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SOME HISTORICAL NOTES 

 

 

THE term hydrodynamics was introduced by Daniel Bernoulli (1700-1783) to comprise the two 

sciences of hydrostatics and hydraulics. He also discovered the famous theorem still known by 

his name.  

 

d'Alembert (1717-1783) investigated resistance, discovered the paradox associated with his name, 

and introduced the principle of conservation of mass (equation of continuity) in a liquid. 

 

Euler (1707 -1783) formed the equations of motion of a perfect fluid and developed the 

mathematical theory. This work was continued by Lagrange (1736-1813). 

 

Navier (1785-1836) derived the equations of motion of a viscous fluid from certain hypothesis 

of molecular interaction. Stokes (1819-1903) also obtained the equations of motion of a viscous 

fluid. He may be regarded as having founded the modern theory of hydrodynamics. 

 

Rankine (1820-1872) developed the theory of sources and sinks. 

Helmholtz (1821-1894) introduced the term velocity potential, founded the theory of vortex 

motion, and discontinuous motion, making fundamental contributions to the subject. 

 

Kirchhoff (1824-1887) and Rayleigh (1842-1919) continued the study of discontinuous motion 

and the resistance due to it. 

 

Osborne   Reynolds (1842-1912) studied the motion of viscous fluids, introduced the concepts 

of laminar and turbulent flow, and pointed out the abrupt transition from one to the other. 

 

Joukowski (1847-1921) made outstanding contributions 'to aerofoil design and theory, and 

introduced the aerofoils known by his name. 

 

Lanchester (1868-1945) made two fundamental contributions to the modern theory of flight; (i) 

the idea of circulation as the cause of lift, 

(ii) the idea of tip vortices as the cause of induced drag. 

He explained his theories to the Birmingham Natural History Society in 1894 but did not publish 

them till 1907 in his Aerodynamics. 
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CHAPTER-I 

 

SOME SUBSIDIARY RESULTS 

 

1.0 Learning Objectives: After reading this chapter, you should be able to learn “Some 

subsidiary results” which provides the brief resume of results on vectors, vector analysis, complex 

variables and boundary value problems etc. This makes the text self-contained with regard to the 

use of subsidiary results from various mathematical disciplines. 

 

1.1 Brief Introduction of Vector analysis: 

Since the use of vectors not only simplifies and condenses the exposition of fluid mechanics but 

also makes mathematical and physical concepts more tangible and easier to grasp, it is proposed to 

give the vectorial treatment of what follows further.  

Throughout this manuscript, bold face type is used to denote vector quantities. 

If a, b and c are any vector functions (of position), then with the vector notation  

   𝒂 =  𝒊𝑎1 + 𝒋 𝑎2 + 𝒌 𝑎3  ≡ (𝑎1, 𝑎2, 𝑎3, )  ;   𝒃 ≡ (𝑏1, 𝑏2, 𝑏3), 𝑒𝑡𝑐. 

 

1.2 Rules of Vector Algebra: 

𝒂 . 𝒃 = 𝒃 . 𝒂 = 𝑎𝑏 cos𝜃 =𝑎1𝑏1 + 𝑎2 𝑏2 + 𝑎3𝑏3 

𝒂 × 𝒃 =  −𝒃 × 𝒂 =   𝑎 𝑏 sin 𝜃 𝒏 = ∑𝑖 (𝑎2𝑏3 − 𝑎3𝑏2) 

𝒂 . (𝒃 + 𝒄) = 𝒂 . 𝒃 + 𝒂 . 𝒄 ;  𝒂 × (𝒃 + 𝒄) = 𝒂 × 𝒃 + 𝒂 × 𝒄 

𝒂. (𝒃 × 𝒄) = (𝒂 × 𝒃). 𝒄 = 𝒃. (𝒄 × 𝒂) =  ∑(𝑎1(𝑏2𝑐3 − 𝑏3𝑐2) 

𝒂 × (𝒃 × 𝒄) = 𝒃(𝒂 . 𝒄 ) − 𝒄(𝒂. 𝒃) 

The Vector operator 𝛁 (called del) is defined as: 

𝛁 ≡ 𝒊
𝜕

𝜕𝑥
+ 𝒋 

𝜕

𝜕𝑦
+ 𝒌 

𝜕

𝜕𝑧
= (

𝜕

𝜕𝑥
  ,
𝜕

𝜕𝑦
  ,
𝜕

𝜕𝑧
 ) 

 

 Then, if 𝜙(𝑥, 𝑦, 𝑧) and a(x,y,z) have continuous first partial derivatives in a region, we have the 

following definitions : 

 

Important Results 

(i)  Let 𝒒 = 𝒊𝑢 + 𝒋𝑣 + 𝒌𝑤, 𝑡ℎ𝑒𝑛 

  |q| = √𝑢2 + 𝑣2 +𝑤2 = 𝑞 

D.C’s are given b y l = cos  = 
𝑢

|𝒒|
, m = cos  = 

𝑣

|𝒒|
, 𝑛 = 𝑐𝑜𝑠 𝛾 =

𝑤

|𝒒|
 

where l, m, n, are components of a unit vector i.e. l2 + m2 + n2 = 1 
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(ii)  𝒂. 𝒃 = 𝑎𝑏 𝑐𝑜𝑠 𝜃 , 𝒂 × 𝒃 = 𝑎𝑏 𝑠𝑖𝑛 𝜃 𝑛 

(iii)   = 𝒊
𝜕𝜑

𝜕𝑥
+ 𝒋

𝜕𝜑

𝜕𝑦
+ 𝒌

𝜕𝜑

𝜕𝑧
,  where  is a scalar and  

   𝒊
𝜕

𝜕𝑥
+ 𝒋

𝜕

𝜕𝑦
+ 𝒌

𝜕

𝜕𝑧
is a vector (operator) 

(iv)  div  qq .
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
, 𝒒 = (u, v, w) 

If 𝛻 ⋅ 𝒒 = 0, 𝑡ℎ𝑒𝑛𝒒 is said to be solenoidal vector.  

(v)        𝑑𝒓 = 𝒊𝑑𝑥 + 𝒋𝑑𝑦 + 𝒌𝑑𝑧,    d=
𝜕𝜑

𝜕𝑥
𝑑𝑥 +

𝜕𝜑

𝜕𝑦
𝑑𝑦 +

𝜕𝜑

𝜕𝑧
𝑑𝑧 

and  

 = 𝒊
𝜕𝜑

𝜕𝑥
+ 𝒋

𝜕𝜑

𝜕𝑦
+ 𝒌

𝜕𝜑

𝜕𝑧
, 

Therefore,  

d = (). 𝑑𝒓 

(vi)  Curl𝒒 = 𝛻 × 𝒒 = |

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑢 𝑣 𝑤

| 

      = 𝒊 (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) + 𝒋 (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) + 𝒌 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 

(vii)  (a) Gradient of a scalar is a vector. 

      (b) Divergence of a scalar and curl of a scalar are meaningless. 

       (c) Divergence of a vector is a scalar and curl of a vector is a vector.  

(viii)   = 2 = 
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
 

where 2 is Laplacian operator.  

(ix)  Curl grad  = 0, div curl  𝒒 = 0 

(x) Curl Curl 𝒒 = 𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝒒 − 𝛻2𝒒 

i.e. 𝛻2𝒒 = 𝑔𝑟𝑎𝑑𝑑𝑖𝑣𝒒 − 𝑐𝑢𝑟𝑙𝑐𝑢𝑟𝑙𝒒 

(xi)  Gauss’s divergence theorem 

 (a) 𝒒 ⋅ 𝑑𝑺 = ∫ 𝑑𝑖𝑣𝒒𝑑𝑣
𝑉

 

 (b) ∫ 𝒏 × 𝒒𝑑𝑆
𝑆

= ∫ 𝑐𝑢𝑟𝑙
𝑉

𝒒𝑑𝑣 

(xii)  Green’s theorem 

 (a) ∫ 𝛻𝜑 ⋅ 𝛻𝜓𝑑𝑉 =
𝑉

∫ 𝜑𝛻𝜓 ⋅ 𝑑𝑆
𝑆

− ∫ 𝜑𝛻2𝜓𝑑𝑉
𝑉

 

     = ∫ 𝜓𝛻𝜑 ⋅ 𝑑𝑆
𝑆

− ∫ 𝜓𝛻2𝜑 ⋅ 𝑑𝑉
𝑉

 

 (b) ∫ (𝜑𝛻2𝜓− 𝜓𝛻2𝜑)𝑑𝑉 =
𝑉

∫ (𝜑
𝜕𝜓

𝜕𝑛
−𝜓

𝜕𝜑

𝜑𝑛
)𝑑𝑆

𝑉
 

(xiii)  Stoke’s theorem ∫ 𝒒
𝐶

⋅ 𝑑𝒓 = ∫ 𝑐𝑢𝑟𝑙
𝑆

𝒒 ⋅ 𝑑𝑆 = ∫ 𝑐𝑢𝑟𝑙
𝑆

𝒒 ⋅ 𝒏𝑑𝑆 

(xiv)  Orthogonal curvilinear coordinates: 

 Let there be three orthogonal families of surfaces  

  f1(x, y, z) = , f2(x, y, z) = , f3(x, y, z) =      (1) 

where x, y, z are Cartesian co-ordinates of a point P(x, y, z) in space.  The surfaces 

   = constant,   constant,  = constant     (2) 
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form an orthogonal system in which every pair of surfaces is an orthogonal system.  The values , 

,  are called orthogonal curvilinear co-ordinates.  

From three equations in (1), we can get  

 

  x = x(, , ), y = y(, , ), z = z(, , ) 

The surfaces (2) are called co-ordinate surfaces.    

Let r be the position vector of the point P(x, y, z) 

    i.e. 𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 = 𝒓 (, , ) 

A tangent vector to the -curve ( = constant,  = constant) at P is 
𝜕𝒓

𝜕𝛼
. A unit tangent vector is 

  𝒆1 =
𝜕𝒓 𝜕𝛼⁄

|𝜕𝒓 𝜕𝛼⁄ |
 

or  
𝜕𝒓

𝜕𝛼
= ℎ1𝒆1 

where h1 = |
𝜕𝒓

𝜕𝛼
| = √(

𝜕𝑥

𝜕𝛼
)
2

+ (
𝜕𝑦

𝜕𝛼
)
2

+ (
𝜕𝑧

𝜕𝛼
)
2

 

Similarly, 𝒆2, 𝒆3 are unit vectors along -curve and -curve respectively such that 

  
𝜕𝒓

𝜕𝛽
= ℎ2𝒆2,

𝜕𝒓

𝜕𝛾
= ℎ3𝒆3 

Further,          𝑑𝒓 =
𝜕𝒓

𝜕𝛼
𝑑𝛼 +

𝜕𝒓

𝜕𝛽
𝑑𝛽 +

𝜕𝒓

𝜕𝛾
𝑑𝛾 

                  = h1 d 𝒆1 + ℎ2𝑑𝛽𝒆2 + ℎ3𝑑𝛾𝒆3 

Therefore,  

            (ds)2 = 𝑑𝒓. 𝑑𝒓 = ℎ1
2𝑑𝛼2 + ℎ2

2𝑑𝛽2 + ℎ3
2𝑑𝛾2 

where h1 d, h2 d, h3 d  are arc lengths along ,  and  curves.  

In orthogonal curvilinear co-ordinates, we have the following results.  

 

(i)       grad  = (
1

ℎ1

𝜕𝜑

𝜕𝛼
,
1

ℎ2

𝜕𝜑

𝜕𝛽
,
1

ℎ3

𝜕𝜑

𝜕𝛾
) 

(ii)   If 𝒒 = (𝑞1, 𝑞2, 𝑞3), 𝑡ℎ𝑒𝑛 

 div 𝒒 =
1

ℎ1ℎ2ℎ3
[
𝜕

𝜕𝛼
(ℎ2ℎ3𝑞1) +

𝜕

𝜕𝛽
(ℎ3ℎ1𝑞2) +

𝜕

𝜕𝛾
(ℎ1ℎ2𝑞3)] 

(iii)  If 𝐶𝑢𝑟𝑙 𝒒 = 𝝃 =  (𝜉1, 𝜉2, 𝜉3)   then  

  1 = 
1

ℎ2ℎ3
[
𝜕

𝜕𝛽
(ℎ3𝑞3) −

𝜕

𝜕𝛾
(ℎ2𝑞2)] 

  2 = 
1

ℎ3ℎ1
[
𝜕

𝜕𝛾
(ℎ1𝑞1) −

𝜕

𝜕𝛼
(ℎ3𝑞3)] 

  3 = 
1

ℎ1ℎ2
[
𝜕

𝜕𝛼
(ℎ2𝑞2) −

𝜕

𝜕𝛽
(ℎ1𝑞1)] 

(iv)                2 = 
1

ℎ1ℎ2ℎ3
[
𝜕

𝜕𝛼
(

ℎ2ℎ3

ℎ1

𝜕𝜑

𝜕𝛼
) +

𝜕

𝜕𝛽
(

ℎ3ℎ1

ℎ2

𝜕𝜑

𝜕𝛽
) +

𝜕

𝜕𝛾
(

ℎ1ℎ2

ℎ3

𝜕𝜑

𝜕𝛾
)]. 

The Cartesian co-ordinate system (x, y, z) is the simplest of all orthogonal co-ordinate systems. In 

many problems involving vector field theory, it is convenient to work with other two most 

common orthogonal co-ordinates i.e. cylindrical polar co-ordinates and spherical polar co-

ordinates denoted respectively by (r, , z) and (r, , ).  For cylindrical co-ordinates, h1 = 1, h2 = r, 

h3 = 1. For spherical co-ordinates, h1 = 1, h2 = r, h3 = r sin . 
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1.3 A Note on Connectivity: A region of space is said to be connected if a path joining any two 

points of the same lies entirely in the given region. 

When the two paths taken together form a reducible circuit, they are termed reconcilable. And 

when one circuit can be continuously varied so as to coincide with another circuit without leaving 

the region, the two circuits are called reconcilable. 

A simply connected region(acyclic) region is one in which all paths connecting any two points 

within the region can be deformed into one another without passing outside the region. Obviously, 

in simply connected region, every circuit is reducible. i.e., it can be contracted to a point of the 

region without ever passing out of it. 

 

Examples of simply connected region: 

(i) The region between two concentric spheres. 

(ii) Un-bounded space. 

(iii) Region interior to sphere and region exterior to a sphere, etc. 

 

 

 

 

 

 

 

 

 

 

 

                    Triply connected      Simply connected 

A region is said to be doubly connected if it can be made simply connected by the insertion on one 

barrier. 

 

Examples of Doubly Connected region: 

 

(i) Regions between two co-axial infinitely long cylinders. 

(ii) Region exterior to an infinitely long cylinder. 

(iii) Region interior to an anchor ring; region exterior to an anchor ring, etc. 

In general, a region is said to be r-ply connected if it can be made simply connected by the 

insertion of (r-1) barriers. 

The above definitions can also be expressed as under: 

A domain is called simply connected, if the frontier thereof consists of a single continuum. 

Generally, a domain is called r-ply connected if the frontier of the same consists of r distinct 

continuum. 
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Note: Fortunately, the multiply-connected regions which occur in most hyderodynamical problems 

are of an extremely simple kind, and that it is not necessary to develop a formal topological theory 

(i.e. the study of figures which survive twisting and stretching: rubber sheet geometry). 

 

1.4 Material or Total Derivative of a Functional Determinant (Jacobian): Let  

 

𝐽 =
𝜕(𝑥, 𝑦, 𝑧)

𝜕(𝑎, 𝑏, 𝑐)
=
|

|

𝜕𝑥

𝜕𝑎

𝜕𝑦

𝜕𝑎

𝜕𝑧

𝜕𝑎
𝜕𝑥

𝜕𝑏

𝜕𝑦

𝜕𝑏

𝜕𝑧

𝜕𝑐
𝜕𝑥

𝜕𝑐

𝜕𝑦

𝜕𝑐

𝜕𝑧

𝜕𝑐

|

|
= ∇𝑥 × ∇𝑦 . ∇𝑧  

where the operator ∇ stands for (
𝜕

𝜕𝑎
,
𝜕

𝜕𝑏
,
𝜕

𝜕𝑐
). 

We shall assume the validity of the operator 

𝑑

𝑑𝑡
(
𝜕𝑥

𝜕𝑎
) =

𝜕

𝜕𝑎
 (
𝑑𝑥

𝑑𝑡
) =

𝜕𝑢

𝜕𝑡
, 𝑒𝑡𝑐. 

Then the rule of differentiating products provides 

 

𝐽̇ = ∇𝑥̇ × ∇𝑦 . ∇𝑧 + ∇𝑥 × ∇𝑦̇ . ∇𝑧 + ∇𝑥 × ∇𝑦 . ∇𝑧̇    (𝑥̇ =
𝑑𝑥

𝑑𝑡
)  

Now, 
𝜕𝑢

𝜕𝑎
=

𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑎
+

𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑎
+

𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑎
 

 

Also 
𝑑𝐽

𝑑𝑡
= 𝐽 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) ⇒ 

𝑑𝐽

𝑑𝑡
= 𝐽 𝑑𝑖𝑣 𝒒 

 

1.5 Brief Resume of Complex Function Theory:  A very powerful technique for dealing 

with two-dimensional problems in theoretical hydrodynamics is furnished by the properties of 

analytic functions (i.e. functions possessing derivatives for all values of z=x-iy in a region) of 

complex variable z. Thus, if f(z) is regular(analytic) in a domain D of the complex z-plane, and if 

we write 

𝑤 = 𝑓(𝑧) = 𝜙(𝑥, 𝑦) + 𝑖 𝜓(𝑥, 𝑦) 

then it is shown in all texts on complex variable that if f(z) is to possess a unique derivative, then it 

is necessary as well as sufficient that  
𝜕𝜙

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
;   
𝜕𝜙

𝜕𝑦
= −

𝜕𝜓

𝜕𝑥
                 (1) 

where it is supposed that these partial derivatives are continuous. These are called Cauchy-

Riemann partial differential equations. The vector equivalent to (1) is  

𝒈𝒓𝒂𝒅 𝝓 = (𝒈𝒓𝒂𝒅 𝝍) × 𝒌 

An alternative single equivalent expression to (1) is 
𝜕𝜙

𝜕𝑛
= 𝜕𝜓/𝜕𝑠 where n and s are perpendicular 

directions related to each other in the anti-clockwise sense. 

If we eliminate 𝜓 𝑎𝑛𝑑 𝜙 in succession between equations (1), we get 
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𝜕2𝜙

𝜕𝑥2
=
𝜕2𝜓

𝜕𝑥𝜕𝑦
= −

𝜕2𝜙

𝜕𝑦2
     𝑖. 𝑒. ∇2𝜙 = 0;   𝑙𝑖𝑘𝑒𝑤𝑖𝑠𝑒 ∇2𝜓 = 0 

where ∇2=
𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
. These two conjugate functions, 𝜙 𝑎𝑛𝑑 𝜓  are called velocity potential and 

stream function. 

 

Since 𝜙 𝑎𝑛𝑑 𝜓  are harmonic functions (i.e. functions which satisfy the Laplace’s equations 

∇2𝜙 = ∇2𝜓 = 0) these will be the possible velocity potential and stream function, and provided 

the necessary boundary conditions for a problem are satisfied, these will yield a unique solution to 

the problem.  

If w=f(z) provides the solution to a hydrodynamical problem, it is called the complex potential 

characterizing the given fluid flow. 

It may be observed that equations(1) imply that the family of curves, 𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 

𝜓(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are orthogonal families. 

We now include clear statements of pertinent definitions, principles, and theorems which are 

relevant to the study of Hydrodynamics. 

 

Cauchy’s Theorem: if f(z) is analytic within the region bounded by C (a simple closed curve) as 

well as on C, then 

∫ 𝑓(𝑧)𝑑𝑧 = ∮𝑓(𝑧)𝑑𝑧 = 0
 

𝐶

 

𝐶

 

A simple consequence of this theorem is that ∫ 𝑓(𝑧)𝑑𝑧
𝑧2

𝑧1
 has a value independent of paths joining 

𝑧1 𝑎𝑛𝑑 𝑧2. 

Cauchy’s Integral Formulae: If f(z) is analytic within and on a simple closed positively oriented 

curve C, and a is any point interior to C, then 

𝑓(𝑎) =
1

2𝜋
∮
𝑓(𝑧)

𝑧 − 𝑎
 𝑑𝑧;         𝑓𝑛(𝑎) =

𝑛!

2𝜋𝑖
∮

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
 𝑑𝑧

 

𝐶

 

𝐶

 

where  𝑓𝑛(𝑎) is the nth derivative of f(z) at z=a. 

 

 

Taylor’s Series: Let f(z) be analytic inside and on a circle having its centre at z=a. Then for all 

points z in the circle 

𝑓(𝑧) = 𝑓(𝑎) + (𝑧 − 𝑎)𝑓′(𝑎) +
(𝑧 − 𝑎)2

2!
 𝑓′′(𝑎) +⋯ 

If a=0, there results Maclaurin series. 

 

 

Singular Points: A singular point of a function f(z) is a value of z at which f(z) ceases to be 

analytic. If f(z) is analytic everywhere in some domain except at an interior point z=a, then z=a is 

called an isolated singular point. 
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Poles: If 𝑓(𝑧) =
𝐹(𝑧)

(𝑧−𝑎)𝑛
; 𝐹(𝑎) ≠ 0,where F(z) is analytic everywhere in a region including z=a and 

if n is a positive integer, then f(z) has an isolated singularity at z=a. This isolated singularity is 

called a pole of order n. If n=1, the pole is called a simple pole; if n=2, it is called a double pole, 

and so on. 

 

Laurent’s Series: If f(z) is analytic inside and on the boundary of the ring-shaped region R 

bounded by two concentric circles (positively oriented )𝐶1 𝑎𝑛𝑑 𝐶2 with centre a and respective 

radii 𝑅1𝑎𝑛𝑑 𝑅2(𝑅1 > 𝑅2), then for all z in R 

𝑓(𝑧) =∑ 𝑎𝑛(𝑧 − 𝑎)
𝑛 +

∞

𝑛=0
∑ 𝑎−𝑛(𝑧 − 𝑎)

−𝑛
∞

𝑛=1
 

where  

 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
 𝑑𝑧; 𝑛 = 0,1,2… .

 

𝐶1

 

𝑎−𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)−𝑛+1
𝑑𝑧 ; 𝑛 = 1, 2, 3,… .

 

𝐶2

 

 

The part ∑ 𝑎𝑛(𝑧 − 𝑎)
𝑛∞

𝑛=0  is called the analytic part and the remainder ∑ 𝑎−𝑛(𝑧 − 𝑎)
−𝑛∞

𝑛=1  is 

called the principal part. If the principal part is zero, the Laurent series reduces to a Taylor’s series. 

 

Residues: If f(z) be single-valued and analytic inside and on a circle C except at the point z=a, 

chosen as the Centre of C, then Laurent series is given by 

𝑓(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑎) + 𝑎2(𝑧 − 𝑎)
2 +⋯+ 𝑎−1(𝑧 − 𝑎)

−1 + 𝑎−2(𝑧 − 𝑎)
−2 +⋯ 

where 

𝑎𝑛 =
1

2𝜋𝑖
∫

𝑓(𝑧)

(𝑧 − 𝑎)𝑛+1
 𝑑𝑧; 𝑛 = 0, ±1,±2… .

 

𝐶

 

 

 

Clearly, 𝑎−1 =
1

2𝜋𝑖
 ∫ 𝑓(𝑧)𝑑𝑧 = lim

𝑧→𝑎

1

(𝑛−1)!

𝑑𝑛−1

𝑑𝑧𝑛−1
 {(𝑧 − 𝑎)𝑛 𝑓(𝑧)}

 

𝐶
 

where n is order of the pole. 

The coefficient 𝑎−1 is called the residue of f(z) at the pole z=a.  

For simple poles(n=1) , 𝑎−1 = 𝐿𝑖𝑚 (𝑧 − 𝑎)𝑓(𝑧)  𝑎𝑠 𝑧 → 𝑎. 

 

Cauchy’s Residue Theorem: If f(z) is analytic on the boundary C of a region R except a finite 

number of poles within R, then 

 

∫𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖[ 𝑠𝑢𝑚𝑜𝑓 𝑟𝑒𝑠𝑖𝑑𝑢𝑒𝑠𝑜𝑓 𝑓(𝑧)𝑎𝑡 𝑖𝑡𝑠 𝑝𝑜𝑙𝑒𝑠]
 

𝐶

 

Cauchy’s theorem and Cauchy’s integral formulae are special cases of this theorem. 
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1.6 Boundary Value Problems: Scientific problems are often formulated mathematically 

which led to partial differential equations and associated conditions called boundary conditions. 

Consequently, the existence and uniqueness of the problem is of fundamental importance, from a 

mathematical as well as physical point of view. 

Two types of boundaries, (i) the open boundary (where the region of interest extends indefinitely 

in one or more directions, without any specifications of the solution in these directions.), and (ii) 

the closed boundary (where the region of interest is completely surrounded, with boundary 

conditions specified in all directions) are usually considered along with three types of boundary 

conditions. 

 

(1) Dirichlet’s Conditions: require the determination of the function satisfying Laplace equation in 

region R and taking prescribed values on the boundary C. 

 

(2) Neumann’s Conditions:  require the determination of a function satisfying Laplace equations in 

R and taking prescribed values of normal derivative on the boundary C. 

 

(3) Cauchy’s Conditions: require the determination of the function satisfying Laplace equation in 

R and taking prescribed values of function as well as normal derivative on the boundary C. 

 

Here R may be a simply-connected region bounded by a simple closed curve C, or R may be 

unbounded region (𝑦 ≥ 0). 

 

The general partial differential equation of second order, viz. 

 

𝑅𝑟 + 𝑆𝑠 + 𝑇𝑡 + 𝑓(𝑥, 𝑦, 𝑧, 𝑝, 𝑞) = 0 

is classified under three heads: 

 

Hyperbolic if 𝑆2 − 4𝑅𝑇 > 0, 𝑒. 𝑔 
𝜕2𝑧

𝜕𝑥2
=

𝜕2𝑧

𝜕𝑦2
 ;   𝑤𝑎𝑣𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 

Parabolic   if  𝑆2 − 4𝑅𝑇 = 0. 𝑒. 𝑔. ,
𝜕2𝑧

𝜕𝑥2
=

𝜕𝑧

𝜕𝑦
  ;     𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 

Elliptic  if 𝑆2 − 4𝑅𝑇 < 0, 𝑒. 𝑔.,
𝜕2𝑧

𝜕𝑥2
+

𝜕2𝑧

𝜕𝑦2
= 0;𝐻𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛. 

 

1.7 Check Your Progress: 

i) Prove 

  𝑑𝑖𝑣(𝒂 × 𝒃) = 𝒃. 𝑐𝑢𝑟𝑙 𝒂 − 𝒂. 𝑐𝑢𝑟𝑙 𝒃 

ii) 𝒊𝒇 𝒖 = 𝟏 + 𝟐𝒚 − 𝟑𝒛, 𝒗 = 𝟒 − 𝟐𝒙 + 𝟓𝒛,𝒘 = 𝟔 + 𝟑𝒙 − 𝟓𝒚, q=(u,v,w). Find curl q. 

[Ans: = −(10𝑖 + 6𝑗 + 4𝑘)] 

iii) Show that the real and imaginary parts of the complex functions are harmonic functions. 
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1.8 Summary: In this chapter, we have revised the basic concepts and definitions of vectors, 

operations of dot and cross products of vectors, gradient, divergence, curl, complex variables, 

orthogonal curvilinear coordinates, Gauss divergence theorem, Green’s theorem, Stokes Theorem, 

concepts of connectivity, Jacobian, Cauchy’s theorem, Cauchy’s Integral Formula, Taylor’s series 

and other results and theorems on Complex function theory. The students also understood the 

different boundary value problems. 

 

1.9 Keywords: Scalar, vector, gradient, divergence, curl, singular point, pole, parabolic, 

hyperbolic, elliptic. 

 

 

 

1.10 Self-Assessment Test: 

 

SA1: State Stokes’s theorem. 

SA2: Define Material and total derivative of a functional determinant.  

SA3: State different boundary value problems. 

SA4: State Cauchy-Riemann’s equations in Cartesian coordinate system. 

SA5:  State Taylor’s and Laurent’s series and deduce the Taylor’s series from the Laurent’s series. 

 

References: 

 Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London 

 Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall 

 S. Ramsay, “Hydromechanics part II” (1935), G. Bell &Sons London 

 Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram & 

Sons, New Delhi 
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CHAPTER-2 

 

 BASIC CONCEPTS 

 

2.0 Learning Objectives: 

When you finish your reading this chapter, you should be able to understand the fundamental ideas 

of fluid mechanics, identify the numerous fluid flow issues that can arise in real-world situations, 

able to differentiate between ideal fluids and real fluids and comprehend the fundamental 

characteristics of fluids. 

 

2.1 Introduction: 

The study of the motion and equilibrium of fluids is the focus of fluid mechanics, one of 

the oldest branches of physics and the basis for a great deal of other knowledge in the applied 

sciences and engineering. Nearly all engineering disciplines, as well as astrophysics, biology, 

biomedicine, meteorology, physical chemistry, plasma physics, and geophysics, are interested in 

the topic. The area of fluid mechanics has continuously expanded since the eighteenth century, 

when the study of hydraulics as a science was linked to the development of civil engineering and 

naval architecture. The advancement of mechanical, chemical, and aeronautical engineering over 

the past few decades, as well as recent space travel, have all contributed to the study of fluid 

mechanics becoming one of the most crucial foundational topics in engineering science. 

The exotic regimes of hypervelocity flight and flow of electrically conducting fluids have 

been added to the fluid dynamics study frontier. Hypersonic flow and magneto fluid dynamics are 

two emerging areas of research as a result. To properly comprehend the underlying physical 

phenomena, it is now important to combine knowledge of fluid mechanics, electromagnetic theory, 

and thermodynamics. 

The use of fluid mechanics principles in daily life is still possible despite the recent 

remarkable improvements in the field. The rules of fluid mechanics regulate fish motion and bird 

flight in the water and air, respectively. Baseball pitchers rely on the circulation principle to 

provide them access to a bewildering variety of pitches. The design of ships and aeroplanes used 

for air and ocean travel is based on the fluid mechanics theory. One day, fluid mechanics 

principles may even be able to describe destructive natural events like hurricanes and tornadoes. 

Since air and water make up a large portion of our environment, practically everything we do is 

somewhat related to the field of fluid mechanics. 

In order to proceed in a logical manner with the discussion of fluid properties, it is 

necessary to differentiate between a solid and a fluid. Matter exists in three states: solid, liquid and 

gaseous. The latter two categories make up the fluid state. All matter, whether solid, liquid or gas 

is made up of small particles. These small particles are known as molecules. These molecules are 

in a state of movement. In solids, molecules are more closely packed together and do not move so 

vigorously. In liquids, molecules are packed closer with significant forces of attraction. A liquid, 

tends together in globules if taken in small quantities and forms a free surface in large volumes. In 

gases, molecules are relatively farther apart and have very weak forces of attraction. As the 
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temperature increases, the difference in molecules becomes smaller until a liquid get transformed 

in a gas. Due to the difference in molecular spacing, the solids and the fluids behave differently 

when subjected to stresses. 

 

2.1.1 Application Areas of Fluid Mechanics: 

Since fluid mechanics is widely employed in daily life as well as in the design of contemporary 

engineering systems, from vacuum cleaners to supersonic aircraft, it is crucial to have a solid 

understanding of its fundamental concepts. For instance, fluid mechanics is important to the human 

body. Breathing apparatuses and dialysis systems are created utilizing fluid dynamics. The heart 

constantly pumps blood to all areas of the human body through the arteries and veins. 

An ordinary house is, in some respects, an exhibition hall filled with applications of fluid 

mechanics. Fluid mechanics is largely used in the design of the water, natural gas, and sewage pipe 

systems for every home and every community. The fluid mechanics network's pipes and ducts 

operate similarly. The network of pipes and ducts used by heating and cooling systems is the same. 

A refrigerator consists of two heat exchangers where the refrigerant absorbs and rejects heat, tubes 

through which the refrigerant circulates, and a compressor that pressurizes the refrigerant. All of 

these components were designed with a significant contribution from fluid mechanics. Fluid 

mechanics is even used to operate common faucets. 

 Numerous fluid mechanics applications can be seen in cars as well. Fluid mechanics is used to 

analyze every part involved in moving gasoline from the fuel tank to the cylinders, including the 

fuel line, fuel pump, fuel injectors, and carburetors, as well as the mixing of fuel and air in the 

cylinders and the expulsion of combustion gases through the exhaust pipes. 

The design of the hydraulic brakes, power steering, automatic gearbox, lubrication systems, 

cooling system for the engine block, which includes the radiator and water pump, as well as the 

tyres all make use of fluid mechanics. Recent model cars have a sleek, streamlined shape because 

to attempts to reduce drag through in-depth understanding of the flow across surfaces. 

A wider range of applications include the design and analysis of aircraft, boats, submarines, 

rockets, jet engines, wind turbines, biomedical devices, cooling systems for electronic components, 

and transportation systems for moving water, crude oil, and natural gas. Fluid mechanics also plays 

a significant role in these fields. In order to ensure that the structures can sustain wind loads, it is 

also taken into account while designing buildings, bridges, and even billboards. The laws of fluid 

mechanics also regulate a number of other natural phenomena, including the rain cycle, weather 

patterns, the rise of ground water to the tops of trees, winds, ocean waves, and currents in vast 

bodies of water. 

2.2 Fluid: The substance known as the fluid is described as an accumulation of molecules. It is a 

fluid that can flow since it is an isotropic substance (a fluid is considered to be isotropic with 

respect to a property if it remains the same in all directions; if it changes at a point, it is said to be 

anisotropic). The fluid's ongoing deformation under the influence of forces is exhibited in the 

fluid's tendency to flow. In other words, regardless of how little a shear stress may be, the fluid 

continuously deforms as it is applied. A fluid can be thought of as being made up of discrete 
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particles, each larger than a molecule but infinitesimally small in comparison to the fluid's total 

volume. 

We shall deal with the homogenous and macroscopic treatment of fluid. The fluid is 

regarded as a continuum which cannot support shear stress while at rest with regard to any 

coordinate system. It follows that any small volume element in the fluid is considered so large that 

it contains a very great  

number of molecules. Fluid mechanics is a science which deals with the behaviour of fluids 

when subjected to a system of forces. 

 

2.2.1 Types of Fluid: 

 Ideal fluid or Perfect fluid (Frictionless, homogeneous and incompressible): 

Liquids which are incompressible, i.e., their volume does not change when the pressure changes. 

Hence, the ideal fluid is one which in incapable of sustaining any tangential stress or action in the 

form of a shear but the normal force or pressure acts between the adjoining layers of the fluid. The 

pressure at every point of an ideal fluid is equal in all direction, whether the fluid be at rest or in 

motion. The theory defines some concepts of the flow such as wave motion, the lift and the 

induced drag of an airfoil etc., but it fails to define the phenomena such as skin friction, drag of a 

body etc. 

 Real fluid or actual fluid (Viscous and compressible): 

Fluids which are viscous and compressible i.e., when a fixed mass of fluid undergoes changes in 

volume, its density also changes. The ability for changes in volume of a mass of fluid is known as 

compressibility. 

Hence, the real fluid is one in which both the tangential and normal forces exist.  

Viscosity:  It is also known as internal friction and is that characteristic of real fluid which is 

capable to offer resistance to shearing stress. The resistance is , comparatively, small (not 

negligible) for fluids such as water and gases but it is quite large for other fluids such as oil, 

glycerine, paints varnish, coal-tar etc. 

 

2.3 Fluid Properties: A continuous fluid can have some properties that are independent of its 

motion. These characteristics are referred to as the fluid's fundamental properties. 

Properties are considered to be either intensive or extensive. Intensive 

properties are those that are independent of the mass of the system, such 

as temperature, pressure, and density. Extensive properties are those whose 

values depend on the size—or extent—of the system. Total mass, total volume V, and total 

momentum are some examples of extensive properties.                                                                                                                   

 We'll discuss about a few of a fluid's characteristics. 

(a) Density:  The density 𝜌 represents a quantitative expression of the idea of mass. It is defined as 

the mass of the fluid contained within a unit volume. Consider 𝛿𝑚 be the mass of the fluid in a 

small volume 𝛿𝑣  surrounding that point, then, mathematically the density at a point is defined as  

𝜌 = lim
𝛿𝑣→0

𝛿𝑚

𝛿𝑣
, 
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In physical sense 𝛿𝑣 → 𝜖3 in which 𝜖 is large in comparison with the mean distance between 

molecules. In other words, 𝜖3 is the infinitesimal volume over which the substance can be taken as 

continuum. In fact, the limit 𝛿𝑣 → 0 implies that after a certain stage the continuum hypothesis 

will breakdown and so the limit does not exist and the ratio will starts fluctuating rapidly. The 

density is an index of the inertial characteristics. 

The density of the fluid depends on the space coordinates and the temperature i.e., 𝜌 =

𝑓(𝑥, 𝑦, 𝑧).The density of water at 40𝐶, 𝑖𝑠  1𝑔/𝑐𝑚3 or 1000𝑘𝑔/𝑚3.  

For gases, the density is a function of pressure and temperature. Under ideal conditions, the 

equation of state for an ideal gas 𝑝 = 𝜌 𝑅𝑇 provides a solution for density. 

(b) Specific weight:  The specific weight 𝛾 of a fluid is defined as the weight per unit volume. 

Thus 𝛾 = 𝜌𝑔.  

(c) Specific Volume: The specific volume of a fluid is defined as the volume per unit mass and is 

clearly the reciprocal of density. 

(d) Pressure: When a fluid is contained in a vessel, it exerts a force at each point of the inner side 

of the vessel. Such a force per unit area is known as pressure.  

    𝑝 = lim
𝛿𝐴→0

𝛿𝐹

𝛿𝐴
 

where 𝛿𝐴 is an elementary area around P and 𝛿𝐹 is the normal force due to fluid on 𝛿𝐴. 

We know that the pressure at every point of an ideal fluid is equal in all directions whether the 

fluid be at rest or in motion. It does not depend on the orientation of the plane. If it varies with the 

orientation (as in real fluids in motion) then the average of all such values at that point is taken. It 

follows that an element 𝛿𝐴 of a very small area, free to rotate about its centre will have a force of 

constant magnitude acting on either side of it. 

(e) Specific Gravity:  The specific gravity S of a substance is the ratio of its specific weight of a 

fluid to the specific weight of an equal volume of water at standard conditions (40𝐶 𝑜𝑟 680𝐹). 

 

(f)  Viscosity (Internal Friction): Compared to syrup and heavy oil, water and air flow much 

more easily. This shows that the fluid has a characteristic that regulates the rate of flow. This 

characteristic of a fluid is called viscosity. As a result, a fluid's viscosity refers to its ability to 

resist changing its shape in some way. Viscosity is a quality that all existent fluids have to varied 

degrees. 

Each component of the fluid is subjected to stress from the surrounding components of the 

fluid. There are two components to the stress at each area of the element's surface: pressure and 

shear stress, which are known as normal and tangential to the surface, respectively. Shear stresses 

only happen in moving fluids, but pressure is applied to both moving and stationary fluids. It is this 

characteristic that allows fluids to be separated from solids. Viscosity refers to the quality that 

causes shear stresses. Viscosity arises when there is a relative motion between different fluid 

layers. It is possessed by all real fluids. Its magnitude is expressed by a coefficient which relates 

the size of the shear stress at a point in a fluid to the rate of shear strain which causes it. 

Consider a fluid that is initially at rest between two parallel plates that are spaced apart by a 

little distance (h) along the y-axis and extended indefinitely in other directions in order to better 

understand the nature of viscosity. Consider a situation where the lower plate is kept at rest and the 
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top plate is moving with a velocity U in the x direction. Due to viscosity, the fluid will move as 

well. 

The fluid exhibits a linear velocity profile between the plates (provided no pressure 

gradient exists along the plate in the direction of motion). The fact that there is no relative velocity 

between a fluid and a solid surface for any fluid is a fact supported by experimental observations. 

As a result, the fluid's upper layer at y=h will be moving with the plate moving at a velocity U, 

while the fluid's lower layer at y=0 will be at rest. 

 If we consider a small element of the fluid , the shear stress 𝜏  on the top(which is 

numerically the same as the bottom in this case) is given by 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
       (1) 

where 𝜇 is a constant of proportionality which is called the coefficient of viscosity or the 

coefficient of dynamic viscosity. (1) is known as Newton’s law of viscosity and the fluids obeying 

this is called Newtonian fluids. The viscosity of a liquid decreases rapidly with increasing 

temperature whereas the viscosity of gas increases with temperature. The viscosity of fluids also 

depends on pressure, but this dependence is usually of little importance compared to the 

temperature variation in problems of fluid dynamics. 

(i) If 𝜏=0 then 𝜇 = 0 the equation (1) represents an ideal fluid or perfect fluid. 

(ii) if 
𝑑𝑢

𝑑𝑦
= 0 𝑡ℎ𝑒𝑛 𝜇 = ∞  the equation (1) represents the elastic bodies. 

(iii) A fluid for which the constant of proportionality does not change with the rate of deformation 

is said to be Newtonian and is represented by a straight line. 

(iv) If the viscosity varies with the rate of deformation, then it represents Non-Newtonian fluids. 

Non-Newtonian fluids are those in which there is no shear stress and there exists a non-linear 

relation between 𝜏 𝑎𝑛𝑑
𝑑𝑢

𝑑𝑦
.The main classes of non-Newtonian fluids are Binghan plastics, 

Pseudoplastic and Dilatants. 

Viscosity of a fluid is practically independent of pressure and depends upon the temperature only. 

(g) Temperature:  Suppose two bodies of different heat content are brought into contact while 

isolated from all other bodies. Then some thermal energy will move from one body into the other 

body. The body from where the thermal energy moves is said to be at a higher temperature while 
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the body into which the energy flows is said to be at a lower temperature. When two bodies are in 

thermal equilibrium then they are said to have a common property, known as temperature T. 

(h) Thermal conductivity:  The well-known Fourier’s heat conduction law states that the 

conductive heat flow per unit area (or heat flux) 𝑞𝑛 is proportional to the temperature decrease per 

unit distance in a direction normal to the area through which the heat is flowing. Thus 

𝑞𝑛 ∝ −
𝜕𝑇

𝜕𝑛
                       𝑠𝑜 𝑡ℎ𝑎𝑡   𝑞𝑛 = −𝑘

𝜕𝑇

𝜕𝑛
 

where k is said to be the thermal conductivity. 

(g) Specific heat:  The specific heat C of a fluid is defined as the amount of heat required to raise 

the temperature of a unit mass of the fluid by one degree. Thus 𝐶 =
𝜕𝑄

𝜕𝑇
 , 𝑤ℎ𝑒𝑟𝑒 𝛿𝑄 is the amount 

of heat added to raise the temperature by 𝛿𝑇. The value of the specific heat depends on two well-

known processes- the constant volume process and the constant pressure process. The specific 

heats of the above processes are denoted and defined as 

Specific heat at constant volume =𝐶𝑣 = (
𝜕𝑄

𝜕𝑇
)
𝑣
  

Specific heat at constant pressure=𝐶𝑝 = (
𝜕𝑄

𝜕𝑇
)
𝑝
 

Rate of these two specific heats is denoted by 𝛾. 𝑇ℎ𝑢𝑠  𝛾 =
𝐶𝑝

𝐶𝑣
 . 

(h) Surface Tension: If a small capillary tube is inserted into a beaker containing mercury then the 

surface of the mercury in the capillary tube is convex and its level is lower than the outside level of 

the mercury. On the other hand, if water is considered instead of mercury than the surface of water 

in the capillary is concave and its level is higher than the outside level. This phenomenon depends 

upon the nature of two immiscible fluids and the temperature. 

It is typical to assume that the condition present at a liquid's free surface or at the boundary 

between two immiscible fluids (which do not mix) possesses simply the equilibrium property of a 

uniform surface tension. The boundary may separate two media of the same phase but with distinct 

constitutions, or it may separate two media of the same phase, whether they are solid, liquid, or 

gaseous. The stress between two adjacent segments of the free surface, measured at per unit length 

of the common boundary line, relies only on the properties of the two fluids and the temperature. 

The free surface acts as though it were in a condition of uniform tension. This property of the 

surface which exert a tension is called the surface tension and is denoted by 𝜎𝑠. 

𝜎𝑠 = 𝑆𝑡𝑟𝑒𝑡𝑐ℎ𝑖𝑛𝑔 𝑓𝑜𝑟𝑐𝑒 /𝑢𝑛𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 

(i) Vapour Pressure: All liquids have a tendency to evaporate when exposed to the atmosphere. 

The rate at which the evaporation occurs is dependent on the molecular activity of the liquid, 

which is a function of temperature and the condition of the atmosphere adjoining the liquid. 

Consider a closed bottle partly filled with a liquid and maintained at a constant temperature. The 

number of vapour molecules in the air above the liquid increases when the liquid evaporates, 

simultaneously a small number of vapour molecules re-enter the liquid. Thus, the concentration of 

vapour molecules above the liquid surface increases, with the passage of time, to such an extent 

that the rate at which molecules enter the liquid is equal to the rate at which molecules leave the 

liquid. Hence the air above the liquid surface is saturated with vapour molecules. The pressure on 
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the liquid surface exerted by the vapour molecules is called Vapour Pressure. The vapour pressure 

is dependent on temperature. The phenomenon of boiling a liquid is closely related to the vapour 

pressure. When the pressure above a liquid equals the vapour pressure of the liquid, boiling occurs. 

 At certain locations throughout the system during the flow of liquids, it is feasible that 

extremely low pressures will be created. The pressures may be less than or equal to the vapour 

pressures in such situations. A liquid enters an unstable condition when its pressure is decreased to 

a level that is just a little below the saturated vapour pressure at the liquid's temperature. At this 

point, the liquid usually starts to create vapour pockets all over it. Cavitation is the term for such 

pockets' appearance. For example, when the water is heated slowly, bubbles formed near the 

bottom are known cavities formed in the water. Vortices in rivers are called cavities. 

(j) Bulk Modulus of Elasticity and Compressibility: Several fluids, when subjecting to 

increasing or decreasing pressure, undergo a change in the density. At a constant temperature, an 

increase or decrease in the relative density is proportional to the increase or decrease in the 

pressure. 

𝑑𝑝 ∝
𝑑𝜌

𝜌
     𝑜𝑟 𝑑𝑝 = 𝑘

𝑑𝜌

𝜌
 

Where the constant of proportionality k is called the bulk modulus of elasticity. In other words, the 

bulk modulus of elasticity is defined as the ratio of the net increase of pressure on an element of 

fluid to the unit strain produced by the pressure change.  The inverse of the bulk modulus of 

elasticity is called the compressibility of the fluid. The compressibility of a fluid is the ratio of the 

relative change of the volume to the change in applied pressure.  

 

2.4 Types of Flows:  

(i) Laminar and Turbulent flows: A flow, in which each fluid particle traces out a definite curve 

and the curves traced out by any two different fluid particles don not intersect, is said to be 

laminar. On the other hand, a flow, in which each fluid particle does not trace a definite curve and 

the curves traced out by fluid particles intersect, is said to be turbulent. 

(ii) Steady and Unsteady flows: A flow in which properties and conditions (P) associated with the 

motion of the fluid are independent of the time so that the flow pattern remains unchanged with the 

time, is said to be steady. Mathematically, we may write  
𝜕𝑃

𝜕𝑡 
=0. Here P may be velocity, density, 

pressure, temperature etc. On the other hand, a flow, in which properties and conditions associated 

with the motion of the fluid depend on the time so that the flow pattern varies with time, is said to 

unsteady. 

(iii) Uniform and Non-Uniform Flows: A flow in which the fluid particles possess equal 

velocities at each section of the channel or pipe is called uniform. On the other hand, a flow, in 

which the fluid particles possess different velocities at such section of the channel or pipe is called 

non-uniform. These terms are usually considered in connection with flow in channels. 

(iv) Rotational and Irrotational Flows: A flow, in which the fluid particles go on rotating about 

their own axis, while flowing is said to be rotational and a flow in which the fluid particles do not 

rotate about their own axes, while flowing is said to be irrotational. 

(v) Barotropic Flow:  A flow is said to be barotropic when the pressure is function of density. 
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Example: A plate at a distance of 0.2 cm from the fixed plate moves at 2m/sec. and requires a 

force of 40 dynes/cm2 to maintain this speed. Determine the coefficient of viscosity of the fluid 

between the plates. 

Solution: The velocity gradient becomes 

𝑑𝑢

𝑑𝑦
= 2 ×

100

0.2
= 103,   𝐹 = 40 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2 

𝜇 =
𝐹

𝑑𝑢/𝑑𝑦
=
40

103
= 4 × 10−2 𝑝𝑜𝑖𝑠𝑒.  

Example: A plate weighing 150N measures 𝟖𝟎 × 𝟖𝟎 𝒄𝒎. It slides down an inclined plane over 

an oil film of 1.2 mm thick. For an inclination of 
𝝅

𝟔
 and a velocity of 20cm/sec., calculate the 

velocity of the fluid. 

Solution: Shear stress 𝜏 =
𝐹𝑜𝑟𝑐𝑒

𝑎𝑟𝑒𝑎
= (

150 sin
𝜋

6

0.80×0.80
) = 117.19 𝑁/𝑚2 

Rate of deformation 
𝑑𝑢

𝑑𝑦
=

20

0.12
= 175 𝑟𝑎𝑑/𝑠𝑒𝑐 

From Newton’s law of viscosity, we have 

𝜏 = 𝜇
𝑑𝑢

𝑑𝑦
 ⇒ 𝜇 =

𝜏
𝑑𝑢

𝑑𝑦

=
117.19

175
= 0.67 𝑁 − 𝑠/𝑚2. 

2.5 Check Your Progress 

i)  Determine the coefficient of viscosity 𝜇 of a fluid, the rate at which the fluid is moving out of a 

circular pipe of radius a and length l is measured when the pressures on the two sides of the pipe is 

p1 and p2. 

[Ans: 0.02 poise] 

ii) Determine the coefficient of viscosity of a fluid, the fluid is made to rotate between two long 

co-axial cylinders of radius 𝑟2 𝑎𝑛𝑑 𝑟2(𝑟2 > 𝑟1).If the inner cylinder rotates with angular velocity 𝜔 

while the outer is at rest, then the torque T on a unit length of each cylinder is 𝑇 = 4𝜋𝜇𝜔𝑟1
2𝑟2

2/

(𝑟2
2 − 𝑟1

2), where radii of the cylinders are 3 cm and 3.5 cm, the inner cylinder rotates at a speed of 

120 rpm. And the torque is 5.35 × 102𝑑𝑦𝑛𝑒𝑠 − 𝑐𝑚. 

[Ans:0.60 poise] 

iii) . A liquid compressed in a cylinder has a volume of 0.4 cc. at 6.8 × 107𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2 and a 

volume of 0.396 cc. at 1.36 × 108𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2.What is its bulk modulus? 

