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SOME HISTORICAL NOTES

THE term hydrodynamics was introduced by Daniel Bernoulli (1700-1783) to comprise the two
sciences of hydrostatics and hydraulics. He also discovered the famous theorem still known by
his name.

d'Alembert (1717-1783) investigated resistance, discovered the paradox associated with his name,
and introduced the principle of conservation of mass (equation of continuity) in a liquid.

Euler (1707 -1783) formed the equations of motion of a perfect fluid and developed the
mathematical theory. This work was continued by Lagrange (1736-1813).

Navier (1785-1836) derived the equations of motion of a viscous fluid from certain hypothesis
of molecular interaction. Stokes (1819-1903) also obtained the equations of motion of a viscous
fluid. He may be regarded as having founded the modern theory of hydrodynamics.

Rankine (1820-1872) developed the theory of sources and sinks.
Helmholtz (1821-1894) introduced the term velocity potential, founded the theory of vortex
motion, and discontinuous motion, making fundamental contributions to the subject.

Kirchhoff (1824-1887) and Rayleigh (1842-1919) continued the study of discontinuous motion
and the resistance due to it.

Osborne Reynolds (1842-1912) studied the motion of viscous fluids, introduced the concepts
of laminar and turbulent flow, and pointed out the abrupt transition from one to the other.

Joukowski (1847-1921) made outstanding contributions ‘to aerofoil design and theory, and
introduced the aerofoils known by his name.

Lanchester (1868-1945) made two fundamental contributions to the modern theory of flight; (i)
the idea of circulation as the cause of lift,

(i) the idea of tip vortices as the cause of induced drag.

He explained his theories to the Birmingham Natural History Society in 1894 but did not publish
them till 1907 in his Aerodynamics.



CHAPTER-I
SOME SUBSIDIARY RESULTS

1.0 Learning Objectives: After reading this chapter, you should be able to learn “Some
subsidiary results” which provides the brief resume of results on vectors, vector analysis, complex
variables and boundary value problems etc. This makes the text self-contained with regard to the
use of subsidiary results from various mathematical disciplines.

1.1 Brief Introduction of Vector analysis:
Since the use of vectors not only simplifies and condenses the exposition of fluid mechanics but
also makes mathematical and physical concepts more tangible and easier to grasp, it is proposed to
give the vectorial treatment of what follows further.
Throughout this manuscript, bold face type is used to denote vector quantities.
If a, b and c are any vector functions (of position), then with the vector notation

a=ia; +ja, +ka; = (ay,a,,a3,) ; b= (b, by, b3),etc.

1.2 Rules of Vector Algebra:
a.b=b.a=abcost =a,b; +a, b, + azbs

axXb= -bxa= absin@nzZi(a2b3—a3b2)
a.b+c)=a.b+a.c;ax(b+c)=axb+axc
a.(bxc)=(axb).c=b.(cxa)= Z(al(b2c3—b3c2)
a xX(bxc)=b(a.c)—c(a.b)

The Vector operator V (called del) is defined as:
v_,6+_6+k6_ a ad 0
=tox ™/ dy (')Z_(ax "dy 'az)

Then, if ¢(x,y, z) and a(x,y,z) have continuous first partial derivatives in a region, we have the
following definitions :

Important Results
Q) Let g = iu + jv + kw, then
A=ViZ+Z T wi=gq

D.C’saregivenbyl:COSOL:l mzcosﬁzi,nzcosyzi

lal’ al lql
where I, m, n, are components of a unit vector i.e. 1>+ m? +n?=1
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(i)
(iii)

(iv)

a.b=abcosf,axb=absinfn
_ .00 | L0p 4 09 :
Vo =i— +]6y tk—, where ¢ is a scalar and

_j0 4 ;0 b,
V=i P 3y + k 5,1s & vector (operator)

. du  O0v , ow
divg=V.q =a+a+z'q =(u, v, w)

If V- q = 0,thengq is said to be solenoidal vector.

— i : _9¢ 99 99
(v) dr = idx + jdy + kdz, d¢_6x dx + 3y dy + 5, dz
and
— ;99 ;90 99
V¢—lax+]ay+kaz,
Therefore,
do = (V¢). dr
i j k
i rlg=Vxq = 9 94 9
(viy Curlg=Vxgq % 3y
u v w
— (0w _ v\ ;(0n_ 3w v _ du
-t (8y 82) tJ (az ax) +k (ax ay)
(vii) (@) Gradient of a scalar is a vector.
(b) Divergence of a scalar and curl of a scalar are meaningless.
(c) Divergence of a vector is a scalar and curl of a vector is a vector.
(viii) V-Vo=Vp= w2 T 372 +t 5.2
where V? is Laplacian operator.
(ix) Curlgrad¢ =0, divcurl g=0
(X)  CurlCurl q = graddivq — V?q
i.e. V2q = graddivq — curlcurlq
(xi)  Gauss’s divergence theorem
(a) q - dS = [, divqdv
(b) [(n x qdS = [, curl qdv
(xii)  Green’s theorem
@) J, Vo - Vv = [(oVy - dS — [, pVpay
= [V -dS— [, yVie-av
2.0 2 — % _ 09
(b) [, (o7 — pV2@)av = [, (9 5% —22) ds
(xiii) Stoke’s theorem [, q - dr = [ curlq-dS = [ curlq-ndS
(xiv) Orthogonal curvilinear coordinates:

Let there be three orthogonal families of surfaces
fix, y,2) = a, fa(X, y,2) = B, fa(x, y, 2) = 1)

where X, Y, z are Cartesian co-ordinates of a point P(X, y, z) in space. The surfaces

o = constant, B constant, y = constant (2
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form an orthogonal system in which every pair of surfaces is an orthogonal system. The values a,
B, y are called orthogonal curvilinear co-ordinates.
From three equations in (1), we can get

X= X((X, B’ Y)’ y: y(a’ ﬁ’ Y)’ Z= Z(a” B’ Y)
The surfaces (2) are called co-ordinate surfaces.
Let r be the position vector of the point P(x, y, z)
le.r=xi+yj+zk=r (o, B, y)

A tangent vector to the a-curve (B = constant, y = constant) at P is g—;. A unit tangent vector is

e, = ar/oa
17 |ar/dal

]
or i = h161
where b, = [22] = (22 + (2)" + (2)°

1= dal — Jda da da

Similarly, e,, e; are unit vectors along p-curve and y-curve respectively such that

ar ar

BT hzez'ay hses

or or or

Further, dr = ada + %dﬁ + ady

=hy do e, + hy,dfe, + hydyes
Therefore,
(ds)? = dr.dr = hida? + h3dB% + hidy?
where hy do, h2 d, hs d y are arc lengths along o, § and y curves.
In orthogonal curvilinear co-ordinates, we have the following results.

. _ (100 10¢p 10d¢
(i) grado=(;-52,-52,.-57)
(i) 1fq = (91,92 q3), then
AV @ = 1= |5 (hahs@) + 35 (hshn42) + 5= (i hzs)]
(iii) IfCurlq f— (£,,&,, &) then
(h543) = 55 ()|

iz s
h3hy [ (A 1‘11)_1(}13‘13)]
1h [aa( 2q2) — 28 (hlql)]

() V% = e Caa) + 2 (25) + 2, (50

The Cartesian co-ordlnate system (X, v, z) is the simplest of all orthogonal co-ordinate systems. In
many problems involving vector field theory, it is convenient to work with other two most
common orthogonal co-ordinates i.e. cylindrical polar co-ordinates and spherical polar co-
ordinates denoted respectively by (r, 0, z) and (r, 6, ). For cylindrical co-ordinates, hy =1, h =,

hs = 1. For spherical co-ordinates, h1 = 1, h, =r, hs = r sin 0.
12




1.3 A Note on Connectivity: A region of space is said to be connected if a path joining any two
points of the same lies entirely in the given region.

When the two paths taken together form a reducible circuit, they are termed reconcilable. And
when one circuit can be continuously varied so as to coincide with another circuit without leaving
the region, the two circuits are called reconcilable.

A simply connected region(acyclic) region is one in which all paths connecting any two points
within the region can be deformed into one another without passing outside the region. Obviously,
in simply connected region, every circuit is reducible. i.e., it can be contracted to a point of the
region without ever passing out of it.

Examples of simply connected region:

(1) The region between two concentric spheres.

(i) Un-bounded space.

(iii) Region interior to sphere and region exterior to a sphere, etc.

Triply connected Simply connected
A region is said to be doubly connected if it can be made simply connected by the insertion on one
barrier.

Examples of Doubly Connected region:

(i) Regions between two co-axial infinitely long cylinders.

(i) Region exterior to an infinitely long cylinder.

(iii) Region interior to an anchor ring; region exterior to an anchor ring, etc.

In general, a region is said to be r-ply connected if it can be made simply connected by the
insertion of (r-1) barriers.

The above definitions can also be expressed as under:

A domain is called simply connected, if the frontier thereof consists of a single continuum.
Generally, a domain is called r-ply connected if the frontier of the same consists of r distinct
continuum.
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Note: Fortunately, the multiply-connected regions which occur in most hyderodynamical problems
are of an extremely simple kind, and that it is not necessary to develop a formal topological theory
(i.e. the study of figures which survive twisting and stretching: rubber sheet geometry).

1.4 Material or Total Derivative of a Functional Determinant (Jacobian): Let

dx dy 0z
xX,V,Z X VA
I=36a= bt % —|=vaxVy.vz
dx dy 0z
dc dc oc
where the operator V stands for (%,;—b,%).

We shall assume the validity of the operator
d <ax>_ d (dx)_au .
dt\aa) ~ 9a \dt) " 9’ °
Then the rule of differentiating products provides

J =VixVy.Vz+VxxVy.Vz+VxxVy.Vz (xz%)
du _ oudx  dudy  oudz
Now, da 9xda 9dyda 9zda

Alsogzj (g—z+g—;+g—‘;’) :%z}divq

1.5 Brief Resume of Complex Function Theory: A very powerful technique for dealing
with two-dimensional problems in theoretical hydrodynamics is furnished by the properties of
analytic functions (i.e. functions possessing derivatives for all values of z=x-iy in a region) of
complex variable z. Thus, if f(z) is regular(analytic) in a domain D of the complex z-plane, and if
we write

w=f(2)=¢0x,y)+ip(xy)
then it is shown in all texts on complex variable that if f(z) is to possess a unique derivative, then it

is necessary as well as sufficient that
9 _9y, 96 _
ax ay’ ay = ox 1)
where it is supposed that these partial derivatives are continuous. These are called Cauchy-
Riemann partial differential equations. The vector equivalent to (1) is
grad ¢ = (grad ) x k
An alternative single equivalent expression to (1) is % = dy/ds where n and s are perpendicular

directions related to each other in the anti-clockwise sense.

If we eliminate ¥ and ¢ in succession between equations (1), we get
14



0’¢ 0% 0%
6x2 ~ dxdy  0y?

where Vz— + —. These two conjugate functions, ¢ and vy are called velocity potential and

i.e.V2¢ = 0; likewise V2 =0

stream functlon.

Since ¢ and ¢y are harmonic functions (i.e. functions which satisfy the Laplace’s equations
V2¢ = V4P = 0) these will be the possible velocity potential and stream function, and provided
the necessary boundary conditions for a problem are satisfied, these will yield a unique solution to
the problem.

If w=f(z) provides the solution to a hydrodynamical problem, it is called the complex potential
characterizing the given fluid flow.

It may be observed that equations(1) imply that the family of curves, ¢(x,y) = constant and
Y(x,y) = constant are orthogonal families.

We now include clear statements of pertinent definitions, principles, and theorems which are
relevant to the study of Hydrodynamics.

Cauchy’s Theorem: if f(z) is analytic within the region bounded by C (a simple closed curve) as
well as on C, then

']-Cf(z)dz = jgcf(z)dz =0

A simple consequence of this theorem is that fzzlzf(z)dz has a value independent of paths joining
z, and z,.

Cauchy’s Integral Formulae: If f(z) is analytic within and on a simple closed positively oriented
curve C, and a is any point interior to C, then

f() n f(2)
f@ =52 P dn f@=gf Lo

where f™(a) is the nth derlvatlve of f(z) at z=a.

Taylor’s Series: Let f(z) be analytic inside and on a circle having its centre at z=a. Then for all
points z in the circle

F@) = @+ - af @+ 22 pria) + -

If a=0, there results Maclaurin series.

Singular Points: A singular point of a function f(z) is a value of z at which f(z) ceases to be
analytic. If f(z) is analytic everywhere in some domain except at an interior point z=a, then z=a is
called an isolated singular point.
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F(z)

Poles: If f(2) = ey

if n is a positive mteger, then f(z) has an isolated singularity at z=a. This isolated singularity is
called a pole of order n. If n=1, the pole is called a simple pole; if n=2, it is called a double pole,
and so on.

; F(a) # 0,where F(z) is analytic everywhere in a region including z=a and

Laurent’s Series: If f(z) is analytic inside and on the boundary of the ring-shaped region R
bounded by two concentric circles (positively oriented )C, and C, with centre a and respective
radii Ryand R,(R, > R,),thenforallzinR

o)

F@=) aG—ar+ Zwa< —a)

where

f(2) ~
an anf ( yn= 0,1,2

7 — a)n+1

f(2)
=123,...
a_, = i CZ(Z_a) n+1d ;N ,2,3,

The part Y-, a,(z —a)™ is called the analytic part and the remainder Y5, a_,(z —a)™ is
called the principal part. If the principal part is zero, the Laurent series reduces to a Taylor’s series.

Residues: If f(z) be single-valued and analytic inside and on a circle C except at the point z=a,
chosen as the Centre of C, then Laurent series is given by
f@=a+a,z-a)+a,z—a)++a,z-—a) P +a,(z—a)?+

where
1 f(2)
_ n=0+1,42....
n =5 = dz;n=0,%1,%+2
dn—l
Clearly, a_y =3 [ f(2)dz = lim —— - ((z ~ )" f ()}

where n is order of the pole.
The coefficient a_, is called the residue of f(z) at the pole z=a.
For simple poles(n=1) ,a_; = Lim (z — a)f(2) as z - a.

Cauchy’s Residue Theorem: If f(z) is analytic on the boundary C of a region R except a finite
number of poles within R, then

ff(z)dz = 2mi| sumof residuesof f(z)at its poles]
c

Cauchy’s theorem and Cauchy’s integral formulae are special cases of this theorem.
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1.6 Boundary Value Problems: Scientific problems are often formulated mathematically
which led to partial differential equations and associated conditions called boundary conditions.
Consequently, the existence and uniqueness of the problem is of fundamental importance, from a
mathematical as well as physical point of view.

Two types of boundaries, (i) the open boundary (where the region of interest extends indefinitely
in one or more directions, without any specifications of the solution in these directions.), and (ii)
the closed boundary (where the region of interest is completely surrounded, with boundary
conditions specified in all directions) are usually considered along with three types of boundary
conditions.

(1) Dirichlet’s Conditions: require the determination of the function satisfying Laplace equation in
region R and taking prescribed values on the boundary C.

(2) Neumann'’s Conditions: require the determination of a function satisfying Laplace equations in
R and taking prescribed values of normal derivative on the boundary C.

(3) Cauchy’s Conditions: require the determination of the function satisfying Laplace equation in
R and taking prescribed values of function as well as normal derivative on the boundary C.

Here R may be a simply-connected region bounded by a simple closed curve C, or R may be
unbounded region (y = 0).

The general partial differential equation of second order, viz.

Rr+Ss+Tt+ f(x,y,2,p,q) =0
is classified under three heads:

e a2 9%z _ 9%z ,
Hyperbolic if S“ —4RT > 0, e. g 92 = 5y 0 Wave equation.
2
Parabolic if §2 — 4RT = O.e.g.,% = g—; ;  dif fusion equation.
2 2
Elliptic if S —4RT < 0,e.g., % + g—yi = 0; Harmonic equation.

1.7 Check Your Progress:
1) Prove
div(ax b) = b.curla—a.curl b
N ifu=1+2y—-3z,v=4-2x+5zw=6+ 3x— 5y,q=(u,v,w). Find curl g.
[Ans: = —(10i + 6j + 4k)]
iii) Show that the real and imaginary parts of the complex functions are harmonic functions.
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1.8 Summary: In this chapter, we have revised the basic concepts and definitions of vectors,
operations of dot and cross products of vectors, gradient, divergence, curl, complex variables,
orthogonal curvilinear coordinates, Gauss divergence theorem, Green’s theorem, Stokes Theorem,
concepts of connectivity, Jacobian, Cauchy’s theorem, Cauchy’s Integral Formula, Taylor’s series
and other results and theorems on Complex function theory. The students also understood the
different boundary value problems.

1.9 Keywords: Scalar, vector, gradient, divergence, curl, singular point, pole, parabolic,
hyperbolic, elliptic.

1.10 Self-Assessment Test:

SATl: State Stokes’s theorem.

SA2: Define Material and total derivative of a functional determinant.

SA3: State different boundary value problems.

SA4: State Cauchy-Riemann’s equations in Cartesian coordinate system.

SAS: State Taylor’s and Laurent’s series and deduce the Taylor’s series from the Laurent’s series.

References:
e Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London
e Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall
e S. Ramsay, “Hydromechanics part 11” (1935), G. Bell &Sons London
e Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram &
Sons, New Delhi
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CHAPTER-2
BASIC CONCEPTS

2.0 Learning Objectives:

When you finish your reading this chapter, you should be able to understand the fundamental ideas
of fluid mechanics, identify the numerous fluid flow issues that can arise in real-world situations,
able to differentiate between ideal fluids and real fluids and comprehend the fundamental
characteristics of fluids.

2.1 Introduction:

The study of the motion and equilibrium of fluids is the focus of fluid mechanics, one of
the oldest branches of physics and the basis for a great deal of other knowledge in the applied
sciences and engineering. Nearly all engineering disciplines, as well as astrophysics, biology,
biomedicine, meteorology, physical chemistry, plasma physics, and geophysics, are interested in
the topic. The area of fluid mechanics has continuously expanded since the eighteenth century,
when the study of hydraulics as a science was linked to the development of civil engineering and
naval architecture. The advancement of mechanical, chemical, and aeronautical engineering over
the past few decades, as well as recent space travel, have all contributed to the study of fluid
mechanics becoming one of the most crucial foundational topics in engineering science.

The exotic regimes of hypervelocity flight and flow of electrically conducting fluids have
been added to the fluid dynamics study frontier. Hypersonic flow and magneto fluid dynamics are
two emerging areas of research as a result. To properly comprehend the underlying physical
phenomena, it is now important to combine knowledge of fluid mechanics, electromagnetic theory,
and thermodynamics.

The use of fluid mechanics principles in daily life is still possible despite the recent
remarkable improvements in the field. The rules of fluid mechanics regulate fish motion and bird
flight in the water and air, respectively. Baseball pitchers rely on the circulation principle to
provide them access to a bewildering variety of pitches. The design of ships and aeroplanes used
for air and ocean travel is based on the fluid mechanics theory. One day, fluid mechanics
principles may even be able to describe destructive natural events like hurricanes and tornadoes.
Since air and water make up a large portion of our environment, practically everything we do is
somewhat related to the field of fluid mechanics.

In order to proceed in a logical manner with the discussion of fluid properties, it is
necessary to differentiate between a solid and a fluid. Matter exists in three states: solid, liquid and
gaseous. The latter two categories make up the fluid state. All matter, whether solid, liquid or gas
is made up of small particles. These small particles are known as molecules. These molecules are
in a state of movement. In solids, molecules are more closely packed together and do not move so
vigorously. In liquids, molecules are packed closer with significant forces of attraction. A liquid,
tends together in globules if taken in small quantities and forms a free surface in large volumes. In
gases, molecules are relatively farther apart and have very weak forces of attraction. As the
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temperature increases, the difference in molecules becomes smaller until a liquid get transformed
in a gas. Due to the difference in molecular spacing, the solids and the fluids behave differently
when subjected to stresses.

2.1.1 Application Areas of Fluid Mechanics:

Since fluid mechanics is widely employed in daily life as well as in the design of contemporary
engineering systems, from vacuum cleaners to supersonic aircraft, it is crucial to have a solid
understanding of its fundamental concepts. For instance, fluid mechanics is important to the human
body. Breathing apparatuses and dialysis systems are created utilizing fluid dynamics. The heart
constantly pumps blood to all areas of the human body through the arteries and veins.

An ordinary house is, in some respects, an exhibition hall filled with applications of fluid
mechanics. Fluid mechanics is largely used in the design of the water, natural gas, and sewage pipe
systems for every home and every community. The fluid mechanics network's pipes and ducts
operate similarly. The network of pipes and ducts used by heating and cooling systems is the same.
A refrigerator consists of two heat exchangers where the refrigerant absorbs and rejects heat, tubes
through which the refrigerant circulates, and a compressor that pressurizes the refrigerant. All of
these components were designed with a significant contribution from fluid mechanics. Fluid
mechanics is even used to operate common faucets.

Numerous fluid mechanics applications can be seen in cars as well. Fluid mechanics is used to
analyze every part involved in moving gasoline from the fuel tank to the cylinders, including the
fuel line, fuel pump, fuel injectors, and carburetors, as well as the mixing of fuel and air in the
cylinders and the expulsion of combustion gases through the exhaust pipes.

The design of the hydraulic brakes, power steering, automatic gearbox, lubrication systems,
cooling system for the engine block, which includes the radiator and water pump, as well as the
tyres all make use of fluid mechanics. Recent model cars have a sleek, streamlined shape because
to attempts to reduce drag through in-depth understanding of the flow across surfaces.

A wider range of applications include the design and analysis of aircraft, boats, submarines,
rockets, jet engines, wind turbines, biomedical devices, cooling systems for electronic components,
and transportation systems for moving water, crude oil, and natural gas. Fluid mechanics also plays
a significant role in these fields. In order to ensure that the structures can sustain wind loads, it is
also taken into account while designing buildings, bridges, and even billboards. The laws of fluid
mechanics also regulate a number of other natural phenomena, including the rain cycle, weather
patterns, the rise of ground water to the tops of trees, winds, ocean waves, and currents in vast
bodies of water.

2.2 Fluid: The substance known as the fluid is described as an accumulation of molecules. It is a
fluid that can flow since it is an isotropic substance (a fluid is considered to be isotropic with
respect to a property if it remains the same in all directions; if it changes at a point, it is said to be
anisotropic). The fluid's ongoing deformation under the influence of forces is exhibited in the
fluid's tendency to flow. In other words, regardless of how little a shear stress may be, the fluid
continuously deforms as it is applied. A fluid can be thought of as being made up of discrete
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particles, each larger than a molecule but infinitesimally small in comparison to the fluid's total
volume.

We shall deal with the homogenous and macroscopic treatment of fluid. The fluid is
regarded as a continuum which cannot support shear stress while at rest with regard to any
coordinate system. It follows that any small volume element in the fluid is considered so large that
it contains a very great
number of molecules. Fluid mechanics is a science which deals with the behaviour of fluids
when subjected to a system of forces.

2.2.1 Types of Fluid:

Ideal fluid or Perfect fluid (Frictionless, homogeneous and incompressible):
Liquids which are incompressible, i.e., their volume does not change when the pressure changes.
Hence, the ideal fluid is one which in incapable of sustaining any tangential stress or action in the
form of a shear but the normal force or pressure acts between the adjoining layers of the fluid. The
pressure at every point of an ideal fluid is equal in all direction, whether the fluid be at rest or in
motion. The theory defines some concepts of the flow such as wave motion, the lift and the
induced drag of an airfoil etc., but it fails to define the phenomena such as skin friction, drag of a
body etc.

Real fluid or actual fluid (Viscous and compressible):
Fluids which are viscous and compressible i.e., when a fixed mass of fluid undergoes changes in
volume, its density also changes. The ability for changes in volume of a mass of fluid is known as
compressibility.
Hence, the real fluid is one in which both the tangential and normal forces exist.
Viscosity: It is also known as internal friction and is that characteristic of real fluid which is
capable to offer resistance to shearing stress. The resistance is , comparatively, small (not
negligible) for fluids such as water and gases but it is quite large for other fluids such as oil,
glycerine, paints varnish, coal-tar etc.

2.3 Fluid Properties: A continuous fluid can have some properties that are independent of its

motion. These characteristics are referred to as the fluid's fundamental properties.

Properties are considered to be either intensive or extensive.  Intensive

properties are those that are independent of the mass of the system, such

as temperature, pressure, and density. Extensive properties are those whose

values depend on the size—or extent—of the system. Total mass, total volume V, and total

momentum are some examples of extensive properties.

We'll discuss about a few of a fluid's characteristics.

(a) Density: The density p represents a quantitative expression of the idea of mass. It is defined as

the mass of the fluid contained within a unit volume. Consider §m be the mass of the fluid in a

small volume év surrounding that point, then, mathematically the density at a point is defined as
om

p = lim -,
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In physical sense v — €3 in which € is large in comparison with the mean distance between
molecules. In other words, €3 is the infinitesimal volume over which the substance can be taken as
continuum. In fact, the limit v — 0 implies that after a certain stage the continuum hypothesis
will breakdown and so the limit does not exist and the ratio will starts fluctuating rapidly. The
density is an index of the inertial characteristics.

The density of the fluid depends on the space coordinates and the temperature ie., p =
f(x,y,z).The density of water at 4°C,is 1g/cm3 or 1000kg/m3.

For gases, the density is a function of pressure and temperature. Under ideal conditions, the
equation of state for an ideal gas p = p RT provides a solution for density.

(b) Specific weight: The specific weight y of a fluid is defined as the weight per unit volume.
Thus y = pg.

(c) Specific Volume: The specific volume of a fluid is defined as the volume per unit mass and is
clearly the reciprocal of density.

(d) Pressure: When a fluid is contained in a vessel, it exerts a force at each point of the inner side

of the vessel. Such a force per unit area is known as pressure.
. bF

P=dimsa
where A is an elementary area around P and §F is the normal force due to fluid on §A.
We know that the pressure at every point of an ideal fluid is equal in all directions whether the
fluid be at rest or in motion. It does not depend on the orientation of the plane. If it varies with the
orientation (as in real fluids in motion) then the average of all such values at that point is taken. It
follows that an element §A of a very small area, free to rotate about its centre will have a force of
constant magnitude acting on either side of it.
(e) Specific Gravity: The specific gravity S of a substance is the ratio of its specific weight of a

fluid to the specific weight of an equal volume of water at standard conditions (4°C or 68°F).

(f) Viscosity (Internal Friction): Compared to syrup and heavy oil, water and air flow much
more easily. This shows that the fluid has a characteristic that regulates the rate of flow. This
characteristic of a fluid is called viscosity. As a result, a fluid's viscosity refers to its ability to
resist changing its shape in some way. Viscosity is a quality that all existent fluids have to varied
degrees.

Each component of the fluid is subjected to stress from the surrounding components of the
fluid. There are two components to the stress at each area of the element's surface: pressure and
shear stress, which are known as normal and tangential to the surface, respectively. Shear stresses
only happen in moving fluids, but pressure is applied to both moving and stationary fluids. It is this
characteristic that allows fluids to be separated from solids. Viscosity refers to the quality that
causes shear stresses. Viscosity arises when there is a relative motion between different fluid
layers. It is possessed by all real fluids. Its magnitude is expressed by a coefficient which relates
the size of the shear stress at a point in a fluid to the rate of shear strain which causes it.

Consider a fluid that is initially at rest between two parallel plates that are spaced apart by a
little distance (h) along the y-axis and extended indefinitely in other directions in order to better

understand the nature of viscosity. Consider a situation where the lower plate is kept at rest and the
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top plate is moving with a velocity U in the x direction. Due to viscosity, the fluid will move as
well.

The fluid exhibits a linear velocity profile between the plates (provided no pressure
gradient exists along the plate in the direction of motion). The fact that there is no relative velocity
between a fluid and a solid surface for any fluid is a fact supported by experimental observations.
As a result, the fluid's upper layer at y=h will be moving with the plate moving at a velocity U,
while the fluid's lower layer at y=0 will be at rest.

Uu=u

— e Moving Plate

L.!_ — ﬂ Stationary Plate

If we consider a small element of the fluid , the shear stress T on the top(which is
numerically the same as the bottom in this case) is given by

du
T=uy )

where u is a constant of proportionality which is called the coefficient of viscosity or the
coefficient of dynamic viscosity. (1) is known as Newton’s law of viscosity and the fluids obeying
this is called Newtonian fluids. The viscosity of a liquid decreases rapidly with increasing
temperature whereas the viscosity of gas increases with temperature. The viscosity of fluids also
depends on pressure, but this dependence is usually of little importance compared to the
temperature variation in problems of fluid dynamics.

(i) If 7=0 then u = 0 the equation (1) represents an ideal fluid or perfect fluid.

(i) if Z—; = 0 then u = o the equation (1) represents the elastic bodies.

(iii) A fluid for which the constant of proportionality does not change with the rate of deformation
is said to be Newtonian and is represented by a straight line.

(iv) If the viscosity varies with the rate of deformation, then it represents Non-Newtonian fluids.
Non-Newtonian fluids are those in which there is no shear stress and there exists a non-linear

. d . . . . .
relation between randﬁ.The main classes of non-Newtonian fluids are Binghan plastics,

Pseudoplastic and Dilatants.

Viscosity of a fluid is practically independent of pressure and depends upon the temperature only.
(g) Temperature: Suppose two bodies of different heat content are brought into contact while
isolated from all other bodies. Then some thermal energy will move from one body into the other
body. The body from where the thermal energy moves is said to be at a higher temperature while
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the body into which the energy flows is said to be at a lower temperature. When two bodies are in
thermal equilibrium then they are said to have a common property, known as temperature T.
(h) Thermal conductivity: The well-known Fourier’s heat conduction law states that the
conductive heat flow per unit area (or heat flux) g, is proportional to the temperature decrease per
unit distance in a direction normal to the area through which the heat is flowing. Thus
oT aT

Qn X ™ so that qn=—k%
where K is said to be the thermal conductivity.
(9) Specific heat: The specific heat C of a fluid is defined as the amount of heat required to raise

the temperature of a unit mass of the fluid by one degree. Thus C = ‘;—g ,Wwhere 6Q is the amount

of heat added to raise the temperature by 8T. The value of the specific heat depends on two well-
known processes- the constant volume process and the constant pressure process. The specific
heats of the above processes are denoted and defined as

Specific heat at constant volume =C,, = (Z—?)
v

Specific heat at constant pressure=C, = (Z—?)
p

Rate of these two specific heats is denoted by y. Thus y = 2—”

v

(h) Surface Tension: If a small capillary tube is inserted into a beaker containing mercury then the
surface of the mercury in the capillary tube is convex and its level is lower than the outside level of
the mercury. On the other hand, if water is considered instead of mercury than the surface of water
in the capillary is concave and its level is higher than the outside level. This phenomenon depends
upon the nature of two immiscible fluids and the temperature.

It is typical to assume that the condition present at a liquid's free surface or at the boundary
between two immiscible fluids (which do not mix) possesses simply the equilibrium property of a
uniform surface tension. The boundary may separate two media of the same phase but with distinct
constitutions, or it may separate two media of the same phase, whether they are solid, liquid, or
gaseous. The stress between two adjacent segments of the free surface, measured at per unit length
of the common boundary line, relies only on the properties of the two fluids and the temperature.
The free surface acts as though it were in a condition of uniform tension. This property of the
surface which exert a tension is called the surface tension and is denoted by o.

o, = Stretching force /unit length

() Vapour Pressure: All liquids have a tendency to evaporate when exposed to the atmosphere.
The rate at which the evaporation occurs is dependent on the molecular activity of the liquid,
which is a function of temperature and the condition of the atmosphere adjoining the liquid.
Consider a closed bottle partly filled with a liquid and maintained at a constant temperature. The
number of vapour molecules in the air above the liquid increases when the liquid evaporates,
simultaneously a small number of vapour molecules re-enter the liquid. Thus, the concentration of
vapour molecules above the liquid surface increases, with the passage of time, to such an extent
that the rate at which molecules enter the liquid is equal to the rate at which molecules leave the
liquid. Hence the air above the liquid surface is saturated with vapour molecules. The pressure on
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the liquid surface exerted by the vapour molecules is called Vapour Pressure. The vapour pressure
is dependent on temperature. The phenomenon of boiling a liquid is closely related to the vapour
pressure. When the pressure above a liquid equals the vapour pressure of the liquid, boiling occurs.

At certain locations throughout the system during the flow of liquids, it is feasible that
extremely low pressures will be created. The pressures may be less than or equal to the vapour
pressures in such situations. A liquid enters an unstable condition when its pressure is decreased to
a level that is just a little below the saturated vapour pressure at the liquid's temperature. At this
point, the liquid usually starts to create vapour pockets all over it. Cavitation is the term for such
pockets' appearance. For example, when the water is heated slowly, bubbles formed near the
bottom are known cavities formed in the water. Vortices in rivers are called cavities.
(1)) Bulk Modulus of Elasticity and Compressibility: Several fluids, when subjecting to
increasing or decreasing pressure, undergo a change in the density. At a constant temperature, an
increase or decrease in the relative density is proportional to the increase or decrease in the
pressure.

dp « d_p ordp = kd—p
p p

Where the constant of proportionality k is called the bulk modulus of elasticity. In other words, the
bulk modulus of elasticity is defined as the ratio of the net increase of pressure on an element of
fluid to the unit strain produced by the pressure change. The inverse of the bulk modulus of
elasticity is called the compressibility of the fluid. The compressibility of a fluid is the ratio of the
relative change of the volume to the change in applied pressure.

2.4 Types of Flows:

(i) Laminar and Turbulent flows: A flow, in which each fluid particle traces out a definite curve
and the curves traced out by any two different fluid particles don not intersect, is said to be
laminar. On the other hand, a flow, in which each fluid particle does not trace a definite curve and
the curves traced out by fluid particles intersect, is said to be turbulent.

(ii) Steady and Unsteady flows: A flow in which properties and conditions (P) associated with the
motion of the fluid are independent of the time so that the flow pattern remains unchanged with the

time, is said to be steady. Mathematically, we may write Z—’t’:o. Here P may be velocity, density,

pressure, temperature etc. On the other hand, a flow, in which properties and conditions associated
with the motion of the fluid depend on the time so that the flow pattern varies with time, is said to
unsteady.
(iii) Uniform and Non-Uniform Flows: A flow in which the fluid particles possess equal
velocities at each section of the channel or pipe is called uniform. On the other hand, a flow, in
which the fluid particles possess different velocities at such section of the channel or pipe is called
non-uniform. These terms are usually considered in connection with flow in channels.
(iv) Rotational and Irrotational Flows: A flow, in which the fluid particles go on rotating about
their own axis, while flowing is said to be rotational and a flow in which the fluid particles do not
rotate about their own axes, while flowing is said to be irrotational.
(v) Barotropic Flow: A flow is said to be barotropic when the pressure is function of density.
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Example: A plate at a distance of 0.2 cm from the fixed plate moves at 2m/sec. and requires a
force of 40 dynes/cm? to maintain this speed. Determine the coefficient of viscosity of the fluid
between the plates.
Solution: The velocity gradient becomes

du =2X 100 =103, F =40 dynes/cm?

dy 0.2 ’

F 40 .
'u=du/dy=1_03=4><10 poise.

Example: A plate weighing 150N measures 80 x 80 cm. It slides down an inclined plane over

an oil film of 1.2 mm thick. For an inclination of % and a velocity of 20cm/sec., calculate the

velocity of the fluid.

Force 150 sin%
~ \0.80%0.80

Solution: Shear stress T = ) =117.19 N/m?

area

Rate of deformation Z—; =22 =175 rad/sec

0.12
From Newton’s law of viscosity, we have
du T 117.19 2
T=U— >Uu=g=——=067N—s/m".
de H % 175 /
y

2.5 Check Your Progress

i) Determine the coefficient of viscosity u of a fluid, the rate at which the fluid is moving out of a
circular pipe of radius a and length | is measured when the pressures on the two sides of the pipe is
p1 and p>.

[Ans: 0.02 poise]

ii) Determine the coefficient of viscosity of a fluid, the fluid is made to rotate between two long
co-axial cylinders of radius r, and r,(r, > r;).If the inner cylinder rotates with angular velocity w
while the outer is at rest, then the torque T on a unit length of each cylinder is T = 4muwrir?/
(r? — %), where radii of the cylinders are 3 cm and 3.5 cm, the inner cylinder rotates at a speed of
120 rpm. And the torque is 5.35 x 102dynes — cm.

[Ans:0.60 poise]

iii) . A liquid compressed in a cylinder has a volume of 0.4 cc. at 6.8 x 10’ dynes/cm? and a
volume of 0.396 cc. at 1.36 x 108dynes/cm? What is its bulk modulus?

[Ans: 6.8 x 10° dynes/cm?]

iv) . Find the shape of the surface of a fluid under a gravitational field and bounded on one side by
a vertical plane wall.

v) . Bulk modulus of water is 2.2 x 101%dynes/cm?. Find the change in the volume when 100 cc
of water is subjected to an increase of pressure by 7.7 x 10° dynes/cm?.

[Ans: 0.035cc]

2.6 Summary: We covered the fundamental characteristics that relate to the analysis of fluid
flow in this chapter. We defined density and specific gravity and discussed about intensive and
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extensive properties. The properties of vapour pressure and its different manifestations, the
specific temperatures of ideal gases and incompressible solids, and the coefficient of
compressibility are then discussed. We also touched about the characteristic of viscosity, which
dominates most elements of fluid flow and surface tension. The various important forms of flows
are also covered in this chapter.

2.7 Keywords: extensive, intensive, ideal fluid, real fluid, density, Bulk modulus, temperature,
thermal conductivity, viscosity, vapor pressure, steady flows, unsteady flows, laminar flows.

2.8 Self-Assessment Test

SA 1. What is hydrodynamics?

SA2. Define viscosity of the fluid.

SA3. Discuss the areas of fluid mechanics?

SA4. Define (i) Ideal fluid and real fluid

(ii) Specific heat

(iii) Bulk Modulus and compressibility of the fluid.

(iv) Thermal conductivity.

(v) Density, specific weight and specific volume.

SAG5. Differentiate between Newtonian and non-Newtonian fluids.
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e Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram &
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CHAPTER -3

KINEMATICS OF FLUIDS

3.0 Learning Objectives: After reading this chapter, the students should be able to understand
the flow lines, role of the material derivative in transforming between Lagrangian and Eulerian
descriptions, velocity potential functions, translation, deformation and rotation of fluid elements,
distinguish between rotational and irrotational regions of flow based on the flow of vorticity
property. and applications of Reynold’s transport theorem.

3. 1 General Consideration of Fluid:

Fluid Dynamics

Fluid dynamics or hydrodynamics is the science treating the study of fluids in motion. By the term
fluid, we mean a substance that flows i.e. which is not a solid. Fluids may be divided into two
categories

(i) liquids which are incompressible i.e. their volumes do not change when the pressure changes
(if) gases which are compressible i.e. they undergo change in volume whenever the pressure
changes. The term hydrodynamics is often applied to the science of moving incompressible fluids.
However, there are no sharp distinctions between the three states of matter i.e. solid, liquid and
gases. The term hydrodynamics is often applied to the science of moving incompressible fluids.

In microscopic view of fluids, matter is assumed to be composed of molecules which are in
random relative motion under the action of intermolecular forces. In solids, spacing of the
molecules is small, spacing persists even under strong molecular forces. In liquids, the spacing
between molecules is greater even under weaker molecular forces and in gases, the gaps are even
larger.

If we imagine that our microscope, with which we have observed the molecular structure of matter,
has a variable focal length, we could change our observation of matter from the fine detailed
microscopic viewpoint to a longer-range macroscopic viewpoint in which we would not see the
gaps between the molecules and the matter would appear to be continuously distributed. We shall
take this macroscopic view of fluids in which physical quantities associated with the fluids within
a given volume V are assumed to be distributed continuously and, within a sufficiently small
volume &V, uniformly. This observation is known as Continuum hypothesis. It implies that at
each point of a fluid, we can prescribe a unique velocity, a unique pressure, a unigue density etc.
Moreover, for a continuous or ideal fluid we can define a fluid particle as the fluid contained
within an infinitesimal volume whose size is so small that it may be regarded as a geometrical
point.
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3.2 Velocity of Fluid at a Point: Suppose that at time t, a fluid particle is at the point P having
position vector r(i.e.OP =)

Q (r+ Or,t+01) -

O

and at time t + ot the same particle has reached at point Q having position vector r + ér The
particle velocity g at point P is

(r+ér)—r ér dr
1= 550" 6t &-EoE T
where the limit is assumed to exist uniquely. Clearly q is in general dependent on both 7 and t, so
we may write
q=q(t)=qxy,z1),
r = xi + yj + zk (P has co-ordinates (X, Yy, z))

Suppose,
q = ui+vj+wk
and since
_dr_dx. dy. dz
T dt dtl+dt]+dtk'
therefore

dx dy dz
u=—,v=—,w=—.

dt dt dt
Remarks. (i) A point where g = 0, is called a stagnation point.
(i) When the flow is such that the velocity at each point is independent of time i.e. the flow
pattern is same at each instant, then the motion is termed as steady motion, otherwise it is
unsteady.

Flux across any surface: The flux i.e. the rate of flow across any surface S is defined by the
integral

J;p(q-n)dS
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where p is the density, gis the velocity of the fluid and #is the outward unit normal at any point of
S.
Also, we define

Flux = density x normal velocity x area of the surface.

3.3 Stress and Coefficient of Viscosity:

(a) Stresses: Two types of forces act on a fluid element. One of them is body force and other is
surface force. The body force is proportional to the mass of the body on which it acts while the
surface force is proportional to the surface area and acts on the boundary of the body.

Suppose F is the surface force acting on an elementary surface area (dS) at a point P of the surface
S.

surface force

shearing stress 7 normal stress

Let F1 and F2 be resolved parts of F in the directions of tangent and normal at P. The normal force
per unit area is called the normal stress and is also called pressure. The tangential force per unit
area is called the shearing stress.
ie.,
If a force 6F acts on a disc area S 71, then the stress vector is defined by
T=lim(6F/6S) = dF/dS

Obviously, the vector T depends on 7. The component of stress in the direction 7 is called Normal

stress and component of T perpendicular to 7, i.e., in the plane of area &S is called shear stress.

Normal stress tends to pull the disc away from the surface while shear stress tends to shear the disc

off the surface while sliding on it tangentially.

Fluids for which shear stress is negligible are called inviscid, ideal, or perfect while those for

which shear stress is dominant are called viscous or real fluids.

