or a module over ring R.

In first section of this chapter we study definitions and examples of

modules. In section 3.3, we study about simple modules (i.e. modules having
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no proper submodule). In next section, semi-simple modules are studied. Free
modules are studied in section 3.5. We also study ascending and descending
chain conditions for submodules of given module. There are certain modules
which satisfies ascending chain conditions (called as noetherian module) and
descending chain conditions (called as artinian modules). Such type of
modules are studied in section 3,6. At last we study noetherian and artinian

rings.

3.2 MODULES(CYCLIC MODULES)

3.2.1 Definition. Let R be a ring. An additive abelian group M together with a
scalar multiplication u: RxM—M, is called a left R module if for all r, seR
and x,y eM

(@) u(r, (x +y)) = u(r, x) + u(r, y)
(if) p((r +8), x) = p(r, X) +pls, x)
(1i1) p(r, sx))= p (rs, X)
If we denote p(r, x) =rx, then above conditions are equivalent to
) rx+ty)=rx+ry
(i) (r+s)x=rx+sx
(111) r (sx) = (1s) X.
If R has an identity element 1 and
(iv) Ix=x for all x eM. Then M is called Unitary (left) R-module

Note. If R is a division ring, then a unital (left) R-module is called as left

vector space over R.

Example (i) Let Z be the ring of integer and G be any abelian group with nx
defined by

nx =X + x +...+ x(n times) for positive n and
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3.2.2

3.2.3

3.24

nx=-X-x-...-X(n times) for negative n and zero other wise.
Then G is an Z-module.
(i1) Every extension K of a field F is also an F-module.

(ii1) R[x], the ring of polynomials over the ring R, is an R-module

Definition. Submodule. Let M be an R-module. Then a subset N of M is
called R-submodule of M if N itself becomes a module under the same scalar
multiplication defined on R and M. Equivalently, we say that if

(1) x-yeN

(i) rxeN for all x, yeN and reR.
Example (i) {0} and M are sub modules of R-module M. These are called
trivial submodules.
(i1) Since 2Z (set of all even integers) is an Z-module. Then 4Z, 8Z are its Z
submodules.
(ii1) Each left ideal of a ring R is an R-submodule of left R-module and vice

versa.

Theorem. If M is an left R-module and xeM, then the set Rx={rx| xeR} is an
R-submodule of M.

Proof. As Rx ={rx| xeR}, therefore, for r; and r, belonging to R, 1;x and 1x
belongs to Rx. Since r;-1; €R, therefore, r1x -r,x= (1] -1;)x€Rx. More over for

r and seR, s(rx)=(sr)xeRx. Hence Rx is an R-submodule of M.

Theorem. If M is an R-module and K={rx + nx| reR, neZ} is an R-
submodule of M containing x . Further if M is unital R-module then K=Rx.

Proof. Since for r;, r» €R and n;, n, €Z we have r;-r, €R and n;-n, €Z,
therefore, rix-+n;x—(rx+nyX) = 11X — X + X — X = (r1—1)x+H(n;— np)x €k.

More over for seR, s(rx + nx) =s(rx + x +... + X) = s(rx) + sx +...+ sx = (s1)x

MAL-521 53



3.2.5

3.2.6

3.2.7

+sx +...+ sx=((sr) + s + ... + s)x. Since ((sr) + s + ... + s)eR, therefore, ((sr)
+ s +...+ s)x + 0.x €K. Hence K is an R-submodule. As x = 0x + 1xeK,
therefore, K is an R-submodule containing x. Let S be another R-submodule
containing x, then rx and nx €S. Hence K < S. Therefore, K is the smallest R-
submodule containing X.

If M is unital R-module, then 1€R such that 1. m=mV meM. Hence for
x €M, x=1.x € Rx. As by Theorem 3.2.3, Rx is an R-submodule. But K is the
smallest R-submodule of M containing x. Hence KcRx. Now For rxeRx,

rx=rx + 0xeK. Hence K=Rx. It proves the theorem.

Definition. Let S be a subset of an R-module M. The submodule generated by

S, denoted by <S> is the smallest submodule of M containing S.

Theorem. Let S be a subset of an R-module M. Then <S> ={0} if S=¢, and is
C(S)={ 11 x;t12 X3 + ...+ 1, Xy| 17 €R} 1f S={x1, X2, ..., Xpn}.

Proof. Since < S > is the smallest submodule containing S, therefore, for the
case when S=¢, < S >= {0}. Suppose that S={x, xa,..., X,}. Let x and ye C(S).
Then x= 1] X112 Xo + ...+ Iy Xp, Y= t] X1+ Xo + ...+ t, Xy, 1 and t; €R and x-y
= (r1—t)x;Hr—t)Xo+. . . H(1r—th)x,  €C(S). Similarly rxeC(S) for all reR and
x€C(S). Therefore, C(S) is a submodule of M. Further if N is another
submodule containing S then X, Xz, ..., X, € N and hence r; x;+1; X5 + ...+ 1y

Xn €N i.e. C(S) < N. It shows that C(S) =<S>is the smallest such submodule.

Definition. Cyclic module. An R-module M is called cyclic module if it is
generated by single element of M. The cyclic module generated by x is and is
{rx+nx| re R, neZ}. Further if M is an unital R-module, then < x > ={rx |

reR}.
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3.3
3.3.1

3.3.2

3.3.3

Example.(i) Every finite additive abelian group is cyclic Z-module.

(i1) Every field F as an F-module is cyclic module.

SIMPLE MODULES
Definition. A module M is said to be simple R-module if RM#{0} and the
only submodules of it are {0} and M.

Theorem. Let M be an unital R-module. Then M is said to be simple if and
only if M =Rx for every non zero xeM. In other words M is simple if and
only if it is generated by every non zero element x € M.
Proof. First suppose that M is simple. Consider Rx={rx | reR}. By Theorem
3.2.3, it is an R-submodule of M. As M is unital R-module, therefore, there
exist 1R such that 1.m=m for all meM. Hence x(0)=1.x €Rx, therefore Rx
is non zero unital R-module. Since M is simple, therefore, M=Rx. It proves the
result.

Conversely, suppose that M=Rx for every non zero x in M. Let
A be any non zero submodule of M. Then A < M. Let y be a non zero element
in A. Then yeM. Hence by our assumption, M=Ry. By Theorem 3.2.3, Ry is
the smallest submodule containing y, therefore, RycA. hence McA. Now
AcM, McA implies that M=A i.e. M has no non zero submodule. Hence M is

simple.

Corollary. If R is a unitary ring. Then R is a simple R-module if and only if R
is a division ring.

Proof. First suppose that R is simple R-module. We will show that R is a
division ring. Let x be a non zero element in R. As R is a unitary simple ring,

therefore, by Theroem 3.2.8, R=Rx. As 1€R and R=Rx, therefore, 1eRx.
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3.3.4

3.3.5

3.3.6

Hence there exist a non-zero y in R such that 1=yx. i.e. inverse of non zero
element exist in R. Hence R is a division ring.

Conversely suppose that R is a division ring. Since ideals of a
ring are R-submodules of that ring and vice versa, therefore ideals of R will be
submodules of M. But R has two ideal {0} and R itself. Hence R has only

trivial submodules. Therefore, R is simple R-module.

Definition. A f be a mapping from an R-module M to an R-module N is called
homomorphism if

(1) f(x + y)=f(x) + f(y) (ii) f(rx)=rf(x) for all x, y eM and reR.
It is easy to see that f(0)=0, f(—x)= —f(x) (iii) f(x—y)=f(x) —{(y).

Theorem (Fundamental Theorem on Homomorphism). If f is an

M
=f(M).
kerf (M)

homomorphism from R-modules M into N, then

Problem. Let R be a ring with unity and M be an R-module. Show that M is

cyclic if and only if M ;% , Where I is left ideal of R.

Solution. First let M be cyclic i.e. M=Rx for some xeM. Define a mapping
¢: R->M by ¢(r) =rx, reR. Since ¢(r; + r2)= (] + r2)X=11X + 15X =(17) + §(17)
and ¢(sr)= (sr)x = s(rx)=s¢(r) for all r}, rp, s and r belonging to R, therefore, ¢
is an homomorphism from R to M. As M=Rx, therefore, for rxeM, there exist

r €R such that ¢(r) =rx i.e. the mapping is onto also. Hence by Fundamental

theorem on homorphism, Kid);M' But Ker ¢ is an left ideal of R,
er

therefore, taking Ker ¢=I we get M ;% .
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3.3.7

3.3.8

R R . .
Conversely suppose that M ET. Let f: T —M be an isomorphism

such that f(1+I)=x. Then for reR, f(r+I) = f(r(1+I))=r f(1+I)=rx. i.e. we have
shown that img f = {rx| reR}=Rx. Since image of f is M, therefore, Rx =M

for some xeM. Thus M is cyclic. It proves the result.

Theorem. Let N be a submodule of M. Prove that the submodules of the
: M U )
quotient module N are of the form INE where U is submodule of M

containing N.

Proof. Define a mapping f: M—)% by f(m)=m+N V meM. Let X be an

submodule of % Define U={xeM| f(x)eX}= { xeM |m + N €X }. Letx,

yeU. Then f(x), f(y) €X . But then f(x—y) = f(x)—f(y) €X and for reR,
f(rx)=rf(x) €X . Hence by definition of U, x—y and rxeU. i.e. U is an R-
submodule. Also N < U, because for all xeN, f(x) = x + N = N = identity of
X, therefore, f(x)eM. Because f is an onto mapping, therefore, for xeX, there

always exists y €M, such that f(y)=x. By definition of U, yeU. Hence X <
f(U). Clearly f(U) < X. Thus X=f(U). But f(U) = % Hence X =%. It proves

the result.