[Ans: 6.8 × 109 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2] 

iv) . Find the shape of the surface of a fluid under a gravitational field and bounded on one side by 

a vertical plane wall. 

v) .  Bulk modulus of water is 2.2 × 1010𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2. Find the change in the volume when 100 cc 

of water is subjected to an increase of pressure by 7.7 × 106 𝑑𝑦𝑛𝑒𝑠/𝑐𝑚2.    

[Ans: 0.035cc]  

 

2.6 Summary: We covered the fundamental characteristics that relate to the analysis of fluid 

flow in this chapter. We defined density and specific gravity and discussed about intensive and 
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extensive properties. The properties of vapour pressure and its different manifestations, the 

specific temperatures of ideal gases and incompressible solids, and the coefficient of 

compressibility are then discussed. We also touched about the characteristic of viscosity, which 

dominates most elements of fluid flow and surface tension. The various important forms of flows 

are also covered in this chapter. 

 

2.7 Keywords: extensive, intensive, ideal fluid, real fluid, density, Bulk modulus, temperature, 

thermal conductivity, viscosity, vapor pressure, steady flows, unsteady flows, laminar flows. 

 

2.8 Self-Assessment Test  

SA 1. What is hydrodynamics? 

SA2.  Define viscosity of the fluid. 

SA3. Discuss the areas of fluid mechanics? 

SA4. Define (i) Ideal fluid and real fluid 

(ii) Specific heat  

(iii) Bulk Modulus and compressibility of the fluid. 

(iv) Thermal conductivity. 

(v) Density, specific weight and specific volume. 

SA5. Differentiate between Newtonian and non-Newtonian fluids. 
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CHAPTER -3  

 

KINEMATICS OF FLUIDS 

 

3.0 Learning Objectives: After reading this chapter, the students should be able to understand 

the flow lines, role of the material derivative in transforming between Lagrangian and Eulerian 

descriptions, velocity potential functions, translation, deformation and rotation of fluid elements, 

distinguish between rotational and irrotational regions of flow based on the flow of vorticity 

property. and applications of Reynold’s transport theorem. 

 

3. 1 General Consideration of Fluid: 

 Fluid Dynamics  

Fluid dynamics or hydrodynamics is the science treating the study of fluids in motion.  By the term 

fluid, we mean a substance that flows i.e. which is not a solid.  Fluids may be divided into two 

categories  

(i) liquids which are incompressible i.e. their volumes do not change when the pressure changes  

(ii) gases which are compressible i.e. they undergo change in volume whenever the pressure 

changes.  The term hydrodynamics is often applied to the science of moving incompressible fluids.  

However, there are no sharp distinctions between the three states of matter i.e. solid, liquid and 

gases. The term hydrodynamics is often applied to the science of moving incompressible fluids. 

In microscopic view of fluids, matter is assumed to be composed of molecules which are in 

random relative motion under the action of intermolecular forces.  In solids, spacing of the 

molecules is small, spacing persists even under strong molecular forces.  In liquids, the spacing 

between molecules is greater even under weaker molecular forces and in gases, the gaps are even 

larger.  

If we imagine that our microscope, with which we have observed the molecular structure of matter, 

has a variable focal length, we could change our observation of matter from the fine detailed 

microscopic viewpoint to a longer-range macroscopic viewpoint in which we would not see the 

gaps between the molecules and the matter would appear to be continuously distributed.  We shall 

take this macroscopic view of fluids in which physical quantities associated with the fluids within 

a given volume V are assumed to be distributed continuously and, within a sufficiently small 

volume V, uniformly.  This observation is known as Continuum hypothesis.  It implies that at 

each point of a fluid, we can prescribe a unique velocity, a unique pressure, a unique density etc.  

Moreover, for a continuous or ideal fluid we can define a fluid particle as the fluid contained 

within an infinitesimal volume whose size is so small that it may be regarded as a geometrical 

point.  
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3.2 Velocity of Fluid at a Point: Suppose that at time t, a fluid particle is at the point P having 

position vector 𝒓(𝒊. 𝒆. 𝑶𝑷 = 𝒓) 

                                

and at time t + t the same particle has reached at point Q having position vector 𝒓 + 𝛿𝒓  The 

particle velocity q at point P is 

   

𝒒 = 𝐿𝑡
𝛿𝑡→0

(𝒓 + 𝛿𝒓) − 𝒓

𝛿𝑡
= 𝐿𝑡

𝛿𝑡→0

𝛿𝒓

𝛿𝑡
=
𝑑𝒓

𝑑𝑡
 

where the limit is assumed to exist uniquely.   Clearly q is in general dependent on both 𝑟̄ and t, so 

we may write 

   𝒒 = 𝒒(𝒓, 𝑡) = 𝒒(𝑥, 𝑦, 𝑧, 𝑡), 

 𝒓 = 𝑥𝒊 + 𝑦𝒋 + 𝑧𝒌 (P has co-ordinates (x, y, z)) 

Suppose, 

     𝒒 = 𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌 

and since 

  𝒒 =
𝑑𝒓

𝑑𝑡
=

𝑑𝑥

𝑑𝑡
𝒊 +

𝑑𝑦

𝑑𝑡
𝒋 +

𝑑𝑧

𝑑𝑡
𝒌,     

therefore 

   u = 
𝑑𝑥

𝑑𝑡
, 𝑣 =

𝑑𝑦

𝑑𝑡
, 𝑤 =

𝑑𝑧

𝑑𝑡
. 

 

Remarks. (i) A point where 𝒒 = 0̄, is called a stagnation point. 

(ii)  When the flow is such that the velocity at each point is independent of time i.e. the flow 

pattern is same at each instant, then the motion is termed as steady motion, otherwise it is 

unsteady.      

 

Flux across any surface: The flux i.e. the rate of flow across any surface S is defined by the 

integral 

  ∫ 𝜌(𝒒
𝑆

⋅ 𝒏)𝑑𝑆 
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where  is the density, 𝑞̄is the velocity of the fluid and 𝑛̂is the outward unit normal at any point of 

S. 

Also, we define 

  Flux = density  normal velocity  area of the surface.  

 

 

3.3 Stress and Coefficient of Viscosity:  

 

(a) Stresses: Two types of forces act on a fluid element.  One of them is body force and other is 

surface force.  The body force is proportional to the mass of the body on which it acts while the 

surface force is proportional to the surface area and acts on the boundary of the body. 

Suppose F is the surface force acting on an elementary surface area (dS) at a point P of the surface 

S.                                      

      

 

                                    
 

Let F1 and F2 be resolved parts of F in the directions of tangent and normal at P.  The normal force 

per unit area is called the normal stress and is also called pressure.  The tangential force per unit 

area is called the shearing stress. 

i.e.,  

If a force 𝛿𝑭  acts on a disc area 𝛿𝑆 𝑛̂, then the stress vector is defined by 

T=lim(𝛿𝑭/𝛿𝑆) = 𝑑𝑭/𝑑𝑆 

Obviously, the vector T depends on 𝑛̂. The component of stress in the direction  𝑛̂ is called Normal 

stress and component of T perpendicular to 𝑛̂, i.e., in the plane of area 𝛿𝑆 is called shear stress. 

Normal stress tends to pull the disc away from the surface while shear stress tends to shear the disc 

off the surface while sliding on it tangentially. 

Fluids for which shear stress is negligible are called inviscid, ideal, or perfect while those for 

which shear stress is dominant are called viscous or real fluids. 

(b) Viscosity: It is the internal friction between the particles of the fluid which offers resistance to 

the deformation of the fluid.  The friction is in the form of tangential and shearing forces (stresses).  
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Fluids with such property are called viscous or real fluids i.e., in viscous fluid both the tangential 

and normal forces exist and those not having this property are called inviscid or ideal or perfect 

fluids i.e., An inviscid fluid is a continuous fluid substance which cannot exert any shearing stress 

however small. A perfect fluid is also known as frictionless or non-viscous. 

Actually, all fluids are real, but in many cases, when the rates of variation of fluid velocity with 

distances are small, viscous effects may be ignored.  

From the definition of body force and shearing stress, it is clear that body force per unit area at 

every point of surface of an ideal fluid act along the normal to the surface at that point.  Thus ideal 

fluid does not exert any shearing stress.  

Thus, we conclude that viscosity of a fluid is that property by virtue of which it is able to offer 

resistance to shearing stress.  It is a kind of molecular frictional resistance.  

 

Coefficient of Viscosity: Consider a fluid element OACB, sheared in one plane by a single shear 

stress Ƭ. The shear strain angle 𝛿𝜃, which results under Ƭ, will continuously grow with time as 

long as stress Ƭ is maintained, the upper surface moving at relative speed 𝛿𝑢, larger than the lower 

surface. Commonly occurring fluids, such as water, air, oil, etc. show a linear relation between 

applied shear and the resulting strain rate, i.e. 

                            Ƭ ∝ (
𝛿𝜃

𝛿𝑡
)   𝑖. 𝑒. , Ƭ = µ (

𝑑𝜃

𝑑𝑡
)                                                  (1) 

             Now 𝛿𝜃 = tan 𝛿𝜃 =
𝛿𝑢𝛿𝑡

𝛿𝑦
    𝑖𝑚𝑝𝑙𝑖𝑒𝑠

𝛿𝜃

𝛿𝑡
=

𝛿𝑢

𝛿𝑦
                         (2)  

From (1) and (2), using limits we get Ƭ ∝ (
𝑑𝑢

𝑑𝑦
) which we write 

Ƭ = µ
𝑑𝜃

𝑑𝑡
= µ

𝑑𝑢

𝑑𝑦
       [𝑁𝑒𝑤𝑡𝑜𝑛 𝑙𝑎𝑤 𝑜𝑓 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦] 

The constant of proportionality, written µ, is called the Coefficient of Viscosity. Eq.(3) is 

the relation between shear strain rate 
𝑑𝜃

𝑑𝑡
  and velocity gradient 

𝑑𝑢

𝑑𝑦
  and the applied stress 

Ƭ(= Ƭ𝑦𝑥). 

 

3.4 Flow Lines: Stream Lines, Path Lines and Streak Lines: 

 

Stream Lines: A stream line (often written 𝛹 − 𝑙𝑖𝑛𝑒) is a curve drawn in the fluid such that, at 

any time, the direction of the tangent at any point of the curve coincides with the direction of the 

velocity of the fluid particle at that point. Thus if 𝑢, 𝑣, 𝑤 be the components of the velocity of the 

fluid particle at P(𝑥, 𝑦, 𝑧), the direction ratios of the tangent being 𝑑𝒓 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) at that point, 

the differential equations of stream lines are 

𝒒 × 𝑑𝒓 = 𝟎 

 Or       
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
     (1) 

where      𝒒 = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘 
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Stream lines form a doubly infinite set at any time t. They are generally not material curve : a 

stream line through 𝑟0 at time 𝑡0 does not, in general, consist of the same particles as the stream 

line which goes through 𝑟0 at any other time t. The aggregate of all stream lines is called the 

stream-pattern. 

The appearance and form of the stream pattern is altered completely if a uniform velocity is 

superimposed on the fluid as a whole, e.g., the solutions of  

   
𝑑𝑥

𝑢+𝑢0
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
       (2) 

Differ markedly from those of (1). Thus, the stream lines due to a fixed sphere in an infinite 

uniform stream are very different from those occasioned by the motion of a sphere in a still stream; 

although the two systems are dynamically equivalent. 

The point where q=0 is such that the stream lines are not well-defined there at due to various 

singularities occur there. Such a point is known as critical point or stagnation point. 

 

In terms of components, the differential equations of stream lines are: 

In Cartesian coordinates (𝑥, 𝑦, 𝑧)  
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
      𝑑𝑟 = (𝑑𝑥, 𝑑𝑦, 𝑑𝑧) 

For cylindrical coordinates (𝑟, 𝜃, 𝑧), 𝒒 = (𝑞𝑟 , 𝑞𝜃, 𝑞𝑧) 
𝑑𝑟

𝑞𝑟
= 𝑟

𝑑𝜃

𝑞𝜃
=

𝑑𝑧

𝑞𝑧
                                 𝑑𝒓 = (𝑑𝑟, 𝑟𝑑𝜃 , 𝑑𝑧)  

For spherical polar (𝑟, 𝜃, 𝜙), 𝒒 = (𝑞𝑟 , 𝑞𝜃, 𝑞𝜙) 
𝑑𝑟

𝑞𝑟
= 𝑟

𝑑𝜃

𝑞𝜃
= 𝑟 sin 𝜃 

𝑑𝜙

𝑞𝜙
    𝑑𝒓 = (𝑑𝑟, 𝑟 𝑑𝜃, 𝑟𝑠𝑖𝑛𝜃 𝑑𝜙)   

 

Note: Stream lines are curves whose tangents are everywhere parallel to the velocity vector q. In 

unsteady flow, q(r,t) at point r, will change  both its magnitude and its direction with time, so it is 

meaningful to consider only the instantaneous stream lines when the flow is unsteady. 

The projection of 𝛹-line in the planes 𝑧 = 0, 𝑥 = 0, 𝑦 = 0 are, as per its definition 

𝑑𝑦

𝑑𝑥
=
𝑣

𝑢
,
𝑑𝑧

𝑑𝑦
=
𝑤

𝑣
,
𝑑𝑥

𝑑𝑧
=
𝑢

𝑤
   

𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔
𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
. 

The easiest way to solve these equations is to use parametrization, say 𝑥 = 𝑥(𝑠), 𝑦 = 𝑦(𝑠), 𝑧 =

𝑧(𝑠), where parameter s=0 at some reference point and whose value increases along the 𝛹 − 𝑙𝑖𝑛𝑒. 

We can then express above as 
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
= 𝑑𝑠 𝑜𝑟  

𝑑𝑥𝑖

𝑑𝑠
= 𝑞𝑖(𝑥𝑖, 𝑡)  [s is not necessarily arc-length] 
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Solution of these equations, when 𝛹 −line goes through  𝒓 = 𝒓𝟎 is 

𝑥𝑖 = 𝑥𝑖(𝒓𝟎, 𝑡, 𝑠)     𝑖 = 1,2,3. 

As s varies, this set traces out the Ψ− 𝑙𝑖𝑛𝑒 through (𝑥0, 𝑦0, 𝑧0).  

 

Path lines:  A path line or trajectory is a curve which a fluid particle describes during its motion 

i.e., a path line is a line traced by a particle in the fluid.  

The path line shows the direction of the velocity of the fluid particle at any instant of time.  Such a 

line is obtained by using the position of an element as a function of time. The path line are given 

by  

  

𝒒 =
𝑑𝒓

𝑑𝑡
 

⇒ 
𝑑𝑥

𝑑𝑡
= 𝑢(𝑥, 𝑦, 𝑧, 𝑡),

𝑑𝑦

𝑑𝑡
= 𝑣(𝑥, 𝑦, 𝑧, 𝑡),

𝑑𝑧

𝑑𝑡
= 𝑤(𝑥, 𝑦, 𝑧, 𝑡) 

Path lines form a triply infinite set. 

In general, the path lines vary with each fluid particle. It represents the direction of velocity of a 

single particle of fluid at various time. For steady motion, the stream lines coincide with the paths 

of the fluid particle, this is not so for unsteady motion. 

Difference Between the Stream Lines and Path Lines: 

  

Consider a particular stream line and take any three consecutive points A, B and C on it. Since the 

velocity q  is a function of r and t, any  particle through A at time t will move along AB, but when  

 

 

 

 

 

 

 

 

 

it reaches B in time 𝛿𝑡, BC shall no longer be the direction of velocity at B . Consequently, the 

particle will not move in the direction of the new velocity at B. However, in the case of steady 

motion, the stream lines remain unchanged as the time passes, and so these are the same as the 

actual paths of the fluid particle. In passing we may note that steam lines reveal how each fluid 

particle is moving at a given instant, whereas the path line show how a given particle is moving at 

each instant. 

Stream surface: A stream surface is a surface made by the steam lines passing through an 

arbitrary line in the fluid region at any instant of time. 

Stream tube: The stream lines drawn through each point of a closed curve enclose a tubular 

surface in the fluid, called a stream tube or tube of flow. A stream tube of infinitesimal cross-

section is called a stream filament. 

A

a 

B 

 
 

 
C 
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Streak lines: A streak line is a line on which lie all those fluid elements that at some earlier instant 

passed through a particular point in space. It is a line making the position of a set of fluid particles 

that had passed through a fixed point in the flow field. A streak line is defined as the locus of 

different particles passing through fixed point. A streak line connects the locations of the particles 

at one instant moving with the fluid which passed through a particular point. 

 

 

                                           
 

 

Let C be any point of the continuum. This point is traversed by an infinite number of particles, 

each with its own path line. Consider three fluid particles 𝐴1, 𝐴2, 𝐴3 labelled by their position 

vectors 𝒂!, 𝒂𝟐, 𝒂𝟑 respectively at time t=0. As these particles describe their separate path lines, 

these fluid particles will arrive at C at different times and continue to move to occupy the points 

𝐵!, 𝐵2, 𝐵3 respectively, at some latter time t. These points, together with continuum point C, line on 

a curve which is called streak line associated with the point C. If a dye is injected at C, a thin 

strand of colour will appear along this streak line 𝐶𝐵1𝐵2𝐵3 at time t. Obviously, the streak line 

𝐶𝐵1𝐵2𝐵3 emanating from C will alter its shape with time. A fourth fluid blob 𝐴4, which at time 

t=0 lies on the path line 𝐴2𝐶 will in general, have a different path line 𝐴4𝐵4 which may never pass 

through the point C. 

 

Equation of Streak line: 

Consider a fluid particle (𝑥0, 𝑦0, 𝑧0) passes a fixed point 𝒓𝟏(𝑥1, 𝑦1, 𝑧1) in the course of time. By 

Lagrangian description of fluid flow, we have  

𝑥1 = 𝑓1(𝑥0, 𝑦0, 𝑧0, 𝑡); 𝑦1 = 𝑓2(𝑥0, 𝑦0, 𝑧0, 𝑡); 𝑧1 = 𝑓3(𝑥0, 𝑦0, 𝑧0, 𝑡) 

Solving the equations for 𝑥0, 𝑦0, 𝑧0 we have 

𝑥0 = 𝐹1(𝑥1, 𝑦1, 𝑧1, 𝑡); 𝑦0 = 𝐹2(𝑥1, 𝑦1, 𝑧1, 𝑡); 𝑧0 = 𝐹3(𝑥1, 𝑦1, 𝑧1, 𝑡). 

Since a streak line is the locus of the positions (𝑥, 𝑦, 𝑧) of the particles which have passed through 

the fixed point (𝑥1, 𝑦1. 𝑧1), therefore, the equation of the streak line at an instant of time t is given 

by 

𝑥 = 𝐺1(𝑥0, 𝑦0, 𝑧0, 𝑡); 𝑦 = 𝐺2(𝑥0, 𝑦0, 𝑧0, 𝑡); 𝑧 = 𝐺3(𝑥0, 𝑦0, 𝑧0, 𝑡). 

Hence the streak line passing through the fixed point (𝑥1, 𝑦1, 𝑧1) at time t is given by  

𝑥 = 𝐺1(𝐹1, 𝐹2, 𝐹3, 𝑡); 𝑦 = 𝐺2(𝐹1, 𝐹2, 𝐹3, 𝑡); 𝑧 = 𝐺3(𝐹1, 𝐹2, 𝐹3, 𝑡). 
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Example: Find the stream lines and the paths of the particles for the two-dimensional velocity 

field 

𝒖 =
𝒙

𝟏 + 𝒕
, 𝒗 = 𝒚,𝒘 = 𝟎 

Solution: The stream lines at time t are the solutions of 

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
= 𝑑𝑠 

Or  

𝑑𝑥

𝑑𝑠
=

𝑥

1 + 𝑡
,
𝑑𝑦

𝑑𝑠
= 𝑦,

𝑑𝑧

𝑑𝑠
= 0 

Thus keeping t constant,(i.e., at particular instant), the stream line through 𝑟0(𝑎, 𝑏, 𝑐)  𝑖𝑠  

log 𝑥 =
1

1 + 𝑡
𝑠 + log𝑎  ⇒ 𝑥 = 𝑎 𝑒

𝑠
1+𝑡 

log𝑦 = 𝑠 + log𝑏  ⇒ 𝑦 = 𝑏𝑒𝑠 

𝑧 = 𝑐 

This is a curve (in the plane z=c);  
𝑦

𝑏
= (

𝑥

𝑎
)
1+𝑡

 

 

The particle paths are solutions of  

𝑑𝑥

𝑑𝑡
=

𝑥

1 + 𝑡
 ,
𝑑𝑦

𝑑𝑡
= 𝑦,

𝑑𝑧

𝑑𝑡
= 0 

These are  𝑥(𝑎(1 + 𝑡), 𝑦 = 𝑏𝑒𝑡, 𝑧 = 𝑐 

or the curves in the plane z=c given by  𝑦 = 𝑏 𝑒
𝑥−𝑎

𝑎  

 

Example: Find the path lines and streak lines for the velocity field   

𝒒 = (𝑥/𝑡, y,0) 

Solution: (i) For a fluid particle that was initially at 𝒓𝟎 = (𝒂, 𝒃, 𝒄) and now is at r=(x,y,z), the path 

lines 
𝑑𝒓

𝑑𝑡
= 𝒒  are  

𝑑𝑥

𝑑𝑡
=
𝑥

𝑡
,
𝑑𝑦

𝑑𝑡
= 𝑦,

𝑑𝑧

𝑑𝑡
= 0 

Therefore, ∫
𝑑𝑥

𝑥
= ∫

𝑑𝑡

𝑡
 ⇒ log (

𝑥

𝑎
) = log (

𝑡

𝑡0
) ⇒ 𝑥 =

𝑎𝑡

𝑡0

𝑡

𝑡0

𝑥

𝑎
 

∫
𝑑𝑦

𝑦
= ∫ 𝑑𝑡 ⇒ log(

𝑦

𝑏
) = (𝑡 − 𝑡0) ⇒ 𝑦 = 𝑏𝑒𝑡−𝑡0

𝑡

𝑡0

𝑦

𝑏

 

𝑑𝑧

𝑑𝑡
= 0 ⇒ 𝑧 = 𝑐𝑜𝑛𝑠𝑡.= 𝑐 

Thus the path lines are 𝑥 =
𝑎𝑡

𝑡0
, 𝑦 = 𝑏 𝑒𝑡−𝑡0 , 𝑧 = 𝑐      (1) 

(ii) Streak line is the curve traced out by the fluid particles which were initially at 𝒓𝟎 = (𝑎, 𝑏, 𝑐) 

and now pass through the fixed point 𝒓𝟏 = (𝑥1, 𝑦1, 𝑧1) at time T.  

If the fluid particle 𝒓𝟎 passes through 𝒓𝟏  at time T, then equation (1) yield 
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𝑥1 =
𝑎𝑇

𝑡0
, 𝑦1 = 𝑏 𝑒

𝑇−𝑡0 , 𝑧1 = 𝑐 

Thus,              𝑎 =
𝑥1𝑡0

𝑇
, 𝑏 =

𝑦1𝑒
𝑡0

𝑒𝑇
, 𝑐 = 𝑧1    (2) 

Eliminating a, b, c between equations (1) and (2) yields the equation of streak lines through 𝒓𝟏 at 

time t 

                                                      𝑥 =
𝑥1𝑡

𝑇
, 𝑦 =

𝑦1𝑒
𝑡

𝑒𝑇
, 𝑧 = 𝑧1                                                         (3) 

For the steady flow, streak lines (3) and path lines (2) coincide with the stream lines 𝑥𝑡 = 𝑘𝑦, 𝑧 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 

 

Example: The velocity vector q is given by 𝒒 = 𝒊𝑥 − 𝒋𝑦. Determine the equation of the stream 

lines. 

Solution:      From the definition of the stream line  𝒒 × 𝑑𝒓 = 𝟎, we have 

(𝑖𝑥 − 𝑗𝑦) × (𝑖𝑑𝑥 + 𝑗𝑑𝑦) = 0 

 or      (𝑥𝑑𝑦 + 𝑦𝑑𝑥)𝒌 = 0 

or     
𝑑𝑥

𝑥
= −

𝑑𝑦

𝑦
 

By integrating, we obtain   𝑙𝑜𝑔𝑥 + log𝑦 = log 𝑐 

or     𝑥𝑦 = 𝑐 

which represents the rectangular hyperbolas where c is arbitrary constant. 

 

Example:  The velocity q in a three-dimensional flow field for an incompressible fluid is given 

by 

𝒒 = 𝟐𝒙𝒊 − 𝒚𝒋 − 𝒛𝒌 

Determine the equations of the streamlines passing through the point (𝟏, 𝟏, 𝟏). 

Solution: The equations of stream lines are given by  

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
 

⇒          
𝑑𝑥

2𝑥
=

𝑑𝑦

−𝑦
=

𝑑𝑧

−𝑧
 

From first two factors, we have  

𝑑𝑥

2𝑥
=
𝑑𝑦

−𝑦
  ⇒

𝑑𝑥

𝑥
+
2𝑑𝑦

𝑦
= 0 

By integrating,     log𝑥 + 2 log𝑦 = log𝐴  

or     𝑥𝑦2 = 𝐴,  where A is an integration constant. 

From first and third factors,  
𝑑𝑥

2𝑥
=

𝑑𝑧

−𝑧
  ⇒ 

𝑑𝑥

𝑥
+ 2

𝑑𝑧

𝑧
=  0 

 

By integrating, we have    𝑥𝑧2 = 𝐵,  where B is an integration constant. 

At the point (1,1,1),  A=1=B 

Hence the required streamlines are 

𝑥𝑦2 = 1 𝑎𝑛𝑑 𝑥𝑧2 = 1 
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Example: The velocity components in a two-dimensional flow field for an incompressible fluid 

are given by  

𝒖 = 𝒆𝒙𝒄𝒐𝒔𝒉 𝒚  𝒂𝒏𝒅 𝒗 = −𝒆𝒙𝒔𝒊𝒏𝒉 𝒚  

Determine the equation of the streamlines for this flow. 

Solution: The equation of the streamlines are given by 

𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
 ⇒

𝑑𝑥

𝑒𝑥 cosh 𝑦
=

𝑑𝑦

−𝑒𝑥 sinh 𝑦
 

or    𝑑𝑥 + coth𝑦 𝑑𝑦 = 0 

By integrating   𝑥 + log sinh 𝑦 = log 𝑐  ⇒ sinh 𝑦 = 𝑐𝑒−𝑥 

 

where log c is constant of integration. 

 

3.5 The Eulerian and Lagrangian Methods: 

Now we describe two methods by which the general problem of Hydro-dynamics can be dealt 

with. These are Eulerian (Flux) and Lagrangian Methods and refer to ‘Local time-rate’ of change 

and ‘individual time-rate’ of change. 

(1) Euler’s method: In this method we select any point fixed in space occupied by the fluid and 

observe the changes which take place in velocity, density and pressure as the fluid passes through 

this point. Obviously, the point being fixed x, y, z and t are independent variables and so 𝑥̇, 𝑥,̈  𝑒𝑡𝑐. 

are meaningless in this method. 

Let us consider any scalar point function  

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜙(𝒓, 𝑡) 

associated with a fluid in motion. Then keeping the point P (x, y,z), as fixed, the change is  

𝜙(𝒓, 𝑡 + 𝛿𝑡) − 𝜙(𝒓, 𝑡) 

Whence the local time-rate of change, 𝜕𝜙/𝜕𝑡 is  

𝜕𝜙

𝜕𝑡
= lim

𝛿𝑡→0

𝜙(𝒓, 𝑡 + 𝛿𝑡) − 𝜙(𝒓, 𝑡)

𝛿𝑡
 

A similar expression can be established for a vector point function, i.e., 

𝜕𝒇

𝜕𝑡
= lim

𝛿𝑡→0

𝒇(𝒓, 𝑡 + 𝛿𝑡) − 𝒇(𝒓, 𝑡)

𝛿𝑡
 

(2) Lagrangian Methods: In this method we seek to determine the history of every fluid particle, 

i.e. we select any particle of the fluid and purse it on its onward course making observations of 

changes in velocity, density and pressure at each instant and at each point. 

Thus the expressions 𝑥̇, 𝑥,̈  𝑒𝑡𝑐. have definite significance, and to specify a particular fluid-particle 

we need its initial position coordinates, say (a,b,c) or (𝑟𝑜) so that there are altogether four 

independent variables (𝑎, 𝑏, 𝑐, 𝑡) in Cartesian treatment and (𝒓𝟎, 𝑡) in vector treatment. 

Let us now consider any scalar point function 𝜙(𝑥, 𝑦, 𝑧, 𝑡), 𝑖. 𝑒. , 𝜙(𝒓, 𝑡) associated with a fluid in 

motion. Then keeping the particle fixed, the change is  

𝜙(𝒓 + 𝛿𝑟, 𝑡 + 𝛿𝑡) − 𝜙(𝑟, 𝑡) 
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The change 𝛿𝑟 in the position of the particle during the time 𝛿𝑡 depends upon q, the velocity of the 

particle at time t. Thus 

𝛿𝒓 = 𝒒𝛿𝑡 

Then     lim
𝛿𝑡→0

𝜙(𝒓+𝒒𝛿𝑡,𝑡+𝛿𝑡)−𝜙(𝒓,𝑡)

𝛿𝑡
=

𝑑𝜙

𝑑𝑡
 

is the individual time-rate of change. 

 

3.5.1 Relationship Between the Lagrangian and Eulerian Method: 

To relate these two methods, we establish a relation between points in space and the particle 

parameters. 

I. Lagrangian to Eulerian:  Let Q be some quantity defined in terms of Lagrangian description 

𝑄 = 𝑄(𝑎, 𝑏, 𝑐, 𝑡)     (1) 

We shall express a, b, c in terms of the coordinates x,y,z of a point in space. In Lagrangian method, 

it is defined as 

𝑥 = 𝑓1(𝑎, 𝑏, 𝑐, 𝑡), 𝑦 = 𝑓2(𝑎, 𝑏, 𝑐, 𝑡), 𝑧 = 𝑓3(𝑎, 𝑏, 𝑐, 𝑡)    (2) 

By solving these relations to obtain a, b, c in terms of Eulerian variables x, y, z and t, we have 

𝑎 = 𝑔1(𝑥, 𝑦, 𝑧, 𝑡), 𝑏 = 𝑔2(𝑥, 𝑦, 𝑧, 𝑡), 𝑐 = 𝑔3(𝑥, 𝑦, 𝑧, 𝑡)  (3) 

From (1) and (3) , we get  

𝑄 = 𝑄[𝑔1(𝑥, 𝑦, 𝑧, 𝑡), 𝑔2(𝑥, 𝑦, 𝑧, 𝑡), 𝑔3(𝑥, 𝑦, 𝑧, 𝑡)]      (4)   

which represents the Eulerian description.   

II. Eulerian to Lagrangian: Let Q be some quantity defined in terms of Eulerian description, we 

then have 

        𝑄 = 𝑄(𝑥, 𝑦, 𝑧, 𝑡)                                                  (5) 

We shall express x,y,z in terms of the particle parameter a, b, c. Let u,v,w are the velocity 

components at the point (x,y,z) at any instant t, which is defined as 

           𝑢 = 𝐹1(𝑥, 𝑦, 𝑧, 𝑡), 𝑣 = 𝐹2(𝑥, 𝑦, 𝑧, 𝑡), 𝑤 = 𝐹3(𝑥, 𝑦, 𝑧, 𝑡)        (6) 

Again from the Lagrangian description, we have  

𝑢 =
𝜕𝑥

𝜕𝑡
, 𝑣 =

𝜕𝑦

𝜕𝑡
,    𝑤 =

𝜕𝑧

𝜕𝑡
     (7) 

𝑤ℎ𝑒𝑟𝑒 𝑥, 𝑦, 𝑧 are functions of the variables a, b, c and t. 

From (6) and (7), the velocity components of a fluid element is given by  
𝜕𝑥

𝜕𝑡
= 𝐹1(𝑥, 𝑦, 𝑧, 𝑡),

𝜕𝑦

𝜕𝑡
= 𝐹2(𝑥, 𝑦, 𝑧, 𝑡),

𝜕𝑧

𝜕𝑡
= 𝐹3(𝑥, 𝑦, 𝑧, 𝑡)   (8) 

Which represents the first order linear differential equation. By integrating, we have 

𝑥 = 𝑓1(𝑥0, 𝑦0, 𝑧0, 𝑡), 𝑦 = 𝑓2(𝑥0, 𝑦0, 𝑧0, 𝑡), 𝑧 = 𝑓3(𝑥0, 𝑦0, 𝑧0, 𝑡)   (9) 

 

Where 𝑥0, 𝑦0 , 𝑧0 are the initial values of x,y,z at an initial instant 𝑡 = 𝑡0 assumed to be constants of 

integration. Choosing the particle parameters a,b,c equal to 𝑥0, 𝑦0, 𝑧0 respectively. Thus, we have 

𝑥 = 𝑓1(𝑎, 𝑏, 𝑐, 𝑡), 𝑦 = 𝑓2(𝑎, 𝑏, 𝑐, 𝑡), 𝑧 = 𝑓3(𝑎, 𝑏, 𝑐, 𝑡)    (10) 

From the relations (5) and (10), we have  

𝑄 = 𝑄[𝑓1(𝑎, 𝑏, 𝑐, 𝑡), 𝑓2(𝑎, 𝑏, 𝑐, 𝑡), 𝑓3(𝑎, 𝑏, 𝑐, 𝑡)] 

Which represents the Lagrangian description.  
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3.6 Relation between the local and individual time-rates: 

Let (𝑢, 𝑣, 𝑤) be the components of velocity q along the coordinate axes, so that  

𝒒 = 𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌;  where 
𝑑𝑥

𝑑𝑡
= 𝑢, 𝑒𝑡𝑐. 

Now     𝜙 = 𝜙(𝑥, 𝑦, 𝑧, 𝑡) 

Therefore,    
𝑑𝜙

𝑑𝑡
=

𝜕𝜙

𝜕𝑥

𝑑𝑥

𝑑𝑡
+

𝜕𝜙

𝜕𝑦

𝑑𝑦

𝑑𝑡
+

𝜕𝜙

𝜕𝑧

𝑑𝑧

𝑑𝑡
+

𝜕𝜙

𝜕𝑡
 

          = 𝑢
𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
+𝑤

𝜕𝜙

𝜕𝑧
+

𝜕𝜙

𝜕𝑡
 

           = (𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌). (𝒊
𝜕𝜙

𝜕𝑥
+ 𝒋

𝜕𝜙

𝜕𝑦
+ 𝒌

𝜕𝜙

𝜕𝑧
 ) +

𝜕𝜙

𝜕𝑡
 

            = 𝒒. (∇ 𝜙) +
𝜕𝜙

𝜕𝑡
 

Thus,     
𝑑𝜙

𝑑𝑡
=  𝒒. (∇ 𝜙) +

𝜕𝜙

𝜕𝑡
= (𝒒. ∇)𝜙 +

𝜕𝜙

𝜕𝑡
 

A similar expression for a vector point function f can be established in the form 

𝑑𝒇

𝑑𝑡
=  (𝒒. ∇)𝒇 +

𝜕𝒇

𝜕𝑡
 

 

 

3.7 Substantial Derivative or Material Derivative following the Fluid Motion: 

 

Consider some property of the fluid (e.g., temperature, density, fluid boundary, fluid velocity) 

typified by some function 𝐺(𝑥, 𝑦, 𝑧, 𝑡, ); is a scalar (or vector) point function.  

Then  

𝐺 = 𝐺(𝑥, 𝑦, 𝑧, 𝑡) = 𝐺(𝒓, 𝑡) 

The position vector r may depend upon time ‘t’ and hence we may calculate 
𝑑𝐺

𝑑𝑡
. 

Now     𝐺 + 𝛿𝐺 = 𝐺(𝑟 + 𝛿𝑟 , 𝑡 + 𝛿𝑡) 

Therefore,    𝛿𝐺 = 𝐺(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝐺(𝒓, 𝑡) 

       = [ 𝐺(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝐺(𝒓, 𝑡 + 𝛿𝑡)] + [𝐺(𝒓, 𝑡 + 𝛿𝑡) − 𝐺(𝒓, 𝑡)] 

 i.e.    𝛿𝐺 = 𝛿𝒓. ∇𝐺(𝒓, 𝑡 + 𝛿𝑡) + 𝛿𝑡 𝜕𝐺(𝒓, 𝑡)/𝜕𝑡 [to first order] 

Dividing both sides by 𝛿𝑡  and proceeding to limits, we obtain 

    
𝑑𝐺

𝑑𝑡
= 𝒒.∇𝐺 + 𝜕𝐺/𝜕𝑡   [As 

𝑑𝒓

𝑑𝑡
= 𝒒]  (1) 

 

This equation indicates the time rate of change of the quantity G as a fluid particle moves about 

but is written in terms of quantity observed at a point. 

The operator  
𝑑

𝑑𝑡
≡ (𝒒.𝛁) + 𝜕/𝜕𝑡 is known as Substantial derivative or material derivative or 

differentiation following the motion of the fluid. Often 𝑑/𝑑𝑡 is denoted by 𝐷/𝐷𝑡 . 
𝜕

𝜕𝑡
=Local 

derivative , 𝑞. ∇ = convective derivative and G is associated with change of physical quantity due 

to motion of fluid particle. 

 

Notes: 
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1) The term (𝒒. ∇)𝐺 represents the rate of change of G at a fixed time t due to the change of 

position from one point to the other and the term 
𝜕𝐺

𝜕𝑡
 gives the rate of change of G at fixed point. 

2) 
𝑑𝜌

𝑑𝑡
= 0 implies incompressible fluid but not steady flow, but 

𝜕𝜌

𝜕𝑡
= 0 implies 𝜌 is independent of 

t at a fixed point.  

Similarly, the fluid boundary 𝑓(𝒓, 𝑡) = 0 always consists of the same fluid particles, we must have 
𝑑𝑓

𝑑𝑡
= 0. 

3) If G is replaced by the velocity vector q , we obtain particle acceleration, viz. 

𝒂 =
𝑑𝒒

𝑑𝑡
= (𝒒. ∇)𝒒 +

𝜕𝒒

𝜕𝑡
 

Since 𝒒. ∇= u
∂

∂x
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
   [𝑎𝑠 𝒒 = (𝑢, 𝑣, 𝑤)],  the acceleration components (𝑎𝑥 , 𝑎𝑦 , 𝑎𝑧) are 

given by  𝒂𝒙 =
𝑑𝑢

𝑑𝑡
=

𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+𝑤

𝜕𝑢

𝜕𝑧
  with two more expressions for 

𝑑𝑣

𝑑𝑡
,
𝑑𝑤

𝑑𝑡
 𝑒𝑡𝑐. 

 

Remarks: 

(i)  The Eulerian method is sometimes also called the flux method. 

(ii)  Both Lagrangian and Eulerian methods were used by Euler for studying fluid dynamics. 

(iii)  Lagrangian method resembles very much with the dynamics of a particle 

(iv)  The two methods are essentially equivalent, but depending upon the problem, one has to 

judge whether Lagrangian method is more useful or the Eulerian.  

 

Example: The velocity components for a two-dimensional flow system can be given in the 

Eulerian system by 

𝒖 = 𝟐𝒙 + 𝟐𝒚+ 𝟑𝒕; 𝒗 = 𝒙 + 𝒚 + 𝒕/𝟐 

Find the displacement of a fluid particle in the Lagrangian system. 

Solution: The velocities may be expressed in terms of the displacements as 

𝑢 =
𝑑𝑥

𝑑𝑡
= 2𝑥 + 2𝑦 + 3𝑡; 𝑣 =

𝑑𝑦

𝑑𝑡
= 𝑥 + 𝑦 + 𝑡/2 

𝑑𝑥

𝑑𝑡
− 2𝑥 − 2𝑦 = 3𝑡;

𝑑𝑦

𝑑𝑡
− 𝑥 − 𝑦 = 𝑡/2 

The solutions of the simultaneous differential equations can be determined by operator method as 

follows: 

(𝐷 − 2)𝑥 − 2𝑦 = 3𝑡          (1) 

−𝑥 + (𝐷 − 1)𝑦 =
1

2
𝑡          (2) 

Eliminating x from (1) and (2), we have 

𝐷(𝐷 − 3)𝑦 = 2𝑡 + 1/2 

whose solution is given by 

𝑦 = 𝑎 + 𝑏𝑒3𝑡 − (
7

18
) 𝑡 − (

1

3
) 𝑡2        (3) 

Substituting the value of y in the equation (2), we have  

𝑥 = −𝑎 + 2𝑏𝑒3𝑡 + (
1

3
) 𝑡2 − (

7

9
) 𝑡 −

7

18
       (4) 
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The arbitrary constants a and b are determined by using the initial conditions  

 

: 𝑥 = 𝑥0, 𝑦 = 𝑦0 𝑎𝑡 𝑡 = 𝑡0 = 0 in (3) and (4), we have 

𝑦0 = 𝑎 + 𝑏; 𝑥0 = −𝑎 + 2𝑏 − 7/18 

Thus  𝑎 = −
1

3
(𝑥0 − 2𝑦0 +

7

18
) , 𝑏 =

1

3
(𝑥0 + 𝑦0 +

7

18
) 

Substituting the values of a and b in (3) and (4), we get the required solution. 

 

Example: For a two-dimensional flow the velocities at a point in a fluid may be expressed in the 

Eulerian coordinates by 𝒖 = 𝒙 + 𝒚 + 𝟐𝒕; 𝒗 = 𝟐𝒚 + 𝒕. Determine the Lagrange coordinates as 

functions of the initial positions 𝒙𝟎 𝒂𝒏𝒅 𝒚𝟎 and the time t. 

Solution: Proceed as in example above, we find 

𝑥 = 𝐴𝑒𝑡 + 𝐵𝑒2𝑡 −
1

4
(6𝑡 + 5)         (1) 

𝑦 = 𝐵𝑒2𝑡 −
1

4
 (2𝑡 + 1)         (2) 

where A and B are arbitrary constants. 

Initially   𝑥 = 𝑥0, 𝑦 = 𝑦0 𝑎𝑡 𝑡 = 𝑡0 = 0; Then 𝐴 = 𝑥0 − 𝑦0 + 1; 𝐵 = 𝑦0 +
1

4
 

Hence the solution (1) and (2) can be written in the form 

𝑥 = 𝐹1(𝑥0, 𝑦0, 𝑡), 𝑦 = 𝐹2(𝑥0, 𝑦0, 𝑡) 

where  𝐹1 = (𝑥0 − 𝑦0 + 1)𝑒
𝑡 + (𝑦0 +

1

4
)𝑒2𝑡 −

1

4
(6𝑡 − 1) ; 𝐹2 = (𝑦0 +

1

4
)𝑒2𝑡 −

1

4
 (2𝑡 + 1) 

This determines the Lagrange coordinates as a function of the initial positions 𝑥0, 𝑦0  and the time 

t. 

 

 

3.8 Translation, Deformation and Rotation of Fluid Element: 

 

(i) Translation motion: When the fluid particle moves without changing its shape, then 

that fluid element is said to under goes translation motion. 

Let  ABCD  be the position of fluid element in the rest position and after sometime it 

take the position 𝐴′𝐵′𝐶′𝐷′ due to translation motion without changing the shape. 
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(ii) Rotation Motion: When the fluid element rotate about one point without changing the 

shape, then fluid element is said to be under goes rotation. The angular velocity of 

rotation is given by 

𝑤 = −
1

2
 |

𝒊 𝒋 𝒌
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢 𝑣 𝑤

| 

=
1

2
𝑐𝑢𝑟𝑙 𝒒 =

1

2
 ∇ × 𝒒 

=
𝟏

𝟐
[ 𝒊 (

𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) + 𝒋 (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) + 𝒌 (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)          

 (1) 

 

(iii) Rate of Deformation: A fluid element is said to be undergoes deformation if the 

distance between two nearest fluid element changes. There are two types of rates of 

deformation. 

(a) Linear deformation:  In this case distance between two particles change in straight 

line due to motion. 

(b) Angular deformation: In this case the distance between two particles changes, 

when particle rotate about one angular fixed point. 

 

 
 

 

Expression for Translation, Rotation and Rate of Deformation: 
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 Let a fluid particle 𝑃(𝑥. 𝑦. 𝑧) whose position vector r with respect to origin O. 𝑄(𝑥 + 𝛿𝑥, 𝑦 +

𝛿𝑦, 𝑧 + 𝛿𝑧) be the position of that fluid particle at any time t whose position vector is 𝒓 + 𝜹𝒓, q  is 

the velocity at P, 𝒒 + 𝒅𝒒 be the velocity at Q. Then 

𝒒′ = 𝒒 + 𝒅𝒒 

= 𝒒 +
𝜕𝒒

𝜕𝑥
𝑑𝑥 +

𝜕𝒒

𝜕𝑦
𝑑𝑦 +

𝜕𝒒

𝜕𝑧
𝑑𝑧 

= 𝒒 + 𝒊 [
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

𝜕𝑢

𝜕𝑦
𝑑𝑦 +

𝜕𝑢

𝜕𝑧
𝑑𝑧] + 𝒋 [

𝜕𝑣

𝜕𝑥
𝑑𝑥 +

𝜕𝑣

𝜕𝑦
𝑑𝑦 +

𝜕𝑣

𝜕𝑧
𝑑𝑧] + 𝒌[

𝜕𝑤

𝜕𝑥
𝑑𝑥 +

𝜕𝑤

𝜕𝑦
𝑑𝑦 +

𝜕𝑤

𝜕𝑧
𝑑𝑧]   

 [𝐴𝑠 𝒒 = 𝒊𝑢 + 𝒋𝑣 + 𝒌𝑤] 

= 𝒒 + 𝒊 [{
1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)𝑑𝑧 −

1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)𝑑𝑦} + {

𝜕𝑢

𝜕𝑥
𝑑𝑥 +

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)𝑑𝑦 +

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)𝑑𝑥}]

+ 𝒋 [{
1

2
(
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)𝑑𝑥 −

1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 𝑑𝑧}

+ {
𝜕𝑣

𝜕𝑦
𝑑𝑦 +

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
) 𝑑𝑥 +

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)}]

+ 𝒌[{
1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑢

𝜕𝑧
)𝑑𝑦 −

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) 𝑑𝑥}

+ {
𝜕𝑤

𝜕𝑧
𝑑𝑧 +

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
) 𝑑𝑥 +

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
) 𝑑𝑦}] 

Thus   𝒒′ = 𝒒 + 𝒘× 𝒅𝒓 + 𝑫       (2) 

where 

𝒘 ×𝒅𝒓= 
𝟏

𝟐
 |

𝒊 𝒋 𝒌

(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)

𝑑𝑥 𝑑𝑦 𝑑𝑧

| 
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= 𝒊 {
1

2
(
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
)𝑑𝑧 −

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)𝑑𝑦} +j{

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
) 𝑑𝑥 −

1

2
(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑑𝑧} 

+𝒌 {
1

2
(
𝜕𝑤

𝜕𝑦
−
𝜕𝑢

𝜕𝑧
) 𝑑𝑦 −

1

2
(
𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
)𝑑𝑥} 

𝑑𝒓 =  𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘𝑑𝑧 

 

𝐷 = 𝒊 {
𝜕𝑢

𝜕𝑥
𝑑𝑥 +

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)𝑑𝑦 +

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)𝑑𝑥}

+ 𝒋 {
𝜕𝑣

𝜕𝑦
𝑑𝑦 +

1

2
(
𝜕𝑣

𝜕𝑥
+
𝜕𝑢

𝜕𝑦
)𝑑𝑥 +

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
)}

+ 𝒌 {
𝜕𝑤

𝜕𝑧
𝑑𝑧 +

1

2
(
𝜕𝑢

𝜕𝑧
+
𝜕𝑤

𝜕𝑥
)𝑑𝑥 +

1

2
(
𝜕𝑤

𝜕𝑦
+
𝜕𝑣

𝜕𝑧
) 𝑑𝑦} 

= 𝒊(∈𝑥𝑥 𝑑𝑥 +∈𝑥𝑦 𝑑𝑦 +∈𝑥𝑧 𝑑𝑧) + 𝒋(∈𝑦𝑦 𝑑𝑦 +∈𝑦𝑥 𝑑𝑥 +∈𝑦𝑧 𝑑𝑧) + 𝒌(∈𝑧𝑧 𝑑𝑧 +∈𝑧𝑥 𝑑𝑥 +∈𝑧𝑦 𝑑𝑦) 

= 𝒊(∈𝑥 . 𝑑𝒓) + 𝒋(∈𝑦. 𝑑𝒓) + 𝒌(∈𝑧 . 𝑑𝒓) 

Where  ∈𝑥= 𝒊 ∈𝑥𝑥+ 𝒋 ∈𝑥𝑦+ 𝒌 ∈𝑥𝑧 , ∈𝑦= 𝒊 ∈𝑦𝑥+ 𝒋 ∈𝑦𝑦+ 𝒌 ∈𝑦𝑧 , ∈𝑧= 𝒊 ∈𝑧𝑥+ 𝒋 ∈𝑧𝑦+ 𝒌 ∈𝑧𝑧  are 

strain rate tractions of the fluid elements in the 𝑥, 𝑦, 𝑧 direction. 

Equation (2) represents the most general mode of motion of a fluid element. The first term q 

represents the linear motion of all parts of the fluid element without changing the shape of the 

element. Hence the first term represents the pure translatory part of the motion. The second term 

𝑤 × 𝑑𝑟 represents the pure rotation of the fluid element. The third term D represents the rate of 

deformation (rate of strain term) and so the third term D gives the deformation of the fluid 

element.  

If D=0 then it represents the rigid body. Hence, we can say that the most general motion of a fluid 

element can be expressed as the combination of translation, rotation and deformation of the fluid 

element. 

 

 

 

Example: Velocity field at point is given by 𝒖 = 𝟏 + 𝟐𝒚 − 𝟑𝒛, 𝒗 = 𝟒 − 𝟐𝒙 + 𝟓𝒛,𝒘 = 𝟔 + 𝟑𝒙 −

𝟓𝒚.Show that it represents a rigid body motion. 