(b) Viscosity: It is the internal friction between the particles of the fluid which offers resistance to

the deformation of the fluid. The friction is in the form of tangential and shearing forces (stresses).
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Fluids with such property are called viscous or real fluids i.e., in viscous fluid both the tangential
and normal forces exist and those not having this property are called inviscid or ideal or perfect
fluids i.e., An inviscid fluid is a continuous fluid substance which cannot exert any shearing stress
however small. A perfect fluid is also known as frictionless or non-viscous.

Actually, all fluids are real, but in many cases, when the rates of variation of fluid velocity with
distances are small, viscous effects may be ignored.

From the definition of body force and shearing stress, it is clear that body force per unit area at
every point of surface of an ideal fluid act along the normal to the surface at that point. Thus ideal
fluid does not exert any shearing stress.

Thus, we conclude that viscosity of a fluid is that property by virtue of which it is able to offer
resistance to shearing stress. It is a kind of molecular frictional resistance.

Coefficient of Viscosity: Consider a fluid element OACB, sheared in one plane by a single shear
stress T. The shear strain angle 66, which results under T, will continuously grow with time as
long as stress T is maintained, the upper surface moving at relative speed du, larger than the lower
surface. Commonly occurring fluids, such as water, air, oil, etc. show a linear relation between
applied shear and the resulting strain rate, i.e.

56 . )
T « (E) i.e., T=pn (dt) (1)
Now 66 = tan 68 = 6:—? impliesi—f = i—; (2)

From (1) and (2), using limits we get T « (Z—Z) which we write

T= 6 _ Newton l J it
_udt_udy [Newton law of viscosity]

The constant of proportionality, written 1, is called the Coefficient of Viscosity. Eq.(3) is
the relation between shear strain rate % and velocity gradient Z—; and the applied stress

T(=Ty).

3.4 Flow Lines: Stream Lines, Path Lines and Streak Lines:

Stream Lines: A stream line (often written ¥ — line) is a curve drawn in the fluid such that, at
any time, the direction of the tangent at any point of the curve coincides with the direction of the
velocity of the fluid particle at that point. Thus if u, v, w be the components of the velocity of the
fluid particle at P(x, y, z), the direction ratios of the tangent being dr = (dx, dy, dz) at that point,
the differential equations of stream lines are

gxdr=0

dx _ dy _ dz
Or v W (1)
where q=ui+vj+wk
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q
P
ds Q

' Stream line
/ 0

Stream lines form a doubly infinite set at any time t. They are generally not material curve : a
stream line through r,, at time t, does not, in general, consist of the same particles as the stream
line which goes through r, at any other time t. The aggregate of all stream lines is called the
stream-pattern.

The appearance and form of the stream pattern is altered completely if a uniform velocity is

superimposed on the fluid as a whole, e.g., the solutions of
dx dy dz

-_% @

u+ug v w
Differ markedly from those of (1). Thus, the stream lines due to a fixed sphere in an infinite
uniform stream are very different from those occasioned by the motion of a sphere in a still stream;
although the two systems are dynamically equivalent.
The point where g=0 is such that the stream lines are not well-defined there at due to various
singularities occur there. Such a point is known as critical point or stagnation point.

In terms of components, the differential equations of stream lines are:
In Cartesian coordinates (x, y, z)

dx _ dy _ dz —

—=—=— dr = (dx,dy,dz)

For cylindrical coordinates (7,0, z),q = (g, 99, qz)

ar _ 40 _dz dr = (dr,rd6 ,dz)

ar ] dz

For spherical polar (1,6, $),q = (4,96, 94)

=¥ = rsing 2 dr = (dr,r d@,rsinf d¢)
ar de d¢

Note: Stream lines are curves whose tangents are everywhere parallel to the velocity vector g. In
unsteady flow, q(r,t) at point r, will change both its magnitude and its direction with time, so it is
meaningful to consider only the instantaneous stream lines when the flow is unsteady.
The projection of ¥-line in the planes z = 0,x = 0,y = 0 are, as per its definition
dy v dz widx u
dx u'dy v'dz w
. dx dy dz
yleldmg? ==
The easiest way to solve these equations is to use parametrization, say x = x(s),y = y(s),z =

z(s), where parameter s=0 at some reference point and whose value increases along the ¥ — line.

We can then express above as
ax _ &y

dz dx; . .
—=—=—=dsor —=q;(x;1) [s is not necessarily arc-length]
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Solution of these equations, when ¥ —line goes through r =1y is
X; = xl'(ro, t, S) i = 1,2,3.
As s varies, this set traces out the W — line through (x,, o, Zo)-

Path lines: A path line or trajectory is a curve which a fluid particle describes during its motion
i.e., a path line is a line traced by a particle in the fluid.

The path line shows the direction of the velocity of the fluid particle at any instant of time. Such a
line is obtained by using the position of an element as a function of time. The path line are given

by

dr
1= 4t
dx _ dy _ dz _
= dt - u(x; y;Z; t); dt - v(x; y; Z; t); dt W(xlylzl t)

Path lines form a triply infinite set.

In general, the path lines vary with each fluid particle. It represents the direction of velocity of a
single particle of fluid at various time. For steady motion, the stream lines coincide with the paths
of the fluid particle, this is not so for unsteady motion.

Difference Between the Stream Lines and Path Lines:

Consider a particular stream line and take any three consecutive points A, B and C on it. Since the
velocity g is a function of r and t, any particle through A at time t will move along AB, but when

B

it reaches B in time §t, BC shall no longer be the direction of velocity at B . Consequently, the
particle will not move in the direction of the new velocity at B. However, in the case of steady
motion, the stream lines remain unchanged as the time passes, and so these are the same as the
actual paths of the fluid particle. In passing we may note that steam lines reveal how each fluid
particle is moving at a given instant, whereas the path line show how a given particle is moving at
each instant.

Stream surface: A stream surface is a surface made by the steam lines passing through an
arbitrary line in the fluid region at any instant of time.

Stream tube: The stream lines drawn through each point of a closed curve enclose a tubular
surface in the fluid, called a stream tube or tube of flow. A stream tube of infinitesimal cross-
section is called a stream filament.
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Streak lines: A streak line is a line on which lie all those fluid elements that at some earlier instant
passed through a particular point in space. It is a line making the position of a set of fluid particles
that had passed through a fixed point in the flow field. A streak line is defined as the locus of
different particles passing through fixed point. A streak line connects the locations of the particles
at one instant moving with the fluid which passed through a particular point.

BB

Let C be any point of the continuum. This point is traversed by an infinite number of particles,
each with its own path line. Consider three fluid particles A,,A,, A5 labelled by their position
vectors a,, a,, az respectively at time t=0. As these particles describe their separate path lines,
these fluid particles will arrive at C at different times and continue to move to occupy the points
B, B,, B; respectively, at some latter time t. These points, together with continuum point C, line on
a curve which is called streak line associated with the point C. If a dye is injected at C, a thin
strand of colour will appear along this streak line CB,B,B at time t. Obviously, the streak line
CB;B,B; emanating from C will alter its shape with time. A fourth fluid blob A,, which at time
t=0 lies on the path line A,C will in general, have a different path line A,B, which may never pass
through the point C.

Equation of Streak line:
Consider a fluid particle (x,,v,,2,) passes a fixed point r{(x4,y4,2;) in the course of time. By
Lagrangian description of fluid flow, we have

x1 = f1(x0, 0,20, £); Y1 = f2(X0, Y0, 20, t); 21 = f3(X0, Y0, Zo, 1)
Solving the equations for x,, v,, z, We have

xo = F1(x1,¥1,21,8); Yo = Fo(x1,¥1, 21, £); 2o = F3(x1, ¥4, 21, 1).
Since a streak line is the locus of the positions (x, y, z) of the particles which have passed through
the fixed point (x4, y;.2;), therefore, the equation of the streak line at an instant of time t is given
by

X = Gl(in in ZO; t); y = GZ(in in ZO; t);Z = G3(x0,}70, ZO! t)'
Hence the streak line passing through the fixed point (x4, y;,z;) at time t is given by

x = Gy(Fy, Fy, F5,t);y = Go(Fy, Fy, Fs,t); 2 = G3(Fy, Fy, Fs, 0).
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Example: Find the stream lines and the paths of the particles for the two-dimensional velocity

field
Z v=yw=0
BT AR
Solution: The stream lines at time t are the solutions of
dx dy dz _
u voow
Or
dx x dy dz _
ds 1+t'ds Vds
Thus keeping t constant,(i.e., at particular instant), the stream line through r,(a, b, ¢) is

S
s+loga = x =ael+t

log x =
BX =Tt

logy =s+logh =y =be’
z=c

1+t
is i i —c) ¥ = (%
This is a curve (in the plane z=c); = (a)
The particle paths are solutions of
dx x dy dz
dt  1+¢t'de Vdt
These are x(a(1+t),y =bet,z=c

Xx—a

or the curves in the plane z=c givenby y =be a

Example: Find the path lines and streak lines for the velocity field
q = (x/t,y,0)

Solution: (i) For a fluid particle that was initially at ro = (a, b, ¢) and now is at r=(x,y,z), the path
. dr
lines —, = q are

dx x dy _ dz

dt _t'ae Vdc

xd t dt at

Therefore, [ — _f = = log( ) log(a) Sx==

0

y
Y dt=>lo “)=(t—ty) =>y=bhet b

dz
E=0:>Z=const.=c
Thus the path linesare x = —, y=bet o, z=¢ (1)

0
(ii) Streak line is the curve traced out by the fluid particles which were initially at ry = (a, b, ¢)

and now pass through the fixed point ry = (x4, y;,2,) attime T.
If the fluid particle r passes through r; at time T, then equation (1) yield
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_aT

Xy === beTt,z, =c
0
_ X1to _ yieto _
Thus, a—T,b— T C =2 (2)

Eliminating a, b, c between equations (1) and (2) yields the equation of streak lines through r at
time t
xqt _ et

x=T;y— eT 1 Z =2y (3)

For the steady flow, streak lines (3) and path lines (2) coincide with the stream lines xt = ky,z =
constant.

Example: The velocity vector q is given by g = ix — jy. Determine the equation of the stream
lines.
Solution:  From the definition of the stream line q X dr = 0, we have

(ix — jy) X (idx + jdy) = 0

or (xdy + ydx)k =0
dx ay
or —=-=
x y
By integrating, we obtain logx +logy =logc
or Xy=c

which represents the rectangular hyperbolas where c is arbitrary constant.

Example: The velocity q in a three-dimensional flow field for an incompressible fluid is given
by
q=2xi—-yj—zk
Determine the equations of the streamlines passing through the point (1,1, 1).
Solution: The equations of stream lines are given by
dx dy dz
u B v B w
dx dy dz
= —_—= = —
2x -y -z
From first two factors, we have
dx d dx 2d
x_ Y =>—+ = 0
2x -y X y

By integrating, logx + 2logy =logA
or xy? = A, where A is an integration constant.
From first and third factors, x_dz LA 2%
2x -z X z
By integrating, we have xz? = B, where B is an integration constant.

At the point (1,1,1), A=1=B
Hence the required streamlines are

xy?=1land xz* =1
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Example: The velocity components in a two-dimensional flow field for an incompressible fluid
are given by
u=e*coshy and v = —e*sinhy
Determine the equation of the streamlines for this flow.
Solution: The equation of the streamlines are given by

dx dy dx dy

% T v T e*coshy —e*sinhy
or dx + cothydy =0
By integrating x + logsinhy =logc = sinhy =ce™

where log c is constant of integration.

3.5 The Eulerian and Lagrangian Methods:
Now we describe two methods by which the general problem of Hydro-dynamics can be dealt
with. These are Eulerian (Flux) and Lagrangian Methods and refer to ‘Local time-rate’ of change
and ‘individual time-rate’ of change.
(1) Euler’s method: In this method we select any point fixed in space occupied by the fluid and
observe the changes which take place in velocity, density and pressure as the fluid passes through
this point. Obviously, the point being fixed X, y, z and t are independent variables and so x, X, etc.
are meaningless in this method.
Let us consider any scalar point function
¢(x,y,2,t) = p(,t)
associated with a fluid in motion. Then keeping the point P (x, y,z), as fixed, the change is
d(r,t +8t) — p(r,t)
Whence the local time-rate of change, d¢/adt is
dp  p(r,t+6t) — ¢(r,t)
— = lim
at  §t-0 ot
A similar expression can be established for a vector point function, i.e.,

of . fre+6t)—f(rt)
— = lim
ot 5t—0 ot
(2) Lagrangian Methods: In this method we seek to determine the history of every fluid particle,

i.e. we select any particle of the fluid and purse it on its onward course making observations of
changes in velocity, density and pressure at each instant and at each point.
Thus the expressions x, X, etc. have definite significance, and to specify a particular fluid-particle
we need its initial position coordinates, say (a,b,c) or (r,) so that there are altogether four
independent variables (a, b, c, t) in Cartesian treatment and (1, t) in vector treatment.
Let us now consider any scalar point function ¢(x,y,z,t),i.e., ¢(r,t) associated with a fluid in
motion. Then keeping the particle fixed, the change is

¢(r+ or,t+ 6t) — dp(r,t)
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The change &r in the position of the particle during the time 8t depends upon g, the velocity of the
particle at time t. Thus

or = qét
Then lim P (r+qdt,t+5t)—p(rt) — a¢
6t—0 6t dt

is the individual time-rate of change.

3.5.1 Relationship Between the Lagrangian and Eulerian Method:

To relate these two methods, we establish a relation between points in space and the particle

parameters.

I. Lagrangian to Eulerian: Let Q be some quantity defined in terms of Lagrangian description
Q=0Q(ab,ct) 1)

We shall express a, b, ¢ in terms of the coordinates x,y,z of a point in space. In Lagrangian method,

it is defined as

x = fi(a,b,c,t),y = f,(a,b,c,t),z = f5(a,b,c,t) (2)
By solving these relations to obtain a, b, ¢ in terms of Eulerian variables x, y, z and t, we have
a=9:(x,y,z1),b=g,(x,y,21),c=gs(x,y,2zt) ©)
From (1) and (3) , we get
Q =0l9:(x,y,2,1),9,(x,y,2,1), g3(x,y, 2, )] (4)

which represents the Eulerian description.
Il. Eulerian to Lagrangian: Let Q be some quantity defined in terms of Eulerian description, we
then have

Q=0xyzt) ()
We shall express X,y,z in terms of the particle parameter a, b, c. Let u,v,w are the velocity
components at the point (X,y,z) at any instant t, which is defined as

u=F(xyzt),v=F(yzt),w=Fxy,zt) (6)
Again from the Lagrangian description, we have
_ox _9% _ 0z
U=%0 V% Y= & (")

where x,y, z are functions of the variables a, b, c and t.
From (6) and (7), the velocity components of a fluid element is given by

] ] ]
6_); = F1(x;y;Z; t)la_jtl = Fz(x;Y;Z; t)'a_i = F3(x’y’Z’ t) (8)

Which represents the first order linear differential equation. By integrating, we have
x = f1(X0,¥0, 20, 1), Y = f2(X0, Y0, 20, ), Z = f3(x0, Yo, Zo, t) 9)

Where x,, y, , Zo are the initial values of x,y,z at an initial instant t = t, assumed to be constants of
integration. Choosing the particle parameters a,b,c equal to x,, y,, z, respectively. Thus, we have

x = fi(a,b,c,t),y = f,(a,b,c,t),z = f5(a,b,c,t) (10)
From the relations (5) and (10), we have

Q = Q[fl(al b: (o8 t)'fZ(a' b: (o9 t)'f3(a! b' o t)]

Which represents the Lagrangian description.
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3.6 Relation between the local and individual time-rates:
Let (u, v, w) be the components of velocity q along the coordinate axes, so that

q = ui + vj + wk; where Z—f = u,etc.

Now ¢)=¢(x,y,z,t)

d ¢ d ¢ d dp d 0
Therefore, a¢ _ 9¢dx  0pdy  0pdz 09
dt dx dt dy dt dz dt at

_ 99 29 99 , 9¢
_u6x+v6y+waz+6t

— (i : ;00 | .09 99, 99
_(Ul+v]+Wk)'(lax+]3y+kaz)+6t
)
=q.(V¢) +5;
a _ 9% _ 9
Thus, = 4 Vo) + 5 = (q.V)p + P

A similar expression for a vector point function f can be established in the form

df of
i (Q-V)f‘*E

3.7 Substantial Derivative or Material Derivative following the Fluid Motion:

Consider some property of the fluid (e.g., temperature, density, fluid boundary, fluid velocity)
typified by some function G(x, v, z, t,); is a scalar (or vector) point function.
Then

G =G(x,y,zt)=G(rt)

. . d
The position vector r may depend upon time ‘t” and hence we may calculate d—f.

Now G+6G=G(r+dr,t+6t)
Therefore, 8G = G(r + 6r,t + 6t) — G(r,t)
=[G(r+6r,t+6t)—Gr,t+6t)] +[G(r t+6t) —G(r,t)]
i.e. 8G = 8r.VG(r,t + 6t) + 8t 0G(r,t) /ot  [to first order]
Dividing both sides by 6t and proceeding to limits, we obtain
& = q.YG +0G/ot [As = q] 1)

This equation indicates the time rate of change of the quantity G as a fluid particle moves about
but is written in terms of quantity observed at a point.

The operator % = (q.V) + d/0t is known as Substantial derivative or material derivative or

differentiation following the motion of the fluid. Often d/dt is denoted by D/Dt . % =Local

derivative , gq.V = convective derivative and G is associated with change of physical quantity due
to motion of fluid particle.

Notes:
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1) The term (q. V)G represents the rate of change of G at a fixed time t due to the change of

position from one point to the other and the term Z—f gives the rate of change of G at fixed point.
2) Z—’t) = 0 implies incompressible fluid but not steady flow, but Z—‘; = 0 implies p is independent of
t at a fixed point.
Similarly, the fluid boundary f(r,t) = 0 always consists of the same fluid particles, we must have
Lo
3) If G is replaced by the velocity vector g, we obtain particle acceleration, viz.

dq aq

a=E=(q.V)q+E

. 0 d 2 .
Since q.V=u__+ e +w— [as ¢ = (u,v,w)], the acceleration components (a,, a,,a,) are

du
dx

. . dv dw
with two more expressions for — o etc

du

du ou
dt

given by a, = =g—1;+u +vg—;+waz
Remarks:

() The Eulerian method is sometimes also called the flux method.

(i)  Both Lagrangian and Eulerian methods were used by Euler for studying fluid dynamics.
(iii)  Lagrangian method resembles very much with the dynamics of a particle

(iv)  The two methods are essentially equivalent, but depending upon the problem, one has to

judge whether Lagrangian method is more useful or the Eulerian.

Example: The velocity components for a two-dimensional flow system can be given in the
Eulerian system by
u=2x+2y+3t,v=x+y+t/2
Find the displacement of a fluid particle in the Lagrangian system.
Solution: The velocities may be expressed in terms of the displacements as

dx dy
u=—=2x+2y+3t,v=—"-=x+y+t/2

dt dt
dx 2 2y = 3t; dy =t/2
at Xy =St mxmy=t
The solutions of the simultaneous differential equations can be determined by operator method as
follows:
(D—-2)x—2y=3t 1)
—x+(D—1)y=%t (2)

Eliminating x from (1) and (2), we have
D(D—-3)y=2t+1/2
whose solution is given by

y=a+be3t—<%)t—(§)t2 (3)
Substituting the value of y in the equation (2), we have
x=—a+2be3t+(§)t2—(g)t—l—78 (4)
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The arbitrary constants a and b are determined by using the initial conditions

CX = Xo, Yy =Yy att =t,=0in(3)and (4), we have

Yo=a+b; xo=—a+2b—-7/18
1 7 1 7
Thus a = _g(xo — 2Yo +1_8);b =§(Xo + Yo +E)
Substituting the values of a and b in (3) and (4), we get the required solution.

Example: For a two-dimensional flow the velocities at a point in a fluid may be expressed in the
Eulerian coordinates by u = x + y + 2t; v = 2y + t. Determine the Lagrange coordinates as
functions of the initial positions x, and y, and the time t.

Solution: Proceed as in example above, we find

x = Aet + Be? — - (6t +5) 1)
y = Be? —= (2t +1) ()
where A and B are arbitrary constants.
Initially x = x5,y =yoatt=t, =0;ThenA=x,—y,+1;B =y, +i
Hence the solution (1) and (2) can be written in the form
x = Fi(x0,¥0, 1),y = F5(x0,¥0,t)
where Fy = (xo — yo + 1)et + (yo + e =1 (6t —1) ;F, = (o +7)e* -7 (2t +1)
This determines the Lagrange coordinates as a function of the initial positions x,,y, and the time
t.

3.8 Translation, Deformation and Rotation of Fluid Element:
0] Translation motion: When the fluid particle moves without changing its shape, then
that fluid element is said to under goes translation motion.

Let ABCD be the position of fluid element in the rest position and after sometime it
take the position A'B'C’'D’' due to translation motion without changing the shape.

YA

m’t? D My 4

A Y
Ay N % M

(/) Translation (i) Rotation
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(ii)

(iii)

Y|

Rotation Motion: When the fluid element rotate about one point without changing the
shape, then fluid element is said to be under goes rotation. The angular velocity of
rotation is given by

i j k
_1la o o
w=——|— —
2 |ox oy oz
u v w

_1 l —1v
—ECUT q—z Xq

i (55 G5)

(1)

1,.. (0w v
= LG -5+

Rate of Deformation: A fluid element is said to be undergoes deformation if the

distance between two nearest fluid element changes. There are two types of rates of

deformation.

(a) Linear deformation: In this case distance between two particles change in straight
line due to motion.

(b) Angular deformation: In this case the distance between two particles changes,
when particle rotate about one angular fixed point.

(iif) Rate of linear deformation

(/v) Rate of angular deformation

Expression for Translation, Rotation and Rate of Deformation:
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O

Let a fluid particle P(x.y.z) whose position vector r with respect to origin O. Q(x + 6x,y +
&y, z + 8z) be the position of that fluid particle at any time t whose position vector is  + ér, q is
the velocity at P, q + dq be the velocity at Q. Then

q =q+dq
daq daq daq
—q+a—dx+@dy+a—dz

=q+i[g—zdx+g—;dy+g—zdz]+j[—dx+ dy + 2 dz| + k[ dx +—dy+—dz]
[As q = iu + jv + kw]

du Jdw 1/0v OJu du dv Jdu du oJow
“’“[{ (az E)dz"<£_@>dy} {axder (a ay)dy 2(62 E)dx}]
dv Jdu dw 0dv
+ilfz (5 3y) "“(@‘aﬁd}
1/0v OJu 1/,0w o0v
+{0ydy 2<6x 6y>dx+§(a+$>}]
1 /0w OJu 1/0u ow
+il (55~ 7) @ 35~ 3 &)

ow 1 6u ow 10w 0v
{—dz+ ( )dx+ ( +—>dy}]

0 2\0z Ox 2\0dy o0z
Thus qg =q+wxdr+D (2)
where
i j k
ow av u ow v ou
wxdr=2 |- (5-%) Go-5)
dx dy dz
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=i G- G- S o HE G -5) e -3 -5) é
{

+k{1<6w au)d 1(6u GW)d}
2\ay ~9z)% " 2\6z ")

dr = idx + jdy + kdz

D__{aud +1<6v+6u)d +1(6u+OW)d}
_‘ax" 2\0x OJdy YT o\az Tax) ™
dw Jv

v 1/0v Jdu 1

il 3Gt o) @+ 2 (5 3 )
aw 1/,0u oJw 10w OJv

+ilg, o+ 5(5+ 50 5 55+ 5) @)
= i(€yy dx +€,, dy +€,, dz) + j(€,, dy +€,, dx +€,, dz) + k(E,, dz +€,, dx +€,, dy)

= i(€,.dr) + j(€,.dr) + k(€E,.dr)
Where €,=1i €yt jExyt K€y, €E,=1 €y +j€E,+kE),E,=i€,t+)jE,tkE, are
strain rate tractions of the fluid elements in the x, y, z direction.
Equation (2) represents the most general mode of motion of a fluid element. The first term g
represents the linear motion of all parts of the fluid element without changing the shape of the
element. Hence the first term represents the pure translatory part of the motion. The second term
w X dr represents the pure rotation of the fluid element. The third term D represents the rate of
deformation (rate of strain term) and so the third term D gives the deformation of the fluid
element.
If D=0 then it represents the rigid body. Hence, we can say that the most general motion of a fluid
element can be expressed as the combination of translation, rotation and deformation of the fluid
element.

Example: Velocity field at point is givenbyu=1+4+2y-3z,v=4—-2x+5zZ,w=6+ 3x —
5y.Show that it represents a rigid body motion.
Solution: The general motion of fluid element is given by
q9 =q+wxdr+D
Where q = ui + vj + zk = translation velocity
=1+2y—-32)i+(4—-2x+52)j+(6+3x—-5y)k
w X dr = rotation velocity
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i j k
Now w=1curlq=1qu=11 S 9=
2 2 2lox o0y oz
u v w
i j k
1| 2 o 2
E dx ady 0z

1+2y—-3z 4—-2x+5z 6+3x—5y
= 2[i(=5—5) + (=3 = 3) + k(=2 — 2)] = —(5i + 3j + 2k)

ik
wxdr=|-5 -3 =2|=i(2dy—3dz) + j(5dz — 2dx) + k(3dx — 5dy)
dx dy dz

D=rate of deformation
= i(€yy dx +€,, dy +€,, dz) + j(€,, dy +€,, dx +E,, dz) + k(E,, dz +€,, dx +€,, dy)
Here

ou
Exx= ax =0 =€,,=€,,
1/0u oOJv
Exfz(@*a):(’
1/,0v ow
Eyfz(a*a):‘)
1/0w OJu
€= (3 * 32) =

Put these values in D, we get D=0

This D is called rate of deformation. As D=0 then it represents the rigid body. Hence we can say
that the most general motion as a fluid element can be expressed as the combination of translation,
rotation and not deformation of the fluid element.

Example: What type of the motion do the following velocity components constitute?

u=a+by—czzv=d—-—bx+ez;w=f+cx—ey
where a, b,c,d,e,f are arbitrary constants.
Solution: We know that general motion of fluid element is given by
q =q+wxdr+D
Where q(translation velocity)=ui + vj + wk = (a + by — cz)i + (d —bx + ez)j + (f + cx —

ey)k
w X dr = rotation velocity

—1 l —1V><
W—Zcurq—2 q

i j k
_lla o o
2 lox oay oz
u v oow
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i j k

9] 0 0

0x dy 0z
a+by—cz d—bx+ez f+cx—ey

1
2

= %[i(—Ze) + j(—2c¢) + k(—2b)] = —(ei + ¢j + bk)

ik
Therefore, wXxdr=|—e —c —=b|=i(bdy— cdz) + j(edz — bdx) + k(dx — edy)
dx dy dz

D=rate of deformation
= i(exx dx +€,, dy +€,, dz) +j(ny dx +€,, dy+€,, dz)
+ k(€ dx +€,, dy +€,, dz)

0 v ow

u
Here €,,= P 0,€),= P =0,€,,= r e 0
1/0u 0Jv 1
e,..=—|— —_— ] = — — =
i 2(6y+6x) Z(b b) =0

€y,=0;€,=0

Therefore, D=0
Hence the motion of fluid element consistent translation and rotation not deformation. As D=0 so
it represents the rigid body motion.
Example: Give a velocity field with components u=cx+2wyy+ugv=cy+vyw=
—2cz + w, where ¢, uy, vy and w, are constants with the above velocity components at a point
p(x,y,z), determine the velocity components at neighbouring point Q(x + dx,y + dy,z + dz)
and determine the different types of motion which are involved.
Solution: The general motion of fluid element is given by

q =q+wxdr+D
Where q(translation velocity)=ui + vj + wk = (cx + 2wyy + ug)i + (cy + vy)j + (—2cz +
wo)k

w X dr = rotation velocity

1
w==curlq==-Vxgq

2 2

i j ok

_lla o o

2 lox oay oz

u v w

i j k

1 ] d 0 ok
) ox 3y 9z |- ™

X+ 2wy +uy cy+vy, —2cz+w,
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ik
wxdr=10 0 —wy|=ilwedy) +j(—wydx) = (Wedy)i — (wydx)j
dx dy dz

D=rate of deformation

= i(€xy dx +€,, dy+€,, dz) +j(€) dx +€,, dy +€,, dz)
+ k(€,y dx +€,, dy +€,, dz)
ou ov ow

€,=—=C€E,,=—=C,E,,=— —2C
X 0x Yo oy 9z

1 (au N av) _
o 2\0y ox) o
€y,=0;€,,=0
Therefore, D = (cdx + wydy)i + (Wodx + cdy)j — (2cdz)k

Hence point Q has the three types of motion (i) translation velocity (ii) rotational velocity (iii) rate
of strain velocity.

m

3.9 Particle Acceleration: Since the velocity field vector g is a function of both position and
time, i.e., of four independent variables, we may write it as, say
q=q(rt) 1)
Suppose that the value of the velocity at time t + 5t when the particle has moved to a
neighbouring position is g + éq . Then
8q =q(r+6r,t+6t) — q(r,t)
=[q(r+ér,t+6t)—q(r,t+6t)] —[qlr t+ 6t) —q(r,t)]
)
Now, to first order of approximations
q(r+ér,t+6t)—qr,t+6t) =(r.V)q(r,t +6t) (3)
q(r,t + 6t) —q(r,t) = 6t dq(r,t) /ot
(4)

The acceleration a of the fluid particle at a point being Lim (8q /5t) as 6t — 0;we divide (2) by

&t, use (3) and (4) and proceed to the limits. These yields

_4dq9 _9q
a=—=—+(q.V)q

(%)
NOTES:

(1) The expression (5) is in reality the Lagragian acceleration. In the Eulerian concepts, it is
composed of two factors: one a temporal acceleration (dq/dt) at the point, and the other
convective acceleration, (q.V)q, resulting from flow entering the fluid element from
regions having different velocities.

(2) Lagrange’s acceleration relation: Since
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1
(q.V)q=V(§q2>+wxq, (w = curl q)

L — 1.2
a_dt_6t+v(2q )+a)><q

(6)
The acceleration vector given by (6) is Lagrange’s acceleration relation and its chief merit
is that whereas the form (5) is not invariant under a change of coordinate system, the form
(6) is invariant under change of coordinate system.
The vector g X w is called Lamb vector.
(3) Particle acceleration in curvilinear coordinates. With velocity components (g, q2, g3 )
in the (a, B, y) —directions and using the vector definitions
19 10 1 0
= (55 w3 i 7
where w; = Tlhz % (hsqs3) — aa—y(hzqz)] ,etc.

curlq = w = (W, Wy, W3)

we get the acceleration components (a4, a,, a;)from Lagrange’s acceleration relation

dq\ 0Jq
a—<E> E-FV(C[)-F(UXCI

9
a; = aqt1 +——(Q1 +q5 +q3) + (w293 — W3G2) (7)

with similar expressions for a, and as.
(4) Particle acceleration in cylindrical coordinates. With velocity components (u, v, w) in

the (r, 6, z) — directions and using the vector definitions

0 10 0

L2 2 2 2. u_ - _
q(u,v,w); q* = u* + v* + w%;, V= (ar' 39" aZ)
10w Ov Ju OJdw 10 10u

curlq = [T raf oz’ dz or’ ror" T v a0
In the Lagrange acceleratlon relation, we get

aq 9 19 )
a=—_"+7 (6r ~39 a)(u + 12 + w?) + (0, Wy, w3) X (U, v, W)
(i)
Puttin —+u +——+wi—i
9 9z  dt

and splitting the three components in (i), we get

du v? dv  uv dw
a=(@-2 e o ®

r dt r
(5) Particle acceleration in space polar coordinates. With velocity components (u, v,w) in

(r, 8, ¢)-directions and using the vector definitions
¢ ).q% = 12 + v? + w V= 0 190 1 0
= @v,w), ¢ =uf+vi 4wk ( 'r 30 ’rsind (')(,b

curl q = w = (wy, w,, w3) , where
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dav
@1 = Tsing lag (wsm@) 9l [sm@ rra 6_( rw|,

g

in the Lagrange acceleration relatlon, we get

~9¢, 1,0 10 _1 0 2
T8t 2'9r 'rad ’rsind 6¢)(u +v2+w )+(w1,w2,w3)x(uvw)

Wi_d

Puttmg -+ u— + ;% Ym0 ae  at

and splitting the three components in (i), we get
v’+w? dv  w?cotd  uv dw  vwcotf | uw
r dt r r ’dt r + _) (9)

Example: Determine the acceleration of a fluid particle from the following flow field
q = i(Axy?t) + j(Bx?yt) + k(Cxyz)
Solution: We have acceleration
a=24_ (i+ui+vi+wi)q=axi+a Jjt+azk;,q=ui+vj+wk
dt at dx oy 0z Yy z
Comparing with given equation
u = Axy?t,v = Bx*yt, w = Cxyz (1)

Then components of acceleration along x, y, z axes

Ay =U——+V—+W—+——

a=u-——+v—+tw——+——

Using (1), we have the components of acceleration in X,y,z axis:
a, = Axy?t X (Ay?t) + Bx?yt x (2Axyt) + Cxyz X (0) + Axy?
= A%xy*t + 2ABx3y?t? + Axy? = Axy?(Ay?t? 4+ 2Bx*t* + 1)

a, = Axy*t X (2Bxyt) + Bx*yt x (Bx*t) + Cxyz x (0) + Bx?y
= 2ABx?y3t? + B?x*yt? + Bx?%y
a, = Axy?t X (Cyz) + Bx?yt x (Cxz) + Cxyz X (Cxy) + 0
= ACxy3zt + BCx3yzt + C*x?y?z

Example: The velocity components in spherical polar coordinates (r, 8, ¢) of a flow are
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("™ ci =Tcot®O =lsino 1
qr_(t—z)smq),qg—;cot cosec ¢, qp = Sin cos ¢ (1)

Determine the components of acceleration of a fluid particle.

Solution: a == (% _ G5+ag Lo _ 9500 | arap L0 4 d0dgcotd | qrq"’) ;
dt r dat r r dt r r
d o] o] qe O
Y AP B B
dt ‘ot dr r 00 rsinfd¢
Leta,, ag,ap be the components of acceleration, then

2 2
_ 94r 949r | 46 94r ¢ dar _ 96*99
ar = 6t+qr 6r+r a0 rsin@ 0¢ T
(2)
2
_ 9qg 3qg | 499499 d¢ 0q9 9y 00  qrqg
A =5, T, T % rsin 6 ¢ U H
3)
0q¢p 94¢ |, q994¢ d¢p 04¢ qede cotl  qrqe
=29 o %9 4 36%9 4 d9p 299 4
e 8t+rar+r86 rsin06¢>+ T +r ()

Using (1) in (2), (3) and (4) we obtain

a, = — 2 sin ¢+ (m) (Z—T) sin ¢ + = (cos d))(ﬁ cos ¢) —— (cot? 6 cosec?¢p +
r t3 t2 t2 t t2 ¢2

sin? 8 cos? ¢)

r
ag = —t—zcotH coseco

r?\ . 1 1 1
+ 7z )sin 0] 7 (cotb cosec ¢p) + 7 (cot @ cosece) 7 (—7 cosec? cosec @)

1 1 r? r
+2 (cos @) n (r cot 8 cosec cot ) + t—scotH — t—zsin2 0 cos? ¢ cotd
T r? 1 1 r
ap = ——sinf cos¢ + (sin@)(<sin 6 cos @) + (- cotd cosec ¢p)(-cos b cos )
t t t t t
1 v re oo ro.
+ ?cos 0] (—Zsm Osin¢g) + t—ssm O sin¢ cos¢ + t—zsm 0 cot? Bcotep

Example: The velocity component of a flow in cylindrical polar coordinates are (r? zcos 8,
rz sin @, z*t). Determine the components of the acceleration of a fluid particle.
Solution: Let q,,qg,q, be the components of velocity in cylindrical polar coordinates (r, 6, z).
Then we have

qr =1%zc0s0,qg =1zsinb,q, = z*%t

Let a,, ag and a, be the components of acceleration. Then

d q3 d dqz . d d d d d
a:(ﬁ__e aqe , 4rde ﬂ)_:a+qra_+q_9_+qza

dt r’ dt r ' odt 7 dt r 06

aq, 99, qo0q; 9, 45
ot T T a0 T, T
=rz?(2r? cos? 6 — 3sin? 6 + rt cos 0)

a, =
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_0qq dqs | 90099 99s | q4r9e

=G Y& T 90 T, T
= z?r sinf(3rcosf + t)
a9, 09, qg0dq, 29,
=G Y T 90 T2,

= z2(1+ 2t?2)

3.10 The Velocity Potential or Velocity Function-Potential Flow:
Suppose that the fluid velocity at time t is g = (u, v, w) and further suppose that the expression
udx + vdy + wdz is an exact differential, say (—d®), where ®(x,y, z,t) is a scalar function.

Then —d® =udx+vdy+wdz 1)

But D =>P(x,y,2,t) (2)
_2® 9® 9® 9%

So dd = o dx+aydy+az dz + ” dt 3)

From (1) and (3), we get

0P 0P od od
udx+vdy+wdz = —(adx+—dy+—zdz+—dt)

dy d at
Comparing up terms, we have
09 09 09
u = —a, V= _W, = —E
nq=-VOo (4)
and _0 =>d= ®(x,y,2) i.e. ® is a function of x,y,z.

at
This & is called velocity potential. The negative sign in the equation (4) is a convention. It ensures

that the flow takes from the higher potential to lower potential.

3.11 Vorticity: If g be the velocity vector of a fluid particle, then the vector quantity
O=Vxq=curlq
Is called the vorticity vector or simply the vorticity and is a measure of the angular velocity of an
infinitesimal element. The components of spin are given by (¢, 7, ), where
) ] dw 0dv\ . du ow\ . (0v OJu
A=¢i+n+k=Vxq= (E—5>L+<£—a)]+<a—@>k
Thus, we have
dw Odv Ju oJow _ dv Jdu

"oy 92" T T oy
Note:
1. Intwo dimensional Cartesian coordinates, the vorticity is given by
dv Jdu
2= 9x  dy

2. Intwo dimensional polar coordinates, the vorticity is given by

0 10
g% 09 104
r dr 1radqg
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3. The vorticity components in cylindrical polar coordinates (r, 8, z) are given by
10q; 0qe _0q, 0q, _q9 090 109,

rTT90 9z T3z “ar T Tar 78
4. The vorticity components in spherical polar coordinates (r, 8, ¢) are given by

1dg9 1 0q9 Qg 1 0qr 09y 4y dq9  qo 10q,
" r 00 rsinf d¢ T cotd, g rsin@ d¢p oar r ' *

Vortex Line: A vortex line is a curve drawn in the fluid such that the tangent to it at each point is
in the direction of the vorticity vector Q at that point. The vortex line is often abbreviated into Q —
line.
The definition of the vortex line implies that its analytical expression is given by dr x Q = 0, or
its equivalent in Cartesian form by the differential equations
drx Q= (idx+jdy+kdz) x (ié+jn+k{) =0
(mdz—{dy)i+({dx—¢§dz)j+ (dy—ndx)k=0
ndz—{dy =0, {dx —¢dz=0,dy—ndx =0
_dx _dy dz
TE o ¢
Vortex tube and Vortex filament: The vortex lines drawn through each point of a closed curve
enclose a tubular space in the fluid called a vortex tube. A vortex tube of infinitesimal cross-
section is called a vortex filament or simply a vortex.

3.12 Rotational and Irrotational Motion:

The motion of a fluid is said to be irrotational when the vorticity vector Q of every fluid particle is
zero so that & = 0,n = 0,{ = 0. When the vorticity vector is different from zero, the motion is
said to be rotational.

Rotational motion is also called vortex motion. The definition implies that in an irrotational motion

of the fluid, there are no vortex lines.
ou ow) . ov ou
+(5-3)i+ (5—5)"

. ow v\ .
Since Q=curlq and Q= (E— E)l
We conclude that the motion is irrotational if curlq =10
ow _9dv du_odw dv_ du
dy 9z ' oz ox ' ox oy
when the motion is irrotational i.e. when curl g=0, then g must be of the form (—grad¢) for some
scalar point function ¢ (say) because curl grad ® = 0. Thus velocity potential exists whenever
the fluid motion is irrotational. Again, notice that when velocity potential exists, the motion is
irrotational because q = —grad ¢ = —curl grad ® = 0.
Thus, the fluid motion is irrotational if and only if the velocity potential exists.
Note 1: We may observe that whenever velocity potential exists, the system of surfaces given by
the differential equation
q.dr =0 or udx +vdy +wdz =0

1)
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possess solution, ®(r) = constant, for

0=q.dr = -V&.dr = —d® = &(r) = constant.
The surfaces ®(r) = constant are called the equipotential. Further, these surfaces cut the stream
lines g x dr = 0 orthogonally since the velocity vector which is parallel to dr for the stream
lines, is perpendicular to dr in (1).
Note 2: Vortex is flow in circles about a central point. It is termed free when motion is such that
the tangential velocity q is inversely proportional to the radius, i.e., g « % implies gr = constant.

Motion is irrotational and vorticity is zero; stream lines are circles and circulation is constant.
A vortex is termed forces when the motion is the result of some external force, and the motion is
such that g o . Hence vorticity is constant.

3.13 The angular velocity vector: Rotational Flow:

Consider a rectangular element in two-dimensional flow such that AB = éx and AD = §y as
shown in figure. Upon rotating about A during a small interval &t , let the element assume the
shape indicated by A’B’'C'D’ in figure, B'and D' approximately lying on BC and CD produced.