Theorem. Let M be an unital R-module. Then the following are equivalent
(1) M is simple R-module

(i1) Every non zero element of M generates M

(i) M ;% , where I is maximal left ideal of R.
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3.3.9

Proof. (i)=(ii) follows from Theroem 3.2.8.

(i1) =(ii1). As every non zero element of M generates M, therefore, M is cyclic

and by Problem 3.2.12, M ;%. Now we have to show that I is maximal.

Since M is simple, therefore, % is also simple. But then I is maximal ideal of

R. It proves (iii)

(i11)) =(1). By (iii)) M ;%, I is maximal left ideal of R. Since I is maximal

ideal of R, therefore, I # R. Further 1+I € % and R(% )={I} implies that RM
#{0}. Let N be a submodule of M and f is an isomorphism from M to %

Since f(N) is a submodule of %, therefore, by Theorem 3.3.7, f(N) = % .But1
is maximal ideal of R, therefore, J=I or J=R. If J=I, then f(N) = {I} implies
that N={0}. If J=R, then f(N)= % implies that N=M. Hence M has no non-

trivial submodule i.e. M is simple.

Theorem. (Schur’s lemma). For a simple R-module M, Homr(M, M) is a
division ring.

Proof. Since the set of all homomorphism from M to M form the ring under
the operation defines by (f +g) (x)=f(x) + g(x) and (f.g)(x)=f(g(x)) for all f and
g belonging to the set of all homomorphism and for all x belonging to M. In
order to show that Homg(M, M) is a division ring we have to show that every
non zero homomorphism f has an inverse in Homg(M, M). i.e. we have to
show that f is one-one and onto. As f: M—M. consider Ker f and img f. Both

are submodules of M. But M is simple, therefore, ker f={0} or M. If ker f =M,
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3.4
34.1

3.4.2

then f becomes a zero homomorphism. But f is non zero homomorphism.
Hence ker f={0}. i.e. fis one-one.

Similarly img f={0} or M. If img f={0}, then f becomes an zero
mapping which is not true. Hence img f =M i.e. mapping is onto also. Hence f
is invertible. Therefore, we have shown that every non zero element of

Homg(M, M) is invertible. It mean Homg(M, M) is division ring.

SEMI-SIMPLE MODULES
Definition. Let M be an R-module and (N;), 1< i<t be a family of submodules

t
of M. The submodule generated by YN; is the smallest submodule
i=l

containing all the submodules N;. It is also called the sum of submodules N;

t
and is denoted by X N; .
i=1

Theorem. Let M be an R-module and (Nj), 1< i< t be a family of submodules

of M. Show that 'ZtllNi ={X;+ Xz *+ ... ¥x¢ | X;jeNj}.
i=
Proof. Let S={x;+ x, + ... +X¢ | XjeN;}. Further let x and yeS. Then x= x;+ x;
+ Xy, Y=Y HY2 ot Y, Xjand y; €S, Then x—y =(x;+x; + ...+ Xp) —
(yi+y2+ ...ty )= (X1=y1) + (X2—y2) +...+(Xy—yn) €S . Similarly rxeS for all
reR and xe€S. Therefore, S is an submodule of M.
Further if N is another left submodule containing S then x,

X, ..., Xp € N and hence x;+x, + ...+ X, eNie. S cN. It shows that S is the

t
smallest module containing each N;. Therefore, by Definition 3.4.1, ¥ N;=
i=1

S={x1+ xp + ... ¥x¢ | Xi€Nj}.
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343

3.4.4

345

3.4.6

Note. If YN; is a family of submodules of M, then ¥ N; ={ Xx;|x; € Nj}.

ieA finite

Definition. Let (N;);cp be a family of submodule M. The sum X N; is called
ieA

direct sum if each element x of X N; can be uniquely written as x =X X;,
ieA

where x; €N; and x; =0 for almost all 1 in index set A. In other words, there are

finite number of x; that are non zero in Y X; . It is denoted by @ X N; . Each
ieA

Niin @ X N; is called a direct summand of the direct sum @ ¥ N; .
ieA ieA
Theroem. Let (N;);cp be a family of submodule M. Then the following are

equivalent.

(1) XN; isdirect

ieA
(i) Ny~ X N;={0} forall i
JEA
j#l

(ii1)) 0=Xx; € TN; = x; =0 forall 1.
ieA

Proof. These results are easy to prove.

Definition. (Semi-simple module). An R-module M is called semi-simple or

completely reducible if M = ¥ N;, where N;’s are simple R-submodules of M.
ieA

Example. R’ is a semi-simple R-module.
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3.4.7

3.4.8

3.4.9

Theorem. Let M = M, be a sum of simple R-submodules M, and K be a

aeA

submodule of M. Then there exist a subset A~ A such that ¥ M, is a

oA
direct sumand M=K ®(® > M,).
oeA”
Proof. Let SZ{A** cA|] X Mgisadirectsumand Kn ¥ M, ={0}}.
aeA” aeA”

Since $ =« A and XM, ={0}, therefore, K n ZM, =Kn{0}={0}. Hence

acdh acdh
¢eS. Therefore, S is non empty. Further S is partial order set under the
relation that for A, B €S, A is in relation with B iff either A < B or B < A.
More over every chain (A;) in S has an upper bound UA; in S. Thus by Zorn’s

lemma S has maximal element say A", Let N=K®@® >~ M,). We will

aeA
show that N=M. Let ® €A. Since M,, is simple, therefore, either NmM,, ={0}
or M, If NmM, = {0}, then M, ,N(@® X M,)={0}. But then

acA

> M, is adirect sum having non empty intersection with K. But this
aeA Ulo}

contradicts the maximality of A". Thus N N M, = My, 1.e. M, < N, proving
that N=M.
Note. If we take K={0} module in Theorem 3.4.7, then we get the result that

“IfM= ¥M, isthe sum of simple R-submodules M,, , then there exist a
aeA

subset A" A suchthat ¥ M, is a direct sumand M=® ¥ M, .

aeA aeA

Theorem. Let M be an R-module. Then the following conditions are
equivalents

(1) M is semi-simple
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(11) M is direct sum of simple modules
(i11) Every submodule of M is direct summand of M.

Proof. (1)=(i1). Since M 1is semi-simple, then by definition, M = XM,
aeA

where N;’s are simple submodules. Also by Theorem 3.4.7,if M= XM, isa

acA
sum of simple R-submodules M,’s and K be a submodule of M, then there

exist a subset A° < A such that ¥ M, is a direct sum and
oA’

M=K®(® X *Ma). By Note 3.4.8, if we take K={0}, then M =@ Y *Ma

oA aeA

i.e. M is direct sum of simple submodules.

(1) =(i11). Let M =® M, , where each M,, is simple. Then M is sum of

aeA
simple R-submodules. But then by Theorem 3.4.7, for given submodule K of

M we can find a subfamily A" of given family A of submodules such that

M=K®(@® ¥ M,). Take ® ¥ M, =M". Then M=K ®M" .Therefore, K

acA acA

is direct summand of M.
(ii1)) =(1). First we will show that M has simple submodule. Let N=Rx be a
submodule of M. Since N is finitely generated module, therefore, N has a

maximal element N* (say) (because every finitely generated module has a

maximal element). Consider the quotient module % Since N* is simple,

therefore, % i1s simple. Being a submodule of N, N* is submodule of M

also. Hence N* is a direct summand of M. Therefore, there exist submodule
M; of M such that M=N*@®M,. But then N < N*®M,. If yeN, theny =x + z
where xeN* and zeM;. Since z = y-x €N (because y €N and xeN*cN),

therefore, y-x eNNM;. Equivalently, yeN* + NnM,. Hence NcN* + NNM;.
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3.4.10

Since N* and NnM; both are subset of N, therefore, N* + NnM; < N. By
above discussion we conclude that N* +NNM; = N. Since M =N*®M;,,
(N*n M) = {0}, therefore, N*\(N~M;) = (N* M;)nN ={0}. Hence N=
N* @ (NNM)).

%k
Now N _ N*+NnM, ~ NN M, _ NliszMl.
N* N* N*N(NM)) {0}

Since % is simple submodule, therefore, (NMM;) is also simple submodule

of N and hence of M also. By above discussion we conclude that M always
has a simple submodule. Take f={My}oeca as the family of all simple
submodules of M. Then by above discussion f # ¢. Let X= XM, . Then X is

0eA
a submodule of M. By (ii1), X is direct summand of M, therefore, there exist
M?* such that M=X®M?*. We will show that M*={0}. If M* is non zero, then
M* has simple submodule say Y. Then Yef. Hence YcX. But then
Y=XNM?*, a contradiction to the result M=X®M*. Hence M*={0} and M=

X= ¥M,, i.e. M is semi-simple and (i) follows.

weA

Theorem. Prove that submodule and factor modules of a semi-simple module
are again a semi-simple.