Solution: The general motion of fluid element is given by 

𝒒′ = 𝒒 + 𝒘× 𝒅𝒓 + 𝑫 

Where 𝒒 =  𝑢𝒊 + 𝑣𝒋 + 𝑧𝒌   = translation velocity 

  = (1 + 2𝑦 − 3𝑧)𝒊 + (4 − 2𝑥 + 5𝑧)𝒋 + (6 + 3𝑥 − 5𝑦)𝒌 

𝒘 ×𝒅𝒓 = rotation velocity 
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Now 𝒘 =
1

2
 𝑐𝑢𝑟𝑙 𝒒 =

1

2
 ∇ × 𝒒 =

1

2
|

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑢 𝑣 𝑤

| =

1

2
|

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

1 + 2𝑦 − 3𝑧 4 − 2𝑥 + 5𝑧 6 + 3𝑥 − 5𝑦

| 

   =
1

2
[𝑖(−5 − 5) + 𝑗(−3 − 3) + 𝑘(−2 − 2)] = −(5𝑖 + 3𝑗 + 2𝑘) 

𝑤 × 𝑑𝑟 = |
𝑖 𝑗 𝑘
−5 −3 −2
𝑑𝑥 𝑑𝑦 𝑑𝑧

| = 𝑖(2𝑑𝑦 − 3𝑑𝑧) + 𝑗(5𝑑𝑧 − 2𝑑𝑥) + 𝑘(3𝑑𝑥 − 5𝑑𝑦) 

 

D=rate of deformation 

= 𝒊(∈𝑥𝑥 𝑑𝑥 +∈𝑥𝑦 𝑑𝑦 +∈𝑥𝑧 𝑑𝑧) + 𝒋(∈𝑦𝑦 𝑑𝑦 +∈𝑦𝑥 𝑑𝑥 +∈𝑦𝑧 𝑑𝑧) + 𝒌(∈𝑧𝑧 𝑑𝑧 +∈𝑧𝑥 𝑑𝑥 +∈𝑧𝑦 𝑑𝑦) 

Here  

∈𝑥𝑥=
𝜕𝑢

𝜕𝑥
= 0 =∈𝑦𝑦=∈𝑧𝑧 

∈𝑥𝑦=
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) = 0 

∈𝑦𝑧=
1

2
(
𝜕𝑣

𝜕𝑧
+
𝜕𝑤

𝜕𝑦
) = 0 

∈𝑧𝑥=
1

2
(
𝜕𝑤

𝜕𝑥
+
𝜕𝑢

𝜕𝑧
) = 0 

Put these values in D, we get D=0 

This D is called rate of deformation. As D=0 then it represents the rigid body. Hence we can say 

that the most general motion as a fluid element can be expressed as the combination of translation, 

rotation and not deformation of the fluid element. 

Example: What type of the motion do the following velocity components constitute? 

 

𝑢 = 𝑎 + 𝑏𝑦 − 𝑐𝑧; 𝑣 = 𝑑 − 𝑏𝑥 + 𝑒𝑧 ;𝑤 = 𝑓 + 𝑐𝑥 − 𝑒𝑦 

where a, b,c,d,e,f are arbitrary constants. 

Solution:  We know that general motion of fluid element is given by 

𝒒′ = 𝒒 + 𝑤 × 𝑑𝑟 + 𝐷 

Where q(translation velocity)=𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌 = (𝑎 + 𝑏𝑦 − 𝑐𝑧)𝒊 + ( 𝑑 − 𝑏𝑥 + 𝑒𝑧)𝒋 + (𝑓 + 𝑐𝑥 −

𝑒𝑦)𝒌 

𝑤 × 𝑑𝑟 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑤 =
1

2
 𝑐𝑢𝑟𝑙 𝒒 =

1

2
∇ × 𝒒 

=
1

2
 |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢 𝑣 𝑤

| 
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=
1

2
||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑎 + 𝑏𝑦 − 𝑐𝑧 𝑑 − 𝑏𝑥 + 𝑒𝑧 𝑓 + 𝑐𝑥 − 𝑒𝑦

|| 

=
1

2
[𝑖(−2𝑒) + 𝑗(−2𝑐) + 𝑘(−2𝑏)] = −(𝑒𝑖 + 𝑐𝑗 + 𝑏𝑘) 

Therefore,  𝑤 × 𝑑𝑟 = |
𝑖 𝑗 𝑘
−𝑒 −𝑐 −𝑏
𝑑𝑥 𝑑𝑦 𝑑𝑧

| = 𝑖(𝑏𝑑𝑦 − 𝑐𝑑𝑧) + 𝑗(𝑒𝑑𝑧 − 𝑏𝑑𝑥) + 𝑘(𝑑𝑥 − 𝑒𝑑𝑦) 

D=rate of deformation 

= 𝑖(∈𝑥𝑥  𝑑𝑥 +∈𝑦𝑦  𝑑𝑦 +∈𝑧𝑧  𝑑𝑧) + 𝑗(∈𝑦𝑥  𝑑𝑥 +∈𝑦𝑦  𝑑𝑦 +∈𝑦𝑧 𝑑𝑧)

+ 𝑘(∈𝑧𝑥  𝑑𝑥 +∈𝑧𝑦 𝑑𝑦 +∈𝑧𝑧 𝑑𝑧) 

Here  ∈𝑥𝑥=
𝜕𝑢

𝜕𝑥
= 0,∈𝑦𝑦=

𝜕𝑣

𝜕𝑦
= 0,∈𝑧𝑧=

𝜕𝑤

𝜕𝑧
= 0 

∈𝑥𝑦=
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) =

1

2
(𝑏 − 𝑏) = 0 

∈𝑦𝑧= 0;∈𝑧𝑥= 0 

Therefore, D=0 

Hence the motion of fluid element consistent translation and rotation not deformation. As D=0 so 

it represents the rigid body motion. 

Example: Give a velocity field with components  𝑢 = 𝑐𝑥 + 2 𝑤0𝑦 + 𝑢0; 𝑣 = 𝑐𝑦 + 𝑣0; 𝑤 =

−2𝑐𝑧 + 𝑤0 where 𝑐 , 𝑢0, 𝑣0 𝑎𝑛𝑑 𝑤0  are constants with the above velocity components at a point 

p(x,y,z), determine the velocity components at neighbouring point Q(𝒙 + 𝒅𝒙, 𝒚 + 𝒅𝒚, 𝒛 + 𝒅𝒛) 

and determine the different types of motion which are involved. 

Solution:  The general motion of fluid element is given by 

𝒒′ = 𝒒 + 𝑤 × 𝑑𝑟 + 𝐷 

Where q(translation velocity)=𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌 = (𝑐𝑥 + 2𝑤0𝑦 + 𝑢0)𝑖 + (𝑐𝑦 + 𝑣0)𝑗 + (−2𝑐𝑧 +

𝑤0)𝑘 

 

𝑤 × 𝑑𝑟 = 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 

𝑤 =
1

2
 𝑐𝑢𝑟𝑙 𝒒 =

1

2
∇ × 𝒒 

=
1

2
 |

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑢 𝑣 𝑤

| 

=
1

2
||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧
𝑐𝑥 + 2𝑤0𝑦 + 𝑢0 𝑐𝑦 + 𝑣0 −2𝑐𝑧 + 𝑤0

|| = −𝑤0𝑘 
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𝑤 × 𝑑𝑟 = |
𝑖 𝑗 𝑘
0 0 −𝑤0
𝑑𝑥 𝑑𝑦 𝑑𝑧

| = 𝑖(𝑤0𝑑𝑦) + 𝑗(−𝑤0𝑑𝑥) = (𝑤0𝑑𝑦)𝑖 − (𝑤0𝑑𝑥)𝑗 

D=rate of deformation 

 

= 𝑖(∈𝑥𝑥  𝑑𝑥 +∈𝑦𝑦  𝑑𝑦 +∈𝑧𝑧  𝑑𝑧) + 𝑗(∈𝑦𝑥  𝑑𝑥 +∈𝑦𝑦  𝑑𝑦 +∈𝑦𝑧 𝑑𝑧)

+ 𝑘(∈𝑧𝑥  𝑑𝑥 +∈𝑧𝑦 𝑑𝑦 +∈𝑧𝑧 𝑑𝑧) 

∈𝑥𝑥=
𝜕𝑢

𝜕𝑥
= 𝑐; ∈𝑦𝑦=

𝜕𝑣

𝜕𝑦
= 𝑐; ∈𝑧𝑧=

𝜕𝑤

𝜕𝑧
− 2𝑐 

∈𝑥𝑦=
1

2
(
𝜕𝑢

𝜕𝑦
+
𝜕𝑣

𝜕𝑥
) = 𝑤0 

∈𝑦𝑧= 0 ; ∈𝑧𝑥= 0 

Therefore, 𝐷 = (𝑐𝑑𝑥 + 𝑤0𝑑𝑦)𝑖 + (𝑤0𝑑𝑥 + 𝑐𝑑𝑦)𝑗 − (2𝑐𝑑𝑧)𝑘 

Hence point Q has the three types of motion (i) translation velocity (ii) rotational velocity (iii) rate 

of strain velocity. 

 

3.9 Particle Acceleration: Since the velocity field vector q is a function of both position and 

time, i.e., of four independent variables, we may write it as, say 

𝒒 = 𝒒(𝒓, 𝑡)     (1) 

Suppose that the value of the velocity at time 𝑡 + 𝛿𝑡 when the particle has moved to a 

neighbouring position is 𝒒 + 𝜹𝒒 . Then  

𝛿𝒒 = 𝒒(𝒓 + 𝛿𝑟, 𝑡 + 𝛿𝑡) − 𝒒(𝒓, 𝑡)    

   = [𝒒(𝒓 + 𝜹𝒓, 𝑡 + 𝛿𝑡 ) − 𝑞(𝒓, 𝑡 + 𝛿𝑡 )] − [𝒒(𝒓, 𝑡 + 𝛿𝑡) − 𝒒(𝒓, 𝑡)] 

             (2) 

Now, to first order of approximations 

𝒒(𝒓 + 𝜹𝒓, 𝑡 + 𝛿𝑡 ) − 𝑞(𝒓, 𝑡 + 𝛿𝑡 ) = (𝛿𝑟. ∇) 𝒒(𝒓, 𝑡 + 𝛿𝑡) (3) 

𝒒(𝒓, 𝑡 + 𝛿𝑡) − 𝒒(𝒓, 𝑡) = 𝛿𝑡 𝜕𝒒(𝑟, 𝑡)  /𝜕𝑡                                            

(4) 

 

The acceleration a of the fluid particle at a point being 𝐿𝑖𝑚 (𝛿𝒒 /𝛿𝑡 ) 𝑎𝑠 𝛿𝑡 → 0;we divide (2) by 

𝛿𝑡, use (3) and (4) and proceed to the limits. These yields 

𝒂 =
𝑑𝒒

𝑑𝑡
=

𝜕𝒒

𝜕𝑡
+ (𝒒. ∇)𝒒    

 (5)  

NOTES: 

(1) The expression (5) is in reality the Lagragian acceleration. In the Eulerian concepts, it is 

composed of two factors: one a temporal acceleration (𝜕𝒒/𝜕𝑡) at the point, and the other 

convective acceleration, (𝒒. ∇)𝒒, resulting from flow entering the fluid element from 

regions having different velocities. 

(2) Lagrange’s acceleration relation: Since 
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(𝒒. ∇)𝒒 = ∇ (
1

2
𝒒2) + 𝜔 × 𝒒 ,         (𝜔 = 𝑐𝑢𝑟𝑙 𝑞) 

∴                        𝒂 =
𝑑𝒒

𝑑𝑡
=

𝜕𝒒

𝜕𝑡
+ ∇(

1

2
𝑞2) + 𝜔 × 𝒒     

 (6) 

The acceleration vector given by (6) is Lagrange’s acceleration relation and its chief merit 

is that whereas the form (5) is not invariant under a change of coordinate system, the form 

(6) is invariant under change of coordinate system. 

The vector 𝒒 × 𝜔  is called Lamb vector. 

(3) Particle acceleration in curvilinear coordinates. With velocity components (𝑞1, 𝑞2, 𝑞3 ) 

in the (𝛼, 𝛽, 𝛾) −directions and using the vector definitions 

∇= (
1

ℎ1

𝜕

𝜕𝛼
 ,
1

ℎ2

𝜕

𝜕𝛽
,
1

ℎ3
 
𝜕

𝜕𝛾
 ) , 𝑐𝑢𝑟𝑙 𝒒 = 𝝎 = (𝜔1, 𝜔2, 𝜔3)  

where  𝜔1 =
1

ℎ1ℎ2
[
𝜕

𝜕𝛽
(ℎ3𝑞3) −

𝜕

𝜕𝛾
(ℎ2𝑞2)] , 𝑒𝑡𝑐. 

 we get the acceleration components (𝑎1, 𝑎2, 𝑎3)from Lagrange’s acceleration relation 

𝒂 = (
𝑑𝒒

𝑑𝑡
) =

𝜕𝒒

𝜕𝑡
+ ∇(

1

2
𝑞2) + 𝜔 × 𝒒  

𝑎1 =
𝜕𝑞1

𝜕𝑡
+

1

ℎ1

𝜕

𝜕𝛼
(𝑞1

2 + 𝑞2
2 + 𝑞3

2) + (𝜔2𝑞3 −𝜔3𝑞2)    (7) 

 with similar expressions for 𝑎2 𝑎𝑛𝑑 𝑎3. 

(4) Particle acceleration in cylindrical coordinates.  With velocity components (𝑢, 𝑣, 𝑤) in 

the (𝑟, 𝜃, 𝑧) − directions and using the vector definitions 

𝒒(𝑢, 𝑣,𝑤); 𝑞2 = 𝑢2 + 𝑣2 +𝑤2; ∇= (
𝜕

𝜕𝑟
,

1

𝑟

𝜕

𝜕𝜃
,

𝜕

𝜕𝑧
) 

𝑐𝑢𝑟𝑙 𝒒 = [
1

𝑟

𝜕𝜔

𝜕𝜃
−
𝜕𝑣

𝜕𝑧
,

𝜕𝑢

𝜕𝑧
−
𝜕𝜔

𝜕𝑟
,

1

 𝑟

𝜕

𝜕𝑟
(𝑟𝑣) −

1

𝑟

𝜕𝑢

𝜕𝜃
] 

In the Lagrange acceleration relation, we get 

𝒂 =
𝜕𝒒

𝜕𝑡
+

1

2
(
𝜕

𝜕𝑟
,
1

𝑟

𝜕

𝜕𝜃
,
𝜕

𝜕𝑧
) (𝑢2 + 𝑣2 + 𝑤2) + (𝜔1, 𝜔2, 𝜔3) × (𝑢, 𝑣,𝑤)                   

(i) 

Putting 
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑟
+

𝑣

𝑟

𝜕

𝜕𝜃
+ 𝑤

𝜕

𝜕𝑧
=

𝑑

𝑑𝑡
 

 and splitting the three components in (i), we get 

                    𝒂 = (
𝑑𝑢

𝑑𝑡
−

𝑣2

𝑟
,
𝑑𝑣

𝑑𝑡
+

𝑢𝑣

𝑟
,
𝑑𝑤

𝑑𝑡
 )                                       (8) 

(5) Particle acceleration in space polar coordinates. With velocity components (𝑢, 𝑣,𝑤) in 

(𝑟, 𝜃, 𝜙)-directions and using the vector definitions 

𝒒 = (𝑢, 𝑣, 𝑤), 𝑞2 = 𝑢2 + 𝑣2 + 𝑤2; ∇= (
𝜕

𝜕𝑟
  ,
1

𝑟

𝜕

𝜕𝜃
  ,

1

𝑟𝑠𝑖𝑛𝜃
 
𝜕

𝜕𝜙
) 

𝑐𝑢𝑟𝑙 𝒒 = 𝝎 = (𝜔1, 𝜔2, 𝜔3) , where 
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𝜔1 =
1

𝑟𝑠𝑖𝑛𝜃
[
𝜕

𝜕𝜃
(𝑤𝑠𝑖𝑛𝜃) −

𝜕𝑣

𝜕𝜙
] , 𝜔2 =

1

𝑟
[
1

𝑠𝑖𝑛𝜃
𝑟
𝜕𝑢

𝜕𝜙
−
𝜕

𝜕𝑟
(𝑟 𝑤)] ,

𝜔3 =
1

𝑟
 [
𝜕

𝜕𝑟
(𝑟𝑣) −

𝜕𝑢

𝜕𝜃
] ; 

in the Lagrange acceleration relation, we get 

 𝒂 =
𝜕𝒒

𝜕𝑡
+

1

2
(
𝜕

𝜕𝑟
  ,
1

𝑟

𝜕

𝜕𝜃
  ,

1

𝑟𝑠𝑖𝑛𝜃
 
𝜕

𝜕𝜙
)(𝑢2 + 𝑣2 +𝑤2) + (𝜔1, 𝜔2, 𝜔3) × (𝑢, 𝑣, 𝑤)                           

(i) 

Putting 
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑟
+

𝑣

𝑟

𝜕

𝜕𝜃
+

𝑤

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝜙
=

𝑑

𝑑𝑡
 

 and splitting the three components in (i), we get 

𝒂 = (
𝑑𝑢

𝑑𝑡
−

𝑣2+𝑤2

𝑟
 ,
𝑑𝑣

𝑑𝑡
−

𝑤2 cot𝜃

𝑟
+

𝑢𝑣

𝑟
 ,
𝑑𝑤

𝑑𝑡
+

𝑣𝑤 cot 𝜃

𝑟
+

𝑢𝑤

𝑟
)   (9) 

 

 

 

Example: Determine the acceleration of a fluid particle from the following flow field 

𝒒 = 𝑖(𝐴𝑥𝑦2𝑡) + 𝑗(𝐵𝑥2𝑦𝑡) + 𝑘(𝐶𝑥𝑦𝑧) 

Solution: We have acceleration  

𝒂 =
𝑑𝒒

𝑑𝑡
= (

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+𝑤

𝜕

𝜕𝑧
)𝒒 = 𝑎𝑥𝑖 + 𝑎𝑦𝑗 + 𝑎𝑧𝑘; 𝒒 = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘 

 

Comparing with given equation 

                                            𝑢 = 𝐴𝑥𝑦2𝑡, 𝑣 = 𝐵𝑥2𝑦𝑡, 𝑤 = 𝐶𝑥𝑦𝑧         (1)  

Then components of acceleration along 𝑥, 𝑦, 𝑧 axes 

𝑎𝑥 = 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
+
𝜕𝑢

𝜕𝑡
 

𝑎𝑦 = 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
+
𝜕𝑣

𝜕𝑡
 

𝑎𝑧 = 𝑢
𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤

𝜕𝑦
+ 𝑤

𝜕𝑤

𝜕𝑧
+
𝜕𝑤

𝜕𝑡
 

Using (1), we have the components of acceleration in x,y,z axis: 

𝑎𝑥 = 𝐴𝑥𝑦
2𝑡 × (𝐴𝑦2𝑡) + 𝐵𝑥2𝑦𝑡 × (2𝐴𝑥𝑦𝑡) + 𝐶𝑥𝑦𝑧 × (0) + 𝐴𝑥𝑦2 

= 𝐴2𝑥𝑦4𝑡 + 2𝐴𝐵𝑥3𝑦2𝑡2 + 𝐴𝑥𝑦2 = 𝐴𝑥𝑦2(𝐴𝑦2𝑡2 + 2𝐵𝑥2𝑡2 + 1) 

   

𝑎𝑦 = 𝐴𝑥𝑦
2𝑡 × (2𝐵𝑥𝑦𝑡) + 𝐵𝑥2𝑦𝑡 × (𝐵𝑥2𝑡) + 𝐶𝑥𝑦𝑧 × (0) + 𝐵𝑥2𝑦 

= 2𝐴𝐵𝑥2𝑦3𝑡2 + 𝐵2𝑥4𝑦𝑡2 + 𝐵𝑥2𝑦 

𝑎𝑧 = 𝐴𝑥𝑦
2𝑡 × (𝐶𝑦𝑧) + 𝐵𝑥2𝑦𝑡 × (𝐶𝑥𝑧) + 𝐶𝑥𝑦𝑧 × (𝐶𝑥𝑦) + 0 

= 𝐴𝐶𝑥𝑦3𝑧𝑡 + 𝐵𝐶𝑥3𝑦𝑧𝑡 + 𝐶2𝑥2𝑦2𝑧 

 

Example: The velocity components in spherical polar coordinates (𝒓, 𝜽, 𝝓) of a flow are 
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𝒒𝒓 = (
𝒓𝟐

𝒕𝟐
) 𝒔𝒊𝒏𝝓,𝒒𝜽 =

𝒓

𝒕
𝒄𝒐𝒕 𝜽 𝒄𝒐𝒔𝒆𝒄 𝝓,    𝒒𝝓 =

𝒓

𝒕
𝒔𝒊𝒏 𝜽𝒄𝒐𝒔𝝓                             (1)

  

Determine the components of acceleration of a fluid particle. 

Solution:  𝒂 == (
𝑑𝑞𝑟

𝑑𝑡
−

𝑞𝜃
2+𝑞𝜙

2

𝑟
 ,
𝑑𝑞𝜃

𝑑𝑡
−

𝑞𝜙
2 cot 𝜃

𝑟
+

𝑞𝑟𝑞𝜃

𝑟
 ,
𝑑𝑞𝜙

𝑑𝑡
+

𝑞𝜃𝑞𝜙 cot𝜃

𝑟
+

𝑞𝑟𝑞𝜙

𝑟
) ; 

𝒅

𝒅𝒕
= (

𝜕

𝜕𝑡
+ 𝑞𝑟

𝜕

𝜕𝑟
+
𝑞𝜃
𝑟

𝜕

𝜕𝜃
+

𝑞𝜙

𝑟𝑠𝑖𝑛𝜃

𝜕

𝜕𝜙
) 

Let 𝑎𝑟 , 𝑎𝜃 , 𝑎𝜙  be the components of acceleration, then 

𝑎𝑟 =
𝜕𝑞𝑟

𝜕𝑡
+ 𝑞𝑟

𝜕𝑞𝑟

𝜕𝑟
+

𝑞𝜃

𝑟

𝜕𝑞𝑟

𝜕𝜃
+

𝑞𝜙

𝑟𝑠𝑖𝑛 𝜃

𝜕𝑞𝑟

𝜕𝜙
−

𝑞𝜃
2+𝑞𝜙

2

𝑟
    

 (2)  

𝑎𝜃 =
𝜕𝑞𝜃

𝜕𝑡
+ 𝑞𝑟

𝜕𝑞𝜃

𝜕𝑟
+

𝑞𝜃

𝑟

𝜕𝑞𝜃

𝜕𝜃
+

𝑞𝜙

𝑟𝑠𝑖𝑛 𝜃

𝜕𝑞𝜃

𝜕𝜙
−

𝑞𝜙
2 cot 𝜃

𝑟
+

𝑞𝑟𝑞𝜃

𝑟
   

 (3) 

𝑎𝜙 =
𝜕𝑞𝜙

𝜕𝑡
+ 𝑞𝑟

𝜕𝑞𝜙

𝜕𝑟
+

𝑞𝜃

𝑟

𝜕𝑞𝜙

𝜕𝜃
+

𝑞𝜙

𝑟𝑠𝑖𝑛 𝜃

𝜕𝑞𝜙

𝜕𝜙
+ 

𝑞𝜃𝑞𝜙 cot𝜃

𝑟
+

𝑞𝑟𝑞𝜙

𝑟
   (4) 

 Using (1) in (2), (3) and (4) we obtain 

𝑎𝑟 = −
2𝑟2

𝑡3
sin𝜙 + (

𝑟2 sin 𝜙 

𝑡2
) (

2𝑟

𝑡2
) sin𝜙 +

1

𝑡
(cos𝜙)(

𝑟2

𝑡2
cos𝜙) −

𝑟

𝑡2
(cot2 𝜃 𝑐𝑜𝑠𝑒𝑐2𝜙 +

sin2 𝜃 cos2 𝜙)      

𝑎𝜃 = −
𝑟

𝑡2
cot 𝜃 𝑐𝑜𝑠𝑒𝑐𝜙 

+ (
𝑟2

𝑡2
) sin𝜙

1

𝑡
(𝑐𝑜𝑡𝜃 𝑐𝑜𝑠𝑒𝑐 𝜙) +

1

𝑡
(cot 𝜃 𝑐𝑜𝑠𝑒𝑐𝜙)

1

𝑡
(−𝑟 𝑐𝑜𝑠𝑒𝑐2𝜃 𝑐𝑜𝑠𝑒𝑐 𝜙)

+
1

𝑡
(cos𝜙)

1

𝑡
(𝑟 cot 𝜃 𝑐𝑜𝑠𝑒𝑐𝜙 cot𝜙) +

𝑟2

𝑡3
cot 𝜃 −

𝑟

𝑡2
sin2 𝜃 cos2 𝜙 cot 𝜃 

𝑎𝜙 = −
𝑟

𝑡2
sin 𝜃 cos𝜙 + (

𝑟2

𝑡2
sin 𝜙)(

1

𝑡
sin 𝜃 cos𝜙) + (

1

𝑡
cot 𝜃 𝑐𝑜𝑠𝑒𝑐 𝜙)(

𝑟

𝑡
cos 𝜃 cos𝜙)

+
1

𝑡
cos𝜙 (−

𝑟

𝑡
sin 𝜃 sin𝜙) +

𝑟2

𝑡3
sin 𝜃 sin𝜙 cos𝜙 +

𝑟

𝑡2
sin 𝜃 cot2 𝜃𝑐𝑜𝑡𝜙 

Example: The velocity component of a flow in cylindrical polar coordinates are (𝒓𝟐 𝒛 𝒄𝒐𝒔𝜽,

𝒓𝒛 𝒔𝒊𝒏𝜽, 𝒛𝟐𝒕). Determine the components of the acceleration of a fluid particle. 

Solution: Let 𝑞𝑟 , 𝑞𝜃 , 𝑞𝑧 be the components of velocity in cylindrical polar coordinates (𝑟, 𝜃, 𝑧). 

Then we have  

𝑞𝑟 = 𝑟2𝑧 cos𝜃, 𝑞𝜃 = 𝑟𝑧 sin 𝜃, 𝑞𝑧 = 𝑧2𝑡 

Let 𝑎𝑟 , 𝑎𝜃 𝑎𝑛𝑑 𝑎𝑧 be the components of acceleration. Then 

                    𝒂 = (
𝑑𝑞𝑟

𝑑𝑡
−

𝑞𝜃
2

𝑟
,
𝑑𝑞𝜃

𝑑𝑡
+

𝑞𝑟𝑞𝜃

𝑟
,
𝑑𝑞𝑧

𝑑𝑡
 ); 

𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝑞𝑟

𝜕

𝜕𝑟
+

𝑞 𝜃

𝑟

𝜕

𝜕𝜃
+ 𝑞𝑧

𝜕

𝜕𝑧
 

 

𝑎𝑟 =
𝜕𝑞𝑟
𝜕𝑡

+ 𝑞𝑟
𝜕𝑞𝑟
𝜕𝑟

+
𝑞 𝜃
𝑟

𝜕𝑞𝑟
𝜕𝜃

+ 𝑞𝑧
𝜕𝑞𝑟
𝜕𝑧

−
𝑞𝜃
2

𝑟
 

                                       = 𝑟𝑧2(2𝑟2 cos2 𝜃 − 3 sin2 𝜃 + 𝑟𝑡 cos𝜃) 
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𝑎𝜃 =
𝜕𝑞𝜃
𝜕𝑡

+ 𝑞𝑟
𝜕𝑞𝜃
𝜕𝑟

+
𝑞 𝜃
𝑟

𝜕𝑞𝜃
𝜕𝜃

+ 𝑞𝑧
𝜕𝑞𝜃
𝜕𝑧

+
𝑞𝑟𝑞𝜃
𝑟

 

= 𝑧2𝑟 𝑠𝑖𝑛𝜃(3 𝑟 cos 𝜃 + 𝑡) 

𝑎𝑧 =
𝜕𝑞𝑧
𝜕𝑡

+ 𝑞𝑟
𝜕𝑞𝑧
𝜕𝑟

+
𝑞 𝜃
𝑟

𝜕𝑞𝑧
𝜕𝜃

+ 𝑞𝑧
𝜕𝑞𝑧
𝜕𝑧

 

= 𝑧2(1 + 2𝑡2𝑧) 

 

3.10 The Velocity Potential or Velocity Function-Potential Flow: 

Suppose that the fluid velocity at time t is 𝒒 = (𝑢, 𝑣, 𝑤) and further suppose that the expression  

𝑢 𝑑𝑥 + 𝑣 𝑑𝑦 + 𝑤 𝑑𝑧 is an exact differential, say (−𝑑Φ), where Φ(x, y, z, t)  is a scalar function. 

Then      −𝑑Φ = 𝑢𝑑𝑥 + 𝑣 𝑑𝑦 + 𝑤 𝑑𝑧    (1) 

But              Φ = Φ(𝑥, 𝑦, 𝑧, 𝑡)     (2) 

So    𝑑Φ =
𝜕Φ

𝜕𝑥
𝑑𝑥 +

𝜕Φ

𝜕𝑦
𝑑𝑦 +

𝜕Φ

𝜕𝑧
𝑑𝑧 +

𝜕Φ

𝜕𝑡
𝑑𝑡   (3) 

From (1) and (3), we get 

𝑢𝑑𝑥 + 𝑣 𝑑𝑦 + 𝑤 𝑑𝑧 = −(
𝜕Φ

𝜕𝑥
𝑑𝑥 +

𝜕Φ

𝜕𝑦
𝑑𝑦 +

𝜕Φ

𝜕𝑧
𝑑𝑧 +

𝜕Φ

𝜕𝑡
𝑑𝑡) 

Comparing up terms, we have 

𝑢 = −
𝜕Φ

𝜕𝑥
, 𝑣 = −

𝜕Φ

𝜕𝑦
, 𝑤 = −

𝜕Φ

𝜕𝑧
 

∴ 𝒒 = −∇ Φ      (4) 

and     
𝜕Φ

𝜕𝑡
= 0      ⇒ Φ = Φ(𝑥, 𝑦, 𝑧)  𝑖. 𝑒. Φ is a function of x,y,z. 

This Φ is called velocity potential. The negative sign in the equation (4) is a convention. It ensures 

that the flow takes from the higher potential to lower potential. 

 

3.11 Vorticity: If q be the velocity vector of a fluid particle, then the vector quantity  

Ω = ∇ × 𝒒 = 𝑐𝑢𝑟𝑙 𝒒 

Is called the vorticity vector or simply the vorticity and is a measure of the angular velocity of an 

infinitesimal element. The components of spin are given by (𝜉, 𝜂, 𝜁), where  

Ω = 𝜉𝑖 + 𝜂𝑗 + 𝜁𝑘 = ∇ × 𝒒 = (
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) 𝑖 + (

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) 𝑗 + (

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) 𝑘 

Thus, we have  

𝜉 =
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
; 𝜂 =

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
; 𝜁 =

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

Note: 

1. In two dimensional Cartesian coordinates, the vorticity is given by 

Ω𝑧 =
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

2. In two dimensional polar coordinates, the vorticity is given by 

Ω =
qθ
𝑟
+
𝜕𝑞𝜃
𝜕𝑟

−
1

𝑟

𝜕𝑞𝑟
𝜕𝑞𝜃
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3. The vorticity components in cylindrical polar coordinates (𝑟, 𝜃, 𝑧) are given by 

Ω𝑟 =
1

𝑟

𝜕𝑞𝑍
𝜕𝜃

−
𝜕𝑞𝜃
𝜕𝑧

 ,    Ω𝜃 =
𝜕𝑞𝑟
𝜕𝑧

−
𝜕𝑞𝑧
𝜕𝑟

,   Ω𝑧 =
𝑞𝜃
𝑟
+
𝜕𝑞𝜃
𝜕𝑟

−
1

𝑟

𝜕𝑞𝑟
𝜕𝜃

 

4. The vorticity components in spherical polar coordinates (𝑟, 𝜃, 𝜙) are given by 

Ω𝑟 =
1

𝑟

𝜕𝑞𝜃
𝜕𝜃

−
1

𝑟𝑠𝑖𝑛𝜃

𝜕𝑞𝜃
𝜕𝜙

+
𝑞𝜙

𝑟
cot𝜃 , Ω𝜃 =

1

𝑟𝑠𝑖𝑛𝜃

𝜕𝑞𝑟
𝜕𝜙

−
𝜕𝑞𝜙

𝜕𝑟
−
𝑞𝜙

𝑟
, Ω𝜙 =

𝜕𝑞𝜃
𝜕𝑟

+
𝑞𝜃
𝑟
−
1

𝑟

𝜕𝑞𝑟
𝜕𝜃

 

 

 Vortex Line: A vortex line is a curve drawn in the fluid such that the tangent to it at each point is 

in the direction of the vorticity vector Ω at that point. The vortex line is often abbreviated into Ω −

𝑙𝑖𝑛𝑒. 

The definition of the vortex line implies that its analytical expression is given by 𝑑𝑟 × Ω = 0, or 

its equivalent in Cartesian form by the differential equations 

𝑑𝑟 × Ω = (𝑖𝑑𝑥 + 𝑗𝑑𝑦 + 𝑘𝑑𝑧) × (𝑖 𝜉 + 𝑗 𝜂 + 𝑘 𝜁) = 0  

(𝜂 𝑑𝑧 − 𝜁 𝑑𝑦)𝑖 + (𝜁 𝑑𝑥 − 𝜉 𝑑𝑧)𝑗 + (𝜉 𝑑𝑦 − 𝜂 𝑑𝑥)𝑘 = 0 

𝜂 𝑑𝑧 − 𝜁 𝑑𝑦 = 0, 𝜁𝑑𝑥 − 𝜉 𝑑𝑧 = 0, 𝜉 𝑑𝑦 − 𝜂 𝑑𝑥 = 0  

∴  
𝑑𝑥

𝜉
=
𝑑𝑦

𝜂
=
𝑑𝑧

𝜁
 

Vortex tube and Vortex filament:  The vortex lines drawn through each point of a closed curve 

enclose a tubular space in the fluid called a vortex tube. A vortex tube of infinitesimal cross-

section is called a vortex filament or simply a vortex. 

 

3.12 Rotational and Irrotational Motion:   

The motion of a fluid is said to be irrotational when the vorticity vector Ω of every fluid particle is 

zero so that 𝜉 = 0, 𝜂 = 0, 𝜁 = 0. When the vorticity vector is different from zero, the motion is 

said to be rotational.  

Rotational motion is also called vortex motion. The definition implies that in an irrotational motion 

of the fluid, there are no vortex lines. 

Since   Ω = 𝑐𝑢𝑟𝑙 𝒒   and   Ω = (
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
) 𝑖 + (

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) 𝑗 + (

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)𝑘 

We conclude that the motion is irrotational if  𝑐𝑢𝑟𝑙 𝒒 = 0 
𝜕𝑤

𝜕𝑦
=

𝜕𝑣

𝜕𝑧
  ,  

𝜕𝑢

𝜕𝑧
=

𝜕𝑤

𝜕𝑥
 ,   

𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
 

when the motion is irrotational i.e. when curl q=0, then q must be of the form (−𝑔𝑟𝑎𝑑𝜙) for some 

scalar point function 𝜙(𝑠𝑎𝑦) because 𝑐𝑢𝑟𝑙 𝑔𝑟𝑎𝑑 Φ = 0. Thus velocity potential exists whenever 

the fluid motion is irrotational.  Again, notice that when velocity potential exists, the motion is 

irrotational because 𝒒 = −𝒈𝒓𝒂𝒅 𝝓 ⇒ −𝒄𝒖𝒓𝒍 𝒈𝒓𝒂𝒅 𝚽 = 𝟎. 

Thus, the fluid motion is irrotational if and only if the velocity potential exists. 

Note 1: We may observe that whenever velocity potential exists, the system of surfaces given by 

the differential equation  

𝒒. 𝑑𝒓 = 𝟎  𝑜𝑟  𝑢𝑑𝑥 + 𝑣𝑑𝑦 + 𝑤𝑑𝑧 = 0    

 (1)  
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possess solution, Φ(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, for  

0 = 𝒒. 𝑑𝒓 = −∇ Φ. 𝑑𝑟 = −𝑑Φ ⇒ Φ(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

 The surfaces  Φ(𝑟) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are called the equipotential. Further, these surfaces cut the stream 

lines 𝒒 × 𝒅𝒓 = 𝟎   orthogonally since the velocity vector which is parallel to 𝑑𝑟 for the stream 

lines, is perpendicular to 𝑑𝑟 in (1). 

Note 2: Vortex is flow in circles about a central point. It is termed free when motion is such that 

the tangential velocity q is inversely proportional to the radius, i.e., 𝒒 ∝
𝟏

𝒓
  implies q𝒓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

Motion is irrotational and vorticity is zero; stream lines are circles and circulation is constant. 

A vortex is termed forces when the motion is the result of some external force, and the motion is 

such that 𝒒 ∝ 𝒓 .  Hence vorticity is constant.  

 

3.13 The angular velocity vector: Rotational Flow: 

Consider a rectangular element in two-dimensional flow such that 𝐴𝐵 = 𝛿𝑥 and 𝐴𝐷 = 𝛿𝑦 as 

shown in figure. Upon rotating about A during a small interval 𝛿𝑡 , let the element assume the 

shape indicated by 𝐴′𝐵′𝐶′𝐷′ in figure, 𝐵′and 𝐷′ approximately lying on BC and CD produced.  

Let 𝑢 𝑎𝑛𝑑 𝑣  be the components of velocity at A. Then the components of velocity along BC and 

DC are respectively 𝑣(𝑥 + 𝛿𝑥, 𝑦) = 𝑣 +
𝜕𝑣

𝜕𝑥
𝛿𝑥 and  𝑢(𝑥, 𝑦 + 𝛿𝑦 ) = 𝑢 +

𝜕𝑢

𝜕𝑦
𝛿𝑦. 

 

                                                 
 

Therefore, velocity of B relative to A along BC =
𝜕𝑣

𝜕𝑥
𝛿𝑥 

and velocity of D relative to A along DC=
𝜕𝑢

𝜕𝑦
𝛿𝑦  

∴ 𝐵𝐵′ =
𝜕𝑣

𝜕𝑥
𝛿𝑥 𝛿𝑡 and 𝐷𝐷′ = −

𝜕𝑢

𝜕𝑦
𝛿𝑦 𝛿𝑡 

Hence, the angular velocity of AB about z-axis i.e., perpendicular to the plane through A 

= lim
𝛿𝑡→0

𝛿𝛼

𝛿𝑡
= lim

𝛿𝑡→0
 
𝑡𝑎𝑛𝛿𝛼

𝛿𝑡
    ∵ 𝛿𝛼 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙, 𝛿𝛼 = tan 𝛿𝛼 

= lim
𝛿𝑡→0

𝐵𝐵′/𝛿𝑥

𝛿𝑡
= lim

𝛿𝑡→0

𝜕𝑣
𝜕𝑥 𝛿𝑥 𝛿𝑡

𝛿𝑥 𝛿𝑡
=
𝜕𝑣

𝜕𝑥
 

Again, the angular velocity of AD about z-axis 

= lim
𝛿𝑡→0

𝛿𝛽

𝛿𝑡 
= lim

𝛿𝑡→0

𝑡𝑎𝑛𝛿𝛽

𝛿𝑡
= lim

𝛿𝑡→0

𝐷𝐷′/𝛿𝑦

𝛿𝑡
= − lim

𝛿𝑡→0

𝜕𝑢
𝜕𝑦 𝛿𝑦 𝛿𝑡

𝛿𝑦 𝛿𝑡
= −

𝜕𝑢

𝜕𝑦
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Let 𝜔𝑧 denote the average of the angular velocities of AB and AD. Then, we have 

𝜔𝑧 =
1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
).      (1) 

The average angular velocity components 𝜔𝑥   , 𝜔𝑦   𝑎𝑛𝑑 𝜔𝑧, in the case of three-dimensional flows 

may be obtained in a similar manner as follows: 

𝜔𝑥 =
1

2
(
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
),   𝜔𝑦 =

1

2
(
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
) ,𝜔𝑧 =

1

2
(
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
)    (2) 

Hence the angular velocity vector 𝝎 of a fluid element is given by 

𝝎 = 𝒊 𝜔𝑥 + 𝒋𝜔𝑦 +  𝒌 𝜔𝑧 

=
1

2
[𝒊 (

𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) + 𝒋 (

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) + 𝒌 (

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
)] 

Thus,       𝝎 =
1

2
 𝑐𝑢𝑟𝑙 𝒒                      𝑜𝑟    2 𝝎 = 𝑐𝑢𝑟𝑙 𝒒   (3) 

But the vorticity vector Ω  is given by        Ω = 𝑐𝑢𝑟𝑙  𝒒   (4) 

From (3) and (4), we have     𝛀 = 𝟐 𝝎 

Thus, the curl of the velocity of any particle of a rigid body equal twice the angular velocity. 

Note: 1. 𝝎  is also called the rotation. The condition for the two-dimensional flow to be 

irrotational is that the rotation 𝑤𝑧 is everywhere zero i.e., 
𝜕𝑣

𝜕𝑥
=

𝜕𝑢

𝜕𝑦
 . 

Again, the condition for irrotational in three-dimensional flow is that  

𝜕𝑤

𝜕𝑦
=
𝜕𝑣

𝜕𝑧
;  
𝜕𝑢

𝜕𝑧
=
𝜕𝑤

𝜕𝑥
;
𝜕𝑣

𝜕𝑥
=
𝜕𝑢

𝜕𝑦
 

Note 2. A flow, in which the fluid particle also rotates (i.e. possess some angular velocity) about 

their own axes, while flowing, is said to be a rotational flow. Again, a flow, in which the fluid 

particles do not rotate about their own axes, and retain their original orientations, is said to be an 

irrotational flow. 

 

3.14 Reynold’s Transport Theorem: 

Let V denote the Lagrangian region which moves with the fluid and r be any general point of V. 

Since V consists of the same fluid particles, r=r(t)  yields the position vector of a typical fluid 

particle of the region V. Let F(r, t) denote some scalar field (e.g. temperature or density) 

associated with the fluid. Reynold’s theorem states that  
𝑑

𝑑𝑡
∫ 𝐹(𝒓, 𝑡)𝑑𝑉 = ∫ {

𝜕𝐹

𝜕𝑡
+ ∇. ( 𝐹𝒒

 

𝑉 
)}𝑑𝑉 =  ∫ (

𝐷𝐹

𝐷𝑡
+ 𝐹 𝑑𝑖𝑣 𝒒) 𝑑𝑉

 

𝑉

 

𝑉
   

 (1) 

Proof:  Let 𝐺(𝑡) = ∫ 𝐹(𝒓, 𝑡)𝑑𝑉
 

𝑉
        (2) 
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Figure shows the region at time t and also at time 𝑡1 = 𝑡 + 𝛿𝑡. 𝑆𝑖𝑛𝑐𝑒 𝛿𝑡 is vanishingly small, there 

is always a region C (say) common to both locations. Thus at time t, system occupies volume 𝑉 =

𝐴Ʉ𝐶, while at time 𝑡1, it extends over 𝐵Ʉ𝐶. The common part C is the same at times t and 𝑡1. 

However, the specific property F in it may be different since F depends on time. Thus the rate of 

change of G becomes 

𝑑𝐺

𝑑𝑡
=  lim

𝛿𝑡→0

𝐺(𝑡1) − 𝐺(𝑡)

𝛿𝑡
= lim

𝛿𝑡→0

[𝐺𝐶(𝑡1) + 𝐺𝐵(𝑡1)] − [𝐺𝐴(𝑡) + 𝐺𝐶(𝑡)]

𝛿𝑡
 

= lim
𝛿𝑡→0

𝐺𝐶(𝑡1)−𝐺𝐶(𝑡)

𝛿𝑡
+ lim

𝛿𝑡→0

𝐺𝐵(𝑡1)−𝐺𝐴(𝑡)

𝛿𝑡
= 
𝜕𝐺

𝜕𝑡
+𝐻          (3) 

𝑤ℎ𝑒𝑟𝑒
𝜕𝐺

𝜕𝑡
=

𝜕

𝜕𝑡
∫ 𝐹 𝑑𝑉 = ∫

𝜕𝐹

𝜕𝑡
 𝑑𝑉

 

𝑉

 

𝑉
                          (constant location)       

(4) 

The term H expresses contribution due to flow of fluid, it needs elaboration. The volumetric flow 

rate of fluid, dQ passing through a differential area 𝑑𝑆 is given by 

𝑑𝑄 = 𝒒 . 𝒏̂ dS   [𝑑𝑉 = (𝒒. 𝒏̂) 𝑑𝑡 𝑑𝑆, 𝑑𝑄 =
𝑑𝑉

𝑑𝑡
 

Where 𝒒 . 𝒏̂ > 𝟎 ⇒ outflow from C to B; 𝒒 . 𝒏̂ < 𝟎 ⇒ inflow from A to C.  

The flux of fluid characteristic F through dS is  

𝑑𝐻 = 𝐹 𝑑𝑄 = 𝐹(𝒒 . 𝒏̂) 𝑑𝑆 

The total contribution through closed surface S, by summing, is  

𝐻 = lim
𝛿𝑡→0

𝐺𝐵(𝑡1) − 𝐺𝐴(𝑡)

𝛿𝑡
= ∮𝐹(𝒒 . 𝒏̂) 𝑑𝑆

 

𝑆

 

= ∫ ∇. (F𝐪)dV,
 

𝑉
  [by Gauss Divergence Theorem]               

(5) 

From (1), (3),(4) and (5) we get 
𝑑

𝑑𝑡
∫ 𝐹(𝒓, 𝑡)𝑑𝑉 = ∫ {

𝜕𝐹

𝜕𝑡
+ ∇. (𝐹𝒒)}𝑑𝑉

 

𝑉

 

𝑉
    

 (6) 

Since 
𝜕𝐹

𝜕𝑡
+ ∇ . (𝐹. 𝑞) =

𝜕𝐹

𝜕𝑡
+ 𝒒. ∇𝐹 + 𝐹(∇. 𝒒) =

𝐷𝐹

𝐷𝑡
+ 𝐹(𝑑𝑖𝑣 𝒒) 

∴
𝑑

𝑑𝑡
∫ 𝐹(𝒓. 𝑡)𝑑𝑉 = ∫ {

𝐷𝐹

𝐷𝑡
+ 𝐹 (𝑑𝑖𝑣 𝒒)} 𝑑𝑉

 

𝑉

 

𝑉
     (7) 

Equations (6) and (7)  are the combined statement (2) of Reynold’s transport theorem. 
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3.15 Check Your Progress: 

 

i) Determine the streamlines and the path of the particles 

𝑢 =
𝑥

1 + 𝑡
, 𝑣 =

𝑦

1 + 𝑡
,𝑤 =

𝑧

1 + 𝑡
 

[Ans: 𝑥 = 𝐴𝑦, 𝑦 = 𝑏𝑧;  𝑥 = 𝑎(1 + 𝑡), 𝑦 = 𝑏(1 + 𝑡), 𝑧 = 𝑐(1 + 𝑡). 

ii) Find the equation of the stream lines for the flow 𝒒 = −𝒊(3𝑦2) − 𝒋(6𝑥) at the point (1,1). 

[Ans: 3𝑥2 = 𝑦3 + 2 

iii) Determine the rates of strain and explain the nature of rates of strain for the following velocity 

components: 

a) 𝑢 = 𝑐𝑥, 𝑣 = 0,𝑤 = 0   b) 𝑢 = 𝑢(𝑥, 𝑦), 𝑣 = 𝑣(𝑥, 𝑦),𝑤 = 0  c) 𝑢 = 2𝑐𝑦, 𝑣 = 0,𝑤 = 0 

d) 𝑢 = 𝑐, 𝑣 = 0,𝑤 = 𝑜 

[ Hint: Find ∈𝑥𝑥  , ∈𝑦𝑦 , ∈𝑧𝑧 , ∈𝑥𝑦, ∈𝑦𝑧 , ∈𝑧𝑥. Again, find the kind of motion i.e., translational, 

rotational, or rate of deformation]   

iv)  Given the velocity field q=𝒊𝐴𝑥2𝑦𝑡 + 𝒋𝐵𝑦2𝑧𝑡 + 𝒌𝐶𝑧𝑡2, determine the acceleration of a fluid 

particle of fixed identity. 

[Ans: 𝐴(2𝐴𝑥3𝑦2 + 𝐵𝑥2𝑦2𝑧𝑡), 𝐵(𝑦2𝑧 + 2𝐵𝑦3𝑧2𝐶𝑦2𝑧𝑡3), 𝐶 ∗ 2𝑧𝑡 + 𝐶𝑧𝑡4)] 

v) Determine the acceleration at the point (2,1,3) at t=0.5 sec, 𝑢 = 𝑦𝑧 + 𝑡, 𝑣 = 𝑥𝑧 − 𝑡 𝑎𝑛𝑑 𝑤 =

𝑥𝑦. 

[Ans: 19.5𝑚/𝑠𝑒𝑐2 ,13.5𝑚/𝑠𝑒𝑐2 ,6.5𝑚/𝑠𝑒𝑐2 ] 

vi) Determine the vorticity components when velocity distribution is given by 

𝐪 = 𝒊𝐴𝑥2𝑦𝑡 + 𝒋𝐵𝑦2𝑧𝑡 + 𝒌𝐶𝑧𝑡2 

where A,B and C are constants. 

[Ans: −𝐵𝑦2𝑡, 0,−𝐴𝑥2𝑡]  

vii) The velocity in the flow fluid is given by 𝒒 = 𝒊(𝐴𝑧 − 𝐵𝑦) + 𝒋(𝐵𝑥 − 𝐶𝑧) + 𝒌(𝐶𝑦 − 𝐴𝑥) where 

A,B,C are non-zero constant. Determine the equation of the vortex line. 

viii) Show that the velocity potential 𝜙 = (
𝑎

2
) × (𝑥2 + 𝑦2 − 2𝑧2) satisfies the Laplace equation. 

Also determine the stream lines. 

 

3.16 Summary: Fluid kinematics deals with describing the motion of fluids without necessarily 

considering the forces and moments that cause the motion. In this chapter, several kinematic 

concepts related to flowing fluids are introduced. We discuss the material derivative and its role in 

transforming the conservation equation from the Lagrangian description of fluid flow to the 

Eulerian description. After that the various ways to visualize flow fields-stream lines, streak lines, 

path lines are discussed. The fundamental kinematic properties of fluid motion and deformation-

rate of translation, rate of rotation have been explained. Finally, we discussed the Reynold’s 

Transportation theorem. 

3.17 Keywords: Velocity, Acceleration, Lagrangian method, Eulerian method, Velocity 

potential, vorticity, vortex line, stream lines, streak lines, path lines, Rotational flow. 
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3.18 Self-Assessment Test: 

 

SA1: Obtain equation of motion in terms of stress components of a fluid which flowing with 

velocity (u,v,w). 

SA2:Show that general motion of fluid element is made up of three parts namely, pure translation, 

rotation and rate of deformation. 

SA3: Show that the velocity field 𝑞𝑟 = 0, 𝑞𝜃 = 𝐴𝑟 +
𝐵

𝑟
, 𝑞𝑧 = 0 satisfy the equation of motion  

𝑑2𝑞𝜃

𝑑𝑟2
+

𝑑

𝑑𝑟
(
𝑞𝜃

𝑟
) = 0,𝑤ℎ𝑒𝑟𝑒 𝐴 𝑎𝑛𝑑 𝐵 are arbitrary constants. 

SA4: Give examples of irrotational and rotational flows. 

SA5: Show that 𝜙 = (𝑥 − 𝑡)(𝑦 − 𝑡) represents the velocity potential of an incompressible two-

dimensional fluid. Show that the streamlines at time ‘t’ are the curves (𝑥 − 𝑡)2 − (𝑦 − 𝑡)2 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, and the paths of the fluid particles have the equations. 