Let u and v be the components of velocity at A. Then the components of velocity along BC and

DC are respectively v(x + 6x,y) = v + g—ZSx and u(x,y+6y)=u+ 3—3531-

c'
Yy
=
u +E—Uc‘oy
D oy - C
D
3% '
5B B
Ay Av+2sx
X
Sat i
A u dX B X

Therefore, velocity of B relative to A along BC = Z—Z(Sx
and velocity of D relative to A along DC= %53}
r_ a_v I — _a_u
~ BB' = > éx 6t and DD’ = ayc?y ot

Hence, the angular velocity of AB about z-axis i.e., perpendicular to the plane through A

= lim o _ lim tanda v dais small, Sa = tan S«
St—0 6t §t—-0 Ot
v
BB'/6x | 3 0x0t 9v
= lim = iIm—-—-—--=—
5t-0 Ot 5t-0 Ox Ot 0x

Again, the angular velocity of AD about z-axis

6u6 s
i SB_ tandf . DD'/oy ay°%rot  ou
TS0t | stob 8t stso ot etoo Sydt | dy
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Let w, denote the average of the angular velocities of AB and AD. Then, we have

o =3 (G=5) ®

The average angular velocity components w, ,w, and w,, in the case of three-dimensional flows
may be obtained in a similar manner as follows:
T T I YL @)
2 \ 0y 0z y 2 \0z 0x z 2\0x 0y
Hence the angular velocity vector w of a fluid element is given by
w=lw,+jow,+ kw,

1 (0w Ov (0u  Jdw Jdv Jdu
=50 (5= 3) G- 5) k(55
Thus, w= % curl q or 2w =curlq 3)
But the vorticity vector Q is given by Q=curl q 4)
From (3) and (4), we have Q=2w

Thus, the curl of the velocity of any particle of a rigid body equal twice the angular velocity.
Note: 1. w is also called the rotation. The condition for the two-dimensional flow to be
ov _ du
ox o9y’
Again, the condition for irrotational in three-dimensional flow is that

ow av_ u aw_av _ Ou

dy 09z 9z ox’'dx dy
Note 2. A flow, in which the fluid particle also rotates (i.e. possess some angular velocity) about
their own axes, while flowing, is said to be a rotational flow. Again, a flow, in which the fluid
particles do not rotate about their own axes, and retain their original orientations, is said to be an
irrotational flow.

irrotational is that the rotation w, is everywhere zero i.e.,

3.14 Reynold’s Transport Theorem:

Let V denote the Lagrangian region which moves with the fluid and r be any general point of V.
Since V consists of the same fluid particles, r=r(t) yields the position vector of a typical fluid
particle of the region V. Let F(r, t) denote some scalar field (e.g. temperature or density)
associated with the fluid. Reynold’s theorem states that

d d .
L[ Far0av = [, +V.(Fq)aV = [,(2=+F divq)dv

1)
Proof: Let G(t) = [, F(r,t)dV (2)
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System at time t System at time t, =1 + &t

Figure shows the region at time t and also at time t, = t + §t. Since &t is vanishingly small, there
is always a region C (say) common to both locations. Thus at time t, system occupies volume V =
AYC, while at time t,, it extends over BYC. The common part C is the same at times t and ¢,.
However, the specific property F in it may be different since F depends on time. Thus the rate of
change of G becomes

dé . Gt)-G6@) . [Ge(t) + Gp(t)] — [Ga(t) + G ()]

— = lim ——— = lim

dt  §t-0 ot 5t—0 5t

— lim Ge(t1)—Ge(t) + lim Gp(t1)=Ga(t)_ _|_ H (3)
St—0 6t S5t—0 ot
G _ .
where— = fVF av = fV— av (constant location)
(4)

The term H expresses contribution due to flow of fluid, it needs elaboration. The volumetric flow
rate of fluid, dQ passing through a differential area dS is given by
av

dQ = q.nds [dV=(q.ﬁ)dtdS,dQ=E
Where q .11 > 0 = outflow from C to B; q .nn < 0 = inflow from A to C.
The flux of fluid characteristic F through dS is
dH = FdQ = F(q.n) dS
The total contribution through closed surface S, by summing, is

L Ge(t) — Gu(0) ~
H= 61:“—>0 ot fF( ) ds
= fV V.(Fq)dV, [by Gauss Divergence Theorem]

(%)
From (1), (3),(4) and (5) we get

—f F(r,0)dv = [, { + V. (Fq)}
(6)
Since 5+ V. (F.q) = -+ q.VF + F(V.q) = 2"+ F(div q)
“ L[ FGrav = [, {2+ F (divg)}av (7)
Equations (6) and (7) are the combined statement (2) of Reynold’s transport theorem.
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3.15 Check Your Progress:

1) Determine the streamlines and the path of the particles
X _ y _ Z
1+t VT1+eM T 1+
[Ans: x = Ay,y=bz; x =a(l+t),y=b(1+t),z=c(1l+1).
ii) Find the equation of the stream lines for the flow g = —i(3y?) — j(6x) at the point (1,1).
[Ans: 3x2 =y3 + 2
iii) Determine the rates of strain and explain the nature of rates of strain for the following velocity
components:

a) u=cx,v=0w=0 blu=ulx,y),v=vl,y),w=0c)u=2cy,v=0w=0

u =

du=cv=0w=o0
[ Hint: Find €,y , €y, €2z, Exy, €yz, Ezx. Again, find the kind of motion i.e., translational,
rotational, or rate of deformation]
iv) Given the velocity field q=iAx?yt + jBy?zt + kCzt?, determine the acceleration of a fluid
particle of fixed identity.
[Ans: A(2Ax3y? + Bx?y?zt), B(y?z + 2By3z2Cy?zt3),C = 2zt + Czt*)]
v) Determine the acceleration at the point (2,1,3) at t=0.5sec, u =yz+t,v=xz—tandw =
xy.
[Ans: 19.5m/sec? ,13.5m/sec? ,6.5m/sec? ]
vi) Determine the vorticity components when velocity distribution is given by
q = iAx%yt + jBy?zt + kCzt?
where A,B and C are constants.
[Ans: —By?t, 0, —Ax?t]
vii) The velocity in the flow fluid is given by q = i(Az — By) + j(Bx — Cz) + k(Cy — Ax) where
A,B,C are non-zero constant. Determine the equation of the vortex line.

viii) Show that the velocity potential ¢ = (%) x (x? + y? — 2z?) satisfies the Laplace equation.
Also determine the stream lines.

3.16 Summary: Fluid kinematics deals with describing the motion of fluids without necessarily
considering the forces and moments that cause the motion. In this chapter, several kinematic
concepts related to flowing fluids are introduced. We discuss the material derivative and its role in
transforming the conservation equation from the Lagrangian description of fluid flow to the
Eulerian description. After that the various ways to visualize flow fields-stream lines, streak lines,
path lines are discussed. The fundamental kinematic properties of fluid motion and deformation-
rate of translation, rate of rotation have been explained. Finally, we discussed the Reynold’s
Transportation theorem.

3.17 Keywords: Velocity, Acceleration, Lagrangian method, Eulerian method, Velocity
potential, vorticity, vortex line, stream lines, streak lines, path lines, Rotational flow.
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3.18 Self-Assessment Test:

SA1: Obtain equation of motion in terms of stress components of a fluid which flowing with
velocity (u,v,w).

SA2:Show that general motion of fluid element is made up of three parts namely, pure translation,
rotation and rate of deformation.

SA3: Show that the velocity field g, = 0,q9 = Ar + ? q, = 0 satisfy the equation of motion

d*qg i(‘Z_e
dr? dr \ r

SA4: Give examples of irrotational and rotational flows.

SA5: Show that ¢ = (x — t)(y — t) represents the velocity potential of an incompressible two-
dimensional fluid. Show that the streamlines at time ‘t> are the curves (x —t)? — (y —t)? =
constant, and the paths of the fluid particles have the equations.

) = 0,where A and B are arbitrary constants.

SA6: Show that the following velocity field is a possible case of irrotational flow of an
incompressible flow u = yzt,v = zxt,w = xyt.

SAT: Prove that acceleration of the fluid element of fixed identity can be represented by the
material derivative of the velocity vector.

SA8: Differentiate between the Lagrangian approach and Eulerian approach of the fluid motion.

References:
e Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London
e Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall
e S. Ramsay, “Hydromechanics part 11” (1935), G. Bell &Sons London

e Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram &
Sons, New Delhi.

CHAPTER -4
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EQUATION OF CONTINUITY

4.0 Learning Objectives: After reading this chapter, the students should be able to apply the
conservation of mass equation to balance the incoming and outgoing flow rates in a flow
system, to express the equation of continuity in Lagrangian and Eulerian method and their
equivalency

4.1 Equation of Continuity or Conservation of mass:
Physical quantities are said to be conserved when they do not change with regard to time during a
process. The law of conservation of mass state as ‘mass is neither created nor destroyed.” The
mathematical expression of the law of conservation of mass is known as the equation of continuity.

By continuity we mean physical quantity. The fluid always remains a continuum i.e., as a
continuously distributed matter. When a region of fluid contains neither sources nor sinks i.e.,
there is no creation or annihilation of the fluid then the amount of fluid within the region is
conserved in accordance with the principle of conservation of matter. The general conservation
principle is defined as follows:

In — Out + Source — Sink = Accumulation,

where each term represents a rate for a differential element of volume.

4.1.1 Equation of Continuity (Vector form) by Euler’s Method:

Let p denotes the density of the fluid at a point P(r) of the mass of the fluid contained in
any closed surface S fixed in space and containing a volume element V. The continuity equation is
based upon the following maxim.

The rate at which the mass of fluid inside any volume is increasing is equal to the source rate of
mass within the volume minus the rate at which mass flows out through the surface of the
volume.

Now, if mass of the fluid within this surface is m then
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=2 [ pdv=[22dv (1)
Since volume does not vary with time. Further, if R is the source rate of mass per unit volume,
then the fluid mass generated is

J, Rdv ()
Let 6S be small surface element, n is the unit normal to the surface, q is the velocity of fluid at P(r)
then component of velocity along the normal = n.q
The rate of mass across §S = density X velocity X area = p (n.q)6S
The total rate at which mass flow out = [ p (n.q)dS = [, div (pq)dv

{By divergence theorem}

The above maxim now provides the mathematical formulation

fv% dv = [,Rdv — [, div (pq)dv 3)
or J, [% + div(pq) — R] dv=0 (4)

The result (4) will hold for any arbitrarily chosen volume V. Hence the integrand itself
must vanish and the continuity equation can be written as

%+ div(pg) = R (5)
For the very special but important case, when R=0, the source-free equation of continuity is
Z+div(pg) =0 (6)

This is the equation of continuity by Euler’s method.
Note: 1. In the absence of sources within the surface, i.e., when R=0, the continuity maxim reads
thus:

The increase in the mass of the fluid within the fixed surface during the time 6t must be
equal to the excess of the mass that flows in over the mass that flows out in the same interval §t.
Note:2. The forms (3) and (5) or (6) are known as the integral and differential forms of the
equation of continuity.
Cor.1. Since V.(p q) = p V.q + (q.V)p the equation of continuity may be written as

)
a—’;+pV.q+(q.V)p=0 or Z—’t)+p(v.q)=0 (7

. dp _ a_p
[since —= = —~+ (q.V)p]
d(pu) |, d(pv) , 9(pw)
dx T ady T 0z
the equation of continuity (7) can be put in the Cartesian form
0 d(pu) d(pv) J(pw
9p 0w 9(pv)  d(pw) _
Jt 0x dy 0z

LIV RS (L T
Or at+uax+vay+waz+p ax+ay+az =0

Since q = ui + vj + wk; . V.(pq) =

0

Further if equation (7) is divided by p, we have %Z—’t’ +(V.q)=0>= %(logp) + (V.q) = 0.
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Cor.2. If the fluid be incompressible and motion is steady then density is constant i.e., Z—‘t’ =0, so

the equation of continuity reduces to

V.q=0 or %+Z—;+Z—V:=O (8)
Thus, the velocity q is solenoidal. Obviously (V.q) gives the rate of volume expansion of a fluid
element. For this reason, it may be called dilatation or expansion.
Cor.3. If the fluid is incompressible and motion is irrotational then there exists velocity potential
®, i.e. q = —grad @, and hence

divg=0 =>Vid =0 by (8) [Laplace equation]
From equation (5), it becomes

V2d =R [Poisson’s equation]

Note: Since div q = —(dp/dt)/p, we can interpret div q as the relative rate at which the density
is decreasing. Thus, divqg >0 = Z—’Z < 0 and consequently an attenuation of the fluid at the point

considered: hence the term divergence.
Example: A pulse travelling along a fine straight uniform tube filled with gas causes the
density at time t and distance x from the origin where the velocity is u, to become p,® (vt —
x). Prove that the velocity u (at time and distance x from the origin) is given by

(uo — V)P (vit)

P (vt — x)
Solution: The equation of continuity in the present case is
% L0 () =0 or 224yl %
6t+6x(’0u)_00r 8t+u8x+’08x_0 (1)
Since p = po @t —x) = py®(z) (say)
] do a do ,
ﬁ =Po, é: Po; T —po®'(2)
dp ~ ddoz o'
at_p() dZat_pov (Z)
With these (1) reduces to
Ju
v®'(2) —ud'(z) — <D(Z)£ =0 [0x = —0z]
or du_d®_
v-u (o}

Integrating this equation, we get
log(v —u) +log® =logA

Or v—ud=4
At any time, t, when x = 0,u = ug, so that ®(vt — x) = ®(vt)

Hence A= (v—uy)dvt)
: w—uw)® = (v —uy)®(vt)

_ (uo—1)P(vt)
u=sv+t o (vt—x)

Example: If g is the resultant velocity at any point of a fluid which is moving irrotationally in
two dimensions, prove that
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2 2
(50) +(Gy) =ava
Solution: Since the motion is irrotational and density is constant, we have
q° = D% + PL; Dy + Dy, = V2P =0 (1)
To get the form of gV2q, we have to appeal to Laplacian expansion
V2(ab) = aV?b + bV?a + 2(Va). (Vb)
Where we put a = b = q to obtain

VZq® = 2[qV*q + (Vq)?] 2)
V2q? = V(D2 + 2) = V22 + V22
= 2[®, V2D, + (VD,)?] + 2[D, V2, + (V) ] by (2)
= 2[(VD,)? + (VO,)’] since V2@, = = V2 =
0 etc.
= 2[(i @y + jPsy)” + (iDyy +jDyy) ]
= 4[PZ, + ®Z,]  (since by (1) @y, = —D,,) (3)

Further, taking the gradient of the first of (1), we get
qVq = VD, + &, VD, = D, (id,, +jP,yy) + Oy (iDy, +jPy,)
= i(DyPpy + P, Dy ) + (D Pyy + D)
(qVQ)Z = ((1)926 + (Djzz)(q)azcx + (Dazcy)
Or (Vg)? = 0%, + D%, (4)
From (3) and (4), we get
V2q? = 4 (Vq)?
Therefore, from (2) 4 (Vq)? = 2[qV?q + (Vq)?]
ie., (Vq)* = qV?q
which is the required result.

4.2. Equation of Continuity in Cartesian Co-ordinates: - Let (X, y, z) be the rectangular
Cartesian co-ordinates.

Let q=ui+vj+wk 1)
_9,, a2, 0

andv—alﬁ'ajﬁ'ak (2)

Then, the equation of continuity % + div(pq) = 0 can be written as

ap , d 2 2 _
2 T oz (P + 55 (pv) + 52 (pw) = 0 3)
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du dv ow\ __
P ruZ v awap (4T =0 (4)
which is the requwed equatlon of continuity in Cartesian co-ordinates.
Corollary (1). If the fluid motion is steady, then Z—’; = 0 and the equation (3) becomes
] ] d _
py (eu) + 7 (ev) + Py (ew) =0 (5)

Corollary (2). If the fluid is incompressible, then p = constant and the equation of continuity is
vq=0

i.e. —+—+—==0 (6)
dx ay 0z
Corollary (3). If the fluid is incompressible and of potential kind, then equation of continuity is
V2p=0
Le. 62—(”+62—"’+62—"’— 0, where g = —Vo.
0x2  9y?2 = 0z2 !

4.3. Equation of Continuity in Orthogonal Curvilinear Co-Ordinates: Let (uz, Uz, us) be
the orthogonal curvilinear co-ordinates and e4, e, esbe the unit vectors tangent to the co-ordinate
curves.

Let e,, e, e; be the unit vectors tangent to the co-ordinate curves.
Let g = q1e1 + q2€; + gse3 1)

The general equation of continuity is

g—f+\7'(PQ)=0 ()
We know from vector calculus that for any vector point function f = (f1, f2, f3),
Vof = o |5 (hahafi) + 5= (sl f2) + 5= (o ) 3)

where hy, hy, hs are scalars.

Using (3), the equation of continuity (2) becomes
b | (o )+ 5= (hshipdo) + 5o (hah )] @)
at  hyhyhs Loug 3P4 1P42 2Pq3

Corollary (1). When motion of fluid is steady, then equation (4) becomes
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(h h3pqi) + 5 (h hipqz) + 5— (h h2pq3) =0 (5)
Corollary (2). When the fluid is |ncompre33|ble the equation of continuity is (p = const)

(h h3q1) + 5~ (h3h1%) 50 (h haq3) =0 (6)
Corollary (3). When fluid is |ncompre33|ble and |rrotat|0nal thenp=constg = -V =

19 10 1 8
(ZE Vi aw E—)q) and the equation of continuity becomes

9 hzhsa_fp) L( 1”33_‘P) L( 1’123_‘/’) -

aul( /’11 6u1 + auz hz auz + 6u3 h3 6u3 - 0 (7)

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.

4.4. Equation Of Continuity In Cylindrical Co-Ordinates (r, 0, z) . Here,
U, =r,u, =6uz=zand h; = 1,h, = r,hy =1
The equation of continuity becomes

a

=+ [ (rpay) +55 " ®(paz) + = (rpq3)] =0
i.e. =+ ;a—r( rpq:) + ——(pq2) +o (pq3) = (8)
Corollary (1). When the fluid motion is steady, then equation (8) becomes

a d d

5 (rpay) + - (pqz) +7-(pgs) =0 (9)
Corollary (2). For incompressible fluid, equation of continuity is

d
2 (rq) + 2 (q2) + 722 =0 (10)

Corollary (3). When the fluid is lncompressible and is of potential kind, then equation (8) takes
the form

a [i20) d (10¢ d o9\ _

(50 + 55 (50) + 5 (r5) =0 (11)
where g = —V¢ ; V is expressed in cylindrical co-ordinates.

4.5 Equation Of Continuity in Spherical Co-Ordinates (r, 0, y). Here,

(u, up,u3) =(r,6w) and hy = 1,h2 = r,h3 = rsin 6
The equation of continuity becomes

ad 1 a . a . d
6_’; r2sin@ [_ (rZ sin 0 eql) + Yy (T‘ sin 6 eqz) + ﬁ (rpCIB)] =0
6_p

= S+ g i 05, (2 pql)+r—(smepq2)+ra¢<pq3>]—0 12

Corollary (1). For steady case, equation (12) becomes

.0 o . . ]
Sin 037 (r°pq1) + 755 (sin 0. pgz) +155(pgs) = 0 (13)
Corollary (2). For incompressible fluid, we have
sin 9 (r q1) + r— (sin6.q,) + raq3 =0 (14)

Corollary (3). When fluid is incompressible and of potentlal kind, then equation of continuity is
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a ] a (1 a9\ _
T (r2sin0%2) + 7 (sin0%2) + 2o (g 52) = 0 (15)
where g = —V¢; V is expressed in spherical co-ordinates.

4.6 Symmetrical Forms of Motion and Equation Of Continuity for them. We have the
following three types of symmetry which are special cases of cylindrical and spherical polar co-
ordinates.

(i) Cylindrical Symmetry: - In this type of symmetry, with suitable choice of cylindrical polar co-
ordinates (r, 0, z), every physical quantity is independent of both 6 and z so that

a _d _
il 0 and q =q(r,t)|Notr

For this case, the equation of continuity in cylindrical co-ordinates, reduces to
)
Lt (pur) =0 (1)

ror

If the flow is steady, then equation (1) becomes
aa—r (pgr) =0 = pq, r = constant = F(t), (say).
Further, if the fluid is incompressible then g, r = constant = G(t), (say).

(ii) Spherical Symmetry: - In this case, the motion of fluid is symmetrical about the centre and
thus with the choice of spherical polar co-ordinates (r, 6, ), every physical quantity is
independent of both 6 & . so that

a_ —
3% = 5y =0 and q =q(r,t)

The equation of continuity, for such symmetry, reduces to

ap 1 0
2t 35 (pqr?) =0 (2)

For steady motion, it becomes
;—r (pqi7*) =0 = pq, r* = const = F(t), (say)
and for incompressible fluid, it has the form g, r?> = constant = G(t), (say).
(iii) Axial Symmetry: - (a) In cylindrical co-ordinates (r, 6, z), axial symmetry means that every
physical quantity is independent of 6 , i.e.,i = 0 and thus the equation of continuity becomes

2422 (par) + = (pgsr)| = 0

(b) In spherical co-ordinates (r, 6, y), axial symmetry means that every physical quantity is

independent of v i.e. %: 0 and the equations of continuity, for this case, reduces to

d 1
alz r2 ar (pqlr )

] .
Y (pq,sin@) = 0.

rsinf
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4.7 Equation of Continuity in the Lagrangian Method: Let us consider a fluid particle of
infinitesimal volume dv and density p at time t. Since the mass of the fluid-particle is invariant as
it moves about, we must have

d
E(pdv) =0
Hence pdv = constant = p,dv, (say) (1)

Where p,dv, refers to the mass of the particle in its initial position at t = ¢,,.
In Cartesian rectangular coordinates, let
dv=dxdydz dvy,=dadbdc;
Then since x,y, z are functions of a, b, c
d(x,y,2)
dxdydz=m dadb dc
Hence the principle of continuity gives

0(,%,2) 1 b de = oo da db d
P 3@ b, o) *abac=podadbdc
a(x,y,z) _
or Sabe) = Po
_ _ Gy
Or p] = po where | = 3(abo)

Note: It is not necessary that r, = ai + bj + ck should be the initial position vector. Any variable
vector which can serve to identify a particle and which changes continuously from one particle to
another will serve the purpose.

4.8 Equivalence of the Eulerian and the Lagrangian forms of the Equation of

Continuity:
Equation of the continuity in Lagrangian form is
p] = po
d(x,y,z
Where ] = aEa,Z ,Ci
The components of velocity in the two systems are connected by u = Z—’:, v = %, = %
Now since
Jdx Ox Ox
da db ac
_ |9y oy oy
/= (6a @ ac
dz 0z 0z
da db adc
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du Jdu Jdu Ox Jx O0Ox Jdx Ox Ox

da 9b odc| |da ab ac| |aa ab ac
d |0y ady ady| |ov ov v oy dy dy

dt |da ab oc| |6a ab ac| |oa ab ac
dz 0z 0z dz 0z 0z ow Jdw Jdw

da db oc! laa ab ac! loa ab oc

4 _0wyz)  dxwz)  dlxyw) (1)
dt d(a,b,c) d(a,b,c) d(a,b,c)
Now,

du Oudx OJudy Oduoz

9a  dxda ' dyda ' 0zda

Ju du Ox Ju Oy Ju oz

b ox 6b 6y 6b 9z db

Ju Odudx Oudy OJuodz

dc " dxoc  dyac ' d0zdc
Now eliminating g—; and ‘;—Z from the above three equations provide

dudx Ou 0dy 0z

dxda da da da
dudx Jdu dy 0z

2 2 Zl=o

dxdb 0b 0b 0b
dudx Jdu dy 0z

dxdc dc dc dc
Splitting this determinant into two, we get

ou d(x,y,2z) 0wy, z)
dx d(a,b,c) d(a,b,c)

ou , _ 0(wy.z)

Or 0x ] o d(a,b,c)
.. Q _0(xw,2) a_w __d(xy.w)
Similarly, dy J= d(ab,c)’ 9z J= d(a,b,c)

Adding these three equations, and using (1) we obtain

aj _ el ov | ow
dt_](ax+ay+ )

a0z
or 2 =Jdivg ()

Step-1 Lagrangian equation of continuity

— da dp
pl=po =) =0 =>—]+p dt -0
d
=>]d—’t)+p]dlvq=0 by (2)
= Z—f tpdivg=0 [Eulerian equation of continuity]

Step-2 Eulerian equation continuity
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d .
= d—’t)+pdlvq=0

dp 1d] _

ap Y _ a —
= J+p5,=0=>—(p))=0
Integrating, we get pJ = po (say)

= Lagrangian equation of continuity.
4.9 Kinematically Possible Incompressible Fluid Motion:

If the velocity vector g = (u, v,w) be kinematically possible for an incompressible fluid
motion, then the equation of continuity must be satisfied. If in addition the motion is irroatational,

then curl q = 0, or in Cartesian form
Evidently, in such a case the velocity potential ¢ necessarily exists and is given by q =
—grad ¢,
d¢ d¢ d¢
= a , UV = —@, w = _a_Z

or u

In case the equations (1) are not satisfied, i.e., curl q # 0, then the motion is vertical (rotational)
and velocity potential cannot exist.
The stream lines, if needed, are easily obtained by solving the differential equations

dx dy dz
qgxdr=0 or ==

v w
2 Z_y? .
Example: Show that u = —ﬁ; = %; w= xZiyZ are the velocity components of
x“+y x“+y
possible liquid motion. Is this motion irrotational?
ou 3x2-y%2 v y2-3x% ow _

Solution: o= vz iy oy = LV a9,
The equation of continuity for the incompressible fluid is
Ju N av N ow 0
ox dy 0z
Substitution led to
2yz(3x* — y?) y
2 2)3 + yz 2 2)3
(x? +y?) (x? +y?)

Which is satisfied.
For the motion to be possible it is evidently necessarily that the equation of continuity should be
satisfied.

For irrotational motion
v Jdw ow Jdu ou 617_

oz oy Vox oz Vay ox "
67



6_1.7 _ x2_y2 . a_w . x2_y2
az x2+y2)2 ’ 9y - (x24+y2)2’
Thus, all the three equations referred to above are satisfied. Hence the motion is irrotational.

Here etc.

Example: If o(s) is the cross-sectional area of a stream filament, prove that the equation of
continuity is

% (po) + % (poq) = 0, where 8s is an element of arc of the filament and q is
the fluid speed.

Solution. Let P and Q be the points on the end sections of the stream filament.

pe=cy

f(s) f(s+83)

The rate of flow of fluid out of volume of filament is

(pqo)q — (pqo)p = % (pqo)pSs
where we have retained the terms up to first order only, since s is infinitesimally small
Now, the fluid speed is along the normal to the cross-section. At time t, the mass within the
segment of filament is pods and its rate of increase is

0 _a
5 (0005) = 2 (p0)Bs @
Using law of conservation of mass, we have from (1) & (2)
%(pa)&s + % (pqo)és =0 | Total rate = 0
. ) ] _
Ie. 5 (o) + - (poq) =0 3

which is the required equation at any point P of the filament.
Deduction: - For steady incompressible flow, % (po) = 0 and equation (3) reduces to
% (poq) = 0= % (c0q) =0 = o q=constant
which shows that for steady incompressible flow product of velocity and cross-section of stream

filament is constant. This result means that the volume of fluid a crossing every section per unit
time is constant

dis tan ce volume
<0'q=C=>O'f=C=>—= )
Example: Liquid flows through a pipe whose surface is the surface of revolution of the curve
y = a + k x?/a about the x-axis (-a <x <a). If the liquid enters at the end x = —a of the pipe with
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velocity V, show that the time taken by a liquid particle to transverse the entire length of the pipe
fromx=-atox=ais

V(1+k)2 (1 t3k+3 kz)

Assume that k is so small that the flow remains appreciably one-dimensional throughout.

2
Solution. Here,y=a+ k%

an 2
Therefore, area of the section distant x from 0 is=ny>=n (a + k%)

Areaat x = —ais m (a + ka)? = m a (1+k)>.
Applying the equation of continuity at the two sections (i.e. expressing equal rates of volumetric
flow across the two sections i.e. equating flux), we get

2
na?(1+K)2 V = n[a +kij %,
a

where x (= dx/dt) is the velocity at the section distant x from 0.

2

_ 1 kx?
Therefore, dt = TTPTAE (1 + ?) dx

Thus, the required time is
kx2)2
T=2[; V(1+k)2 (1 + _) dx
2 kz 4+ 2kx?
V(1+k)2f (1 + + a? )dx

1+= k+ k2)

V(1+k)2 (
Hence the result
Example: A mass of a fluid moves in such a way that each particle describes a circle in one

plane about a fixed axis, show that the equation of continuity is
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ap a _
5 T 39 (P®) =0,

where @is the angular velocity of a particle whose azimuthal angle is @at time t.
Solution. Here, the motion is in a plane i.e., we have a two-dimensional case and the particle
describe a circle

y
X
Therefore, z = constant, r = constant
3 3
= —=0-=0 (1)

i.e. there is only rotation.
We know that the equation of continuity in cylindrical co-ordinates (r, 0, z) is

7] 10 10 d
2+ (rpqy) + -2 (pq2) +5-(pgs) = 0 2

ror
Using (1), we get
dp ., 10 _
5 T 755 (PA2) =0

9 , 10 - =, =
= 5 T 75g (prw) = 0, where q = g2 = ro.
D
= ac T a0 (pw) =0
Hence the result
Example: A mass of fluid is in motion so that the lines of motion lie on the surface of co-

axial cylinders, show that the equation of continuity is
ap 10 ]
5 T 755 (PV6) +5-(PV;) =0
where vy, v; are the velocities perpendicular and parallel to z.

Solution. We know that the equation of continuity in cylindrical co-ordinates (r, 6, z) is given by

1

% 10
6t+r6r(prvr)+r

% (pvg) + % (pv,) = 0, where g= (v, Ve, Vz)

Since the lines of motion (path lines) lie on the surface of cylinder, therefore the component of
velocity in the direction of dr is zero i.e., v, =0
Thus, the equation of continuity in the present case reduces to

de 10 a
a+;a—v(ev9) +£(evz) =0
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Hence the result
Example: The particles of a fluid move symmetrically in space with regard to a fixed Centre,
prove that the equation of continuity is

ap dp , p 0 . o
— —+=.—(r =
at-l_uar-l_r2 ar( u) 0

where u is the velocity at a distance r

Solution. First, derive the equation of continuity in spherical co-ordinates. Now, the present case
is the case of spherical symmetry, since the motion is symmetrical w.r.t. a fixed centre.

Therefore, the equation of continuity is

L L (par?) = Ol 5 = 2= 0
= g—‘: + r—lz.;—r(pqlrz) =0, whereqi=u
= g—f+r—12.z—fur2+r—12.p.%(ur2)=0
= g—f+u.z—f+£%(r2u)=0

Hence the result
Example: If the lines of motion are curves on the surfaces of cones having their vertices at the
origin and the axis of z for common axis, prove that the equation of continuity is

60 cos ecH a

( q,) +2 qr (pqw) =

Solution. First derive the equation of continuity in spherical co- ordinates (r, 0, ) as

3 1
a—’; + ey [ m@—(pqlrz) + r—(pqz sin@) + ro- (pq3)] =0

In the present case, it is given that lines of motion lie on the surfaces of cones, therefore velocity
perpendicular to the surface is zero i.e. g, =0

Therefore, the equation of continuity becomes

a a
a_l; + rizg (pquZ) mpromy By (,qu) = 0 where (qz, 92, 93) = (0, G, Qy)

ap 1 7] 1

= 24+ 5[ 5= (0an) + par2r)| + g (0y) = 0
d d 2 6 0

= 2+ —(pgy) Far + COS:C —(pqy) =0

Hence the result
Example: Show that polar form of equation of continuity for a two-dimensional incompressible
fluid is

a v
—T(TU,)-F%—O

ucose

Ifu=

Solutlon. Flrst derive the equation of continuity in polar co-ordinates (r, 6) in two dimensions as

,thenfind v and the magnitude of the velocity q, where q= (u, v)
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d 10 10
et (ora) + 255 (paz) =01z =0

In the present case p = constant
Therefore, the equation of continuity reduces to

d d
ga_r(r”) + 55 (v) = 0,where q =(q1,92,q3) = (U, V, W)

. 0 ov
ie. P (ru) + 35 = 0
Hence the result.
_ —ucos®@ a (—ucos@ ) ov
- — s — _ =
Now u — o\~ z T)t35,=0
ucosé v v —ucos@
—_— = > — =
r2 +-69 0 a0 r2
Integrating w.r.t 0, we get
_ —usin@
V= 2

and thus|g| = ¢ = VuZ + vz = £
.

4.10 Check Your Progress:

i) If every particle moves on the surface of a sphere, prove that the equation of continuity is
ap
at
of any element and w and w' the angular velocities of the element in latitude and longitude

respectively.

cosf + :—9 (p wcosB) + % (pw' cos 8)=0, p being the density, 6, ¢ the latitude and longitude

i) Show that in a two-dimensional incompressible steady flow field the equation of continuity is
satisfied with the velocity components in rectangular coordinates given by

k(xz_yZ)
(x2+y2)2 4

2kxy
(x2+y2)2’

u(x,y) = v(x,y) = where K is arbitrary constant.
iii) Consider a two-dimensional incompressible steady flow field with velocity components in
spherical coordinates (7, 8, ¢) given by

3r, 173 3r, 1713\ .
v =0 1_§?+§r_3 cos8,vy = 0,v9 =—¢; ~17 a3 sinf,r =21, >0.

—_

iv) Determine the constants [, m and n in order that velocity
B x+lryi+ y+mr}j+ (z+nr)k
1= r(x+r)
where r = \/(xz + y? + z2) may satisfying the equation of continuity for a liquid.
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v) Each particle of a mass of liquid moves in a plane through the axis of z; find the equation of
continuity.

4.11 Summary: This chapter deals with the law of conservation of mass or equation of continuity
which is commonly used in the Fluid Mechanics. The expressions of equation of continuity in
vector form, in Cartesian forms have been obtained. The equation of continuity in orthogonal
curvilinear coordinate system is obtained and further particularly in Cartesian, spherical and
cylindrical coordinate system has been obtained. Also the equations of continuity in Lagrangian
and Eulerian form are obtained and also discussed their equivalency.

4.12 Keywords: incompressible fluid, equation of continuity, axial symmetry, spherical
symmetry, cylindrical symmetry.

4.13 Self-Assessment Test:

SA1L: Derive the equation of continuity in Euler form from Lagrangian form and Lagrangian form
from Eulerian form.

SA2: What is meant by incompressible fluid? Derive the equation of continuity in Cartesian
coordinates.

SA3: Does the three-dimensional incompressible flow given by

kx ky kz
ux,y,z) = s, vy z)= s w(x,y,z) = 3
(x2+y2+2z%)2 (x2 +y? +22)2 (x2+y? +22)2

satisfy the equation of continuity? Kk is an arbitrary constant. Thus show that the above motion is
kinematically possible for incompressible fluid.

SA4: Dows the two-dimensional incompressible flow given by
€1 .
vrzr—2+czc059,v9=—czsm9, vy =0

where ¢, and c, are arbitrary constants and r>0, satisfy the equation of continuity.

SA5: Does the velocity distribution g = (5x, 5y, —10z) satisfy the law of conservation of mass for
incompressible flow?

SA6: Does the one-dimensional incompressible flow given by u(y) = ay?+by+cv=w=
0 and a, b, c are constants, satisfy the equation of continuity?
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CHAPTER-5
EQUATIONS OF MOTION

5.0 Learning Objectives: After reading this chapter, the students should be able to understand
the flux method using Euler’s dynamical equation, understand the use and limitations of
Bernoulli’s theorem and equations and apply it to solve a variety of flow problems and should be
able to study the impulsive motion.

5.1 Euler’s Equation of Motion for a Perfect Fluid:(Equation of Conservation of
Momentum)

To obtain Euler’s dynamical equation, we shall make use of Newton’s second law of motion.

Consider a region v of fluid bounded by a closed surface S which consists of the same fluid
particles at all times. Let g be the velocity and p be the density of the fluid.
Then p dv is an element of mass within S and it remains constant.

The linear momentum of volume v is

M = qu pdv | mass x velocity = momentum.
Rate of change of momentum is
am _ d _ (% a
— =zla pdv=[,— pdv+ [ q_(pdv)
aM _  dq
= = v pdv 1)

Since the mass (p dv) remains constant.

The fluid within v is acted upon by two types of forces

The first type of forces are the surface forces which are due to the fluid exterior to v.

Since the fluid is ideal, the surface force is simply the pressure p at a point of the surface element
dS directed along the inward normal at all point of S, then The total surface force on S is
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Jyp(-n)dS = — [.pndS = Vpdv (By Gauss div. Theorem) (2)

The second type of forces are the body forces which are due to some external agent. Let F be the
body force per unit mass acting on the fluid. Then F pdv is the body force on the element of mass
pdv and the total body force on the mass within v is

J,F pdv ©)

By Newton’s second law of motion, we have
Rate of change of momentum = total force

d
= fvd—‘t’pdv=vapdv—vapdv

d
=N fv(d—‘t’p—Fp+Vp)dv=0
Since dv is arbitrary, we get
dq
= —F —
di P p+Vp=0

d 1
=F—_Vp (4)

or ot

which holds at every point of the fluid and is known as Euler’s dynamical equation for an ideal
fluid.

Remark. The above method for obtaining the Euler’s equation of motion, is also known as flux
method.

5.1.1 Other Forms of Euler’s Equation of Motion. (i) We know that

d _D_38 :
w=p-atdV
therefore, equation (4) becomes.
aq _ _ 1
at@V)g=F-_Vp ()
But (q.V)q=V G q2)+ﬂ><q, Q=curlq

Therefore, Euler’s equation becomes
24V (; 4?)+2xq=F -V (6)
ot > 4 q , VP
Equation (6) is called Lamb’s hydrodynamical equation. The chief advantage of (6) is that it is
invariant under a change of coordinate system.
(ii) Cartesian Form. Let q = (u,v,w),F = (X,Y,Z) and Vp = (3—2,%,3—’;),
then equation (5) gives
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du du du du 19

—_— —_— v— —_— = X——— \

0t+u0 + 0y+W02 pax |

v v v v 1dp ¥

i i v— - = Y___

at +uax+ 0y+W02 p Ox (7)
ow ow ow ow 10dp

- — TV —TW—= =

at + a + a + 0z paz)

Equation (7) are the required equations in Cartesian form.
(iii) Equations of Motion in Cylindrical Co-ordinates. (r, 0, z).

Here,
q = (w,v,w),dr = (dr, rdo, dz)
_ (9 19p 9p
vp = (ar’raa’az)
Let F = (F, ,Fq,F,)

Also, the acceleration components in cylindrical co-ordinates are
dq _ (d_u v v ﬂd_w)
dt  \dt r’dt r dt

Thus, the equation of motion

dq _p_1
e F p Vp. becomes
du_ v _ g 10p )
dt r T p or |
v v oo 164
dt + r Fe rp 00 (8)
v _p 1o |
a2 p oz )
(iv) Equations of Motion in Spherical co-ordinates (r, 0, ¢).

Here,
q=(uvw), dr = (dr,r d0,rsin 0 d¢)

ap 190 1 9
vp = (ﬁ';ﬁ'rsineﬁ)
Let F = (F,, Fo,Fy)
The components of acceleration in spherical co-ordinates are
dq (du v2+w? dv  w2cot@ uv dw | vwcot 0)

dt dt r dt r r’dt r
Thus, the equation of motion take the form

du v*+ w? 1dp

dt r T por
Q _ w? cot 0 uv _ _ ia_p
dt r r 0 pr 06
dw  vwcotd _ 1 B_p
dt r - F¢ prsiné d¢p (9)

Remark: - The two equations, the equation of continuity and the Euler’s equation of motion,
comprise the equations of motion of an ideal fluid. Thus the equations

ap . _ . a_q _ _l
T divlpg) =0; S +(qVg=F—_Vp
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are fundamental to any theoretical study of ideal fluid flow. These equations are solved subject to
the appropriate boundary and initial conditions dictated by the physical characteristics of the flow.

(v) Equation of motion referred to rotating axes: If the axes rotate with uniform angular

velocity w = (w,, w,, w3), then the expression for acceleration is
dq 0

qa ., _0q ,
dt—at+(q.V)q—at+wXq+(q.V)q

Hence the Euler’s equation of motion then is
dq 1
—+twXxq+(q.V)q=F—-——-V
5 Texat+(q.Vq o VP
Here g and q’ are the absolute and relative velocities.

Definition: The velocity vector q is called Beltrani vector if q is parallel to Q=curl q i.e., if g X
Q=0.

Definition: A fluid is said to be barotropic if p = f(p).

Def: Conservative Field of Force: In a conservative field of force, the work done by a force in
taking a unit mass from a point A to a point B is independent of the path, i.e.,

f F.dr=f F.dr = —x
ACB ADB

Hence y is a scalar function and known as force potential function. It can be proved that F = —Vy.
Cor. Acceleration potential: When the body forces are conservative so that F = —V x and the

fluid is barotropic, i.e., density is a function of pressure, so that p~1 Vp =V f%p, then Euler’s

equation of motion may be expressed as

dq dp
E—‘VX‘VfF

Or a=-V(x— f%p) = —grad ® (say)

This result shows that the acceleration vector a possesses acceleration potential ® = y — | %p

5.2 Cauchy Pressure Equation: Integrals of the equation of motion:

To obtain the solution of Euler’s equation of motion, which is non-linear, we will have to entertain
simplifying assumptions. Firstly we assume that the external forces form a conservative system so
that F = —VQ. Secondly we assume that the fluid is barotropic (p = f(p)) so that

1Vz;szd—p=VP (say)

p p

Since % = % +wXxq+ V(% 9% [Langrage acceleration
relation]

The equation of motion can be set as
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6q+ X +V(1 2)— VQ — VP
ac @4 2 1)~

or M =gxw-V(Q+P+3q% (1)

This last expression is the final result. Since this result, as it stands, is not very useful, several
special cases will be considered.

Special cases:

(1) When the motion is irrotational , w = curl q = 0,and q = —V ¢ and (1) reduces to

V(E)=vH  [H=0+P+;q’

at
)
Since the operators V and % are interchangeable. The solution of (2) , viz, grad (H — ‘Z—‘f) =0Iis
Q+fd—;+%q2—2—f=6(t)=constant (3)

The constant C(t) shall be a function time t only.
Equation (3) is known as pressure equation.

(ii) Bernoulli’s Equation: When the motion is steady as well as irrotational, Z—‘: = 0 and w = 0;
(1) reduces to
1
V<x+P+§q2> =0
The solution of this equation is

X+P+2q=C 4)

If the fluid is incompressible and homogeneous, p = constant, then P = f%p =p/p, therefore,

(4) becomes
Pilo2_
xtotza°=C ()
Here C is an absolute constant i.e., is independent of time also. Equation (5) is the Bernoulli’s

equation for unsteady, irrotational of an incompressible fluid. It may be remarked that Bernoulli’s
theorem is still true even if the velocity potential ¢ does not exist.

5.3 Lagrange’s Equation of Motion. To obtain Lagrange’s equation of motion.

Let initially a fluid element be at (a, b, ¢) at time t = to when its volume is dVo and density is po.
After a lapse of time t, let the same fluid element be at (X, y, z) when its volume is dV and density
is p . The equation of continuity is

pJ = po 1)
— 0(xyz)
where J= Aabo)

The components of acceleration are
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_*x . 3y | 0z

“o2’Y T a2t T a2
Let the body force Fbe conservative so that we can express it in terms of a body force potential
function y as

%

By Euler’s equation of motion,
Y_p _lop,_ _py_1
dt F p Vp - VX p Vp (3)
Its Cartesian equivalent is
Px_ oy 10p)
a2~ ax pox |
%y _ _ox_1op $
a2~ ady pay | (4)

We note that a, b, c, t are the independent variables and our object is to determine X, y, z in terms
of a, b, ¢, t and so investigate completely the motion.