Proof. Let M be semi-simple R-module and N be a submodule of M. As M is
semi-simple, therefore, every submodule of M is direct summand of M. Hence
for given submodule X, there exist M* such that M =X®M?*. But then
N=MNN= X®M*"N=(X"N)S(M*NN) . Hence XN is direct summand of

N. Therefore N is semi-simple.
Now we will show that N is also semi-simple. Since M is semi-

simple and N is a submodule of M, therefore, N is direct summand of of M i.e.
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3.5

3.5.1

3.5.2

3.5.3

3.5.4

M= NOEM*, Since NAM*={0}, therefore,

M_NOM*  M* M*
N N ~NAM* {0}

=M*. Being a submodule of semi-simple

module M, M* is semi-simple and hence % is semi-simple. It proves the

result.

FREE MODULES
Definition. Let M be an R module. A subset S of M is said to be linearly
dependent over R if and only if there exist distinct elements xi, Xa, ..., X, In S

and elements ry, 1, ...,I,; in R, not all zero such that rix;+rx,+.. . +1,x,=0.

Definition. If the elements xj, Xy, ..., X, of M are not linearly dependent over
R, then we say that xi, X», ..., X, are linearly independent over R. A subset S=
{x1, X2, ..., X;}of M is called linearly independent over ring R if elements x;,

X2, ..., X¢ are linearly independent over R.

Definition. Let M be an R-module. A subset S of M is called basis of M over
Rif
(1) Sis linearly independent over R,

(i) <S>= M. i.e. S generates M over R.

Definition. An R-module M is said to be free module if and only it has a basis

over R

Example(i) Every vector space V over a field F is a free F-module.
(i1) Every unitary R-module, R is a free R-module.

(ii1) Every Infinite abelian group is a free Z-module.
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Example of an R-module M which is not free module. Show that Q (the
field of rational numbers ) is not a free Z-module.(Here Z is the ring of
integers).

) ) r )
Solution. Take two non-zero rational numbers p and —. Then there exist two

q S
integers qr and -ps such that qu+(—ps£)=0. i.e. every subset S of Q
q S

having two elements is Linearly dependent over Z. Hence every super set of S
i.e. every subset of Q having at least two elements is linearly dependent over

7. Therefore, basis of Q over Z has at most one element. We will show the set

containing single element can not be a basis of Q over Z. Let P be the basis

q
element. Then by definition of basis, QZ{nB, neZ}. But 2L belongs to Q
q q
such that P _1p +n?  Hence Q= {nB, neZ}. In other word Q has no basis
29 29 q q

over Z. Hence Q is not free module over Z.

Theorem. Prove that every free R-module M with basis {xj, Xz, ..., X¢} 18
isomorphic to RY. (Here R" is the R-module of t-tuples over R).
Proof. Since {xi, X2, ..., X¢} 1s the basis of M over R, therefore, M={r;x;+ X,
+... x| 11, 12,..., ER}. AsS R(t)Z{(rl, r, ..., I)| 11, 12,..., r€R }. Define a
mapping f : M—R® by setting f(r;x;+ rx; +... + rx¢)=(ry, 12, ..., 1y). We will
show that f'is an isomorphism.

Let x and y €M, then x= r;x;+ X, +... + rX; and y= s;x;+ $pxp +... +
sx; where for each i, s; and r; eR. Then

f(X+y): f((r1+S1) X1+ (I‘z +s; )Xz +...+ (I‘t + st )Xt)
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3.6
3.6.1

3.6.2

=((r1+s1), (12+82), ..., (retsy)) = (11, T2, ..., 1) T (S1, 82, ..., St)

= f{(x)*+(y)
and f(rx)= f(r(r;x;+ rxy +... + rxe)= frrx+r rpxo +... + rrx)= (11, 112, ... TTY)
=1(ry, 12, ... 1;)=rf(x). Therefore, fis an R-homomorphism.
This mapping f is onto also as for (ry, 1o, ... rt)eR(t) , there exist X = r;x;+ X,

+... + rx¢eM such that f(x)= (1, 12, ... 17). Further f{(x)=f(y)= (11, 12, ... 1)
=(s1, $2, ... , St) = 1j =s; for each 1. Hence x=y i.e. the mapping f is one-one

also and hence the mapping f is an isomorphism from M to R".

NOETHERIAN AND ARTINIAN MODULES

Definition. Let M be a left R-module and {M;};>; be a family of submodules
of M . The family {M;};>; is called ascending chain if M;c Myc... cM,c...
Similarly if M;> M,D... DM, D..., then family {M;}s; is called descending

chain.

Definition. An R-module M is called Noetherian if for every ascending chain
of submodules of M, there exist an integer k such that My=M, for all t > 0. In
other words My=My:1= My, =... . Equivalently, an R-module M is called
Noetherian if every ascending chain becomes stationary or terminates after a
finite number of terms.

If the left R-module M is Noetherian, then M is called left Noetherian
and if right R-module M is Noetherian, then M is called right Noetherian.

Example. Show that Z as Z-module is Noetherian.
Solution. Since we know that Z is principal ideal ring and in a ring every ideal
is submodule of Z-module Z. Consider the submodule generated by <n>, neZ.

Further <n> < <m> iff mjn. As the number of divisors of n are finite,
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3.6.3

therefore, the number of distinct member in the ascending chain of family of

submodules are finite. Hence Z is noetherian Z-module.

Theorem. Prove that for an left R-module M, following conditions are
equivalent:

(1) M is Noetherian  (i1)) Every non empty family of R -module has a
maximal element (iii) Every submodule of M is finitely generated.

Proof. (1) =(i1). Let f be a non empty family of submodules of M. If possible
f does not have a maximal element, then for M; € f, there exist M, such that
M; < M,. By our assumption, there exist M3, such that M;cM,cM;.
Continuing in this way we get an non terminating ascending chain M,
cM),cM;.... , of submodules of M, a contradiction to the fact that M is
Noetherian . Hence f always have a maximal element.

(i1)=(ii1). Consider a submodule N of M. Let x;eN for i=1, 2, 3, ... Consider
the family f of submodules M;=<x;>, Mp=<x; , Xp>, M3=<X;, X2, X3 >, ...,
of N or equivalently of M. By (ii), f has maximal element M(say). Definitely
My is finitely generated. In order to show that N is finitely generated, it is
sufficient to show that My=N. Trivially My < N. Let x;eN. Then x;eM; cM
for all i. Hence NcMjy i.e. My=N. It proves (iii).

(i1)=(iii). Let f be an ascending chain of submodules of M. and ascending

chain is M;cMycMs... . Consider N = YM; . Then N is a submodule of M.

1>1
By (iii), N is finitely generated i.e. N=<x;, X, ..., x;>. Let M; be the
submodule in the ascending chain M;cM,cMj... . such that each x; is

contained in M;. Then NcM,; for all r > t. But M; cN. Then N=M,. Hence
M=M;;1=M;p=... and hence M is Noetherian. It proves (1).
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3.6.5

3.6.6

Definition. Let M be an left R-module and  ={M, },ca be a non empty family
of submodules of M. M is called finitely co-generated if for every non empty

family € having {0} intersection has a finite subfamily with {0} intersection.

Definition. Left R-module M is called Left Artinian module if every
descending chain M;>M;2oM;... of submodules of M becomes stationary after

a finite number of steps. i.e there exist k such that My=M, for all t>0.

Theorem. Prove that for an left R-module M, following conditions are
equivalent:

(1) M is Artinian (i1) Every non empty family of R-module has a minimal
element (iii) Every quotient module of M is finitely co-generated.

Proof. (1)=(i1). Let f be a non empty family of submodules of M. If possible
f does not have a minimal element, then for M; e f, there exist M, such that
M;oM,. By our assumption, there exist Mj, such that M;oM;oM; .
Continuing in this way we get an non terminating discending chain M;
DM)DM;.... , of submodules of M, a contradiction to the fact that M is

Artinian. Hence f always have a minimal element.

(i))=(iii)). For a submodule N, consider the quotient module % Let

{ﬂ}Xe A be a family of submodules of M such that I &:{N}. Since
N N reA N

I My\‘

N= 1 —2—26A_ therefore 1M, =N. Let {={M;}cp and for
reA N N heA

every finite subset A* cA let f={A = 1M, }. As M, e f for all AeA,
AEA*

therefore, £ < f. i.e. f#¢. By given condition f has a minimal element say A.
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Then A=M,; "M;, N..nM; . Let AeA. Then A N M, cA. But A is

minimal element of the collection f; therefore, A N M, #(0). Hence A N M,

=A V AeA. But then A < 1 M; =N. Since N is contained in each M, ,
reA

n
therefore, N <M;; "M;,Nn..NM; =A. Hence N=A=1 M; . Now
=1

n

n M, ~I_1Mxi N . .
I L=1= =— = N. Hence there exist a subfamily {
i=z1 N N N

M.
N

fi<i<n of the

. MX n M?\.l .
family {?}Xe A such that 1 N N . It shows that every quotient module
i=1

is finitely co-generated. It proves (iii).
(ii)=(1). Let M; > Mp>...oM;DM;;D...be a descending chain of

submodules of M. Let N=1 M;. Then N is a submodule of M. Consider the
i>1

I M;
) M: M ) M. ' N
family {—* }i>; of submodules of — . Since I 112l _ "_N and
N reA N N N

M. . 1o My,
N is finitely co-generated, therefore, there exist a subfamily {%}ISiSn of

) M; n M.
the family {F }i=1 such that 1 T = N. Let k= max={A, Ay, ...An}. Then
i=1

A:
= l:Mk:>Mk=N.N0wN=IMi<;Mk+ingf;N:>
iz N N N i>1

My < M for all i>0. Hence M is Artinian.