 

SA6: Show that the following velocity field is a possible case of irrotational flow of an 

incompressible flow 𝑢 = 𝑦𝑧𝑡, 𝑣 = 𝑧𝑥𝑡,𝑤 = 𝑥𝑦𝑡. 

SA7: Prove that acceleration of the fluid element of fixed identity can be represented by  the 

material derivative of the velocity vector. 

SA8: Differentiate between the Lagrangian approach and Eulerian approach of the fluid motion. 

 

References: 

 Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London 

 Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall 

 S. Ramsay, “Hydromechanics part II” (1935), G. Bell &Sons London 

 Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram & 

Sons, New Delhi. 
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EQUATION OF CONTINUITY 

 

 

4.0 Learning Objectives: After reading this chapter, the students should be able to apply the 

conservation of mass equation to balance the incoming and outgoing flow rates in a flow 

system, to express the equation of continuity in Lagrangian and Eulerian method and their 

equivalency 

 

4.1 Equation of Continuity or Conservation of mass: 

Physical quantities are said to be conserved when they do not change with regard to time during a 

process. The law of conservation of mass state as ‘mass is neither created nor destroyed.’ The 

mathematical expression of the law of conservation of mass is known as the equation of continuity. 

       By continuity we mean physical quantity. The fluid always remains a continuum i.e., as a 

continuously distributed matter. When a region of fluid contains neither sources nor sinks i.e., 

there is no creation or annihilation of the fluid then the amount of fluid within the region is 

conserved in accordance with the principle of conservation of matter. The general conservation 

principle is defined as follows: 

𝐼𝑛 − 𝑂𝑢𝑡 + 𝑆𝑜𝑢𝑟𝑐𝑒 − 𝑆𝑖𝑛𝑘 = 𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛, 

where each term represents a rate for a differential element of volume. 

 

4.1.1 Equation of Continuity (Vector form) by Euler’s Method: 

 

 Let 𝜌 denotes the density of the fluid at a point P(r) of the mass of the fluid contained in 

any closed surface S fixed in space and containing a volume element V. The continuity equation is 

based upon the following maxim. 

The rate at which the mass of fluid inside any volume is increasing is equal to the source rate of 

mass within the volume minus the rate at which mass flows out through the surface of the 

volume. 

 
  

 Now, if mass of the fluid within this surface is m then  
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𝜕𝑚

𝜕𝑡
=

𝜕

𝜕𝑡
 ∫  𝜌 𝑑𝑣 = ∫

𝜕𝜌

𝜕𝑡
 𝑑𝑣

 

𝑉

 

𝑉
     (1) 

Since volume does not vary with time. Further, if R is the source rate of mass per unit volume, 

then the fluid mass generated is  

∫ 𝑅𝑑𝑣
 

𝑉
         (2) 

Let 𝛿𝑆 be small surface element, n is the unit normal to the surface, q is the velocity of fluid at P(r) 

then component of velocity along the normal = 𝒏.𝒒 

The rate of mass across 𝛿𝑆 = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 × 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 × 𝑎𝑟𝑒𝑎 = 𝜌 (𝒏. 𝒒)𝛿𝑆  

The total rate at which mass flow out = ∫ 𝜌 (𝒏. 𝒒)𝑑𝑆 
 

𝑆
= ∫ 𝑑𝑖𝑣 (𝜌𝒒)𝑑𝑣

 

𝑉
          

 {By divergence theorem} 

The above maxim now provides the mathematical formulation  

∫
𝜕𝜌

𝜕𝑡
 𝑑𝑣

 

𝑉
= ∫ 𝑅𝑑𝑣

 

𝑉
− ∫ 𝑑𝑖𝑣 (𝜌𝒒)𝑑𝑣

 

𝑉
    (3) 

or    ∫ [
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒒) − 𝑅] 𝑑𝑣 = 0

 

𝑉
    (4) 

 

 The result (4) will hold for any arbitrarily chosen volume V. Hence the integrand itself 

must vanish and the continuity equation can be written as 

 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒒) = 𝑅     (5)  

 For the very special but important case, when R=0, the source-free equation of continuity is 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣 (𝜌 𝒒) = 0     (6)  

 This is the equation of continuity by Euler’s method. 

Note: 1. In the absence of sources within the surface, i.e., when R=0, the continuity maxim reads 

thus: 

 The increase in the mass of the fluid within the fixed surface during the time 𝛿𝑡 must be 

equal to the excess of the mass that flows in over the mass that flows out in the same interval 𝛿𝑡. 

Note:2.  The forms (3) and (5) or (6) are known as the integral and differential forms of the 

equation of continuity. 

Cor.1. Since  ∇ . (𝜌 𝒒) = 𝜌 ∇. 𝒒 + (𝒒. ∇)𝜌 the equation of continuity may be written as 
𝜕𝜌

𝜕𝑡
+ 𝜌 ∇. 𝒒 + (𝒒. ∇)𝜌 = 0       𝑜𝑟     

𝑑𝜌

𝑑𝑡
+ 𝜌 (∇. 𝒒) = 0                               (7) 

      [since 
𝑑𝜌

𝑑𝑡
=

𝜕𝜌

𝜕𝑡
+ (𝒒. ∇)ρ] 

Since 𝒒 = 𝑢𝒊 + 𝑣𝒋 + 𝑤𝒌; ∴   ∇. (𝜌𝒒) =
𝜕(𝜌𝑢)

𝜕𝑥
+

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
 

the equation of continuity (7) can be put in the Cartesian form  

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
+
𝜕(𝜌𝑤)

𝜕𝑧
= 0 

Or   
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+ 𝑤

𝜕𝜌

𝜕𝑧
+ 𝜌 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
 ) = 0 

Further if equation (7) is divided by 𝜌, we have  
1

𝜌

𝑑𝜌

𝑑𝑡
+ (∇. 𝒒) = 0 ⇒

𝑑

𝑑𝑡
(log𝜌) + (∇. 𝒒) = 0. 
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Cor.2. If the fluid be incompressible and motion is steady then density is constant i.e., 
𝜕𝜌

𝜕𝑡
= 0, so 

the equation of continuity reduces to  

∇. 𝒒 = 0     𝑜𝑟  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0     (8) 

Thus, the velocity q is solenoidal. Obviously (∇. 𝒒) gives the rate of volume expansion of a fluid 

element. For this reason, it may be called dilatation or expansion. 

Cor.3. If the fluid is incompressible and motion is irrotational then there exists velocity potential  

Φ, i.e. 𝒒 = −𝒈𝒓𝒂𝒅 Φ, and hence  

𝑑𝑖𝑣 𝒒 = 𝟎  ⇒ 𝛁𝟐Φ = 0 by (8)   [Laplace equation] 

From equation (5), it becomes  

∇2Φ = 𝑅         [Poisson’s equation] 

Note: Since 𝑑𝑖𝑣 𝒒 = −(𝑑𝜌/𝑑𝑡)/𝜌, we can interpret 𝑑𝑖𝑣 𝒒 as the relative rate at which the density 

is decreasing. Thus, 𝑑𝑖𝑣 𝒒 > 0 ⇒
𝑑𝜌

𝑑𝑡
< 0 and consequently an attenuation of the fluid at the point 

considered: hence the term divergence. 

Example:  A pulse travelling along a fine straight uniform tube filled with gas causes the 

density at time t and distance x from the origin where the velocity is 𝒖𝟎 to become 𝝆𝟎𝜱(𝒗𝒕 −

𝒙). Prove that the velocity u (at time and distance x from the origin) is given by 

𝒗 +
(𝒖𝟎 − 𝒗)𝚽(𝒗𝒕)

𝚽(𝒗𝒕 − 𝒙)
 

Solution: The equation of continuity in the present case is  
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) = 0  𝑜𝑟 

𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝜌

𝜕𝑢

𝜕𝑥
= 0    (1) 

Since      𝜌 = 𝜌0Φ(𝑣𝑡 − 𝑥) = 𝜌0Φ(𝑧)    (𝑠𝑎𝑦) 

∴       
𝜕𝜌

𝜕𝑥
= 𝜌0

𝑑Φ

𝑑𝑧
 
𝜕𝑧

𝜕𝑥
= −𝜌0

𝑑Φ

𝑑𝑧
= −𝜌0Φ′(𝑧) 

𝜕𝜌

𝜕𝑡
= 𝜌0

𝑑Φ

𝑑𝑧

𝜕𝑧

𝜕𝑡
= 𝜌0  𝑣 Φ′(𝑧) 

With these (1) reduces to 

𝑣 Φ′(𝑧) − 𝑢 Φ′(𝑧) − Φ(𝑧)
𝜕𝑢

𝜕𝑧
 = 0                     [𝜕𝑥 = −𝜕𝑧] 

or      
𝑑𝑢

𝑣−𝑢
−

𝑑Φ

Φ
= 0 

Integrating this equation, we get 

log(𝑣 − 𝑢) + logΦ = log𝐴 

Or     (𝑣 − 𝑢)Φ = 𝐴 

At any time, t, when 𝑥 = 0, 𝑢 = 𝑢0, 𝑠𝑜 𝑡ℎ𝑎𝑡  Φ(𝑣𝑡 − 𝑥) = Φ(𝑣𝑡) 

Hence       𝐴 = (𝑣 − 𝑢0)Φ(𝑣𝑡)  

∴      (𝑣 − 𝑢)Φ = (𝑣 − 𝑢0)Φ(𝑣𝑡) 

     𝑢 = 𝑣 +
(𝑢0−𝑣)Φ(𝑣𝑡)

Φ(𝑣𝑡−𝑥)
 

Example:   If q is the resultant velocity at any point of a fluid which is moving irrotationally in 

two dimensions, prove that  
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(
𝝏𝒒

𝝏𝒙
)
𝟐

+ (
𝝏𝒒

𝝏𝒚
)
𝟐

= 𝒒  𝛁𝟐𝒒  

Solution: Since the motion is irrotational and density is constant, we have   

𝑞2 = Φ𝑥
2 + Φ𝑦

2 ;   Φ𝑥𝑥 + Φ𝑦𝑦 = ∇
2Φ = 0       (1) 

To get the form of 𝑞∇2𝑞, we have to appeal to Laplacian expansion 

∇2(𝑎𝑏) = 𝑎∇2𝑏 + 𝑏∇2𝑎 + 2(∇𝑎). (∇𝑏) 

Where we put 𝑎 = 𝑏 = 𝑞 to obtain  

∇2𝑞2 = 2[𝑞∇2𝑞 + (∇𝑞)2]     (2) 

 ∇2𝑞2 = ∇2(Φ𝑥
2 +Φ𝑦

2) = ∇2Φ𝑥
2 + ∇2Φ𝑦

2 

= 2[Φ𝑥∇
2Φ𝑥 + (∇Φ𝑥)

2] + 2[Φ𝑦∇
2Φ𝑦 + (∇Φ𝑦)

2
]                  by (2) 

= 2[(∇Φ𝑥)
2 + (∇Φ𝑦)

2
]                             since ∇2Φ𝑥 =

𝜕

𝜕𝑥
 ∇2Φ =

0  𝑒𝑡𝑐. 

= 2[(𝑖 Φ𝑥𝑥 + 𝑗Φ𝑥𝑦)
2
+ (𝑖Φ𝑥𝑦 + 𝑗Φ𝑦𝑦)

2
] 

= 4[Φ𝑥𝑥
2 +Φ𝑥𝑦

2 ]      (since by (1) Φ𝑥𝑥 = −Φ𝑦𝑦)               (3) 

 

Further, taking the gradient of the first of (1), we get 

𝑞∇𝑞 = Φ𝑥∇Φx +Φ𝑦∇Φ𝑦 = Φ𝑥(𝑖Φ𝑥𝑥 + 𝑗Φ𝑥𝑦) + Φ𝑦(𝑖Φ𝑦𝑥 + 𝑗Φ𝑦𝑦) 

= 𝑖(Φ𝑥Φ𝑥𝑥 +Φ𝑦Φ𝑥𝑦) + 𝑗(Φ𝑥Φ𝑥𝑦 + Φ𝑦Φ𝑦𝑦) 

(𝑞∇𝑞)2 = (Φ𝑥
2 +Φ𝑦

2)(Φ𝑥𝑥
2 +Φ𝑥𝑦

2 ) 

Or            (∇𝑞)2 = Φ𝑥𝑥
2 + Φ𝑥𝑦

2                (4) 

From (3) and (4), we get 

∇2𝑞2 = 4 (∇𝑞)2 

Therefore, from (2)   4 (∇𝑞)2 = 2[𝑞∇2𝑞 + (∇𝑞)2] 

i.e.,     (∇𝑞)2 = 𝑞∇2𝑞 

which is the required result. 

 

 

 

.  

4.2. Equation of Continuity in Cartesian Co-ordinates: - Let (x, y, z) be the rectangular 

Cartesian co-ordinates.  

Let 𝒒 = 𝑢𝒊 + 𝑣𝑗 + 𝑤𝒌         (1) 

and  =
𝜕

𝜕𝑥
𝒊 +

𝜕

𝜕𝑦
𝒋 +

𝜕

𝜕𝑧
 𝒌         (2) 

Then, the equation of continuity 
𝜕𝜌

𝜕𝑡
+ 𝑑𝑖𝑣(𝜌𝒒) = 0 can be written as 

  
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑥
(𝜌𝑢) +

𝜕

𝜕𝑦
(𝜌𝑣) +

𝜕

𝜕𝑧
(𝜌𝑤) = 0     (3) 
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i.e.,  
𝜕𝜌

𝜕𝑡
+ 𝑢

𝜕𝜌

𝜕𝑥
+ 𝑣

𝜕𝜌

𝜕𝑦
+𝑤

𝜕𝜌

𝜕𝑧
+ 𝜌 (

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
) = 0     (4) 

which is the required equation of continuity in Cartesian co-ordinates. 

Corollary (1). If the fluid motion is steady, then 
𝜕𝜌

𝜕𝑡
= 0 and the equation (3) becomes 

  
𝜕

𝜕𝑥
(𝑒𝑢) +

𝜕

𝜕𝑦
(𝑒𝑣) +

𝜕

𝜕𝑧
(𝑒𝑤) = 0      (5) 

Corollary (2).  If the fluid is incompressible, then  = constant and the equation of continuity is              

q = 0  

i.e.   
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0        (6) 

Corollary (3). If the fluid is incompressible and of potential kind, then equation of continuity is       

                                2 = 0 

 i.e.    
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
= 0, where 𝑞̄ = −𝛻𝜑. 

4.3.  Equation of Continuity in Orthogonal Curvilinear Co-Ordinates: Let (u1, u2, u3) be 

the orthogonal curvilinear co-ordinates and 𝒆𝟏, 𝒆𝟐, 𝒆𝟑be the unit vectors tangent to the co-ordinate 

curves.  

Let  𝒆1, 𝒆2, 𝒆3 be the unit vectors tangent to the co-ordinate curves.  

Let 𝒒 = 𝑞1𝑒1 + 𝑞2𝑒2 + 𝑞3𝑒3         (1) 

 

                                                   
 

The general equation of continuity is  

  
𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒒) = 0        (2) 

We know from vector calculus that for any vector point function f = (f1, f2, f3), 

  𝒇 =
1

ℎ1ℎ2ℎ3
[
𝜕

𝜕𝑢1
(ℎ2ℎ3𝑓1) +

𝜕

𝜕𝑢2
(ℎ3ℎ1𝑓2) +

𝜕

𝜕𝑢3
(ℎ1ℎ2𝑓3)]            (3) 

where h1, h2, h3 are scalars.  

 

Using (3), the equation of continuity (2) becomes 

 

  
𝜕𝜌

𝜕𝑡
+

1

ℎ1ℎ2ℎ3
[
𝜕

𝜕𝑢1
(ℎ2ℎ3𝜌𝑞1) +

𝜕

𝜕𝑢2
(ℎ3ℎ1𝜌𝑞2) +

𝜕

𝜕𝑢3
(ℎ1ℎ2𝜌𝑞3)]  (4) 

Corollary (1). When motion of fluid is steady, then equation (4) becomes 
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𝜕

𝜕𝑢1
(ℎ2ℎ3𝜌𝑞1) +

𝜕

𝜕𝑢2
(ℎ3ℎ1𝜌𝑞2) +

𝜕

𝜕𝑢3
(ℎ1ℎ2𝜌𝑞3) = 0   (5) 

Corollary (2). When the fluid is incompressible, the equation of continuity is ( = const) 

  
𝜕

𝜕𝑢1
(ℎ2ℎ3𝑞1) +

𝜕

𝜕𝑢2
(ℎ3ℎ1𝑞2) +

𝜕

𝜕𝑢3
(ℎ1ℎ2𝑞3) = 0    (6) 

Corollary (3). When fluid is incompressible and irrotational then  = const 𝑞̄ = −𝛻𝜑 =

−(
1

ℎ1

𝜕

𝜕𝑢1
,
1

ℎ2

𝜕

𝜕𝑢2
,
1

ℎ3

𝜕

𝜕𝑢3
) and the equation of continuity becomes  

  
𝜕

𝜕𝑢1
(

ℎ2ℎ3

ℎ1

𝜕𝜑

𝜕𝑢1
) +

𝜕

𝜕𝑢2
(

ℎ1ℎ3

ℎ2

𝜕𝜑

𝜕𝑢2
) +

𝜕

𝜕𝑢3
(

ℎ1ℎ2

ℎ3

𝜕𝜑

𝜕𝑢3
) = 0    (7) 

Now, we shall write equation (4) in cylindrical & spherical polar co-ordinates.  

 

4.4.  Equation Of Continuity In Cylindrical Co-Ordinates (r, , z) . Here,  

𝑢1  𝑟, 𝑢2  , 𝑢3  𝑧 𝑎𝑛𝑑 ℎ1  =  1, ℎ2  =  𝑟, ℎ3  =  1 

The equation of continuity becomes 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟
[
𝜕

𝜕𝑟
(𝑟𝜌𝑞1) +

𝜕

𝜕𝜃
(𝜌𝑞2) +

𝜕

𝜕𝑧
(𝑟𝜌𝑞3)] = 0 

i.e.   
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑞1) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑞2) +

𝜕

𝜕𝑧
(𝜌𝑞3) = 0    (8) 

Corollary (1). When the fluid motion is steady, then equation (8) becomes 

  
𝜕

𝜕𝑟
(𝑟𝜌𝑞1) +

𝜕

𝜕𝜃
(𝜌𝑞2) + 𝑟

𝜕

𝜕𝑧
(𝜌𝑞3) = 0     (9) 

Corollary (2). For incompressible fluid, equation of continuity is  

           
𝜕

𝜕𝑟
(𝑟𝑞1) +

𝜕

𝜕𝜃
(𝑞2) + 𝑟

𝜕𝑞3

𝜕𝑧
= 0                     (10) 

Corollary (3). When the fluid is incompressible and is of potential kind, then equation (8) takes 

the form    

𝜕

𝜕𝑟
(𝑟

𝜕𝜑

𝜕𝑟
) +

𝜕

𝜕𝜃
(
1

𝑟

𝜕𝜑

𝜕𝜃
) +

𝜕

𝜕𝑧
(𝑟

𝜕𝜑

𝜕𝑧
) = 0            (11) 

where 𝒒 = − ;  is expressed in cylindrical co-ordinates. 

 

4.5 Equation Of Continuity in Spherical Co-Ordinates (r, , ). Here,  

(𝑢1, 𝑢2, 𝑢3)  (𝑟,,)   𝑎𝑛𝑑     ℎ1  =  1, ℎ2 =  𝑟, ℎ3 =  𝑟 𝑠𝑖𝑛  

The equation of continuity becomes  

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2 𝑠𝑖𝑛 𝜃
[
𝜕

𝜕𝑟
(𝑟2 𝑠𝑖𝑛 𝜃 𝑒𝑞1) +

𝜕

𝜕𝜃
(𝑟 𝑠𝑖𝑛 𝜃 𝑒𝑞2) +

𝜕

𝜕𝜓
(𝑟𝜌𝑞3)] = 0 

   
𝜕𝜌

𝜕𝑡
+

1

𝑟2 𝑠𝑖𝑛 𝜃
[𝑠𝑖𝑛 𝜃

𝜕

𝜕𝑟
(𝑟2𝜌𝑞1) + 𝑟

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃 𝜌𝑞2) + 𝑟

𝜕

𝜕𝜓
(𝜌𝑞3)] = 0    (12) 

Corollary (1). For steady case, equation (12) becomes  

  sin 
𝜕

𝜕𝑟
(𝑟2𝜌𝑞1) + 𝑟

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃 . 𝜌𝑞2) + 𝑟

𝜕

𝜕𝜓
(𝜌𝑞3) = 0  (13) 

Corollary (2). For incompressible fluid, we have 

  sin 
𝜕

𝜕𝑟
(𝑟2𝑞1) + 𝑟

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃 . 𝑞2) + 𝑟

𝜕𝑞3

𝜕𝜓
= 0     (14) 

Corollary (3). When fluid is incompressible and of potential kind, then equation of continuity is 
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𝜕

𝜕𝑟
(𝑟2 𝑠𝑖𝑛 𝜃

𝜕𝜑

𝜕𝑟
) +

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝜑

𝜕𝜃
) +

𝜕

𝜕𝜓
(

1

𝑠𝑖𝑛 𝜃
.
𝜕𝜑

𝜕𝜓
) = 0  (15) 

where 𝒒 = −;  is expressed in spherical co-ordinates. 

 

4.6 Symmetrical Forms of Motion and Equation Of Continuity for them.  We have the 

following three types of symmetry which are special cases of cylindrical and spherical polar co-

ordinates. 

(i) Cylindrical Symmetry: - In this type of symmetry, with suitable choice of cylindrical polar co-

ordinates (r, , z), every physical quantity is independent of both  and z so that 

  
𝜕

𝜕𝜃
=

𝜕

𝜕𝑧
= 0   𝑎𝑛𝑑    𝒒 = 𝒒(𝑟, 𝑡)|𝑁𝑜𝑡 𝒓 

For this case, the equation of continuity in cylindrical co-ordinates, reduces to  

  
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑞1𝑟) = 0        (1) 

If the flow is steady, then equation (1) becomes  

  
𝜕

𝜕𝑟
(𝜌𝑞1𝑟) = 0   𝑞1 𝑟 = constant = F(t), (say). 

Further, if the fluid is incompressible then 𝑞1 𝑟 = constant = G(t), (say). 

 

(ii) Spherical Symmetry: - In this case, the motion of fluid is symmetrical about the centre and 

thus with the choice of spherical polar co-ordinates (r, , ), every physical quantity is 

independent of both  & .  so that  

  
𝜕

𝜕𝜃
=

𝜕

𝜕𝜓
= 0   𝑎𝑛𝑑 𝒒 = 𝒒(𝑟, 𝑡)     

The equation of continuity, for such symmetry, reduces to 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2
.
𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) = 0       (2) 

For steady motion, it becomes 

  
𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) = 0   𝜌𝑞1 r2 = const = F(t), (say) 

and for incompressible fluid, it has the form 𝑞1 r2 = constant = G(t), (say). 

(iii) Axial Symmetry: - (a) In cylindrical co-ordinates (r, , z), axial symmetry means that every 

physical quantity is independent of  , i.e.,
𝜕

𝜕𝜃
= 0 and thus the equation of continuity becomes 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟
[
𝜕

𝜕𝑟
(𝜌𝑞1𝑟) +

𝜕

𝜕𝑧
(𝜌𝑞3𝑟)] = 0 

(b) In spherical co-ordinates (r, , ), axial symmetry means that every physical quantity is 

independent of  i.e. 
𝜕

𝜕𝜓
= 0 and the equations of continuity, for this case, reduces to  

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2
𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) +
1

𝑟 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝜌𝑞2 𝑠𝑖𝑛 𝜃) = 0. 
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4.7 Equation of Continuity in the Lagrangian Method:  Let us consider a fluid particle of 

infinitesimal volume 𝑑𝑣 and density 𝜌 at time t. Since the mass of the fluid-particle is invariant as 

it moves about, we must have  

𝑑

𝑑𝑡
(𝜌𝑑𝑣) = 0 

Hence     𝜌𝑑𝑣 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝜌0𝑑𝑣0 (𝑠𝑎𝑦)       (1) 

 

Where 𝜌0𝑑𝑣0 refers to the mass of the particle in its initial position at 𝑡 = 𝑡0. 

In Cartesian rectangular coordinates, let  

𝑑𝑣 = 𝑑𝑥 𝑑𝑦 𝑑𝑧;   𝑑𝑣0 = 𝑑𝑎 𝑑𝑏 𝑑𝑐 ;  

Then since 𝑥, 𝑦, 𝑧 𝑎𝑟𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑜𝑓 𝑎, 𝑏, 𝑐 

𝑑𝑥 𝑑𝑦 𝑑𝑧 =
𝜕(𝑥 , 𝑦, 𝑧)

𝜕(𝑎, 𝑏, 𝑐)
 𝑑𝑎 𝑑𝑏 𝑑𝑐  

Hence the principle of continuity gives  

𝜌 
𝜕(𝑥 , 𝑦, 𝑧)

𝜕(𝑎, 𝑏, 𝑐)
 𝑑𝑎 𝑑𝑏 𝑑𝑐 = 𝜌0  𝑑𝑎 𝑑𝑏 𝑑𝑐 

Or              𝜌 
𝜕(𝑥 ,𝑦,𝑧)

𝜕(𝑎,𝑏,𝑐)
= 𝜌0 

Or              𝜌𝐽 = 𝜌0      where 𝐽 =
𝜕(𝑥 ,𝑦,𝑧)

𝜕(𝑎,𝑏,𝑐)
 

Note: It is not necessary that 𝑟0 = 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑘 should be the initial position vector.  Any variable 

vector which can serve to identify a particle and which changes continuously from one particle to 

another will serve the purpose. 

 

4.8 Equivalence of the Eulerian and the Lagrangian forms of the Equation of 

Continuity: 

Equation of the continuity in Lagrangian form is  

𝜌𝐽 = 𝜌0 

Where       𝐽 =
𝜕(𝑥,𝑦,𝑧)

𝜕(𝑎,𝑏,𝑐)
 

The components of velocity in the two systems are connected by 𝑢 =
𝑑𝑥

𝑑𝑡
, 𝑣 =

𝑑𝑦

𝑑𝑡
, 𝑤 =

𝑑𝑧

𝑑𝑡
 

Now since      

𝐽 =
|

|

𝜕𝑥

𝜕𝑎

𝜕𝑥

𝜕𝑏

𝜕𝑥

𝜕𝑐
𝜕𝑦

𝜕𝑎

𝜕𝑦

𝜕𝑏

𝜕𝑦

𝜕𝑐
𝜕𝑧

𝜕𝑎

𝜕𝑧

𝜕𝑏

𝜕𝑧

𝜕𝑐

|

|
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𝑑𝐽

𝑑𝑡
=
|

|

𝜕𝑢

𝜕𝑎

𝜕𝑢

𝜕𝑏

𝜕𝑢

𝜕𝑐
𝜕𝑦

𝜕𝑎

𝜕𝑦

𝜕𝑏

𝜕𝑦

𝜕𝑐
𝜕𝑧

𝜕𝑎

𝜕𝑧

𝜕𝑏

𝜕𝑧

𝜕𝑐

|

|
+
|

|

𝜕𝑥

𝜕𝑎

𝜕𝑥

𝜕𝑏

𝜕𝑥

𝜕𝑐
𝜕𝑣

𝜕𝑎

𝜕𝑣

𝜕𝑏

𝜕𝑣

𝜕𝑐
𝜕𝑧

𝜕𝑎

𝜕𝑧

𝜕𝑏

𝜕𝑧

𝜕𝑐

|

|
+
|

|

𝜕𝑥

𝜕𝑎

𝜕𝑥

𝜕𝑏

𝜕𝑥

𝜕𝑐
𝜕𝑦

𝜕𝑎

𝜕𝑦

𝜕𝑏

𝜕𝑦

𝜕𝑐
𝜕𝑤

𝜕𝑎

𝜕𝑤

𝜕𝑏

𝜕𝑤

𝜕𝑐

|

|
 

 

𝑑𝐽

𝑑𝑡
=

𝜕(𝑢,𝑦,𝑧)

𝜕(𝑎,𝑏,𝑐)
+

𝜕(𝑥,𝑣,𝑧)

𝜕(𝑎,𝑏,𝑐)
+
𝜕(𝑥,𝑦,𝑤)

𝜕(𝑎,𝑏,𝑐)
                                              (1) 

Now,  

𝜕𝑢

𝜕𝑎
=
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑎
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑎
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑎
 

𝜕𝑢

𝜕𝑏
=
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑏
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑏
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑏
 

𝜕𝑢

𝜕𝑐
=
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑐
+
𝜕𝑢

𝜕𝑦

𝜕𝑦

𝜕𝑐
+
𝜕𝑢

𝜕𝑧

𝜕𝑧

𝜕𝑐
 

Now eliminating 
𝜕𝑢

𝜕𝑦
  𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑧
  from the above three equations provide 

|

|

𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑎
−
𝜕𝑢

𝜕𝑎

𝜕𝑦

𝜕𝑎

𝜕𝑧

𝜕𝑎
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑏
−
𝜕𝑢

𝜕𝑏

𝜕𝑦

𝜕𝑏

𝜕𝑧

𝜕𝑏
𝜕𝑢

𝜕𝑥

𝜕𝑥

𝜕𝑐
−
𝜕𝑢

𝜕𝑐

𝜕𝑦

𝜕𝑐

𝜕𝑧

𝜕𝑐

|

|
= 0 

Splitting this determinant into two, we get 

𝜕𝑢

𝜕𝑥
 
𝜕(𝑥, 𝑦, 𝑧)

𝜕(𝑎, 𝑏, 𝑐)
=
𝜕(𝑢, 𝑦, 𝑧)

𝜕(𝑎, 𝑏, 𝑐)
  

Or     
𝜕𝑢

𝜕𝑥
  𝐽 =

𝜕(𝑢,𝑦,𝑧)

𝜕(𝑎,𝑏,𝑐)
 

Similarly,     
𝜕𝑣

𝜕𝑦
  𝐽 =

𝜕(𝑥,𝑣,𝑧)

𝜕(𝑎,𝑏,𝑐)
 ;   

𝜕𝑤

𝜕𝑧
  𝐽 =

𝜕(𝑥,𝑦,𝑤)

𝜕(𝑎,𝑏,𝑐)
 

Adding these three equations, and using (1) we obtain 
𝑑𝐽

𝑑𝑡
= 𝐽(

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
)  

Or     
𝑑𝐽

𝑑𝑡
 = 𝐽 𝑑𝑖𝑣 𝒒                            (2) 

     

 

Step-1 Lagrangian equation of continuity 

𝜌𝐽 = 𝜌0    ⇒ 
𝑑

𝑑𝑡
(𝜌𝐽) = 0  ⇒

𝑑𝜌

𝑑𝑡
 𝐽 + 𝜌

𝑑𝐽

𝑑𝑡
= 0 

    ⇒ 𝐽
𝑑𝜌

𝑑𝑡
+ 𝜌 𝐽 𝑑𝑖𝑣 𝒒 = 0                                              by (2)  

    ⇒  
𝑑𝜌

𝑑𝑡
+ 𝜌 𝑑𝑖𝑣 𝒒 = 𝟎           [Eulerian equation of continuity] 

Step-2 Eulerian equation continuity  
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⇒      
𝑑𝜌

𝑑𝑡
+ 𝜌 𝑑𝑖𝑣 𝒒 = 𝟎       

⇒      
𝑑𝜌

𝑑𝑡
+ 𝜌

1

𝐽

𝑑𝐽

𝑑𝑡
= 0    by (2) 

⇒      𝐽
𝑑𝜌

𝑑𝑡
+ 𝜌

𝑑𝐽

𝑑𝑡
= 0 ⇒

𝑑

𝑑𝑡
 (𝜌𝐽) = 0 

Integrating, we get   𝜌 𝐽 = 𝜌0  (say) 

⇒ Lagrangian equation of continuity.  

 

4.9 Kinematically Possible Incompressible Fluid Motion: 

 

 If the velocity vector 𝒒 = (𝑢, 𝑣,𝑤) be kinematically possible for an incompressible fluid 

motion, then the equation of continuity must be satisfied. If in addition the motion is irroatational, 

then 𝑐𝑢𝑟𝑙 𝒒 = 0, or in Cartesian form 

                               
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
= 0; 

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
= 0 ;

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
= 0                                                         (1) 

Evidently, in such a case the velocity potential  𝜙 necessarily exists and is given by 𝒒 =

−𝒈𝒓𝒂𝒅 𝜙, 

𝑜𝑟                             𝑢 =
𝜕𝜙

𝜕𝑥
 , 𝑣 =  −

𝜕𝜙

𝜕𝑦
, 𝑤 = −

𝜕𝜙

𝜕𝑧
 

 

In case the equations (1) are not satisfied, i.e., 𝑐𝑢𝑟𝑙 𝒒 ≠ 𝟎,  then the motion is vertical (rotational) 

and velocity potential cannot exist. 

The stream lines, if needed, are easily obtained by solving the differential equations 

𝒒 × 𝑑𝒓 = 𝟎  𝒐𝒓 
𝑑𝑥

𝑢
=
𝑑𝑦

𝑣
=
𝑑𝑧

𝑤
 

Example:  Show that   𝒖 = −
𝟐𝒙𝒚𝒛

(𝒙𝟐+𝒚𝟐)
𝟐 ;   𝒗 =

(𝒙𝟐−𝒚𝟐)𝒛

(𝒙𝟐+𝒚𝟐)
𝟐 ;   𝒘 =

𝒚

𝒙𝟐+𝒚𝟐
 are the velocity components of 

possible liquid motion. Is this motion irrotational? 

 

Solution:  
𝜕𝑢

𝜕𝑥
= 2𝑦𝑧 

3𝑥2−𝑦2

(𝑥2+𝑦2)3
;
𝜕𝑣

𝜕𝑦
= 2𝑦𝑧

𝑦2−3𝑥2

(𝑥2+𝑦2)3
;
𝜕𝑤

𝜕𝑧
= 0 

The equation of continuity for the incompressible fluid is  

𝜕𝑢

𝜕𝑥
+
𝜕𝑣

𝜕𝑦
+
𝜕𝑤

𝜕𝑧
= 0 

Substitution led to  

2𝑦𝑧(3𝑥2 − 𝑦2)

(𝑥2 + 𝑦2)3
+ 2𝑦𝑧

𝑦2 − 3𝑥2

(𝑥2 + 𝑦2)3
+ 0 = 0 

Which is satisfied.  

For the motion to be possible it is evidently necessarily that the equation of continuity should be 

satisfied.  

For irrotational motion  

𝜕𝑣

𝜕𝑧
−
𝜕𝑤

𝜕𝑦
= 0;

𝜕𝑤

𝜕𝑥
−
𝜕𝑢

𝜕𝑧
= 0;

𝜕𝑢

𝜕𝑦
−
𝜕𝑣

𝜕𝑥
= 0 
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Here   
𝜕𝑣

𝜕𝑧
=

𝑥2−𝑦2

(𝑥2+𝑦2)2
 ;
𝜕𝑤

𝜕𝑦
=

𝑥2−𝑦2

(𝑥2+𝑦2)2
, 𝑒𝑡𝑐. 

Thus, all the three equations referred to above are satisfied. Hence the motion is irrotational. 

 

Example: If (s) is the cross-sectional area of a stream filament, prove that the equation of 

continuity is  

  
𝝏

𝝏𝒕
(𝝆𝝈) +

𝝏

𝝏𝒔
(𝝆𝝈𝒒) = 𝟎, where s is an element of arc of the filament and q is 

the fluid speed.  

 

Solution. Let P and Q be the points on the end sections of the stream filament.  

 

                                             
 

 

The rate of flow of fluid out of volume of filament is 

  (𝜌𝑞𝜎)𝑄 − (𝜌𝑞𝜎)𝑃 =
𝜕

𝜕𝑠
(𝜌𝑞𝜎)𝑃𝑆𝑠  

where we have retained the terms up to first order only, since s is infinitesimally small    

Now, the fluid speed is along the normal to the cross-section.  At time t, the mass within the 

segment of filament is s and its rate of increase is   

  
𝜕

𝜕𝑡
(𝜌𝜎𝛿𝑠) =

𝜕

𝜕𝑡
(𝜌𝜎)𝛿𝑠       (2) 

Using law of conservation of mass, we have from (1) & (2) 

  
𝜕

𝜕𝑡
(𝜌𝜎)𝛿𝑠 +

𝜕

𝜕𝑠
(𝜌𝑞𝜎)𝛿𝑠 = 0    | Total rate = 0 

i.e.  
𝜕

𝜕𝑡
(𝜌𝜎) +

𝜕

𝜕𝑠
(𝜌𝜎𝑞) = 0       (3) 

which is the required equation at any point P of the filament. 

 Deduction: - For steady incompressible flow, 
𝜕

𝜕𝑡
(𝜌𝜎) = 0 and equation (3) reduces to  

  
𝜕

𝜕𝑠
(𝜌𝜎𝑞) = 0 ⇒

𝜕

𝜕𝑠
(𝜎𝑞) = 0     q = constant  

which shows that for steady incompressible flow product of velocity and cross-section of stream 

filament is constant.  This result means that the volume of fluid a crossing every section per unit 

time is constant 

  (𝜎𝑞 = 𝑐 ⇒ 𝜎
𝑑𝑖𝑠 𝑡𝑎𝑛 𝑐𝑒

𝑡
= 𝑐 ⇒

𝑣𝑜𝑙𝑢𝑚𝑒

𝑡
= 𝑐)  

 Example:  Liquid flows through a pipe whose surface is the surface of revolution of the curve         

y = a + k x2/a about the x-axis (a  x  a).  If the liquid enters at the end x = a of the pipe with 
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velocity V, show that the time taken by a liquid particle to transverse the entire length of the pipe 

from x = a to x = a is  

  
𝟐𝒂

𝑽(𝟏+𝒌)𝟐
(𝟏 +

𝟐

𝟑
𝒌 +

𝟏

𝟓
𝒌𝟐) 

Assume that k is so small that the flow remains appreciably one-dimensional throughout. 

 

 

Solution.  Here, y = a + k
𝑥2

𝑎
 

 

                                                 
 

 

Therefore, area of the section distant x from 0 is =  y2 =  (𝑎 +
𝑘𝑥2

𝑎
)
2

 

Area at x = a is  (a + ka)2 =  a2 (1+k)2.   

Applying the equation of continuity at the two sections (i.e. expressing equal rates of volumetric 

flow across the two sections i.e. equating flux), we get 

  a2(1+k)2 V = 

2
2

a

kx
a 













 𝑥̇,   

where 𝑥̇ (= dx/dt) is the velocity at the section distant x from 0. 

Therefore,  dt = 
1

𝑉(1+𝑘)2
(1 +

𝑘𝑥2

𝑎2
)
2

𝑑𝑥 

Thus, the required time is  

  T = 2∫
1

𝑉(1+𝑘)2
(1 +

𝑘𝑥2

𝑎2
)
2

𝑑𝑥
𝑎

0
 

     = 
2

𝑉(1+𝑘)2
∫ (1 +

𝑘2𝑥4

𝑎4
+

2𝑘𝑥2

𝑎2
) 𝑑𝑥

𝑎

0
 

     = 
2𝑎

𝑉(1+𝑘)2
(1 +

2

3
𝑘 +

1

5
𝑘2) 

Hence the result 

 Example: A mass of a fluid moves in such a way that each particle describes a circle in one 

plane about a fixed axis, show that the equation of continuity is 
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𝝏𝝆

𝝏𝒕
+

𝝏

𝝏𝜽
(𝝆𝝎) = 𝟎, 

where  is the angular velocity of a particle whose azimuthal angle is  at time t. 

Solution. Here, the motion is in a plane i.e., we have a two-dimensional case and the particle 

describe a circle 

                                                           
 

Therefore, z = constant, r = constant 

  
𝜕

𝜕𝑧
= 0,

𝜕

𝜕𝑟
= 0                       (1) 

i.e. there is only rotation. 

We know that the equation of continuity in cylindrical co-ordinates (r, , z) is 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜌𝑞1) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑞2) +

𝜕

𝜕𝑧
(𝜌𝑞3) = 0    (2) 

Using (1), we get 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑞2) = 0 

   
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑟𝜔) = 0, where q = q2 = r. 

 
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝜃
(𝜌𝜔) = 0   

Hence the result 

Example: A mass of fluid is in motion so that the lines of motion lie on the surface of        co-

axial cylinders, show that the equation of continuity is  

  
𝝏𝝆

𝝏𝒕
+

𝟏

𝒓

𝝏

𝝏𝜽
(𝝆𝒗𝜽) +

𝝏

𝝏𝒛
(𝝆𝒗𝒛) = 𝟎 

where v, vz are the velocities perpendicular and parallel to z.  

Solution. We know that the equation of continuity in cylindrical co-ordinates (r, , z) is given by  

  
𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑣𝑟) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑣𝜃) +

𝜕

𝜕𝑧
(𝜌𝑣𝑧) = 0, where 𝑞̄= (vr, v, vz)  

Since the lines of motion (path lines) lie on the surface of cylinder, therefore the component of 

velocity in the direction of dr is zero i.e., vr = 0 

Thus, the equation of continuity in the present case reduces to 

  
𝜕𝑒

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑣
(𝑒𝑣𝜃) +

𝜕

𝜕𝑧
(𝑒𝑣𝑧) = 0    
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Hence the result 

Example: The particles of a fluid move symmetrically in space with regard to a fixed Centre, 

prove that the equation of continuity is 

  
𝝏𝝆

𝝏𝒕
+ 𝒖

𝝏𝝆

𝝏𝒓
+

𝝆

𝒓𝟐
.
𝝏

𝝏𝒓
(𝒓𝟐𝒖) = 𝟎. 

where u is the velocity at a distance r 

Solution. First, derive the equation of continuity in spherical co-ordinates.  Now, the present case 

is the case of spherical symmetry, since the motion is symmetrical w.r.t. a fixed centre. 

Therefore, the equation of continuity is 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2
.
𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) = 0|∵
𝜕

𝜕𝜃
=

𝜕

𝜕𝜓
= 0 

   
𝜕𝜌

𝜕𝑡
+

1

𝑟2
.
𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) = 0¸ where q1  u 

   
𝜕𝜌

𝜕𝑡
+

1

𝑟2
.
𝜕𝜌

𝜕𝑟
𝑢𝑟2 +

1

𝑟2
. 𝜌.

𝜕

𝜕𝑟
(𝑢𝑟2) = 0 

   
𝜕𝜌

𝜕𝑡
+ 𝑢.

𝜕𝜌

𝜕𝑟
+

𝜌

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑢) = 0   

Hence the result  

 Example: If the lines of motion are curves on the surfaces of cones having their vertices at the 

origin and the axis of z for common axis, prove that the equation of continuity is  

  
𝝏𝝏

𝝏𝒕
+

𝝏

𝝏𝒓
(𝝆𝒒𝒓) +

𝟐𝝆

𝒓
𝒒𝒓 +

𝒄𝒐𝒔 𝒆𝒄𝜽

𝒓

𝝏

𝝏𝝍
(𝝆𝒒𝝍) = 𝟎 

Solution. First derive the equation of continuity in spherical co-ordinates (r, , ) as 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2 𝑠𝑖𝑛 𝜃
[𝑠𝑖𝑛 𝜃

𝜕

𝜕𝑟
(𝜌𝑞1𝑟

2) + 𝑟
𝜕

𝜕𝜃
(𝜌𝑞2 𝑠𝑖𝑛 𝜃) + 𝑟

𝜕

𝜕𝜓
(𝜌𝑞3)] = 0 

In the present case, it is given that lines of motion lie on the surfaces of cones, therefore velocity 

perpendicular to the surface is zero i.e. 𝑞2 = 0 

Therefore, the equation of continuity becomes. 

  
𝜕𝜌

𝜕𝑡
+

1

𝑟2
𝜕

𝜕𝑟
(𝜌𝑞𝑟𝑟

2) +
1

𝑟 𝑠𝑖𝑛 𝜃
.
𝜕

𝜕𝜓
(𝜌𝑞𝜓) = 0 where (q1, q2, q3)  (qr, q, q) 

   
𝜕𝜌

𝜕𝑟
+

1

𝑟2
[𝑟2

𝜕

𝜕𝑟
(𝜌𝑞𝑟) + 𝜌𝑞𝑟(2𝑟)] +

1

𝑟 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜓
(𝜌𝑞𝜓) = 0  

   
𝜕𝜌

𝜕𝑡
+

𝜕

𝜕𝑟
(𝜌𝑞𝑟)

2𝜌

𝑟
𝑞𝑟 +

𝑐𝑜𝑠 𝑒𝑐𝜃

𝑟

𝜕

𝜕𝜓
(𝜌𝑞𝜓) = 0   

Hence the result 

Example: Show that polar form of equation of continuity for a two-dimensional incompressible 

fluid is  

  
𝝏

𝝏𝒓
(𝒓𝒖) +

𝝏𝒗

𝝏𝜽
= 𝟎 

If u = 
−𝝁𝒄𝒐𝒔 𝜽

𝒓𝟐
, 𝒕𝒉𝒆𝒏find v and the magnitude of the velocity 𝒒,𝒘𝒉𝒆𝒓𝒆  𝒒= (u, v) 

Solution. First derive the equation of continuity in polar co-ordinates (r, ) in two dimensions as  
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𝜕𝜌

𝜕𝑡
+

1

𝑟

𝜕

𝜕𝑟
(𝜌𝑟𝑞1) +

1

𝑟

𝜕

𝜕𝜃
(𝜌𝑞2) = 0|𝑧 = 0 

In the present case  = constant 

Therefore, the equation of continuity reduces to  

  
𝜌

𝑟

𝜕

𝜕𝑟
(𝑟𝑢) +

𝜌

𝑟

𝜕

𝜕𝜃
(𝑣) = 0, 𝑤ℎ𝑒𝑟𝑒  𝒒 = (𝑞1, 𝑞2, 𝑞3)  (u, v, w) 

                    i.e.  
𝜕

𝜕𝑟
(𝑟𝑢) +

𝜕𝑣

𝜕𝜃
= 0    

Hence the result. 

Now u = 
−𝜇 𝑐𝑜𝑠 𝜃

𝑟2
⇒

𝜕

𝜕𝑟
(
−𝜇 𝑐𝑜𝑠 𝜃

𝑟2
𝑟) +

𝜕𝑣

𝜕𝜃
= 0 

 
𝜇 𝑐𝑜𝑠 𝜃

𝑟2
+

𝜕𝑣

𝜕𝜃
= 0 ⇒

𝜕𝑣

𝜕𝜃
=

−𝜇 𝑐𝑜𝑠 𝜃

𝑟2
 

Integrating w.r.t , we get 

  v = 
−𝜇 𝑠𝑖𝑛 𝜃

𝑟2
 

and thus|𝑞̄| = 𝑞 = √𝑢2 + 𝑣2 =
𝜇

𝑟2
 

 

 

4.10 Check Your Progress: 

 

i)  If every particle moves on the surface of a sphere, prove that the equation of continuity is  
𝜕𝜌

𝜕𝑡
 𝑐𝑜𝑠𝜃 +

𝜕

𝜕𝜃
(𝜌 𝜔 cos𝜃) +

𝜕

𝜕𝜙
(𝜌𝜔′ cos𝜃)=0, 𝜌 being the density, 𝜃 , 𝜙 the latitude and longitude 

of any element and 𝜔 𝑎𝑛𝑑 𝜔′ the angular velocities of the element in latitude and longitude 

respectively. 

 

ii) Show that in a two-dimensional incompressible steady flow field the equation of continuity is 

satisfied with the velocity components in rectangular coordinates given by 

𝑢(𝑥, 𝑦) =
𝑘(𝑥2−𝑦2)

(𝑥2+𝑦2)2
, 𝑣(𝑥, 𝑦) =

2𝑘𝑥𝑦

(𝑥2+𝑦2)2
,  where k is arbitrary constant. 

 

iii) Consider a two-dimensional incompressible steady flow field with velocity components in 

spherical coordinates (𝑟, 𝜃, 𝜙) given by 

𝑣𝑟 = 𝑐1 (1 −
3

2

𝑟0
𝑟
+
1

2

𝑟0
3

𝑟3
) cos𝜃, 𝑣𝜙 = 0, 𝑣𝜃 =−𝑐1 (1 −

3

4

𝑟0
𝑟
−
1

4

𝑟0
3

𝑟3
) 𝑠𝑖𝑛𝜃, 𝑟 ≥ 𝑟0 > 0 .  

 

iv) Determine the constants 𝑙, 𝑚 𝑎𝑛𝑑 𝑛 in order that velocity  

𝒒 =
{𝑥 + 𝑙𝑟}𝒊 + (𝑦 + 𝑚𝑟}𝒋 + (𝑧 + 𝑛𝑟)𝒌

𝑟(𝑥 + 𝑟)
 

where 𝑟 = √(𝑥2 + 𝑦2 + 𝑧2)   may satisfying the equation of continuity for a liquid. 
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v) Each particle of a mass of liquid moves in a plane through the axis of z; find the equation of 

continuity. 

 

4.11 Summary: This chapter deals with the law of conservation of mass or equation of continuity 

which is commonly used in the Fluid Mechanics. The expressions of equation of continuity in 

vector form, in Cartesian forms have been obtained. The equation of continuity in orthogonal 

curvilinear coordinate system is obtained and further particularly in Cartesian, spherical and 

cylindrical coordinate system has been obtained. Also the equations of continuity in Lagrangian 

and Eulerian form are obtained and also discussed their equivalency.  

 

4.12 Keywords: incompressible fluid, equation of continuity, axial symmetry, spherical 

symmetry, cylindrical symmetry. 

 

4.13 Self-Assessment Test: 

 

SA1: Derive the equation of continuity in Euler form from Lagrangian form and Lagrangian form 

from Eulerian form. 

 

SA2: What is meant by incompressible fluid? Derive the equation of continuity in Cartesian 

coordinates. 

 

SA3: Does the three-dimensional incompressible flow given by 

𝑢(𝑥, 𝑦, 𝑧) =
𝑘𝑥

(𝑥2 + 𝑦2 + 𝑧2)
3
2

, 𝑣(𝑥, 𝑦, 𝑧) =
𝑘𝑦

(𝑥2 + 𝑦2 + 𝑧2)
3
2

, 𝑤(𝑥, 𝑦, 𝑧) =  
𝑘𝑧

(𝑥2 + 𝑦2 + 𝑧2)
3
2

 

 

 

satisfy the equation of continuity? k is an arbitrary constant. Thus show that the above motion is 

kinematically possible for incompressible fluid. 

 

SA4: Dows the two-dimensional incompressible flow given by  

𝑣𝑟 =
𝑐1
𝑟2
+ 𝑐2 cos𝜃, 𝑣𝜃 = −𝑐2 sin 𝜃, 𝑣𝜙 = 0 

where 𝑐! 𝑎𝑛𝑑 𝑐2 are arbitrary constants and r>0, satisfy the equation of continuity. 