To deduce equations containing only differentiations w.r.t. the independent variables a, b, c, t we
multiply the equations in (4) by ox/da, dy/oa, 0z/oa and add to get

xox | ydy  9%z9z _ _9x _19p (5)
at2 da = dt2 da = It da da paa
Similarly, we get
Pxox | ydy  9z0z _ _ox _10p (6)
at2 ab  at2 ab  at% ab ab pab
?xox  d%yad 9%z 0z b 19
ooc T oot oo™ "o poc (7)

These equations (5), (6), (7) together with equation (1) represent Lagarange’s Hydrodynamical
Equations.

5.4 Bernoulli’s Theorem: Statement: For the steady motion of an inviscid barotropic fluid
under conservative body forces, the pressure at a point is given by

dp 1 .
f " + 3 g + x = C, C being absolute constant.

Proof: Let AB be streamline drawn in the fluid of density p and let §s be an element of it. When

ds as axis, draw a small cylinder of cross-section k. Consider steady motion of the fluid within this
cylinder. Also, let g be the velocity and let the component of the body force in the direction of
motion be F.

Forces are conservative implies F = —Vy.

Motion is steady implies % = 0, density is a function of pressure only implies that there exists a

realtion of the type
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P = [l sothat VP = Vp.

By Euler’s equation, % =—-Vy—-VpP
2
Or a—': +(q.V)g=—-V(x+P)
= Vix+P)+(q.V)g=0
But V(q.q) = 2[q x curl q) + (q.V)q]
VQ(+P)+% Vg2 —qxcurlqg=0
Or V(}(+P+%q2) =gqXcurlq (1)

Multiplying (1) scalarly by g and noting that
q-(gqxcurlq) =(@xq).curlq=0.Forqxq =20

We obtain q.V(x+P+%q2)=0
The solution of this is x+P+ %qz = constant = C
or x+ f%p+ %qz =C

Where C is a constant for the particular stream line (or vortex line) chosen, but varies from one
stream line to the other.
NOTES: (1) If the motion is irrotational, velocity potential exists. In this particular case, C is an
absolute constant.
(2) If p is constant, there result the simplest case:
%qz + g +x=C

(3) If the body force is due to gravity, y = gh where h is the position (height) above some fixed
horizontal datum plane. The result may then be written as

1o Py ne

54 + E + gh = constant
Or in the language of hydraulics

velocity head + pressure head + position head = total head

Where the total head is constant along any stream line.

5.5 Equation of impulsive motion: To find the relation between impulsive pressure and change of
velocity.
Let & denote the impulsive pressure and | the extraneous impulse per unit mass of fluid.
Let g, and q, be the velocities just before and just after the impulsive action.
Newton’s second law for impulsive motion applied to the fluid within closed surface S states:
Extraneous Impulse = Change of Momentum
Then, if n is inward unit normal we must have

f@nds+f Ipdvzfp(qz—ql)dv
S 14 14
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But Jjonds=—[ grad® dv [by Gauss Theorem]

f[IP—VU_)—P(CIz—CI1)]dV=0

Since the surface is arbitrary, we must have
1

1=(5)va=(a-q0. (1)
Cor.1. Interpretation of potential as impulsive pressure. Let us suppose that ¢ is the velocity
potential of a motion generated from rest by impulsive pressure @ and that external impulses are
non-operative, then
1=0;9,=0,;q, = —V¢;
With these values, the above equation (1) reduces to

lva Vo
—Vw= )
p

If p be constant, integration provides the result

W = po + constant (2)
The constant may be omitted, as an extra pressure, constant throughout the fluid, produces no
effect on the motion.
Cor.2. In case of a liquid, p is constant and if the external impulses are superficial to the liquid,
I=0. Then, taking the divergence of both members of (1) and using div q; = 0 and divq, = 0,
we get

V2w =0 [Laplace equation] (3)

Cor.3. For the liquid motion started from rest by impulsive pressure alone we obtain from (1) q =
—grad (%) ; hence the motion is necessarily irrotational and velocity potential ¢ exists and is

given by ¢ = %.
Cor.4. In the absence of external impulses, (1) produces

Q2 —q1 = -V (%) 4)
Now, if the fluid motion before the action of the instantaneous forces is irrotational, i.e., q; =

—V¢,, then obviously, g, = =V [% + ¢,] so that the fluid motion remains irrotational after these

forces have ceased to operate. Setting q, = —V¢, we immediately obtain
¢ =1 + % +C
(%)
If g,(= V¢,) is constant, (4) provides
q1 =V(%):>curlq= 0 (6)
Thus, the given irrotational motion can be established completely throughout the fluid after the

action of impulsive pressure @ = (p ¢, + C) and that it is impossible to create or destroy by
rotational motion any combination of instantaneous pressure forces.
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Example: A homogeneous incompressible liquid occupies a length 21 of a straight tube of
uniform small bore and is acted upon by a body force which is such that the fluid is attracted to
a fixed point of the tube, with a force varying as the distance from the point. Discuss the motion
and determine the velocity and pressure within the liquid.

Solution. We note that the small bore of the tube permits us to ignore any variation of velocity
across any cross-section of the tube and to suppose that the flow is unidirectional.

We u be the velocity along the tube and p be the pressure at a general point P at distance x from
the centre of force O. Also, let h be the distance of the centre of mass G of the fluid, as shown in
the figure.

| AT

Equations of motion of the fluid are:
(i) Equation of Continuity: Here, g = (u, 0,0)
Therefore, equation of continuity becomes

z—’;=0=>u=u(t) 1)
(ii) Euler’s Equation: In this case, it becomes

ou | udu _lop _ _ ., _19p

0t+ax+X pax_ p 0x

ou _ _ 10 i
= P lusing (1) (2)

where —uxiis the body force per unit mass, u being a positive constant.
We observe that equation (2) can be written as

du_ 14
dt p dx (3)
Integrating w.r.t. X, we get
du _ ﬁ P
XE =—Uu 2 s +C (4)

where C is a constant and at most can be a function of t only. w.r.t. (x, y, z)
Let IT be the pressure at the free surfaces x = h—Il and x = h + | of the liquid
Then using these boundary conditions, equation (4) becomes

du 1 _n2_n
(D =—znth—D* > +C

du 1 _n2_n
() o = —gr(h=D* =~ +C
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which on subtraction give

du__
% = —uh 5)

But in the fluid motion all fluid particles move with the same velocity u and u = %
.. Equation (5) becomes
d?h
— = —uh (6)

di?
Now, we solve the different equation (6), which can be written as
(D*+wh=0
Here auxiliary equation is
D2+ u=0 = D=+/ui
Therefore, the solution of (6) is
h = A cos(\/ut+€)
where A and e are constants which can be determined from initial conditions.

To Calculate Pressure:— We have from (3) & (5)

—uX _;E = —[lh
1d
So=nh—x)
Integrating w.r.t. X, we get
p _ u(h—x)*
’—) =20 +D (7
The boundary condition x =h —1, p =TI gives
n_ 2
; = ”—_2 + D
2
i.e. D =TIl/p +-
Therefore, equation (7) becomes
p _ puh-x) pl*
; = 2 + H/p + 2
n
:;_g[(h_x)z - 7]
n
:;—g[(h—x+ D(h—x - D]

Example: A quantity of liquid of density p occupies a length 2a of a long straight tube of
inform small cross-section and is under the action of a force Kx per unit mass towards a fixed-
point O. Show that when the nearer free surface is at a distance z from O, the pressure at a

distance x exceeds the atmospheric pressure by

kp(x-2) (a—%+2%)

Solution. The equation of continuity for incompressible fluids (divq = 0) in the present case of

one-dimensional flow is
ad . ou _
a(pu)—O i.e.—=0 1)
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Thus, u is a function of time t only.

< X >
«c 7 _
€—7+2a >

Euler’s equation of motion becomes

ou _ y 10p
a p 0x
i du _ o, _ldp
ie. e kx o dx
i Lo _dp, _dp.
where F = Xi = —kxi,Vp = Pl Bl 2
Integrating (2) w.r.t. x , we get
du _E _p
x; = 2 0 +A
Sincep=ITatx=2z,x=2z+ 2a; therefore, equation (3) becomes
du —kz? n
w2 ,tA
and
_ 2
(z+2a) % = @ —1II/p + A.
Subtracting these, we get
Za% = —g (4a® + 4az) = —2ak (z +a)
du_
== —k (z +a)
From (2) & (4), we get
ldp_
kx + P Kk (z +a)
i dp_ _
ie. T pk (z +a—x)

Integrating w.r.t. x, we get
p :_Tk” (z+a—x)*+B
The boundary condition p = IT at x = z gives
B=11 +2°
Therefore, the pressure p is
p=TI +ka'12—";—p (z+a—x)?
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=1+ 2 [ ~(z +a —%)%]
=11 + P [(2a + z—x) (x-2)]
= p-IT1=kp (a +2/2-x/2) (x-2)
Hence the result

Example: Air obeying Boyle’s law is in motion in a uniform tube of small cross section. Prove
that if p be the density and V be the velocity at a distance x from a fixed point at a time t, then

?p 0? 2 .
2z = 2,2 PV + K)]. where k is a constant

Solution. Attime t, let p be the pressure and V be the velocity at a distance x from the end of the
tube. Then, by Boyle’s law

p=kp (1)
Equation of continuity becomes

—+—( V)=0 la=(V,0,0) )
and the equation of motlon is

av _ _1dp -

” + vZ 5= pn |F= 0 at free surface. 3)
Differentiating (2) W. rt t, we get

av

0t2+ (atv+p5)=0 (4)
From equations (1) and (3), we get

v v _  kap

E + Va - p 0x (5)

Using equations (2) and (5) in (4), we obtain

?p  a ] v ap] _
Et VeV Ve — k%] =0

. 9? afa 2 ap] _
I.€. ﬁ—a[a(p[])ﬁ'ka]—
: #p _3[3 y2 o p2y,] =
o~ s (V2 +Kp| = 0
. ?2p 9?2

l.e. 22" a2 [VZ + k)p]

Hence the result.
Example: Prove Bernoulli’s theorem, that in a steady motion, f%p + %qz + y; is constant along

a stream line. Deduce the theorem of Torricelli.

Solution: Consider the efflux of liquid from a small orifice in one of the walls of a vessel kept
filled to a constant level (giving steady motion). Let h be the depth of the vena contracta (the
contraction), q is the speed of efflux there at, and II the atmospheric pressure. Then, by Bernoulli’s
theorem
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n _n, 12
S, tgh="+34 1)

Because velocity is practically zero at the free surface of the water in the vessel, and the pressure is
I1, both there and on the walls of the escaping jet. Hence (1) yields
q* = 2gh (Torricelli’s theorem)

Example: A long straight pipe of length L has a slowly tapering circular cross section. It is
inclined so that its axis makes and angle « to the horizontal with its smaller cross-section
downwards. The radius of the pipe at its upper end is twice that of at its lower end and water is
pumped at a steady rate through the pipe to emerge at atmospheric pressure. It the pumping
pressure is twice the atmospheric pressure, show that the fluid leaves the pipe with a speed U
given by

U2 =%[gLsina+%],

where IT is atmospheric pressure

Solution. The assumption that the pipe is slowly tapering means that any variation in the velocity
over any cross-section can be ignored. Let the velocity at the wider and of the pipe be V and the
emerging velocity be U (velocity at the lower end). The only body force is that of gravity, so F =
—gj and consequently y =gy

z . ax. dx, 0
'-'F=—V)(:>—q]:—l7)(=—£l—£]—£k

9=—%,"X=9y
Bernoulli’s equation, % + % g +x=C | - For water p is const.
becomes % +%q2 +gy=C (1)
Applying this equation of the two ends of the pipe, we get
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v =L sin a

%+%.VZ +gLsina=%+%U2 (2)  [for lowerendy =0

Let a and 2a be the radii of the lower and upper ends respectively, then by the principle of

conservation of mass

n(2a)?V = a’ U
= V=2 3
From (2) and (3), we obtain
1 (U? i 1
M+p (E) + gpLsina = EpU2

= %p(UZ—U—Z)=H+gpLsina.

16

= ;—ZpUZ =I1 +gpL sina.
232 i a
= U —15[gLsma+p]

Hence the result.
Example: A perfect incompressible fluid is moving steadily around the outside of a fixed

cylinder of radius a and vertical axis oz. The fluid particles are transversing horizontal circles
with centre on oz, the speed at distance r from oz being g Show that the motion is irrotational.
If the surface of the fluid is open to the atmosphere, and the origin o is chosen so that on the
free surface, 7 = 0 when r = a, prove by means of Bernoulli’s equation or otherwise, that the

equation of the free surface is
2

Zgz=a—cr’—2
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TR,
N

Solution. Letqg=(u, V)

L U=-cos(90+6) = —"sinf = -3 ,P=xX"+y* ie. x=rcosh, y=rsino
a ax
V=-cos0 ==
r r
i j k
—|0/ox a/ay a/oz| - O (x99 (y
Curl q —-ay axy ka ax (Tz) + Oy (1"2)]
= = 0
_ 2 2(x2+y2) _
cua- 222 o
So, the motion is irrotational.
Now Bernoulli’s pressure equation is
F=-Vy
p 12 — —agk =%
p+2q +020=C = —gk = azk
> )y =9z

p 1d® _
or ; + Er_z + gz = C
whenr=a,z=0,p=0sothat C :%, therefore,

P 1 a? _1

;+ Erz + gz =
The equation of the free surface (p = 0) is

2
292=1—
Hence the result.
Example: Steam is rushing from a boiler through a conical pipe, the diameters of the ends of
which are D and d. If V and v be the corresponding velocities of the stream and if the motion be
supposed to be that of divergence from the vertex of the cone, prove that

v _ D% PV 2k
1

vV o d?
where K is the pressure divided by density and supposed constant
Solution.
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Since the stream steadies down soon after and the external forces like gravity are neglected,;
therefore, by Bernoulli’s equation, we have

j‘%” + % q? = constant |i.e., p is not const. (1)

and by Bayle’s law, we have

p=kp 2)
Therefore, (1) becomes

kf%p + iqz =C
:>k|ogp+§q2:C
If at the sections A and B, p = p1, p = p2 respectively and g =v at A, g =V at B, then we have
k log p1 +%v2 =C,
klogp, +%V2 =C
Subtracting, we get
2k log (p2/p1) = V2 — V2.

= palp1 = e@*-VH/2k 3
Now, by equation of continuity, we have

Flux across A = Flux across B.

1,)\? 1,.)\2
=7 (Ed) p1v = n(ED) pV
_d*v
= palp1 =23+ 4)
From (3) & (4), we get

v _ D_ie(vz—vz)/zk
d

Hence the result.

Example: A straight tube ABC, of small bore, is bent so as to make the angle ABC a right angle
and AB equal to BC. The end C is closed and the tube is placed with end A upwards and AB
vertical, and is filled with liquid. If the end C be opened, prove that the pressure at any point of
the vertical tube is instantaneously diminished one-half. Also find the instantaneous change of
pressure at any point of the horizontal tube, the pressure of the atmospheric being neglected.

Solution. Let AB=BC =a
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When the liquid in AB has fallen through a distance z at time t, then let P be any point in the
vertical column such that

AM =z BP=x,BM=a-z
If u and p be the velocity and pressure at P, then equation of motion is
du du _ la_p (1)

Stus=—g—3% u =u(x1)
and equation of continuity is

Ju . _

Pl 0 ie,u=u()
Therefore, equation (1) becomes

ou _ _,_ 19

a 9 p 0x
Integrating. w.r.t. X, we get

ou _ _ _1
X, = —gx. pp+C (2)
Using the boundary condition p = 0 at x = a—z, we get
C= (a—z)%+g(a—z)
Therefore, equation (2) becomes

ou_ _ax_P _ —
X = —gx p+(a z)-+g(a—2)
. P_ (o ou
Le. U= (x a+z)(at+g) (3)
Now, we take a point Q in BC, where BQ = x’ and let u’, p’ be the velocity and pressure at Q, then
% =—(x'— a)aa—‘;' (4) | z=0and g is not affecting
Equating the pressure at B, when x =0, x’ = 0, we get

(a-z) (Z—': + g) = aaa—';' | From (3) & (4)

—_ _aa_u | . u! =_u
- Yot e
Initially, when C is just opened, then z =0, t =0 and we have
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1G] =2 ().,
o) ), o ®
Therefore, from equation (3), initially, the pressure at P is given by
Po— _(x—a) [(%)0 + g] |Po = (P)e=0

p
=S @x-a
=  p=,pg(a—x) (6)
But when the end C is closed, the liquid is at rest and the hydrostatic pressure at P is
p1=pgh=pg (ax) [h=AP=a-x] (7)
From (6) and (7), we get
Po =P

Thus, the pressure is diminished to one-half.
Now, from (4), initial pressure at Q is given by

Plo _ 1 our — (! ou — _ g
i (*' —a) (at )tzo_ ' —a) (Ot)tzo_ (a-x9;
' 1
= Po'=;pg(a—x)
When the end C is closed, the initial pressure (hydrostatic) p-at Q (orBorC)is pga.
Therefore, instantaneous change in pressure

’ 1 ’ 1
=P2—Po =pga—;pg(a—x)=;pg(a+x’

Example: A stream in a horizontal pipe after passing a contraction in the pipe at which its
sectional area is A, is delivered at atmospheric pressure at a place where the sectional area is B.
Show that if a side tube is connected with the pipe at the former place, water will be sucked up

1

through it into the pipe from a reservoir at a depth %(— Biz) below the pipe, s being the

Az
delivery per second.

Solution. If v be the velocity in the tube of sectional area A and p be the pressure there, while V

and IT being the corresponding quantities at the sectional area B, then Bernoulli’s equation

% + %qZ = constant, gives "+ p Is constant for water
P 12 I, 1y
bgvi =4V 1)
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water

By the equation of continuity, flux across the sections A and B are equal.

i.e.  Av=BV =s, where s is delivery per second

S S
=>v==-,V==
A B

Therefore, from equation (1), we get
14 1s? n 1 52
p 242 p 2B
=35t (E—g) =, W -p) @
2 Az B? p
Now, if h be the height through which water is sucked up, then
pg h = difference of pressures = IT —p

Therefore, from (2), we get
lea(1 1) _1 —
25 (AZ BZ) o ppgh =gh.

Hence the result.

Example: A sphere is at rest in an infinite mass of homogeneous liquid of density p, the
pressure at infinity being 7Z Show that, if the radius R of the sphere varies in any manner, the
pressure at the surface of the sphere at any time is

E dZ(RZ) d_R 2
H+2[ dt? +(dt) ]

Solution. In the incompressible liquid, outside the sphere, the fluid velocity g will be radial and
thus will be a function of r, the radial distance from the centre of the sphere (the origin), and time t
only.

The equation of continuity in spherical polar co-ordinates becomes
a

v q=00)u=u(rt),lV= (_

ar’ 0' 0)

1d

r2dr

(r*u) =0 (1) V-q= rlz:_r(TZu)_

i.e.spherical symmetry.
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= r2u = constant = f(t)

On the surface of the sphere,

r=R,u=R
Therefore,
f(t) =R?R
and thus
r’u=R°R (2)
Therefore,

We observe that u — 0 as h — oo, as required.
From (1), it is clear that curlq = 0

= the motion is irrotational and q =-V¢

—_0% e _ 1
= U=—-— = — = From (2)

= ¢="Ir (3)
The pressure equation for irrotational non-steady fluid motion in the absence of body forces is

p .12 09 _
p+2q at—C(t)

ie. 2+ “u? -2 = C(8). (4)
where C(t) is a function of time t.

Asr— oo, p =TI, u=fr* - 0, p—0

so that C(t) = I'l/p for all t (5)
Therefore, from (2), (3), (4) and (5), we get

p I, @ 1 (R2R\?
;—;‘Fa(f/r)—g(r—z) (6)
But 2 =2 (R?R) = RR* + 2R  R?

At the surface of the sphere, we have r = R and equation (6) gives
_m, 1 P2 . pR2) _1p2
—p+R(2RR +RR?) R

n

p
p
2Ty 2R?+RR - R?
P P 2

= % +3 (3R* + 2RR) ©)
Now,
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d%(R?%)
dt?

+(R) =2 2RR) + (R)?
= (2RR + 2R?) + R?
=2R R + 3R?
Therefore, from (7), we obtain
2/p2 2
p=igp |55+ (%) |
Hence the result.
Example: An infinite mass of homogeneous fluid is at rest subject to a uniform pressure 17, and
contains a spherical cavity of radius a, filled with gas at a pressure mZZ. Prove that if the inertia
of the gas be neglected, and Boyle’s law supposed to hold throughout the ensuring motion, the

radius of the sphere will oscillate between the values a and n a, where n is determined by the
equation.

1+3mlogn-n®=0

If m be nearly equal to one, the time of oscillation will be 27z / , p being the density of the
fluid.

Solution. In the incompressible fluid outside the spherical cavity, the fluid velocity g will be
radial and will be a function of r, the radial distance from the centre of cavity (the origin), and time
t only. The continuity equation. div g = 0 in spherical polar co-ordinates, becomes (spherical
symmetry)

rzd (r u) = 0 = r?u = constant = f(t) 1)
where u = u(r, t) |':(u00)l7=(100)
H q ) ) 1 - ar) )
We observe that u—0 as r—oo, as required.
Clearly curl g = 0 so that the motion is irrotational and g = —V ¢, where ¢ is velocity potential.

__d¢ _ f) _ -d¢
= U T T %
= ¢ =—fIr (2)
The pressure equation for irrotational non-steady fluid motion, in the absence of body forces, is
1 ]
p/p+yu =50 = C(D) 3)

where C(t) is a function of time t.
As r—w, p =11, u = fir* - 0, $>0,
so that C(t) = I1/p for all t.

Putting the values of ¢ and C(t) in (3), we get

p 12 19f_ I

P T 2 u rot P (4)
Now, when the cavity expands to radius r, Boyle’s law provides pV = constant (V = volume) so

that
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4 4
;na3mII =3 nrip

a3
=p=mll> (5)
2 du

o _d 2.y — 2
Now, —dt(r u) =2ru+r 0

du du _ duds _ . du

= 2ru? + r’u. = =
u” + u dr dt dr dt udr (6)

From (4), (5) and (6) we get
mH + u (Zu +rud) I1/p

3
= 3urr+2r° uZ—: = %_ (% - rz) | Multiplying both sides by r? to make it exact
- _( r3 2) (m: _ 1'2)
Integrating w.r.t. r, we get
3,2 =20 3 _r
r’°u —p(ma logr 3)+A (7

where A is constant of integration, determined by the fact that at r = a, u = 0 (Initial conditions)
and hence

A=—= p (ma3 loga——a )
Thus, from (7), we get
P u?= 2;’::3 [Bm log (:—l) - (5)3 + 1] (8)

Now, u shall be zero again where r = na, i.e.:—l = n, provided. n is given by the equation

1+3mlogn-n®=0
Hence proved the result.
Now, we consider the special case, when m= 1. Letr =a +x, where X is small.
Then x = u = 7 and thus from (8), we get

(x)z(a+x)3=2’3’:3 g)—(1+§)3+1] To142
or (¥)%[1+ 3y + 3y*+...] = 1[3 (y—y2—2+...) —(1+3y+3y*+...) + 1]
where A = ,y == and y? is neglected.
Thus (D)2(1+3y +3y?) = 1(~92)
= )2 =2(-92) (1 +3y +3y2) 1 = —9a% | Neglecting y?

2 2

)2 = _g2I1(x\" _ gl x

= ()" = 93p2() - Sp(az)
Differentiating w.r.t. t, we get
. 3n

b= (22).x

i.e X =— =3

€. X=—px,p=_5

96



2
This represents a S.H.M. of periodic time 271\/% | T = j—%
Hence proved the result.
Example: Liquid is contained between two parallel planes; the free surface is a circular cylinder
of radius ‘a’ whose axis is perpendicular to the planes. All the liquid within a concentric
circular cylinder of radius b is suddenly annihilated. Prove that if Z7be the pressure at the outer

surface, the initial pressure at any point of the liquid, distance r from the centre, is

Illogr —log b)/(log a — log b)

Solution. In the incompressible liquid outside the cylinder |z| = b, the fluid velocity q will be radial

and will be a function of r, the radial distance from the centre of the cylinder (the origin) and time t

only, where r < a.

The equation of continuity div g= 0 in cylindrical co-ordinates. (Cylindrical symmetry), becomes
“—(ru) = 0 = ru = const. = f(t) = RR (say) (1)

la=(00),7=(%,00)

We note that g—0 as r—oo, as required.
Clearlycurlq=0 = q=-V¢

. dp _
1.€. o f/r =u
= d=-flogr (2)
The pressure equation for irrotational non-steady fluid motion, in the absence of body forces, is
Z 9

T =C® lq = (,0,0) (3)
Initially, t = 0, u = 0 so that equation (3), on using (2), yields

S+ f(0)logr = C(0) 4)
Now, p =ITwhenr =a, p =0 whenr = b (since the cylinder is annihilated = no pressure), so that

~+f(0)loga = C(0) (5)

and 0 + £(0) log (b) =C(0) = C(0) = £(0) logb
.. From (4) & (5), we get

£(0) (log r — log b) = -2

p
and £(0) (log a—log b) = ?
Dividing these two we get
_ logr—logb
p= 11 log a-log b

Hence the result.

Example: An infinite mass of ideal incompressible fluid is subjected to a force wr="? per unit
mass directed towards the origin. If initially the fluid is at rest and there is a cavity in the form
of the sphere r = a in it, show that the cavity will be completely filled after an interval of time
ﬂa5/3(10 ﬂ)—llz_
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Solution. The motion is entirely radial and consequently irrotational and the present case is the
case of spherical symmetry. The equation of continuity is

iz% (r*u) = 0 = r%u = constant = f(t) (1)
On the surface of the sphere, r = R, R= v (say)
Therefore,
r’+ = f(t) = R?R
2 dv

= f(t) = R*R + RZRR = R* — + 2Rv?
_f® 2, pdv_ 5 2 d_vd_R
= 2D +R 2v? +R—-—
dv
= 2v? +Rvd—R (2

The Euler’s equation of motion, in radial direction, using * = u, is

ou "_” —F. 19
at + Us =t por
ou _ 9 (f( f@® -7/3
But at_at(rz) rZ’F = THr
So, we need to integrate the Euler’s equation
f® 1 z) -u 0 (g)
r2 + ar( u 73 or p (3)

Let us assume that the cavity has radius R at time t and its velocity then is R = v. Integrating (3)
over the whole liquid (r = R to r = o) at time t, we obtain

1 1,2 — 3] 11" _[p]”
[ r ]R+ [Zu ]v T4 r4/3]R [p]R

Since the fluid is at rest at infinity, u. = 0. Also p» =0, pr = 0 (cavity), thus we get
) 1 sk 1

R 2 4 R4/3
3111

dv 2 _
= 2Rv -+ 3v S RA3
To make it exact, we multiply by R? so that
3, v 2.2 _ _ 31 p2/3
2RvdR+3R v = 2R

d(R3v? 3m
— ( ) _ _3mp23
dR 2

| using (2)

Integrating, we get
R®\2= A— 2" RS/3 4)
10
When R = a, R=v = 0, which gives A = j—’;as/3.
Now, we take v = R< 0 because as the cavity fills, R decreases with time. Thus (4) gives
dR _ o 1/2 ,,5/3_g5/3\1/2
w=—G) (=)

Therefore,
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om?  (° R¥?dR
(1_()) t=- . (a5/3 — R5/3)1/2

6a5/3 2, . . .
= a5 fO"/ sin?0d0 | R = a°® sin%0 ie., R = a (sin
9)6/5
_ 3mwas/3
T 10
Thus,

t=n a5/3 (10“)—1/2 .
Hence the result.
Example: A mass of liquid surrounds a solid sphere of radius a, and its outer surface, which is
a concentric sphere of radius b, is subjected to a given constant pressure 7, no other forces
being in action on the liquid. The solid sphere suddenly shrinks into a concentric sphere,
determine the subsequent motion, and the impulsive action on the sphere.

Solution. Let v’ be the velocity at a distance r' from the centre of the sphere at any time t and p be
the pressure. The equation of continuity (case of spherical symmetry) is

r'2v' = f(t) 1)
Equation of motion is
W 0 _10p
at ar' p or'
(0] i(l ,2) __1o
or r? +ar' Zv - p or' (2)

Let R, r be the radii of the external and internal boundaries at time t, and V, v be their velocities.
These quantities are functions of time t only and

V=Rv=r+
Also, p =0, p = ITon the internal and the external boundaries respectively. Integrating (2) w.r.t r’
fromr =rtor =R, we get

f 1_ 1\ ,1.2_ ypy2y_1
FOG-3)+;0 -V =2 (3)
But
r2v =f(ty=r’v=R2V
FOE) = 217 2dv _ 5 o 2 dv
= f@®=2rv+r dt—2rv v

Hence (3) becomes

(2r02 4 42 ﬂ)(l_l) ﬁ( _V_Z)zﬂ
(2rv+rvdr - R+21 2 p

(22 1 2 ﬂ)(l_l) ﬁ( _ﬁ)zﬂ
or (2rv+rvdr - R+21 o p

Multiplying both sides by 2r? and observing that
R®—rP=p%-a®=c3(say), we obtain
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—(4r3v2 + 2r4v%) {1 ;}

r B (1‘3+c3)1/3

1 r2 21
2 4{_ _ —} _ 2,
ver r2 (T3+03)4/3 p r
1 1 \d 24y 2 4{L_L}—_E 2
or {r (r3+c3)1/3} dr @) —v'r r2  (r3+c3)4/3 p r
Integrating, we get
2 4 l _ 1 } _ -2l _3
Y r{r A = 3, r’ +c 4)
2Ma3
Butv=0,whenr=a,soc-= 3;1

Thus, (4) becomes

V2 rt (1_1) E(a:* —1r3)
r R 3p

i 2(1_1) _ 20 (a’-r’
I.€. v (r R) 3p ( rt )
which gives the expression for the velocity for the subsequent motion.

Now, let P be the impulsive pressure at a distance r’ and let r be the radius of the solid sphere, then
from the relation.

—-VP =pq
2
we find ~37= pv' = dp = —pv' dr' = p7 dr'|r *v’ = r?v
Integrating, we get
P=pv(riir') + ¢

2
Since P=0, whenr’ =R, so ¢1 = —pv%

Thus P = pvrz(rl, — %)

Putting r' =r, we find

— 2(1_ 1
P= pv I (r R)
which gives the impulsive pressure on the surface of the sphere.
The whole impulse on the sphere
= 4nr’P
= 4g 12 pvrz(% — %)
= 4 priv(R-T)/R.
and the whole momentum destroyed
= er A r'ipv'dr’
— R 2 ’ 12\ — 2
=4np [ r?vdr |2 v =r?v
= 4mp r? v(R-T)

Example: A sphere of radius a is surrounded by an infinite liquid of density p, the pressure at
infinity being ZZ The sphere is suddenly annihilated. Show that the pressure at distance r from
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the centre immediately falls to 7:(1 —g) Show further that if the liquid is brought to rest by

impinging on a concentric sphere of radius g the impulsive pressure sustained by the surface of

the sphere is \/7IIpa? /6.

Solution. Let v’ be the velocity at a distance r' from the centre of the sphere at any time t and p be
the pressure. The equation of continuity (case of spherical symmetry) is

1 d

(") =017 = f(1) 1)
Equation of motion is
LA | No body forces
at ar’ p or’
f® ov' _ _10p
r? +v ar por'
Integrating w.r.t. r’, we get

_J® + lvrz =-P.ic

r’ 2 p
Sincer'—»> o = p =TI, v =0so that C = I/p.
-f® 1 .2 _MO-p
Thus == 450" == )
When, sphere is suddenly annihilated i.e. r' =a, v' =0, p =0, then
Ila

—j%zﬂ/pi.e.f(t)=—7 (3)

The velocity v’ vanishes just after annihilation, so from (2) and (3), we get
Aa _0-p ,al _ pg_
prf - p r! - p
Thus, the pressure at the time of annihilation (r' =r) is
all a
Aen-p=>p=n(1-2)

;
which proves the first result.

Now, let P be the impulsive pressure at a distance r’, then from the relation —VP = pq, we get

or

—2—5: pv' = dP=—pv dr
From the equation of continuity, we have

rv =r2v = f(t) (4)
So dP = —pv (r?/r'?) dr’ (5)

where r is the radius of the inner surface and v is the velocity there.
Integrating (5), we get

P=pv (r’r) +Cs
When r'—o, P=0sothat C;1 =0
Thus P =pv(ri/r) (6)
Equation (6) determines the impulsive pressure P at a distance r’. The velocity v at the inner
surface of the sphere (p = 0) is obtained from (2) as
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_f® 1., _ 1
; TV = (7)
From (4), f(t) = % (r2v) = r2 ~+v. Zr 2 ';’ Z: + 2rv?
1O = rp 2 4 292
r dr
Thus (7) becomes
dv 2_1.2__1
Urm + 2v SV = p
v 3.2 _ I
or V- +-v° =
- 2r'v 2+ 3v?r? = %”rz IMultiplying by r?
N o) __2m
dr P
Integrating, we get
211
r3v2 = —;13 + CZ
3
Sincer =a, v =0so we find C, = ZZZ
Therefore, r* v? = % (a3 —13)
The velocity v at the surface of the sphere r = a/2, on which the liquid strikes, is
2 _2Ma’~(a/2)° _ 141
"3 (@23 T 3p
From relation (6), using r = a/2, we get
_e [140 o
P - 4 3 p " r' (8)
which determines the impulsive pressure at a distance r’ from the centre of the sphere.
Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given by
_p |140 a* 2
P— 3 paZ =,/ 7Ilpa?/6
Hence the result
5.6 Check Your Progress:
i) Show that the velocity field u(x,y) =2 ) wix, y) =222 =0 satisfies the

( 24 2)2’ (2+y2)"
equation of motion for inviscid incompressible flow. Determine the pressure associated with this
fluid.

2
[Ans: p = —£]

2(x2+y2)

ii) Determine the pressure, if the velocity field q,., q¢ = Ar + B, q, = 0 satisfies the equation of
2
motion p % = d—”, where A and B are arbitrary constants.
[Ans: p = p{%A r? — — + 2ABlog r} + C]
102



iii) Prove that the equation of motion is satisfied for an inviscid, incompressible, steady flow with
negligible body force whose velocity components are given by

3 3
q-=U (1 - ':—3) cos0,qg = -U (1 + ZA?) sin@,q4 = 0, where A is constant. Find the resultant

velocity when rr — oo,

iv) A quantity of liquid occupies a length 21 of a straight tube of uniform small bore under the
action of a force to a point in the tube varying as the distance from that point. Determine the
motion and the pressure.

v) If w is the impulsive pressure; ¢, ¢’ the velocity potential immediately before and after an
impulse act, V is the potential of impulses, prove that w + p V + p(¢p — ¢p’) = const., where p is
the density of the fluid.

5.7 Summary: In this chapter, the impulsive motion equation, Cauchy's pressure equation,
Bernoulli's equations, Lagrange’s equation of motion and Euler's equation of motion are derived to
explore the issues with fluid flows. The Bernoulli's equation deals with the conservation of a fluid's
kinetic, potential, and flow energy as well as their conversion to one another in flow regions where
net viscous forces are negligible and other constraining circumstances are present. Also Bernoulli’s
theorem is stated and proved.

5.8 Keywords: momentum, impulsive motion, pressure, equation of motion, Bernoulli’s theorem.

5.9 Self-Assessment Test:
SAL: Derive Bernoulli’s equation for unsteady motion of an incompressible fluid and hence derive
expression for steady motion.

ax—by ay+bx
SA2: Ifu = =
x2+y2’ x2+y2

and w=0, investigate the nature of the motion of the liquid and also

obtain the velocity potential and pressure at any point P.
SA3: Obtain Bernoulli’s equation for steady irrotational motion of an incompressible fluid.
SA4: Obtain equation of motion under impulsive forces in Cartesian coordinates and prove that
impulse satisfies Laplace’s equation.
SA5: The particle velocity for a fluid motion referred to rectangular axes is given by the
components

TT.

2

u=4 cos%cos%,v =0,w= Asin—:sing, where A is constant. Show that this a possible

motion of an incompressible fluid under no body forces in an infinite fixed rigid tube, —a < x <
a, 0 <z < 2a. Also, find the pressure associated with this velocity field.
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CHAPTER-6
IRROTATIONAL MOTION

6.0 Learning Objectives: After reading this chapter, you should be able to understand the
boundary condition during flow of the fluid, work with energy equation, circulation, vorticity,
vorticity equation, permanence of irrototations, axially symmetric flows and Kelvin Circulation
theorem.

6.1 Boundary Conditions: When fluid is in contact with a rigid solid surface (or with another
unmixed fluid), the following boundary condition must be satisfied in order to maintain contact:
The fluid and the surface with which contact is preserved must have the same velocity
normal to the surface.
Let n denote a normal unit vector drawn at the point P of the surface of contact and let g denotes
the fluid velocity at P. When the rigid surface of contact is at rest, we must have gq.n=0 at each
point of the surface. This expresses the condition that the normal velocities are both zero and hence
the fluid velocity is tangential to the surface at its each point as shown in figure (a).

& ry
—_— T~

_::_.-r ::' ‘."f-:_:—'d_ — 1 _-:___-.._"‘_‘1'-» —
2 SN
e e N

T 1w - ~

1 l.aln;:]"'\..:lﬂ "'::":}

Fiigi{a

Next, let the rigid surface be in motion and let u be its velocity at P (figure (b)). Then we must
have
gn=un or (q—u).n=0
Which expresses for the fact that there must be no normal velocity at P between boundary and
fluid, i.e., the velocity of the fluid relative to the boundary is tangential to the boundary at its each
point.
In particular, if the boundary surface is at rest, then u = 0 and the condition becomes
q-n=0 (2)
Another type of boundary condition arrives at a free surface where liquid borders a vacuum e.g.
the interface between liquid and air is usually regarded as free surface. For this free surface,
pressure p satisfies
P =1 3)
where I1 denotes the pressure outside the fluid i.e. the atmospheric pressure. Equation (3) is a
dynamic boundary condition.
Third type of boundary condition occurs at the boundary between two immiscible ideal
fluids in which the velocities are g, and q, and pressures are p, and p, respectively.

Now, we find the condition that a given surface satisfies to be a boundary surface.
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Avrticle : To obtain the differential equation satisfied by boundary surface of a fluid in motion
or
To find the condition that the surface.
F(r,t) =F(x,y,z,t) =0
may represent a boundary surface:
If g be the velocity of fluid and u be the velocity of the boundary surface at a point P of contact,
then
@q—u) n=0=>qgn=un 1)
where g — u is the relative velocity and n is a unit vector normal to the surface at P.
The equation of the given surface is

F(r,t) =F(x,y,z,t) =0 (2
We know that a unit vector normal to the surface (2) is given by
VF
I
Thus, from (1), we get
q-VF=u-VF 3)
since the boundary surface is itself in motion, therefore at time (t + ot), its equation is given by
F(r +6r,t +6t) = 0. 4)

From (2) and (4), we have

F(r+oér,t+46t)—F(r,t)=0
ie. F(r + 6r,t + 6t) — F(r,t + 6t) + F(r,t + 8t) — F(r,t) =0
By Taylor’s series, we can have

(Or-V)F(r, t + 8t) + 6t%F{r, t}=0
| F(x+6x,y+6y,z+6z) =F(x,y,2) + 6xz—i+ 6y2—5+ 623—5+...+6r -VF
=F(x,y, 2) +ér - VF
or oF
= (-7)Fat+on+2 =0
Taking limit as 6t—0, we get
dr dF
(E.r)F+5=0
DF _

oF P DF
= E+(q.l7)F—OL.e. 5. =0 (5)

which is the required condition for any surface F to be a boundary surface

Corollary 1. If g = (u, v, w), then the condition (5) becomes
oF
at

In case, the surface is rigid and does not move with time, then 3—'; = Oand the boundary condition is

aF aF aF
u—+v—+w—=0
T 6x+ 6y+ 0z

aF aF OF . _
ua+v5+W£— Oi.e.(q-V)F=0
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Corollary 2. The boundary conditions

oF oF oF oF
E‘FU&‘FU@‘FW&— 0

is a linear equation and its solution gives
dt dx dy dz D _ d . . .
—====== — = — in Lagrangian view
1 u v w Dt dt
dx dy dz

- —=U—=v,—=Ww
dat dat dt

which are the equations of path lines.
Hence once a particle is in contact with the surface, it never leaves the surface.
Corollary 3. From equation (5), we have

—0F
pF =%
q at
VF —0F /ot
= —_— =
|VF| |VF|
- = ZOF/ot
"= "n

which gives the normal velocity.

Also, from (1), we get

—9F/dt
un=
|VF|

which gives the normal velocity of the boundary surface.
Example: Obtain the condition for the surface z = f(x, y, t) to be the boundary of a moving fluid.

gqn=un

Solution. Write F(x,y,z,t) = z—f(x,y,t) = 0 1)
. w.  DF _ OF _ _

By definition FySaleviny (g-VF=0
)

is the required condition for the surface F(r,t) = 0 to be the boundary of a moving fluid.

From (1) and (2), we get
bz _9fbx _0fDy 93fDt _

Dt dxDt dyDt 9tDt
0 0 0
T Al M)

= W=Us, dy at
. af af af _
l.e. 6t+u6x+v6y w=0

Example: Show that the ellipsoid

s ke [G)+ ()] -1

is a possible form of the boundary surface of a liquid?

Solution. The surface F(x,y,z,t) = 0 can be a possible boundary surface, if it satisfies the
boundary condition.

DF oF oF oF oF

E—z‘FHa‘FUa‘FWz—O (1)
where u, v, w satisfies the equation of continuity

V.g=0 ie 4T W_ )

0x dy E -
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Haaﬂm%zﬂ_2HW+kﬂKﬁ{491—1=0

5= a4k )+ ()

OF _  2x OF _ 2kt*y OF _ 2kt"z
dx  a2k2tzn’gy b2 '9z 2
Thus, from (1), we get

Rt e [G) + ()]

2.xU. 2ktyv  2kt™.zw
azkztzn.+ b2 + c? =0
4x 2x 4y\ 2kyt* nz\ 2kzt"
or (=) 2t (04 2) 22 4 (1 4 22) 22
t a2k2t2n+ +2t b2 + +2t c?

which will hold, if we take

U—==0,v+=2=0w+==0
2t 2t
i.e. u== v=—2 w=-=2 3
t 2t 2t

It will be a justifiable step if equation (2) is satisfied.
. n -n -n
i.e. —+—+—=

t 2t 2t

which is true
Hence the given ellipsoid is a possible form of boundary surface of a liquid.