Theorem. Let M be Noetherian left R-module. Show that every submodule

and factor module of M are also Noetherian.
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Proof. Since M is Noetherian, therefore, it is finitely generated. Being a
submodule of finitely module, N is also finitely generated. Hence N is also

Noetherian.
. M A . .
Consider factor module N Let N be its submodule. Then A is
submodule of M is Noetherian, therefore, A is finitely generated. Suppose A is

generated by xi, Xy, ..., X,. Take arbitrary element x + N of % Then x€A.

Therefore, x =rx; + Xy + ...1hXy, i € R. But then x +N=(r;x; + 1 xo+ ...+
mXn) + N =1 (x; N) + 1 ( XptN)+...41, (X,7N) i.e. x +N is linear

combination of (x; +N), ( x,*+N), ..., (X,+N) over R. Equivalently, we have
A . ) A . )
shown that N is finitely generated. Hence N is Noetherian. It proves the

result.

Theorem. Let M be an left R-module. If N is a submodule of M such that N

and % both are Noetherian, then M is also Noetherian.

Proof. Let A be a submodule of M. In order to show M is Noetherian we will

show that A is finitely generated. Since A+N is a submodule of M conting N,

therefore, is submodule of % Being a submodule of Noetherian
module N is finitely generated. As A+N = A , therefore,
N ANN ANN

is also finitely generated. Let

AN —<y1 + (AAN), v2 + (AAN), o) i +

(ANN)>. Further A NN is a submodule of Noetherian module N, therefore, it

is also finitely generated. Let (ANN)= <x; , X2, ..., X¢ >. Let xeA. Then
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xHANN)e — A < Henee x+HAAN)=1i( yi + (AON)* 1o y2 + (AN ..
mM

+ r(yk + (ANN)), rieR . Then x + (ANN)= (riy; + 1y, + ... + ey +
(ANN)) or x - (ry; + ny2 + ... + reyk )€ (ANN). Since (ANN)= <x; , Xz ,
..., Xy >, therefore, x - (r1y; + oy, + ... + 1yk )= s1X1 + $HXxp + ...+ 8Xq.
Equivalently x = (rjy; + oy, + ... +royk ) + 81X + X + ...+ 8X;, SieR.
Now we have shown that every element of A is linear combination of
elements of the set { r;, 1, ..., 1, Si, S2, ..., S 1.e. A is finitely

generated. It proves the result.

Theorem. Let M be an left R-module and N be a submodule of M. Then M is
. M ..
artinian iff both N and ﬁ are Artinian.

Proof. Suppose that M is Artinian. We will show that every submodule and
quotient modules of M are Artinian.

Let N be a submodule of N. Consider the deccending chain N; o N,
D ... DNk 2 Nkt D... of submodules of N. But then it becomes a descending
chain of submodules of M also. Since M is Artinian, therefore, there exist a

positive integer k such that Ny =Ny,; V 1 >0. Hence N is Artinian.

Let % be a factor module of M. Consider a descending chain

M &3,_ Mic _ Micu D..., M; are submodules of M

containing N and are contained in M;.;. Thus we have a descending chain
M; > M; o ... oMy D My D... of submodules of M. Since M is

Artinian, therefore, there exist a positive integer K such that My =My V 1 >0.

But then & = % Vv 12>0. Hence M is Artinain.
N N N
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Conversely suppose that both N and % are Artinian submodules of

M. We will show that M is Artinian. Let Ny D N, © ... ©Ng © Ny D... be

the deccending chain of submodules of M. Since N;+N is a submodule of M

Ni+N

containing N, therefore, for each i, 1s a submodule of % such that

Ni+NDNi+1+N'

- Consider descending chain
N N
N +N - Np+N D..D N +N > Nigsy N >... of submodules of M As
N N N N N

N is Artinian, therefore, there exist a positive integer k; such that

Nkl +N _ Nk1+i+N
N

for all i > 0. But then N + N=Ny ,;+N foralli >

Since N; n N is a submodule of an Artinian module N and N; "N o
Niy N for all 1, therefore, for descending chain

NiNnNoNyN"ND2..oONy " ND..N; n N of submodules of N, there

exist a positive integer k, such that N, "N =Ny ;AN for all i > 0. Let

k=max{ki, ko}. Then Ny +N=Ny,;+N and Ny "N=Ny,; "N forall i
> 0. Now we will show that if Nj. + N=N;_; + N and Ny "N =N; i "N,
then Ny =N ;foralli>0. Let xeNy, then xeNy +N=N;,; + N. Thus x=

y+z where yeNyy and zeN . Equivalently, x-y=zeN. Since ye&Ngii,
therefore, yeNy also. But then x-y=z also belongs to Ny . Hence ze Ny"N=
Ni+inN and hence z=x-y €Nyii. Now X-yeNyi; and yeNy:; implies that

x€Ngi. In other words we have shown that Ny < Ny,;. But then

Ny = Ny forall i > 0. It proves the result.
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3.6.10 Theorem. Prove that R-homomorphic image of Noetherian(Artinian) left R-

3.7
3.7.1

3.7.2

3.7.3

module is again Noetherian(Artinian).
Proof. Since homomorphic image of an Noetherian(Artinian) module M is

f(M) where f is an homomorphism from M to R-module N. Being a factor

module of M,

is Noetherian(Artinian). As f(M)= i, therefore,
Kerf Kerf

f(M) is also Noetherian(Artinian).

NOETHERIAN AND ARTINIAN RINGS
Definition. A ring R is said to satisfy ascending (descending) chain condition
denoted by acc(dcc) for ideals if and only if given any sequence of ideals I, L,
L...of Rwithlichc..chc..hioho... 2l 2...), there exist an
positive integer n such that [,=I;, for all m>n.

Similarly a ring R is said to satisfy ascending (descending ) chain
condition for left (right) ideals if and only if given any sequence of left ideals
I, L, ...of Rwithichc..clhc..iocho... 2l D...), there exist

an positive integer n such that I,=I, for all m > n.

Definition. A ring R is said to be Notherian(Artinian) ring if and only if it
satisfies the ascending ()chain conditions for ideals of R. Similarly for non
commutative ring , a ring R is said to be left-Notherian(left-Notherian) ring if
and only if it satisfies the ascending chain conditions for left ideals (right

ideals) of R.

Definition. A ring R is said to satisfies the maximum condition if every non
empty set of ideals of R , partially ordered by inclusion, has a maximal

element.
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3.7.4 Theorem. Let R be a ring then the following conditions are equivalent:

(1) R is Noetherian (ii) Maximal condition (for ideals) holds in R (iii) every
ideal of R is finitely generated.

Proof. (i) =(ii). Let /' be a family of non empty collection of ideals of R and
I} ef. If I; € is not maximal element in f, then ther exist I, €f such that I, I,.
Again if I; is not maximal then there exist I €f such that [, I, < I5. If f has
no maximal element, then continuing in this way we get an non terminating
ascending chain of ideal of R. But it is contradiction to (i) that R is noehterian.
Hence f'has maximal element.

(ii) =(iii). Let I be an ideal of R and f={A | A is an ideal of R, A is finitely
generated and Acl}. As {0}cI which is finitely generated ideal of R,
therefore, {0} ef. By (ii), f has maximal element say M. We will show that
M=I. Suppose that M=, then there exist an element acl such that agM. Since
M is finitely generated, therefore, M=< a,, ay, ..., ax> . But then M*=<a,, a,,
..., 8, a > 1s also finitely generated submodule of I containing M properly. By
definition M* belongs to f, a contradiction to the fact that M is maximal ideal
of f. Hence M=I. But then I is finitely generated. It proves (iii).

(iii) =(@). lic I, < 1c...cl, ... be an ascending chain of ideals of R. Then

Y], is an ideal of R. By (ii1) it is finitely generated. Let YI; =<a;, a,...,a>.
i>1 i>1

Now each a; belongs to some Ixi of the given chain. Let n=max{A, A,, ...,Ax}.

Then each a;el,. Consequently, for m>n, YI; =<a;, a,....ax>c lhclhc YI;.
1>1 i1

Hence [,=I;, for m>n implies that the given chain of ideals becomes stationary

at some point i.e. R is Noetherian.

3.8 KEY WORDS
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3.9

3.10

3.11

Modules, simple modules, semi simple modules, Noethrian, Artinian.

SUMMARY
In this chapter, we study about modules, simple modules (i.e. modules having
no proper submodule), semi-simple modules , Free modules, Noetherian and

Artinian rings and modules.

SELF ASSESMENT QUESTIONS

(1) Let R be a noethrian ring. Show that the ring of square matrices over R is
also noetherian.

(2) Show that if Ry, i=1, 2, 3, ... is an infinite family of non zero rings and if
R is direct sum of member of this family. Then R can not be noetherian.

(3) Let M be a completely reducible module, and let K be a non zero
submodule of M. Show that K is completely reducible. Also show that K 1is

direct summand of M.

SUGGESTED READINGS

(1) Modern Algebra; SURJEET SINGH and QAZI ZAMEERUDDIN, Vikas
Publications.