 

SA5: Does the velocity distribution 𝒒 = (5𝑥, 5𝑦,−10𝑧) satisfy the law of conservation of mass for 

incompressible flow? 

 

SA6: Does the one-dimensional incompressible flow given by 𝑢(𝑦) = 𝑎𝑦2 + 𝑏𝑦 + 𝑐, 𝑣 = 𝑤 =

0  𝑎𝑛𝑑 𝑎, 𝑏, 𝑐 are constants, satisfy the equation of continuity? 
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CHAPTER-5 

 

EQUATIONS OF MOTION 

 

5.0 Learning Objectives: After reading this chapter, the students should be able to understand 

the flux method using Euler’s dynamical equation, understand the use and limitations of 

Bernoulli’s theorem and equations and apply it to solve a variety of flow problems and should be 

able to study the impulsive motion. 

 

5.1 Euler’s Equation of Motion for a Perfect Fluid:(Equation of Conservation of 

Momentum)   

 

To obtain Euler’s dynamical equation, we shall make use of Newton’s second law of motion. 

 

Consider a region v of fluid bounded by a closed surface S which consists of the same fluid 

particles at all times. Let q be the velocity and  be the density of the fluid. 

Then  dv is an element of mass within S and it remains constant. 

 

                                         
 

 

The linear momentum of volume v is 

  𝑴 = ∫ 𝒒 
 

𝒗
 𝝆𝒅𝒗  | mass  velocity = momentum. 

Rate of change of momentum is 
𝒅𝑴

𝒅𝒕
=

𝒅

𝒅𝒕
∫ 𝒒 
 

𝒗
 𝝆𝒅𝒗 = ∫

𝒅𝒒

𝒅𝒕
 𝝆𝒅𝒗 + ∫ 𝒒 

𝒅

𝒅𝒕
(𝝆𝒅𝒗)

 

𝒗

 

𝒗
    

    
𝒅𝑴

𝒅𝒕
= ∫

𝒅𝒒

𝒅𝒕
 𝝆𝒅𝒗

 

𝒗
       (1) 

Since the mass (𝝆 𝒅𝒗) remains constant. 

The fluid within v  is acted upon by two types of forces  

The first type of forces are the surface forces which are due to the fluid exterior to v. 

Since the fluid is ideal, the surface force is simply the pressure p at a point of the surface element 

dS directed along the inward normal at all point of S, then The total surface force on S is 
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 ∫ 𝒑(−𝒏)𝒅𝑺
𝑺

= −∫ 𝒑𝒏𝒅𝑺
𝑺

 =∫ pdv
 

𝒗
   (By Gauss div. Theorem)   (2) 

    

The second type of forces are the body forces which are due to some external agent. Let F be the 

body force per unit mass acting on the fluid.  Then 𝑭 𝝆𝒅𝒗 is the body force on the element of mass 

𝝆𝒅𝒗 and the total body force on the mass within v is  

 

∫ 𝑭 𝝆𝒅𝒗 
 

𝒗
       (3) 

 

 

By Newton’s second law of motion, we have  

Rate of change of momentum = total force 

     ∫
𝒅𝒒

𝒅𝒕
 𝝆 𝒅𝒗 = ∫ 𝑭 𝝆𝒅𝒗 − ∫ 𝛁𝒑 𝒅𝒗

 

𝒗

 

𝒗

 

𝒗
 

    ∫ (
𝒅𝒒

𝒅𝒕
 𝝆 − 𝑭 𝝆 + 𝛁𝒑)𝒅𝒗 = 𝟎

 

𝒗
 

Since dv is arbitrary, we get 

𝒅𝒒

𝒅𝒕
 𝝆 − 𝑭 𝝆 + 𝛁𝒑 = 𝟎 

  or   
𝒅𝒒

𝒅𝒕
= 𝑭 −

𝟏

𝝆
 𝛁𝒑     (4) 

 

which holds at every point of the fluid and is known as Euler’s dynamical equation for an ideal 

fluid. 

 

 Remark. The above method for obtaining the Euler’s equation of motion, is also known as flux 

method.  

 

5.1.1 Other Forms of Euler’s Equation of Motion. (i) We know that  
𝒅

𝒅𝒕
≡

𝑫

𝑫𝒕
=

𝝏

𝝏𝒕
+ 𝒒 ⋅ 𝜵,   

therefore, equation (4) becomes.  

  
𝝏𝒒

𝝏𝒕
+ (𝒒 ⋅ 𝜵)𝒒 = 𝑭 −

𝟏

𝝆
𝜵𝒑       (5) 

But  (𝒒. 𝛁)𝒒 = 𝛁 (
𝟏

𝟐
 𝒒𝟐) + 𝛀 × 𝒒,    𝛀 = 𝒄𝒖𝒓𝒍 𝒒  

 

Therefore, Euler’s equation becomes 
𝝏𝒒

𝝏𝒕
+𝛁 (

𝟏

𝟐
 𝒒𝟐) + 𝛀 × 𝒒=𝑭 −

𝟏

𝝆
 𝛁𝒑     (6)  

Equation (6) is called Lamb’s hydrodynamical equation. The chief advantage of (6)  is that it is 

invariant under a change of coordinate system. 

(ii) Cartesian Form. Let 𝒒 = (𝒖, 𝒗,𝒘), 𝑭 = (X,Y,Z) and p = (
𝝏𝒑

𝝏𝒙
,
𝝏𝒑

𝝏𝒚
,
𝝏𝒑

𝝏𝒛
),  

then equation (5) gives  
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𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒙
+ 𝒗

𝝏𝒖

𝝏𝒚
+ 𝒘

𝝏𝒖

𝝏𝒛
= 𝑿 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙

𝝏𝒗

𝝏𝒕
+ 𝒖

𝝏𝒗

𝝏𝒙
+ 𝒗

𝝏𝒗

𝝏𝒚
+𝒘

𝝏𝒗

𝝏𝒛
= 𝒀 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙

𝝏𝒘

𝝏𝒕
+ 𝒖

𝝏𝒘

𝝏𝒙
+ 𝒗

𝝏𝒘

𝝏𝒚
+𝒘

𝝏𝒘

𝝏𝒛
= 𝒁 −

𝟏

𝝆

𝝏𝒑

𝝏𝒛}
 
 

 
 

     (7) 

Equation (7) are the required equations in Cartesian form. 

(iii) Equations of Motion in Cylindrical Co-ordinates. (r, , z).  

 Here,  

                             𝒒 = (𝒖, 𝒗, 𝒘), 𝒅𝒓 = (dr, rd, dz) 

     p = (
𝝏𝒑

𝝏𝒓
,
𝟏

𝒓

𝝏𝒑

𝝏𝜽
,
𝝏𝒑

𝝏𝒛
) 

Let  𝑭 = (𝑭𝒓  , 𝑭𝜽 , 𝑭𝒛)  

Also, the acceleration components in cylindrical co-ordinates are  

  
𝒅𝒒

𝒅𝒕
= (

𝒅𝒖

𝒅𝒕
−

𝒗𝟐

𝒓
,
𝒅𝒗

𝒅𝒕
+

𝒖𝒗

𝒓

𝒅𝒘

𝒅𝒕
) 

Thus, the equation of motion 

  
𝒅𝒒

𝒅𝒕
= 𝑭 −

𝟏

𝝆
𝜵𝒑. becomes 

  

𝒅𝒖

𝒅𝒕
−

𝒗𝟐

𝒓
= 𝑭𝒓 −

𝟏

𝝆

𝝏𝒑

𝝏𝒓

𝒅𝒗

𝒅𝒕
+

𝒗𝒖

𝒓
= 𝑭𝜽 −

𝟏

𝒓𝝆

𝝏𝒑

𝝏𝜽

𝒅𝒘

𝒅𝒕
= 𝑭𝒛 −

𝟏

𝝆

𝝏𝒑

𝝏𝒛 }
 
 

 
 

       (8) 

(iv)   Equations of Motion in Spherical co-ordinates (r, , 𝝓).   

Here,             

𝒒 = (𝒖 𝒗 𝒘), 𝒅𝒓 = (𝒅𝒓, 𝒓 𝒅𝜽, 𝒓 𝐬𝐢𝐧𝜽 𝒅𝝓) 

   

  p = (
𝝏𝒑

𝝏𝒓
,
𝟏

𝒓

𝝏𝒑

𝝏𝜽
,

𝟏

𝒓 𝒔𝒊𝒏𝜽

𝝏𝒑

𝝏𝝋
)  

Let     𝑭 = (𝑭𝒓, 𝑭𝜽, 𝑭𝝓)   

The components of acceleration in spherical co-ordinates are 

  
𝒅𝒒

𝒅𝒕
= (

𝒅𝒖

𝒅𝒕
−

𝒗𝟐+𝒘𝟐

𝒓
,
𝒅𝒗

𝒅𝒕
−

𝒘𝟐 𝒄𝒐𝒕 𝜽

𝒓
+

𝒖𝒗

𝒓
,
𝒅𝒘

𝒅𝒕
+

𝒗𝒘 𝒄𝒐𝒕 𝜽

𝒓
) 

Thus, the equation of motion take the form 

𝒅𝒖

𝒅𝒕
−
𝒗𝟐 +𝒘𝟐

𝒓
= 𝑭𝒓 −

𝟏

𝝆

𝝏𝒑

𝝏𝒓
  

     
𝒅𝒗

𝒅𝒕
−

𝒘𝟐 𝐜𝐨𝐭 𝜽

𝒓
+

𝒖𝒗

𝒓
= 𝑭𝜽 −

𝟏

𝝆𝒓

𝝏𝒑

𝝏𝜽
  

     
𝒅𝒘

𝒅𝒕
+

𝒗𝒘 𝐜𝐨𝐭 𝜽

𝒓
= 𝑭𝝓 −

𝟏

𝝆𝒓 𝐬𝐢𝐧 𝜽

𝝏𝒑

𝝏𝝓
   (9) 

 Remark: - The two equations, the equation of continuity and the Euler’s equation of motion, 

comprise the equations of motion of an ideal fluid.  Thus the equations 

  
𝝏𝝆

𝝏𝒕
+ 𝒅𝒊𝒗(𝝆𝒒) = 𝟎 ;   

𝝏𝒒

𝝏𝒕
+ (𝒒. 𝛁)𝒒 = 𝑭 −

𝟏

𝝆
 𝛁𝒑 
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are fundamental to any theoretical study of ideal fluid flow.  These equations are solved subject to 

the appropriate boundary and initial conditions dictated by the physical characteristics of the flow. 

   

(v) Equation of motion referred to rotating axes:  If the axes rotate with uniform angular 

velocity 𝜔 = (𝜔!, 𝜔2, 𝜔3), then the expression for acceleration is  

𝑑𝒒

𝑑𝑡
=
𝜕𝒒

𝜕𝑡
+ (𝒒′. ∇)𝒒 =

𝜕𝒒

𝜕𝑡
+ 𝝎 × 𝒒 + (𝒒′. ∇)𝒒 

Hence the Euler’s equation of motion then is  

𝜕𝒒

𝜕𝑡
+ 𝝎 × 𝒒 + (𝒒′. ∇)𝒒 = 𝑭 −

𝟏

𝜌
 𝛁𝒑 

Here q  and q’ are the absolute and relative velocities. 

 

 

Definition: The velocity vector q  is called Beltrani vector if q is parallel to Ω=curl q  i.e., if 𝒒 ×

Ω = 0. 

Definition: A fluid is said to be barotropic if 𝑝 = 𝑓(𝜌). 

Def: Conservative Field of Force:  In a conservative field of force, the work done by a force in 

taking a unit mass from a point A to a point B  is independent of the path, i.e.,  

∫ 𝐹. 𝑑𝑟 = ∫ 𝐹. 𝑑𝑟 = −χ
 

𝐴𝐷𝐵

 

𝐴𝐶𝐵

 

Hence 𝜒 is a scalar function and known as force potential function. It can be proved that 𝐹 = −∇χ. 

Cor. Acceleration potential: When the body forces are conservative so that 𝐹 = −∇ 𝛘  and the 

fluid is barotropic, i.e., density is a function of pressure, so that 𝜌−1 ∇𝑝 = ∇ ∫
𝑑𝑝

𝜌
, then Euler’s 

equation of motion may be expressed as  

𝑑𝒒

𝑑𝑡
= −∇χ − ∇∫

𝑑𝑝

𝜌
 

Or      𝒂 = −∇ (χ − ∫
𝑑𝑝

𝜌
 ) = −𝑔𝑟𝑎𝑑 Φ  (say) 

This result shows that the acceleration vector a possesses acceleration potential Φ = 𝜒 − ∫
𝑑𝑝

𝜌
 

 

5.2 Cauchy Pressure Equation: Integrals of the equation of motion: 

To obtain the solution of Euler’s equation of motion, which is non-linear, we will have to entertain 

simplifying assumptions. Firstly we assume that the external forces form a conservative system so 

that 𝐹 = −∇Ω. Secondly we assume that the fluid is barotropic (𝑝 = 𝑓(𝜌)) so that 

1

𝜌
∇𝑝 = ∇ ∫

𝑑𝑝

𝜌
= ∇𝑃        (𝑠𝑎𝑦) 

Since       
𝑑𝒒

𝒅𝒕
=

𝜕𝒒

𝜕𝑡
+𝜔 × 𝒒 + ∇(

1

2
 𝒒2)  [Langrage acceleration 

relation] 

The equation of motion can be set as 
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𝜕𝒒

𝜕𝑡
+ 𝜔 × 𝒒 + ∇(

1

2
 𝒒2) = −∇Ω − ∇𝑃 

or    
𝜕𝒒

𝜕𝑡
= 𝒒 × 𝒘− ∇(Ω+ 𝑃 +

1

2
𝑞2)    (1) 

 

This last expression is the final result. Since this result, as it stands, is not very useful, several 

special cases will be considered. 

Special cases:  

(i) When the motion is irrotational , 𝜔 = 𝑐𝑢𝑟𝑙 𝒒 = 0, 𝑎𝑛𝑑 𝒒 = −∇ 𝜙 and (1) reduces to  

∇ (
𝜕𝜙

𝜕𝑡
) = ∇𝐻           [𝐻 = Ω + 𝑃 +

1

2
𝑞2]   

 (2) 

Since the operators ∇ and 
𝜕

𝜕𝑡
 are interchangeable. The solution of (2) , viz, grad (𝐻 −

𝜕𝜙

𝜕𝑡
) = 0 is 

Ω + ∫
𝑑𝑝

𝜌
+

1

2
 𝑞2 −

𝜕𝜙

𝜕𝑡
= 𝐶(𝑡) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡    (3) 

The constant C(t) shall be a function time t only. 

Equation (3) is known as pressure equation. 

 

(ii) Bernoulli’s Equation: When the motion is steady as well as irrotational, 
𝜕𝒒

𝜕𝑡
=  0  𝑎𝑛𝑑 𝜔 = 0; 

 (1) reduces to  

∇ (χ + 𝑃 +
1

2
𝑞2) = 0 

The solution of this equation is  

χ + 𝑃 +
1

2
𝑞2 = 𝐶      (4) 

  

If the fluid is incompressible and homogeneous, 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,  then 𝑃 = ∫
𝑑𝑝

𝜌
= 𝑝/𝜌,  therefore, 

(4) becomes   

χ +
𝑝

𝜌
+

1

2
𝑞2 = 𝐶      (5) 

Here C  is an absolute constant i.e., is independent of time also. Equation (5)  is the Bernoulli’s 

equation for unsteady, irrotational of an incompressible fluid. It may be remarked that Bernoulli’s 

theorem is still true even if the velocity potential 𝜙 does not exist. 

 

5.3 Lagrange’s Equation of Motion. To obtain Lagrange’s equation of motion. 

 Let initially a fluid element be at (a, b, c) at time t = t0 when its volume is dV0 and density is 0.  

After a lapse of time t, let the same fluid element be at (x, y, z) when its volume is dV and density 

is  .  The equation of continuity is  

 

  J = 0          (1) 

where    J = 
𝝏(𝒙,𝒚,𝒛)

𝝏(𝒂,𝒃,𝒄)
 

The components of acceleration are 
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𝒙̈ =
𝝏𝟐𝒙

𝝏𝒕𝟐
, 𝒚̈ =

𝝏𝟐𝒚

𝝏𝒕𝟐
, 𝒛̈ =

𝝏𝟐𝒛

𝝏𝒕𝟐
 

Let the body force 𝑭be conservative so that we can express it in terms of a body force potential 

function 𝝌 as 

 

  𝑭 =  𝝌         (2) 

By Euler’s equation of motion, 

  
𝒅𝒒

𝒅𝒕
= 𝑭 −

𝟏

𝝆
𝜵𝒑 = −𝜵𝝌−

𝟏

𝝆
𝜵𝒑      (3) 

Its Cartesian equivalent is 

 

𝝏𝟐𝒙

𝝏𝒕𝟐
= −

𝝏𝝌

𝝏𝒙
−

𝟏

𝝆

𝝏𝒑

𝝏𝒙

𝝏𝟐𝒚

𝝏𝒕𝟐
= −

𝝏𝝌

𝝏𝒚
−

𝟏

𝝆

𝝏𝒑

𝝏𝒚

𝝏𝟐𝒛

𝝏𝒕𝟐
= −

𝝏𝝌

𝝏𝒛
−

𝟏

𝝆

𝝏𝒑

𝝏𝒛}
 
 

 
 

         (4) 

We note that a, b, c, t are the independent variables and our object is to determine x, y, z in terms 

of a, b, c, t and so investigate completely the motion. 

 

To deduce equations containing only differentiations w.r.t. the independent variables a, b, c, t we 

multiply the equations in (4) by x/a, y/a, z/a and add to get 

 

𝝏𝟐𝒙

𝝏𝒕𝟐
𝝏𝒙

𝝏𝒂
+

𝝏𝟐𝒚

𝝏𝒕𝟐
𝝏𝒚

𝝏𝒂
+

𝝏𝟐𝒛

𝝏𝒕𝟐
𝝏𝒛

𝝏𝒂
= −

𝝏𝝌

𝝏𝒂
−

𝟏

𝝆

𝝏𝒑

𝝏𝒂
      (5) 

Similarly, we get 

  
𝝏𝟐𝒙

𝝏𝒕𝟐
𝝏𝒙

𝝏𝒃
+

𝝏𝟐𝒚

𝝏𝒕𝟐
𝝏𝒚

𝝏𝒃
+

𝝏𝟐𝒛

𝝏𝒕𝟐
𝝏𝒛

𝝏𝒃
= −

𝝏𝝌

𝝏𝒃
−

𝟏

𝝆

𝝏𝒑

𝝏𝒃
     (6) 

𝝏𝟐𝒙

𝝏𝒕𝟐
𝝏𝒙

𝝏𝒄
+

𝝏𝟐𝒚

𝝏𝒕𝟐
𝝏𝒚

𝝏𝒄
+

𝝏𝟐𝒛

𝝏𝒕𝟐
𝝏𝒛

𝝏𝒄
= −

𝝏𝝌

𝝏𝒄
−

𝟏

𝝆

𝝏𝒑

𝝏𝒄
     (7) 

These equations (5), (6), (7) together with equation (1) represent  Lagarange’s Hydrodynamical 

Equations. 

 

5.4 Bernoulli’s Theorem: Statement: For the steady motion of an inviscid barotropic fluid 

under conservative body forces, the pressure at a point is given by 

∫
𝑑𝑝

𝜌
+
1

2
𝑞2 + χ = C, C being absolute constant. 

Proof:  Let AB be streamline drawn in the fluid of density 𝜌 and let 𝛿𝑠 be an element of it. When 

𝛿𝑠 as axis, draw a small cylinder of cross-section k. Consider steady motion of the fluid within this 

cylinder. Also, let q be the velocity and let the component of the body force in the direction of 

motion be F. 

Forces are conservative implies 𝐹 = −∇𝜒. 

Motion is steady implies 
𝜕𝒒

𝜕𝑡
= 0, density is a function of pressure only implies that there exists a 

realtion of the type  
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𝑃 = ∫
𝑑𝑝

𝜌

𝑝

𝑐
 so that  ∇𝑃 =

1

𝜌
 ∇𝑝. 

By Euler’s equation,    
𝑑𝒒

𝑑𝑡
 = −∇𝜒 − ∇𝑃 

Or        
𝜕𝒒

𝝏𝑡
+ (𝒒. ∇)𝒒 = −∇(𝜒 + 𝑃) 

⇒     ∇(𝜒 + 𝑃) + (𝒒. ∇)𝒒 = 𝟎 

But      ∇(𝒒. 𝒒) = 𝟐[𝒒 × 𝑐𝑢𝑟𝑙 𝒒) + (𝒒. ∇)𝒒] 

     ∇(𝜒 + 𝑃) +
1

2
 ∇𝑞2 − 𝒒 × 𝑐𝑢𝑟𝑙 𝒒 = 𝟎  

Or     ∇(𝜒 + 𝑃 +
1

2
𝑞2) = 𝒒 × 𝑐𝑢𝑟𝑙 𝒒    (1) 

 

Multiplying (1) scalarly by q and noting that  

𝒒. (𝒒 × 𝑐𝑢𝑟𝑙 𝒒) = (𝒒 × 𝒒). 𝑐𝑢𝑟𝑙 𝒒 = 𝟎. 𝐹𝑜𝑟 𝒒 × 𝒒 = 𝟎 

We obtain     q. ∇ (𝜒 + 𝑃 +
1

2
𝑞2) = 0 

The solution of this is     𝜒 + 𝑃 +
1

2
𝑞2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝐶 

Or      𝜒 + ∫
𝑑𝑝

𝜌
+

1

2
𝑞2 = 𝐶    

Where C is a constant for the particular stream line (or vortex line) chosen, but varies from one 

stream line to the other. 

NOTES: (1) If the motion is irrotational, velocity potential exists. In this particular case, C is an 

absolute constant. 

(2) If 𝜌 is constant, there result the simplest case: 

1

2
𝑞2 +

𝑝

𝜌
+ 𝜒 = 𝐶 

(3) If the body force is due to gravity, 𝜒 = 𝑔ℎ where h is the position (height) above some fixed 

horizontal datum plane. The result may then be written as  

1

2
𝑞2 +

𝑝

𝜌
+ 𝑔ℎ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Or in the language of hydraulics 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 ℎ𝑒𝑎𝑑 + 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 ℎ𝑒𝑎𝑑 + 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑 = 𝑡𝑜𝑡𝑎𝑙 ℎ𝑒𝑎𝑑 

Where the total head is constant along any stream line. 

 

5.5 Equation of impulsive motion: To find the relation between impulsive pressure and change of 

velocity. 

 Let   𝜔̅ denote the impulsive pressure and I the extraneous impulse per unit mass of fluid. 

Let 𝒒𝟏  𝒂𝒏𝒅 𝒒𝟐 be the velocities just before and just after the impulsive action. 

Newton’s second law for impulsive motion applied to the fluid within closed surface S states: 

𝐸𝑥𝑡𝑟𝑎𝑛𝑒𝑜𝑢𝑠 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 = 𝐶ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑀𝑜𝑚𝑒𝑛𝑡𝑢𝑚 

Then, if n is inward unit normal we must have 

∫ 𝜔̅ 𝒏 𝑑𝑠 + ∫ 𝐼 𝜌𝑑𝑣 = ∫𝜌(𝒒𝟐 − 𝒒𝟏)𝑑𝑣
 

𝑉

 

𝑉

 

𝑆
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But     ∫ 𝜔̅ 𝒏 𝑑𝑠 = −∫ 𝑔𝑟𝑎𝑑 𝜔̅  𝑑𝑣
 

𝑉

 

𝑆 
  [by Gauss Theorem] 

∴    ∫ [ 𝐼 𝜌 − ∇ 𝜔̅ − 𝜌(𝒒𝟐 − 𝒒𝟏)]𝑑𝑣 = 0
 

𝑉

 

Since the surface is arbitrary, we must have 

𝐼 = (
1

𝜌
)∇ 𝜔̅ = (𝒒𝟐 − 𝒒𝟏).     (1) 

Cor.1. Interpretation of potential as impulsive pressure.  Let us suppose that 𝜙 is the velocity 

potential of a motion generated from rest by impulsive pressure  𝜔̅ and that external impulses are 

non-operative, then 

𝐼 = 0; 𝑞1 = 0, ; 𝑞2 = −∇𝜙; 

With these values, the above equation (1) reduces to  

1

𝜌
∇ 𝜔̅ = ∇𝜙. 

If 𝜌 be constant, integration provides the result 

𝜔̅ = 𝜌𝜙 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡             (2) 

The constant may be omitted, as an extra pressure, constant throughout the fluid, produces no 

effect on the motion. 

Cor.2. In case of a liquid, 𝜌 is constant and if the external impulses are superficial to the liquid, 

I=0. Then, taking the divergence of both members of (1) and using 𝑑𝑖𝑣 𝒒𝟏 = 0 𝑎𝑛𝑑 𝑑𝑖𝑣𝒒2 = 0,  

we get 

 

∇2 𝑤̅ = 0    [Laplace equation] (3) 

 

Cor.3. For the liquid motion started from rest by impulsive pressure alone we obtain from (1) 𝒒 =

−𝒈𝒓𝒂𝒅 (
𝜔̅

𝜌
) ; hence the motion is necessarily irrotational and velocity potential 𝜙 exists and is 

given by  𝜙 =
𝑤̅

𝜌
. 

Cor.4. In the absence of external impulses, (1) produces 

𝒒𝟐 − 𝒒𝟏 = −𝛁 (
𝑤̅

𝜌
)              (4) 

Now, if the fluid motion before the action of the instantaneous forces is irrotational, i.e., 𝒒𝟏 =

−∇𝜙1, then obviously, 𝑞2 = −∇ [
𝜔̅

𝜌
+ 𝜙1] so that the fluid motion remains irrotational after these 

forces have ceased to operate. Setting 𝒒𝟐 = −𝛁𝜙2 we immediately obtain 

𝜙2 = 𝜙1 +
𝜔̅

𝜌
+ 𝐶                                                                        

(5) 

If 𝒒𝟐(= 𝛁𝜙2) is constant, (4) provides 

𝒒𝟏 = ∇(
𝜔̅

𝜌
) ⇒ 𝑐𝑢𝑟𝑙 𝒒 = 0              (6) 

Thus, the given irrotational motion can be established completely throughout the fluid after the 

action of impulsive pressure 𝜔̅ = (𝜌 𝜙1 + 𝐶) and that it is impossible to create or destroy by 

rotational motion any combination of instantaneous pressure forces. 
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h 

 

 Example:  A homogeneous incompressible liquid occupies a length 2l of a straight tube of 

uniform small bore and is acted upon by a body force which is such that the fluid is attracted to 

a fixed point of the tube, with a force varying as the distance from the point. Discuss the motion 

and determine the velocity and pressure within the liquid. 

 

Solution.  We note that the small bore of the tube permits us to ignore any variation of velocity 

across any cross-section of the tube and to suppose that the flow is unidirectional. 

We u be the velocity along the tube and p be the pressure at a general point P at distance x from 

the centre of force O.  Also, let h be the distance of the centre of mass G of the fluid, as shown in 

the figure.  

                       
 

Equations of motion of the fluid are: 

(i) Equation of Continuity: Here, 𝒒 = (𝒖, 𝟎, 𝟎) 

Therefore, equation of continuity becomes 

 
𝝏𝒖

𝝏𝒙
= 𝟎 ⇒ 𝒖 = 𝒖(𝒕)         (1) 

(ii) Euler’s Equation: In this case, it becomes 

 
𝝏𝒖

𝝏𝒕
+

𝒖𝝏𝒖

𝝏𝒙
+ 𝑿 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
= −𝝁𝒙 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
 

 
𝝏𝒖

𝝏𝒕
= −𝝁𝒙 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
      |using (1)   (2) 

where x𝒊̂is the body force per unit mass,  being a positive constant.  

We observe that equation (2) can be written as 

  
𝒅𝒖

𝒅𝒕
= −𝝁𝒙 −

𝟏

𝝆

𝒅𝒑

𝒅𝒙
        (3) 

Integrating w.r.t. x, we get 

  x
𝒅𝒖

𝒅𝒕
= −𝝁

𝒙𝟐

𝟐
−

𝒑

𝝆
+ 𝑪        (4)  

where C is a constant and at most can be a function of t only. w.r.t. (x, y, z) 

Let  be the pressure at the free surfaces x = hl and x = h + l of the liquid 

Then using these boundary conditions, equation (4) becomes  

  (hl)
𝒅𝒖

𝒅𝒕
= −

𝟏

𝟐
𝝁(𝒉 − 𝒍)𝟐 −

𝜫

𝝆
+ 𝑪  

  (h+l) 
𝒅𝒖

𝒅𝒕
= −

𝟏

𝟐
𝝁(𝒉 − 𝒍)𝟐 −

𝜫

𝝆
+ 𝑪 
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which on subtraction give 

  
𝒅𝒖

𝒅𝒕
= −𝝁𝒉         (5) 

But in the fluid motion all fluid particles move with the same velocity u and u = 
𝒅𝒉

𝒅𝒕
 

 Equation (5) becomes 

  
𝒅𝟐𝒉

𝒅𝒕𝟐
= −𝝁𝒉         (6) 

Now, we solve the different equation (6), which can be written as  

  (D2 + ) h = 0 

Here auxiliary equation is  

      D2 +  = 0   D =±√𝝁i 

Therefore, the solution of (6) is 

               h = A cos(√𝝁𝒕+∈) 

where A and  are constants which can be determined from initial conditions. 

To Calculate Pressure: We have from (3) & (5) 

  x 
𝟏

𝝆

𝒅𝒑

𝒅𝒙
= −𝝁𝒉 

                 
𝟏

𝝆

𝒅𝒑

𝒅𝒙
= 𝝁(𝒉 − 𝒙) 

Integrating w.r.t. x ,  we get 

  
𝒑

𝝆
=

𝝁(𝒉−𝒙)𝟐

𝟐(−𝟏)
+𝑫        (7) 

The boundary condition x = h  l,  p =  gives  

  
𝜫

𝝆
= 𝝁.

𝒍𝟐

−𝟐
+ 𝑫 

i.e.              D = / +
𝝁𝒍𝟐

𝟐
 

Therefore, equation (7) becomes  

  
𝒑

𝝆
=

𝝁(𝒉−𝒙)𝟐

−𝟐
+𝜫/𝝆+

𝝁𝒍𝟐

𝟐
 

      = 
𝜫

𝝆
−

𝝁

𝟐
[(𝒉 − 𝒙)𝟐 − 𝒍𝟐] 

      = 
𝜫

𝝆
−

𝝁

𝟐
[(𝒉 − 𝒙 + 𝒍)(𝒉 − 𝒙 − 𝒍)] 

   

Example: A quantity of liquid of density   occupies a length 2a of a long straight tube of 

inform small cross-section and is under the action of a force Kx per unit mass towards a fixed-

point O.  Show that when the nearer free surface is at a distance z from O, the pressure at a 

distance x exceeds the atmospheric pressure by  

 

  k(xz) (𝒂 −
𝒙

𝟐
+

𝒛

𝟐
) 

Solution. The equation of continuity for incompressible fluids (𝒅𝒊𝒗𝒒 = 𝟎) in the present case of 

one-dimensional flow is  

  
𝝏

𝝏𝒙
(𝝆𝒖) = 𝟎    𝒊. 𝒆.

𝝏𝒖

𝝏𝒙
= 𝟎        (1) 
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Thus, u is a function of time t only. 

 

                          
 

Euler’s equation of motion becomes 

  
𝝏𝒖

𝝏𝒕
= 𝑿−

𝟏

𝝆

𝝏𝒑

𝝏𝒙
 

i.e.  
𝒅𝒖

𝒅𝒕
= −𝒌𝒙 −

𝟏

𝝆

𝒅𝒑

𝒅𝒙
        (2) 

where 𝑭 = 𝑿𝒊 = −𝒌𝒙𝒊, 𝜵𝒑 =
𝝏𝒑

𝝏𝒙
𝒊 =

𝒅𝒑

𝒅𝒙
𝒊. 

Integrating (2) w.r.t. x , we get 

  𝒙
𝒅𝒖

𝒅𝒕
= −

𝒌𝒙𝟐

𝟐
−

𝒑

𝝆
+ 𝑨        (3) 

Since p =  at x = z , x = z + 2a;   therefore,  equation (3) becomes 

  𝒛
𝒅𝒖

𝒅𝒕
=

−𝒌𝒛𝟐

𝟐
−

𝜫

𝝆
+ 𝑨 

and  

               (z+2a) 
𝒅𝒖

𝒅𝒕
=

−𝒌(𝒛+𝟐𝒂)𝟐

𝟐
−𝜫/𝝆+ 𝑨. 

Subtracting these, we get 

  2a
𝒅𝒖

𝒅𝒕
= −

𝒌

𝟐
 (4a2 + 4az) = 2ak (z +a) 

                        
𝒅𝒖

𝒅𝒕
= k (z +a)        (4) 

From (2) & (4), we get 

  kx + 
𝟏

𝝆

𝒅𝒑

𝒅𝒙
= k (z +a)  

i.e.                       
𝒅𝒑

𝒅𝒙
= k (z + a x) 

Integrating w.r.t. x, we get 

  p =
−𝒌𝝆

𝟐
 (z +a x)2 + B        (5) 

The boundary condition p =   at x = z gives   

  B =   +
𝒌𝝆𝒂𝟐

𝟐
  

Therefore, the pressure p is 

  p =  +
𝒌𝝆𝒂𝟐

𝟐

𝒌𝝆

𝟐
 (z + a x)2 
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     =  + 
𝒌𝝆

𝟐
 [a2 (z +a x)2] 

     =  +
𝒌𝝆

𝟐
 [(2a + zx) (xz)] 

             p  = k (a +z/2x/2) (xz)    

Hence the result 

Example: Air obeying Boyle’s law is in motion in a uniform tube of small cross section.  Prove 

that if  be the density and V be the velocity at a distance x from a fixed point at a time t, then 

 

  
𝝏𝟐𝝆

𝝏𝒕𝟐
=

𝝏𝟐

𝝏𝒙𝟐
[𝝆(𝑽𝟐 + 𝒌)].  where k is a constant 

Solution. At time t, let p be the pressure and V be the velocity at a distance x from the end of the 

tube.   Then, by Boyle’s law 

 

  p = k          (1) 

Equation of continuity becomes 

  
𝝏𝝆

𝝏𝒕
+

𝝏

𝝏𝒙
(𝝆𝑽) = 0   |q = (V, 0, 0)    (2) 

and the equation of motion is  

  
𝒅𝑽

𝒅𝒕
=

𝝏𝑽

𝝏𝒕
+ 𝑽

𝝏𝑽

𝝏𝒙
= −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
    |F= 0 at free surface.   (3) 

Differentiating (2) w.r.t. t, we get 

  
𝝏𝟐𝝆

𝝏𝒕𝟐
+

𝝏

𝝏𝒙
(
𝝏𝝆

𝝏𝒕
𝑽 + 𝝆

𝝏𝑽

𝝏𝒕
) = 𝟎       (4) 

From equations (1) and (3), we get  

  
𝝏𝑽

𝝏𝒕
+ 𝑽

𝝏𝑽

𝝏𝒙
= −

𝒌

𝝆

𝝏𝝆

𝝏𝒙
        (5) 

Using equations (2) and (5) in (4), we obtain  

 
𝝏𝟐𝝆

𝝏𝒕𝟐
+

𝝏

𝝏𝒙
[−𝑽

𝝏

𝝏𝒙
(𝝆𝑽) − 𝝆𝑽

𝝏𝑽

𝝏𝒙
− 𝒌

𝝏𝝆

𝝏𝒙
] = 𝟎     

 

i.e.  
𝝏𝟐𝝆

𝝏𝒕𝟐
−

𝝏

𝝏𝒙
[
𝝏

𝝏𝒙
(𝝆𝑽𝟐) + 𝒌

𝝏𝝆

𝝏𝒙
] = 𝟎 

i.e.  
𝝏𝟐𝝆

𝝏𝒕𝟐
−

𝝏

𝝏𝒙
[
𝝏

𝝏𝒙
(𝑽𝟐 + 𝒌𝟐)𝝆] = 𝟎 

i.e.  
𝝏𝟐𝝆

𝝏𝒕𝟐
=

𝝏𝟐

𝝏𝒙𝟐
[𝑽𝟐 + 𝒌)𝝆]  

Hence the result.  

Example: Prove Bernoulli’s theorem, that in a steady motion, ∫
𝒅𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 + 𝝌; is constant along 

a stream line. Deduce the theorem of Torricelli. 

 

Solution:  Consider the efflux of liquid from a small orifice in one of the walls of a vessel kept 

filled to a constant level (giving steady motion). Let h be the depth of the vena contracta (the 

contraction), q is the speed of efflux there at, and 𝚷 the atmospheric pressure. Then, by Bernoulli’s 

theorem  
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𝚷

𝝆
+ 𝒈𝒉 =

𝚷

𝝆
+

𝟏

𝟐
𝒒𝟐     (1) 

 

 

 

 

 

 

 

Because velocity is practically zero at the free surface of the water in the vessel, and the pressure is 

𝚷, both there and on the walls of the escaping jet. Hence (1) yields  

𝒒𝟐 = 𝟐𝒈𝒉   (Torricelli’s theorem) 

 Example:  A long straight pipe of length L has a slowly tapering circular cross section.  It is 

inclined so that its axis makes and angle  to the horizontal with its smaller cross-section 

downwards.  The radius of the pipe at its upper end is twice that of at its lower end and water is 

pumped at a steady rate through the pipe to emerge at atmospheric pressure.  It the pumping 

pressure is twice the atmospheric pressure, show that the fluid leaves the pipe with a speed U 

given by 

 U2 = 
𝟑𝟐

𝟏𝟓
[𝒈𝑳 𝒔𝒊𝒏𝜶 +

𝜫

𝝆
], 

where  is atmospheric pressure 

Solution. The assumption that the pipe is slowly tapering means that any variation in the velocity 

over any cross-section can be ignored.  Let the velocity at the wider and of the pipe be V and the 

emerging velocity be U (velocity at the lower end).  The only body force is that of gravity, so 𝑭̄ =

−𝒈𝒋̂ and consequently  𝝌 = g y 

 

  |
∵ 𝑭̄ = −𝜵𝝌 ⇒ −𝒒𝒋 = −𝜵𝝌 = −

𝝏𝝌

𝝏𝒙
𝒊 −

𝝏𝝌

𝝏𝒚
𝒋 −

𝝏𝝌

𝝏𝒛
𝒌

⇒ −𝒈 = −
𝝏𝝌

𝝏𝒚
⇒ 𝝌 = 𝒈𝒚

 

Bernoulli’s equation, 
𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 + 𝝌 = 𝑪   | For water  is const. 

becomes 
𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 + 𝒈𝒚 = 𝑪         (1) 

Applying this equation of the two ends of the pipe, we get 
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𝟐𝜫

𝝆
+

𝟏

𝟐
. 𝑽𝟐 + 𝒈𝑳 𝒔𝒊𝒏𝜶 =

𝜫

𝝆
+

𝟏

𝟐
𝑼𝟐   (2) |for lower end y = 0 

Let a and 2a be the radii of the lower and upper ends respectively, then by the principle of 

conservation of mass 

 

(2a)2V =  a2 U 

  V = 
𝑼

𝟒
      (3) 

From (2) and (3), we obtain 

   +
𝟏

𝟐
𝝆(

𝑼𝟐

𝟏𝟔
) + 𝒈𝝆𝑳 𝒔𝒊𝒏𝜶 =

𝟏

𝟐
U2 

                              
𝟏

𝟐
𝝆(𝑼𝟐 −

𝑼𝟐

𝟏𝟔
) = 𝜫 + 𝒈𝝆𝑳 𝒔𝒊𝒏𝜶. 

  
𝟏𝟓

𝟑𝟐
𝝆𝑼𝟐 =  +gL sin. 

          U2 = 
𝟑𝟐

𝟏𝟓
[𝒈𝑳 𝒔𝒊𝒏𝜶 +

𝜫

𝝆
]   

Hence the result. 

 Example: A perfect incompressible fluid is moving steadily around the outside of a fixed 

cylinder of radius a and vertical axis oz.  The fluid particles are transversing horizontal circles 

with centre  on oz, the speed at distance r from oz being 
𝒂

𝒓
.  Show that the motion is irrotational.  

If the surface of the fluid is open to the atmosphere, and the origin o is chosen so that on the 

free surface, z = 0 when r = a, prove by means of Bernoulli’s equation or otherwise, that the 

equation of the free surface is  

  𝟐𝒈𝒛 = 𝒂 −
𝒂𝟐

𝒓𝟐
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Solution.   Let q = (u, v)                                                      

 

 

 u = 
𝒂

𝒓
𝒄𝒐𝒔( 𝟗𝟎 + 𝜽) = −

𝒂

𝒓
𝒔𝒊𝒏𝜽 = −

𝒂𝒚

𝒓𝟐
 , r2 = x2 + y2   i.e.   x = r cos,  y = r sin  

       v = 
𝒂

𝒓
𝒄𝒐𝒔 𝜽 =

𝒂𝒙

𝒓𝟐
 

 

  curl 𝒒 = |

𝒊 𝒋 𝒌

𝝏 𝝏𝒙⁄ 𝝏 𝝏𝒚⁄ 𝝏 𝝏𝒛⁄
−𝒂𝒚

𝒓𝟐
𝒂𝒙

𝒓𝟐
𝟎

| = 𝒌𝒂 [
𝝏

𝝏𝒙
(
𝒙

𝒓𝟐
) +

𝝏

𝝏𝒚
(
𝒚

𝒓𝟐
)] 

       =𝒌𝒂 [
𝟐

𝒓𝟐
−

𝟐(𝒙𝟐+𝒚𝟐)

𝒓𝟒
] = 𝟎 

So, the motion is irrotational.  

 

Now Bernoulli’s pressure equation is 

  
𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 +𝜴 = 𝑪   |

𝑭 = −𝜵𝝌

⇒ −𝒈𝒌 = −
𝝏𝝌

𝝏𝒛
𝒌

⇒ 𝝌 = 𝒈𝒛

  

or  
𝒑

𝝆
+

𝟏

𝟐

𝒂𝟐

𝒓𝟐
+ 𝒈𝒛 = 𝑪 

when r = a, z = 0, p = 0 so that C =
𝟏

𝟐
,  therefore,  

             
𝒑

𝝆
+

𝟏

𝟐

𝒂𝟐

𝒓𝟐
+ 𝒈𝒛 =

𝟏

𝟐
 

The equation of the free surface (p = 0) is  

                    2gz = 1 
𝒂𝟐

𝒓𝟐
   

Hence the result.   

 Example: Steam is rushing from a boiler through a conical pipe, the diameters of the ends of 

which are D and d.  If V and v be the corresponding velocities of the stream and if the motion be 

supposed to be that of divergence from the vertex of the cone, prove that  

  
𝒗

𝑽
=

𝑫𝟐

𝒅𝟐
𝒆(𝒗

𝟐−𝑽𝟐) 𝟐𝒌⁄ , 

where k is the pressure divided by density and supposed constant 

Solution. 
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Since the stream steadies down soon after and the external forces like gravity are neglected; 

therefore, by Bernoulli’s equation, we have 

  
𝒅𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 = constant   | i.e.,  is not const.   (1) 

and by Bayle’s law, we have 

        p = k         (2) 

Therefore, (1) becomes  

  k 
𝒅𝝆

𝝆
+

𝟏

𝟐
𝒒𝟐 = 𝑪 

                   k log  + 
𝟏

𝟐
 q2 = C 

If at the sections A and B,  = 1,   = 2 respectively and q = v at A, q = V at B, then we have 

  k log 1 + 
𝟏

𝟐
𝒗𝟐 = 𝑪, 

                        𝒌 𝒍𝒐𝒈𝝆𝟐 +
𝟏

𝟐
V2 = C 

Subtracting, we get 

              2k log (2/1) = v2  V2. 

                                   2/1 = 𝒆(𝒗
𝟐−𝑽𝟐) 𝟐𝒌⁄        (3) 

Now, by equation of continuity, we have 

 

                         Flux across A = Flux across B. 

            (
𝟏

𝟐
𝒅)

𝟐

𝝆𝟏𝒗 = 𝝅(
𝟏

𝟐
𝑫)

𝟐

𝝆𝟐𝑽 

                                  2/1 = 
𝒅𝟐

𝑫𝟐
𝒗

𝑽
       (4) 

From (3) & (4), we get 

                              
𝒗

𝑽
=

𝑫𝟐

𝒅𝟐
𝒆(𝒗

𝟐−𝑽𝟐) 𝟐𝒌⁄   

Hence the result. 

 Example: A straight tube ABC, of small bore, is bent so as to make the angle ABC a right angle 

and AB equal to BC.  The end C is closed and the tube is placed with end A upwards and AB 

vertical, and is filled with liquid.  If the end C be opened, prove that the pressure at any point of 

the vertical tube is instantaneously diminished one-half.  Also find the instantaneous change of 

pressure at any point of the horizontal tube, the pressure of the atmospheric being neglected.  

 

Solution.  Let AB = BC = a 
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When the liquid in AB has fallen through a distance z at time t, then let P be any point in the 

vertical column such that  

  AM = z, BP = x, BM = az 

If u and p be the velocity and pressure at P, then equation of motion is  

  
𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒙
= −𝒈 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
  (1)  |u  u (x, t) 

and equation of continuity is 

  
𝝏𝒖

𝝏𝒙
= 𝟎  i.e., u = u(t) 

Therefore, equation (1) becomes 

  
𝝏𝒖

𝝏𝒕
= −𝒈 −

𝟏

𝝆

𝝏𝒑

𝝏𝒙
 

Integrating. w.r.t. x, we get 

   x
𝝏𝒖

𝝏𝒕
= −𝒈𝒙.−

𝟏

𝝆
𝒑 + 𝑪       (2) 

Using the boundary condition p = 0 at x = az, we get 

  C = (𝒂 − 𝒛)
𝝏𝒖

𝝏𝒕
+ 𝒈(𝒂 − 𝒛) 

Therefore, equation (2) becomes 

  x
𝝏𝒖

𝝏𝒕
= −𝒈𝒙 −

𝒑

𝝆
+ (𝒂 − 𝒛)

𝝏𝒖

𝝏𝒕
+ 𝒈(𝒂 − 𝒛) 

i.e. 
𝒑

𝝆
= −(𝒙 − 𝒂 + 𝒛) (

𝝏𝒖

𝝏𝒕
+ 𝒈)        (3) 

Now, we take a point Q in BC, where BQ = x and let u, p be the velocity and pressure at Q, then  

  
𝒑′

𝝆
= −(𝒙′− 𝒂)

𝝏𝒖′

𝝏𝒕
  (4)  | z = 0 and g is not affecting 

Equating the pressure at B, when x = 0, x = 0, we get 

  (az) (
𝝏𝒖

𝝏𝒕
+𝒈) = 𝒂

𝝏𝒖′

𝝏𝒕
   | From (3) & (4) 

      = a 
𝝏𝒖

𝝏𝒕
   |  u = u 

Initially, when C is just opened, then z = 0,  t = 0 and we have 
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  a[(
𝝏𝒖

𝝏𝒕
)
𝒕=𝟎

+𝒈] = −𝒂(
𝝏𝒖

𝝏𝒕
)
𝒕=𝟎

 

   (
𝝏𝒖

𝝏𝒕
)
𝒕=𝟎

=
−𝒈

𝟐
𝒊. 𝒆. (

𝝏𝒖

𝝏𝒕
)
𝟎
= −𝒈/𝟐      (5) 

Therefore, from equation (3), initially, the pressure at P is given by 

          
𝒑𝟎

𝝆
= −(𝒙 − 𝒂) [(

𝝏𝒖

𝝏𝒕
)
𝟎
+𝒈] |𝒑𝟎 ≡ (𝒑)𝒕=𝟎 

                = 
−𝒈

𝟐
(𝒙 − 𝒂) 

                             p0 = 
𝟏

𝟐
𝝆𝒈(𝒂 − 𝒙)       (6) 

But when the end C is closed, the liquid is at rest and the hydrostatic pressure at P is  

  p1 = g h = g (ax)     [h = AP = ax]           (7) 

From (6) and (7), we get 

  𝒑𝟎 =
𝟏

𝟐
𝒑𝟏 

Thus, the pressure is diminished to one-half. 

Now, from (4), initial pressure at Q is given by  

  
𝒑′𝟎

𝝆
= −(𝒙′ − 𝒂) (

𝝏𝒖′

𝝏𝒕
)
𝒕=𝟎

= (𝒙′ − 𝒂) (
𝝏𝒖

𝝏𝒕
)
𝒕=𝟎

= (𝒂 − 𝒙′)
𝒈

𝟐
 

                     𝒑𝟎′ =
𝟏

𝟐
𝝆𝒈(𝒂 − 𝒙′) 

When the end C is closed, the initial pressure (hydrostatic) p2 at Q (or B or C) is   g a . 

Therefore, instantaneous change in pressure 

  = 𝒑𝟐 − 𝒑𝟎′ = 𝝆𝒈𝒂 −
𝟏

𝟐
𝝆𝒈(𝒂 − 𝒙′) = 

𝟏

𝟐
𝝆𝒈(𝒂 + 𝒙′) 

 Example: A stream in a horizontal pipe after passing a contraction in the pipe at which its 

sectional area is A, is delivered at atmospheric pressure at a place where the sectional area is B.  

Show that if a side tube is connected with the pipe at the former place, water will be sucked up 

through it into the pipe from a reservoir at a depth 
𝒔𝟐

𝟐𝒈
(
𝟏

𝑨𝟐
−

𝟏

𝑩𝟐
) below the pipe, s being the 

delivery per second. 

Solution. If v be the velocity in the tube of sectional area A and p be the pressure there, while V 

and  being the corresponding quantities at the sectional area B, then Bernoulli’s equation  

 

  
𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 = constant, gives                             is constant for water 

  
𝒑

𝝆
+

𝟏

𝟐
𝒗𝟐 =

𝜫

𝝆
+

𝟏

𝟐
𝑽𝟐        (1) 
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By the equation of continuity, flux across the sections A and B are equal. 

       

                    i.e.      Av = BV = s, where s is delivery per second  

                              v = 
𝒔

𝑨
, 𝑽 =

𝒔

𝑩
 

Therefore, from equation (1), we get 

             
𝒑

𝝆
+

𝟏

𝟐

𝒔𝟐

𝑨𝟐
=

𝜫

𝝆
+

𝟏

𝟐

𝒔𝟐

𝑩𝟐
 

          
𝟏

𝟐
𝒔𝟐 (

𝟏

𝑨𝟐
−

𝟏

𝑩𝟐
) =

𝟏

𝝆
(𝜫 − 𝒑)        (2) 

Now, if h be the height through which water is sucked up, then 

   g h = difference of pressures =  p 

Therefore, from (2), we get 

  
𝟏

𝟐
𝒔𝟐 (

𝟏

𝑨𝟐
−

𝟏

𝑩𝟐
) =

𝟏

𝝆
𝝆𝒈𝒉 = 𝒈𝒉. 