Example: Show that the surface
2 2
Stan®t+7;cot’t =1,
is a possible form of boundary surface of a fluid. Find also the normal velocity.

Solution. Here, F(x,y, z,t) = —tan t + cot2 -1=0 (1)
= g—fza—(Ztant)sec t+ (2c0tt)( cos e c%t)
9F _ 9F _ 2y 24, 9F _
poi (tan t), 2y = b2 (cot t); = 0
The condition of boundary surface is
tuT +v 4w =0
at ady dz
Here, it becomes
2
Ziz(tantsec2 t) — (cottcoseczt) + “tan®t + >~ cot?t =0
a
or 2 tan?t (u 4 xsec” t) +2 cot? t( y—“’s“ t) =0
a tant b cott
which will be satisfied if we take
_ —xsec’t _ _ ycosec?t
" tant '~ cott
This will be a justifiable step if the equation of continuity i.e., Z_Z + Z—; + Z—j = 0 is satisfied.
Now, =t 14 0=0

dy 0z sintcost sintcost
Hence equation (1) is a possible form of the boundary surface of the liquid.
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n = —-9F/dt
n ="y

—9F/dt

Now, normal velocity

CRCIE

[—2 tant sec? i:—b—2 cottcosec t]

[(ptan2 t) +(b—321coi:2 t) ] i

_a?y?cottcosec?t—b*x*tantsec®t
(b%x2 tan* t+aty? cot* t)1/2

Example: Determine the restrictions on fy, fo, f3 if

CHO+ L0+ 50 =1

is a possible form of boundary surface of a liquid.

2 2 2
Solution. Here, F =— f,(t) + 35 () + 5 f2(t) =1 = 0 (1)
The boundary surface condition is
oF oF oF
S Tu —+v—y+w5—0 (2)
2y 2z
= _f1+b2f2+ f3+u f1+v 2tw5f;=0
2x ) 2y Yfz Zfz' _
= azfl(u+2f1)+b2f2(v )+ f3( 2f3)_0
This equation will be satisfied if we take
y =—xf1”v _ _ny,,W _ozf3
2f1 Zfz 2f3
where u, v, w must, satisfy the equation of contanIty — + — + Z—Z =0
. f2
Le., — [ + = +f3 =0

Integrating, we get

log f1 f2 f3 = constant
i.e. f, f, f3 = constant
which is the required restriction.

Example: In the steady motion of homogeneous liquid if the surfaces f1 = a; f> = a; define the
streamlines, prove that the most general values of the velocity components. u, v, w is

. ) 1
F(f1, fz)%' F(f1.f2) (hh)' F(f., ) «5{;3)

where F is any arbitrary function.

Solution. Here, the motion is given to be steady, therefore streamlines are independent of t i.e., f;
& f, are functions of x, y, z only. Differentiating f, = a1, f> = a2, we get

= dx+af1 dy +%dz =0 (1)
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0f2 of2 0fa 5. _
adx+gdy+gd2—0. (2)

Solving these, we get

dx _ dy _ dz
0f108fp 8f10f2 ~ 8f10f2 0f10fz2 ~ 98f108f2 9f18f>
dy 0z 0z dy 0z 0x 0x 0z dx 0y 0y 0x

dx _ dy _ dz 3
0(f1.f2) = 9Uf1f2) T 9(1.S2) ( )
0(y.2) 0(zx) o(xy)
But the differentiating equations of streamline are.
ax _dy _ a4z

ie.

(4)

Comparing (3) and (4), we get

w

T = 0 = a0 = F (say)
30.2) (%) @)
—_ - 9(Unf2) o(fuf2) d(f1.f2)
- u= L) o, o pOS) ), o g OULS),
a(y.2) 9(z,x) 2(x,y)

Now, we shall determine the nature of F.
For possible motion, the velocity components must satisfy the equation of continuity namely

du  0v , dw
ox Tay T T
[6_F 9(f1f2) F ia(fpfz)] [ﬂa(ﬁ,fz) F ia(fbfz)]
ox " 9(y,2) "ox. 9(y,2) oy 9(zx) "dy. d(zx)
OF 9(f1.f2) ia(fbfz)] _
* [62' a(x,y) +F. dz. d(xy) 1 0 (5)

0 0(fufa) | 0 0(fuf2) | 0 0(fufa) _
But Ix 0(y,z) + dy 0d(zx) + 0z d(x,y) -
. OF 3(fu.f?) |, OF 0(fuf2) | OF O(fnf2) _
()= ox d(y,z) 9y d(zx) dz a(xy)

| By the property of Jacobian

or or or
0x ay 0z

= [2a L Shf_ g o 20AS)
0x ay 0z a(x,y,z)
0fa 02 0f2
0x ay 0z

But the vanishing Jacobian means that F, f1, f. are not independent.
Therefore, F is a function of f1 & f2 i.e., F = F (f1, f2)

_ 2(fuf2) 9(fuf2) 0(f1.f2)
Hence u = F(fi, fZ)ﬁ'U =F(f1, f2) a(;xz) YW = F(fl!fZ)ﬁ'

Example: Show that all necessary conditions can be satisfied by a velocity potential of the form
§=ax+py +

and the boundary surface of the form
F=ax*+by*+cz* -X(t)=0

where X(t) is a given function of time and a, B, 7, a, b, ¢ are suitable functions of time.

Solution. Here, the velocity potential is given, therefore the flow is of potential kind. Thus, we
dp Odp Jd¢

have q=-Vp.=— (5,5,5) = (u, v, w) Q)
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Also, we know that the necessary condition, that g must satisfy, is the equation of continuity.
ie,V-q=0 or V(-Vp)=0 ie,V%$=0

2

e, —S+—+—=0
Z

In the present case it becomes

200+ 2B +2y=0 > a+pB+y=0 (2)
Now, the boundary surface is

F=zax*+by*+cz* - X(t)=0 (3)
and the condition which F must satisfy, is

oF oF oF oF _

E+ua+v5+w5—0 4)

Using (1) and (3) in (4), we obtain

xta' +y* b+ 24 ¢ — XI(t) —2ax(4ax®) — 2By(4by®) — 2yz(4cz®) = 0
i.e., x*(a'—8aa) + y*(b'-8pb) + z*(c—8yc)-X'(t) =0 (5)
where dashes denote derivative with respect to time t.
Since (3) and (5) both must hold for all points (x, y, z) on the surface, so they are identical.
Comparing these we get

a'-8aa _ b'-8Bb _ c'-8yc __ X'(t)

a b c X(t)

These conditions will hold if o,,y, a, b, ¢ are some suitable functions of time, where a + 3 +y = 0.
Hence ¢ and F = 0 satisfy the necessary condition for velocity potential and boundary surface if o,

B, 7, &, b, c are some suitable functions of time.

6.2 Circulation: The flow round a closed curve C is known as circulation and is usually denoted

by I'. Thus
= jg q.dr
c

Obviously, when a single-valued velocity potential ¢ exists, circulation round C is zero; it being
equal to ¢4 — ¢4.

Stokes’ theorem : This theorem deals with the concept of rotation in terms of circulation and
states as under
If q is the velocity vector point function and S is a surface bounded by a curve C, then

qu.drzfcurlq.ds. i.e., szﬂ.nds.
c s s

Where the unit normal vector n at any point of S is drawn in the sense in which a right-handed
screw would move when rotate in the sense of description of C.

6.3 Kelvin’s Circulation Theorem: The circulation T around any material closed contour C
moving with the inviscid (non-viscous) fluid is constant for all times, provided that the external
forces (body forces) are conservative and derivable from a single valued potential function y and
the density is a function of pressure only.
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Proof. The circulation round a closed curve C of fluid particles is defined by
r=4¢.q.dr
Where q is the velocity and r is the position vector of a fluid particle at any time t.

Time derivative of I following the motion of fluid is

ar _ a4 =6 L(q-
= wbadr =45 (g d)

$[a - dr+a- g (an)]
=¢,[4 - dr + q - dq] W) |+L@n=d(%)=dq

Since the system of forces is conservative; therefore F=—V y, where y is a potential function’
Euler’s equation of motion is

W = —Vx—i Vo )
Multiplying each term of (2) scalarly by dr, we get
dq _ Uy — 2
dr - = =—dr-Vy . dr.Vp

i dq — _d_p . =
ie. E'dr_ dy . |~ dr.V=d (3)
Thus from (1), we get

ar

=6(-x—2+q- dq)

=§.d (34 —x)—§.odp

- qu _'Q]:: - c%p

=0-§, (@)
where A is any point on the closed contour C. Now, if density is a function of pressure only, then
the integral gscdf vanishes and hence we get

ar

== 0 = T =constant for all time

Some Consequences of Circulation Theorem
Corollary. 1. In a closed-circuit C of fluid particles moving under the same conditions as in the
theorem,
J curlq.dS = [ w.dS=constant (5)
where S is any open surface, whose sum is C. To establish (5), we note that, by Stock’s theorem,
J;curlq.dS = ¢.q.dr=T = constant
This shows that the product of the cross-section and angular velocity as any point on a vortex
filament is constant all along the vortex filament and for all times.
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Corollary I1. Under the conditions of the theorem, vortex lines move with the fluid.
Proof. Let C be any closed curve drawn on the surface of a vortex tube. Let S be the portion of the
vortex tube rimmed by C. By definition vortex lines lie on S. Thus
0=J curlq.dS = §.q.dr | - on surface circulation is zero
Let C be a material curve and S be a material surface, then
%fs(n. curlq)dS = fSD%(n. curlq)dS = 0
Thus n. curlq remains zero, so that S remains a surface composed of vortex lines. Consequently,

vortex lines and tubes move with the fluid i.e. vortex filaments are composed of the same fluid
particles. This explains why smoke rings maintain their forms for long periods of time.

Corollary I11. Permanence of irrotational motion:

Under the conditions of the theorem, if the flow is irrotational in a material region of the fluid at
some particular time (e.g. t = 0 or t = to), the flow is always irrotational in that material region
thereafter.

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for ever afterwards
provided the external forces are conservative and density p is a function of pressure p only.

Proof. Suppose that at some instant (t = to), the fluid on the material surface S is irrotational
Then, curl q = =0 1)
for all points of S.
Let C be the boundary of surface S, then
[=¢.q.dr = [.(ncurlq)dS = [(n.w)ds =0 | using (1)
But by Kelvin’s circulation theorem, I' is constant for all times. Hence circulation I" is zero for all
subsequent times. At any later time,
Jon.wdS=0
If we now take S to be non-zero infinitesimal element, say AS, then

n.w AS=0 = w =0 at all points of S for all times and the motion is irrotational
permanently. This proves the permanency of irrotational motion.

Remarks 1) The above three corollaries are properties of vortex filaments.

2) The Kelvin’s theorem is true whether the motion be rotational or irrotational In case of
irrotational motion, @ = 0 and thus " = 0.

3) From the results of the theorem, we conclude that vortex filaments must either form closed
curves or have their ends on the bounding surface of the fluid. A vortex in an ideal fluid is
therefore permanent.

6.4 Vorticity Equation (Helmholtz Theorem): If the external forces are conservative and
density is a function of pressure p only, then
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DQ
rri (Q.V)q

Proof: Euler’s equation of motion for an ideal fluid under the action of a conservative body force
with potential y per unit mass is

Dq _ 9q 1.2)_ — _py -1
Dt—at+|7(2q) qxN=-Vy pr (1)
where the vorticity 2 = curlq =V x q. If the fluid has constant density, then taking curl of

equation (1), we get
Vet x|v(3q?)|-vx (qx!)):Vx(—V)(—%Vp)

= VxE—Vx(qxﬂ)=0
- (xq)—-Vx(@q@xN)=0
= ‘2—‘:=|7><(q><!2)
=2-V)q - (q- V)0
= Tt@-M=@-T)g
i.e. 2= (2-V)q )

which is the required vorticity equation.
Equation (2) is called Helmholtz’s vorticity equation.

The vorticity equation can also be written as

E (;) ( ) q (3)

For two-dimensional motion, the vorticity vector Q is perpendicular to the velocity vector g and
the R.H.S. of (2) is identically zero. Thus, for two dimensional motion of an ideal fluid, vorticity
iS constant.

In the case, when body force is not conservative, equation (2) becomes
% =(2-V)q + curlF
where F is body force per unit mass.

If we write Q = éi +nj + {k, q =ui+ vj+ wk thenthe Cartesian form of (3) is
0 d a 0\ /¢ 1, 0 0 0
(waetvay et o)) =6t 15+ o5

0 0 a d\(n 1, 0 0 0
(watvay et o) ()= (et 1a,+ o)y

0 0 a d\ /¢ 1, 0 0 0
ety et e ) () = ot gy o)
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Remark: For p = constant, was originally given by Stoke and Helmholtz and later on extended
to the above form by Nanson.
6.5 Intrinsic or Elastic Strain Energy:

It is the energy stored in the fluid by virtue of compression and is analogous to the one stored in a
stretched string. Intrinsic energy E per unit mass measures the work done by unit mass of the fluid
against external pressure, as it passes, under the supposed relation between p and p, from its
actual state to some standard state in which the pressure and density are p, and p,.

For the incompressible fluid, E=0.

Since the work done in changing the shape of any volume V to V, is f;"’ pdv and p = mv, we
may set

Yo Po
Work done = f pdv = j pd(m/p)
4 P
Hence E = fp”°p d(1/p) since m=1.

The total intrinsic energy of a fluid body is often called internal energy and obviously given by
J,pE dv.

6.6 Energy Equation: The rate of change of total energy (kinetic, potential and Intrinsic) of any
portion of a compressible inviscid fluid, as it moves about, equals the rate at which the work is
being done by the pressure on the boundary. The potential due to external forces is supposed to be
independent of time.

Proof: Consider any arbitrary closed surface S drawn in the region occupied by the inviscid fluid
and let V be the volume of the fluid within S. Let p be the density of the fluid particle P within S
and dv be volume element surrounding P. Let q(r,t) be the velocity of P. Then, the Euler’s
equation of motion is

dq _ _ i
S=rF-(3)vp (1)
Let the external forces be conservative so that there exists a force potential y which is independent

of time. Thus F = —Vy and % =0

Using the above results and then multiplying scalarly both sides of (1) with p q , we get
(03) = -pavr-a
p\q. ac) = pPqg.VX —q.Vp

1

or p=(34?)+pq.Vx=—q.Vp

ox

dox _ ox _
E-I_ (q.V)x=(@q.V)y as i 0

dy _

Since
dt

by hypothesis, the above may be rewritten as
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p%@éﬂ +)() =—q.Yp=-V.(pg) +pV.q (2)

Integrating both sides of (2) we get

L{1,Ca? +x) pdv} = - [,V.(pg)dv + f,p (V.q) dv 3)

the left-hand side being valid as %= 0 [since the elementary mass remains invariant

throughout the motion] by continuity condition. By virtue of divergence theorem and the equation
of continuity the right side of (3) may be simplified to yield

d 1 d

AL Ga? +x) pdv) = [in (pa)ds - [, 2% dv (4)
Where n is unit inward normal. Now, by definitions

1
T=[,2pq*dv; W =[ pyxdv; [I=[ pEdv (5)
are the kinetic, potential and intrinsic(internal) energies respectively, then (4) may be written as
d - _a
ST +W) = [(nqpds -7 (©)
a _ o4& a =
= J, — pdv [by (5) and — (pv) =0
_ [ dE dp P
=), dp dac P
_ [ rar — [Po NN_ (P E a4 _ 1D
= J,2% dv (AsE=[Ppd(s)= [ 5 dp =24

Also, the work done by the fluid pressure on an element ds being p ds n dr and the rate at which

ar

this is being done is p ds n.q. (q = E)' it follows that for the space of volume V, the rate at

which work is being done by the fluid pressure is fs(n, q) p ds = R(say). Thus (6) may be put as
S(@T+W+1)=R @)

The statement embodied in (7) is what we were interested in and is often quoted as the Volume
Integral form of Bernoulli’s equation.

Energy equation for incompressible fluids:

Since 1=0 for incompressible fluids, (7) reduces to
d —
—(T+W)=R (8)

The energy equation is stated as follows: The rate of increase of energy in the system is equal to
the rate at which work is done on the system.
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3
Example: An infinite mass of fluid is acted on by a force w/rz per unit mass directed to the

origin. If initially the fluid is at rest and there is a cavity in the form of the sphere r = c in it,
1

> 5
show that the cavity will be filled up after an interval of time (52_”)2 cs.

Solution: At any time t, let v’ be the velocity at distance r’ from the centre. Again, let r be the
radius of the cavity and v its velocity. Then the equation of continuity yields
r'?v =r?p (1)

When the radius of cavity is r, then

Kinetic energy= froo% (4mr'? pdr").v'? [K.E = % X mass X (velocity)?
=2mprtv? [T [using (1)
= 2m pr3v2.

The initial kinetic energy is zero.
Let V be the work function (or force potential) due to external forces. Then, we have
av U

or' B rl(%)

Sothat V = 2%
r’(i)

~ work done = f: V dm, dm being the elementary mass
3
2

5 5
= frc(%).élnr’z dr'p=8up f:r'( ) dr’ = 15—6 mup (cz—1z)
r \2

We now use energy equation, namely Increase in kinetic energy=work done

5 5
This = 2w pr3v? — 0 = ? up(cz —12)

__ dr

AL Sl S @

Wherein negative sign is taken because r decreases as t increases.

Let T be the time of filling up the cavity. Then (2) gives

1 :
[} dt = _(i>2 [ =2 or

8u 5 5
()
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5 5 5 3 5
Put r2 = c2 sin? @ so that (E) X 1r2dr = 2czsin 8 cos 6 dé

1 T

5\2 (24 5 2 % 5
T = (—) — c4sinf do = (—) c4
8u/ Jy 5

Example: Two equal closed cylinders, of height c, with their bases in the same horizontal plane,
are filled one with water, and the other with air of such a density as to support a column h of
water, h being less than c. If a communication be opened between them at their bases, the height
X, to which the water rises, is given by the equation

c—x
cx —x%+ch log{T)} =0

Solution: Let P, Q be two cylinders containing water and air respectively and k be the cross-section
of each cylinder before and after the communication is set up, the air and water are at rest. Thus
the initial and final Kinetic energies are zero. The intrinsic energies also vanish, because of
incompressibility.

L-x)

The potential energy due to position of water in the cylinder P is
W, =[5 gp kz dz = gpkc? (1)
[Here we have considered the density p of water simply to support a column h of water]

Let the height x of water rises in cylinder Q then the height (c-x) of water will remain in the
cylinder P after communication is opened. The final potential energy is

c—X X
W, = f gpkz dz + f gpkz dz
0 0

Wy =g pj [(c — )% +x7] v

Loss in potential energy of work done by gravity is
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W, =W, =2 g pk [c? = (c — x)? = x?] = gplex (c —x) (3)
Let p be the pressure when the water rises to a height z, then
gphkc =pk(c—2z)= p=gphc/(c—2)
Since the air has been compressed so the work done in compressing this air in the cylinder Q is
= —gphck fOxCdTZZ = g phck log% (4)

Total work done=Change in K.E

Hence g pkx (c —x) + gphcklog{ - } 0
Or gpk[cx—x2+chlog{%)=0
Or cx — x% + chlog% =0 Proved

6.7 Green’s Theorem: If ¢, and ¢, are two continuously differentiable scalar point functions
such that V¢p; and V¢, are also continuously differentiable and S denotes a closed surface
bounding any singly-connected region of space, then

f(v¢1 Ve, )dv = — j¢1 V2 ¢, dv — j¢1—ds

f¢2V2¢1dv J-qbz_ds

Where V is the region enclosed by S and én an element of the normal at any point on the
boundary drawn into the region considered.

Some hydrodynamical applications of Green’s Theorem:

(1) If ¢, is constant (=k say). Then V2¢p, = 0 = everywhere If ¢ be the velocity

potential of a liquid motion with S, then by Green s theorem, we get

Lk (%)dSzO or L%ds 0

Since Z—: is the normal velocity outwards, ‘;—:ds represents the flow across dS per unit time. Then

the above result represents that the total flow of liquid into any closed region at any instant is zero.
i.e., the quantity of a liquid inside S remains constant.

(2) Kinetic Energy of finite liquid:
The Kinetic energy is given by

J,zpeta
= | spq*dv
, 2
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taken throughout the volume V occupied by the fluid. For irrotational motion q =

—V¢, V3¢ = 0.

Therefore T=1p [Vp.Vpdv=-2[¢ (a_¢) ds lby Green’s
2 p ) 278 an ' y

theorem

taken over the bounding surface of the liquid, dn denoting an element of inward-drawn

normal.

Physical Interpretation: We know that if g is the velocity and p the density of the liquid,
then K.E. of the liquid within S is

T—fl 2qp = 1 (a¢)d5
=), 2P0 ="3P Gn

Since p¢ is the impulsive pressure and —(%) the inward velocity, it follows that the K.E.
set up by impulses, in a system starting from rest, is the sum of the products of each
impulse and half the velocity of its point of application. It also follows that the K.E. of a
given mass of liquid moving irrotationally in a simply connected region depends on the
motion of its boundaries. Clearly the surface integral

09 (Gu)as

Represents the work done by the impulsive pressure in starting the motion from rest.

(3) Ifthe boundaries are at rest, it follows that % = 0, so that

fV% pq*dv =0, ie., q =0 atevery point

Hence, if the boundaries are fixed, irrotational motion is impossible in a closed simply-
connected region.

6.8 Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational motion of a liquid
occupying a finite simply connected region is less than that of any other motion of the liquid which
is consistent with the same normal velocity of the boundary.

Proof. Let T; be the K.E. of the actual motion, q; be the fluid velocity and ¢ be the velocity
potential of the given irrotational motion. Let V be the region occupied by the fluid and S be the
surface of this region, then

T=0] aldv=5], (Ve dv

T

_P dp
Let T, be the K.E. and q, be the velocity of any other motion of the fluid consistent with the
same normal velocity of the boundary S (or consistent with the same kinetic boundary condition)
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For both the motions, the continuity equation is satisfied i.e.

Vg =0 = Vg, 2
The boundaries have the same normal velocity
Le. g1-m=q;n
ie. (G2 —q1) n=0 )

Now, let us consider
1
T, -Ty =3p [,(a5 —ai) dv

= %P )24z - (a2 — 1) + (@2 — q)*]dv
= ff,, 2, - (g2 — q)dv +§ J,(az = q1)?*dv
=—p[,Vd.(qz —a)dv +? [ (g2 — q1)%dv 4)
From vector calculus, we have
V[6(g2 — q)]1 =V (G2 — q1) +6 V(2 — q1)

i.e. Voé- (g2 — q1) = V-[0(q2 — q1)] —6V-(q2 — q1)
Therefore, from (4), we find

T, —T1=—pJ, V-[0(qz — q]dv + p[ oV-(qz — q1) dv
+ §f,, (92 — q1)* dv
=—pf; 0(q2—q) ndS+p [ oV-(q2 —qy) v

+ §f,, (qz — q1) *dv |By Gauss theorem
=21, (42— q1) *dv | using (2) & (3)
>0

= T, >T;

Thus, the irrotational motion of a liquid occupying a simply connected region has less Kinetic
energy than any other motion consistent with the same normal velocity of the boundary (but for
which vortices are present inside)

Hence the theorem.

6.9 Kinetic Energy of Infinite Liquid. Theorem: An infinite liquid is in irrotational motion
which is at rest at infinity and is bounded internally by solid surface (s)S. Show that the K.E. of
the moving fluid is

_1 2%
where S = S; + S, + ... Sy denotes the sum of the inner boundaries Si, Sz, ..., Sx and n is normal
to S drawn out of the fluid on each boundary.

Proof. Let > be a large surface enclosing the surface (s) S and v be the region bounded by S
internally and by > externally.

Using the result of K.E. for finite liquids, we find that the K.E. T; for finite region v is given by
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@MHHD

lﬂmp

_P o p dp
Ty=2fse5 dS+2 [ 05 -dS )
Now, div g = V2¢ = 0 throughout v and the divergence theorem accordingly gives
dS=0
SN n-vpdS=0=[ 224s=0
sUxz SUZ an
= [,22ds+[,3%ds =0 )
Since the surface S is solid, there is no flow across it, hence f %9 dS =0 (3)
Therefore, from (2), we get
dp _
fz 5,45 =0 4)
For the surface 2, as 2_ goes to infinity, the liquid is at rest
= =0 =Vd=0 = ¢ =constant = C (say) (5)
Hence, as 2. goesto oo, the K.E. of the liquid is
] ] :
T1—>T=3f —(pdS+§cf2£dS | Using (5)
=£ “fso5 00 ~ds | Using (4) Hence the result

Remark. We note that the K.E. for finite and infinite liquid has the same expression.

6.10 Axially Symmetric Flows
A potential flow which is axially symmetric about the axis 6 = 0, & (i.e., z-axis is taken as the axis

of symmetry) has the property that at any point P, all the scalar and vector quantities associated

with the flow are independent of azimuthal angle v such that 667: 0, where (r, 0, y) are spherical

polar co-ordinates.
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The equation of continuity div g= 0 for steady flow of an incompressible fluid becomes.

L2 (12q,) + —— 2 (sinB gg) = 0 (1)

For irrotational motion q= —V¢ where ¢ is velocity potential and thus
[20) 1 ap
R T
From equation (1), we have

10 2 0@ 1 d . o0p\ _
55 (1 50) + s (sin655) = 0 2)
Let a solution of (2) in separable variables r, 6 has the form
¢ =-R(r) ©(6) ®3)
Using (3) in (2), we get
a
222 (RO)| + =< [sing = (RO)| =0
a ( ,0R R @ _
= Qa(r 50) + sas (sin35) =0
1d ( ,dR) _ 1 d( . ,do
= (S = s (e ) )

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of 6 only. The equation can
therefore be satisfied if and only if either side is a constant, say n(n+1) and thus we get

%:—r (rz ZR) =nn+1) (5)
and

d .

de(sm@ )+n(n+1)05m9=0 (6)

To solve (5), we put

dR _
R=om :;zmrm 1

Thus (5) = rim:_r (r*mrm™ 1) =nn+1)
= m :—r ™) =rM™n(n+1)
= m(m+l) r™ =r" n(n+1)
= (Mm? + m-n?-n) =0
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= (m-n) (m+n+1) =0
= m=norm=—(ntl)
Therefore, solution of (5) can be written as

R(r) = An 1" + Br ™D (7)
To solve (6), we put
C0SO =
de ~ dedp sm@d

Therefore, equation (6) becomes.
—sind ;—# [Sin 0 (—sin9) Z—i] +n (n+1) O sinf =0
:;—u(sinz Hz—i) +nn+1)60=0
::_u[(l — cos? H)Z—i] +nn+1)0 =0
3:—#[(1—u2)2—i]+n(n+1)9=0 8)

Equation (8) is a Legendre’s Equation and possesses a solution known as Legendre Function of the
first kind Pn(p)

Therefore,
0 = Pn(n)
Hence the general solution of (3) is of the form
o(r, 6) =-R(r) @ (8)
= —[An " + Bn r™Y] Py (cos 0) 9)
(Complete solution is the sum of all such solutions i.e. Y5 ....... )
6.10.1. Uniform Flow. Consider the flow which corresponds to a potential given by (9) with
An=US;,, Bn=0, (n=0,1,2,...... )
where U is a constant, §;; is Knonecker delta =1 fori = jand = 0 fori # j
Since Py (cosO) = cos6, equation (9) becomes
¢(r, ©) =-Ur cos 6 = -Uz | z=rcoso
Thus
_ op 0P
g=-V¢ = _Ek =UKk
which is a uniform streaming motion of the fluid with speed U along the direction of z-axis or the
axis 6 = 0.

—iy+jx
x%+y?

Example: A velocity field is given by g= .Determine whether the flow is irrotational.

Calculate the circulation round (a) a square with its corners at (1,0), (2,0), (2,1), (1,1); (b) a unit
circle with centre at the origin.
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J
0 d 2_..2 2_.,,2
. N 2 _ o, (02 +(x%-y?)) _
Solution: we have curl q = axy 6)?1 0/0z| — k{ (x24y2)? } =0

N x2+y? m
Hence curl =0 everywhere except at the origin. Thus the flow is irrotational. It has a singularity
at the origin where the velocity becomes infinite.
(a) Draw a square in the Cartesian plane as A(1,0),B(2,0),C(2,1),D(1,1).

AY DA, 1)
4 c2,1)

X

o A(1,0); B(2,0)

Then circulation around the square ABCD is given by

B Cc D A
F=fq.dr=jq.dr+jq.dr+j q.dr+J q.dr
A B Cc D

Along AB(i.e. x-axis), y=0 so dy=0 and hence dr = dxi + dyj + dzk = dxi

Therefore [ AB q.dr = f;:lz (;?:;ff ) .( dxi) = f;:lz G j) (dxi) =0

Along BC(parallel to y-axis), x=2 so dx=0 and hence dr = dxi + dyj + dzk = dy j

c _y=1(—iy+jx . l2dy o1 1y 1P g1
Therefore [, q.dr = =0 (x2+y2).dy]-f0 i = 23 [tan 7 ], =@

Similarly, [ q .dr = tan™ 2 — tan™" 1
f;q.dr = —tan"!1

T T

Therefore, T' = tan‘I% +tan"'2—tan!1—tan"'1=cot™'2+tan"12 — % —2=5" 2% =0

[ascot™ 2 +tan"12 = g]

Since curl q is zero everywhere inside the square path, we could have got the same results directly
from Stoke’s theorem.

(b) To obtain circulation around the unit circle with its centre at the origin, we use polar
coordinates for convenience.

. —7sin 0 i+ cos 0 ing . 6 .
Let x =rcosf,y = rsinf, we have q = o ;zrcos J=—Sl: l+co:
. . in 0 0
and q = ui + vj sothatu = —s“: and v ==
. . 1
Therefore, g, = ucos@ + vsinf and qg = —usinf + vcosf = -

Thus, T = [ q.dr = foznr.% dé =2m

Example: Liquid of density p is flowing in two dimensions between the oval curves r;7, = a?,
r.r, = b?> where r,and r, are the distances measured from two fixed points if the motion is
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irrotational and quantity q per unit time across any line joining the bounding curves, then the
kinetic energy is ™ pq?/log(b/a).
Solution: The two-dimensional irrotational motion occurs in a doubly connected region. The
equation to the curves are
1, = a? andryr, = b?
Let the complex potential w is of the form
w=iAlogl(z—2z)(z—-2z)]=¢p+iy
or ¢ + iy = iAlog (re'1 rye'%2) = iAlog{r,r, e!(®1762)}
as z—z, =re% and z — z, = rye'f2
Separating real and imaginary parts, we have
¢ =—A(0, +6,), = Alognr,
Now q=1/)b—1/)a=Alogb2—Aloga2=2Alog(§)

b
or A=gq/ [2 log (Z)]
since the region is doubly connected, the circulation k is given by k = A(2m + 2m) = 4mA
Hence the kinetic energy of a cyclic irrotational becomes

T = ! j ad)dS ! kad)dS— 2mA JBd
- 2f d)an 2 Pon &7 H'DA v

The second integral vanishes on a rigid boundary

b
T =24 p(, — ) = 7 pa*/ log -

6.11 Check Your Progress:
i) Find the circulation about the square enclosed by the lines x = +2,y = +2 for the flow u = x +
y,v = x? —y. [Ans=0]

ii) Show that if ¢ = —(ax? + by? + cz?)/2,V = —(Ix? + my? + cn?)/2 where a, b,c; ,m,n are
functions of time and a+b+c=0,irrotational motion is possible with a free surface of equi-pressure
if

(I +a? + a)e?/ 2%t (m + b2 + b)e?2/Pat; (n + ¢2 + ¢)e?/ ©@ are constants.

iii) A space is bounded by an ideal fixed surface S drawn in a homogeneous incompressible fluid
satisfying the condition for the continued existence of velocity potential ¢ under conservative
forces. Prove that the rate per unit time at which energy flows across S into the space bounded by

Sis

where p is the density and dn an element of normal to dS drawn into the fluid.
iv) Show that in the motion of fluid in two dimensions if the co-ordinates (x,y) of an element at

any time can be expressed in terms of initial coordinates (a,b) and the time, the motion is

irrotational if 755 + 25 =
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. . . . . . dq 2 dq 2
v) In irrotational motion in two dimensions, prove that (E) + (5) = q Vq.

6.12 Summary: In this chapter boundary conditions are discussed in detail which play an
important role during the study of flow of fluid. Irrotational and circulation of flow are also
defined in this chapter. The expressions for energy equation, Kinetic energy of liquid, Kelvin
circulation theorem are derived and also discussed Axially symmetric flows.

6.13 Keywords: Boundary surface, Circulation, energy equation, Kinetic energy, irrotational,
axially symmetric flows.

6.14 Self -Assessment Test:

SAL: Show that under certain conditions the motion of frictionless fluid if once irrotational, will
always be so, is true also when each particle is acted upon by a resistance varying as the velocity.
SA2: Obtain Cauchy’s integral using circulation theorem.

SA3: Deduce from the principle that the Kinetic energy set up is a minimum that, if a mass of
incompressible liquid be given at rest, completely filling a closed vessel of any shape and if any
motion of the liquid be produced suddenly by giving arbitrarily prescribed normal velocities at all
points of its bounding surface subject to the condition of constant volume, the motion produced is
irrotational.

SA4: Prove that under certain conditions, to be stated, the motion of a fluid if once irrotational, is
always irrotational afterwards.

SA5: Show that in an irrotational motion of a liquid occupying a simply connected region has less
Kinetic energy than any other motion consistent with the same normal velocity of the boundary.
SA6: Show that the rate per unit of time at which work is done by the internal pressure between the
parts of a compressible fluid is

[ pw.@av

where p is the pressure, and q the velocity at any point, and the integration extends through the
volume of the fluid.
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CHAPTER-7
MOTION OF SPHERE

7.0 Learning Objectives: After studying this chapter, you should be able to study the motion of
a sphere through the liquid at rest at infinity, obtain the lines of flow relative to the sphere when
liquid streaming past a fixed sphere, determine the pressure on the surface when sphere moving
through infinite liquid, calculate the force acting on the sphere due to the presence of the fluid.

7.1 Motion of a Sphere: To study irrotational motion in three-dimensions with a particular
reference to the motion of a sphere. We shall consider certain special forms of solution of the
equation

2 2 2

0% L 2% L % _ (1)

which, in spherical polar coordinates (r, 6,), reduces to
_¢ 20¢ L 1 9°¢  cotfd¢ 1 9% _
e TR r2sin2 @ 9y2 0 @
When there is symmetry about a line (say z-axis), ¢ is independent of 1 and hence (2) reduces to
%9 200 1 2%  cotodp
arz | roar | r? 362 ' r2 a6 =0 (3)
In the case of motion of sphere the velocity potential is known to have the form f(r) cos®8.

Substituting ¢ = f(r) cos 6 in (3), we have

dzf 2df f(r) Cose
<dr2 +rdr> cos O — 2 cos @ fr)y=0
dr? = rdr rz
2 (4 ar _
Or T (F)-FZ'I";—ZI:—O

which is homogeneous differential equation. As usual, its solution is f(r) = Ar+:;2. Hence a
solution of (3) of the form f(r) cos & may be taken as

¢ = (Ar + :;2) cosf 4)

7.2 Motion of a Sphere through a Liquid at rest at infinity:

Take origin at the Centre of the sphere and the axis of z in the direction of motion. Let the sphere
move with velocity U along the z-axis. To determine the velocity potential ¢ that will satisfy the
given boundary conditions, we have the following considerations:

() ¢ satisfies the Laplace’s equation

9?2 20 1 92 coth d
79 209 7 9% _ ), (1)
arz | ror ' r2 962 r2 90

wherein we have used the fact that there is symmetry of flow about z-axis.
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(i) Boundary condition at the surface of the sphere r = a, namely

Normal velocity at any point of the sphere=velocity of the liquid at that point in that direction

ie, — (Z—f) =Ucos8,whenr = a (2)
(iii) Since the liquid is at rest at infinity, we must have
—Z—f=0, atr = o (3)

The above considerations (i) and (ii) suggest that ¢ must be of the form f () cos 8 and hence it
may be assumed as

¢ = (Ar + %) cosf 4)

From (4), —2=—(A-%)coso (5)
Putting r = oo in (5) and using (3), we get

0=Acos@ so that A=0 (6)

Putting r=a in (5) and using (2) and (6), we get
2B
UcosO = (—3> cosf
a

So that B =< )

2

3
Thus, ¢ =503 (8)
which determines the velocity potential for the flow.
(a) Streamline flow: We now determine the equations of lines (streamlines) of flow. The
differential equation of the lines of flow at the instant the centre of sphere is passing

through the origin is given by

dr _ rdf
2 — 99
ar roo
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Or e using (8
( )COSH ( )smG | g ( )

Oor 1 dr = 2cot8 do (9)

Integrating (9), logr = 2logsin +logc or r = csin?6

which is the equation of the lines of flow.

7.3 Liquid Streaming past a fixed Sphere: For a liquid streaming past a fixed sphere, obtain
the lines of flow relative to the sphere.

Let the sphere be at rest and let the liquid flow past the sphere with velocity U in the negative
direction of z-axis. This motion may be deduced by reducing the sphere to rest by superposing a
velocity - U parallel to z-axis both to the sphere and liquid and we must add to the velocity
potential a term Urcos® to account for the additional velocity, then we have

3
¢=% cos@+UrcosH=U(r+ )cos@ 1)
|F0r——f— —U,p =Uz=Urcosb

This is the velocity potential when the liquid is streaming past a fixed sphere. The stream lines are
given by

dr B rdfd
g _(1
-5 —(7)o0/06
or dr — rdf
@—U cos 6 —(%“33+U) sin 6
(2r3+a3)d_r __2cos@
a3-r3 ) r ~ sing@
2cos@ 3r2 1
or ETY d [r3—a3 _;] dr
Integrating, —2logsin @ = log(r® — a®) — logr — logc
or rc =sin? 0 (r3 — a?) (2)

The lines of flow relative to the sphere are given by (2).

Example: Show that when a sphere of radius a moves with uniform velocity U through a perfect
6

incompressible infinite fluid, the acceleration of a particle of the fluid at (r,0) is 3U? (— — :—7)

Solution: Superimpose a velocity - U both to the sphere and the liquid. This reduces the sphere to

rest and the velocity potential of the flow is given by

¢ =U(r+a3/2r%)cos O (1)
3

?=—%=—U(1——)cos@ (2)

and réz—%%zU(1+ )sm@ 3)

Again from (2), we have
a®\ . - 3a’ ad
U(l——)sm@@ U—rcos@ = U(l—r—g)sm99+r—4U2 (1—r—3)c0529
(4)
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Clearly, for a point (r,0) the velocity is only along the direction of r and hence the acceleration will
also be only along r.
Thus, the required acceleration =# only at (r,0)
= 3—‘f U? (1 - a_z) = 3U2(a—z— a—j), using (4) and noting that 6 = 6 = 0

T T T
Example: An infinite homogeneous liquid is flowing steadily past a rigid boundary consisting
partly of the horizontal plane y=0 and partly of a hemispherical boss x? + y? + z? = a? with
irrotational motion which tends, at a great distance from the origin to uniform velocity U
parallel to the axis of z. Find the velocity potential and the surface of equal pressure.
Solution: The velocity potential of the motion of a liquid streaming past a fixed sphere with
velocity U in the negative direction of z-axis is given by

¢ = U(r+ )cose (1)

Solution: Let y-axis be taken in vertical upward direction. Then the motion under consideration is
such that velocity perpendicular to the plane y=0(i.e. xz-plane) vanishes. Hence y=0 may be taken
as a stream surface. Also the hemisphere above y=0 is also a stream surface. Accordingly, for the
hemispherical boss x2 + y2 + z2 = a? on y=0, the velocity potential is given by (1).

Since U is uniform and the hemisphere is at rest, the motion is steady. Hence by Bernoulli’s

theorem, the pressure at any point is given by
p, 4 _
I_’ + 5= c (2)
Hence the surface of equal pressure are given by putting p=constant in (2). Therefore, these are
given by g2 = constant. (as p is constant), i.e., by
d* 19¢\>
(~ar) +(-73g) =const

2
[U (1 — r—3) cos 0] += (r + )sm 0]? =constant
or (1—j—z)c0520+(1+2r—3)sin20=
constant,as U is a constant.
7.4 Equation of Motion of a Sphere:

Let a sphere of radius ‘a’ advance with velocity U in an infinite mass of liquid at rest at infinity.
The velocity potential and stream function are given by

¢zéuaizose; Lp___Ua sin 6 (1)
The Kinetic energy of the f|UId is glven by
]
Tr=—spff$3L ds 0
2 1
1 fnjf 7Ua cos 6 Ua cos @ 2 sin 9 dOd
2/0 3 a“ sin VA
0 0
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= UTZpa3 f: cos? 6 sin 6. fozn dz atr=a
= énpa3U2 = iM’U2 :Where M' = % wadp (3)
Here M’ is the mass of the liquid displaced by the sphere. If M is the mass of the sphere, the total
kinetic energy of the fluid and the sphere is
T == (M +M)U? (4)
Let R be the external force per unit mass in the direction of motion of the sphere. Let us use the
result that the rate of doing work is equal to the rate of increase in K.E.

1d
Thus =2a [( ) U 2(”]
= ME =gy (5)
dt 2 dt
If the liquid is not there, then M’ = 0 and the equation of motion of the sphere is
M‘;—’t’ =R (6)

Comparing equation (5) & (6), we note that the presence of the liquid offers a resistance of the
amount - M ' to the motion of the sphere

Let R’ be the external force per unit mass on the sphere when there is no liquid, then
MR = external force on the sphere in the presence of the liquid.

= MR’ - M’R’ =(M-M) R’

Since, M =200y = At
R=(Z2)R 7)

From equations (5) & (7), we find
Md_U = (E)Rr_ 1ydv
2 dat

or (0 +2) 8- ()= (50

w _ (=) oo _ (220
= (i = (5 ®

This is the required equation of motion of a sphere in a liquid at rest at infinity.

From equations (6) & (8), we note that the effect of the presence of the liquid reduces the external

forces in the ration o —p 1 o + 2.

Note: Sometimes the above ratio is expressed as s-1: s+1/2, where s = a/p is the specific gravity
of the sphere compared with the liquid.

7.5 Pressure Distribution on a Sphere:
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At a point on a sphere moving through an infinite liquid the pressure is given by the
formula
p_pp“ = %afcos@l +é v2(9cos? 0 — 5)
where v is the velocity , f the acceleration of the sphere, and 8, 8, are the angles between the radii
and the direction of v , f respectively, and p, is the pressure at infinity.