(2) Basic Abstract Algebra; P.B. BHATTARAYA, S.K.JAIN, S.R.
NAGPAUL, Cambridge University Press, Second Edition.
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4.0 OBJECTIVE

Objective of this paper is to study some more properties of modules
4.1 INTRODUCTION

In last chapter, we have studied some more results on modules and
rings. In Section, 4.2, we study more results on noetherian and artinian
modules and rings. In next section, Weddernburn theorem is studied. Uniform
modules, primary modules, noether-laskar theorem and smith normal theorem
are studied in next two section. The last section is contained with finitely

generated abelian groups.
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42  MORE RESULTS ON NOETHERIAN AND ARTINIAN MODULES
AND RINGS
4.2.1 Theorem. Every principal ideal domain is Noetherian.

Solution. Let D be a principal ideal domain and I,c I, < Iic...cl, <...be an

ascending chain of ideals of D. Let I= YI; . Then I is an ideal of D. Since D is
izl

principal ideal domain, therefore, there exist beD such that I=<b>. Since
beD, therefore, bel, for some n. Consequently, form > n, [ < I, < I, L.
Hence I,=I,, for m > n implies that the given chain of ideals becomes
stationary at some point i.e. R is Noetherian.

(2) (Z,+,.) is a Notherian ring.

(3) Every field is Notherian ring.

(4) Every finite ring is Notherian ring.

4.2.2 Theorem. (Hilbert basis Theorem). If R is Noetherian ring with identity, then
R[x] is also Noetherian ring.
Proof. Let I be an arbitrary ideal of R[x]. To prove the theorem, it is sufficient
to show that I is finitely generated. For each integer t>0, define;

I={reR : apgta;x + ...+ rx'}u{0}

Then I; is an ideal of R such that I;cl;s; for all t. But then [jc Iy c I, <... is an
ascending chain of ideals of R. But R is Noetherian, therefore, there exist an
integer n such I,=I;, for all m>0. Also each ideal I; of R is finitely generated.

Suppose that [; =<2i1,8{2;-» Ajm, > for i=0, 1, 2, 3, ..., n, where ajj is the
leading coefficient of a polynomial fj; €I of degree i. We will show that
moytm+...+tmy, polynomials fOl’ foz, ceey fomo, fll, le: -'-’flml yeuns fnl,
fn2= ...,fnmn generates I. Let J:<f01, foz, . meO, fll, le: ...,flml geuns

far> faos - fom > Trivially J < I Let f(= 0)eR[x] be such that fel and of
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4.2.3

4.2.4

4.2.5

degree t (say): f=bgtbix+...+b.1x"" + bx'. We now apply induction on t. For
t=0, f=boely < J. Further suppose that every polynomial of I whose degree
less than t also belongs to J. Consider following cases:

Case 1. t > n. Ast> n, therefore, leading coefficient b (of f)el=I, (because

I=ly V t=n). But then b=nay +nay +...+1y apy , i €R. Now g = f-
(rlfnl+r2fn1+...+rmnfnmn)xt'nel having degree less than t (because the
coefficient of x' in g is b—nay +nay +...+ 1y ayy =0, therefore, by

induction, fel.

Case (2). t < n. As bel,, therefore, b =sja(; +syaqp +...+5y ayy, ; si €R. Then
h=f-(s1fy) +sofy; +... 48y fom ) €L, having degree less than t. Now by

Isinduction hypothesis, heJ] = fel. Consequently, in either case Ic] and
hence I=J. Thus I is finitely generated and hence R[x] is Noetherian. It prove

the theorem.

Definition. A ring R is said to be an Artinian ring iff it satisfies the descending

chain condition for ideals of R.

Definition. A ring R is said to satisfy the minimum condition (for ideals) iff
every non empty set of ideals of R, partially ordered by inclusion, has a

minimal element.

Theorem. Let R be a ring. Then R is Artinian iff R satisfies the minimum
condition (for ideals).

Proof. Let R be Artinian and /' be a nonempty set of ideal of R. If I; is not a
minimal element in £, then we can find another ideal I, in f'such that I} o I,. If

f has no minimal element, the repetition of this process we get a non
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4.2.6

4.2.7

terminating descending chain of ideals of R, contradicting to the fact that R is
Artinian. Hence f'has minimal element.

Conversely suppose that R satisfies the minimal condition. Let
I o I; o I5... be an descending chain of ideals of R. Consider F ={I; : t=1, 2,
3, ...}. 1eF = F is non empty. Then by hypothesis, F has a minimal element
I,, for some positive integer n = I, [, V m >n.

Now I, # I, = IheF (By the minimality of I,) , which is not

possible. Hence I,=1I, ¥V m > ni.e. R is Artinian.

Theorem. Prove that an homomorphic image of a Noetherian(Artinian) ring is
also Noetherian(Artinian).
Proof. Let f be a homomorphic image of a Noetherian ring R onto the ring S.

Consider the ascending chain of ideals of S:

hicho..c. (1)
Suppose I=f"'(J,), forr=1, 2, 3, ....
Lchco. .c... (2)

Relation shown in (2) is an ascending chain of ideals of R. Since R is
Noehterian, therefore, there exist positive integer n such that I,=I, ¥V m>n.
This shows that J,=J, V m>n. But then S becomes Noetherian and the result

follows.

Corollary. If I is an ideal of a Noetherian(Artinian) ring, then factor module

% is also Noetherian(Artinian).
) R . ..
Proof. Since T is homomorphic image of R, therefore, by Theorem 4.2.10,

% 1s Noehterian.
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4.2.9

4.2.10

Theorem. Let I be an ideal of a ring R. If R and % are both Noehterian rings,

then R is also Noetherian.

Proof. Let [, c I, < ...c... be an ascending chain of ideals of R. Let f: R—

%. It is an natural homomorphism. But then f(I;) < f(l) < ...c is an

) ) ) . R . R . ) )
ascending chain of ideals in T Since T is Noetherian, therefore, there exist

a positive integer n such that f(I,) = f(I,s) V12>0. Also(I n 1) < (L N Dc
...C... 1s an ascending chain of ideals of I. As I is Noehterian, therefore, there
exsit a positive integer m such that (I, N I) = (I,+; N ). Let =max{m, n}.
Then {(I;) = f(I;+i) and (I " 1) = (Isi N 1) ¥V 12> 0. Let a€l;, then there exist
x €l; such that f(a)=f(x) i.e. a+I=x+I. Then a-x €l and also a-x €l+;. This shows
that a-x (I« N )= (I; N I). Hence a-xel, = a€l; i.e. I;; < 1. But then [+ = I;
for all i>0. Now we have shown that every ascending chain of ideals of R
terminates after a finite number of steps. It shows that R is Noetherian.

Definition. An Artinian domain R is an integral domain which is also an

Artinian ring.

Theorem. Any left Artinian domain is a division ring.
Proof. Let a is a non zero element of R. Consider the ascending chain of ideals
of R as: <a>> <a’> - <a’> o I Since R is an Artinian ring, therefore, < a"™>

n+1

+ . + . . . .
= <a">V i>0. Now <a™ =<a""'> = a" =ra™"! = ar =1 i.e. a is invertible =

R is a division ring.

4.2.11 Theorem. Let M be a finitely generated free module over a commutative ring

R. Then all the basis of M are finite.
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4.2.12

Proof. let {e;}ica be a basis and {x;, x,, ...,X,} be a generator of M. Then

each x;j can be written as xj= X [;¢; where all except a finite number of By’s
i

are zero. Thus the set of all e;’s that occurs in the expression of Xx;’s,

j=1,2,...n.

Theorem. Let M be finitely generated free module over a commutative ring R.
Then all the basis of M has same number of element.
Proof. Let M has two bases X and Y containing m and n elements
respectively. But then M= R" and M=R". But then R"=R". Now we will
show that m=n. Let m< n, fis an isomorphism from R™ to R" and g=f". Let
{X1, X2, ..., Xm} and {yi, y2, ..., ya} are basis element of R™ and R"
respectively. Define

f(xi)=aii y1 + a2 y2 +...+ ani yn and g(yj)= byj X1 + byj X2 +... +bmj Xm. Let
A(a;) and B=(by;) be nxm and mxn matrices over R. Then g

n n m n
f(xi)=g( Zajiyj) = Zajig(yj) =3 Zbkjajixk. I 1 <m. Since gf=I ,
j=1 j=1 k=1j=1

-1)x;

m n n n
therefore, X =3 X bkjajixk i.e. > bljajixl +...+ X (bijaji
i=1 j=1

k=1j=1 =

n
+..+ X bpajixy,y=0. As xi’s are linearly independent, therefore,
J=1

n B
2 byjajixg = Oyj. Thus BA=Iy, and AB=I,. Let A*=[A 0] and B*:[O} , then
=1

I, O
A*B*= [, and B*A*= { z)n O] But then det(A*B*)=I, and det(B*A*)=0.

Since A* and B* are matrices over commutative ring R, so det(A*B¥*)
det(B*A*), which yield a contradiction. Hence M > N. By symmetry N > M
i.e. M=N.
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4.3

4.3.1

RESULT ON Hr(M, M) AND WEDDENBURN ARTIN THEOREM

k
Theorem 4. Let M=@® > M; be a direct sum of R-modules M;. Then
i=1

HOII’IR(MI,MI) HomR(Mz,Ml) HomR(Mk,Ml)
Homg(M, M)z | Homr (M, M) Homg (M3,Mp) A~ Homp (M,Mp) | o5 5
M M M M
Homp (M1,M) Hompg (M,,My) Hompg (M., My)

ring (Here right hand side is a ring T(say) of KxK matrices f=(f;;) under the
usual matrix addition and multiplication, where fj; is an element of
Homgr(M;, M))).