                                             h = 
𝒔𝟐

𝟐𝒈
(
𝟏

𝑨𝟐
−

𝟏

𝑩𝟐
)   

Hence the result. 

Example: A sphere is at rest in an infinite mass of homogeneous liquid of density , the 

pressure at infinity being .  Show that, if the radius R of the sphere varies in any manner, the 

pressure at the surface of the sphere at any time is  

 

   + 
𝝆

𝟐
[
𝒅𝟐(𝑹𝟐)

𝒅𝒕𝟐
+ (

𝒅𝑹

𝒅𝒕
)
𝟐

] 

Solution. In the incompressible liquid, outside the sphere, the fluid velocity 𝒒̄ will be radial and 

thus will be a function of r, the radial distance from the centre of the sphere (the origin), and time t 

only. 

 

 The equation of continuity in spherical polar co-ordinates becomes 

  
𝟏

𝒓𝟐
𝒅

𝒅𝒓
(𝒓𝟐𝒖) = 𝟎             (1)              ||

∵ 𝒒 = (𝒖, 𝟎, 𝟎), 𝒖 = 𝒖(𝒓, 𝒕), 𝜵 ≡ (
𝝏

𝝏𝒓
, 𝟎, 𝟎)

𝜵 ⋅ 𝒒 =
𝟏

𝒓𝟐
𝝏

𝝏𝒓
(𝒓𝟐𝒖).

𝒊. 𝒆. 𝒔𝒑𝒉𝒆𝒓𝒊𝒄𝒂𝒍 𝒔𝒚𝒎𝒎𝒆𝒕𝒓𝒚.
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               r2u = constant = f(t)    

 

On the surface of the sphere,  

   r = R, u =𝑹̇ 

Therefore,                  

                                   f(t) = R2 𝑹̇ 

and thus  

                                   r2u = R2𝑹̇        (2) 

Therefore, 

 

                         

We observe that u  0 as n  , as required. 

From (1), it is clear that curl q = 0 

 the motion is irrotational and  𝒒̄ =  

   u = −
𝝏𝝋

𝝏𝒓
       

𝝏𝝋

𝝏𝒓
=

𝒇

𝒓𝟐
      From (2) 

   = f/r                       (3) 

The pressure equation for irrotational non-steady fluid motion in the absence of body forces is  

  
𝒑

𝝆
+

𝟏

𝟐
𝒒𝟐 −

𝝏𝝋

𝝏𝒕
= 𝑪(𝒕)      

               i.e.    
𝒑

𝝆
+

𝟏

𝟐
𝒖𝟐 −

𝝏𝝋

𝝏𝒕
= 𝑪(𝒕).        (4) 

where C(t) is a function of time t.  

As r , p  , u = f/r2  0, 0 

so that C(t) = / for all t         (5) 

Therefore, from (2), (3), (4) and (5), we get 

           
𝒑

𝝆
=

𝜫

𝝆
+

𝝏

𝝏𝒕
(𝒇/𝒓) −

𝟏

𝟐
(
𝑹𝟐𝑹̇

𝒓𝟐
)
𝟐

      (6) 

But                          
𝝏𝒇

𝝏𝒕
=

𝒅

𝒅𝒕
(𝑹𝟐𝑹̇) = 𝑹̈𝑹𝟐 + 𝟐𝑹 ⥂ 𝑹̇𝟐 

At the surface of the sphere, we have r = R and equation (6) gives 

          
𝒑

𝝆
=

𝜫

𝝆
+

𝟏

𝑹
(𝟐𝑹𝑹̇𝟐 + 𝑹̈𝑹𝟐) −

𝟏

𝟐
𝑹̇𝟐 

                            
𝒑

𝝆
=

𝜫

𝝆
+ 𝟐𝑹̇𝟐 +𝑹𝑹̈ −

𝟏

𝟐
𝑹̇𝟐    

                         = 
𝜫

𝝆
+

𝟏

𝟐
(𝟑𝑹̇𝟐 + 𝟐𝑹𝑹̈)       (7) 

Now,  
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𝒅𝟐(𝑹𝟐)

𝒅𝒕𝟐
+ (𝑹̇)

𝟐
=

𝒅

𝒅𝒕
(𝟐𝑹𝑹̇) + (𝑹̇)𝟐 

             = (𝟐𝑹𝑹̈ + 𝟐𝑹̇𝟐) + 𝑹̇𝟐 

             = 2R 𝑹̈ + 𝟑𝑹̇𝟐 

Therefore, from (7), we obtain  

  p = +
𝟏

𝟐
𝝆 [

𝒅𝟐(𝑹𝟐)

𝒅𝒕𝟐
+ (

𝒅𝑹

𝒅𝒕
)
𝟐

]   

Hence the result.  

Example: An infinite mass of homogeneous fluid is at rest subject to a uniform pressure , and 

contains a spherical cavity of radius a, filled with gas at a pressure m.  Prove that if the inertia 

of the gas be neglected, and Boyle’s law supposed to hold throughout the ensuring motion, the 

radius of the sphere will oscillate between the values a and n a, where n is determined by the 

equation. 

 

  1 + 3 m log n  n3 = 0   

If m be nearly equal to one, the time of oscillation will be 2√
𝒂𝟐𝝆

𝟐𝑰𝑰
,  being the density of the 

fluid. 

Solution.  In the incompressible fluid outside the spherical cavity, the fluid velocity 𝒒̄ will be 

radial and will be a function of r, the radial distance from the centre of cavity (the origin), and time 

t only.  The continuity equation. div 𝒒̄ = 0 in spherical polar co-ordinates, becomes (spherical 

symmetry) 

  
𝟏

𝒓𝟐
𝒅

𝒅𝒓
(𝒓𝟐𝒖) = 𝟎 ⇒ 𝒓𝟐𝒖 = 𝒄𝒐𝒏𝒔 𝒕𝒂𝒏𝒕 = 𝒇(𝒕)    (1) 

 

where u = u(r, t)                   | 𝒒̄ = (u, 0, 0), 𝜵 ≡ (
𝝏

𝝏𝒓
, 𝟎, 𝟎) 

We observe that u0 as  r, as required. 

Clearly curl 𝒒̄ = 𝟎̄ so that the motion is irrotational and 𝒒̄ = −𝜵𝝋, where  is velocity potential. 

 u = −
𝝏𝝋

𝝏𝒓
⇒

𝒇(𝒕)

𝒓𝟐
=

−𝝏𝝋

𝝏𝒓
 

  = f/r          (2) 

The pressure equation for irrotational non-steady fluid motion, in the absence of body forces, is 

   𝒑 𝝆⁄ +
𝟏

𝟐
𝒖𝟐 −

𝝏𝝋

𝝏𝒕
= 𝑪(𝒕)         (3) 

where C(t) is a function of time t. 

As r, p = , u = f/r2  0, 0, 

 so that C(t) = / for all t. 

Putting the values of  and C(t) in (3), we get 

  
𝒑

𝝆
+

𝟏

𝟐
𝒖𝟐 −

𝟏

𝒓

𝝏𝒇

𝝏𝒕
=

𝜫

𝝆
        (4) 

Now, when the cavity expands to radius r, Boyle’s law provides pV = constant (V = volume) so 

that  
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𝟒

𝟑
𝝅𝒂𝟑𝒎𝑰𝑰 =

𝟒

𝟑
𝝅𝒓𝟑𝒑 

                               p = m 
𝒂𝟑

𝒓𝟑
        (5) 

Now, 
𝝏𝒇

𝝏𝒕
=

𝒅

𝒅𝒕
(𝒓𝟐𝒖) = 𝟐𝒓𝒖𝟐 + 𝒓𝟐

𝒅𝒖

𝒅𝒕
      

           = 𝟐𝒓𝒖𝟐 + 𝒓𝟐𝒖.
𝒅𝒖

𝒅𝒓
  |

𝒅𝒖

𝒅𝒕
=

𝒅𝒖

𝒅𝒓

𝒅𝒔

𝒅𝒕
= 𝒖

𝒅𝒖

𝒅𝒓
   (6) 

From (4), (5) and (6), we get 

  m  
𝒂𝟑

𝝆𝒓𝟑
+

𝟏

𝟐
𝒖𝟐 − (𝟐𝒖𝟐 + 𝒓𝒖

𝒅𝒖

𝒅𝒓
) = 𝜫/𝝆 

   3u2 r2 + 2r3 u
𝒅𝒖

𝒅𝒓
=

𝟐𝜫

𝝆
. (
𝒎𝒂𝟑

𝒓
− 𝒓𝟐)  | Multiplying both sides by r2 to make it exact 

             
𝒅

𝒅𝒓
(𝒓𝟑𝒖𝟐) =

𝟐𝜫

𝝆
(
𝒎𝒂𝟑

𝒓
− 𝒓𝟐) 

Integrating w.r.t. r, we get 

   r3 u2 = 
𝟐𝜫

𝝆
(𝒎𝒂𝟑 𝒍𝒐𝒈 𝒓 −

𝒓𝟑

𝟑
) + 𝑨      (7) 

where A is constant of integration, determined by the fact that at r = a, u = 0 (Initial conditions) 

and hence  

 

  A =
−𝟐𝜫

𝝆
(𝒎𝒂𝟑 𝒍𝒐𝒈𝒂 −

𝟏

𝟑
𝒂𝟑) 

Thus, from (7), we get 

  r3 u2 = 
𝟐𝜫𝒂𝟑

𝟑𝝆
[𝟑𝒎 𝒍𝒐𝒈(

𝒓

𝒂
) − (

𝒓

𝒂
)
𝟑

+ 𝟏]     (8) 

Now, u shall be zero again where r = na, i.e.
𝒓

𝒂
= 𝒏, provided. n is given by the equation 

  1 + 3m log n  n3 = 0   

Hence proved the result. 

Now, we consider the special case, when m = 1.  Let r = a +x, where x is small. 

Then 𝒙̇ = 𝒖 = 𝒓̇ and thus from (8), we get 

  (𝒙̇)𝟐(𝒂 + 𝒙)𝟑 =
𝟐𝜫𝒂𝟑

𝟑𝝆
[𝟑 𝒍𝒐𝒈 (𝟏 +

𝒙

𝒂
) − (𝟏 +

𝒙

𝒂
)
𝟑

+ 𝟏]  |
𝒓

𝒂
= 𝟏 +

𝒙

𝒂
 

or  (𝒙̇)𝟐[𝟏 + 𝟑𝒚 + 𝟑𝒚𝟐+. . . ] = 𝝀 [𝟑 (𝒚 −
𝒚𝟐

𝟐
+. . . ) − (𝟏 + 𝟑𝒚+ 𝟑𝒚𝟐+. . . ) + 𝟏] 

where   = 
𝟐𝜫

𝟑𝝆
, 𝒚 =

𝒙

𝒂
 and y3 is neglected. 

Thus  (𝒙̇)𝟐(𝟏 + 𝟑𝒚 + 𝟑𝒚𝟐) = 𝝀 (−𝟗
𝒚𝟐

𝟐
) 

 (𝒙̇)𝟐 = 𝝀(−𝟗
𝒚𝟐

𝟐
) (𝟏 + 𝟑𝒚 + 𝟑𝒚𝟐)−𝟏 = −𝟗𝝀

𝒚𝟐

𝟐
  | Neglecting y3 

 (𝒙̇)𝟐 = −𝟗
𝟐𝜫

𝟑𝝆

𝟏

𝟐
(
𝒙

𝒂
)
𝟐

= −𝟑
𝜫

𝝆
(
𝒙𝟐

𝒂𝟐
) 

Differentiating w.r.t. t, we get 

  𝒙̈ = − (
𝟑𝜫

𝝆𝒂𝟐
) . 𝒙    

i.e.   𝒙̈ = −𝝁𝒙, 𝝁 =
𝟑𝜫

𝝆𝒂𝟐
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This represents a S.H.M. of periodic time 2√
𝒂𝟐𝝆

𝟐𝜫
|∵ 𝑻 =

𝟐𝝅

√𝒎
 

Hence proved the result. 

Example: Liquid is contained between two parallel planes; the free surface is a circular cylinder 

of radius ‘a’ whose axis is perpendicular to the planes. All the liquid within a concentric 

circular cylinder of radius b is suddenly annihilated. Prove that if  be the pressure at the outer 

surface, the initial pressure at any point of the liquid, distance r from the centre, is   

  (𝒍𝒐𝒈𝒓 − 𝒍𝒐𝒈𝒃) (𝒍𝒐𝒈𝒂 − 𝒍𝒐𝒈𝒃) ⁄  

Solution. In the incompressible liquid outside the cylinder |z| = b, the fluid velocity q will be radial 

and will be a function of r, the radial distance from the centre of the cylinder (the origin) and time t 

only, where r < a. 

The equation of continuity div q= 0 in cylindrical co-ordinates. (Cylindrical symmetry), becomes 

  
𝟏

𝒓

𝝏

𝝏𝒓
(𝒓𝒖) = 𝟎  ru = const. = f(t) = R𝑹̇ (say)    (1) 

          |𝒒 = (𝒖, 𝟎, 𝟎), 𝜵 = (
𝝏

𝝏𝒓
, 𝟎, 𝟎)  

We note that q0 as r, as required. 

Clearly curl q = 0    q =  

i.e.  
𝝏𝝋

𝝏𝒓
= 𝒇 𝒓⁄ = 𝒖 

  = f log r          (2) 

The pressure equation for irrotational non-steady fluid motion, in the absence of body forces, is 

  
𝒑

𝝆
+

𝒖𝟐

𝟐
−

𝝏𝝋

𝝏𝒕
= 𝑪(𝒕)  |𝒒 = (𝒖, 𝟎, 𝟎)     (3) 

Initially, t = 0, u = 0 so that equation (3), on using (2), yields 

  
𝒑

𝝆
+ 𝒇̇(𝟎) 𝒍𝒐𝒈 𝒓 = 𝑪(𝟎)       (4) 

Now, p =  when r = a, p = 0 when r = b (since the cylinder is annihilated   no pressure), so that  

  
𝜫

𝝆
+ 𝒇̇(𝟎) 𝒍𝒐𝒈𝒂 = 𝑪(𝟎)       (5) 

and 0 + 𝒇̇(𝟎) log (b) = C(0)     C(0) = 𝒇̇(𝟎) log b 

 From (4) & (5), we get 

  𝒇̇(𝟎) (log r  log b) = 
𝒑

𝝆
 

and 𝒇̇(𝟎) (log a  log b) = 
−𝜫

𝝆
 

Dividing these two we get 

  p =  
𝒍𝒐𝒈 𝒓−𝒍𝒐𝒈 𝒃

𝒍𝒐𝒈 𝒂−𝒍𝒐𝒈 𝒃
    

Hence the result.  

Example: An infinite mass of ideal incompressible fluid is subjected to a force r7/3 per unit 

mass directed towards the origin.  If initially the fluid is at rest and there is a cavity in the form 

of the sphere r = a in it, show that the cavity will be completely filled after an interval of time 

a5/3(10)1/2. 



 

98 

 

 

Solution. The motion is entirely radial and consequently irrotational and the present case is the 

case of spherical symmetry.  The equation of continuity is  

 

  
𝟏

𝒓𝟐
𝒅

𝒅𝒓
(𝒓𝟐𝒖) = 𝟎 ⇒ 𝒓𝟐u = constant = f(t)     (1) 

On the surface of the sphere, r = R, 𝑹̇= v (say) 

Therefore,  

                                     r2 𝒓̇ = f(t) = R2𝑹̇ 

         𝒇̇(𝒕) = 𝑹𝟐𝑹̈ + 𝑹̇𝟐𝑹𝑹̇ = 𝑹𝟐
𝒅𝒗

𝒅𝒕
+ 𝟐𝑹𝒗𝟐 

                     
𝒇̇(𝒕)

𝑹
= 𝟐𝒗𝟐 + 𝑹

𝒅𝒗

𝒅𝒕
= 𝟐𝒗𝟐 +𝑹

𝒅𝒗

𝒅𝑹

𝒅𝑹

𝒅𝒕
     

                                 = 𝟐𝒗𝟐 +𝑹𝒗
𝒅𝒗

𝒅𝑹
     (2) 

The Euler’s equation of motion, in radial direction, using 𝒓̇ = 𝒖, is 

              
𝝏𝒖

𝝏𝒕
+ 𝒖

𝝏𝒖

𝝏𝒓
= 𝑭𝒓 −

𝟏

𝝆

𝝏𝒑

𝝏𝒓
 

But                 
𝝏𝒖

𝝏𝒕
=

𝝏

𝝏𝒕
(
𝒇(𝒕)

𝒓𝟐
) =

𝒇̇(𝒕)

𝒓𝟐
, 𝑭𝒓 = −𝝁𝒓

−𝟕/𝟑 

So, we need to integrate the Euler’s equation 

  
𝒇̇(𝒕)

𝒓𝟐
+

𝝏

𝝏𝒓
(
𝟏

𝟐
𝒖𝟐) =

−𝝁

𝒓𝟕/𝟑
−

𝝏

𝝏𝒓
(
𝒑

𝝆
)      (3) 

Let us assume that the cavity has radius R at time t and its velocity then is 𝑹̇ = 𝒗.  Integrating (3) 

over the whole liquid (r = R to r = ) at time t, we obtain 

 

  [
−𝒇̇(𝒕)

𝒓
]
𝑹

∞

+ [
𝟏

𝟐
𝒖𝟐]

𝒗

𝟎

=
𝟑𝝁

𝟒
[
𝟏

𝒓𝟒/𝟑
]
𝑹

∞

− [
𝒑

𝝆
]
𝑹

∞

 

Since the fluid is at rest at infinity, u = 0.  Also p = 0, pR  = 0 (cavity), thus we get 

  
𝒇̇(𝒓)

𝑹
−

𝟏

𝟐
𝒗𝟐 = −

𝟑𝝁

𝟒

𝟏

𝑹𝟒 𝟑⁄  

               2Rv 
𝒅𝒗

𝒅𝑹
+ 𝟑𝒗𝟐 = −

𝟑𝝁

𝟐

𝟏

𝑹𝟒 𝟑⁄    | using (2) 

To make it exact, we multiply by R2 so that  

  2R3v 
𝒅𝒗

𝒅𝑹
+ 𝟑𝑹𝟐𝒗𝟐 = −

𝟑𝝁

𝟐
𝑹𝟐/𝟑 

                                   
𝒅(𝑹𝟑𝒗𝟐)

𝒅𝑹
= −

𝟑𝒎

𝟐
𝑹𝟐/𝟑 

Integrating, we get 

                         R3 v2 = A  
𝟗𝒎

𝟏𝟎
𝑹𝟓/𝟑      (4) 

When R = a, 𝑹̇ v = 0, which gives A = 
𝟗𝝁

𝟏𝟎
𝒂𝟓/𝟑. 

Now, we take v = 𝑹̇< 0 because as the cavity fills, R decreases with time.  Thus (4) gives 

                                   
𝒅𝑹

𝒅𝒕
= −(

𝟗𝝁

𝟏𝟎
)
𝟏/𝟐

(
𝒂𝟓/𝟑−𝑹𝟓/𝟑

𝑹𝟑
)
𝟏/𝟐

 

Therefore,                           
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(
𝟗𝝁

𝟏𝟎
)
𝟏/𝟐

𝒕 = −∫
𝑹𝟑/𝟐𝒅𝑹

(𝒂𝟓/𝟑 −𝑹𝟓/𝟑)𝟏/𝟐

𝟎

𝒂

 

                                                    = 
𝟔𝒂𝟓/𝟑

𝟓
∫ 𝒔𝒊𝒏𝟐 𝜽𝒅𝜽
𝝅/𝟐

𝟎
   | R5/3 = a5/3 sin2 i.e., R = a (sin 

)6/5 

 

                = 
𝟑𝝅𝒂𝟓/𝟑

𝟏𝟎
 

Thus,  

 t =  a5/3 (10)1/2 . 

Hence the result. 

 Example: A mass of liquid surrounds a solid sphere of radius a, and its outer surface, which is 

a concentric sphere of radius b, is subjected to a given constant pressure , no other forces 

being in action on the liquid.  The solid sphere suddenly shrinks into a concentric sphere, 

determine the subsequent motion, and the impulsive action on the sphere. 

Solution. Let v be the velocity at a distance r from the centre of the sphere at any time t and p be 

the pressure.  The equation of continuity (case of spherical symmetry) is 

                      r2 v = f(t)       (1) 

Equation of motion is 

            
𝝏𝒗′

𝝏𝒕
+ 𝒗′

𝝏𝒗′

𝝏𝒓′
= −

𝟏

𝝆

𝝏𝒑

𝝏𝒓′
 

or  
𝒇̇(𝒕)

𝒓′
𝟐 +

𝝏

𝝏𝒓′
(
𝟏

𝟐
𝒗′
𝟐) = −

𝟏

𝝆

𝝏𝒑

𝝏𝒓′
       (2) 

Let R, r be the radii of the external and internal boundaries at time t, and V, v be their velocities.  

These quantities are functions of time t only and  

  V = 𝑹̇, 𝒗 = 𝒓̇ 

Also, p = 0, p =  on the internal and the external boundaries respectively.   Integrating (2) w.r.t r 

from r = r to r = R, we get 

 

  𝒇̇(𝒕) (
𝟏

𝒓
−

𝟏

𝑹
) +

𝟏

𝟐
(𝒗𝟐 − 𝑽𝟐) =

𝜫

𝝆
      (3) 

But  

                         r2 v = f(t) = r2 v = R2 V 

                       𝒇̇(𝒕) = 2r𝒓̇𝒗 + 𝒓𝟐
𝒅𝒗

𝒅𝒕
 = 2rv2 + r2v

𝒅𝒗

𝒅𝒓
 

Hence (3) becomes 

  (𝟐𝒓𝒗𝟐 + 𝒓𝟐𝒗
𝒅𝒗

𝒅𝒓
) (

𝟏

𝒓
−

𝟏

𝑹
) +

𝒗𝟐

𝟐
(𝟏 −

𝑽𝟐

𝒗𝟐
) =

𝜫

𝝆
 

or  (𝟐𝒓𝒗𝟐 + 𝒓𝟐𝒗
𝒅𝒗

𝒅𝒓
) (

𝟏

𝒓
−

𝟏

𝑹
) +

𝒗𝟐

𝟐
(𝟏 −

𝒓𝟐

𝑹𝟒
) =

𝜫

𝝆
 

Multiplying both sides by 2r2 and observing that  

  R3  r3 = b3  a3 = c3 (say),   we obtain 
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  (𝟒𝒓𝟑𝒗𝟐 + 𝟐𝒓𝟒𝒗
𝒅𝒗

𝒅𝒓
) {

𝟏

𝒓
−

𝟏

(𝒓𝟑+𝒄𝟑)𝟏/𝟑
} 

   + v2 r4{
𝟏

𝒓𝟐
−

𝒓𝟐

(𝒓𝟑+𝒄𝟑)𝟒/𝟑
} =

𝟐𝜫

𝝆
𝒓𝟐 

or  {
𝟏

𝒓
−

𝟏

(𝒓𝟑+𝒄𝟑)𝟏/𝟑
}
𝒅

𝒅𝒓
(𝒗𝟐𝒓𝟒) − 𝒗𝟐𝒓𝟒 {

𝟏

𝒓𝟐
−

𝒓𝟐

(𝒓𝟑+𝒄𝟑)𝟒/𝟑
}= −

𝟐𝜫

𝝆
𝒓𝟐 

Integrating, we get 

  v2 r4{
𝟏

𝒓
−

𝟏

(𝒓𝟑+𝒄𝟑)𝟏/𝟑
} =

−𝟐𝜫

𝟑𝝆
𝒓𝟑 + 𝒄     (4) 

But v = 0, when r = a, so c =
𝟐𝜫𝒂𝟑

𝟑𝝆
 

Thus, (4) becomes 

  v2 r4 (
𝟏

𝒓
−

𝟏

𝑹
) =

𝟐𝜫

𝟑𝝆
(𝒂𝟑 − 𝒓𝟑) 

i.e.                        v2(
𝟏

𝒓
−

𝟏

𝑹
) =

𝟐𝜫

𝟑𝝆
(
𝒂𝟑−𝒓𝟑

𝒓𝟒
) 

which gives the expression for the velocity for the subsequent motion. 

Now, let P be the impulsive pressure at a distance r and let r be the radius of the solid sphere, then 

from the relation. 

 

                 P = 𝒒̄ 

we find 
𝒅𝑷

𝒅𝒓′
= v    dp = v dr = 

𝒓𝟐𝒗

𝒓′
𝟐 𝒅𝒓′|𝒓′

𝟐𝒗′ = 𝒓𝟐𝒗 

Integrating, we get 

  P = v(r2/r) + c1 

Since P = 0, when r = R, so c1 = v
𝒓𝟐

𝑹
 

Thus P = vr2(
𝟏

𝒓′
−

𝟏

𝑹
) 

Putting r = r, we find 

  P = v  r2(
𝟏

𝒓
−

𝟏

𝑹
) 

which gives the impulsive pressure on the surface of the sphere. 

The whole impulse on the sphere  

  = 4r2P 

  = 4 r2 vr2(
𝟏

𝒓
−

𝟏

𝑹
) 

  = 4 r3v(Rr)/R. 

and the whole momentum destroyed 

  = ∫  
𝑹

𝒓
𝟒𝝅 𝒓′𝟐𝝆𝒗′𝒅𝒓′ 

  = 4 ∫  
𝑹

𝒓
𝒓𝟐𝒗𝒅𝒓′    | r2 v = r2v 

  = 4 r2 v(Rr) 

Example: A sphere of radius a is surrounded by an infinite liquid of density , the pressure at 

infinity being .  The sphere is suddenly annihilated.  Show that the pressure at distance r from 
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the centre immediately falls to (𝟏 −
𝒂

𝒓
).  Show further that if the liquid is brought to rest by 

impinging on a concentric sphere of radius 
𝒂

𝟐
, the impulsive pressure sustained by the surface of 

the sphere is √𝟕𝜫𝝆𝒂𝟐/𝟔. 

Solution. Let v be the velocity at a distance r from the centre of the sphere at any time t and p be 

the pressure.  The equation of continuity (case of spherical symmetry) is  

  
𝟏

𝒓′
𝟐

𝒅

𝒅𝒓′
(𝒓′

𝟐𝒗′) = 𝟎 ⇒ 𝒓′
𝟐𝒗𝟐 = 𝒇(𝒕)     (1) 

Equation of motion is  

  
𝝏𝒗′

𝝏𝒕
+ 𝒗′

𝝏𝒗′

𝝏𝒓′
=

−𝟏

𝝆

𝝏𝒑

𝝏𝒓′
      | No body forces 

or  
𝒇̇(𝒕)

𝒓′
𝟐 + 𝒗′

𝝏𝒗′

𝝏𝒓′
= −

𝟏

𝝆

𝝏𝒑

𝝏𝒓′
 

Integrating w.r.t. r, we get 

  
𝒇̇(𝒕)

𝒓′
+

𝟏

𝟐
𝒗′
𝟐 = −

𝒑

𝝆
+ 𝑪 

Since r     p = , v = 0 so that C = /. 

Thus 
−𝒇̇(𝒕)

𝒓′
+

𝟏

𝟐
𝒗′
𝟐 =

𝜫−𝒑

𝝆
         (2) 

When, sphere is suddenly annihilated i.e. r = a, v = 0, p = 0, then 

  −
𝒇̇(𝒕)

𝒂
= 𝜫/𝝆𝒊. 𝒆. 𝒇̇(𝒕) = −

𝜫𝒂

𝝆
     (3) 

The velocity v vanishes just after annihilation, so from (2) and (3), we get 

  
𝜫𝒂

𝝆𝒓′
=

𝜫−𝒑

𝝆
⇒

𝒂𝜫

𝒓′
= 𝜫− 𝒑 

Thus, the pressure at the time of annihilation (r = r) is 

  
𝒂𝜫

𝒓
= 𝜫 − 𝒑 ⇒ 𝒑 = 𝜫(𝟏 −

𝒂

𝒓
) 

which proves the first result. 

Now, let P be the impulsive pressure at a distance r, then from the relation   P = 𝒒̄, we get 

−
𝒅𝑷

𝒅𝒓′
= v     dP = v dr 

From the equation of continuity, we have  

  r2v = r2 v = f(t)        (4) 

So   dP = v (r2/r2) dr        (5) 

where r is the radius of the inner surface and v is the velocity there. 

Integrating (5), we get 

  P = v (r2/r) + C1 

When r, P = 0 so that C1 = 0 

Thus    P = v(r2/r)          (6) 

Equation (6) determines the impulsive pressure P at a distance r.  The velocity v at the inner 

surface of the sphere (p = 0) is obtained from (2) as  
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  −
𝒇̇(𝒕)

𝒓
+

𝟏

𝟐
𝒗𝟐 =

𝜫

𝝆
        (7) 

From (4), 𝒇̇(𝒕) =
𝒅

𝒅𝒕
(𝒓𝟐𝒗) = 𝒓𝟐

𝒅𝒗

𝒅𝒕
+ 𝒗.𝟐𝒓

𝒅𝒓

𝒅𝒕
= 𝒓𝟐

𝒅𝒗

𝒅𝒓

𝒅𝒓

𝒅𝒕
+ 𝟐𝒓𝒗𝟐 

        
𝒇̇(𝒕)

𝒓
= 𝒓𝒗

𝒅𝒗

𝒅𝒓
+ 𝟐𝒗𝟐  

 

Thus (7) becomes 

  r v 
𝒅𝒗

𝒅𝒓
+ 𝟐𝒗𝟐 −

𝟏

𝟐
𝒗𝟐 = −

𝜫

𝝆
 

        or            rv
𝒅𝒗

𝒅𝒓
+

𝟑

𝟐
𝒗𝟐 =

−𝜫

𝝆
 

                     2r3v 
𝒅𝒗

𝒅𝒓
+ 𝟑𝒗𝟐𝒓𝟐 =

−𝟐𝜫

𝝆
𝒓𝟐    |Multiplying by r2 

                      
𝒅(𝒓𝟑𝒗𝟐)

𝒅𝒓
= −

𝟐𝜫

𝝆
𝒓𝟐 

Integrating, we get 

  r3v2 = 
𝟐𝜫

𝟑𝝆
𝒓𝟑 + 𝑪𝟐 

Since r = a, v = 0 so we find C2 = 
𝟐𝜫𝒂𝟑

𝟑𝝆
 

Therefore, r3 v2 = 
𝟐𝜫

𝟑𝝆
(𝒂𝟑 − 𝒓𝟑) 

The velocity v at the surface of the sphere r = a/2, on which the liquid strikes, is  

  v2 = 
𝟐𝜫

𝟑𝝆

𝒂𝟑−(𝒂/𝟐)𝟑

(𝒂/𝟐)𝟑
=

𝟏𝟒

𝟑

𝜫

𝝆
 

From relation (6), using r = a/2, we get  

  P = 
𝝆

𝟒
√
𝟏𝟒

𝟑

𝜫

𝝆
.
𝒂𝟐

𝒓′
        (8) 

which determines the impulsive pressure at a distance r’ from the centre of the sphere. 

Thus, the impulsive pressure at the surface of the sphere of radius a/2 is given by  

 

  P = 
𝝆

𝟒
√
𝟏𝟒

𝟑

𝜫

𝝆

𝒂𝟐

𝒂/𝟐
= √𝟕𝜫𝝆𝒂𝟐/𝟔  

Hence the result 

5.6 Check Your Progress: 

i) Show that the velocity field 𝒖(𝒙, 𝒚) =
𝑨(𝒙𝟐−𝒚𝟐)

(𝒙𝟐+𝒚𝟐)
𝟐 , 𝒗(𝒙, 𝒚) =

𝟐𝑨𝒙𝒚

(𝒙𝟐+𝒚𝟐)
𝟐  , 𝒘 = 𝟎 satisfies the 

equation of motion for inviscid incompressible flow. Determine the pressure associated with this 

fluid. 

[Ans: 𝒑 =
𝑨𝝆𝟐

𝟐(𝒙𝟐+𝒚𝟐)
𝟐] 

ii) Determine the pressure, if the velocity field 𝒒𝒓, 𝒒𝜽 = 𝑨𝒓 + 𝑩, 𝒒𝒛 = 𝟎 satisfies the equation of 

motion 𝝆
𝒒𝜽
𝟐

𝒓
=

𝒅𝒑

𝒅𝒓
, where A and B are arbitrary constants. 

[Ans: 𝒑 = 𝝆{
𝟏

𝟐
𝑨𝟐𝒓𝟐 −

𝑩𝟐

𝟐𝒓𝟐
+ 𝟐𝑨𝑩𝒍𝒐𝒈 𝒓} + 𝑪] 
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iii) Prove that the equation of motion is satisfied for an inviscid, incompressible, steady flow with 

negligible body force whose velocity components are given by 

𝒒𝒓 = 𝑼(𝟏 −
𝑨𝟑

𝒓𝟑
) 𝒄𝒐𝒔𝜽, 𝒒𝜽 = −𝑼(𝟏+

𝑨𝟑

𝟐𝒓𝟑
) 𝐬𝐢𝐧𝜽, 𝒒𝝓 = 𝟎 , where A is constant. Find the resultant 

velocity when 𝒓 → ∞. 

iv) A quantity of liquid occupies a length 𝟐𝒍 of a straight tube of uniform small bore under the 

action of a force to a point in the tube varying as the distance from that point. Determine the 

motion and the pressure. 

v) If 𝒘̃ is the impulsive pressure; 𝝓,𝝓′ the velocity potential immediately before and after an 

impulse act, V is the potential of impulses, prove that 𝒘̃ + 𝝆 𝑽 + 𝝆(𝝓 −𝝓′) = 𝒄𝒐𝒏𝒔𝒕., where 𝝆 is 

the density of the fluid. 

5.7 Summary: In this chapter, the impulsive motion equation, Cauchy's pressure equation, 

Bernoulli's equations, Lagrange’s equation of motion and Euler's equation of motion are derived to 

explore the issues with fluid flows. The Bernoulli's equation deals with the conservation of a fluid's 

kinetic, potential, and flow energy as well as their conversion to one another in flow regions where 

net viscous forces are negligible and other constraining circumstances are present. Also Bernoulli’s 

theorem is stated and proved. 

5.8 Keywords: momentum, impulsive motion, pressure, equation of motion, Bernoulli’s theorem. 

 

 

5.9 Self-Assessment Test: 

SA1: Derive Bernoulli’s equation for unsteady motion of an incompressible fluid and hence derive 

expression for steady motion. 

SA2: If 𝒖 =
𝒂𝒙−𝒃𝒚

𝒙𝟐+𝒚𝟐
, 𝒗 =

𝒂𝒚+𝒃𝒙

𝒙𝟐+𝒚𝟐
 and w=0, investigate the nature of the motion of the liquid and also 

obtain the velocity potential and pressure at any point P. 

SA3: Obtain Bernoulli’s equation for steady irrotational motion of an incompressible fluid. 

SA4: Obtain equation of motion under impulsive forces in Cartesian coordinates and prove that 

impulse satisfies Laplace’s equation. 

SA5: The particle velocity for a fluid motion referred to rectangular axes is given by the 

components 

𝒖 = 𝑨 𝐜𝐨𝐬
𝝅𝒙

𝟐𝒂
𝐜𝐨𝐬

𝝅𝒛

𝟐𝒂
, 𝒗 = 𝟎,𝒘 = 𝑨𝐬𝐢𝐧

𝝅𝒙

𝟐𝒂
𝐬𝐢𝐧

𝝅𝒛

𝟐𝒂
, where A is constant. Show that this a possible 

motion of an incompressible fluid under no body forces in an infinite fixed rigid tube, −𝒂 ≤ 𝒙 ≤

𝒂, 𝟎 ≤ 𝒛 ≤ 𝟐𝒂. Also, find the pressure associated with this velocity field. 
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CHAPTER-6 

IRROTATIONAL MOTION 

 

6.0 Learning Objectives: After reading this chapter, you should be able to understand the 

boundary condition during flow of the fluid, work with energy equation, circulation, vorticity, 

vorticity equation, permanence of irrototations, axially symmetric flows and Kelvin Circulation 

theorem. 

 

 

6.1 Boundary Conditions: When fluid is in contact with a rigid solid surface (or with another 

unmixed fluid), the following boundary condition must be satisfied in order to maintain contact: 

 The fluid and the surface with which contact is preserved must have the same velocity 

normal to the surface. 

Let n denote a normal unit vector drawn at the point P of the surface of contact and let q denotes 

the fluid velocity at P. When the rigid surface of contact is at rest, we must have q.n=0 at each 

point of the surface. This expresses the condition that the normal velocities are both zero and hence 

the fluid velocity is tangential to the surface at its each point as shown in figure (a). 

 
Next, let the rigid surface be in motion and let u be its velocity at P (figure (b)). Then we must 

have  

𝒒.𝒏 = 𝒖. 𝒏    𝒐𝒓   (𝒒 − 𝒖). 𝒏 = 𝟎  

Which expresses for the fact that there must be no normal velocity at P between boundary and 

fluid, i.e., the velocity of the fluid relative to the boundary is tangential to the boundary at its each 

point. 

  In particular, if the boundary surface is at rest, then 𝒖 = 0 and the condition becomes  

𝒒 ⋅ 𝒏 = 0         (2) 

Another type of boundary condition arrives at a free surface where liquid borders a vacuum e.g. 

the interface between liquid and air is usually regarded as free surface.  For this free surface, 

pressure p satisfies  

  𝑃 = Π          (3) 

where Π denotes the pressure outside the fluid i.e. the atmospheric pressure.  Equation (3) is a 

dynamic boundary condition.  

Third type of boundary condition occurs at the boundary between two immiscible ideal 

fluids in which the velocities are 𝒒1 𝑎𝑛𝑑 𝒒2 and pressures are 𝑝1 𝑎𝑛𝑑 𝑝2 respectively. 

Now, we find the condition that a given surface satisfies to be a boundary surface. 
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Article : To obtain the differential equation satisfied by boundary surface of a fluid in motion 

or 

To find the condition that the surface.  

  F(𝒓, 𝑡) = 𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 0 

may represent a boundary surface:  

If q be the velocity of fluid and u  be the velocity of the boundary surface at a point P of contact, 

then 

  (𝒒 − 𝒖) ⋅ 𝒏 = 0 ⇒ 𝒒. 𝒏 = 𝒖.𝒏      (1) 

where 𝒒 − 𝒖 is the relative velocity and n is a unit vector normal to the surface at P. 

The equation of the given surface is 

  F(𝒓, 𝑡) = 𝐹(𝑥, 𝑦, 𝑧, 𝑡) = 0       (2) 

We know that a unit vector normal to the surface (2) is given by 

  𝒏 =
𝛻𝐹

|𝛻𝐹|
 

Thus, from (1), we get 

  𝒒 ⋅ 𝛻𝐹 = 𝒖 ⋅ 𝛻𝐹        (3) 

since the boundary surface is itself in motion, therefore at time (t + t), its equation is given by 

  F(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) = 0.       (4) 

 

From (2) and (4), we have 

  F(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝐹(𝒓, 𝑡) = 0 

i.e. F(𝒓 + 𝛿𝒓, 𝑡 + 𝛿𝑡) − 𝐹(𝒓, 𝑡 + 𝛿𝑡) + 𝐹(𝒓, 𝑡 + 𝛿𝑡) − 𝐹(𝒓, 𝑡) = 0 

By Taylor’s series, we can have  

  (𝛿𝒓 ⋅ 𝛻)𝐹(𝒓, 𝑡 + 𝛿𝑡) + 𝛿𝑡
𝜕

𝜕𝑡
𝐹{𝒓, 𝑡} = 0 

 |∵ 𝐹(𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧) = 𝐹(𝑥, 𝑦, 𝑧) + 𝛿𝑥
𝜕𝐹

𝜕𝑥
+ 𝛿𝑦

𝜕𝐹

𝜕𝑦
+ 𝛿𝑧

𝜕𝐹

𝜕𝑧
+. . . +𝛿𝒓 ⋅ 𝛻𝐹 

     = F(x, y, z) +𝛿𝒓 ⋅ 𝛻𝐹 

   (
𝛿𝒓

𝛿𝑡
⋅ 𝛻)𝐹(𝒓, 𝑡 + 𝛿𝑡) +

𝜕𝐹

𝜕𝑡
= 0 

Taking limit as t0, we get 

  (
𝑑𝒓

𝑑𝑡
. 𝛻)𝐹 +

𝜕𝐹

𝜕𝑡
= 0 

                   
𝜕𝐹

𝜕𝑡
+ (𝒒. 𝛻)𝐹 = 0   𝑖. 𝑒.     

𝐷𝐹

𝐷𝑡
= 0                             (5) 

which is the required condition for any surface F to be a boundary surface 

 

Corollary 1. If q = (u, v, w), then the condition (5) becomes 

  
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0 

In case, the surface is rigid and does not move with time, then 
𝜕𝐹

𝜕𝑡
= 0and the boundary condition is

  𝑢
𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+𝑤

𝜕𝐹

𝜕𝑧
= 0𝑖. 𝑒. (𝒒 ⋅ 𝛻)𝐹 = 0 
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Corollary 2.  The boundary conditions  

  
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0 

is a linear equation and its solution gives 

  
𝑑𝑡

1
=

𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
           

𝐷

𝐷𝑡
≡

𝑑

𝑑𝑡
  𝑖𝑛  𝐿𝑎𝑔𝑟𝑎𝑛𝑔𝑖𝑎𝑛   𝑣𝑖𝑒𝑤 

   
𝑑𝑥

𝑑𝑡
= 𝑢,

𝑑𝑦

𝑑𝑡
= 𝑣,

𝑑𝑧

𝑑𝑡
= 𝑤 

which are the equations of path lines. 

Hence once a particle is in contact with the surface, it never leaves the surface.  

Corollary 3.  From equation (5), we have 

  𝒒 ⋅ 𝛻𝐹 =
−𝜕𝐹

𝜕𝑡
 

   𝒒 ⋅
𝛻𝐹

|𝛻𝐹|
=

−𝜕𝐹 𝜕𝑡⁄

|𝛻𝐹|
  

   𝒒 ⋅ 𝒏 =
−𝜕𝐹 𝜕𝑡⁄

|𝛻𝐹|
 

which gives the normal velocity. 

Also, from (1), we get 

𝒖. 𝒏 =
−𝜕𝐹/𝜕𝑡

|∇𝐹|
               ∵    𝒒. 𝒏 = 𝒖.𝒏 

which gives the normal velocity of the boundary surface. 

Example: Obtain the condition for the surface z = f(x, y, t) to be the boundary of a moving fluid. 

Solution. Write 𝐹(𝑥, 𝑦, 𝑧, 𝑡)  =  𝑧 𝑓(𝑥, 𝑦, 𝑡)  =  0      (1) 

By definition 
𝐷𝐹

𝐷𝑡
=

𝜕𝐹

𝜕𝑡
+ (𝒒 ⋅ 𝛻)𝐹 = 0       

 (2) 

is the required condition for the surface F(𝒓, 𝑡) = 0 to be the boundary of a moving fluid. 

From (1) and (2), we get 

  
𝐷𝑧

𝐷𝑡
−

𝜕𝑓

𝜕𝑥

𝐷𝑥

𝐷𝑡
−

𝜕𝑓

𝜕𝑦

𝐷𝑦

𝐷𝑡
−

𝜕𝑓

𝜕𝑡

𝐷𝑡

𝐷𝑡
= 0 

   w  u
𝜕𝑓

𝜕𝑥
− 𝑣

𝜕𝑓

𝜕𝑦
−

𝜕𝑓

𝜕𝑡
= 0 

i.e.   
𝜕𝑓

𝜕𝑡
+ 𝑢

𝜕𝑓

𝜕𝑥
+ 𝑣

𝜕𝑓

𝜕𝑦
−𝑤 = 0 

 

Example: Show that the ellipsoid 

  
𝒙𝟐

𝒂𝟐𝒌𝟐𝒕𝟐𝒏
+ 𝒌𝒕𝟒 [(

𝒚

𝒃
)
𝟐

+ (
𝒛

𝒄
)
𝟐

] = 𝟏 

is a possible form of the boundary surface of a liquid?  

 

Solution. The surface 𝐹(𝑥, 𝑦, 𝑧, 𝑡)  =  0 can be a possible boundary surface, if it satisfies the 

boundary condition. 

  
𝐷𝐹

𝐷𝑡
=

𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0      (1) 

where u, v, w satisfies the equation of continuity 

  𝛻 ⋅ 𝒒 = 0           𝑖. 𝑒.        
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0      (2) 
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Here, 𝐹(𝑥, 𝑦, 𝑧, 𝑡) ≡
𝑥2

𝑎2𝑘2𝑡2𝑛
+ 𝑘𝑡𝑛 [(

𝑦

𝑏
)
2

+ (
𝑧

𝑐
)
2

] − 1 = 0 

 
𝜕𝐹

𝜕𝑡
= −

𝑥2.2𝑛

𝑎2𝑘2𝑡2𝑛+1
+ 4𝑘𝑡𝑛−1 [(

𝑦

𝑏
)
2

+ (
𝑧

𝑐
)
2

] 

 
𝜕𝐹

𝜕𝑥
=

2𝑥

𝑎2𝑘2𝑡2𝑛
,
𝜕𝐹

𝜕𝑦
=

2𝑘𝑡4𝑦

𝑏2
,
𝜕𝐹

𝜕𝑧
=

2𝑘𝑡𝑛𝑧

𝑐2
. 

Thus, from (1), we get 

  
−𝑥2

𝑎2𝑘2
2𝑛

𝑡2𝑛+1
+ 𝑛𝑘𝑡𝑛−1 [(

𝑦

𝑏
)
2

+ (
𝑧

𝑐
)
2

] 

          + 
2.𝑥𝑢.

𝑎2𝑘2𝑡2𝑛 .
+

2𝑘𝑡𝑛𝑦𝑣

𝑏2
+

2𝑘𝑡𝑛.𝑧𝑤

𝑐2
= 0 

or  (𝑢 −
4𝑥

𝑡
)

2𝑥

𝑎2𝑘2𝑡2𝑛
+ (𝑣 +

4𝑦

2𝑡
)
2𝑘𝑦𝑡4

𝑏2
+ (𝑤 +

𝑛𝑧

2𝑡
)
2𝑘𝑧𝑡𝑛

𝑐2
= 0 

which will hold, if we take 

  u 
−𝑛𝑥

𝑡
= 0, 𝑣 +

𝑛𝑦

2𝑡
= 0,𝑤 +

𝑛𝑧

2𝑡
= 0 

i.e.   u =
𝑛𝑥

𝑡
, 𝑣 = −

𝑛𝑦

2𝑡
, 𝑤 = −

𝑛𝑧

2𝑡
       (3) 

It will be a justifiable step if equation (2) is satisfied. 

i.e.   
𝑛

𝑡
+

−𝑛

2𝑡
+

−𝑛

2𝑡
= 0. 

which is true 

Hence the given ellipsoid is a possible form of boundary surface of a liquid.  

 

Example: Show that the surface  

  
𝒙𝟐

𝒂𝟐
𝒕𝒂𝒏𝟐 𝒕 +

𝒚𝟐

𝒃𝟐
𝒄𝒐𝒕𝟐 𝒕 = 𝟏. 

is a possible form of boundary surface of a fluid.  Find also the normal velocity. 

Solution. Here, F(x, y, z, t) ≡
𝑥2

𝑎2
𝑡𝑎𝑛2 𝑡 +

𝑦2

𝑏2
𝑐𝑜𝑡2 𝑡 − 1 = 0    (1) 

   
𝜕𝐹

𝜕𝑡
=

𝑥2

𝑎2.
(2 𝑡𝑎𝑛 𝑡) 𝑠𝑒𝑐2 𝑡 +

𝑦2

𝑏2.
(2 𝑐𝑜𝑡 𝑡)(−𝑐𝑜𝑠 𝑒 𝑐2𝑡) 

     
𝜕𝐹

𝜕𝑥
=

2𝑥

𝑎2.
(𝑡𝑎𝑛2 𝑡),    

𝜕𝐹

𝜕𝑦
=

2𝑦

𝑏2
(𝑐𝑜𝑡2 𝑡);     

𝜕𝐹

𝜕𝑧
= 0 

The condition of boundary surface is 

  
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0 

Here, it becomes 

  
2𝑥2

𝑎2
(𝑡𝑎𝑛 𝑡 𝑠𝑒𝑐2 𝑡) −

2𝑦2

𝑏2
(𝑐𝑜𝑡 𝑡 𝑐𝑜𝑠 𝑒 𝑐2𝑡) +

2𝑥𝑢.

𝑎2.
𝑡𝑎𝑛2 𝑡 +

2𝑦𝑣

𝑏2
𝑐𝑜𝑡2 𝑡 = 0 

or   
2𝑥

𝑎2
𝑡𝑎𝑛2 𝑡 (𝑢 +

𝑥 𝑠𝑒𝑐2 𝑡

𝑡𝑎𝑛 𝑡
) +

2𝑦

𝑏2
𝑐𝑜𝑡2 𝑡 (𝑣 −

𝑦 𝑐𝑜𝑠 𝑒𝑐2𝑡

𝑐𝑜𝑡 𝑡
) = 0 

which will be satisfied if we take 

  u = 
−𝑥 𝑠𝑒𝑐2 𝑡

𝑡𝑎𝑛 𝑡
, 𝑣 =

𝑦 𝑐𝑜𝑠 𝑒𝑐2𝑡

𝑐𝑜𝑡 𝑡
 

This will be a justifiable step if the equation of continuity i.e., 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 is satisfied. 

Now,   
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
=

−1

𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠 𝑡
+

1

𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠 𝑡
+ 0 = 0 

Hence equation (1) is a possible form of the boundary surface of the liquid.  
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Now, normal velocity = 𝒒.𝒏 =
−𝜕𝐹 𝜕𝑡⁄

|𝛻𝐹|
 

   = 
−𝜕𝐹 𝜕𝑡⁄

[(
𝜕𝐹

𝜕𝑥
)
2
+(

𝜕𝐹

𝜕𝑦
)
2
]
1/2 

   = 
−[
2𝑥2

𝑎2.
𝑡𝑎𝑛 𝑡 𝑠𝑒𝑐2 𝑡−

2𝑦2

𝑏2
𝑐𝑜𝑡 𝑡 𝑐𝑜𝑠 𝑒𝑐2𝑡]

[(
2𝑥

𝑎2
𝑡𝑎𝑛2 𝑡)

2
+(

2𝑦

𝑏2
𝑐𝑜𝑡2 𝑡)

2
]
1/2  

   =
𝑎2𝑦2 𝑐𝑜𝑡 𝑡 𝑐𝑜𝑠 𝑒𝑐2𝑡−𝑏2𝑥2 𝑡𝑎𝑛 𝑡 𝑠𝑒𝑐2 𝑡

(𝑏4𝑥2 𝑡𝑎𝑛4 𝑡+𝑎4𝑦2 𝑐𝑜𝑡4 𝑡)1/2
 

 

Example: Determine the restrictions on f1, f2, f3 if 

  
𝒙𝟐

𝒂𝟐
𝒇𝟏(𝒕) +

𝒚𝟐

𝒃𝟐
𝒇𝟐(𝒕) +

𝒛𝟐

𝒄𝟐
𝒇𝟑(𝒕) = 𝟏 

is a possible form of boundary surface of a liquid. 