Let the coordinates of the centre C of the moving sphere referred to fixed axes be (x,, o, Zo) and

Iet .X:O:U, :y.O=V,Z.0=W (1)
Let (x, y, z) be the coordinates of any point P in the liquid.
Let 6, 6, be the angles between CP and the directions of v ,f respectively.

Let CP=r. Then, we have

r2=(x—x)*+ @ —y)?*+ (z—2y)? (2)
Let [, m n be the direction cosines of CP, then
| = X% m =Y n = 2% 3)
o oy Ty
ZA

X
¥
Also v =U?+V%2+W? (4)
vcosO = resolved part of valong CP = Ul +Vm+ Wn
==y it (5)
T T T

f cos B, = resolved part of f along CP = Ul +Vm + Wn

SUSR A VIR W R (6)
The velocity potential at a fixed point of space (x,y, z) is given by
a3
¢ = -,z vV cos 0

133



(,b——[ X— xo_I_Vy—yo_I_WZ—Zo] (7)

272 T T T

From(2),  2r==2(x—x,)  sothat or _ X% (8)

dx r

Differentiating (7) partially with respect to x, we get

o %a"’U 3a3 ar
—r_ ———=—[U(x—x0) +V(y —y) + W(z — z,)]

ox 13 r4 ox
%ar—;’ - F (x —xo)vcosb [by (5)
and (8)
Similarly, differentiating (7) partially with respect to y and z , we get
a¢ 1a°V 3a® 1) LW 33
3y 21 2 (y —yo)vcos@ ; 9. =7 % g (z —zy)vcosh
0P\ | ([ 9p\*  ( 0g\?
Cq2 = (2" __r
"4 ( ax) +( ay) +( az)
= (asvz) (a + 3 cos?0) (9)
From (2), T% = (x — x0)Xo — (¥ — ¥0)Yo — (z — 20)Zp
= —U(x —x0) = V(y —y0) — W(z — 2) (10)
Differentiating (7) partially with respect to t and using (5) and (6) , we get
op a3 5 a3 5
iy (frcos 6, —v )+32 z (r*v? cos? 6)
Thus %2 — (a—3) (fr cos 6; — v? + 3v? cos? 0) (11)
! at  \2r3 1

Let P the potential function due to external forces. Then the pressure at any point to the liquid is
given by Bernoulli’s equation, namely,

%—Z—f+§q2+P=f(t) (12)
At infinity r = oo,p = p, and so ‘;—‘f = 0and q = 0 from (11). Hence (12) gives
F(t) = %‘) +P.
So (12) reduces to
p—po_0¢ 1 al 1 abv?

(1+ 3cos?0)

> _E_EQZZF (frcos@l—v2+3v2c0529)—§ -

— 3
P7Po 3f ~cos 0, — —v?(4r®* — a3) cos? 0

(13)
Putting r=a in (13), pressure at any point on the surface of the sphere is given by
%:% af cos 6, +%v2(9c0529—5) (14)

Corollary 1. When sphere moves uniformly, i.e., when =0, pressure at point on the surface of the
sphere r=a is given by (putting =0 in (14))
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—p_pm = %vz (9 cos? 0 —5) (15)
or %:ﬁvzg (1 + cos 26) — 5] = = v?(9cos 20 — 1) (16)
Corollary 2. Resultant thrust when there is no acceleration

From (15) ; p = p, +%p v%2(9cos? 6 —5)

So the resultant thrust on the sphere

s
= —fpcos@ds=—f pcosf df.2masinf
0

—2ma? fon[po + évzp (9cos?8 —5)]sinf cosf df =0

Which is in conformity with D’ Alembert’s Paradox.

Corollary 3. Resultant thrust when there is acceleration.
When f is not zero, the resultant thrust due to that part will be

"pl : " _ 2 1
—f 7afc0591. 2masinf,.adf, = —madpf j cos? @, sin 0, d91=—§na3fp—§M’f
0 0

Where M’ = g map = mass of the liquid displaced.

7.6 Drag Force on a Sphere: Show that the fluid pressure exerts a force %M’U opposing the

motion where M’=mass of the liquid displaced by the sphere

Or
A sphere moves in a fluid at rest at infinity. Calculate the force acting on the sphere due to the
presence of the fluid.

The velocity potential for the resulting motion is given by
Ua

3
¢ = 5z €S 0 1)
Where U is the velocity of motion of a sphere in a fluid at rest at infinity.
The Kinetic energy T of the liquid on the surface of the sphere is given by
1
T = MU

The drag force on the sphere may be obtained by integrating the resolved component of pressure
force over the surface of the sphere.
This result may also be obtained by equating the rate of change of K.E. of the fluid to the work
done by the fluid forces. Let F denote drag force, then

dT _Workdone Force X distance

= Force X velocity = FU

dt ~ time time
or Fuzi(lM'UZ)zM—UU
dt \4 2
or F = %M’I'J
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Note: If U= constant, then drag force is zero.
Example: Prove that a sphere projected in a liquid under gravity describes a parabola of latus
rectum
[20 +p <U2>
c—pl\g)
where o and p are the densities of sphere and liquid and U is the horizontal velocity.

Or Discuss motion of sphere under gravity.
Solution: In considering the motion of a sphere, we consider its virtual mass equal to M +

%M ', where M and M’ are masses of sphere and liquid displaced by sphere. By Newton’s second

law of motion
1 .
<M+§M’)U=Mg—M’g
4 3( L1 )U_4 '3( )
37Ta o 2p —37ra o—p)g
o—p  2(c—p)
20+ p g

acceleration = U =
o — 7,0
Length of lactus rectum =2(Horizontal velocity)?/acceleration
2

_Zl.] _ o2 20+ p =U_20+p

U 2(0—p)g g o—p
Example: An infinite ocean of an incompressible liquid of density p is streaming past a fixed
spherical obstacle of radius a. The velocity is uniform and equal to U except in so far as it is
disturbed by the sphere, and the pressure in the liquid at a great distance from the obstacle is II.

Show that the thrust on that half of the sphere on which the liquid impinges is  a? [ Im—- %).

Solution: For the velocity potential ¢ of the liquid,
3

¢ = Wcos@ + Urcos @
Since the motion is steady and there are no extraneous forces
D 1
—=(C ——g?2
p 21

At a great distance ¢ = U and p = I1,s0 C =% +%U2

Hence, by lpz Ll
pp 2 2
- 2 _ (_08)*  (_129)
Now, at r=a, q _( 6r) +( rae)
Therefore, p=1 +% pU? —% p% U? sin 0

The liquid impinges on half of the sphere, hence thrust on that half
= [2pcosb (2masinb) add
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= [2[ T+ pU (1 —2sin? §) ] 2 a® sin 6 cos O df

= a* (H — %).

Example: A sphere whose radius at time t is a + b cosnt, is held in a stream of liquid of
density p, whose velocity at a great distance is U. Prove that the resultant thrust on the sphere is
2m p(a + b cos nt)?> nb sinnt.
Solution: We first consider the liquid to be at rest at infinity and take note of the throbbing of the
sphere. Since the motion is symmetrical about the centre O of the sphere, the velocity v at a
distance r from O is entirely radial and depends only on r and t.
Let R = a + b cosnt; so that the velocity at any point on the sphere is —mbsin nt . The equation
of continuity, therefore, is
r2v = R? (—nb sin nt)

_ 9%

ar
Whence ¢o = — RTZ nb sinnt 1)
As the velocity potential ¢, of a liquid streaming with velocity U past a fixed sphere of radius R is

L R? .
This gives V= =—= nb sinnt

Ucose[r+%], the motion of the liquid under conditions of the problem is obtained by

superposing ¢, on ¢,. Thus
3 2

UR _
¢ =¢y+ ¢, =Urcosf +FC059_T nb sin nt

Z—f=nbsinnt
Atr=R
190 _ 3 g
~50 = 2Usmé?
Since R = —nb sinnt, we also have , when r=R
d¢ 3 : .
E:[_E Ucos 8 .nbsinnt + 2(nbsinnt)? — Rn? bcosnt ],
2 _ (_09%)? 190N\ _9 2 2202 o2
Also, q—( 67') +( r60) —4U sin“ @ n“b“ sin“ nt.
We now make use of the pressure equation, viz,
p 0 1,
s__r_ = C
p Ot Zq +

Which gives, on substituting the values of % and q,

p 3U ) .
(;) = — (7> nb cos 0 sin nt + 2(nb sin nt )?

U? 1
—n?b R cosnt — <9?> sin? 6 — Enzb2 sin?nt + C
The resultant thrust on the sphere acts along the initial line by virtue of symmetry, and is of

magnitude F, where

T

2
sz pcosO 2m Rsinf.RdO
0
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Measured in the sense of the stream,
or F = 2mR? fon psinf.cosf (—% nb cos @ sinnt )d6 + 0

= —3np UR?*nbsinnt %
Thus, F = —2mp U(a + b cosnt)? nb sin nt.

7.7 Check Your Progress:

i). Prove that when the sphere is motion with uniform velocity U, the pressure on the part of
its surface where the radius makes an angle 8 with direction of motion is increased on account of

the motion by the amount pl—f (9 cos 6 — 1),where p is the density of the liquid.

i) A sphere of radius a is made to move in incompressible perfect fluid with non-uniform
velocity u along the x-axis. If the pressure at infinity is zero, prove that at a point x in advance of

the centre
1 _fu [ 2 a3
TN AR

iii) A solid sphere moves through quiescent frictionless liquid whose boundaries are at a distance
from it great compared with its radius. Prove that at each instant the motion in the liquid depends
only on the position and velocity of the sphere at that instant. Prove that the liquid steams pas the
sides of the sphere with half the velocity of the sphere.

iv) A sphere of radius a is made to move in incompressible perfect fluid with non-uniform velocity
U along x-axis. If the pressure is zero, prove that at a point x in advance of the centre

1 (v (2 d
Pzzpa F-I_U X_S_F

v) Prove that the thrust on the half of the sphere on which the liquid impinges is ma? (Il —

%pUz), where II is the pressure at infinity, U the undisturbed velocity of the liquid and p the
density.

7.8 Summary: In this chapter we have discussed the theory of irrotational motion in three
dimensions with the motion of sphere. The equation of motion of sphere in an infinite mass of
liquid at rest at infinity has been derived. For a liquid streaming past a fixed sphere, the lines of
flow relative to the sphere is obtained. Also when a sphere moves through an infinite liquid, the
pressure distribution on formula is derived.

7.9 Keywords: irrotational, motion of sphere, infinite liquid, velocity potential, pressure
distribution, thrust, drag force.

138



7.10 Self-Assessment Test:

SA1: Find the velocity potential when a sphere of radius a is moving with velocity U in he liquid at
rest at infinity.

SA2: A sphere of radius a is moving with velocity U through an infinite liquid at rest at infinity. If
po be the pressure at infinity, show that the pressure at any point of the surface of the sphere, the
radius to which point makes an angle 6 with the direction of motion is given by

-y G

SA3: A sphere moves through a liquid at rest at infinity with a uniform velocity; prove that the
equation to the lines of flow is

r = asin?@
SA4: A solid sphere of radius a move along a straight line in an ideal liquid of density p, which is
moving irrotationally and is at rest at infinity. Show that the magnitude of the resultant thrust of

the liquid on the sphere at any instant is § adpf, where f is the instantaneous value of the
acceleration of the sphere.

SADB: For a solid sphere moving under gravity in an infinite liquid prove that the effect of the liquid
is to reduce the acceleration due to gravity in the ratio

1
(s—1):(s+ E)
s being the specific gravity of the sphere compared with the liquid.
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CHAPTER-8

STOKE’S STREAM FUNCTION

8.0 Learning Objectives: After reading this chapter, you should be able to understand the
motion in two dimensions, define Lagrange’s stream function, understand three-dimensional
hydrodynamical singularities: source, sinks and doublets in three-dimensions their images in
infinite plane and spherical surface and derive the velocity potential functions for these
singularities, define and understand the importance of Stoke’s Stream function.

8.1 Motion in Two-dimensions: When the lines of motion are all parallel to a fixed plane (say
xy-plane) and velocity at the corresponding points of all planes parallel to that of xoy-plane has the
same magnitude and direction, the motion is said to be two-dimensional i.e., there is no velocity
potential parallel to the z-axis. Obviously in this case w=0 and u, v are functions of x,y and t only.

In the figure, let xoy be the fixed plane and x’0’y’ a plane parallel to it. If from a point P in
the xOy plane a normal is drawn to meet x’O’y’ in P, P’ is called the point corresponding to P.
Let g be the velocity at P making an angle 6 with Ox; then the velocity at P” will also be q making
an angle 6 with Ox’. This velocity g shall be a function of x, y and time, but not of z.

For convenience, let us consider the fluid in two-dimensional motion to be confined
between two hypothetical parallel planes at unit distance apart. The plane of reference, the plane
xQOy is taken midway and parallel to these planes. Therefore, any closed curve drawn in the plane
xOy will be a cross-section of a cylindrical surface of unit length. Accordingly, when we speak of
the flow across a curve in the xOy plane, we really mean the flow across unit length of the cylinder
whose cross-section on the xOy plane is that curve.

8.2 Lagrange Stream Function ¥ : In two-dimensional motion of incompressible fluid, the
velocity q is a function of x, y,t but not of z, so that the differential equation of the stream lines is
given by

dx dy

—=_or vdx —udy =0 1)
The equation of continuity is
. u ov
V.q—OI.e., a+£—0 (2)

But (2) is the condition that the differential equation (1) should be exact; it follows that (1) must be
a perfect differential, dy (say).

Thus
vdx—udyzd¢=%dx+%dy20
_ o
So that u= ay’v_ax'

We call the function y the Lagrange stream function or current function.
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Obviously the stream lines are given by the solution of (1), i.e., 1 = constant. Thus the stream
function is constant along a stream line. It is clear from the foregoing considerations that the
existence of stream function is merely a consequence of the continuity and incompressibility of the
fluid. The current function always exists in all types of two-dimensional motion whether rotation
or irrotational.

Physical meaning of Lagrange stream function: Consider a curve | in the xy-plane. If the
tangent at any point P of the element ds makes an angle 6 with x-axis, the direction cosines of the
normal there at (directed from right to left) shall be (—sin 6, cos#,0). The flow, Q, across the
curve | from right to left is

0 0
Q =ftpq.nds=p£[(£sin8)+%cos@]ds

{q =k XV = [—%,Z—f,o}

oY oY
=pft(5 dy + - dx) =p J,dp = —P1p

Where ,,1, are the values at the initial and final points of the curve. Thus, the difference

between the values of stream function at any two points of a curve equals the flow across that

curve.

Corollary: Let AB be an infinitesimal arc of a curve whose length is §s. Then flow across it is
Q = pqds aswell as Q = p(Y, — P;) = pdy. Thus, q = %, the velocity in terms of the steam

function.

8.3 Irrotational Motion in Two Dimensions:
When the motion is irrotational, we know that

=i moin= B -Shmue=i{-G)=o

In two-dimensional motion, first two equations are automatically zero. Substituting for u and v in
terms of stream function, the third equation becomes
2’y L % _

+ p—
d0x2 dy?
Which shows that the stream function satisfies Laplace equations.

Also, in this case, since velocity potential exists, we have
9o_ _ %, . __00_0%p

ox oy’ oy  ox

Hence the equation of continuity, Z—z + Z—; = 0 gives

Which shows that ¢ also satisfies Laplace equation.

It can be easily seen that
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990y | 040Y _ _ _
oxox ayay - uv+uv =20

Hence the family of curves ¢(x,y) = constant and ¥ (x,y) = constant cut orthogonally at all
their points of intersection.

8.4 Complex Potential and Velocity: The relation w = ¢ + iy where ¢ is the velocity
potential and 1 is the stream function of a two-dimensional irrotational motion of a perfect fluid, is

known as the complex potential of the fluid motion.

99 _ 9y 9 _ _ 0¥
ax_ay 6y_ ox

Known as Cauchy-Riemann equations, it follows that w is an analytic function of z = x + iy ina
region where ¢ and 1 are single valued functions.

Conversely, if w is analytic, its real and imaginary parts(¢ and ¥) give the velocity
potential and stream function for a possible two dimensional irrotational fluid motion.
Again, differentiating the relation

Now since and

w=¢+ip=f(z)
With respect to x, we get

P .9 LN D
Prit=f() 2

ax ax
Or —u+iv=f'(2)
Or —u+iv=2
dz

Hence |C;—VZV| = |—u+iv| = vu? + v?,
Thus |z—vZV| represents the velocity at any point.

The points where velocity is zero are called stagnation points. Thus, for stagnation points ‘2—‘;’ =0.

8.5 Sources, Sinks and Doublets (Three-dimensional Hydrodynamical Singularities)

8.5.1 Source: An outward symmetrical radial flow of fluid in all directions is termed as a three-
dimensional source or a point source or a simple source.

Thus, a source is a point at which fluid is continuously created and distributed e.g. an expanding
bubble of gas pushing away the surrounding fluid. If the volume of fluid per unit time which is
emitted from a simple source at 0 is constant and equal to 4xm, then m is termed as strength of the
source.

8.5.2 Sink: A negative source is called a sink. At such points, the fluid is constantly moving
radically inwards from all directions. Thus, a simple sink of strength m is a simple source of
strength —m.
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8.6 Velocity Potential due to a Simple Source of Strength m. Let there be a source of
strength m at a point O the centre, we draw a sphere of radius r around O. The flow across the
sphere per unit volume is given by

jq.ndS
S

In case of a source there is only the radial velocity i.e. g has only radial component g .

Therefore, the flow is

= [q, dS |g.n =gy, since gqand n have same directions i.e. radial direction.
S
= O (4m r?).
Thus, we get
Anm = qr (4n 1?)
m o(m
= = — | — 1
= & r? 8r( r j @)
It is observed that curl g =0 (except at r = 0), therefore for irrotational flow,
o9
=—— =-V 2
gr=-= la=-v¢ @

From (1) & (2), we find

which is the required expression for the velocity potential for a source.

Remarks. (i) For a simple sink of strength m, the velocity potential is ¢ = —?
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(i) A source or sink implies the creation or annihilation of liquid at a point. Both are points at
which the velocity potential and stream function for two dimensional case become infinite and
therefore, they require special analysis.

P
0
> >
M :
Z-axis

8.7 A simple Source in Uniform Stream. Let us consider a simple source of strength m at 0
in a uniform stream having undisturbed velocity U k, kbe the unit vector along z-axis which is
taken as the axis of symmetry of the flow.

We shall find the velocity potential at any point P (z, 6, y). From P, draw perpendicular on OZ.
LetOP=r, |[POZ =6;0M =2

We observe that the velocity potential of the uniform stream in the absence of source is

q=-Vg =Uk=-2k

0z
= 9% -U=¢=-Uz
0z
d1=-Uz = —Ur cos 0 1)
and the velocity potential of the simple source is
m
G2 = — )
r
Thus, the velocity potential of the combination is
m
¢ = 1+ ¢2 =-Ur cos o
:—(Urcose—mj (3)
r
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From here, the velocity components at P(r, 6, y) are

ob m
=-——=Ucos0+—
& or r?
10¢ .
=———=-Usind 0<y<2
P V=er
oy
__1 %
rsin 6 oy

The stagnation points (g = 0) are given by U cos6 +m2 =0,sin0=0 = 06=00rm
r

But 6 = 0 gives r to be imaginary = 0 =nandr = \/g

Thus there is only one stagnation point (\/g n,O]

8.8. Doublet (Dipole). The combination of a source and a sink of equal strength, at a small
distance apart, is called a doublet.

8.8.1 Velocity Potential of Doublet.

Suppose that there is a simple source of strength m at O; and a simple sink of strength m at O».
Origin O is taken as the mid-point. of O; O». It is also assumed that there is no other source or
sink. Let P be a fixed point within the fluid and

\%
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OP = r,01P = rl,OZP = r2,4P001 =0
00, =h,00,=—hh = |h|

The velocity potential at P due to the combination of source and sink at O; and Oz is

¢: m_m = —mrz_mrl

n n I

2.2
_m(p—-n) _ m(; —n)

nr nr(rn+r,)

m(rz — rl)-(rz + rl)
nr (rl + I’2)

r,=rh+r
But r,—rp=2hand r,+r, =2r
rn=-rh+r

m(2h).(2r) _ 4mh.r

Thus d= =
ro(n+n) 6o(n+n)

= _2ur , Where u=2mh (1)

rer (rl + r2)

In equation (1), let us first keep u a finite constant and non-zero vector, so that u = | u | is a finite
constant and non-zero scalar. Let h = 0 along 040.

Then m—oo in such a way that i remains the same finite non-zero constant vector. In that case,
both r1, r—r and thus under this limiting process, (1) results in

rcosd cosd
p=2.pu 5= R = E )

rs r r

The limiting source sink combination obtained at 0 when we keep the direction of h fixed but let
h—0 and m—o with © = 2mh remaining a finite non-zero constant, is called a three-dimensional
doublet (or dipole). The scalar quantity p is called the moment or strength of the doublet. The
vector quantity g = ppi is called the vector moment of the doublet & 1 (unit vector from 0. to 01)
determines the direction of the axis of the doublet from sink to source.

From (2), the velocity components are given by

g = _ 0 _ 2ucosH
r or rs
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10¢p usin©

o= re0 0
qQy =0
The streamlines due to the doublet are given by
dr - rd®6 _ rsin 6dy
2ucos®  pusin® 0
r3 r3
dr
= dy =0 = y = constant and N = 2cot0 do
= r=Asin%0

8.8.2 Doublet in a Uniform Stream. Let there be a doublet of vector moment u=u k at O in a
uniform stream whose velocity in the absence of the doublet is —U k (U = constant).

P(r,0,y)

=il

‘&
- Uk

Q)

M

v
N

Let P be a point in the fluid having spherical polar co-ordinates (r, 6, ), the direction OZ of the
doublet’s axis being the line 6 = 0. We shall find the resultant velocity potential due to the
combination of the uniform stream and the doublet. We know that the velocity potential due to the

uniform stream is

¢1=U z = Ur cosO

and the velocity potential due to a doublet at O, is

_ ucoso
(I)Z - 2

r
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Thus, the resultant velocity potential at P. due to the combination, is
O =1+ 2= (Ur + ut?) cosd

From here, the velocity component are

gr = —@ :—(U —Z—Mjcose

or rs
10¢ [T
=———=|U+—|sin0
P ( r3j
B
rsin 6 oy

Stagnation points are determined by solving.

(U - Z'UJCOSQ=O,(U + #)sin 0=0

r re
2 1/3
which are satisfied when sin@ = 0 and r :(U“j
Thus, we have the two stagnation points.
1/3 1/3
(Z—MJ ,0 |and (Z—HJ , T
U U
which lie on the axis of symmetry.

2u

1/3
. . : 1 . :
If we write r =a ie., a= (Uj e . u= EU a3, then for the region r > a, we obtain the same
velocity potential as for a uniform flow past a fixed impermeable sphere of radius a and centre 0.
: 1 : :
Thus, for r > a, the effect of the sphere is that of a doublet of strength n = 5 Ua® situated at its

centre, its axis pointing upstream. So, the sphere can be represented by a suitably chosen

singularity at its centre.

8.9 Line Distribution of Sources. Let us consider a uniform line source AB of strength m per
unit length. This means that the elemental section of AB at a distance. x from A and of length &x

is a point source of strength mox.
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I'y d
r /[
________ M
—X > B+ x,—>
< X1 >

Let P be a point in the fluid at a distance r from this element, then the velocity potential at P due to

. . mdx
the point source is —

The total velocity potential at P due to the entire line distribution AB (= 2I) is
21 dX

¢=m£T 1)

Let AM = x1, BM = x», where AM is the orthogonal projection of AP on AB. Also, let PM = d,
AP =r1, BP =12. Since r? = (x1 —X)? + d? = (x1—X)? + 1% — x1?, therefore from (1), we get

(I):mj-zl dx

o =x)? + (12 = x2)

_ m_log{(xl—X)+\/(X1—x)2 +(r12_x12)}}2/ '-'Lﬁﬁdx
- 0 = [Iog (x + m)]f

=m :Iog {(x1 —x)+\/(xl —x)2 +(rf —xf)}](;
=m [Iog(x1 +r1)—Iog{><2 X5 12— X2 }J | “o X1 — 21 =x1 -AB = X2

X, +T
=mlog| —2—2X | where 2 —x{ =d® =rf —x3.
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Again, the relation r? —x? =r7 — x5

=
_n+r,+2
r,+r, + 2l
Thus, d=mlog| 1—2—
a+l
=mlog| — (2
a—I

where 2a is the length of major axis of the ellipsoid of revolution through P having A and B as foci
since for such an ellipsoid r1 + r, = constant. It follows from here that the equipotential surfaces
¢ = constant are precisely the family of confocal ellipsoid r1 + r> = 2a obtained when a is allowed
to vary.

¢

Expression for Velocity: The velocity at P is given by q=-V¢ = —[%)n 3)

Let P be any point on the ellipsoid specified by parameter a and P’ the neighboring point on the
ellipsoid specified by parameter a + da, wherein PP'=dnn

0 a+l 1 1 |oa 2lm oa
Thus q=-m—|log—— n=-mM ——-——|—nN= —————n 4
a an[ ga—I} [a+| a—I}@n a’—1%on )

The normal at P to the a-surface bisects the angle 2o between the focal radii AP, BP.

Now,
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(r1 + 8r1)? = r1? + (dn)? — 2r1 8n cos (180—ay)

=12 + (8n)? + 2r1 5n cosa.

2 12 a2
cosC = u
2ab
—=c?=a’+b%-2abcosC
=3 2r1 8r1 = 2r1 8n cos a + (8n)% — (8r1)?
= 3r1 = 8n cosa | (8r1)* = (8n)?
on
= —L —cosa
on

. or
Similarly, —% =cosa
on
Since, 2a=r1L+1r

2@:%+%.:cosa+cosa: 2 COoS a
on on on

oa
= —=C0sa
on

and thus, from equation (4), the velocity of fluid at P is given by q = {ZIm cosa}n

a’—1°
8.10 Hydrodynamical Images for Three Dimensional Flows

Let us consider a fluid containing a distribution of sources, sinks and doublets. If a surface S can
be drawn in the fluid across which there is no flow, then any system of sources, sinks and doublets
on opposite sides of this surface S may be said to be images of one another w.r.t. to the surface.
Further, if the surface S be considered as a rigid boundary and the liquid removed from one side of
it, the motion on the other side will remain unaltered.

8.10.1. Images in a Rigid Impermeable Infinite Plane

(i) Image of a source in a plane: consider a simple source of strength m situated at A(a, 0, 0) at a
distance a from an infinite plane YY'.

We shall show that the appropriate image
system for this is an equal source of strength
m at A'(-a, 0, 0), the reflection of A in the

plane. 0
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To prove this, we consider two equal sources f
strength mat A(a, 0, 0) & A’ (—a, 0, 0) with no
rigid boundary. Let Po be any point on the
plane YY’. Then the fluid velocity at Po due

to the two sources is Y’
m m m
- AP +—— AP - ="y
a (AR)* "% (AR)* T ° ="'
Py
(m) O (m)
A'(-a,0,0) -0 A(a,0,0)
qg=—"__ (AP, + A'Py)
(AP,)? 0 0
AP, + AP,
=™ 20Py)=-2"_(OP,) |=(AO+OP)+(A'O+OP)
C(ARY TN ARy T | ’ ;

= 20P,

This shows that at any point Po of the plane YY’, the fluid flows tangentially to the plane x = 0 and
so there is no transport of fluid across this plane O

Let ¢ denotes the velocity potential then, at all points Po on the plane YY’, the normal component
of velocity is zero
0 . . - .

= —n: 0. Hence, the image of a source at A in the rigid plane YY"’ is a source at A’, as
required.
(ii) Image of Doublet in a Plane: Consider a pair of sources —m at A and m at B, taken close
together and on one side of the rigid plane YY’. The image system is —m at A’, m at B’, where A’
& B’ are respectively the reflections of A and B in the plane YY’. In the limiting case, when B—>A
along BA in such a way as to form a doublet at A, we find that the image of a doublet in an infinite
impermeable rigid plane is a doublet of equal strength and symmetrically disposed to the other
w.r.t the plane.
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B'(m) B(m)
DN A
A'(—m) A(—m)
Y!

Example: A three-dimensional doublet of strength # whose axis is in the direction OZ is
distant a from the rigid plane z = 0 which is the sole boundary of liquid of constant density p,
infinite in extent. If p. be the pressure at oo, show that the pressure on the plane is least at a

distance # from the doublet

Solution. Let there be a doublet of strength p at the point A with OA =aand YY' (i.e. z=0) be
the infinite plane. Then the image system is an equal doublet of strength p at A’, the reflection of
A in the plane z = 0, and the axis along ZO. The line OZ is taken as the initial line 6 = 0 and
plane z=01s 6 = n/2. so that P(r, 0, y) is confined to the region 0 <6 < m/2. Let AP =
ri, A'P =12 and au, a2 be the angles which these lines make with the axis of the doublets as
shown in the figure.

Then, the velocity potential at P is

Y P(r,0,v)
N a—> -
0 Aw Z
/]
z
/YJ’
(z=0)
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_ KOOSOy pcosa,

¢ (1)
r2 r2
2 2 2
rF=r°+a°—2racoso
where ! )
r? =r? +a” +2racoso
(By cosine formulae in A POA, POA')
_AM OM-OA rcosb-a
But cosou = = =
N n n
and COS(180_0@2AM:AO+OM:a+rcose
Iy Iy Iy
_ (a+rcosH)
= coSop = ———
r
Using these relations in (1), we get
o= p(rcosb-a LB —(a+rcos0)
I n r; 2
rcosb—a rcosf+a
= L{ R — } ®3)
I r

Further from (2), we have

2n %:Zr—Zacose :%:—r—acose
or or N

- or, r+acosf or, rasin®
Similarly, —% = ———,— =
or I, 00 r

00 r,

or,  rasin®

Thus from (3), the velocity components are given by

oo cos® _(or,\1 cos0 arlj 1
=——= -3 — |—(rcos6+a) - +3 — | (rcos6—a
a=-2 u{ 0 2 reoso40)- 50 T L reoso-a)

_ {cos@ _3(r+acosa)(rcose+a) _cos6 N 3(r—acose)(rcose—a)}

r r ry ry
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. (rcos6—a) on . (rcos6+a) ory

_ 10¢ _ p|rsin6 00 ) rsin6 00
Qo=———>=—|—5 +3 4 ——5 3 4
rod ri n n P r

p|rsin® N rasin 6(rcos6—a) rsin 0 43 rasin 6(rcoso +a)
ri ry r ry

qy =0
When the point P lies on the plane YY’ or 6 = n/2, we have r? =r2 =r? + a2 and so at (r, 7/2, ),
the velocity components are

qr = —6ura/(r’ + a®%2, qo=0,q, =0.
Along the streamline through this point, Bernoulli’s equation is

BJrlq2 _ const = P=
2 p

Y2,
where g =0 at infinity.

Thus, the pressure at any point on the plane YY" is given by
D =p. _%p[36u2a2r2/(r2 +a2)°]

18pu’a’r?

i.e. p(r) = p- — (7 +20)

Now,

p'(r) = 3—': =36pu’a’r(4r’ —a?)/(r* +a?)°

which gives  p'(r) =0whenr = %a

p’(%—j <0, p'[%+j >0

i.e. p’(r) changes sign from negative to positive when r passes through %

Also

= pis minimum at r :% 0 =mn/2
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i.e. at the point Po (%,n/Z,\uj

The distance PoA is given by

3 -3

—| +a° =—a
: . J5 - .

Hence p is least at a distance 7a from the doublet and the minimum value is

9 (a1
pmln.—pw—zp}l E a_6

8.11 Images in Impermeable Spherical Surfaces. We have already studied the effect of
placing a solid impermeable sphere in a uniform stream of incompressible fluid, taking the case of
axial symmetry. Here, we discuss the disturbance produced when a sphere is placed in more
general flow.

We shall make use of Weiss’s Sphere Theorem which states as follows:

Let ¢(r, 6, y) be the velocity potential at a point P having spherical polar co-ordinates
(r, ©, v) in an incompressible fluid having irrotational motion and no rigid boundaries. Also
suppose that ¢ has no singularities within the region r <a. Then if a solid impermeable sphere of
radius a is introduced into the flow with its centre at the origin of co-ordinates, the new velocity
potential at P in the fluid is

2
o(r, 0, ) + %¢(a7,e,wJ—§J§2’f ¢ (R, 0, y) dR, (r > a)

2
a . . .
where r and — are the inverse points w.r.t the sphere of radius a.”
r

Here, the last two terms refer to perturbation potential due to the presence of the sphere.

0] Image of a Source in a Sphere: Suppose a source of strength m is situated at point A at a
distance f(> a) from the centre of the sphere of radius a.

Let B be the inverse point of A w.r.t. the sphere, then OB = a?/f
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0 B A(£0,0)

The velocity potential at P(r, 6, y) in the fluid due to a simple source of strength m at A(f, 0, 0) is
m
rho)=—
o(r, 0)= 5

2 2 2 2, £2 2
From A OAP, cosd = (OP) +(0A)° —(AP) T +f° —(AP)
2(OP)(OA) 2rf

= AP = /r2 +£2 _2rf cosO
Thus, the velocity potential is
o(r, ©) = m(r? + - 2rf cosp) 12 (1)

Introducing a solid sphere in the region r < a, where a < f, we obtain on using Weiss’s sphere
theorem, a perturbation potential

iq{ﬁ,e}ljgz” 6(R, 0) dR
r r a

am

r 2

4 2 -1/2 )
[a—+f2 —2a—fcose} —mjg " [R? + f2 - 2Rf cos0] 2 dR
r r a

(ma/f) m a2/r drR

i.e. —
Jr2—2r@?/f)cosb+ @2 /)2 @ JR?_2Rfcos0+f2

This shows that the image system of a point source of strength m placed at distance f(> a) from the

2
. : ma : . .
centre of solid sphere consists of a source of strength 5 at the inverse point _af in the sphere,

together with a continuous line distribution of sinks of uniform strength N per unit length

extending from the centre to the inverse point.

(i1) Image of a doublet in a sphere when the axis of the doublet passes through the centre of
the sphere: Let us consider a doublet AB with its axis BA pointing towards the centre 0 of a
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sphere of radius a. Let OA =1, OB =f + of. Let A’, B’ be the inverse points of A & B in the
sphere so that

OA' = a/f, OB’ = a2/(f+51).

At A, B we associate simple sources of strengths m and —m so that the strength of the doublet is
u = mof, where p is to remain a finite non-zero constant as m—oo and 6f—0 simultaneously.

2 2 2 2 -1
BA=OA-0OB' =2 2 a——a—(1+ﬁj

fof+of f f f

a’ a’ a?sf

= — —— +——tothe first order
f f f f

a2
f—28f to the first order

. . . ma
Now, from the case of “Image of source in a sphere”, the image of m at A consists of e at A’

together with a continuous line distribution from O to A’ of sinks of strength N per unit length

and the image of —m at B consists of at B’ together with a continuous line distribution

m .
from O to B’ of sources of strength " per unit length.

The line distribution of sinks and sources from 0 to B’ cancel each other leaving behind a line

distribution of sinks of strength g per unit length from B’ to A’ ie. sink of strength

2
m B'A' = m a—Sf = i(m8f) = “—aat B’. The source at B’ is of strength
a a f2 f2 f2
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1
—ma ﬂ(u gj = —E(l— ﬂ] , to the first order terms

frof f f f f
_—M M. —M pa
f o f? f o f?

which is equivalent to a sink ?at B' and a source ?—Sat B'.

. : a : : .
As there is already a sink ]tl—z at B, therefore source and sink at B’ neutralize. Finally, we are left

with source %at A’ and a sink. %at B'. Thus, to the first order, we obtain a doublet at A’ of

strength
2
ma ma a
— (B'A)= — - of
f( )fﬁ
_ma’ o pa’
.I:3 f3 !

Hence in the limiting case as 6f—0, m—o0, we obtain a doublet at A of strength p with its axis

ua’

towards O, together with a doublet at the inverse point A’ of strength £ with its axis away

from O.

8.12 Stoke’s Stream Function (Stream Function for an Axi-Symmetric Flow): If the
streamlines in all the planes passing through a given axis are the same, the fluid motion is said to
be axi-symmetric. We have already considered such flow for irrotational motion in spherical polar
co-ordinates. (r, 6, y) in which the line 6 = 0 is the axis of symmetry.

Suppose the z-axis be taken as axis of symmetry, then ge = 0 and the fluid motion is the same in
every plane 6 = constant (meridian plane) and suppose that a point P in the fluid may be specified
by cylindrical polar co-ordinates (r, 6, z). Thus, all the quantities associated with the flow are
independent of 6. The equation of continuity in cylindrical co-ordinates, becomes

0 0
= il =0
~(a)+ (1)

. 0 0
1.E. a(rqr):_g(rqz) (1)

This is the condition of exactness of the differential equation

rqrdZ —IrqQ: dr=0 (2)
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This means that (2) is an exact differential equation and let L.H.S. be an exact differential dV'(say)

Therefore,

rgrdz —rg. dr =d¥ = a—\Pdr+a—q]dz
or 0z
which gives

oY oY

[

T T r 3
0, 2 =g ®

The function WV in (3) is called Stoke’s stream function.

The equation of streamlines in the meridian plane 6 = constant at a fixed time t is

dr dz

a
= g.dr=qrdz
Using (3), we get
= %—wa%—jdz:O
= d¥ =0
= Y = constant = C

which represent the streamlines.

Property of Stoke’s Function:

21 times the difference of the values of Stoke’s stream function at two points in the same
meridian plane is equal to the flow across the angular surface obtained by the revolution
around the axis of curve joint the points.

Proof: Let dS be an element of the curve and @ is its inclination to the axis, then outward flow
across the surface of revolution is equal to

Q =pf q-nd5=pf(qrnr+qznz)d5
S S

where n is the outward normal to the surface S, i.e., directed away from the z-axis. Since

n,.dS =r dfdz, n,dS = —r do dr
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Therefore, Q = p fOZ” do ff(qr rdz—q,rdr) =2mnp ff (aa—jdz + Z—L:dr)

B
A

8.12.1 Stoke’s Stream Function in Spherical Polar Co-ordinates (r, 8 y) : We consider the
axi-symmetric motion in r, 6 plane such that g, = 0. The equation of continuity in spherical polar
co-ordinates becomes

1o rlq,) +
r2or 7 r%sin@

0 ]
—(rsin O =0
89( de)

. o, . o
L. — 0q,) =—(-rsin 6 1
ie ar(r sin 6q,) ae( rsin 6q,) (1)

This is condition of exactness for the different equation
r sind go dr — r? sin@ g- d6 = 0 (2)
Thus the expression on L.H.S. of (2) is equal to an exact differential function ¥ such that

rsin® go dr — g r2sin@ do = d¥ = a—lPdera—\Pde
or 00

oY . oY 5 .
—=(,rsin0,—=-q, r<sin 6.
al' qe 69 qr

Remark. In the above cases, the motion need not be irrotational i.e. velocity potential may not
exist. In case of irrotational motion, it can easily be shown that the velocity potential ¢ and the
Stoke’s stream function W do not satisfy C—R equations due to the fact that ¥ is not harmonic.

8.12.2 Stoke’s Stream Function for a Uniform Stream: Let a uniform stream with velocity U be
in the direction of z-axis such that g =U k. Then, from the relations

— _%¢ _ _19%¥ _ _9¢ _19%
qz = az  roar’ " ar  raz
10¥Y 10¥Y
we get U=-—~-—+0=-—
ror r oz
= a_\P:_Ur,a_\P:O
or 0z
I,2
= Y=-U PR where the constant of integration is found to be zero.

In spherical polar co-ordinates we have
Y= —H(rsin 0)% = _Yrogin2g,
2 2
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8.12.3. Stoke’s Stream Function for a Simple Source at origin: In case of simple source
q="f(nrf

But we have already calculated that for a source of strength m at origin.
m : . :
q= z f(r > 0) in spherical polar co-ordinates.

m .

le. r, Qo) = r 1)

-

Also, we know that in spherical polar co-ordinates,
Loow 1o
r2sin@ 60 ° rsin® or

From (1) & (2), we get

(2)

m___1 o%ov_
r? r2sin@ 00 ' or

= a—Tz—msin e,a—‘P:O
00 or

= Y =mcoso .

A constant may be added to this solution and this is usually done to make ¥ = 0 along the axis of
symmetry 6 = 0. In such case,

Y=m (cos 6 -1)
For a sink of strength m at origin, the Stoke’s stream function is
Y = m (1-cos6)

8.12.4 Stoke’s Stream Function for a Doublet at origin: We assume that the flow is due to only
a doublet at origin O of strength p. Taking the axis 6 = 0 of the system of spherical co-ordinates to
coincide with the axis of the doublet, we find that the velocity potential at P(r, 6, y) is

_ ucos6

¢ " (r>0) (1)

op 2ucos6 10p psin®d
= == y == = O 2
q" ar r3 0 r ae r3 4 ( )

But the relations between the velocity components and the Stoke’s stream function ‘¥ are

L oov 1w
r2sin0 0 0 rsin® or

©)

From (2) and (3), we get
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oY _ 2psin0cos® O¥  psin?6
00 r " or r?

Integrating, we get

_ —pusin?e
r

b4

8.12.5 Stoke’s Stream Function due to a Uniform Line Source: Let a uniform line source of
fluid extends along the streamline segment AB of length I. Consider an element QQ’ of length 6z
at a distance z (= AQ) from A. Thus, we have a simple source of strength m 5z, where m is the
constant source strength per unit length of the distribution along AB.

P

>~
-~

—z ->Q%(Q B« b —>M z-axis

Let QP =, |[PQB=Q, PM =d

The Stoke’s stream function W at P for the simple source of strength méz at Q is
mdz(cosO—1). Then, the value of the Stoke’s stream function ¥ at P due to entire line source AB
is given by

Y= mj;(cose—l)dz = mj(:cosedz—mj(;dz

In APQM, cos = M _ QB+BM
| l+b-2z PQ PQ
:mj dz—mli l-z+b l—z+b

0 Jd2 +(1+b-2)?

r JdZ+ (1 +b-2)?

Puttingl + b -z =x = dz = —dx

When z=0,x=1+Dh,
when z=1,x=b
Therefore,
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m ]yl

[d2

j "0 (@ + )12 (2x) dx — ml

m[m]m

2 1/2

or 4

—ml
b

= m[\/dz +(1+b)? —/d? +b2]—m|
= m[AP — BP] - mAB
= m[AP — BP — AB] .