Proof. We know that for are submodules X and Y, Homg(X, Y) (=set of all
homomorphisms from X to Y) becomes a ring under the operations (f +g)
x=f(x) +g(x) and fg(x)=f(g(x)), f, g eHomr(X, Y) and xeX. Further A;: M;
— M and 7;: M—M; are two mappings defined as:

Ai(x)=(0, ..., Xj,...,0) and mi(xy, ..., Xi, ....Xx) = X;. (These are called
inclusion and projection mappings). Both are homomorphisms. Clearly, w; ¢
At M; = M; is an homomorphism, therefore, m; ¢ A; eHomgr(M; , M;). Define a
mapping 6 : Homg(M, M)—>T by o(¢p)= (ni d A;), $ € Hompg(M , M) and (m;
¢ A; ) 1s kxk matrix whose (1, j)th enrty is m; ¢ A; . We will show that o is an

isomorphism. Let ¢;, ¢ € Homr(M , M). Then
G (01 + ¢2) = (i (1 )2 )= (i didy + 7 oy ) = (i duky) + (i oy )

k
=6 (¢1) + o (¢2) and 6 (¢1) o (¢2) = (mid1 ;) (Mi 2 Aj) = 121 T 1A doA
=1 QM TP  + T QAo TR j + o+ T G A TG
=1; 1 (M1 +..+ A )doA ;. Since for (Xi,..., Xi, ....Xk) =X €M, Aim; () =

Aix)=  (0,..., xi, ...,0), therefore, (Ajmp+Aymy 4. +ApTy) (X)=
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4.3.2

4.3.3

M () + Aoy (x) + .o+ A (X) = (X1, ...,0)+ (0, X2, ...,0)+...4 (0,..., x¢)=
(X1, X2, ....Xxx) = X. Hence Am+Apmy+...+A;m;)=I on M. Thus
o(¢1)o(92)=m; 1922 ;= o (¢192). Hence o is an homomorphism. Now we will

show that ¢ is one-one. For it let o(¢)= (m ¢ A;)=0. Then m; ¢ A;=0 for each

k
1,j;1<1,j<k.Butthen m ¢ A; + m ¢ A; +...+ m ¢ A;=0. Since 'Zlni is an
1=

k k
identity mapping on M, therefore, (X m; )¢A; = ¢A;=0. But then ¢ X A ;=
i=1 j=1
0 and hence ¢=0. Therefore, the mapping is one-one. Let /= (f;j)eT, where

fij: Mj >M; is an R-homomorphism. Set y = XA; f;;n; . Since for each i and
=

E}

J» Aifym; is an homomorphism from M to M, therefore, X A;f;mn; is also an

>

element of Hom(M, M). Since o(¢) is a square matrix of order k, whose (s, t)

entry is fy, therefore, o(y)=(mts( XA, f;m; )A). As Ty Ag = Bpq, therefore, my(
i, ]

A fiim j YA = fo. Hence o(y)=(fij)=f i.e. mapping is onto also. Thus o is an
i,j

isomorphism. It proves the result.

Definition. Nil Ideal. A left ideal A of R is called nil ideal if each element of it
nilpotent.

Example. Every Nilpotent ideal is nil ideal.

Theorem. If J is nil left ideal in an Artinian ring R, then J is nilpotent.
Proof. Suppose J*#(0). For some positive integer k. Consider a family {J,
J%, ... }. Because R is Artinian ring, this family has minimal element say

B=J". Then B’=J*"=J"=B implies that B>=B. Now consider another family
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S={A| A is left ideal contained in B with BA#(0). As BB=B#(0), therefore, f'is
non empty. Since it is a family of left ideals of an Artinian ring R, therefore, it
has minimal element. Let A be that minimal element in f. Then BA #(0) i.e.
there exist a in A such that Ba#(0) Because A is an ideal, therefore, Ba < A
and B(Ba)=B’a=Ba #(0). Hence Bae /. Now the minimality of A implies that
Ba=A. Thus ba=a for some beB. But then b'a=a V i >1. Since b is nilpotent

element, therefore, a=0, a contradiction. Hence for some integer k, Jk=(0).

Theorem. Let R be Noetherian ring. Then the sum of nilpotent ideals in R is a

nilpotent ideal.

Proof. Let B = X A4; be the sum of nilpotent ideals in R. Since R is
ieA

noetherian, therefore, every ideal of R is finitely generated. Hence B is also
finitely generated. Let B=<xi, X», ..., x> . Then each x; lies in some finite
number of A;’s say Ay, A, ..., An. Thus B=A+A,+...+A,. But we know that

finite sum of nilpotent ideals is nilpotent. Hence B is nilpotent.

4.3.4 Lemma. Let A be a minimal left ideal in R. Then either A’>=(0) or A=Re.
Proof. Suppose that A’#(0). Then there exist acA sucht that Aa=(0). But Aa
cA and the minimality of A shows that Aa =A. From this it follows that there
exist e in A such that ea=a. As a is non zero, therefore, ea#0 and hence e=0.
Let B={ceA | ca=0}, then B is a left ideal of A. Since ea # 0 , therefore, e¢
B. Hence B is proper ideal of A. Again minimality of A implies that B=(0).
Since e’a=cea=ca = (e>-¢)a=0, therefore, (e*-¢) eB=(0). Hence e’=e. i.c ¢ is
an idempotent in R. As 0= e=e’= e.ecRe, therefore, Re is a non zero subset of

A. But then Re=A. It proves the result.
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4.3.5 Theorem. (Wedderburn-Artin). Let R be a left (or right) artinian ring with
unity and no nonzero nilpotent ideals. Then R is isomorphic to a finite direct
sum of matrix rings over the division ring.

Proof. First we will show that each non zero left ideal in R is of the form Re
for some idempotent. Let A be a non-zero left ideal in R. Since R is artinian,
therefore, A is also artinian and hence every family of left ideal of A contains
a minimal element i.e. A has a minimal ideal M say. But then M2=(0) or
M=Re for some idempotent e of R. If M2=(0), then
(MR)*’=(MR)(MR)=M(RM)R=MMR=M’R= (0). But then MR is nilpotent.
Thus by given hypothesis MR=(0). Now MR = (0) implies that M = (0), a
contradiction. Hence M=Re. This yields that each non zero left ideal contains
a nonzero idempotent. Let f ={R(1-e¢)NA | e is a non-zero idempotent in A}.
Then f is non empty. Because M is artinian, f has a minimal member say R(1-
e)NA. We will show that R(1-e)nA=(0). If R(1-e)nA#(0) then it has a non
zero idempotent e;. Since e; = r(1-¢) , therefore, ee=r(1-e)e= r(e-¢*)=0. Take
e =e+ e - ee;. Then (e*)2 =(e+ej-eey)(e+e-ee)=ce+ee-eeetee +
eie] - eeje; -ecej- ejee; +eejee;=e + 0—¢e0 +ee; + e - eep -eej- Oe; +elej=¢
+e1-ee = ¢" i.e. we have shown that ¢" is an idempotent. But ele*=ele +e1e
- ejee;= e;#0 implies that e; ¢ R(l-e*) N A. (Because if e e R(l-e*) N A,
then e; = r(l-e*) for some reR and then eje = r(l-e*) o= r(e*- e*e*)ZO). More
over for r(l-e*)e R(l-e*), r(l-e*)z r(l1- e - e; + ee))=1(1- e - e (1- e))= r(1-
e1)(1- e)=s(1-e) for s = r(1-e;)e R, therefore, Hence R(l-e*)mA is proper
subset of R(1-e)nA. But it is a contradiction to the minimality of R(1-e)nA
in f. Hence R(1-e)mA=(0). Since for a€A, a(1-e)e R(1-e)nA, therefore, a(l-
e)=(0) i.e. a=ae. Then A > Re > Ae > A = A=Re.

For an idempotent e of R, Ren R(1-e)=(0). Because if xeRenR(1-¢), then

x=re and x=s(1-e) for some r and s belonging to R. But then re=s(1-¢)=
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ree=s(1-e)e = re= s(e-¢”)=0 i.e. x=0. Hence Re N R(1-e)=(0). Now let S be
the sum of all minimal left ideals in R. Then S=Re for some idempotent ¢ in R.
If R(1-e)#(0), then there exist a minimal left ideal A in R(1-¢). But then A <
Re ~ R(1-e)=(0), a contradiction. Hence , R(l-e)=(0) i.e

R=Re=S= Y A; where (Aj)ica 1s the family of minimal left ideals in R. But
1eA

then there exist a subfamily (Aj)ica+ of the family (Aj)ica such that
R=® YA;. Let 1=¢; +e¢; +..+¢; . Then R= Re; ®...@Re; (because

1eA*
forreR, I=ej +¢;, +..+¢; =r=re; +re; +..+r1¢; ). After reindexing if
necessary, we may write R = Rej®@Re,®...® Re,, a direct sum of minimal

left ideals. In this family of minimal left ideals Rej, Re,, ...,Re,,, choose a

largest subfamily consisting of all minimal left ideals that are not isomorphic
to each other as left R-modules. After renumbering if necessary, let this

subfamily be Rej, Res, ...,Rey . Suppose the number of left ideal in the family

(Rej), 1<1 <n, that are isomorphic to Re; is n;. Then

Ngsppmgnds  ng summgnds g s
R= [Re;®...] @ [Rer@...] ©...® [Re®...] where each set of brackets

contains pair wise isomorphic minimal left ideals, and no minimal left ideal in
any pair of bracket is isomorphic to minimal left ideal in another pair. Since
Homg(Re; , Rej)=(0) for i#) , 1< 1, j< k and Homg(Re; , Rei) =D; is a division
ring(by shecur’s lemma). Thus by Theorem 4, we get Homg(R,R)=

MAL-521 86



4.4

4.4.1

4.4.2

‘D, A Dy |
M 0 0
D, A D
D, A Dy Dy,
0 M M = O
Dy A Dy (Din,
D, A Dy
0 M
D, A Dy

=(Dy)y, ®...® (Dy)y, - But since Homg(M, M) =R* ( under the mapping f:
R?—Homr(M, M) given by f(a)=a* where a*(x)=aox=xa) as rings and the
opposite ring of a division ring is a division ring. Since R”” = R, therefore, R is

finite direct sum of matrix rings over division rings.