Solution. Here, F 
𝑥2

𝑎2
𝑓1(𝑡) +

𝑦2

𝑏2
𝑓2(𝑡) +

𝑧2

𝑐2
𝑓3(𝑡) − 1 = 0     (1) 

The boundary surface condition is 

  
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0       (2) 

   
𝑥2

𝑎2
𝑓1
′ +

𝑦2

𝑏2
𝑓2
′ +

𝑧2

𝑐2
𝑓3
′ + 𝑢

2𝑥

𝑎2
𝑓1 + 𝑣

2𝑦

𝑏2
𝑓2 +𝑤

2𝑧

𝑐2
𝑓3 = 0 

   
2𝑥

𝑎2
𝑓1 (𝑢 +

𝑥𝑓1
′

2𝑓1
) +

2𝑦

𝑏2
𝑓2 (𝑣 +

𝑦𝑓2
′

2𝑓2
) +

2𝑧

𝑐2
𝑓3 (𝑤 +

𝑧𝑓3
′

2𝑓3
) = 0 

This equation will be satisfied if we take 

  u = 
−𝑥𝑓1

′

2𝑓1
, 𝑣 =

−𝑦𝑓2
′

2𝑓2
, 𝑤 =

−𝑧𝑓3
′

2𝑓3
 

where u, v, w must, satisfy the equation of continuity. 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑢

𝜕𝑧
= 0 

i.e., 
1

2
[
𝑓1
′

𝑓1
+

𝑓2
′

𝑓2
+

𝑓3
′

𝑓3
] = 0 

Integrating, we get 

  log f1 f2 f3 = constant 

i.e.  f1 f2 f3 = constant 

which is the required restriction.  

 

Example: In the steady motion of homogeneous liquid if the surfaces f1 = a1 f2 = a2 define the 

streamlines, prove that the most general values of the velocity components.  u, v, w is 

   

  F(f1, f2)
𝝏(𝒇𝟏,𝒇𝟐)

𝝏(𝒚,𝒛)
,   𝑭(𝒇𝟏, 𝒇𝟐)

𝝏(𝒇𝟏,𝒇𝟐)

𝝏(𝒛,𝒙)
, F(f1, f2)

𝝏(𝒇𝟏,𝒇𝟐)

𝝏(𝒙,𝒚)
. 

where F is any arbitrary function. 

 

Solution. Here, the motion is given to be steady, therefore streamlines are independent of t i.e., f1 

& f2 are functions of x, y, z only. Differentiating f1 = a1, f2 = a2, we get 

  
𝜕𝑓1

𝜕𝑥
𝑑𝑥 +

𝜕𝑓1

𝜕𝑦
𝑑𝑦 +

𝜕𝑓1

𝜕𝑧
𝑑𝑧 = 0        (1) 
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𝜕𝑓2

𝜕𝑥
𝑑𝑥 +

𝜕𝑓2

𝜕𝑦
𝑑𝑦 +

𝜕𝑓2

𝜕𝑧
𝑑𝑧 = 0.       (2) 

Solving these, we get 

  
𝑑𝑥

𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑧
−
𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑦

=
𝑑𝑦

𝜕𝑓1
𝜕𝑧

𝜕𝑓2
𝜕𝑥

−
𝜕𝑓1
𝜕𝑥

𝜕𝑓2
𝜕𝑧

=
𝑑𝑧

𝜕𝑓1
𝜕𝑥

𝜕𝑓2
𝜕𝑦

−
𝜕𝑓1
𝜕𝑦

𝜕𝑓2
𝜕𝑥

 

i.e.  
𝑑𝑥

𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)

=
𝑑𝑦

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)

=
𝑑𝑧

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)

       (3) 

But the differentiating equations of streamline are. 

  
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
         (4) 

Comparing (3) and (4), we get  

  
𝑢

𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)

=
𝑣

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)

=
𝑤

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)

= 𝐹 (say) 

  u = F 
𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
, 𝑣 = 𝐹

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
𝑤 = 𝐹

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
. 

Now, we shall determine the nature of F. 

For possible motion, the velocity components must satisfy the equation of continuity namely  

  
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0 

 [
𝜕𝐹

𝜕𝑥
.
𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
+ 𝐹.

𝜕

𝜕𝑥.

𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
] + [

𝜕𝐹

𝜕𝑦

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
+ 𝐹.

𝜕

𝜕𝑦.

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
] 

      + [
𝜕𝐹

𝜕𝑧
.
𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
+ 𝐹.

𝜕

𝜕𝑧.

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
] = 0      (5) 

But 
𝜕

𝜕𝑥

𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
+

𝜕

𝜕𝑦

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
+

𝜕

𝜕𝑧

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
= 0  | By the property of Jacobian 

 (5)  
𝜕𝐹

𝜕𝑥

𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
+

𝜕𝐹

𝜕𝑦

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
+

𝜕𝐹

𝜕𝑧

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
= 0 

 
|
|

𝜕𝐹

𝜕𝑥

𝜕𝐹

𝜕𝑦

𝜕𝐹

𝜕𝑧

𝜕𝑓1

𝜕𝑥

𝜕𝑓1

𝜕𝑦

𝜕𝑓1

𝜕𝑧

𝜕𝑓2

𝜕𝑥

𝜕𝑓2

𝜕𝑦

𝜕𝑓2

𝜕𝑧

|
|
= 0𝑖. 𝑒.

𝜕(𝐹,𝑓1,𝑓2)

𝜕(𝑥,𝑦,𝑧)
= 0 

But the vanishing Jacobian means that F, f1, f2 are not independent. 

Therefore, F is a function of f1 & f2 i.e., F = F (f1, f2) 

Hence u = F(f1, f2)
𝜕(𝑓1,𝑓2)

𝜕(𝑦,𝑧)
, 𝑣 = 𝐹(𝑓1, 𝑓2)

𝜕(𝑓1,𝑓2)

𝜕(𝑧,𝑥)
, 𝑤 = 𝐹(𝑓1, 𝑓2)

𝜕(𝑓1,𝑓2)

𝜕(𝑥,𝑦)
. 

 

Example: Show that all necessary conditions can be satisfied by a velocity potential of the form 

   =  x2 + y2 + z2 

and the boundary surface of the form 

  F  ax4 + by4 + cz4 X(t) = 0 

where X(t) is a given function of time and , , , a, b, c are suitable functions of time. 

 

Solution. Here, the velocity potential is given, therefore the flow is of potential kind.  Thus, we 

have   𝒒 = −𝛻𝜑.= −(
𝜕𝜑

𝜕𝑥
,
𝜕𝜑

𝜕𝑦
,
𝜕𝜑

𝜕𝑧
) = (u, v, w)     (1) 
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Also, we know that the necessary condition, that 𝑞̄ must satisfy, is the equation of continuity. 

i.e., 𝛻 ⋅ 𝒒 = 0       𝑜𝑟     𝛻(−𝛻𝜑) = 0     i.e., 2 = 0 

i.e.,  
𝜕2𝜑

𝜕𝑥2
+

𝜕2𝜑

𝜕𝑦2
+

𝜕2𝜑

𝜕𝑧2
= 0 

In the present case it becomes 

  2 + 2 + 2 = 0    +  +  = 0      (2) 

Now, the boundary surface is 

  F  ax4 + by4 + cz4  X(t) = 0       (3) 

and the condition which F must satisfy, is 

  
𝜕𝐹

𝜕𝑡
+ 𝑢

𝜕𝐹

𝜕𝑥
+ 𝑣

𝜕𝐹

𝜕𝑦
+ 𝑤

𝜕𝐹

𝜕𝑧
= 0       (4) 

Using (1) and (3) in (4), we obtain 

  x4 a + y4 b + z4 c  X(t) 2x(4ax3)  2y(4by3)  2z(4cz3) = 0 

i.e., x4(a8a) + y4(b8b) + z4(c8c)X(t) = 0      (5) 

where dashes denote derivative with respect to time t. 

Since (3) and (5) both must hold for all points (x, y, z) on the surface, so they are identical.   

Comparing these we get 

  
𝑎′−8𝛼𝑎

𝑎
=

𝑏′−8𝛽𝑏

𝑏
=

𝑐′−8𝛾𝑐

𝑐
=

𝑋′(𝑡)

𝑋(𝑡)
 

These conditions will hold if ,,, a, b, c are some suitable functions of time, where  +  +  = 0.   

Hence  and F = 0 satisfy the necessary condition for velocity potential and boundary surface if , 

, , a, b, c are some suitable functions of time.  

 

6.2 Circulation: The flow round a closed curve C is known as circulation and is usually denoted 

by 𝜞. Thus  

𝚪 = ∮𝒒.𝒅𝒓
 

𝑪

 

Obviously, when a single-valued velocity potential 𝝓 exists, circulation round C is zero; it being 

equal to 𝝓𝑨 −𝝓𝑨. 

 

Stokes’ theorem :  This theorem deals with the concept of rotation in terms of circulation and 

states as under 

 If q is the velocity vector point function and S is a surface bounded by a curve C, then 

∮𝒒.𝒅𝒓
 

𝑪

= ∫ 𝒄𝒖𝒓𝒍 𝒒. 𝒅𝑺.  𝒊. 𝒆. ,   𝚪 = ∫𝛀.𝒏 𝒅𝑺.
 

𝑺

 

𝑺

 

Where the unit normal vector n at any point of S is drawn in the sense in which a right-handed 

screw would move when rotate in the sense of description of C. 

 

6.3 Kelvin’s Circulation Theorem: The circulation  Γ around any material closed contour C 

moving with the inviscid (non-viscous) fluid is constant for all times, provided that the external 

forces (body forces) are conservative and derivable from a single valued potential function 𝜒 and 

the density is a function of pressure only.  
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Proof. The circulation round a closed curve C of fluid particles is defined by  

   = ∮ 𝒒 . 𝑑𝒓
𝐶

, 

Where q is the velocity and r is the position vector of a fluid particle at any time t. 

Time derivative of  following the motion of fluid is  

  
𝑑𝛤

𝑑𝑡
=

𝑑

𝑑𝑡
∮ 𝒒. 𝒅𝒓
 

𝑪
= ∮

𝑑

𝑑𝑡
(𝒒 ⋅ 𝑑𝒓)

𝐶
 

         =∮ [
𝑑𝒒

𝑑𝑡
⋅ 𝑑𝒓 + 𝒒 ⋅

𝑑

𝑑𝑡
(𝑑𝒓)]

𝐶
 

       = ∮ [
𝑑𝒒

𝑑𝑡
⋅ 𝑑𝒓 + 𝒒 ⋅ 𝑑𝒒]

𝐶
  (1) |∵

𝑑

𝑑𝑡
(𝑑𝒓) = 𝑑 (

𝑑𝒓

𝑑𝑡
) = 𝑑𝒒 

Since the system of forces is conservative; therefore F=𝜒, where 𝜒 is a potential function’ 

 Euler’s equation of motion is  

   𝑝 =  𝜒
1

𝜌
  𝑝        (2) 

Multiplying each term of (2) scalarly by dr, we get 

  𝑑𝒓 ⋅
𝑑𝒒

𝑑𝑡
=𝑑𝒓 ⋅ 𝛻𝜒 −

1

𝜌
𝑑𝒓. p 

i.e.  
𝑑𝒒

𝑑𝑡
. 𝑑𝒓 = −𝑑𝜒 −

𝑑𝑝

𝜌
            |∵ 𝑑𝒓. 𝛻 ≡ 𝑑           (3) 

Thus from (1), we get 

  
𝑑𝛤

𝑑𝑡
= ∮ (−𝑑𝜒 −

𝑑𝑝

𝜌
+ 𝒒 ⋅ 𝑑𝒒)

𝐶
 

         =∮ [𝑑 (
1

2
𝒒𝟐 − 𝜒) −

1

𝜌
𝑑𝑝]

𝐶
 

         = ∮ 𝑑 (
1

2
𝑞2 − 𝜒) − ∮

1

𝜌
𝑑𝑝

𝐶𝐶
 

         = [
1

2
𝒒𝟐 − 𝛺]

𝐴

𝐴

− ∮
𝑑𝑝

𝜌𝐶
 

         = 0 ∮
𝑑𝑝

𝜌𝐶
         (4) 

where A is any point on the closed contour C.  Now, if density is a function of pressure only, then 

the integral ∮
𝑑𝑝

𝜌𝐶
 vanishes and hence we get 

  
𝑑𝛤

𝑑𝑡
= 0       = constant for all time  

 

Some Consequences of Circulation Theorem 

Corollary. I. In a closed-circuit C of fluid particles moving under the same conditions as in the 

theorem,  

  ∫ 𝑐𝑢𝑟𝑙𝒒. 𝑑𝑆 = ∫ 𝜔. 𝑑𝑆
𝑆𝑆

=constant      (5) 

where S is any open surface, whose sum is C.  To establish (5), we note that, by Stock’s theorem,  

  ∫ 𝑐𝑢𝑟𝑙𝒒. 𝑑𝑆 = ∮ 𝒒. 𝑑𝒓
𝐶𝑆

=  = constant 

This shows that the product of the cross-section and angular velocity as any point on a vortex 

filament is constant all along the vortex filament and for all times.  



 

113 

 

 

Corollary II. Under the conditions of the theorem, vortex lines move with the fluid. 

Proof. Let C be any closed curve drawn on the surface of a vortex tube.  Let S be the portion of the 

vortex tube rimmed by C.  By definition vortex lines lie on S. Thus 

  0 = ∫ 𝑐𝑢𝑟𝑙𝒒. 𝑑𝑆 = ∮ 𝒒. 𝑑𝒓
𝐶𝑆

     |  on surface circulation is zero  

Let C be a material curve and S be a material surface, then  

  
𝑑

𝑑𝑡
∫ (𝒏. 𝑐𝑢𝑟𝑙𝒒)𝑑𝑆 =
𝑆

∫
𝐷

𝐷𝑡
(𝒏. 𝑐𝑢𝑟𝑙𝒒)𝑑𝑆 = 0

𝑆
 

Thus 𝒏. 𝑐𝑢𝑟𝑙𝒒 remains zero, so that S remains a surface composed of vortex lines.  Consequently, 

vortex lines and tubes move with the fluid i.e. vortex filaments are composed of the same fluid 

particles.  This explains why smoke rings maintain their forms for long periods of time. 

 

Corollary III. Permanence of irrotational motion: 

 

Under the conditions of the theorem, if the flow is irrotational in a material region of the fluid at 

some particular time (e.g. t = 0 or t = t0), the flow is always irrotational in that material region 

thereafter. 

i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for ever afterwards 

provided the external forces are conservative and density 𝜌 is a function of pressure p only. 

  

Proof. Suppose that at some instant (t = t0), the fluid on the material surface S is irrotational  

Then, 𝑐𝑢𝑟𝑙 𝒒 = 𝝎= 0           (1) 

for all points of S. 

Let C be the boundary of surface S, then 

   = ∮ 𝑞. 𝑑𝑟 = ∫ (𝑛. 𝑐𝑢𝑟𝑙𝒒)
𝑆𝐶

dS = ∫ (𝒏. 𝜔)𝑑𝑠 = 0
𝑆

  | using (1) 

But by Kelvin’s circulation theorem,  is constant for all times.  Hence circulation  is zero for all 

subsequent times.  At any later time, 

  ∫ 𝑛. 𝜔
𝑆

dS = 0 

If we now take S to be non-zero infinitesimal element, say S, then 

   𝒏.𝜔 S = 0    𝜔 = 0 at all points of S for all times and the motion is irrotational 

permanently.  This proves the permanency of irrotational motion. 

 

Remarks 1) The above three corollaries are properties of vortex filaments. 

2) The Kelvin’s theorem is true whether the motion be rotational or irrotational  In case of 

irrotational motion, 𝝎 = 0  and thus  = 0.   

3) From the results of the theorem, we conclude that vortex filaments must either form closed 

curves or have their ends on the bounding surface of the fluid.  A vortex in an ideal fluid is 

therefore permanent. 

 

6.4 Vorticity Equation (Helmholtz Theorem):  If the external forces are conservative and 

density is a function of pressure p only, then  
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𝑫𝛀

𝒅𝒕
= (𝛀.𝛁 )𝒒 

Proof: Euler’s equation of motion for an ideal fluid under the action of a conservative body force 

with potential 𝜒 per unit mass is  

  
𝐷𝒒

𝐷𝑡
=

𝜕𝒒

𝜕𝑡
+ 𝛻 (

1

2
𝒒2) − 𝒒 × 𝛺 = −𝛻𝜒 −

1

𝜌
𝛻𝑝     (1) 

where the vorticity 𝛺 = 𝑐𝑢𝑟𝑙𝒒 = 𝛻 × 𝒒.  If the fluid has constant density, then taking curl of 

equation (1), we get 

   
𝜕𝒒

𝜕𝑡
+ 𝛻 × [𝛻 (

1

2
𝒒2)] − 𝛻 × (𝒒 × 𝛺) = (−𝛻𝜒 −

1

𝜌
𝛻𝑝) 

 
𝜕𝒒

𝜕𝑡
− 𝛻 × (𝒒 × 𝛺) = 0 

𝜕𝒒

𝜕𝑡
− (𝛻 × 𝒒) − 𝛻 × (𝒒 × 𝛺) = 0  

 
𝜕𝛺

𝜕𝑡
= 𝛻 × (𝒒 × 𝛺) 

       =(𝛺 ⋅ 𝛻)𝒒 − (𝒒 ⋅ 𝛻)𝛺 

  
𝜕𝒒

𝜕𝑡
+ (𝒒 ⋅ 𝛻)𝛺 = (𝛺 ⋅ 𝛻)𝒒 

i.e.  
𝐷𝛺

𝐷𝑡
= (𝛺 ⋅ 𝛻)𝒒        (2) 

which is the required vorticity equation. 

Equation (2) is called Helmholtz’s vorticity equation.  

The vorticity equation can also be written as 

𝑫

𝒅𝒕
(
𝛀

𝛒
)  = (

𝛀

𝛒
. 𝛁 )𝒒             (3) 

 

For two-dimensional motion, the vorticity vector Ω is perpendicular to the velocity vector q and 

the R.H.S. of (2) is identically zero.  Thus, for two dimensional motion of an ideal fluid, vorticity 

is constant.  

In the case, when body force is not conservative, equation (2) becomes 

  
𝐷𝛺

𝐷𝑡
= (𝛺 ⋅ 𝛻)𝒒 + 𝑐𝑢𝑟𝑙𝐹 

where F is body force per unit mass.  

If we write 𝛀 = 𝜉𝑖 + 𝜂𝑗 + 𝜁𝑘 ,    𝒒 = 𝑢𝒊 + 𝒗𝑗 + 𝑤𝒌   then the Cartesian form of (3) is 

(𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
+
𝜕

𝜕𝑡
 ) (

𝜉

𝜌
 ) =

1

𝜌
(𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁

𝜕

𝜕𝑧
) 𝑢 

(𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
+
𝜕

𝜕𝑡
 ) (

𝜂

𝜌
 ) =

1

𝜌
(𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁

𝜕

𝜕𝑧
)𝑣 

(𝑢
𝜕

𝜕𝑥
+ 𝑣

𝜕

𝜕𝑦
+ 𝑤

𝜕

𝜕𝑧
+
𝜕

𝜕𝑡
 ) (

𝜁

𝜌
 ) =

1

𝜌
(𝜉

𝜕

𝜕𝑥
+ 𝜂

𝜕

𝜕𝑦
+ 𝜁

𝜕

𝜕𝑧
)𝑤 
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Remark: For 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, was originally given by Stoke and Helmholtz and later on extended 

to the above form by Nanson. 

6.5 Intrinsic or Elastic Strain Energy:  

It is the energy stored in the fluid by virtue of compression and is analogous to the one stored in a 

stretched string.  Intrinsic energy E per unit mass measures the work done by unit mass of the fluid 

against external pressure, as it passes, under the supposed relation between p and 𝜌, from its 

actual state to some standard state in which the pressure and density are 𝑝0 𝑎𝑛𝑑 𝜌0. 

For the incompressible fluid, E=0. 

Since the work done in changing the shape of any volume 𝑉 𝑡𝑜 𝑉0  is ∫  𝑝𝑑𝑣 𝑎𝑛𝑑 𝜌 = 𝑚𝑣,
𝑉0

𝑉
  we 

may set  

𝑊𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 =  ∫ 𝑝 𝑑𝑣 = ∫ 𝑝 𝑑(𝑚/𝜌) 
𝜌0

𝜌

𝑉0

𝑉

 

Hence    𝐸 = ∫ 𝑝 𝑑(1/𝜌) 
𝜌0

𝜌
  since m=1. 

The total intrinsic energy of a fluid body is often called internal energy and obviously given by  

∫ 𝜌 𝐸 𝑑𝑣.
 

𝑉
 

6.6 Energy Equation:  The rate of change of total energy (kinetic, potential and Intrinsic) of any 

portion of a compressible inviscid fluid, as it moves about, equals the rate at which the work is 

being done by the pressure on the boundary. The potential due to external forces is supposed to be 

independent of time. 

Proof: Consider any arbitrary closed surface S drawn in the region occupied by the inviscid fluid 

and let V be the volume of the fluid within S. Let 𝜌 be the density of the fluid particle P within S 

and dv be volume element surrounding P. Let q(r,t) be the velocity of P. Then, the Euler’s 

equation of motion is  

𝑑𝒒

𝑑𝑡
= 𝐹 − (

1

𝜌
)∇𝑝              (1) 

Let the external forces be conservative so that there exists a force potential 𝜒 which is independent 

of time. Thus 𝐹 = −∇𝜒     𝑎𝑛𝑑      
𝜕𝜒

𝜕𝑡
= 0 

Using the above results and then multiplying scalarly both sides of (1) with 𝜌 𝒒 , we get 

𝜌 (𝒒.
𝑑𝑞

𝑑𝑡
) = −𝜌 𝒒. 𝛁𝜒 − 𝒒. ∇𝑝 

Or     𝜌
𝑑

𝑑𝑡
(
1

2
𝒒2) + 𝜌 𝒒. 𝛁𝜒 = −𝒒. ∇𝑝 

Since      
𝑑𝜒

𝑑𝑡
=

𝜕𝜒

𝜕𝑡
+ (𝒒. ∇)𝜒 = (𝒒. ∇)𝜒   𝑎𝑠 

𝜕𝜒

𝜕𝑡
= 0 

by hypothesis, the above may be rewritten as  
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𝜌
𝑑

𝑑𝑡
(
1

2
𝑞2 + 𝜒) = −𝒒. ∇𝑝 = −∇. (𝑝𝒒) + 𝑝 ∇.q   (2) 

Integrating both sides of (2) we get 

𝑑

𝑑𝑡
{∫ (

1

2
𝑞2

 

𝑉
+ 𝜒) 𝜌𝑑𝑣} = −∫ ∇. (𝑝𝒒)𝑑𝑣 + ∫ 𝑝 (∇. 𝐪 )

 

𝑉
𝑑𝑣

 

𝑉
                   (3) 

the left-hand side being valid as 
𝑑(𝜌𝑑𝑣)

𝑑𝑡
= 0 [since the elementary mass remains invariant 

throughout the motion] by continuity condition. By virtue of divergence theorem and the equation 

of continuity the right side of (3) may be simplified to yield 

𝑑

𝑑𝑡
{∫ (

1

2
𝑞2

 

𝑉
+ 𝜒) 𝜌𝑑𝑣} = ∫ 𝒏. (𝑝𝒒)𝑑𝑠 − ∫

𝑝

𝜌

𝑑𝜌

𝑑𝑡

 

𝑉
𝑑𝑣

 

𝑆
             (4) 

Where n  is unit inward normal. Now, by definitions 

𝑇 = ∫
1

2
𝜌𝒒2𝑑𝑣;       𝑊 = ∫ 𝜌𝜒 𝑑𝑣;        𝐼 = ∫ 𝜌𝐸 𝑑𝑣

 

𝑉

 

𝑉

 

𝑉
          (5) 

are the kinetic, potential and intrinsic(internal) energies respectively, then (4) may be written as 

𝑑

𝑑𝑡
(𝑇 +𝑊) = ∫ (𝒏. 𝒒)𝑝𝑑𝑆 −

𝑑𝐼

𝑑𝑡

 

𝑆
              (6) 

∵  

𝑑𝐼

𝑑𝑡
= ∫

𝑑𝐸

𝑑𝑡
 𝜌𝑑𝑣 

 

𝑉
     [by (5) and 

𝑑

𝑑𝑡
(𝜌𝑣) = 0 

= ∫
𝑑𝐸

𝑑𝜌
 
𝑑𝜌

𝑑𝑡
 𝜌 𝑑𝑣 

 

𝑉

 

= ∫
𝑝

𝜌

𝑑𝜌

𝑑𝑡
 𝑑𝑣   

 

𝑉
  [As 𝐸 = ∫ 𝑝 𝑑 (

1

𝜌
) = ∫

𝑝

𝜌2
  𝑑𝜌

𝜌

𝜌0
 ⇒

𝑑𝐸

𝑑𝜌
=

𝑝

𝜌2

𝜌0

𝜌
 

Also, the work done by the fluid pressure on an element ds being 𝑝 𝑑𝑠 𝑛 𝑑𝒓 and the rate at which 

this is being done is 𝑝 𝑑𝑠 𝑛. 𝒒. (𝒒 =
𝑑𝒓

𝑑𝑡
),  it follows that for the space of volume V, the rate at 

which work is being done by the fluid pressure is ∫ (𝒏, 𝒒) 𝑝 𝑑𝑠 = 𝑅(𝑠𝑎𝑦).
 

𝑆
 Thus (6) may be put as  

𝑑

𝑑𝑡
(𝑇 +𝑊 + 𝐼) = 𝑅                (7) 

The statement embodied in (7) is what we were interested in and is often quoted as the Volume 

Integral form of Bernoulli’s equation. 

Energy equation for incompressible fluids: 

Since I=0 for incompressible fluids, (7) reduces to 

𝑑

𝑑𝑡
(𝑇 +𝑊) = 𝑅            (8) 

The energy equation is stated as follows: The rate of increase of energy in the system is equal to 

the rate at which work is done on the system. 
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 Example: An infinite mass of fluid is acted on by a force 𝝁/𝒓
𝟑

𝟐 per unit mass directed to the 

origin. If initially the fluid is at rest and there is a cavity in the form of the sphere 𝒓 = 𝒄 in it, 

show that the cavity will be filled up after an interval of time (
𝟐

𝟓𝝁
)

𝟏

𝟐
𝒄
𝟓

𝟒. 

Solution: At any time t, let v’ be the velocity at distance r’ from the centre. Again, let r be the 

radius of the cavity and v its velocity. Then the equation of continuity yields 

𝑟′2𝑣′ = 𝑟2𝑣                   (1) 

When the radius of cavity is r, then 

Kinetic energy= ∫
1

2
 (4𝜋 𝑟′2  𝜌𝑑𝑟′). 𝑣′2 

∞

𝑟
   [𝐾. 𝐸 =

1

2
×𝑚𝑎𝑠𝑠 × (𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)2 

= 2𝜋 𝜌 𝑟4 𝑣2  ∫
𝑑𝑟′

𝑟′2

∞

𝑟
      [using (1) 

= 2𝜋 𝜌𝑟3𝑣2 .  

The initial kinetic energy is zero. 

Let V be the work function (or force potential) due to external forces. Then, we have 

−
𝜕𝑉

𝜕𝑟′
=

𝜇

𝑟′(
3
2
)
 

So that  𝑉 =
2𝜇

𝑟
′(
1
2
)
 

∴ 𝑤𝑜𝑟𝑘 𝑑𝑜𝑛𝑒 = ∫ 𝑉 𝑑𝑚,     𝑑𝑚
𝑐

𝑟
 being the elementary mass 

= ∫ (
𝑐

𝑟

2𝜇

𝑟
′(
1
2
)
).4 𝜋 𝑟′2  𝑑𝑟′𝜌 = 8 𝜇 𝜌 ∫ 𝑟′(

3

2
) 𝑑𝑟′ =

16

5
 𝜋𝜇 𝜌 (𝑐

5

2
𝑐

𝑟
− 𝑟

5

2 ) 

We now use energy equation, namely  Increase in kinetic energy=work done 

This ⇒ 2𝜋 𝜌𝑟3𝑣2 − 0 =
16

5
 𝜋𝜇 𝜌(𝑐

5

2 − 𝑟
5

2 ) 

 

∴   v =
dr

dt
= −

(
8𝜇

5
)

1
2(𝑐

5
2−𝑟

5
2 )

1
2

𝑟
3
2

                  (2) 

Wherein negative sign is taken because r decreases as t increases. 

Let T be the time of filling up the cavity. Then (2) gives 

∫ 𝑑𝑡 = −(
5

8𝜇
)

1

2
  ∫  

𝑟
3
2 𝑑𝑟

√(𝑐
5
2−𝑟

5
2 )

0

𝑐
 

𝑇

0
    or 
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𝑇 = (
5

8𝜇
)

1

2
  ∫  

𝑟
3
2 𝑑𝑟

√(𝑐
5
2−𝑟

5
2 )

𝑐

0
  

Put  𝑟
5

2 = 𝑐
5

2 sin2 𝜃 so that (
5

2
) × 𝑟

3

2 𝑑𝑟 = 2𝑐
5

2 sin 𝜃 cos𝜃 𝑑𝜃 

∴ 𝑇 = (
5

8𝜇
)

1
2

 ∫
4

5
 𝑐
5
4 sin 𝜃 𝑑𝜃 = (

2

5𝜇
)

1
2
 𝑐
5
4

𝜋
2

0

 

 

Example: Two equal closed cylinders, of height c, with their bases in the same horizontal plane, 

are filled one with water, and the other with air of such a density as to support a column h of 

water, h being less than c. If a communication be opened between them at their bases, the height 

x, to which the water rises, is given by the equation  

𝒄𝒙 − 𝒙𝟐 + 𝒄𝒉 𝐥𝐨𝐠 {
𝒄 − 𝒙

𝒙
)} = 𝟎 

Solution: Let P, Q be two cylinders containing water and air respectively and k be the cross-section 

of each cylinder before and after the communication is set up, the air and water are at rest. Thus 

the initial and final kinetic energies are zero. The intrinsic energies also vanish, because of 

incompressibility. 

                                                   

The potential energy due to position of water in the cylinder P is  

𝑊𝑎 = ∫ 𝑔𝜌 𝑘𝑧 𝑑𝑧 =
1

2
 𝑔𝜌𝑘𝑐2

𝑐

0
                  (1) 

  [Here we have considered the density 𝜌 of water simply to support a column h of water]   

Let the  height x of water rises in cylinder Q then the height (c-x) of water will remain in the 

cylinder P after communication is opened. The final potential energy is 

𝑊𝑏 = ∫ 𝑔𝜌𝑘𝑧 𝑑𝑧 + ∫ 𝑔𝜌𝑘𝑧 𝑑𝑧
𝑥

0

𝑐−𝑥

0

 

𝑊𝑏 =
1

2
𝑔 𝜌𝑗 [(𝑐 − 𝑥)2 + 𝑥2]              (2) 

Loss in potential energy of work done by gravity is  
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𝑊𝑎 −𝑊𝑏 =
1

2
𝑔 𝜌𝑘 [𝑐2 − (𝑐 − 𝑥)2 − 𝑥2] = 𝑔𝜌𝑘𝑥 (𝑐 − 𝑥)               (3) 

Let p be the pressure when the water rises to a height z, then  

𝑔𝜌ℎ 𝑘 𝑐 = 𝑝𝑘(𝑐 − 𝑧) ⟹  𝑝 = 𝑔 𝜌ℎ𝑐/(𝑐 − 𝑧)  

Since the air has been compressed so the work done in compressing this air in the cylinder Q is  

= −𝑔𝜌ℎ𝑐𝑘 ∫
𝑑𝑧

𝑐−𝑧
= 𝑔 𝜌ℎ𝑐𝑘 log

𝑐−𝑥

𝑐

𝑥

0
                  (4) 

Total work done=Change in K.E 

Hence    𝑔 𝜌𝑘𝑥 (𝑐 − 𝑥) + 𝑔𝜌ℎ𝑐𝑘 log {
𝑐−𝑥

𝑐
} = 0 

Or    𝑔 𝜌 𝑘[𝑐𝑥 − 𝑥2 + 𝑐ℎ log {
𝑐−𝑥

𝑐
) = 0 

Or    𝑐𝑥 − 𝑥2 + 𝑐ℎ log
𝑐−𝑥

𝑐
= 0.     Proved 

6.7 Green’s Theorem: If 𝝓𝟏𝒂𝒏𝒅 𝝓𝟐 are two continuously differentiable scalar point functions 

such that 𝛁𝝓𝟏 𝒂𝒏𝒅 𝛁𝝓𝟐 are also continuously differentiable and S denotes a closed surface 

bounding any singly-connected region of space, then  

∫(𝛁 𝝓𝟏. 𝛁𝝓𝟐)𝒅𝒗 = −∫ 𝝓𝟏 𝛁
𝟐 𝝓𝟐 𝒅𝒗 −∫ 𝝓𝟏

𝝏𝝓𝟐
𝝏𝒏

 𝒅𝒔
 

𝑺

 

𝑽

 

𝑽

 

= −∫ 𝝓𝟐 𝛁
𝟐 𝝓𝟏 𝒅𝒗 − ∫ 𝝓𝟐

𝝏𝝓𝟏
𝝏𝒏

 𝒅𝒔
 

𝑺

 

𝑽

 

Where V is the region enclosed by S and 𝜹𝒏  an element of the normal at any point on the 

boundary drawn into the region considered. 

 

Some hydrodynamical applications of Green’s Theorem: 

 

(1) If 𝝓𝟐 is constant (=k say). Then 𝛁𝟐𝝓𝟐 = 𝟎 =
𝝏𝝓𝟐

𝝏𝒏
 𝒆𝒗𝒆𝒓𝒚𝒘𝒉𝒆𝒓𝒆. If 𝝓  be the velocity 

potential of a liquid motion with S, then by Green’s theorem, we get 

 

∫𝒌  
 

𝑺

(
𝝏𝝓

𝝏𝒏
)  𝒅𝑺 = 𝟎        𝒐𝒓    ∫

𝝏𝝓

𝝏𝒏
𝒅𝑺 = 𝟎

 

𝑺

    

Since 
𝝏𝝓

𝝏𝒏
 is the normal velocity outwards,  

𝝏𝝓

𝝏𝒏
𝒅𝑺 represents the flow across dS per unit time. Then 

the above result represents that the total flow of liquid into any closed region at any instant is zero. 

i.e., the quantity of a liquid inside S remains constant. 

 

(2) Kinetic Energy of finite liquid: 

The kinetic energy is given by  

𝑻 = ∫
𝟏

𝟐
𝝆𝒒𝟐𝒅𝒗

 

𝑽
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taken throughout the volume V occupied by the fluid. For irrotational motion 𝒒 =

−𝛁𝝓,𝛁𝟐𝝓 = 𝟎. 

Therefore   𝑻 =
𝟏

𝟐
 𝝆 ∫ 𝛁𝝓. 𝛁𝝓 𝒅𝒗 = −

𝟏

𝟐
∫ 𝝓   
 

𝑺
(
𝝏𝝓

𝝏𝒏
)  𝒅𝑺.    |by Green’s 

theorem 

taken over the bounding surface of the liquid, dn denoting an element of inward-drawn 

normal.  

 

Physical Interpretation:  We know that if q is the velocity and 𝝆 the density of the liquid, 

then K.E. of the liquid within S is  

𝑻 = ∫
𝟏

𝟐
 𝝆 𝒒𝟐𝒅𝒗 = −

𝟏

𝟐
𝝆 (

𝝏𝝓

𝝏𝒏
)𝒅𝑺

 

𝑽

 

Since 𝝆𝝓 is the impulsive pressure and −(
𝝏𝝓

𝝏𝒏
) the inward velocity, it follows that the K.E. 

set up by impulses, in a system starting from rest, is the sum of the products of each 

impulse and half the velocity of its point of application. It also follows that the K.E. of a 

given mass of liquid moving irrotationally in a simply connected region depends on the 

motion of its boundaries. Clearly the surface integral 

−
𝟏

𝟐
𝝆∫ 𝝓 (

𝝏𝝓

𝝏𝒏
)𝒅𝑺

 

𝑺

 

Represents the work done by the impulsive pressure in starting the motion from rest. 

 

(3)  If the boundaries are at rest, it follows that 
𝝏𝝓

𝝏𝒏
= 𝟎, so that  

∫
𝟏

𝟐
 𝝆 𝒒𝟐𝒅𝒗 = 𝟎

 

𝑽
, i.e., 𝒒 = 𝟎 at every point 

Hence, if the boundaries are fixed, irrotational motion is impossible in a closed simply-

connected region. 

 

6.8 Kelvin’s Minimum Energy Theorem. The kinetic energy of irrotational motion of a liquid 

occupying a finite simply connected region is less than that of any other motion of the liquid which 

is consistent with the same normal velocity of the boundary. 

 

Proof. Let 𝑇1 be the K.E. of the actual motion, 𝒒𝟏  be the fluid velocity and  be the velocity 

potential of the given irrotational motion. Let V be the region occupied by the fluid and S be the 

surface of this region, then 

 

  𝑇1 = 




2
𝑞1

2dv = 
𝜌

2
∫  
𝜏

 ()2 dv 

     = 
𝜌

2
∫  
𝑆
𝜑
𝜕𝜑

𝜕𝑛
𝑑𝑆              (1) 

Let 𝑇2 be the K.E. and  𝒒𝟐  be the velocity of any other motion of the fluid consistent with the 

same normal velocity of the boundary S (or consistent with the same kinetic boundary condition) 
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For both the motions, the continuity equation is satisfied i.e. 

 

   𝑞1 =  0 =  . 𝑞2                  (2) 

The boundaries have the same normal velocity 

i.e.   𝑞1. 𝒏 = 𝑞2 ⋅ 𝒏 

i.e.  (𝑞2 − 𝑞1) ⋅ 𝒏 = 0                  (3) 

Now, let us consider 

   𝑇2  𝑇1  =
1

2
𝜌 ∫ (𝑞2

2  𝑞1
2) 𝑑𝑣

 

𝑣
 

   = 
1

2
𝜌 ∫ [2𝑞2 ⋅ (𝑞2 − 𝑞1) + (𝑞2 − 𝑞1)

2]𝑑𝑣
 

𝑣
 

   = 
𝜌

2
∫ 2𝑞1 ⋅ (𝑞2 − 𝑞1)𝑑𝑣 +

𝜌

2
 ∫ (𝑞2 − 𝑞1)

2𝑑𝑣
 

𝑣𝑣
 

   = −𝜌∫  . (q2 − q1)dv +
ρ

2
 ∫ (𝑞2 − 𝑞1)

2𝑑𝑣
 

𝑣

 

𝑣
                  (4) 

From vector calculus, we have 

  [(𝑞2 − 𝑞1)] =  (𝑞2 − 𝑞1) + (𝑞2 − 𝑞1) 

i.e.   (𝑞2 − 𝑞1) = [(𝑞2 − 𝑞1)] (𝑞2 − 𝑞1) 

Therefore, from (4), we find 

  𝑇2  𝑇1=  ∫  
𝑣
[(𝑞2 − 𝑞1)]dv + ∫  

𝑣
(𝑞2 − 𝑞1) dv 

   + 
𝜌

2
∫  
𝑣
(𝑞2 − 𝑞1)

 2 dv 

   = 𝜌 ∫
𝑆

(𝑞2 − 𝑞1) n dS + 𝜌 ∫  
𝑣
(𝑞2 − 𝑞1) dv 

   + 
𝜌

2
∫  
𝑣
(𝑞2 − 𝑞1)

 2dv    |By Gauss theorem 

   = 
𝜌

2
∫  
𝑣
(𝑞2 − 𝑞1)

 2dv   | using (2) & (3) 

   > 0 

                            𝑇2 > 𝑇1    

Thus, the irrotational motion of a liquid occupying a simply connected region has less kinetic 

energy than any other motion consistent with the same normal velocity of the boundary (but for 

which vortices are present inside) 

Hence the theorem. 

6.9 Kinetic Energy of Infinite Liquid. Theorem: An infinite liquid is in irrotational motion 

which is at rest at infinity and is bounded internally by solid surface (s)S.  Show that the K.E. of 

the moving fluid is  

           𝑇 =  
1

2
𝜌 ∫ 𝜙 

𝜕𝜙

𝜕𝑛
𝑑𝑆

𝑆
 

where S = S1 + S2 + … SN denotes the sum of the inner boundaries S1, S2, …, SN and n  is normal 

to S drawn out of the fluid on each boundary. 

 

Proof. Let  be a large surface enclosing the surface (s) S and v be the region bounded by S 

internally and by  externally. 

 

Using the result of K.E. for finite liquids, we find that the K.E.  𝑇1 for finite region v is given by 
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 𝑇1 = 
𝜌

2
∫ 𝜑

𝜕𝜑

𝜕𝑛
𝑑𝑆 +

𝜌

2𝑆
∫ 𝜑

𝜕𝜑

𝜕𝑛
𝑑𝑆

𝛴
                   (1) 

Now, div q = 2 = 0 throughout v and the divergence theorem accordingly gives  

  dS = 0 

    ∫ 𝒏 ⋅ 𝛻𝜙𝑑𝑆 = 0 ⇒
𝑆𝑈𝛴

∫
𝜕𝜙

𝜕𝑛
𝑑𝑆 = 0

𝑆𝑈𝛴
 

    ∫
𝜕𝜑

𝜕𝑛
𝑑𝑆 +

𝑆
∫

𝜕𝜑

𝜕𝑛
𝑑𝑆 = 0

𝛴
         (2) 

Since the surface S is solid, there is no flow across it, hence ∫
𝜕𝜑

𝜕𝑛
𝑑𝑆 = 0

𝑆
               (3) 

Therefore, from (2), we get  

∫
𝜕𝜑

𝜕𝑛
𝑑𝑆 = 0

𝛴
        (4) 

For the surface , as  goes to infinity, the liquid is at rest 

                                         q = 0    = 0    = constant = C (say)   (5) 

Hence, as    goes to   , the K.E. of the liquid is 

            𝑇1  𝑇 =
𝜌

2
∫ 𝜑

𝜕𝜑

𝜕𝑛
𝑑𝑆 +

𝜌

2
𝑐

𝑆
∫

𝜕𝜑

𝜕𝑛
𝑑𝑆

𝛴
  | Using (5) 

     = 
𝜌

2
∫ 𝜑

𝜕𝜑

𝜕𝑛
𝑑𝑆

𝑆
    | Using (4)    Hence the result 

Remark. We note that the K.E. for finite and infinite liquid has the same expression. 

 

6.10 Axially Symmetric Flows  

A potential flow which is axially symmetric about the axis  = 0,  (i.e., z-axis is taken as the axis 

of symmetry) has the property that at any point P, all the scalar and vector quantities associated 

with the flow are independent of azimuthal angle  such that 
𝜕

𝜕𝜓
 0, where (r, , ) are spherical 

polar co-ordinates.   

S1 S2 

S3 

SN 

 
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The equation of continuity div q= 0 for steady flow of an incompressible fluid becomes. 

   

  
1

𝑟2
𝜕

𝜕𝑟
(𝑟2𝑞𝑟) +

1

𝑟 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃 𝑞𝜃) = 0       (1) 

For irrotational motion q= , where  is velocity potential and thus 

  qr = 
𝜕𝜑

𝜕𝑟
, q = 

1

𝑟

𝜕𝜑

𝜕𝜃
 

From equation (1), we have 

  
1

𝑟2
𝜕

𝜕𝑟
(𝑟2

𝜕𝜑

𝜕𝑟
) +

1

𝑟2 𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝜑

𝜕𝜃
) = 0     (2) 

Let a solution of (2) in separable variables r,  has the form 

   = R(r) ()         (3) 

Using (3) in (2), we get 

  
𝜕

𝜕𝑟
[𝑟2

𝜕

𝜕𝑟
(𝑅𝛩)] +

1

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
[𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑅𝛩)] = 0 

        𝛩
𝜕

𝜕𝑟
(𝑟2

𝜕𝑅

𝜕𝑟
) +

𝑅

𝑠𝑖𝑛 𝜃

𝜕

𝜕𝜃
(𝑠𝑖𝑛 𝜃

𝜕𝛩

𝜕𝜃
) = 0 

        
1

𝑅

𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) = −

1

𝛩 𝑠𝑖𝑛 𝜃

𝑑

𝑑𝜃
(𝑠𝑖𝑛 𝜃

𝑑𝛩

𝑑𝜃
)                (4) 

The L.H.S. of (4) is a function of r only while the R.H.S. is a function of  only.  The equation can 

therefore be satisfied if and only if either side is a constant, say n(n+1) and thus we get 

 

   
1

𝑅

𝑑

𝑑𝑟
(𝑟2

𝑑𝑅

𝑑𝑟
) = 𝑛(𝑛 + 1)       (5) 

and  
𝑑

𝑑𝜃
(𝑠𝑖𝑛 𝜃

𝑑𝛩

𝑑𝜃
) + 𝑛(𝑛 + 1)𝛩 𝑠𝑖𝑛 𝜃 = 0     (6) 

To solve (5), we put  

R = rm  
𝑑𝑅

𝑑𝑟
= 𝑚𝑟𝑚−1 

Thus (5)   
1

𝑟𝑚
𝑑

𝑑𝑟
(𝑟2𝑚𝑟𝑚−1) = 𝑛(𝑛 + 1) 

                   m 
𝑑

𝑑𝑟
(𝑟𝑚+1) = 𝑟𝑚𝑛(𝑛 + 1) 

                  m (m+1) rm = rm n(n+1) 

                 (m2 + mn2n) = 0 
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                 (mn) (m+n+1) = 0 

                 m = n or m = (n+1) 

Therefore, solution of (5) can be written as  

                R(r) = An r
n + Bnr

(n+1)      (7) 

To solve (6), we put  

                                       cos =  

                                    
𝑑

𝑑𝜃
≡

𝑑𝜇

𝑑𝜃

𝑑

𝑑𝜇
≡ −𝑠𝑖𝑛 𝜃

𝑑

𝑑𝜇
 

Therefore, equation (6) becomes. 

                     sin 
𝑑

𝑑𝜇
[𝑠𝑖𝑛 𝜃 (−𝑠𝑖𝑛 𝜃)

𝑑𝛩

𝑑𝜇
] +n (n+1) 𝛩 𝑠𝑖𝑛 𝜃 = 0 

                   
𝑑

𝑑𝜇
(𝑠𝑖𝑛2 𝜃

𝑑𝛩

𝑑𝜇
) + 𝑛(𝑛 + 1)𝛩 = 0 

                  
𝑑

𝑑𝜇
[(1 − 𝑐𝑜𝑠2 𝜃)

𝑑𝛩

𝑑𝜇
] + 𝑛(𝑛 + 1)𝛩 = 0 

                 
𝑑

𝑑𝜇
[(1 − 𝜇2)

𝑑𝛩

𝑑𝜇
] + 𝑛(𝑛 + 1)𝛩 = 0      (8) 

Equation (8) is a Legendre’s Equation and possesses a solution known as Legendre Function of the 

first kind Pn() 

 

Therefore, 

           𝛩 = Pn() 

Hence the general solution of (3) is of the form 

  (r, )  = R(r) 𝛩 () 

   = [An r
n + Bn r

(n+1)] Pn (cos )     (9) 

(Complete solution is the sum of all such solutions i.e. ∑  ∞
𝑛=0 …….) 

6.10.1. Uniform Flow. Consider the flow which corresponds to a potential given by (9) with  

  An = 𝑈𝛿𝑖𝑛, Bn =0,    (n = 0, 1, 2, ……)      

where U is a constant, 𝛿𝑖𝑗 is Knonecker delta = 1 𝑓𝑜𝑟 𝑖 = 𝑗 and = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗 

Since P1 (cos) = cos, equation (9) becomes 

  (r, ) = Ur cos   Uz  | z = r cos 

Thus  

       q=  =  kk U
z





 

which is a uniform streaming motion of the fluid with speed U along the direction of z-axis or the 

axis  = 0. 

 

Example: A velocity field is given by q=   
−𝒊𝒚+𝒋𝒙

𝒙𝟐+𝒚𝟐
.Determine whether the flow is irrotational. 

Calculate the circulation round (a) a square with its corners at (1,0), (2,0), (2,1), (1,1); (b) a unit 

circle with centre at the origin. 
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Solution: we have  𝒄𝒖𝒓𝒍 𝒒 = ||

𝑖 𝑗 𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝜕/𝜕𝑧

−
𝑦

𝑥2+𝑦2
𝑥

𝑥2+𝑦2
0

|| = 𝑘 {
(𝑦2−𝑥2) +(𝑥2−𝑦2)

(𝑥2+𝑦2)2
} = 0 

Hence curl q=0 everywhere except at the origin. Thus the flow is irrotational. It has a singularity 

at the origin where the velocity becomes infinite. 

(a) Draw a square in the Cartesian plane as A(1,0),B(2,0),C(2,1),D(1,1). 

 

                                                    
 

 Then circulation around the square ABCD is given by  

Γ = ∫𝒒 . 𝑑𝑟 = ∫ 𝒒 . 𝑑𝑟 +
𝐵

𝐴

∫ 𝒒 . 𝑑𝑟
𝐶

𝐵

+∫ 𝒒 . 𝑑𝑟 +
𝐷

𝐶

∫ 𝒒 . 𝑑𝑟
𝐴

𝐷

 

Along AB(i.e. x-axis), y=0 so dy=0 and hence 𝑑𝒓 = 𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌 = 𝑑𝑥𝒊 

Therefore ∫ 𝒒 . 𝑑𝑟 = ∫ (
−𝒊𝒚+𝒋𝒙

𝒙𝟐+𝒚𝟐
) . (

𝑥=2

𝑥=1

𝐵

𝐴
 𝑑𝑥𝒊) = ∫ (

1

𝑥
𝑗) . (𝑑𝑥𝒊) = 𝟎

𝒙=𝟐

𝒙=𝟏
  

Along BC(parallel to y-axis), x=2 so dx=0 and hence 𝑑𝒓 = 𝑑𝑥𝒊 + 𝑑𝑦𝒋 + 𝑑𝑧𝒌 = 𝑑𝑦 𝒋 

Therefore ∫ 𝒒 . 𝑑𝑟 = ∫ (
−𝒊𝒚+𝒋𝒙

𝒙𝟐+𝒚𝟐
) . 𝑑𝑦𝒋

𝑦=1

𝑦=0

𝐶

𝐵
=∫

2𝑑𝑦

𝑦2+4
= 2.