As p is the only variable point, the simpler form m (AP—BP) can be taken for evaluating velocity
components at P. The stream surfaces are

Y = constant i.e. AP — BP = constant.
These are confocal hyperboloids of revolution about AB, with A and B as foci.

We have shown earlier that the equipotential were confocal ellipsoids of revolution about AB with
the same foci. Also, it is well known result that two families of confocal intersect orthogonally.

8.12.6 Stoke’s Stream Function for a Doublet in a Uniform Stream: Let a doublet of vector
moment pk is situated at origin 0 in a uniform stream whose undisturbed velocity is —UK.

In spherical polar co-ordinates (r, 6, ), the Stoke’s stream functions for each separate distribution
are

Y, = %Ur2 sin®0 (for uniform stream, q = -Uk)

Tl

Y, = —?sinze (for doublet at origin)

Hence the stream function for the combination is
1 2 -2
Y (r, 0)= (5 Ur —u/rjsm 0

The equation of the stream surfaces are W (r, 6) = constant.

In particular, the stream surfaces for which ¥ = 0 are given by

(%Urz —p/r]sinzezo
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= sin@zOor%Urz—%:O

1/3
= 0 =0, 7 ie. the z-axis or r = (%“j , the surface of the sphere with centre 0 and

1/3
radius (Z—MJ
U

Example: A point source of strength Ua? is introduced at 0 in a uniform stream whose

undisturbed velocity is Ui. Show that over the surface of revolution r sin 8= 2a cos 5 there is no

flow, the system of spherical polar co-ordinates being used with 8= 0 taken as x-axis. If a rigid
surface of revolution having above equation is introduced into the flow of velocity Ui after
removal of the point source, explain why the two models are hydrodynamically equivalent for
corresponding points in the field of flow?

Solution. Stoke’s stream function for uniform stream is -5 Ur? sin%0 and for a point source at 0, it

is Ua?(cosB —1). Thus, the total stream function for the combination is

_ m - 2 m»
q=—I1=>Ui=—I

w(r, 0) = —% Ur?sin20 + Ua? (cos 6-1) a

a
2
= m=Ua

2
= U{az(cose—l)—%sin 2 6}

The stream surfaces are given by

Y = constant
r2
i.e. U{az(cose—l) —?sin 2 6} = constant
r2
i.e. a?(1-cosh) + ?sin 2 9= constant
- 2 - 2 e r2 - 2 _
I.e. ac 2sin© — +—sin < 6 = constant
2 2
- 2 2 e r2 . 2
i.e. 2a< | 1-cos E +?sm 0 = constant
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2
ie. -2a coszg + r?sin 2 0 = constant.

In particular, taking the constant on R.H.S. to be zero, the corresponding stream surface is

r? sin%0 = 4a? coszg

Le. rsind = 2a cosg 1)

which is the required surface of revolution.

We note that equation (1) is satisfied by

(N cosg:Oi.e.O:n
(i) r = a cosec g

. 0 : .
As no flow takes place over the surface of revolution r = a cosecE, we may introduce a rigid

boundary over the surface, excluding the fluid and source within its interior. Then the
hydrodynamical image of the external flow U i in the surface is the point source Ua? at 0.

Hence the two models are hydrodynamically equivalent for corresponding points in the field of
flow.

Also, we have

ot w1 v
r2sin0 60 0 rsin@ ar |
a2
= qr:U[cose+—2j
r

e =-Usinb, gy =0
.. Fluid speed q at point P is

q= a7 +a5+q

a 2 a 4
=U 1+2(—j cose+(—j
r r

: 0 . o .
On the surface of revolutionr = a cosecE , the fluid velocity is tangential to the surface and
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q= %\/5+2cose—3cos2 0

Stagnation point on the surface is cos6 = -1 = 6 = .

Example: Doublets of strengths u, and p, are situated at points A;,A4, whose Cartesian
coordinates are (0,0, c4), (0,0, c;), their axes being directed towards and away from the origin
respectively. Find the condition that there is no transport of fluid over the surface of the sphere
x* +y? + 2% = ¢yc,.

Solution:

P(r, 6, B)
r
30 92 O e e Y
O A, M A,

Let the spherical polar coordinates of P be (7,8, ) with initial line 0A,A,. Let the axis of the
doublet at A, and A, make angles a, and a, with A, P, A,P . Then the velocity potential ¢ at P is

_ HUzcOosay U1 COS a1
¢ = Ay P2 A, P2 1)

Given OA, = c¢; ad 0A, = c,.Then from figure,

AP = (r? — 2rc; cos @ + ¢;)? and A,P = (r? — 2rc, cos 8 + c2)? (2)
MA; _ 0A,—OM
cosalzﬁzﬁz(cl—rcose)/AlP (3)
. __(rcosb-c;
Similarly, cosa, —( ™ ) 4)

Where M is the foot of the perpendicular drawn from P on 0A;
Using (3) and (4), (1) becomes

¢) _ uz(rcos 0—cy) . pq(ci—rcosB) (5)
A,P3 AP3

From (2) and (5)
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3
¢ =0¢@0)=p, (rcosd —c,) (r? —2rcycos8 +c2)z +py (¢, —rcosh) (r? —
3
2rcycos @ + c¢2) 2 (6)

When there is no transport of fluid over the sphere x2? + y2 + z2 = (y/c,c,)?, we have

Z—(f =0 whenr =+/c,c, (7)

Using (7) and (6), we have

3

3 2
Hy c,? = e, ? or&t = (C—Z)z which is the required condition.

U1 C1

Example: Discuss the motion for which Stoke’s stream function is given by W =

%V [a*r~%cos @ — r?*]|sin?0, where r is the distance from a fixed point and @ is the angle, this

distance makes with a fixed direction.

Solution: Given Y= %V [a*r~2cos 0 — r?]sin?6 (1)

Evidently, W is a sum of two terms. Here liquid flows with velocity V parallel to the x-axis in

presence of a fixed solid of revolution

a4-
_ 2
‘P—EVrzcosé?sm 0

is the stream function for a solid which is moving with velocity parallel to the negative direction of

x-axis. In this case boundary condition is
1 .
Y= EVr2 sin? @ + const.

On boundary

1 %Va4
EVrZ sin? @ + const. = 5 cos 0 sin? 0
4
This implies const.= 0,r%sin? 9 = %cos 0 sin? 0

Or r* =a*cos0

It follows that the given stream function gives the motion of a liquid flowing past a solid r* =

a* cos 8, moving with velocity V along x-axis.

8.13 Check Your Progress:
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1) Prove that the velocity potential at a point P due to a uniform finite line source AB of

. . _ __TptXxy  Ti—Xp a_—l
strength m per unit length is of the form ¢ = mlogf, where f = tn —rm —arl
where AB = 2l,PA=r1,,PB =1,,NA = x;, NB = x,, N being the foot of perpendicular
from P on line AB, and 2a the length of major axis of the spheroid through P having A and

B as foci.

i) If AB be a uniform line source, and A, B equal sinks of such strength that there is no total gain
or loss of fluid, show that the stream function (Stoke’s stream function) at any point is

Y =C[(r; —1,)% = c?] (l — i) where c is the length of AB and r;,r, are the distances of the

1

points considered from A and B.
i11) A and B are a simple source and sink of strengths m and m’ respectively in an infinite liquid.

Show that the equation of streamlines is m cos & —m’ cos 8’ = constant, where 6 and 6’ are the
angles which AP, BP make with AB. P being any point. Prove also that if m > m/, the cone

2m’

defined by the equation cos8 =1 — (T) divides the streamlines issuing from A into two sets,
one extending to infinity and the other terminating at B.

iv) Find the Stoke’s stream function where fluid motion is due to a source of strength (flux 4mwm)
at a fixed point A and a translation of the fluid of velocity U. Explain how this solution can be used
to deduce the motion of fluid past a blunt nosed cylindrical body whose diameter is ultimately 4a,
where a? = m/U.

v) A solid of revolution is moving along its axis in an infinite liquid; show that the kinetic energy

of the liquid is —% mp [ %g—: ds, where W is the Stoke’s function, w the distance of a point from

the axis and the integral is taken round a meridian curve of the solid. Hence obtain the Kinetic
energy of infinite liquid due to the motion of a sphere through it with velocity V.

8.14 Summary: In this chapter, we have defined Lagrange’s stream function and its physical
significance, obtained the velocity potential function for three-dimensional source, sink and
doublet and discussed the image of source and doublets in plane and spherical surfaces. In this
chapter we have also defined Stoke’s Stream function and obtained the values of stream function
for source and doublets in uniform flow of fluid.

8.15 Keywords: velocity potential, three-dimensional, source, doublets, Lagrange’s stream
function, images, Stoke’s stream function, axi-symmetric flow.

8.16 Self-Assessment Test:

SAL: Find value of Stoke' stream function in case of a simple source on the axis of x and a uniform
line source along the axis.
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SA2: What is Stoke’s stream function? Prove that 27 times the difference of its values at two
points in the same meridian plane is equal to the flow across the angular surface obtained by the
revolution round the axis of a curve joining the two points.

SA3: Show that the image with regard to a sphere of a doublet whose axis passes through the
centre is a doublet at the inverse point.

SA4: Verify that W = (Ar~2 cos @ + Br?)sin? 6, is a possible form of Stoke’s stream function,
find the corresponding velocity potential.

SA5: Show that a uniform stream of velocity U can be obtained as the limit a — oo of the field due
to a source of strength 2 a2U at (-a, 0, 0) and a sink of strength —2m a?U at (a,0,0).

References:
e Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London
e Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall
e S. Ramsay, “Hydromechanics part 11” (1935), G. Bell &Sons London
e Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram &
Sons, New Delhi.
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CHAPTER-9
CONFORMAL TRANSFORMATION

9.0 Learning Objectives: After reading this chapter, you should be able to understand the
transformation from one-plane to another plane and particularly conformal transformation,
the images using complex potential theory, know the application to fluid mechanics, derive
Blasius theorem, circle theorem, understand Joukovski transformation and aerofoils.
9.1 Transformation:
The equations ¢ = &(x,y), n = n(x.y) defines a map or transformation from xy-plane to
&n —plane. By means of these equations a domain or curve of xy-plane is mapped on the
corresponding curve of én — plane.
& 0¢
_ ) |ox ay| 0¢ an onoE
“a(x,y)|on an|  ax’dy oaxay
ox ay
The determinant J is called Jacobian of the transformation. Lett = f(z) = é +in be
analytic function of z so that Cauchy Riemann equations
9§ dn g  on
ax ay’ dy  ox

J

are satisfied.

M=) = (0 =] <[ -
d
| -
Or ] = |% =|f'(2)|?
or If' @) = |2 = J=h (say)
where h* = (Z_i)z T (Z_Z)Z - (%)2 + (%)2 - (Z_Z)Z + (Z_Z)Z

9.2 Conformal Transformation:
Suppose a bi-uniform mapping of a region of the z-plane on a region of the t-plane is connected by
the relation

t=f(2) (1)
where f(z) be a single-valued differentiable within a closed contour C in the xy-plane(z-plane) and
t = & + in be another complex variable in én —plane(t-plane). By relation corresponding to each
point in the z-plane within or on C, there will be a point t in the t-plane and points on C or within C
will lie on or within a certain contour C’ in t-plane. The necessary condition for existence of such a
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mapping of z-plane into t-plane is that f’(z) should never vanish at any point on or within C, or in
other words, dt/dz must exist independent of the direction of §z.

Let z, z, and z, be represented by the points A, B and C respectively in the z-plane and let the
corresponding values ¢, t;and t, be represented by point P, Q and R in t-plane.

Then

t1-t — f(z1)-f(2) . -t — f(z2)-f(2)

Z1—Z Z1—Z ’ Zy—Z Zy—Z
Provided that AB and AC are small enough, we have

2= =@

Z1—Z

Lot _ fz t - E
and consequently ~ “— = "— = f" (z) =
It follows, by taking arguments and modulus that
AC PR

i and 6 = 1.
Therefore, the triangles ABC and PQR are directly similar.
Also Z—:Z = |@ = ﬁ , it follows that the linear combinations are in the ratio
of 1: | | and the ratio of the corresponding small areas, i.e.

i% =1f' @)% =fDf (z)—E ﬂare in the ratio 1 a

Thus the mapping given by (1) is such that an |nf|n|te5|mal triangle in one plane maps into a
directly similar infinitesimal triangle in the other plane, preserving the angles and the similarity of
the corresponding infinitesimal triangles.

Since small elements of area are unaltered in shape, the transformation is said to be Conformal.

The factor |%| is often referred to as the linear combination.

By a proper choice of transformation, motion with a complicated boundary can be deduced from
that with a simpler boundary. An extensive use is made of several sets of transformations and
applied successfully to potential flow in two-dimensions. Thus a problem which stands unsolved in
one physical configuration (say z-plane) may be solved into another configuration (say t-plane) by
some suitable transformation. The problem thus may be regarded not as that of finding a direct
solution, but of finding a proper transformation into a configuration which admits of an immediate
solution. Though not always applicable, it is the most reliable method to derive exact solution.

9.3 Applications to Fluid Mechanics:
Conformal Invariance of hydrodynamical singularities
An essential feature of conformal mapping is that the vanishing of the Laplacian (V2= 0) remains
invariant under transformation. Thus a harmonic function remains harmonic after conformal
transformation to a new coordinate plane. This may be ascertained for transformation t = f(z).
Thus ¢(x,y) which in terms of &, 7 may be written as ®(¢&,n), then

Zo | 20 i )

652 2 dx2 dy?
So that if dz/dt is not infinite then

dz 2
dt
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2 2 2 2

T+t =0252+53=0
Thus, if ¢(x,y) is a general potential function in the z-plane, then ®(¢,n) is necessarily a general
potential function in the t-plane. In other words, (velocity) potential functions transform into
(velocity) potential functions. Furthermore, any curve or boundary i.e. stream line in the z-plane
along which ¢ is constant is mapped into a new curve or boundary i.e. stream line in the t-plane
along which @ is constant.
We now discuss the retention of some important hydrodynamic singularities on conformal
transformation:
(1) Source. Let there be a source of strength m at the point P(z,) in the z-plane and enclose it by
a small curve C. Let P'(t,) be the corresponding point in t-plane and let C’ be the corresponding
curve in the t-plane, then C’ must enclose P’; because the domain D in the z-plane is mapped in
one-to-one function onto D’ in the t-plane under analytic function t = f(z) transformation.
The flow across C by the definition of a source is 2rmp. The flow across C is also given in terms
of the stream function by —p [ dy, and since each point on C’ corresponds to one and only one

point on C, we must have, —p fC dy =—p fC, dy taken in the same sense. This means that the

flow across C’ is 2rmp and this will be the same for any small closed curve surrounding P’(t,).
Thus there must be a source m at P'(t,).Hence, we can say that in a conformal transformation a
source is transformed into an equal source. If C’ encircles P’ only once, the source will be of

strength m. If C” encloses P’ n times when C encircles P once, the strength of the source at P will
be (m/n).
1

Example: Consider the motion t = z» 1)
Consider a source of strength +m at P. Let (7. 8) be the polar coordinates of the branch point P in
z-plane and (R, ¢) be the coordinates of the corresponding point Q in t-plane.

From (1), we have

1 0\,
Rei® = (re?)n = r% e(ﬁ)l

= R=r% andd):%
7, «y
B
2w
ht
Q A
»A o > &
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It follows that a complete circle round P in the z-plane corresponds to an arc AB(= 2r/n) in the t-
plane. Since the flow across the circle is equal to that across the arc AB.

2mm = (2n/n)m’' = mm' = nm
Therefore, corresponding to a source of strength +m at P there will be a source of strength
+m’(=nm) at Q.
(1) Doublet: Let the doublet of strength u at the point A(z) in the z-plane be obtained by the
combination of source —-m at A and +m at B, so that (Lim m.AB)=u; as §z - 0,m — oo.

A T -|-$
™ B(=+s52) am DY

e «o

o 2-LL g t-ﬁéaaw

On transforming, we get a source m at D and a sink —m at C in the t-plane. If AB is small enough,
magnification gives
L |%| so that m.CD=m.AB dt/dz|.

AB

Proceeding to the limit, the result is u' = u |%| ; which is the strength of the doublet in t-plane.

If the doublet in the z-plane is inclined at a with the real axis, the doublet in t-plane will be
inclined with the real axis at an angle S, where

B =argdt = arg{(%) 6z} | -~ % 6z =40t

= arg (%) +argdz = arg (%) +a
Thus, a doublet of strength ¢ and inclined at a with real axis in the z-plane transforms conformally
into a doublet of strength u’ (= U |%|) and inclination (= a + arg(dt/dz)) with real axis in the

t-plane.

(1) Vortex filament: Let there be a vortex at P(z,) of strength K in the z-plane and let P'(¢t,) be
the corresponding point in the t-plane; the connecting mapping being t = f(z). Let C be any small
closed curve surrounding P(z,) and C’ the corresponding small closed curve surrounding P’(t,).
The circulation round C, by definition, is — fC dp = —[¢]l. = K.

Since each point on C' corresponds to one and only one point on C, we must have —fC do =
— ., d¢ and thus, circulation around any small closed curve C’ surrounding P'(t) is K.

Therefore, there must be a vortex of strength K at P'(t,). Hence a vortex is transformed into an
equal vortex at the corresponding point.
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These vortices however do not necessarily continue to move so as to occupy corresponding points;
if however we know the motion of one, the motion of the other is usually deduced by a device due
to Routh’.
(iv) Kinetic energy: Let P(z,) be a point inside a small AABC in the z-plane. Let P'(t,) be the
corresponding point to P inside the corresponding small AA’B’C’" in the t-plane. The Kinetic energy
of the fluid in the two triangles is respectively
1 2 1 aw 2
T, =2pq® ABC =1 p |2 a4BC "

T, =1pq? AA'B'C' =1 p |‘f1—“:|2 AA'B'C’
where w is the complex potential for the fluid motion. Now

A’=%2A and =|Z—V: %,

By conformality, we have from (1) that T; = T,.

aw
dz

Notes: (1) The complex potential w = ¢ + i ¥, of a flow is invariant under a conformal mapping;
because ¢ and 1 are both harmonic and hence conformally invariant.

The complex potential, w = ¢ + iy, performs a conformal mapping onto the w-plane, where ¢ —
lines and ¢ — lines are respectively horizontal and vertical lines.

(2) The retention of the character of the hydrodynamic singularities during transformations is of
considerable importance in solving certain problems. In some transformations mathematical
singularities appear from the transformation. Physically, these correspond to stagnation points and
are not termed hydrodynamic singularities.

Example: Use the method of transformation to prove that if there be a source m at the point z,
in a fluid bounded by the lines @ = 0 and 6 = m/3, the solution is

¢ +ip=-mlog{(z® —2z3)(2° — z3)},
where zy = x¢ + iyy and zy = xy — iy,.
Solution: Changing the motion from z-plane to t-plane by the transformation ¢t = z3,where t =
Re'® and z = re'?.
or Re® =13¢e® =R =1r3and ¢p =36.
Thus, the boundaries & = 0 and & = /3 in z-plane transformto ¢ = 0 and ¢ = m in t-plane.
A source of strength +m is placed at the point z, in z-plane bounded by the line 6 = 0 and 6 =
/3 corresponds by transformation to the points t, = z; bounded by the real axis ¢ = 0 and ¢ =
7 in t-plane. The image system consists of (i) a source of strength +m at t, = z; (ii) a source of
strength +m at t;, = z;°.
Thus the complex potential becomes

w = —mlog(t — z3) — mlog(t — z;®)
or w = —mlog(z3 — z&) — mlog (23 — z}°)
or ¢ + i = —mlog{(z® — z3) (23 — z5®)
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Example: An area A is bounded by that port of the x-axis for which x>a and by that branch of
x% — y* = a®?which is in the positive quadrant. There is a two-dimensional unit source at (a,0)
which sends out liquid uniformly in all direction. Show by means of the transformation w =
log(z? — a?) that in steady motion the stream lines of the liquid within the area A are portions
of rectangular hyperbolas. Determine the stream lines corresponding to Y = 0, t/4,and m/2.1f
p_1 andp_2 are distance of a point P within the fluid from the point (+ a, 0). Show that the
velocity of the fluid at P is measured by 20P/ pp2, O being the origin.

Solution: The complex potential is given by w = ¢ + iy = log(z? — a?)

or ¢ + i = log{(x + iy)? — a?} = log{(x? — y? — a?) + 2ixy}
— 2xy 2xy
or Y = tan 1—x2_y2_a2 ortany = =5

The stream lines are given by ¥ = constant.

2xy

ie., - = constant = k(say)

x2-y2-qa
if k=0, the stream lines will be x=0 and y=0.
If k is infinite, the stream lines will be x? — y2? = a2,
Thus the liquid flows in the area A bounded by x = 0,y = 0 and x? — y? = a?,i.e., the portion
of a rectangular hyperbola in the positive quadrant.
Again the complex potential w can be written as

w = log(z — a) + log(z + a),
Which shows that the image of a unit source at the point(a,0) consists of a unit source at the point
(—a, 0) with regard to y-axis.
1 1

z—a z+a

|2z| _ 20P
|z—allz+al p1p2

The velocity of the fluid at any point is g = |Z—:| =

The stream lines corresponding to ¢ = 0 and y = g are x=0, y=0 and x? — y? = a2.
Also, the steam lines corresponding to ¥ = /4 are

2xy s
iy ang=1
x? —y? —a? = 2xy.

9.4 Images in Two Dimensions: If a surface S can be drawn in a moving fluid in such a way that
there is no transport of fluid across that surface then any system of sources, sinks and doublets on
one side of the surface is said to be the image system of sources, sinks and doublets on the other
side with regard to the surface S. The fluid flows tangentially to the surface.

As there is no flow across the surface s, the surface S is necessarily a streamline. If we introduce a
rigid boundary in place of the surface then the fluid motion will remain unaltered and the fluid
velocity at any point, normal to the rigid boundary must vanish.

To discuss the images in two dimensions, we use complex potential.

9.4.1. Image of a Line Source in a Plane. Without loss of generality we take the rigid
impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-plane). Thus we are to
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determine the image of a line source of strength m per unit length at A(a, 0) w.r.t. the streamline
OY. Let us place a line source per unit length at A’(-a, 0).

12 I

m_~10, 01 X
A0 |9 MA@

The complex potential of strength at a point P due to the system of line sources, is given by
w = -mlog z-a) -mlog(z + a) = —mlog(r,e'®1) — mlog (r,€%?)
= —mlog{r r,e!®1*92}=—mlog r r, — i m(0, + 0,)
¢ +iYy =—-mlogrir, —im(0, +0,)
Y =-m(6;+86;)
If P lies on y-axis, then PA=PB = |PAB =|PBA

i.e.1l'—91 =02 =>01+92 =T
Thus y = —mm = constant
which shows that y-axis is a streamline. Hence the image of a line source of strength m per unit
length at A(a, 0) is a source of strength m per unit length at A’(—a, 0). In other words, image of a

line source w.r.t. a plane (a stream line) is a line source of equal strength situated on opposite side
of the plane (stream line) at an equal distance.

9.4.2 Image of a Line Doublet in a Plane. Let us consider the rigid impermeable plane to be x =
0 and perpendicular to the plane of flow (xy-plane). Thus, we are to determine the image of a line
doublet w.r.t.
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the stream line OY. Let there be line sources at the points P and Q, taken very close together, of
strengths —m and m per unit length. Their respective images in OY are —m at P’, m at Q’, where
P’, Q' are the reflections of P, Q in OY. The line PQ makes angle o with OX. Thus P’Q’ makes
angle (m—a) with OX. In the limiting case, as m—, PQ—0, we have equal line doublets at P and
P’ with their axes inclined at a, (r—a) to OX. Hence, either of the line doublet is the
hydrodynamical image of the other in the infinite rigid impermeable plane (stream line) x =0

9.5 Milne-Thomson Circle Theorem: Let f(z) be the complex potential for a flow having no
rigid boundaries and such that there are no singularities within the circle |z| = a. Then on
introducing the solid circular cylinder |z| = a, with impermeable boundary, into the flow, the new
complex potential for the fluid outside the cylinder is given by

w = f(z) +f (a%/z), |z| > a

Proof. Let C be he cross-section of the cylinder with equation |z| = 1.
Therefore, onthecircle C, |zl=a =z Z=a?> =Z =a%/z

where Z is the image of the point z w.r.t. the circle. If z is outside the circle, then Z = a?/z is
inside the circle. Further, all the singularities of f(z) lie outside C and the singularities of f(a%/z)
and therefore those of f (a%/z) lie inside C. Therefore f(a?/z) introduces no singularity outside the
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cylinder. Thus, the functions f(z) and f(z) + f (a%/z) both have the same singularities outside C.
Therefore the conditions satisfied by f(z) in the absence of the cylinder are satisfied by f(z) + f
(@/z) in the presence of the cylinder.  Further, the complex potential, after insertion of the
cylinder |z| = &, is

w =f(z) +f (a%/z) = f(z) +f (Z)
=(2) +£(2)
= a purely real quantity
But we know that w = ¢ + iy. It follows that w =0

This proves that the circular cylinder |z| = a is a streamline i.e. C is a streamline. Therefore, the
new complex potential justifies the fluid motion and hence the circle theorem.

Remark: The Milne-Thomson circle theorem provides a conventional method for finding the
image system of a given two dimensional systems which lies outside a circular boundary. For, if
w=f(z) represents the given system in the presence of the circular boundary |z|=a, then w =
f(a?/z) represents the image system.

(i) Image of source with respect to circle of radius a: Consider a source of strength +m at z=b so
that the complex potential due to this source is

Let a circular cylinder |z|=a (where a<d) be inserted, then by circle theorem, the complex potential
is given by

¢ + iy = w=-m log (z-b) —m log((a%/z)-b)
=-m log (z—b) -m Iog(—s) (z — %)

=—m log (z-b) —m log (z—a?/b) + m log z + constant 1)

Ignoring the constant term, we observe from (1) that the complex potential represents a line source
+m at z = b, another line source +m at the inverse point z = a?/b and an equal line sink —m at the
centre of the circle. Thus the image of a line source of strength m per unit lengthat z=b in a
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cylinder is an equal line source at the inverse point z = a%/b together with an equal line sink —m at
the centre z = 0 of the circle.

(i1) Image of a Line Doublet relative to the Circle. Let there be a line doublet of strength p per
unit length at the point z = d, its axis being inclined at an angle o with the x-axis. The line doublet
is assumed to be perpendicular to the plane of flow i.e. parallel to the axis of cylinder. The
complex potential in the absence of the cylinder, is

Heie

z-d

When the cylinder |z| = a is inserted, the complex potential, by circle theorem, becomes

i

o -
W= He + He

z—d (a?/z)-d
_ Meiot ~ Mefiaz
z—d d(z _a%j
_ Meiot .\ Mzei(n—(x)
z—d d(z _a%j
Meia pei(“_“) uaZ ei(ft—oc)

1)

+ +

z—d d d? ,_a’®
=24

If the constant term (second term) in (1) is neglected, then the complex potential in (1) is due to a

line doublet of strength p per unit length at z = d, inclined at an angle o with x-axis and another
2

. a . . : L

line doublet of strength L:j—z per unit length at the inverse point z = a?/d inclined at an angle n—a

with x-axis.

Thus the image of a line doublet of strength p per unit length z = d inclined at angle o with x-axis

2
. . a . . : L
is a line doublet of strength P;—Zper unit length at the inverse point a?/d which is inclined at an

angle t—a with x-axis.
9.6 Drag Force and Lift Force of Immersed Bodies:

A body of arbitrary shape and orientation when immersed in a fluid stream experiences forces and
moments from the flow. Choose axis e, parallel to the free stream and positive down-stream. The
force on the body in direction e, is called Drag and moment about e4 the rolling moment. The
drag is essentially a flow loss and must be overcome if the body is to move against the stream.
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A force perpendicular to eq, e. g., such as the one bearing the weight of the body is called Lift
(direction e,. The moment about the lift axis e, is called yaw. The third component e; (= e, X
e,) along which there is neither a loss nor a gain is termed the side force and the moment about e;
is called a pitching moment.

For bodies with symmetry about lift-drag axis, the problem reduces to a 2-D case : two forces (lift
and drag) and the pitching moment.

9.7 Blasius Theorem

In a steady two-dimensional irrotational flow given by the complex potential w = f(z), if the
pressure forces on the fixed cylindrical surface C are represented by a force (X, Y) and a couple of
moment M about the origin of co-ordinates, then neglecting the external forces,

. 2
x—iY:'ﬁj (d—w) dz
27¢c {dz

2
M = Real part of _p z[d—wj dz
27¢ \ dz

where p is the density of the fluid

Proof. Let ds be an element of arc at a point P(X, y) and the tangent at p makes an angle 6 with the
x-axis. The pressure at P(X, y) is pds, p is the pressure per unit length. pds acts along the inward
normal to the cylindrical surface and its components along the co-ordinate axes are

dX= pds cos ( 6+m/2)) =—pds sino,
dY= pds sin(@ + m/2)=pds coso

The pressure at the element ds is

dF =dX +idY = —p sin6 ds + ip cos6 ds
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pds sin 6 along negative X — axis

= ip (cos6 + isinB) ds _ .. .
= —pds sin 6 along positive X — axis

=ip (d—x+id—yjds cosezd—x, sine:d—y
ds ds ds ds
= ip (dx + idy) = ip dz 1)
The pressure equation, in the absence of external forces, is
P, 1q2 = constant
p 2
— 1 2
or p=-7pa"+ k )
dw . .
Further P u+iv=—q coso + iq sind
= —q (cos® — i sinf) = —q e (3)
and dz =dx + idy = (Z—)S(H(;—Zj ds = (cos O + i sinB) ds = e ds 4)

The pressure on the cylinder is obtained by integrating (1). Therefore,

F=X+iY=[. ipdz=[. i(k-1/2 pg?) dz
i

:_?pfc q° dz |~ fo dz=0

— _I?p IC q2 elo(s

From here ;
X —iY = IEij g2 e ds
_ 'EP Jo (q? e e ds
. 2
_p dw .
= [c (Ej dz | using (3) & (4)
The moment M is given by

M= [ |FxdF|=[. [(pdssin®) y +(pds coso) x]

182



dy dx i ] k
= — |yds — [xds
Je {p( ds jy ’ p( ds) } = X y 0

—pdssin ©® pdscoso

= [ p(xdx+ydy]

= [ (k—%pqu (xdx + ydy)

=kf, 4 S0 4yD) -2 fc o e+ yay)

- _% Jo G(xdx + ydy) | -+ 1% integral vanishes.
= _pj 2 (x cosB +y sinB) ds O = cos Bds
“ 5l d y dy = sin 6ds

= Real part of [_—Zp jc g2 (X +iy)(cos 6 —isin e)ds}

— —P 2,10
= Real part of {7 [.a%z ds}

= real part of{_?ejc z(qze‘Zie)eieds}

e dw 2
=real partof | —=[.z — | dz|.
P { ZIC [dz) }

Hence the theorem.

Example: What arrangement of sources and sinks will give rise to the function W = log

2
[z — a_] ? Also prove that two of the streamlines are a circle r=a and x = 0.

z
2 2 2
Solution. We have w = log (z _a_] = |09(Z -2 J
z z
i.e. ¢ + iy = log (z2%-a%) - log z
=log (z—a) + log (z+a) — log z 1)
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This represents a line source at z = 0 and two line sinks at z = + a, each of strength unity per unit

length. We can write
¢ + iy = log(x—a + 1y) + log(x +a + iy) — log(x +iy)

— y=tan' Y ttan? Y —tantY

X—a X+a X

RS

X—a X+a
2

1— y

x2 _a2

=tan? | ——>—— 2x2y zj—tan‘1
x?—y?-a

- i x?+y?+a’)y
=tan %2 42 2 |y
y?—a® )x

1

=tan! —tan~™

X <

X <

(2)

Since y = constant is the equation of the streamlines, therefore equations for streamlines are

y (2 +y?+a%) = (X +y* -a?)x tan o
where o is a constant.
In particular, if we take o = nt/2, then we get the streamlines as

(x®*+y?-a%)x=0

i.e. x> +y>—a2=0, x=0
i.e. X% +y? = a? x=0
ie. r=a, x =0 . Hence the result.

Example: Find the stream function of the two dimensional motion due to two equal sources of
strength m at a distance 2a apart and an equal sink of strength 2m between them. Determine the

stream lines. Also find the fluid speed at any point.
Solution: The complex potential of the given system is
W =—-m log (z—a)-m log (z+a) + 2m log z
=m log z?> — m log (z>-a?)

=m [log z% — log (2% — a%)]

i.e., ¢ + iy =m[log (x? — y? + 2ixy) — log (x>-y*—a? + 2ixy)]
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r r3 |'2
s (-2m
_ af 2%y -1 2xy
= mtan { 2%y } (2)
(x* +y?)? - (x* —y*)a’
Streamlines are given by y = constant.
i.e. y = constant = m tan™* (_72] say (3)

Therefore, from (2) & (3), we obtain

2 2a’xy

N - (XZ +y2)2 —(X2 _yz)az

= ¢ +y?)? =a (X - y? + Axy)
where A is a variable parameter.
Now, the fluid velocity is given by

. dw (Zm m m )
u-ivs -——=— — ———-———
dz

" 2z-a)(z+a)
.. The fluid speed is given by
2

2ma
z(z-a)(z+a)

dw
dz

q:|u_iv|:‘_

2ma’?

|zllz-allz+a]
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_2ma’ _ _ _
= , Where |z| =13, |z-a| =12, |zt =11

ELPLES

9.8 The Joukowski Transformation: The transformation

=2+ (S
=7 4z )

Is among the most important transformations of two-dimensional fluid motion and utilized to
obtain the fluid streaming past a fixed elliptic cylinder from that of a circular cylinder. Obviously,
when |t| is large nearly, so that the corresponding distant parts of the two planes are unaltered. Thus
a uniform stream at infinity in the w-plane corresponds to that, of the same strength and direction
in z-plane. By considering the inverse transformation

1
z=5(tt V(% —c?)
or confining our attention to the positive square root viz

z=2(t+/ - c?)
1
It can be easily shown that the region outside the ellipse

2 2

X y

atp=1

will map into the region outside the circle |t| = %(a + b).

9.9 Analysis of Joukowski’s Transformation:
The Joukowski transformation
t=z+ (a%/2) (1)

is one of the most important transformations used for the purpose of investigating two-dimensional
transformation used for the purpose of investigating two dimensional fluid motion. We shall
explain it here in some detail:

Let us denote corresponding points in the z-plane and t-plane by the same letter without and with
dashes. We commence observations categorically.

(i) For very large values of z, we have t # z nearly so that the distant parts of the z and t-planes
remain unaffected. Thus, a uniform stream (wind) at infinity in z-plane will appear as the same
uniform stream(wind) at infinity in t-plane.
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(i) Since % =1 — a?/z?* , the points z + a and therefore the corresponding points t = +2a are

such where the transformation ceases to be conformal. Accordingly, we avoid mapping the region
of which these critical (singular) points are interior; though these may appear on the boundary.

(iii) we now apply Joukowski’s transformation to |z|=b, where b>a.
From (i), t + 2a = (z + a)?/z, so that
|t +2a| + [t — 2a| = [|z+ a| + |z — al]/|z|
= (AP?> + BP?)/b

Y
T
P
VA
4 > %
( —4?0) h @)
Z-ﬁ»‘»«

By Median-theorem(Geometry)

2(b% + a?)
|t + 2al + |t — 2al| = — = constant

Thus as P describes the circle |z|=b, in the z-plane, P’ describes an ellipse with the points t = +2a
as foci, in the w-plane. The lengths of the major and minor axes of the ellipse are respectively
2(b? + a?) 2(b? —a?)
a1 = 'bl = .
b b
Thus if b increases indefinitely, the ellipse expands indefinitely. Therefore, the transformation (1)
maps circles in z-plane whose centre is at the origin into confocal ellipses in the t-plane.
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This could follow from (1) directly, for
aZ
=2 (142 im=y (1-25) g

transforms the concentric circles x2 + y? = b? into
3 N’ 1

a

2
x2+y?2

bZ + a2 +b2—a2 " b2
which are confocal ellipses whose foci are (+2a, 0).

(iv) Consider the circle |z|=a. Then (2) implies
§=2x=2acos0,n=0.But—1<cosf <1
Hence —2a<¢<2an=0.
Thus we see that the map transforms the circle |z|=a in z-plane to the line A’B’ of t-plane where
A’(2a,0), B’(-2a,0) are the points of & —axis is t-plane.

1
(v) The transformation can be expressed as z? — tz + a? = 0 whence z = %[t + (t? — 4a?)z]
1
It can be shown that z = % [t + (t? — 4a?)z]transforms the domain |z|=a onto the whole t-plane

1
and z = % [t — (t? — 4a?)?] transforms the domain |z| < a onto the whole t-plane.
(vi) The Joukowski transformation as equivalent to the successive transformations

C2

(=z+t Wheret=7
Or w=re?+ (c?ne,
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Draw a perpendicular PQ’ to the real axis to meat OQ at Q. i.e., 0Q’=OP=c?/r

2
Therefore, 0Q.0Q’=r (CT) = ¢2
Thus, Q and Q’ are inverse points with regard to O. The position of the point P is obtained by
reflecting OQ’, where Q’ is the inverse point, in the real axis. Again the position of the point R({)
is obtained by the points Q and P by completing the parallelogram OPRQ. Thus the transformation
is completed by the fourth vertex R which is represented by ¢. The point O will be made to

describe a circle whereas the point Q’ will then describe the inverse of this circle. The point P will
therefore describe a circle obtained by reflecting the locus of Q’ in the real axis.

9.10 Aerofoil: The aerofoil has a profile of fish type. It is used in modern aero planes. Such an
aerofoil has a blunt leading edge and a sharp trailing edge. The projection of the profile on the
double tangent is the chord. The ratio of the span to the chord is the aspect ratio. The locus of the
point midway between the points in which an ordinate perpendicular to the chord meets the profile
is known as the camber line of a profile. The camber is the ratio of the maximum ordinate of the
camber line to the chord.

The theory of the flow round such an aerofoil is made on the following assumptions.
a) The air behaves as an incompressible inviscid fluid.
b) The aerofoil is a cylinder whose cross-section is a curve of the fish type.
c) The flow is two-dimensional irrotational cyclic motion.
The assumptions are simply approximation to the actual state of affairs. The profiles obtained by
conformal transformation of a circle by the simple Joukowski transformation make good wing
shapes, and that the lift can be determined from the known flow with respect to a circular cylinder.
Joukowski Aerofoil:
Consider a circle in the z-plane touching at B with AB as radius. Consider a small circle with BA
as diameter. Let another large circle touch this circle at B(-a,0). Take a point P(z) on the large

circle. Let P’ be its inverse point with respect to the circle AB. Again let P’ be the reflection of P’
2
with respect to x-axis then the coordinate of P> is =

z
If we draw a parallelogram with OP and OP’’ as adjacent sides and if OQ be the diagonal of this
parallelogram, then coordinates of Q will be t = z + a;

The locus of point Q(t) is a fish-shaped contour which is called Joukowski aerofoil on account of
its resemblance with the section of an aeroplane wing. The terminal points of the aerofoil are
called trailing edge and leading edge respectively as shown in figure.
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9.11 Joukowski’s Hypothesis:

2
We have t = z + a; and% = 1—a?/z% If q° be the velocity at any point p’(t) corresponding to
the velocity q and P(z) in z-plane, then

— |2w r_|d_W
T= 1zl 1T~ [
-1
T ) e 0 (_“_2)
Also "= @l = dt_q’1 272

Evidently q' = 0 if z = t+a.But z = +a corresponds to t = +2a. The point z=a is inside the
circle and its transform t=2a is also inside the aerofoil and consequently need not concern us. Thus
velocity is infinite at t=-2a, the trailing edge of the aerofoil. Hence in order to avoid infinite
velocity at t=-2a, the velocity at B(z=-a) is taken to be zero, i.e., B is taken as stagnation point of
the flow in z-plane. This is known as Joukowski hypothesis.

9.12 Kutta-Joukowski Theorem: When a cylinder (or an aerofoil) of any shape is placed in a
uniform stream (wind) of speed U, the resultant thrust on the cylinder is a lift of magnitude kpU
per unit length and is at right angles to the stream(wind), where k is the circulation around the
cylinder.

Proof: Since at a great distance from the cylinder, the flow reduces to that of a uniform stream, the
complex potential will approximately be of the form
i
2
Where A is a constant and « is the angle of attack of the stream (wind). Here the first term gives
the velocity of the wind at infinity and the second refers to the circulation k round the cylinder.

. A
w=Uze "“z+-—logz +;+---

d _i ik 1 A
Now, L=yelt ===
dz 2T z z
2 , 2
d _i k.1 A
Therefore, (—W) = (U eTle === )
dz 2T z z

If (X,Y) be the components of the force (pressure thrust) acting on the surface c of the cylinder,
then by Blasius theorem,

) ip dw\?
X—1iY =— (—) dz
2 J.\dz

aw\? , _ cig 1A
IC(E) dZ—fC(Ue + z2"') dz
= 2 p-2i i Lo—ial 1
= fC[U e~ + tk—e ‘“Z+ 0 (Zz) .]dz
This integrand has a pole at z=0. Residue at z=0 is the coefficient of i in the expansion of the
integrand which is equal to % e~ @,
By Cauchy residue theorem,
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dw\ > ik » i
f(—) dz=2ni— Ue'*=-2kUe™*
c\dz T
Therefore, X—iy = % (—2k U e™@) = —ik pU e~'® = —ikpU (cos a — i sin @)
So that X=kpUsina ; Y =kpUcosa

Force(L) =(X? +Y?) = kp U.
Thus the force kp U(maximum lift) acts at right angles to the stream. This force is called lift force.
Corollary: Moment about the origin is given by the Blasius formula
] 1 dw\?
M +iN = _Epfcz(d_z) dz
where M is the moment about the origin of the pressure thrusts on the cylinder(aerofoil) and N is
the imaginary part of the integral.
Thus M = Realpartof 2mipUe™@ A
Since the result contains A(constant), it follows that the couple depends on the form of the
cylinder.

Example: Find the complex potential for liquid streaming, without circulation, past the circular

cylinder|=(a+b)/2, the undisturbed streaming being uniform cross flow at incidence a. Show
aZ_bZ

that the Joukowski transformation { = (§+in) =z + | ” ]

1)
determine the flow past the elliptic cylinder i—z + Z—z = 1. If |z] is large, show that
w=Ue'"*{+[U(a+b)(bcosa+isina)/2{] (2)

Hence find the couple exerted per unit length on the cylinder.