UNIFORM MODULES, PRIMARY MODULES AND
LASKAR THOEREM

NOETHER-

Definition. Uniform module. A non zero module M is called uniform if any
two nonzero submodules of M have non zero intersection.

Example. Z as Z-module is uniform as: Since Z is principal ideal domain,
therefore, the two sub-modules of it are <a> and <b> say, then <ab> is another
submodule which is contained in both <a> and <b> . Hence intersection of any
two nonzero sub-modules of M is non zero. Thus Z is a uniform module over

Z.

Definition. If U and V are uniform modules, we say U is sub-isomorphic to V

provided that U and V contains non zero isomorphic sub-modules.
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4.4.3

4.4.4

4.4.5

Definition. A module M is called primary if each non zero sub-module of M
has uniform sub-module and any two uniform sub-modules of M are sub-
isomorphic.

Example. Z is a primary module over Z.

Theorem. Let M be a Noetherian module or any module over a Noetherian
ring. Then each non zero submodule contains a uniform module.

Proof. Let N be a non zero submodule of M. Then there exist x(# 0) eN.
Consider the submodule xR of N. Then it is enough to prove that xR contains
a uniform module. If M is Noetherian, then the every submodule of M is
noetherian and hence xR is also noetherian and if R is Noethrian then, being a
homomorphic image of Noetherian ring R, xR is also Noetherian. Thus, for
both cases, xR is Noetherian.

Consider a family f of submodules of xR as: f={N| N has a zero
intersection with at least one submodule of xR}. Then {0} € f. Since xR is
noetherian, therefore, f has maximal element K(say). Then there exist an
submodule U of xR such that KnU={0}. We claim U is uniform. Otherwise,
there exist submodules A, B of U such that AnB={0}. Since KNnU={0},
therefore, we can talk about K®A as a submodule of xR such that KOA
NB={0}. But then K®Ae f, a contradiction to the maximality of K. This
contradiction show that U 1is uniform. Hence U <xRcN. Thus every

submodule N contains a uniform submodule.

Definition. If R is a commutative noetherian ring and P is a prime ideal of R,
then P is said to be associated with module M if R/P imbeds in M or

equivalently, P=r(x) for some xeM, where r(x)={aeR | xa =0}.
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4.4.6

4.4.7

4.4.8

4.4.9

Definition. A module M is called P- primary for some prime ideal P if P is the

only prime associated with M.

Theorem. Let U be a uniform module over a commutative noetherain ring R.
Then U contains a submodule isomorphic to R/P for precisely one prime ideal
P. In other words U subisomorphic to R/P for precisely one ideal P.

Proof. Consider the family f of annihilators of ideals r(x) for non zero x €U.
Being a family of ideals of noetherian ring R, f has a maximal element r(x)
say. We will show that P=r(x) is prime ideal of R. For it let aber(x), agr(x).
As aber(x) = (ab)x = 0. Since xa # 0, therefore, b(xa) = 0 = ber(xa). More
over for ter(xa) = t(xa)=0 = (ta)x=0 = r(xa) € f. Clearly r(x) < r(xa). Thus
the maximality of r(x) in f implies that r(xa)=r(x) i.e. ber(x). Hence r(x) is
prime ideal of R. Define a mapping from R to xR by O(r)=xr. Then it is an
homomorphism from R to xR. Kernal 8 ={ reR | xr=0}. Then Kernal 06 =
r(x). Hence by fundamental theorem on homomorphism, R/ r(x) = xR = R/P.
Therefore R/P is embeddable in U. Hence [R/P]=[R/Q)]. this implies that there
exist cyclic submodules xR and yR of R/P and R/Q respectively such that
xR=yR. But then R/P=R/Q, which yields P=Q. It prove the theorem.

Note. The ideal in the above theorem is called the prime ideal associated with

the uniform module U.

Theorem. Let M be a finitely generated ideal over a commutative noetherian
ring R. Then there are only a finite number of primes associated with M.

Proof. Take a family f consisting of the direct sum of cyclic uniform
submodules of M. Since every submodule M over a noehtrian ring contains a

uniform submdule, therefore, f'is non empty. Define a relation <, on the set of

MAL-521 89



4.4.10

elements of / by ® Ex;R< @ ¥ x;R iff < J and x;R < yjR for some jel.
iel jel

This relation is a partial order relation on /. By Zorn’s lemma F has a maximal

member K = @ Y x;R. Since M is noetherian, therefore, K is finitely
iel
t

generated. Thus K =® Y x;R . By theorem, 4.2.7, there exist x;a; € x; R such
=1

* % t
that r(x;a;)=P;, the ideal associated with x;R. Set x; = x;a; and K = @ ZX?R.
i=1
Let Q =r(x) be the prime ideal associated with M. We shall show that Q =P;
for some i, 1<1<t.
Since K is a maximal member of /', therefore, K as well as K’

has the property that each has non zero intersection with each submodule L of

* t *
M. Now let 0# yexRN K . Write y=® Zx?bi =xb. We will show that r(x; b;)=
i=1

r(xi*) whenever xi*bi # 0. Clearly, r(xi*) c r(xi*bi). Let xi*bic =0. Then b;c
r(xi*)ZPi and so ceP; since b; ¢ P;. Hence, ce r(xi*).

t
Further, we note Q=r(x)=r(y)= 1 r(x?bi) = 1 P;, omitting those terms
i=l1 ieA

from x; b; =0, where A c {l,2,...,t}. Therefore, Q < P; for all1i e A. Also

[TP,c 1 P,=Q. Since Q is a prime ideal , at least one P; appearing in the
ieA ieA

product [P, must be contained in Q. Hence Q = P; for some 1.
ieA

Theorem.(Noether-Laskar theorem). Let M be a finitely generated ideal over
a commutative noetherian ring R. Then there exist a finite family Ny, No, ...,

N, of submodules of M such that
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4.5
4.5.1

(a) It N; =(0) and It N; #(0) for 1<ip<t.

o ivio
(b) Each quotient module M/N; is a P; - primary module for some prime ideal
P;.
(¢) The P; are all distinct, 1<1 <.
(d) The primary component N; is unique iff P; does not contain P; for some j#i.
Proof. Let U; , 1< 1< t, be a uniform sub module obtained as in the proof of
the Theorem 4.4.9. Consider the family { K | K is a subset of M and K

contains no submodule subisomorphic to U; }. Let N; be a maximal member of

this family, then with this choice of Nj, (a), (b) and (c) follows directly.

SMITH NORMAL FORM
Theorem. Obtain Smith normal form of given matrix. Or if A is mxn matrix

over a principal ideal domain R. Then A is equivalent to a matrix that has the

a

diagonal form 0 where a;#0 and a; | a; | a3 |...|a;.
aI‘
o

Proof. For non zero a, define the length /(a)=no of prime factors appearing in
the factorizing of , a=pip> ...pr (p; need not be distinct primes). We also take
I(a) if a 1s unit in R. If A=0, then the result is trivial otherwise, let a;; be the
non zero element with minimum /(a;;). Apply elementary row and column
operation to bring it (1, 1) position. Now a;; entry of the matrix so obtained is
of smallest / value i.e. the non zero element of this matrix at (1, 1) position.
Let a;; does not divide ajx. Interchanging second and k™ column so that we
may suppose that a;; does not divide a;;. Let d=(a;;, a;2) be the greatest

common divisor of a;; and a;,, then a;;=du, a;,=dv and /(d) < I(a;;). As
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d=(a;1, ai2), therefore we can find s and teR such that d=(sa;;*+ta;;)= d(su +

u t
vV —s
vt). Then we get that A 1 1s a matrix whose first row is (d, 0,

1

bi3, bis, ...bin) where I(d) <I(ay;). If a1 | a2, then ajp=ka;;. On applying, the
operation C,- kC; and lCl we get the matrix whose first row is again of the
u

form (d, 0, bz, bys, ...byy). Continuing in this way we get a matrix whose

first row and first column has all its entries zero except the first entry. This

a1 0 A 0
matrix is P{AQ M , where A; is (m-1)x(n-1) matrix, and P; and
0

Q; are mxm and nxn invertible matrices respectively. Now applying the same

a) 0 A 0
. ' 0 .
process of Aj, we get that P,A;Q, = , where A; is (m-2)x(n-
M A,
0

2) matrix, and Pé and sz are (m-1)x(m-1) and (n-1)x(n-1) invertible matrices

1 0 1 0
respectively. Let P, = ' and = v |. Then P,P;A =
pecuvely 2 L) P} Q> L) Q } 2P1AQ1Q2

2 2
ap 0 A O
0 ap S . .
M A . Continuing in this way we get matrices P and Q such that
2
0

PAQ=diag(a,, ay,..., a;, 0, ...0). Finally we show that we can reduce PAQ so

that a)| a, | a3|.... For it if a; does not divide a,, then add second row to the first
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4.5.2

4.6
4.6.1

row and obtain the matrix whose first row is (a;, a;, 0, 0,...,0). Again

u t

vV -8
multiplying PAQ by a matrix of the form 1 we can obtain a

1

matrix such that a;|a,. Hence we can always obtain a matrix of required form.