Solution: The complex potential of uniform cross flow is Uze~*. When |z|=(a+b)/2 is inserted,
use of Circle theorem yields

w= Uze @ +Ue'“(a+b)?/4z (3)
a+b

Any point on the cylinder |z| = % is z= (a + b)e'?/2. Consider map (1) on this circle

i6 )i f
¢= I(a +2b)e l + I(a };)e l _L a(e® +e719) +%b(ei9 —e™19)

2
ie., E+in=acosf@+ibsind.
2 2
Thus §=acos@;n=>bsinf ; % + Z—z = 1.(circle transforms to ellipse)
dy _ dw dE_dw [} o0
Now dz  d{ 'dz  dl 422

Thus, if |z| is large, the flow pattern is unaltered (Z—VZV = Z—Vg). We invert the map (1) to get

z2—z{(a® —b?)/4=00rz = { — [(a® — b?/4z] (i)
So z=0— (atbz) (( — a;bz) |lusing (i)
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={+ (*-a®)/4 (i)
From equation (ii) and equatlon 3)
2 2, ia 2_g2 -1
W—Ue‘“"[(+ “]+U(‘””)e .1[1+” ]

4 4
U(a+b)

=Ue @] + —— (bcosa+1asma)+0( )

For large ¢, 0 ( ) is neglected and the above yields result (2).

If C is any curve surrounding the cylinder, then couple M is given by

M-—pRegﬁ(( )d( (4)

.. . 2 aw\?
Now the coefficient sz in{ (d_{) = coefficient of— in (E) .

U(a+b)

20 (bcosa + i asina)]?

aw? _
Here (d—vg) =[Ue™i® —
By Cauchy Residue theorem, Equation (4) gives
M= —%p U?(a + b)Re{(2mi)e "*(b cos a + ia sin a)

=1 p U%(a? — b?) sina cos a.

9.13 Check Your Progress:

i) A source of fluid situated in space of two dimensions, is of such strength that 2mpm represents
the mass of fluid of density p emitted per unit of time. Show that the force necessary to hold a
circular disc at rest in the plane of the source is 2w pm?2a? /r(r? — a?), where a is the radius of the
disc and r is the distance of the source from its centre. In what direction is the disc urged by the
pressure?

ii) Between the fixed boundaries 8 = %and 0= —%, there is a two-dimensional liquid motion due
to a source at the point (r = ¢,0 = a) and a sink at the origin, absorbing, water at the same rate as
the source produces it. Find the stream function, and show that one of the steam lines is a part of
the curve 73 sin 3a = ¢3sin 3 6.

iii) Find the lines of flow in the two-dimensional fluid motion given by

1 .
p+iy=-— (E>n(x + iy)Ze?int,
Prove or verify that the paths of the particles of the fluid (in polar coordinates) may be obtained by
eliminating t from the equations.
rcos(nt+6)—x,=r sin(nt +0) —y, = nt(xy — Vo)

iv) Show that the velocity potential ¢ = % gives a possible motion. Determine the
form of streamlines and curves of equal speed

v) Explain the derivation of a Joukowski aerofoil by the transformation t = z + }7_, 2 applied

z7

to centre z, and radius a. Obtain the lift formula L = 4w p a U% sin(a + ) and show that the
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moment about the point t = z, is M = 2w pb? U? sin 2(a + y), where «a is the angle of attack
and S, b, y constants of transformation.

9.14 Summary: In this chapter we have discussed the conformal transformation which has
wide applications to fluid mechanics. The images in two dimensions using transformation
have been discussed. Drag Force and Lift Force of Immersed Bodies have also been defined in
this chapter. Milne-Circle theorem and Blasius theorem have been derived by using Euler’s
equation. In the last Joukovski transformation, its analysis and Joukovski aerofoils have
been discussed. Also, Kutta-Joukovski theorem has been derived.

9.15 Keywords: Conformal, transformation, images, Blasius, Circle theorem, Joukovski
transformation, aerofoils.

9.16 Self-Assessment Test:

SA1: An aerofoil section is obtained by the mapping ¢ = z + [(a — b)?/z] applied to the circle |z-
b|=a, where b is positive real and b<a. Find the value of circulation I' = 2K needed to make the
velocity finite at the trailing edge when the current impinges at an angle a to the axis of the
aerofoil. Using the value of K obtained, find the force exerted by the current on the aerofoil.

SA2: A long infinite circular cylinder of radius a is placed in uniform stream - Ui and fluid
surrounding the cylinder is given a circulation 2K .Discuss the geography of stagnation points.
Show also, that the cylinder experiences an uplifting force of magnitude 2mwpK U per unit length.

SA3: State and prove Blasius theorem for an open curve AB. Find the force on the quadrant 0 <
0 < m/2 of the circle |z|=a placed in uniform streaming Ui when liquid pressure at infinity is p..

SA4: In the conformal representation of the two-dimensional motion of a fluid, prove that if a
source exists in one fluid, there will be a source at corresponding point of the other fluid.
SAG5: Establish the theorem of Kutta and Joukowski.
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MOTION OF CYLINDERS AND VORTEX MOTION

10.0 Learning Objectives: After reading this chapter, one should be able to understand the two-
dimensional irrotational motion produced by motion of circular, co-axial and elliptic cylinders, understand
the vortex motion, permanence of vorticity and can be able to obtain the complex potential for the
rectilinear vortices.

10.1 Two-dimensional Irrotational Motion Produced by Motion of Cylinders:

Here, we discuss two-dimensional irrotational motion produced by the motion of cylinders in an
infinite mass of liquid at rest at infinity (the local fluid moves with the cylinder). The cylinders
move at right angles to their generators which are taken parallel to z-axis. Thus, we get the xy-
plane as the plane of flow. For the sake of simplicity, we take the cylinders of unit length. For
such motion, the stream function y or velocity potential ¢) is determined in the light of the
following conditions.

0] v satisfies Laplace equation i.e., V2y = 0 at every point of the liquid.
(i) Since the liquid is at rest at infinity, so

a_“’ =0and 6—\" =0 at infinity.
OX oy

(iii)  Along any fixed boundary, the normal component of velocity must be zero so that v _ 0

oS
ie.

v = constant, which means that the boundary must coincide with a streamline.

(iv)  On the boundary of the moving cylinder, the normal component of the velocity of the
liguid must be equal to normal component of velocity of the cylinder.

Further, we observe that the two-dimensional solution of the Laplace equation V?y = 0, in polar
co-ordinates (r, 0), is

v =Anr"cosnd +Bnr'sino

where n is any integer, A, and By being constants. Also, all the observations made for v, are valid
for velocity potential ¢, where ¢ and  satisfy C—R equations.

10.2 General Motion of Cylinder:

Let O be the cross-section of any cylinder be moving perpendicular to its generators which are
moving with linear velocities U and V along x,y-axis with angular velocity w.

Let P(x,y) be on the boundary of the cylinder. Let the tangent PT at P makes an angle @ with the
x-axis. PN is normal at P. We have x = rcos 0,y = rsin 6.
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Linear velocity along x-axis= dx/dt

dx _ d . ,do . . de
r—=—(r = —rsinf— = —rsin in =—
or— dt( cos 0) s Odt sin 0 w since w = —-

dx
Therefore, i A

. . . _d d . de
Linear velocity along y-axis =d—f = (rsin@) =rcosf@ o = X

Velocity components at P along x-axis and y-axis are U + %, V+ % i.eU—-—yowV=wx

But normal component of velocity of boundary =normal component of velocity of liquid

d
——¢ = (U -y w)cos(90 —0) + (V + xw) cos(180 — )
ds
or —%zU—ywsinB—(V+xw)cose
— (U — 4y _ dx
= U yw)ds (V+xw)ds
or dp = (U +yw)dy + (V + x w)dx
2 2
Integrating 1[J=—Uy+y7w+Vx+x7w+C

¥ =Wx—Uy) +5 x* +y*)+C
Where C is constant of integration.

This is the required expression for the general motion of the cylinder.
Note: If the motion is pure rotation then linear velocities are equal to zero, therefore

P =3 +yH+C
Butzz = x% + y?
Therefore, P = %z Z+C

If we consider the equation of the cross-section of cylinder as boundary of the form
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zz=f(2) + f(2)
The complex potential satisfies ¥ is
W=I wf(z)

10.3. Motion of a Circular Cylinder. Let us consider a circular cylinder of radius a moving
with velocity U along x-axis in an infinite mass of liquid at rest at infinity. The velocity potential
¢ which is the solution of V2¢ = 0, must satisfy the following conditions.

Q) (— @j =UcosH

or
(i) _% and _1o —> 0asr—w
or r oo

UcosO
4] U
A suitable form of ¢ is
¢ (r,0)= (Ar + %) cosH (1)
— _9%_ (— A+ Ej cos0 (2)
or r2

Applying conditions (i) and (ii) in (2), we get

(—A+Ezjcose =Ucos6,(-A + 0.B) = 0 for all .

a

= -A +E2 =U,A=0

a
= A=0,B=Ua?
2
Thus o(r, 0) = U%cose 3)
The second condition of (ii) is evidently satisfied by ¢ in (3)
But % = 1oy (C—R equation)
o r oo
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S0, ~-— =—— c0s0
r o0 r?
2
i.e. a—W:—Uicose
00 r

2

wz—Ufsme )
.. Ua’® .
Thus W=¢+iy= ; (cosO — i sinb)
_ Ua® Ua?
reie 7

which gives the complex potential for the flow.

Remarks. (i) For the case of ‘Uniform flow past a fixed circular cylinder’, using circle theorem,
we have obtained the complex potential as

W = f(z) + f(a?/z)

2
=uz+Uud
Z

where the cylinder moves with velocity U along positive direction of x-axis. If we give a velocity
U to the complete system, along the positive direction of x-axis, then the stream comes to rest and
the cylinder moves with velocity U in x-direction.

Thus, we get

2 2
W=uz+U& _uz =Y
Z Z

(i) Similarly, if we impose a velocity U in the negative direction of x-axis to the complete
system in the present problem, then the cylinder comes to rest and the liquid flows past the
fixed cylinder with velocity U in negative x-axis direction and thus we get

2
W = Ui+Uz.
z

(iii)  If we put Ua? = p, then we get
_p_ e’
z z-0

which shows that the complex potential due to a circular cylinder with velocity U along x-axis in
an infinite mass of liquid is the same as the complex potential due to a line doublet of strength
u = Ua? pre unit length situated at the centre with its axis along x-axis.
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Example: A circular cylinder of radius a is moving in the fluid with velocity U along the axis
of X. Show that the motion produced by the cylinder in a mass of fluid at rest at infinity is given
by the complex potential

Ua?
z- Ut
Find the magnitude and direction of the velocity in the fluid and deduce that for a marked

particle of fluid whose polar co-ordinates are (r, 8) referred to the centre of the cylinder as
origin,

W:¢+i1//:

—_ ] =
r dt dt r

1dr .do  U(a®
| r2

. 2
Ze —e"ej and (r—a—] sin @= constant
r

Solution. The cylinder is given to be moving along x-axis. At time t, it has moved through a
distance Ut. Taking z = Ut as the origin, the complex potential is

Ua?

z— Ut

W:¢+iw:

dw Ua? Ua?

Therefore — = = e 2% 7z _Ut=re
dz  (z-Ut) r
2
ie. u—iv= Uiz(cos 20 — i sin 20)
r
2 2
= u= Uizcosze, v:Uizsin 20
r r

2
Therefore, q=vu?+v? = Uiz
"

The direction of velocity is tan o = Yotan20 = a=20
u

When the cylinder is fixed and its centre is at 0, then

2 2
W:Uz+Ui=U(x+iy)+Uiz(x—iy)
z r

2

ie. ¢ + iy = Ur (cos6 + i sinB) +U%(cose—isin 0)

2 2
= ¢:Urcose+m, \V:U(r—aTJsine

The streamlines are given by y = constant
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a2
= (r - —j sin® = constant
r

Further,
a8 Ua? _
—=——=-Ucos0+——cos0O =-V
dt  or r? & ¢
2 -
de —1@=Usin6+ua sin 0
dt r 00 r2
1dr .d® _ Ucos6 Ua2cos® iUcos® .Ua?sin®
N + +i

— i +
rdt dt r r3 r rs

Hence the result.

10.4. Equation of Motion of a Circular Cylinder (Equation of Motion of Circular
Cylinder without Circulation). Let a circular cylinder of radius a move with a uniform velocity

U along x-axis in a liquid at rest at infinity. The complex potential for the resulting motion, is ¢ +
2

y=W= Va , Where origin is taken at the centre of the cylinder.
2 2
Thus, d= U? coso, y=- U? sin@
S0 (@j =-U cosb
o),

Let T1 be the K.E. of the liquid on the boundary of the cylinder and T that of the cylinder. Let o
and p be the densities of material of the cylinder and the liquid respectively. Then

= pjq>6(|)ds
-_P Zn(q)@j add, s=ab = ds=ad6 |I=r0
270 or )iy

pjh —cose (U cos) ado
a

2,2
_ pUa _[02” cos? 0 do

2
2,2 U2 2
_ npU“a ~ (na? )——M'U
2 2
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where M’ =  a%p = mass of the liquid displaced by the cylinder of unit length.
K.E. of the cylinder, T2 = % MU?, M = na’c
Thus, total K.E. of the liquid and cylinder is
T:T1+T2=%(M+M')U2 (1)
Let R be the external force on the cylinder in the direction of motion. We use the fact that rate of

change of total energy is equal to the rate at which work is being done by external forces at the
boundary.

work done  force. dis tan ce

| =

1
RU = > 5 (M + M) U? time time
= force. velocity
= M+M 2Ud_U
2 dt
= (M + M') Ud_U
dt
. wdY gy @
dt dt

Equation (2) is the equation of motion of the cylinder. This shows that the presence of liquid
offers resistance (drag force) to the motion of the cylinder, since if there is no liquid, then M’ = 0
and we get

du
M— =R 3
ot ©)

Now, if % = external force on the cylinder per unit mass be constant and conservative, then by the

energy equation, we get
%(M +’) U2 (M —M’)%r = constant (4)

where r is the distance moved by the cylinder in the direction of R. Diff. (4) w.r.t. t, we get

du

R
M+M)U—-(M-M")—U=0
M+ M) U= - (M- M)

RV 2 .2
MdU__I\/I quznca mpa o

or — =
dt M+M noa’ + mpa’

ie. mdY_o-pp (5)
dt o+p

which gives another form of equation of motion
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IfU=(u,v)and R = (X, Y), then

I\/Iduzc—p MdV:cs—pY

dt o+p dt o+p

(6)

Are the equations of motion of the cylinder in Cartesian co-ordinates. Comparing (3) and (5), it
can be said that the effect of the presence of the liquid is to reduce external forces in the ratio

c—p.0C+p

10.5. Motion of two co-axial cylinders. Let us consider two co-axial cylinders of radii a and b
(a <b). The space between them is filled with liquid of density p . Let the cylinders move parallel
to themselves in directions at right angles with velocities U and V respectively, as shown in the
figure

The boundary conditions for the velocity potential ¢ which is the solution of V2 = 0, are

(@=-V9)

. o
I —— =UcosO, r=a 1
M -7 ¢y
i) -2-vsino,r=b 2)
or
A suitable form of velocity potential is
¢ = (Ar+5jcose+(Cr+Ejsin 0 (3)
r r
= @:(A—chose+(C—Rj5ine 4)
or r2 r2

Using (1) & (2) in (4), we get

-U cos0O = (A—%jcos@—t—[C—%Jﬁn 0
a a

-V sind = (A—EzjcoseJr(C—Ejsin 0
b b2
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Comparing co-efficient of cos® and sinf, we get
B D

A-—=-U, C-—=0
a’ a’
A—b—BZ:O, C—b—Ezz—V
Solving these equations, we obtain
A= Ua? B_—Ua2b2 _Wb®  _ Va®p’®
__az_bz’ T a?_p?  a?_p? a’_p?

Thus, (3) becomes

2 2 2 2
o=- Ua [r+b—Jcos€)+2VLbz(r+a—Jsin6
a —_

a’ —b? r r
Ua® b? Vb? a? ) .
=0 [HTJCOSO_bZ_aZ(HT sin 0 (5)

The expression for y can be obtained from

% _loy
or r oo
ie. a—‘“:r@
00 or

_ Ua? b? 0 Vb? a’ -
= b2—a2 I’—T COS _bz—az I’—T SINn

Integrating and neglecting the constant of integration, we get

2 2 2 2
Va [r—b—]sine+ Vo [r—a—jcose (6)

V= b2 —a2 r b? —a? r

It should be noted that the values of ¢ and y given by (5) and (6), hold only at the instant when the
cylinders are on starting i.e. the initial motion.

Corollary. If the cylinders move in the same direction, then the boundary conditions are

Q) —@:Ucose,r:a
or

i) -2 =voso,r=b
or

Using these conditions in (4), comparing co-efficients of cos6 and sin® and then solving the
resulting equations, we get
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2 2 212
A= Ua“ —-Vb | B:—UVa b
b? —a? b2 —a?

2112
So, ¢= 21 2[(Uaz—Vbz)r—UV? b }cose

b —a

,C=0,D=0

21n2
and vy = 21 2{(Ua2—Vb2)r+UV? b }sine

b —-a

Example: An infinite cylinder of radius a and density o is surrounded by a fixed concentric
cylinder of radius b and the intervening space is filled with liquid of density p. Prove that the
impulse per unit length necessary to start the inner cylinder with velocity V is

2
%[(ow) b? — (o—p) @]V

Suppose that V is taken along the x-axis.
Solution. Let the velocity potential be

d= (Ar+chose+(Cr+Ejsin 0 1)
r r
The boundary conditions are (q =-V¢)
0] —@:Vcose, r=a
or
. o
ii -—— =0,r=b
i or
Applying these conditions in (1) and then comparing co-efficient of cos6 and sin6, we get
B D
A-—=-V, C——=0
a’ a’
B D
A —F = O, C —F == O
Solving for A, B, C, D, we obtain
_ Va? Va?b? |
A P T

Thus, the potential (1) is

21K2
b= L {Va2r+va b Jcose

b2 —a? r

Now, the impulsive pressure at a point on r = a (along x-axis), is
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Va? b?
P=(pd)=a= bp2 2(r+T]cos lr—a

= %(a2 +b?)cos6

The impulsive pressure on the mole cylinder is

J~2n pVa

2 4 b2
0 b2 _g? (a2 + b?) coso. a cosO do

Now, change in momentum = the sum of impulsive forces

2 2
Therefore, 7 a’c (V-0)=1-na’p (bz il a2 jv
b -a

2 2
= I:na26V+na2p(b2+a2jV
b -a
Thus, impulse due to external forces, is

na’V
b2 —a2

| = [ o (b*-a) + p(b” + &7)]

_ na?V
b2 _a2

Hence the result.

[(c + p) b* ~(c—p) &°]

10.6 Elliptic Coordinates: Let z = cosh {,wherez =x +iy,{ =&+ in

Then x + iy = c cos (¢ +in) = c(cosh ¢ cosn + i sinh & sinn)

Sothat x = ccoshé cosn; y =csinh&sinng 1)
Obviously,

2 2

ad | (2)

c?2cosh?&  ¢2sinh2¢

2 2

And | (3)

c?2cos?n  c?sinZp

Thus é=const. and n = const. represent confocal ellipses and hyperbolas respectively and the
distance between the foci in each case is 2c.

If a, b are the semi-axes of the ellipse (2), we have for & = &,
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a = ccosh&,,b = csinh§, so that a? — b? = ¢?
Also a+ b = c(cosh&, + sinh &) = c e;
a—b =c cosh§&, —sinh &) = c e~%;

so that e?%0 = (a + b)/(a — b) or &, = %log ‘”b]

a—b

The parameters &, n are called the elliptic co-ordinates.
10.7 Motion of an elliptic cylinder:

(1) To determine the ¢ and ¥ when an elliptic cylinder moves in an infinite liquid with velocity U
parallel to major axis of the section.

We know stream function for any cylinder moving with velocities U and V parallel to axes and
rotating with an angular velocity w; is given by

1/)=Vx—Uy+%w(x2+y2)+C (1)
As elliptic cylinder moves along major axis i.e., X-axis, then V = 0, w = 0, then (1) becomes

Y=-Uy+c )
Now let the cross-section of the cylinder be the ellipse
x2 2

y
;-l—

b2 1

2 2
or o E D |

c%2cosh?a = c?sinh?a

where a = ccosha,b =csinha, a=¢
The elliptic coordinates are x = c cosha cosn, y = csinhasinng

So (1) will contain sin 7. Also since the velocity is to vanish at infinity (¢ = o), 1y must be of the
form.

e~¢ sin n
We can take complex potential of the form
p+ip=Ae CrmM =gefe M =Ae"%(cosn —isinn) (3)
Equating imaginary part on both sides
Y =—-Ae¥sinny 4)

At the boundary ¢ = a, we have
¢ = —Ucsinhasinng

Therefore, —A e *sinn = —Ucsinhasinn + ¢
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We get
c=0and Ae ®* = Ucsinha
= A =Uce%sinha
Putting these values in (3), we get
Y = —Uce*¢sinhasing (5)

is the stream function when the elliptic cylinder & = « is moving parallel to its major axis with
velocity U.

Put b = csinh a in (5) we get
Y =—Ube%e $siny

=-Ub /% e ¢siny

a-b

Similarly, from (2) equating real part

’a+b
¢ =Ae $cosn="Ub P e ¢ cosn

The complex potential is given by

a+b
a—>b

w=Ub /ﬂ e~$e”m =Up ’ﬂ e~ (E+im
a=b a-b

(ii) To determine the velocity function and the steam function when an elliptic cylinder moves in
an infinite liquid with velocity V parallel to the axial plane through the minor axis of a cross-
section.

w=¢+ip=Ub e~$(cosn — isinn)

We know stream function 1 for any cylinder moving with velocities U and V parallel to axes and
rotating with angular velocity w, is given by

1/)=Vx—Uy+%w(x2+y2)+C (1)
As elliptical cylinder moves along minor axis, i.e., y-axis, then U = 0, w = 0, put in (1)
Y=Vx+c (2)

Now let the cross-section of the cylinder be the ellipse
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xZ yZ
2 =1

2 2
X y
or + =1
c2cosh?a  c¢?sinh?a

where a = ccosha,b =csinha, a=¢
The elliptic coordinates are x = ccosha cosn, y = csinhasinng

So (1) will contain sin 5. Also since the velocity is to vanish at infinity (¢ = o), ¥ must be of the
form.

e $cosn
We assume PY=Ae % cosy (3)
From (2) and (3) equating y at { = a we have
Vccoshacosn+c =Ae %cosn
Weget 0 =cA =Vce%cosa
Putting these values in (3) we get

Y =Vce%cosha e % cosn

a+b

=Va 5 e ¢ cosn

a—

a+b

As a =ccosha and e? = —

Also, that ¢ =Va /% e~¢sinn

The complex potential is given by

’a+b .
= W =iVa |—— e-G+im
w=¢p+iyp=ilVa a—be

(iii) To determine the complex potential when an elliptic cylinder moves in an infinite liquid
with a velocity v in the direction making an angle @ with the major axis of the cross-section of
the cylinder.

The components of v along the axis of coordinates are
U=vcosO andV =usinb
Let w, and w, be the complex potentials corresponding to the motion of the cylinder with velocity

U and V along x and y-axis, we have
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a+b a+b

e_(f'i'in) = b vcos@ e_(f‘l'in)

(1)1=Ub

a+b . a+b
e~ G+ = jqgvsin O

w, = iVa e~ (G+im

Hence the complex potential due to velocity v is given by

a+b .
5 e+ (hcosh + i asinf)

Ww=wt+w, =v

=v % e~C+M{ csinh a cos @ + ic cosh a sin 6}

w=cv ’g e$sinh(a+i60) =v(a+h)eSsinh(a+iB) [asc?=a?—b?

10.8 Kinetic energy of Elliptic Cylinder:

i) When the elliptic cylinder ¢ = a moves with velocity U parallel to x-axis; we have

1
¢ =Ub /g e *cosn =Ubcosne®e ® = Ubcosn [e® = (%)2
1

)E e *sinn = —Ubsinn

a+b

a—b

and Y = —Ub (
We know kinetic energy of T of the liquid on the boundary of the cylinder
1
r=-30 [ eay
:%p U?b? fozncoszn dn [as
n varies from 0 to 2m

:% pU?b%m

i) When the elliptic cylinder ¢ = a moves with velocity V to y-axis

a+b _ . _y a+b _
a—be sinn;yY =Va a—be cos 1

$d=Va
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Therefore, T = —%

p [ dl,bZ—% p [VacosnVacosndn

= —2pV2a? [cos?ndn

T2
1
== pVia’m

iii) when the elliptic cylinder moves with velocity V on a direction making an angle 6 with the
major axis

As above T = %n V2 (b% cos? O + a?sin? 6)

10.9 Vortex Motion

Introduction: It is known that all possible motion of an ideal fluid can be divided in two classes
irrotational and vortex motion. So, for we have confined our attention to the cases involving
irrotational motion only. But the most general displacement of a fluid involves rotation such that
the rotational vector (vortex vector or vorticity) Q = curl q # 0. Here we consider the theory of
rotational or vortex motion. First of all, we revisit some elementary definitions.

10.10 Definitions:
Vorticity If q be the velocity vector of a fluid particle. Then the vector quantity, Q(= curl q) is
called the vorticity vector.

Let Q = &i +nj + {k so that (&,n, ) are the vorticity vector components or the components of the
spin. Then we have
_ow  0v Ju Jw Jdv Jdu

~dy 0z’ =37 ax’ {_ax dy
where q = ui + vj + wk
If &,7,¢ are all zero, the motion is irrotational and velocity function ¢ exists. If &, 1, are not all
zero, the motion is rotational.
In case of two-dimensional motion, we know that w=0 and u & v are function x & y only and
hence for two-dimensional case

Jv Jdu

gzo,nzolqza_@

It follows that in two-dimensional motion there can be at the most only one component of spin and
its axis is perpendicular to the plane of the motion.

Vortex Line: A vortex line is a curve drawn in the fluid such that the, tangent to it is in the
direction of the vorticity vector at that point at that instant.
An element of arc length dr along the vortex line is tangent to the vorticity vector.
So, the equation of vortex line is
Qxdr=0
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i j k
§ n ¢|=0
dx dy dz
(n dz — {dy)i — (§dz — {dx)j + ({dy — ndx)k = 0
or ndz—{dy =0; édz—{dx =0; &dy —ndx =0
Putting in combine form, we have
dx dy dz
§ n ¢

Vortex Tube: The vortex line drawn through each point of a closed curve enclose a tubular space
in the fluid which is called the vortex tube. A vortex filament or simply a vortex is a vortex tube of
infinitesimal cross-section.

Circulation: If C is a closed curve, then circulation about C is given by

Ir= f gdr =In.cur| gds =.|.n.QdS =IQ.dS
C S S S

The quantity | n- Q| dS us called the strength of the vortex tube. A vortex tube with a unit strength

is called a unit vortex tube.

Circular Vortex: The section of a cylindrical vortex tube whose cross-section is a circle of radius
a, by the plane of motion is a circle and the liquid inside such a tube is said to form a circular
vortex.

If w is the angular velocity and ma? the cross-sectional area of the vortex tube, then circulation
F=§q~d rzj curl g-ndS =I curlg-dS
C S S

=w IdS =wra® = K(say)
S

This product of the cross-section and angular velocity at any point of the vortex tube is constant
along the vortex and is known as the strength of the circular vortex.

10.11 Properties of the Vortex:

Every vortex satisfies the following fundamental properties:

1. Every vortex is always composed of the same elements of fluid.

Consider an element of fluid whose coordinates are (x,y,z) at any instant t. Let (a, b, ¢) are the

initial coordinates, then
da _ db _ dc dz

—=—=—=—=pu(say
$o No o W ( )
Since dx =% da+2db+Zdc
aa dxdb dy ae dz ds
_ ax ay 2“2 — 220
or dx—#(foda+770db+(odc)—Posrpwo
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Hence (ps)—‘f) = (%ds) =€ [by Cauchy integral

Let (u, v, w) be the component velocities at (x,y, z), and (u + du, v + dv,w + dw) be the
velocities at a neighboring point (x + dx,y + dy, z + dz) on the same vortex line

Since X =2 _Z_&_¢

3 n 4 w p

du =+ 2y + 2 g
YRR Ty T Y
—E (e g By r ) 9 (8

or du_p(fdx+ndy+(dz)_€6t (p)
The quantity du is the rate at which the projection of the element ds on the x-axis is increasing in
length. The projection is equal to e% (%) the line ds still forms part of a vortex line.

2. The product of the angular velocity of any vortex into its cross-section is constant with
respect to the time, and is the same throughout its length.

Let S; and S, be cross sectional areas at the end points P and Q of a vortex filament. Let n be unit
outward normal vector on S. Then, by Gauss Divergence theorem

1
fW.ndS=jV.WdV=jV.(—V><q) v
S %4 2

1
= E,]- (div curl @)dV = 0as divcurl =0
v
Therefore, Jo W.nds=0

Where S is the closed surface enclosing volume of V of the fluid in the vortex tube
or W.ndS + W.ndS+J- W.ndS =0

S1 S2 walls

But on the walls of the tube, W is along the tube and so fwalls WndS=0asW.n=0

on the walls.
Hence fsl W.ndS + fsz W.ndS=0

or fSl W.nl dS = fSZ W.nz dS

where n,and n, are unit outward normal on the surfaces S; and S, drawn in the same sense.
This implies

fW.n dS = constant
s

This proves the required result.

10.12 Kelvin’s proof of permanence: Permanence of irrotational motion:
Under the conditions of the Kelvin’s Circulation theorem [Art 6.3 Chapter 6], if the flow is
irrotational in a material region of the fluid at some particular time (e.g. t = 0 or t = to), the flow is

always irrotational in that material region thereafter.
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i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for ever afterwards
provided the external forces are conservative and density p is a function of pressure p only.

Proof. Suppose that at some instant (t = to), the fluid on the material surface S is irrotational
Then, curl q = w=0 1)
for all points of S.
Let C be the boundary of surface S, then
=¢.q.dr = [(n.curlq)dS = [(n.w)ds =0 | using (1)
But by Kelvin’s circulation theorem, I' is constant for all times. Hence circulation I" is zero for all
subsequent times. At any later time,
Jyn wdS=0
If we now take S to be non-zero infinitesimal element, say AS, then
n.w AS=0 = w =0 at all points of S for all times and the motion is irrotational
permanently. This proves the permanency of irrotational motion.

Example: Prove that the necessary and sufficient condition that the vortex lines may be at right

angles to the stream lines are (u, v,w) = u (%,%,%) where u, ¢ are function of x,y,z,t.
Solution: Stream lines are
ax _dy _ dz
u o v o w (1)
and vortex lines are d?x = ‘;—y = d—; (2)
Stream lines (1) and vortex line (2) will be at right angles if
ué+wm+wi=0 (3)
ow  dv du ow v Odu
=% " 1 % T o 4)

Using (4), (3) we obtain
(6W 617) N ((’)u ('JW) N (av au) _0
”ay 0z UE)Z 0x Wax ay)
Which is the necessary and sufficient condition in order that u dx + v dy + w dz may be perfect
differential. So, we may write

dx+vdy+wdz=udop = a¢d +a¢d +a¢d
udx+vdy+wdz=pu ¢_‘u(6x X 3y y Ep Z)

L) L) _ 09

Therefore, u=p_-, v—,u—ay, W=

Example: Assuming that in an infinite unbounded mass of incompressible fluid, the circulation
in any closed circuit is independent of time, show that the angular velocity of any element of the
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fluid moving rotationally varies as the length of the element measured in the direction of the
axis of rotation.

Solution: Let w be the angular velocity of the element ds and let o be the its area of cross-section.
Then circulation in any closed circuit surrounding this element is 2wo. Let the element ds form a
part of the vortex filament s so that the circulation is constant all along this element. Furthermore,
since circulation assumed to be independent of time, we get

2wo = constant
Again, since the liquid is incompressible

o ds = constant

After dividing, we have
w

% = constant
which proves the result.
10.13 General Theory of Vortex Motion:
The vorticity is defined as Q = curl q 1)

In physical applications one is often concerned with the problem of expressing the vorticity field in
terms of the velocity field. To obtain q(r, t) in terms of  we need to invert the equation (1). We
do this as follows:
We consider flow regions in which the fluid motion is due to vortices only i.e., there are no
sources, sinks etc. motion due to which is essentially irrotational. Assuming the fluid to be
incompressible, the equation of continuity is

divg=0 (2)

Since divergence of curl of a vector vanishes identically, we can write

q=curlA (3)
A is called the vector potential for velocity. Also since for any scalar function ¢, curl(grad ¢) =
0, A is indeterminate to within the gradient of scalar function. To make A unique we stipulate

div A=0 4)
From (3), curl curl A=curl g

-VZA+V(V.4A) =0
Using (4) this gives
VA = —-Q

This is Poisson’s equation for A whose solution can be expressed as

At == 22

[r=7']

Where Q'(r'.t) is the vorticity at a point 1’ of the vortex tube, and dV’ is the volume element of
the vortex tube around the point r’, the integration above extends over the whole vortex tubes.
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The velocity field at a point P(r) as given by (3) is

q(r,t )—curl—fffﬂ(r t)

10.14 Vorticity in Two-dimensions: For an incompressible fluid in the xy-plane, we have
g=(u,v,0), V= i 9 0
ox ' oy

Q=Vxqg=(0,0, @_8_u)
OX

= k(@_a_uJ
oX oy

which shows that in two-dimensional flow, the vorticity vector is perpendicular to the plane of
flow.

Also, a=|a=¥ M
ox oy
Thus Q=kQ
Now, for this case, the Helmholtz’s vorticity equation
dQ :
ot (Q-V)qg gives
dQ

— =0 = Q=constant
dt

i.e. Q = constant.

which shows that in the two-dimensional motion of an incompressible fluid, the vorticity of any
particle remains constant.

Here, we may regard () as a vortex strength per unit area.

Also, in terms of stream function, we have

u=-M N
oy OX
2 2
Q=K TV TV kv,
ox* oyt
ie. Q= V3y

This gives vorticity in terms of the stream function.

10.15 Rectilinear or columnar Vortex Filament: The strength k of circular vortex is given
by

k = wna?,
If we let a—>0 and w — o such that the above product remains constant, we get a rectilinear
vortex filament and represent it by a point in the plane of motion. Such vortex filament may be
regarded as straight gravitating rod of fluid lying perpendicular to the plane of flow. It is also
termed as a uniform line vortex. The strength of a vortex filament is positive when the circulation
round it is anticlockwise and negative when clockwise.
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In vortex motion the curvature of the stream lines introduces the action of centrifugal force which
must be counter balanced by a pressure gradient in the fluid.

Different Types of Vortices: We may divide vortices into the following four types

1. Forced vortex in which the fluid rotates as a rigid body with constant angular velocity.

2. Free cylindrical vortex for which the fluid moves along streamlines which are concentric
circles in horizontal planes and there is no variation of total energy with radius.

3. Free spiral vortex which is a combination the free cylindrical vortex and a source (radial flow)
4. Compound vortex in which the fluid rotates as a forced vortex at the centre and as a free vortex
outside.

10.16 Complex Potential for Circulation about a Circular Cylinder (Circular vortex) :
In case of a doubly connected region, the possibility of cyclic motion does exist and as such we
proceed to explain it presently in the case of circle.
If the circulation in a closed circuit is 27k, then k is called the strength of the circulation.
Let s consider the complex potential

w = ¢ =iy = iklogz

(1)
On the circular cylinder |z| = a,z = ae®
Thus, w = ik log (a &) = ik (log a + i)
ie. ¢ + iy —kb + ik log a
= = —k0, v =k log a = constant.

This shows that the circular cylinder is a streamline and thus equation (1) gives the required
complex potential for circulation about a circular cylinder.
When the fluid moves once round the cylinder in the positive sense, 6 increases by 2t and then

d1 =—k (6 +21t) = —k6 —27k

= ¢ — 2nk
circulation = 2k = ¢ —¢1

= decrease in ¢ moving once round the circuit.

Hence there is a circulation of amount 2rtk about the cylinder.

AISO, d_W:K
dz z
‘ dw | k
= g=|-—|=—
dz r
ie.k=rq
: k=qwhenr=1

Thus K is the sped at unit distance from the origin.

10.17 Complex Potential for Rectilinear VVortex (Line Vortex) Let us consider a cylindrical
vortex tube whose cross-section is a circle of radius a; surrounded by infinite mass of liquid. We
assume that vorticity over the area of the circle is constant and is zero outside the circle.

Let y be the stream function, then

Q=Viyk
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i.e Q=Viy= T4+
ox%  oy?
2 2
-9y 1oy 10
o raor r? oe?
2
Since there is a symmetry about the origin w is a function of r only and so % =0.
Q= }i[rd—wj forr<a
rdr\ dr
=0,forr>a
ie. E(rd—wj =rQforr<a
dr\ dr
=0, forr>a

Integrating, we find
2
rd—W:Qr—+ A forr<a
dr 2
=B, forr>a
We are interested in the fluid motion outside the cylinder |z| = a. Therefore, integrating the second
of the above result, we get
yv=Blogr+C,forr>a.
The constant C may be chosen to be zero. Further, for r > a, the vorticity is zero and the fluid
motion is irrotational, therefore velocity potential ¢ exists and is related to y as

10 oy B
ro6 or r
= =-B6+D
= ¢ = —B0, neglecting D

Let k be the circulation while moving once round the cylinder, then
k = decrease in value of ¢ on describing the circuit once
= -B [6-(6+2n)] = 2B
= B = k/2r = K(say)
Thus, ¢ =—k6 and y =k log r
Hence W = ¢ + iy = k0 + ik logr
= ik (logr + i6)

= iklogz == iLIOg Z
2m

If the rectilinear vortex is situated at the point z = zo, then by shifting the origin, we get

W = iklog (z—z,)
If there are vortices of strengths ki, ko, ...k situated at zi, z»,..., z respectively, then the complex
potential is

W = ik; log(z-z1) +ikz log(z—z2) +...+ ikn log(z—zn)

Remarks (i) By a vortex, we mean a rectilinear vortex or line vortex.
(if) K = k/2w, where k is the strength of a vortex and k that of circulation
(1ii) Velocity component of a single vortex

217



aw ik ik

—=-u+iv= = -
dz 2n(z — zy) 2mret®
. ik ..
—u 4+ iv = — (cos@ — i sinf)
2nr
e
2w r 2w T
where % = (x —x0)* + (¥ — ¥0)?

Example: An infinite liquid contains to parallel, equal and opposite rectilinear vortex filaments
at a distance 2b. Show that the paths of the fluid particles relative to the vortices can be
represented by the equation

l (r? + b?> — 2rb cos ) T cos 0
°9 (r2+b%2+2rbcosB) b
O is the middle point of the join which is taken as x-axis.

= constant.

Solution: Let the vortices of strengths +k, —k be at A(—b,0), B(b,0) such that AB is along x-
axis. The complex potential due to this vortex pair at P(x,y) is

ik ik
W = Elog(z +b) — Zlog(z —b)

or W=¢+i1,l)=2i—i[log(x+b+iy)—log(x—b+iy)]
Equating imaginary parts from both sides
¥ = 2 [log{(x + b)? + y?} — log{(x — b)* +y?)] @)

The vortex pair will move along a line parallel to y-axis with velocity
k k k

2n(AB) _ 2m(2b) _ 4mb
To reduce the system to rest, we have to superimpose a velocity (ﬁ)parallel to y-axis. if Y’ be
the stream function due to this disturbance, then
k ap’ oY’ ) kx
—_—— =Py = — = ) lp = —_-——
nh dy 0x 47h
The stream lines relative to the vortex system are given by ¥ = const.i.e.,

k x
P [log{(x + b)? + y2} + log{(x — b)? + y?}] +, = constant

Changing into polar coordinates,
(x—b)*+y?) «x
log {m} + b = constant.
(rcosf —b)?> +1r?sin?6) rcosh
g{(r cos @ + b)? + r2sin? 0} b

= constant.

10.18 Check Your Progress:
i) Show that when a cylinder moves uniformly in a given straight line in an infinite liquid, the path
of any point in the field is given by the equations
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dz _ Va? dz’ _ Va?

dt (2 =Vt)2' dt (z—Vt)?
Where V is the velocity of cylinder, a its radius, and z, z* are x + iy, x — iy where X, y are the
coordinates measured from the starting point of the axis, along and perpendicular to its direction of
motion.

i) An infinite cylinder of radius a and density p is surrounded by a fixed concentric cylinder of
radius b, and the intervening space is filled with liquid of density p. Prove that the impulse per unit
length necessary to store the inner cylinder with velocity V us

na?

p2—q2 {(U + p)bz - (0 — ,D)Clz} V.

iii) Show that with proper choice of units, the motion of an infinite liquid produced by the motion
of an elliptic cylinder parallel to one of its principal axes is given by the complex function w =
e, where z = 2 cosh (.

iv) When an infinite liquid contains two parallel equal and opposite rectilinear vortices at a
distance 2b, prove that the stream lines relative to the vortices are by the equation
x>+ (y—-b)?| vy
Bl zrvrpmzl T5=¢
x%2+ (y+b) b
The origin being the middle point of the join, which is taken for y-axis.

V) Three parallel rectilinear vortices of same strength k and in the same sense meet any plane
perpendicular to them in an equilateral triangle of side a. Show that the vortices all move round the

. . . .. 2m a?
same cylinder with uniform speed in time %

10.19 Summary: In this chapter the motion of circular, co-axial and elliptic cylinder in an
infinite mass of liquid has been discussed. It is discussed in this chapter about the vortex motion,
defined vortex line, vortex tube and vortex filament. The permanent of vorticity is also explained
here and proved two important properties of vortex filament. At the end, the complex potential for
the rectilinear vortices is derived in this chapter.

10.20 Keywords: Irrotational motion, circular cylinder, co-axial cylinder, elliptic cylinder,
vortex motion, vortex filament, rectilinear vortices.

10.21 Self -Assessment Test:

SAL: Find the velocity potential and stream function when a circular cylinder of radius a is moving
in an infinite mass of liquid at rest at infinity with velocity U in the direction of x-axis.

SA2: Find Kinetic energy when an elliptic cylinder rotates in an infinite mass of liquid at rest at
infinity.

SA3: Find the velocity potential and stream function in case of an elliptic cylinder rotating in an
infinite mass of liquid at rest at infinity.

SA4: Find velocity potential, stream function and velocity components due to a rectilinear vortex
filament.
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SAD5: Find the necessary and sufficient condition that vortex lines may be at right angles to the

stream lines.
SAGB: Prove that the product of the cross-section and angular velocity at any point on a vortex
filament is constant all along the vortex filament and for all time.
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