1 2 3
Example. Obtain the normal smith form for a matrix L O} .

_1 2 3 R,-4R;
Solution. -

450

_1 2 3 C2—2C1,C3—3C1
-
0 -3 -12

1 0 0 C;-4C,
%
0 -3 -12
1 0 016411 0o o] R(1 0 0
- - .
0 -3 -12 0 -3 0 0 3 0

FINITELY GENERATED ABELIAN GROUPS

Note. Let Gy, Gy,... G, be a family of subgroup of G and let G'= Gi...Gyp.
Then the following are equivalent.

(1) G1x...xGy ~G" under the mapping (g1, €2, ---, En) t0 E182...En

(ii) Gj is normal in G" and every element x belonging to G* can be uniquely
expressed as Xx=gig ... g, g&<Gi.

(iii) G; is normal in G and if e =g;g, ... g, , then each x;=e.

(iv) Gi is normal in G™ and Gin G;...Gi.1 Gis1...Gy ={e}, 1<i<n.
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4.6.2 Theorem.(Fundamental theorem of finitely generated abelian groups). Let
G be a finitely generated abelian group. Then G can be decomposed as a direct
sum of a finite number of cyclic groups C; i.e. G = C;® C;®...® C; where
either all C;’s are infinite or for some j less then k, Cy, C,, . . . C;j are of order
mj, my, . . .m; respectively, with m;| m; | ...| m; and rest of C;’s are infinite.
Proof. Let {a, a, ..., a;} be the smallest generating set for G. If t=1, then G
is itself a cyclic group and the theorem is trivially true. Let t > 1 and suppose
that the result holds for all finitely generated abelian groups having order less
then t. Let us consider a generating set {aj, ay, ..., a;} of element of G with the
property that , for all integers xi, Xa, ..., X; , the equation

Xja+xpat...+txa=0
implies that

x1=0, x,=0,..., x=0.

But this condition implies that every element in G has unique representation of
the form

g=xja txoa+t..+xa, X €7
Thus by Note 4.6.1,

G=C®C®..8 C
where C; = <a> is cyclic group generated by a;, 1< 1 < t. By our choice on
element of generated set each C; is infinite set (because if C; is of finite order
say 1; , then rja; =0). Hence in this case G is direct sum of finite number of
infinite cyclic group.

Now suppose that that G has no generating set of t elements with the
property thatx; a; +xp a+ ... +x,=0=x;, =0, x, =0, ..., x,=0. Then,
given any generating set {ai, a,, ..., a;} of G, there exist integers Xy, Xa, ... , Xt
not all zero such that

X1 a1+xza2+...+xtat=0.
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As xja; +xpa; + ...+ x¢a =0 implies that -x; a;-x;a,-... - X a =0,
therefore, with out loss of generality we can assume that x; >0 for at least one
1. Consider all possible generating sets of G containing t elements with the
property that x; a; +x; a, + ... + x¢ a, = 0 implies that at least one of x; > 0. Let
X is the set of all such (x;, Xz, ... x¢ )t -tuples. Further let m; be the least
positive integers that occurring in the set t-tuples of set X. With out loss of
generality we can take m; to be at first component of that t-tuple (a;, ap, ..., a;)

rema+txxat...+xa=0 (1)

By division algorithm, we can write, x;=qim; + s; , where 0 <s; <m,. Hence
(1) becomes,

m; by +s;a+... +s;a =0, where bj=a; + g a, + ... + q; a.
Now if b;=0, then a; = -q; a, - ... - q; a.. But then G has a generator set
containing less then t elements, a contradiction to the assumption that the
smallest generator set of G contains t elements. Hence b; # 0. Since a; = -b; -
qQz 4 - ... - qt a, therefore, {by, ay, ..., a,} is also a generator of G. But then by
the minimality of m;, m; b; +s;a + ... +s;a,=0 = s; =0 for all i. 2< 1 <t.
Hence m;b;=0. Let C; = <b;>. Since m; is the least positive integer such that
m;b;=0, therefore, order of C;=m;.

Let G, be the subgroup generated by {a, as, ..., a;}. We claim
that G = C;®G,. For it, it is sufficient to show that C;nG; ={0}. Let
deCinGy. Then d=x1b; , 0 <x; <m; andd=x; a; + ... + X a; . Equivalently,
xib; H(-xp)ay +... + (-x¢)a; =0. Again by the minimal property of m;, x;=0.
Hence C;nG; ={0}.

Now G is generated by set {a, a,, ..., a;} of t-1 elements. It is
the smallest order set which generates G(because if G is generated by less
then t-1 elements then G can be generated by a set containing t-1 elements, a
contradiction to the assumption that the smallest generator of G contains t

elements). Hence by induction hypothesis,
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4.6.3

G1: Cz@@ Ct

where C,, ..., Ci are cyclic subgroup of G that are either all are infinite or, for
some j < t, Cy, ..., C; are finite cyclic group of order my, ..., m; respectively
such that my| ms3 | ...| mj, and C; are infinite fori> j.

Let C; =[b;], 1i=2, 3, ..., k and suppose that C, is of order my,.
Then {by, by, ..., b} is the generating set of G and m;b; + mpb, + 0.bs +...+
0.bx =0. By repeating the argument given for (1), we conclude that m;|m,. This
completes the proof of the theorem.
Theorem. Let G be a finite abelian group. Then there exist a unique list of
integers mj, my, ..., my (all m; > 1) such that order of G is m; m, ...m; and G
=C1® C®...® Cy where Cy, C, ..., C; are cyclic groups of order m;, my, ...,
my respectively. Consequently, G=Z, X ®Z, X ®D.D th .

Proof. By theorem 4.6.2, G = C;® C;®...® C; where C,, C,, ..., C; are cyclic
groups of order m;, my, ..., m; respectively, such that m;jm; | ...Jm;. As order
of ST = order of S x order of T, therefore, order of G =m; m, ...m; . Since a
cyclic group of order m is isomorphic to Z,, group of integers under the
operation addition mod m, therefore,
G2Zpy @Zy, ©.0Zy, .

We claim that m; , my, ..., m; are unique. For it, let there exists n;, ny,..., n,
such thatn; [ny | ...|n; and G =D;® D,®...® D, where D; are cyclic groups
of order n;. Since D, has an element of order n; and largest order of element of
G is m; , therefore, n,<m;. By the same argument, m, < n,. Hence m; = n,.

Now consider m.; G={mg | geG}. Then by two decomposition of G
we get me.; G=(m¢; C))® (my; C) D...0 (my; Cy)

=(m¢.; D1)® (m.; D) @...0 (m¢; Dyy).

As m; | my; (it means m; divides my.)for all 1, 1< 1 <t-1, therefore, for all such

i, mg; C={0}. Hence order of (my; G)ie. |my; G| =|(my; Cy) | = |(me; Dy) |.
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4.6.3

4.6.4

4.7

4.8

4.9

Thus |(my; Dj) | =1 for j=1, 2, ..., r-1. Hence n..; | m¢; . Repeating the process
by taking m,.; G, we get that my; | n.;. Hence m.; = n.;. Continuing this
process we get that m; =n; for i=t, t-1, t-2, .... But mym, ...m= |Gj=n; n, ...n,,

therefore, r =t and m;=n; for all 1, 1<1 <k.

Corollary. Let A be a finitely generated abelian group. Then A

Z Z . .
=7°® ®.D , where s is a nonnegative integer and a; are nonzero

a1z a,z

non-unit in Z, such that a;| a|... | a, . Further decomposition of A shown above
is unique in the sense that a; are unique.
Example. The abelian group generated by x; and x, subjected to the condition

2x; =0, 3x, = 0 1s isomorphic to Z/<6> because the matrix of these equation

120 ) 1 0
1S has the smith normal form
0 3 0 6

KEY WORDS

Uniform modules, Noether Lashkar, wedderburn artin, finitely generated.

SUMMARY

In this chapter, we study about Weddernburn theorem, uniform modules,
primary modules, noether-laskar theorem, smith normal theorem and finitely
generated abelian groups. Some more results on noetherian and artinian

modules and rings are also studied.

SELF ASSESMENT QUESTIONS
(1) Let R be an artinain rings. Then show that the following sets are ideals and

are equal:
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4.10

(1) N= sum of nil ideals , (i1)) U = some of nilpotent ideals, (iii)) Sum of all
nilpotent right ideals.

(2) Show that every uniform module is a primary module but converse may

not be true
-x 4 -2
(3) Obtain the normal smith form of the matrix| -3 8-x 3 over the
4 -8 -2-x
ring Q[x].

(4) Find the abelian group generated by {x;, X, X3} subjected to the conditions

5x1 + 9%, + 5x3=0, 2x; +4x, +2x3=0, X1 + X - 3x3=0
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