1

2
 [tan−1

𝑦 

2
  ]
0

2
= tan−1

1

2
 

1

0
 

Similarly, ∫ 𝒒 . 𝑑𝑟 = tan−1 2
𝐷

𝐶
− tan−1 1 

∫ 𝒒 . 𝑑𝑟
𝐴

𝐷
= − tan−1 1  

Therefore, Γ = tan−1
1

2
+ tan−1 2 − tan−1 1 − tan−1 1 = cot−1 2 + tan−1 2 −

𝜋

4
−

𝜋

4
=

𝜋

2
− 2

𝜋

4
= 0 

[as cot−1 2 + tan−1 2 =
𝜋

2
] 

Since 𝑐𝑢𝑟𝑙 𝑞 is zero everywhere inside the square path, we could have got the same results directly 

from Stoke’s theorem. 

(b) To obtain circulation around the unit circle with its centre at the origin, we use polar 

coordinates for convenience.  

Let 𝑥 = 𝑟 cos𝜃, 𝑦 = 𝑟 sin 𝜃, we have 𝒒 =
−𝑟𝑠𝑖𝑛 𝜃 𝑖+𝑟 cos𝜃𝑗

𝑟2
= −

𝑠𝑖𝑛𝜃

𝑟
𝑖 +

cos𝜃

𝑟
𝑗   

and 𝒒 = 𝑢𝑖 + 𝑣𝑗 so that 𝑢 = −
sin 𝜃

𝑟
      𝑎𝑛𝑑 𝑣 =

𝑐𝑜𝑠𝜃

𝑟
 

Therefore, 𝑞𝑟 = 𝑢 cos 𝜃 + 𝑣 sin 𝜃  𝑎𝑛𝑑 𝑞𝜃 = −𝑢 sin 𝜃 + 𝑣 cos𝜃 =
1

𝑟
 

Thus,  Γ = ∫𝒒. 𝑑𝑟 = ∫ 𝑟.
1

𝑟
 𝑑𝜃 = 2𝜋

2𝜋

0
 

Example: Liquid of density 𝝆 is flowing in two dimensions between the oval curves 𝒓𝟏𝒓𝟐 = 𝒂
𝟐, 

𝒓𝟏𝒓𝟐 = 𝒃
𝟐 𝒘𝒉𝒆𝒓𝒆 𝒓𝟏𝒂𝒏𝒅 𝒓𝟐 are the distances measured from two fixed points if the motion is 
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irrotational and quantity q per unit time across any line joining the bounding curves, then the 

kinetic energy is 𝝅 𝝆𝒒𝟐/𝒍𝒐𝒈(𝒃/𝒂). 

Solution: The two-dimensional irrotational motion occurs in a doubly connected region. The 

equation to the curves are 

𝑟1𝑟2 = 𝑎
2    𝑎𝑛𝑑 𝑟1𝑟2 = 𝑏

2 

Let the complex potential w is of the form 

𝑤 = 𝑖𝐴 log[(𝑧 − 𝑧1)(𝑧 − 𝑧2)] = 𝜙 + 𝑖 𝜓 

or    𝜙 + 𝑖𝜓 = 𝑖𝐴𝑙𝑜𝑔 (𝑟1𝑒
𝑖𝜃1  𝑟2𝑒

𝑖𝜃2) = 𝑖𝐴 log{𝑟1𝑟2 𝑒
𝑖(𝜃1−𝜃2)} 

as    𝑧 − 𝑧1 = 𝑟1𝑒
𝑖𝜃1  𝑎𝑛𝑑 𝑧 − 𝑧2 = 𝑟2𝑒

𝑖𝜃2 

 

Separating real and imaginary parts, we have 

𝜙 = −𝐴(𝜃1 + 𝜃2), 𝜓 = 𝐴 log 𝑟1𝑟2 

Now     𝑞 = 𝜓𝑏 − 𝜓𝑎 = 𝐴 log 𝑏
2 − 𝐴 log𝑎2 = 2𝐴 log(

𝑏

𝑎
) 

or     𝐴 = 𝑞/ [2 log (
𝑏

𝑎
)] 

since the region is doubly connected, the circulation k is given by 𝑘 = 𝐴(2𝜋 + 2𝜋) = 4𝜋𝐴 

Hence the kinetic energy of a cyclic irrotational becomes 

𝑇 = −
1

2
𝜌 ∫𝜙

𝜕𝜙

𝜕𝑛
 𝑑𝑆 −

1

2
 𝜌𝑘

𝜕𝜙

𝜕𝑛
 𝑑𝑆 = −2𝜋𝐴 𝜌∫ 𝑑𝜓

𝐵

𝐴

 

The second integral vanishes on a rigid boundary  

𝑇 = 2𝜋𝐴 𝜌(𝜓𝑏 −𝜓𝑎) = 𝜋 𝜌𝑞
2/ log (

𝑏

𝑎
) 

6.11 Check Your Progress: 

i) Find the circulation about the square enclosed by the lines 𝑥 = ±2, 𝑦 = ±2 for the flow 𝑢 = 𝑥 +

𝑦, 𝑣 = 𝑥2 − 𝑦.  [Ans=0] 

 

ii) Show that  if 𝜙 = −(𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2)/2, 𝑉 = −(𝑙𝑥2 +𝑚𝑦2 + 𝑐𝑛2)/2 where a, b,c; l,m,n are 

functions of time and a+b+c=0,irrotational motion is possible with a free surface of equi-pressure 

if  

(𝑙 + 𝑎2 + 𝑎̇)𝑒2∫𝑎 𝑑𝑡; (𝑚 + 𝑏2 + 𝑏̇)𝑒2∫𝑏𝑑𝑡 ; (𝑛 + 𝑐2 + 𝑐̇)𝑒2∫ 𝑐𝑑𝑡 are constants. 

iii) A space is bounded by an ideal fixed surface S drawn in a homogeneous incompressible fluid 

satisfying the condition for the continued existence of velocity potential 𝜙 under conservative 

forces. Prove that the rate per unit time at which energy flows across S into the space bounded by 

S is  

−𝜌 ∬
𝜕𝜙

𝜕𝑡
 .
𝜕𝜙

𝜕𝑛
 𝑑𝑆 

where 𝜌 is the density and 𝜕𝑛 an element of normal to dS drawn into the fluid. 

iv) Show that in the motion of fluid in two dimensions if the co-ordinates (x,y) of an element at 

any time can be expressed in terms of initial coordinates (a,b) and the time, the motion is 

irrotational if 
𝜕(𝑥,̇ 𝑥)

𝜕(𝑎,𝑏)
+

𝜕(𝑦̇,𝑦)

𝜕(𝑎,𝑏)
= 0. 
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v) In irrotational motion in two dimensions, prove that (
𝜕𝑞

𝜕𝑥
)
2

+ (
𝜕𝑞

𝜕𝑦
)
2

= 𝒒 ∇2𝒒. 

6.12 Summary: In this chapter boundary conditions are discussed in detail which play an 

important role during the study of flow of fluid. Irrotational and circulation of flow are also 

defined in this chapter. The expressions for energy equation, Kinetic energy of liquid, Kelvin 

circulation theorem are derived and also discussed Axially symmetric flows. 

 

6.13 Keywords: Boundary surface, Circulation, energy equation, kinetic energy, irrotational, 

axially symmetric flows. 

 

6.14 Self -Assessment Test: 

SA1: Show that under certain conditions the motion of frictionless fluid if once irrotational, will 

always be so, is true also when each particle is acted upon by a resistance varying as the velocity.  

SA2: Obtain Cauchy’s integral using circulation theorem. 

SA3: Deduce from the principle that the kinetic energy set up is a minimum that, if a mass of 

incompressible liquid be given at rest, completely filling a closed vessel of any shape and if any 

motion of the liquid be produced suddenly by giving arbitrarily prescribed normal velocities  at all 

points of its bounding surface subject to the condition of constant volume, the motion produced is 

irrotational. 

SA4: Prove that under certain conditions, to be stated, the motion of a fluid if once irrotational, is 

always irrotational afterwards. 

SA5: Show that in an irrotational motion of a liquid occupying a simply connected region has less 

kinetic energy than any other motion consistent with the same normal velocity of the boundary. 

SA6: Show that the rate per unit of time at which work is done by the internal pressure between the 

parts of a compressible fluid is  

∫p(∇. q)dv 

where p is the pressure, and q the velocity at any point, and the integration extends through the 

volume of the fluid. 
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CHAPTER-7  

 

MOTION OF SPHERE 

 

7.0 Learning Objectives: After studying this chapter, you should be able to study the motion of 

a sphere through the liquid at rest at infinity, obtain the lines of flow relative to the sphere when 

liquid streaming past a fixed sphere, determine the pressure on the surface when sphere moving  

through infinite liquid, calculate the force acting on the sphere due to the presence of the fluid. 

 

7.1 Motion of a Sphere: To study irrotational motion in three-dimensions with a particular 

reference to the motion of a sphere. We shall consider certain special forms of solution of the 

equation 

𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
+

𝜕2𝜙

𝜕𝑧2
= 0,     (1) 

which, in spherical polar coordinates (𝑟, 𝜃, 𝜓), reduces to 

     
𝜕2𝜙

𝜕𝑟2
+

2

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2
 
𝜕2𝜙

𝜕𝜃2
+

cot𝜃

𝑟2
𝜕𝜙

𝜕𝜃
 +

1

𝑟2 sin2 𝜃

𝜕2𝜙

𝜕𝜓2
= 0 (2) 

When there is symmetry about a line (say z-axis), 𝜙 is independent of  𝜓 and hence (2) reduces to  

     
𝜕2𝜙

𝜕𝑟2
+

2

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2
 
𝜕2𝜙

𝜕𝜃2
+

cot𝜃

𝑟2
𝜕𝜙

𝜕𝜃
= 0   (3) 

In the case of motion of sphere the velocity potential is known to have the form 𝑓(𝑟) cos 𝜃. 

Substituting 𝜙 = 𝑓(𝑟) cos 𝜃  in (3), we have 

(
𝑑2𝑓

𝑑𝑟2
+
2

𝑟

𝑑𝑓

𝑑𝑟
) cos 𝜃 −

𝑓(𝑟)

𝑟2
cos𝜃 −

cos𝜃

𝑟2
 𝑓(𝑟) = 0 

Or      
𝑑2𝑓

𝑑𝑟2
+

2

𝑟

𝑑𝑓

𝑑𝑟
−

2𝑓

𝑟2
= 0 

Or      𝑟2 (
𝑑2𝑓

𝑑𝑟2
) + 2𝑟

𝑑𝑓

𝑑𝑟
− 2𝑓 = 0 

which is homogeneous differential equation. As usual, its solution is 𝑓(𝑟) = 𝐴𝑟 +
𝐵

𝑟2
. Hence a 

solution of (3) of the form 𝑓(𝑟) cos𝜃 may be taken as 

𝜙 = (𝐴𝑟 +
𝐵

𝑟2
) cos𝜃      (4) 

 

7.2 Motion of a Sphere through a Liquid at rest at infinity: 

  Take origin at the Centre of the sphere and the axis of z in the direction of motion. Let the sphere 

move with velocity U along the z-axis. To determine the velocity potential 𝜙 that will satisfy the 

given boundary conditions, we have the following considerations: 

(i) 𝜙 satisfies the Laplace’s equation 

𝜕2𝜙

𝜕𝑟2
+

2

𝑟

𝜕𝜙

𝜕𝑟
+

1

𝑟2
 
𝜕2𝜙

𝜕𝜃2
+

cot𝜃

𝑟2
𝜕𝜙

𝜕𝜃
= 0,     (1) 

wherein we have used the fact that there is symmetry of flow about z-axis. 
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(ii) Boundary condition at the surface of the sphere 𝑟 = 𝑎, namely 

Normal velocity at any point of the sphere=velocity of the liquid at that point in that direction 

i.e., −(
𝜕𝜙

𝜕𝑟
 ) = 𝑈 cos 𝜃, 𝑤ℎ𝑒𝑛 𝑟 = 𝑎       (2)  

(iii)  Since the liquid is at rest at infinity, we must have  

−
𝜕𝜙

𝜕𝑟
= 0, 𝑎𝑡 𝑟 = ∞       (3) 

 The above considerations (i) and (ii) suggest that 𝜙 must be of the form 𝑓(𝑟) cos 𝜃 and hence it 

may be assumed as  

𝜙 = (𝐴𝑟 +
𝐵

𝑟2
) cos𝜃      (4) 

From (4),    −
𝜕𝜙

𝜕𝑟
= −(𝐴 −

2𝐵

𝑟3
) cos𝜃     (5) 

Putting 𝑟 = ∞  in (5) and using (3), we get 

  0 = 𝐴 cos 𝜃           so that A=0     (6) 

 

Putting r=a in (5) and using (2) and (6), we get 

𝑈 cos 𝜃 = (
2𝐵

𝑎3
) cos𝜃 

So that       𝐵 =
𝑈𝑎3

2
     (7) 

Thus,      𝜙 =
1

2
𝑈
𝑎3 cos𝜃

𝑟2
     (8) 

which determines the velocity potential for the flow. 

(a) Streamline flow: We now determine the equations of lines (streamlines) of flow. The 

differential equation of the lines of flow at the instant the centre of sphere is passing 

through the origin is given by 

𝑑𝑟

𝜕𝜙
𝜕𝑟

 =  
 𝑟 𝑑𝜃

𝜕𝜙
𝑟𝜕𝜃
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Or     
𝑑𝑟

(
𝑈𝑎3

𝑟3
) cos𝜃

 =
𝑟 𝑑𝜃

(
𝑈𝑎3

2𝑟3
) sin 𝜃

    |using (8) 

Or    
1

𝑟
 𝑑𝑟 = 2 cot 𝜃 𝑑𝜃     (9) 

Integrating (9),   log 𝑟 = 2 log sin 𝜃 + log 𝑐   or  𝑟 = 𝑐 sin2 𝜃 

which is the equation of the lines of flow. 

7.3 Liquid Streaming past a fixed Sphere: For a liquid streaming past a fixed sphere, obtain 

the lines of flow relative to the sphere. 

  Let the sphere be at rest and let the liquid flow past the sphere with velocity U in the negative 

direction of z-axis. This motion may be deduced by reducing the sphere to rest by superposing a 

velocity –𝑈  parallel to z-axis both to the sphere and liquid and we must add to the velocity 

potential a term 𝑈𝑟𝑐𝑜𝑠𝜃 to account for the additional velocity, then we have  

𝜙 =
𝑈𝑎3

2𝑟2
 𝑐𝑜𝑠𝜃 + 𝑈𝑟 cos𝜃 = 𝑈(𝑟 +

𝑎3

2𝑟2
) cos𝜃            (1) 

| For −
𝜕𝜙

𝜕𝑧
= −𝑈,𝜙 = 𝑈𝑧 = 𝑈 𝑟 cos𝜃 

This is the velocity potential when the liquid is streaming past a fixed sphere. The stream lines are 

given by 

𝑑𝑟

−
𝜕𝜙
𝜕𝑟

=
𝑟𝑑𝜃

− (
1
𝑟)𝜕𝜙/𝜕𝜃

 

or         
𝑑𝑟

𝑈𝑎3 cos𝜃

𝑟3
−𝑈 cos 𝜃

=
𝑟𝑑𝜃

−(
𝑈𝑎3

2𝑟3
+𝑈) sin 𝜃

   

    (
2𝑟3+𝑎3

𝑎3−𝑟3
)
𝑑𝑟

𝑟
=

2 cos𝜃

sin 𝜃
 𝑑𝜃  

or    −
2 cos𝜃 

sin 𝜃 
  𝑑𝜃 = [

3𝑟2

𝑟3−𝑎3
−

1

𝑟
 ]  𝑑𝑟  

Integrating,  −2 log sin 𝜃 = log(𝑟3 − 𝑎3) − log 𝑟 − log 𝑐  

or  𝑟𝑐 = sin2 𝜃 (𝑟3 − 𝑎3)       (2) 

The lines of flow relative to the sphere are given by (2). 

Example: Show that when a sphere of radius a moves with uniform velocity U through a perfect 

incompressible infinite fluid, the acceleration of a particle of the fluid at (r,0) is 𝟑𝑼𝟐 (
𝒂𝟑

𝒓𝟒
−

𝒂𝟔

𝒓𝟕
). 

Solution:  Superimpose a velocity – 𝑈 both to the sphere and the liquid. This reduces the sphere to 

rest and the velocity potential of the flow is given by 

𝜙 = 𝑈(𝑟 + 𝑎3/2𝑟2)cos 𝜃         (1) 

∴       𝑟̇ = −
𝜕𝜙

𝜕𝑟
= −𝑈(1 −

𝑎3

𝑟3
) cos𝜃        (2) 

and   𝑟𝜃̇ = −
1

𝑟

𝜕𝜙

𝜕𝜃
= 𝑈 (1 +

𝑎3

2𝑟3
) sin 𝜃      (3) 

 

Again from (2), we have  

𝑟̈ = 𝑈 (1 −
𝑎3

𝑟3
) sin 𝜃 𝜃̇ − 𝑈

3𝑎3

𝑟4
𝑟̇ cos 𝜃 = 𝑈 (1 −

𝑎3

𝑟3
) sin 𝜃 𝜃̇ +

3𝑎3

𝑟4
𝑈2 (1 −

𝑎3

𝑟3
) cos2 𝜃 

 (4) 
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Clearly, for a point (r,0) the velocity is only along the direction of r and hence the acceleration will 

also be only along r. 

Thus, the required acceleration =𝑟̈  only at (r,0) 

   =
3𝑎3

𝑟4
 𝑈2 (1 −

𝑎3

𝑟3
) = 3𝑈2(

𝑎3

𝑟4
−

𝑎6

𝑟7
), using (4) and noting that 𝜃 = 𝜃̇ = 0 

Example: An infinite homogeneous liquid is flowing steadily past a rigid boundary consisting 

partly of the horizontal plane y=0 and partly of a hemispherical boss 𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒂𝟐 with 

irrotational motion which tends, at a great distance from the origin to uniform velocity U 

parallel to the axis of z. Find the velocity potential and the surface of equal pressure. 

Solution:  The velocity potential of the motion of a liquid streaming past a fixed sphere with 

velocity U in the negative direction of z-axis is given by  

𝝓 = 𝑼(𝒓 +
𝒂𝟑

𝟐𝒓𝟐
) 𝒄𝒐𝒔 𝜽         (1) 

 

Solution: Let y-axis be taken in vertical upward direction. Then the motion under consideration is 

such that velocity perpendicular to the plane y=0(i.e. xz-plane) vanishes. Hence y=0 may be taken 

as a stream surface. Also the hemisphere above y=0 is also a stream surface. Accordingly, for the 

hemispherical boss 𝑥2 + 𝑦2 + 𝑧2 = 𝑎2 on y=0, the velocity potential is given by (1). 

Since U is uniform and the hemisphere is at rest, the motion is steady. Hence by Bernoulli’s 

theorem, the pressure at any point is given by 

𝒑

𝝆
+

𝒒𝟐

𝟐
= 𝒄            (2) 

Hence the surface of equal pressure are given by putting p=constant in (2). Therefore, these are 

given by 𝑞2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. (𝑎𝑠 𝜌 𝑖𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡), i.e., by 

(−
𝒅𝝓

𝒅𝒓
)
𝟐

+ (−
𝟏

𝒓

𝝏𝝓

𝝏𝜽
)
𝟐

= 𝒄𝒐𝒏𝒔𝒕. 

    [𝑈 (1 −
𝑎3

𝑟3
) cos 𝜃]

2

 +[
𝑈

𝑟
(𝑟 +

𝑎3

2𝑟2
) sin 𝜃]2 =constant 

or    (1 −
𝑎3

𝑟3
) cos2 𝜽 + (1 +

𝑎3

2𝑟3
) sin2 𝜽 =

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 𝑎𝑠 𝑈 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.   

 

7.4 Equation of Motion of a Sphere: 

Let a sphere of radius ‘a’ advance with velocity U in an infinite mass of liquid at rest at infinity. 

The velocity potential and stream function are given by 

𝜙 =
1

2
𝑈𝑎3 cos𝜃

𝑟2
;      Ψ = −

1

2
 𝑈

𝑎3 sin 𝜃 

𝑟
        (1) 

The Kinetic energy of the fluid is given by 

𝑇𝑓 = −
1

2
𝜌∬𝜙

𝜕𝜙

𝜕𝑛
 𝑑𝑆      (2) 

= −
1

2
𝜌 ∫ ∫(

1
2𝑈𝑎

3 cos 𝜃

𝑟2
)(−

𝑈𝑎3 cos 𝜃

𝑟3
 )

𝜋

0

𝑎2 sin 𝜃 𝑑𝜃𝑑𝑧

2𝜋

0
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=
𝑈2

4
𝜌𝑎3 ∫ cos2 𝜃 sin 𝜃. ∫ 𝑑𝑧

2𝜋

0

𝜋

0
   at r=a 

=
1

3
𝜋𝜌𝑎3𝑈2 =

1

4
𝑀′𝑈2 ; where   𝑀′ =

4

3
 𝜋𝑎3𝜌  (3) 

Here 𝑀′ is the mass of the liquid displaced by the sphere. If M is the mass of the sphere, the total 

kinetic energy of the fluid and the sphere is  

𝑇 =
1

2
(𝑀 + 𝑀′)𝑈2      (4) 

Let R be the external force per unit mass in the direction of motion of the sphere.  Let us use the 

result that the rate of doing work is equal to the rate of increase in K.E. 

 

Thus   RU = =
1

2

𝑑

𝑑𝑡
[(𝑀 +

𝑀′

2
)𝑈2(𝑡)]      

       = (𝑀 +
𝑀′

2
)𝑈

𝑑𝑈

𝑑𝑡
 

  M
𝑑𝑈

𝑑𝑡
= 𝑅 −

1

2
𝑀′

𝑑𝑈

𝑑𝑡
        (5) 

If the liquid is not there, then M = 0 and the equation of motion of the sphere is 

  M
𝑑𝑈

𝑑𝑡
= 𝑅         (6) 

Comparing equation (5) & (6), we note that the presence of the liquid offers a resistance of the 

amount 
1

2
𝑀′

𝑑𝑈

𝑑𝑡
 to the motion of the sphere  

Let R be the external force per unit mass on the sphere when there is no liquid, then  

                 MR = external force on the sphere in the presence of the liquid. 

 

  = MR  MR = (M M) R 

Since,  M = 
4𝜋𝜎𝑎3

3
,𝑀′ =

4𝜋𝜌𝑎3

3
 

  R = (
𝜎−𝜌

𝜎
)𝑅′         (7) 

From equations (5) & (7), we find 

  M
𝑑𝑈

𝑑𝑡
= (

𝜎−𝜌

𝜎
)𝑅′−

1

2
𝑀′

𝑑𝑈

𝑑𝑡
 

or  (𝑀 +
𝑀′

2
)
𝑑𝑈

𝑑𝑡
= (

𝜎−𝜌

𝜎
) 𝑅′ = (

𝑀−𝑀′

𝑀
)𝑅′ 

  M
𝑑𝑈

𝑑𝑡
= (

𝑀−𝑀′

𝑀+
𝑀′

2

)𝑅′ = (
𝜎−𝜌

𝜎+
1

2

)𝑅′      (8) 

This is the required equation of motion of a sphere in a liquid at rest at infinity. 

From equations (6) & (8), we note that the effect of the presence of the liquid reduces the external 

forces in the ration   :  + 
𝜌

2
.  

Note: Sometimes the above ratio is expressed as s-1: s+1/2, where 𝑠 = 𝜎/𝜌 is the specific gravity 

of the sphere compared with the liquid. 

 

7.5 Pressure Distribution on a Sphere: 
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 At a point on a sphere moving through an infinite liquid the pressure is given by the 

formula 

                                              
𝑝−𝑝0

𝜌
=

1

2
𝑎 𝑓 𝑐𝑜𝑠 𝜃1 +

1

8
 𝑣2(9 𝑐𝑜𝑠2 𝜃 − 5)   

where v  is the velocity , f the acceleration of the sphere, and 𝜃, 𝜃1 are the angles between the radii 

and the direction of v , f respectively, and 𝑝0 is the pressure at infinity. 

Let the coordinates of the centre C of the moving sphere referred to fixed axes be (𝑥0, 𝑦0, 𝑧0) and  

 

let     𝑥0̇ = 𝑈, 𝑦0̇ = 𝑉, 𝑧0̇ = 𝑊                            (1) 

Let (𝑥, 𝑦, 𝑧) be the coordinates of any point P in the liquid. 

Let 𝜃, 𝜃1 be the angles between CP and the directions of v ,f respectively. 

 

Let CP=r. Then, we have  

𝑟2 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 + (𝑧 − 𝑧0)
2       (2) 

Let 𝑙,𝑚 𝑛 be the direction cosines of CP, then 

𝑙 =
𝑥−𝑥0

𝑟
,                                  𝑚 =

𝑦−𝑦0

𝑟
,    𝑛 =

𝑧−𝑧0

𝑟
   (3) 

 
 

 

Also      𝑣2 = 𝑈2 + 𝑉2 +𝑊2     (4) 

  𝑣 cos𝜃 = 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑣 𝑎𝑙𝑜𝑛𝑔 𝐶𝑃 = 𝑈𝑙 + 𝑉𝑚 +𝑊𝑛 

   = 𝑈
𝑥−𝑥0

𝑟
+ 𝑉

𝑦−𝑦0

𝑟
+𝑊

𝑧−𝑧0

𝑟
      (5) 

  𝑓 cos 𝜃1 = 𝑟𝑒𝑠𝑜𝑙𝑣𝑒𝑑 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑓 𝑎𝑙𝑜𝑛𝑔 𝐶𝑃 = 𝑈̇𝑙 + 𝑉̇𝑚 + 𝑊̇𝑛 

   =𝑈̇
𝑥−𝑥0

𝑟
+ 𝑉̇

𝑦−𝑦0

𝑟
+ 𝑊̇

𝑧−𝑧0

𝑟
      (6) 

The velocity potential at a fixed point of space (𝑥, 𝑦, 𝑧) is given by 

   𝜙 =
𝑎3

2𝑟2
 𝑣 cos 𝜃         
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   𝜙 =
𝑎3

2𝑟2
 [𝑈

𝑥−𝑥0

𝑟
+ 𝑉

𝑦−𝑦0

𝑟
+𝑊

𝑧−𝑧0

𝑟
]     (7) 

From (2),  2𝑟
𝜕𝑟

𝜕𝑥
= 2(𝑥 − 𝑥0)        so that   

𝜕𝑟

𝜕𝑥
=

𝑥−𝑥0

𝑟
   (8) 

Differentiating (7) partially with respect to x, we get 

𝜕𝜙

𝜕𝑥
=

1
2𝑎

3𝑈

𝑟3
−
3𝑎3

2𝑟4
𝜕𝑟

𝜕𝑥
 [𝑈 (𝑥 − 𝑥0) + 𝑉(𝑦 − 𝑦0) + 𝑊(𝑧 − 𝑧0)] 

   =
1

2

𝑎3𝑈

𝑟3
−

3𝑎3

2𝑟4
 (𝑥 − 𝑥0)𝑣 cos 𝜃     [by (5) 

and (8) 

Similarly, differentiating (7) partially with respect to y and z , we get 

𝜕𝜙

𝜕𝑦
=
1

2

𝑎3𝑉

𝑟3
−
3𝑎3

2𝑟4
 (𝑦 − 𝑦0)𝑣 cos𝜃  ;     

𝜕𝜙

𝜕𝑧
 =

1

2

𝑎3𝑊

𝑟3
−
3𝑎3

2𝑟4
 (𝑧 − 𝑧0)𝑣 cos𝜃 

∴ 𝑞2 = (−
𝜕𝜙

𝜕𝑥
)
2

+ (−
𝜕𝜙

𝜕𝑦
)
2

+ (−
𝜕𝜙

𝜕𝑧
)
2

 

            = (
𝑎6𝑣2

4𝑟6
) (𝑎 + 3 cos2 𝜃)     (9) 

From (2),    𝑟
𝑑𝑟

𝑑𝑡
= (𝑥 − 𝑥0)𝑥0̇ − (𝑦 − 𝑦0)𝑦0̇ − (𝑧 − 𝑧0)𝑧0̇ 

     = −𝑈(𝑥 − 𝑥0) − 𝑉(𝑦 − 𝑦0) − 𝑊(𝑧 − 𝑧0)  (10) 

Differentiating (7) partially with respect to t and using (5) and (6) , we get  

𝜕𝜙

𝜕𝑡
=
𝑎3

2𝑟3
 (𝑓𝑟 𝑐𝑜𝑠 𝜃1 − 𝑣

2) + 3
𝑎3

2𝑟5
(𝑟2𝑣2 cos2 𝜃) 

Thus,    
𝜕𝜙

𝜕𝑡
 = (

𝑎3

2𝑟3
) (𝑓𝑟 cos 𝜃1 − 𝑣

2 + 3𝑣2 cos2 𝜃)    (11) 

 

Let P the potential function due to external forces. Then the pressure at any point to the liquid is 

given by Bernoulli’s equation, namely, 

  
𝑝

𝜌
−

𝜕𝜙

𝜕𝑡
+

1

2
𝑞2 + 𝑃 = 𝑓(𝑡)       (12) 

At infinity 𝑟 = ∞, 𝑝 = 𝑝0 𝑎𝑛𝑑 𝑠𝑜 
𝜕𝜙

𝜕𝑡
= 0 𝑎𝑛𝑑 𝑞 = 0  from (11). Hence (12) gives  

 𝐹(𝑡) =
𝑝0

𝜌
+ 𝑃. 

So (12) reduces to  

𝑝 − 𝑝0
𝜌

=
𝜕𝜙

𝜕𝑡
−
1

2
 𝑞2 =

𝑎3

2𝑟3
 (𝑓𝑟 cos𝜃1 − 𝑣

2 + 3𝑣2 cos2 𝜃 ) −
1

8

𝑎6𝑣2

𝑟6
 (1 + 3 cos2 𝜃) 

 

∴  
𝑝−𝑝0

𝜌
 𝑎3𝑓

1

2𝑟2
cos 𝜃1 −

𝑎3𝑣2

8𝑟6
 (4𝑟3 + 𝑎3) +

3𝑎3

8𝑟6
𝑣2(4𝑟3 − 𝑎3) cos2 𝜃   

 (13) 

Putting r=a in (13), pressure at any point on the surface of the sphere is given by 
𝑝−𝑝0

𝜌
=

1

2
 𝑎𝑓 cos𝜃1 +

1

8
𝑣2(9 cos2 𝜃 − 5)       (14) 

Corollary 1. When sphere moves uniformly, i.e., when f=0, pressure at point on the surface of the 

sphere r=a is given by (putting f=0 in (14)) 
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𝑝−𝑝0

𝜌
=

1

8
𝑣2(9 cos2 𝜃 − 5)         (15) 

or    
𝑝−𝑝0

𝜌
=

1

8
𝑣2[

9

2
 (1 + cos 2𝜃) − 5] =

1

16
 𝑣2(9 cos 2𝜃 − 1)    (16) 

Corollary 2. Resultant thrust when there is no acceleration 

From (15) ; 𝑝 = 𝑝0 +
1

8
𝜌 𝑣2(9 cos2 𝜃 − 5) 

So the resultant thrust on the sphere 

= −∫𝑝 cos𝜃 𝑑𝑠 = −∫  𝑝 cos𝜃 𝑑𝜃. 2 𝜋 𝑎 sin 𝜃
𝜋

0

 

 

   −2𝜋𝑎2 ∫ [ 𝑝0 +
1

8
𝑣2𝜌 (9 cos2 𝜃 − 5)] sin 𝜃 𝑐𝑜𝑠𝜃 𝑑𝜃 = 0

𝜋

0
 

Which is in conformity with D’Alembert’s Paradox. 

 

Corollary 3. Resultant thrust when there is acceleration. 

 When f is not zero, the resultant thrust due to that part will be  

−∫
𝜌1

2
𝑎 𝑓 cos 𝜃1.

𝜋

0

 2 𝜋 𝑎 sin 𝜃1. 𝑎 𝑑𝜃1 = −𝜋𝑎3 𝜌 𝑓 ∫ cos2 𝜃1 sin 𝜃1 𝑑𝜃1 = −
2

3
𝜋𝑎3𝑓𝜌 −

1

2
𝑀′𝑓

𝜋

0

 

Where   𝑀′ =
4

3
 𝜋𝑎3𝜌 = 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑖𝑞𝑢𝑖𝑑 𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑑. 

 

7.6 Drag Force on a Sphere:  Show that the fluid pressure exerts a force 
1

2
𝑀′𝑈̇ opposing the 

motion where M’=mass of the liquid displaced by the sphere  

Or 

A sphere moves in a fluid at rest at infinity. Calculate the force acting on the sphere due to the 

presence of the fluid. 

 The velocity potential for the resulting motion is given by 

𝜙 =
𝑈𝑎3

2𝑟2
cos𝜃      (1) 

Where U is the velocity of motion of a sphere in a fluid at rest at infinity. 

The Kinetic energy T of the liquid on the surface of the sphere is given by 

𝑇 =
1

4
𝑀′𝑈2 

The drag force on the sphere may be obtained by integrating the resolved component of pressure 

force over the surface of the sphere. 

This result may also be obtained by equating the rate of change of K.E. of the fluid to the work 

done by the fluid forces. Let F denote drag force, then 

𝒅𝑻

𝒅𝒕
=
𝑾𝒐𝒓𝒌𝒅𝒐𝒏𝒆

𝒕𝒊𝒎𝒆
=
𝑭𝒐𝒓𝒄𝒆 × 𝒅𝒊𝒔𝒕𝒂𝒏𝒄𝒆

𝒕𝒊𝒎𝒆
= 𝑭𝒐𝒓𝒄𝒆 × 𝒗𝒆𝒍𝒐𝒄𝒊𝒕𝒚 = 𝑭𝑼 

or    𝐹𝑈 =
𝑑

𝑑𝑡
(
1

4
𝑀′𝑈2) =

𝑀′

2
 𝑈 𝑈̇ 

or    𝐹 =
1

2
𝑀′𝑈̇ 
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Note: If U= constant, then drag force is zero. 

 

Example: Prove that a sphere projected in a liquid under gravity describes a parabola of latus 

rectum 

[
𝟐𝝈 + 𝝆

𝝈 − 𝝆
](
𝑼𝟐

𝒈
), 

where 𝝈 and 𝝆 are the densities of sphere and liquid and U is the horizontal velocity. 

Or Discuss motion of sphere under gravity. 

 Solution: In considering the motion of a sphere, we consider its virtual mass equal to 𝑀+
1

2
𝑀′, where M and M’ are masses of sphere and liquid displaced by sphere. By Newton’s second 

law of motion 

(𝑀 +
1

2
𝑀′) 𝑈̇ = 𝑀𝑔 −𝑀′𝑔 

4

3
𝜋𝑎3 (𝜎 +

1

2
𝜌)𝑈 =

4

3
 𝜋𝑎3(𝜎 − 𝜌)𝑔

̇
 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑈 =
𝜎 − 𝜌

𝜎 −
1
2𝜌

 𝑔 =
2(𝜎 − 𝜌)

2𝜎 + 𝜌
𝑔

̇
 

Length of lactus rectum =2(𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦)2/𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

=
2𝑈2

𝑈̇
= 2𝑈2

2𝜎 + 𝜌

2(𝜎 − 𝜌)𝑔
=
𝑈2

𝑔

2𝜎 + 𝜌

𝜎 − 𝜌 
. 

Example: An infinite ocean of an incompressible liquid of density 𝝆 is streaming past a fixed 

spherical obstacle of radius a. The velocity is uniform and equal to U except in so far as it is 

disturbed by the sphere, and the pressure in the liquid at a great distance from the obstacle is 𝚷. 

Show that the thrust on that half of the sphere on which the liquid impinges is 𝝅 𝒂𝟐 [ 𝚷 −
𝝆𝑼𝟐

𝟏𝟔
). 

Solution:  For the velocity potential 𝜙 of the liquid, 

𝜙 =
𝑈𝑎3

2𝑟2
cos𝜃 + 𝑈𝑟 cos 𝜃 

Since the motion is steady and there are no extraneous forces 

𝑝

𝜌
= 𝐶 −

1

2
𝑞2 

At a great distance 𝑞 = 𝑈 𝑎𝑛𝑑 𝑝 = Π, 𝑠𝑜 𝐶 =
Π

𝜌
 +

1

2
𝑈2 

Hence,  
𝑝

𝜌
=

Π

𝜌
+

1

2
𝑈2 −

1

2
𝑞2  

Now, at r=a,   𝑞2 = (−
𝜕𝜙

𝜕𝑟
)
2

+ (−
1

𝑟

𝜕𝜙

𝜕𝜃
 )
2

 

Therefore,   𝑝 = Π+
1

2
 𝜌𝑈2 −

1

2
 𝜌

9

4
 𝑈2 sin 𝜃 

The liquid impinges on half of the sphere, hence thrust on that half 

       = ∫ 𝜌 cos𝜃 (2 𝜋 𝑎 sin 𝜃) 𝑎 𝑑𝜃
𝜋

2
0
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      = ∫ [ Π +
1

2
 𝜌𝑈 (1 −

9

4
sin2 𝜃) ] 2𝜋 𝑎2 sin 𝜃 cos 𝜃 𝑑𝜃

𝜋

2
0

 

      = 𝜋𝑎2  (Π −
𝜌𝑈2

16
). 

Example:  A sphere whose radius at time t is 𝒂 + 𝒃 𝒄𝒐𝒔𝒏𝒕, is held in a stream of liquid of 

density 𝝆, whose velocity at a great distance is U. Prove that the resultant thrust on the sphere is 

𝟐𝝅 𝝆(𝒂 + 𝒃 𝒄𝒐𝒔 𝒏𝒕)𝟐 𝒏𝒃 𝒔𝒊𝒏 𝒏𝒕 . 

Solution: We first consider the liquid to be at rest at infinity and take note of the throbbing of the 

sphere. Since the motion is symmetrical about the centre O of the sphere, the velocity v at a 

distance r from O is entirely radial and depends only on r and t. 

Let 𝑅 = 𝑎 + 𝑏 cos𝑛𝑡; so that the velocity at any point on the sphere is −𝑛𝑏𝑠𝑖𝑛 𝑛𝑡 . The equation 

of continuity, therefore, is 

𝑟2𝑣 = 𝑅2 (−𝑛𝑏 sin 𝑛𝑡) 

This gives  𝑣 = −
𝜕𝜙0

𝜕𝑟
= −

𝑅2

𝑟2
 𝑛𝑏 sin 𝑛𝑡  

Whence  𝜙0 = −
𝑅2

𝑟
 𝑛𝑏 sin 𝑛𝑡      (1) 

As the velocity potential 𝜙1 of a liquid streaming with velocity U past a fixed sphere of radius R is 

𝑈 cos𝜃 [𝑟 +
𝑅3

2𝑟2
] , the motion of the liquid under conditions of the problem is obtained by 

superposing 𝜙0 𝑜𝑛 𝜙1. Thus  

𝜙 = 𝜙0 +𝜙1 = 𝑈𝑟 cos𝜃 +
𝑈𝑅3

2𝑟2
cos𝜃 −

𝑅2

𝑟
 𝑛𝑏 sin 𝑛𝑡  

At r = R       {

𝜕𝜙

𝜕𝑟
= 𝑛𝑏 sin 𝑛𝑡 

1

𝑟

𝜕𝜙

𝜕𝜃
= −

3

2
 𝑈 sin 𝜃

 

Since 𝑅̇ = −𝑛𝑏 sin 𝑛𝑡 , we also have , when r=R 

𝜕𝜙

𝜕𝑡
= [−

3

2
 𝑈 cos 𝜃 . 𝑛𝑏 sin 𝑛𝑡 + 2(𝑛𝑏 sin 𝑛𝑡)2 − 𝑅 𝑛2 𝑏 cos 𝑛𝑡 ] , 

Also,        𝑞2 = (−
𝜕𝜙

𝜕𝑟
 )
2

+ (−
1

𝑟

𝜕𝜙

𝜕𝜃
 )
2

=
9

4
 𝑈2 sin2 𝜃 𝑛2𝑏2 sin2 𝑛𝑡. 

We now make use of the pressure equation, viz,  

𝑝

𝜌
=
𝜕𝜙

𝜕𝑡
−
1

2
𝑞2 + 𝐶 

Which gives, on substituting the values of 
𝜕𝜙

𝜕𝑡
 𝑎𝑛𝑑 𝑞, 

(
𝑝

𝜌
) = −(

3𝑈

2
)  𝑛𝑏 cos𝜃 sin 𝑛𝑡 + 2(𝑛𝑏 sin 𝑛𝑡 )2

− 𝑛2𝑏 𝑅 cos 𝑛𝑡 − (9
𝑈2

8
) sin2 𝜃 −

1

2
𝑛2𝑏2 sin2 𝑛𝑡 + 𝐶 

The resultant thrust on the sphere acts along the initial line by virtue of symmetry, and is of 

magnitude F, where 

𝐹 = ∫ 𝑝 cos𝜃 2 𝜋 𝑅 sin 𝜃 . 𝑅 𝑑𝜃

𝜋
2

0
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Measured in the sense of the stream, 

or   𝐹 = 2𝜋𝑅2 ∫  𝜌 sin 𝜃. cos𝜃 (−
3𝑈

2
 𝑛𝑏 cos𝜃 sin 𝑛𝑡 )𝑑𝜃 + 0

𝜋

0
 

 

     = −3𝜋𝜌 𝑈𝑅2𝑛𝑏 sin 𝑛𝑡 .
2

3
  

Thus,      𝐹 = −2𝜋𝜌 𝑈(𝑎 + 𝑏 cos 𝑛𝑡)2 𝑛𝑏 sin 𝑛𝑡. 

 

7.7 Check Your Progress: 

 

i). Prove that when the sphere is motion with uniform velocity U, the pressure on the part of 

its surface where the radius makes an angle 𝜃 with direction of motion is increased on account of 

the motion by the amount 
𝜌𝑈2

16
(9 𝑐𝑜𝑠 𝜃 − 1),where 𝜌 is the density of the liquid. 

ii)   A sphere of radius a is made to move in incompressible perfect fluid with non-uniform 

velocity u along the x-axis. If the pressure at infinity is zero, prove that at a point x in advance of 

the centre 

𝑝 =
1

2
𝜌 𝑎3 [

𝑢

𝑥2
+ 𝑢2 (

2

𝑥2
−
𝑎3

𝑥6
)] 

iii) A solid sphere moves through quiescent frictionless liquid whose boundaries are at a distance 

from it great compared with its radius. Prove that at each instant the motion in the liquid depends 

only on the position and velocity of the sphere at that instant. Prove that the liquid steams pas the 

sides of the sphere with half the velocity of the sphere. 

 

iv) A sphere of radius a is made to move in incompressible perfect fluid with non-uniform velocity 

U along x-axis. If the pressure is zero, prove that at a point x in advance of the centre 

 

𝑃 =
1

2
𝜌𝑎3  [

𝑈

𝑥2
+𝑈2 (

2

𝑥3
−
𝑎3

𝑥6
)] 

 

 v) Prove that the thrust on the half of the sphere on which the liquid impinges is 𝜋𝑎2(Π −
1

16
𝜌𝑈2), where Π is the pressure at infinity, U the undisturbed velocity of the liquid and 𝜌 the 

density. 

 

7.8 Summary: In this chapter we have discussed the theory of irrotational motion in three 

dimensions with the motion of sphere. The equation of motion of sphere in an infinite mass of 

liquid at rest at infinity has been derived. For a liquid streaming past a fixed sphere, the lines o f 

flow relative to the sphere is obtained. Also when a sphere moves through an infinite liquid, the 

pressure distribution on  formula is derived. 

 

7.9 Keywords: irrotational, motion of sphere, infinite liquid, velocity potential, pressure 

distribution, thrust, drag force. 
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7.10 Self-Assessment Test: 

 

SA1: Find the velocity potential when a sphere of radius a is moving with velocity U in he liquid at 

rest at infinity. 

 

SA2: A sphere of radius a is moving with velocity U through an infinite liquid at rest at infinity. If 

𝑝0 be the pressure at infinity, show that the pressure at any point of the surface of the sphere, the 

radius to which point makes an angle 𝜃 with the direction of motion is given by 

 

𝑝 = 𝑝0 +
1

2
 𝜌𝑈2 [1 − (

9

4
) sin2 𝜃 ]. 

 

SA3: A sphere moves through a liquid at rest at infinity with a uniform velocity; prove that the 

equation to the lines of flow is  

𝑟 = 𝑎 sin2 𝜃 

SA4: A solid sphere of radius a move along a straight line in an ideal liquid of density 𝜌, which is 

moving irrotationally and is at rest at infinity. Show that the magnitude of the resultant thrust of 

the liquid on the sphere at any instant is 
2

3
 𝜋𝑎3𝜌𝑓, where f is the instantaneous value of the 

acceleration of the sphere. 

 

SA5: For a solid sphere moving under gravity in an infinite liquid prove that the effect of the liquid 

is to reduce the acceleration due to gravity in the ratio 

(𝑠 − 1): (𝑠 +
1

2
) 

s being the specific gravity of the sphere compared with the liquid. 
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CHAPTER-8 

 

 STOKE’S STREAM FUNCTION 

 

 

8.0 Learning Objectives: After reading this chapter, you should be able to understand the 

motion in two dimensions, define Lagrange’s stream function, understand three-dimensional 

hydrodynamical singularities: source, sinks and doublets in three-dimensions their images in 

infinite plane and spherical surface and derive the velocity potential functions for these 

singularities, define and understand the importance of Stoke’s Stream function. 

 

8.1 Motion in Two-dimensions: When the lines of motion are all parallel to a fixed plane (say 

xy-plane) and velocity at the corresponding points of all planes parallel to that of xoy-plane has the 

same magnitude and direction, the motion is said to be two-dimensional i.e., there is no velocity 

potential parallel to the z-axis. Obviously in this case w=0 and u, v are functions of x,y and t only.  

 In the figure, let xoy be the fixed plane and x’o’y’ a plane parallel to it. If from a point P in 

the xOy  plane a normal is drawn to meet x’O’y’ in P’, P’ is called the point corresponding to P. 

Let q be the velocity at P making an angle 𝜃 with Ox; then the velocity at P’ will also be q making 

an angle 𝜃 with Ox’. This velocity q shall be a function of x, y and time, but not of z. 

 For convenience, let us consider the fluid in two-dimensional motion to be confined 

between two hypothetical parallel planes at unit distance apart. The plane of reference, the plane 

xOy is taken midway and parallel to these planes. Therefore, any closed curve drawn in the plane 

xOy will be a cross-section of a cylindrical surface of unit length. Accordingly, when we speak of 

the flow across a curve in the xOy plane, we really mean the flow across unit length of the cylinder 

whose cross-section on the xOy plane is that curve. 

8.2 Lagrange Stream Function 𝝍  : In two-dimensional motion of incompressible fluid, the 

velocity q is a function of x, y,t but not of z, so that the differential equation of the stream lines is 

given by 
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
  or  𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 0  (1) 

The equation of continuity is  

   ∇. 𝒒 = 0 i.e.,   
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0     (2) 

But (2) is the condition that the differential equation (1) should be exact; it follows that (1) must be 

a perfect differential, 𝑑𝜓 (say). 

Thus  

  𝑣𝑑𝑥 − 𝑢𝑑𝑦 = 𝑑𝜓 =
𝜕𝜓

𝜕𝑥
𝑑𝑥 +

𝜕𝜓

𝜕𝑦
𝑑𝑦=0 

So that     𝑢 = −
𝜕𝜓

𝜕𝑦
; 𝑣 =

𝜕𝜓

𝜕𝑥
. 

We call the function 𝜓 the Lagrange stream function or current function. 
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Obviously the stream lines are given by the solution of (1), i.e., 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Thus the stream 

function is constant along a stream line. It is clear from the foregoing considerations that the 

existence of stream function is merely a consequence of the continuity and incompressibility of the 

fluid. The current function always exists in all types of two-dimensional motion whether rotation 

or irrotational. 

Physical meaning of Lagrange stream function: Consider a curve I in the xy-plane. If the 

tangent at any point P of the element ds makes an angle 𝜃 with x-axis, the direction cosines of the 

normal there at (directed from right to left) shall be (− sin 𝜃, cos𝜃, 0). The flow, Q, across the 

curve I from right to left is 

 

𝑄 = ∫𝜌 𝒒. 𝑛 𝑑𝑠
 

𝑡

= 𝜌∫[(
𝜕𝜓

𝜕𝑦
sin 𝜃) +

𝜕𝜓

𝜕𝑥
cos𝜃 ]𝑑𝑠

 

𝑡

 

         {𝑞 = 𝑘 × ∇𝜓 = [−
𝜕𝜓

𝜕𝑦
,
𝜕𝜓

𝜕𝑥
, 0]} 

    = 𝜌∫ (
𝜕𝜓

𝜕𝑦
 𝑑𝑦 +

𝜕𝜓

𝜕𝑥
 𝑑𝑥) = 𝜌 ∫ 𝑑𝜓 = (𝜓2 − 𝜓1)𝜌

 

𝑡
 

 

𝑡
 

Where 𝜓1, 𝜓2 are the values at the initial and final points of the curve. Thus, the difference 

between the values of stream function at any two points of a curve equals the flow across that 

curve. 

 

Corollary: Let AB be an infinitesimal arc of a curve whose length is 𝛿𝑠. Then flow across it is 

𝑄 = 𝜌𝒒𝛿𝑠 as well as 𝑄 = 𝜌(𝜓2 − 𝜓1) = 𝜌𝑑𝜓.  Thus, 𝒒 =
𝑑𝜓

𝑑𝑠
,  the velocity in terms of the steam 

function. 

 

8.3 Irrotational Motion in Two Dimensions:  

When the motion is irrotational, we know that  

 

   𝜉 =
1

2
 {
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
} = 0, ;  𝜂 =

1

2
 {
𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
} = 0; 𝜁 =

1

2
{
𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
} = 0  

In two-dimensional motion, first two equations are automatically zero. Substituting for u and v in 

terms of stream function, the third equation becomes 

    
𝜕2𝜓

𝜕𝑥2
+

𝜕2𝜓

𝜕𝑦2
= 0 

Which shows that the stream function satisfies Laplace equations. 

 

Also, in this case, since velocity potential exists, we have  

    𝑢 = −
𝜕𝜙

𝜕𝑥
= −

𝜕𝜓

𝜕𝑦
;   𝑣 = −

𝜕𝜙

𝜕𝑦
=

𝜕𝜓

𝜕𝑥
 

Hence the equation of continuity, 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 gives  

    
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0 

Which shows that 𝜙 also satisfies Laplace equation. 

It can be easily seen that  
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𝜕𝜙

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝜙

𝜕𝑦

𝜕𝜓

𝜕𝑦
= −𝑢𝑣 + 𝑢𝑣 = 0  

Hence the family of curves 𝜙(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 and 𝜓(𝑥, 𝑦) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 cut orthogonally at all 

their points of intersection. 

8.4 Complex Potential and Velocity: The relation 𝑤 = 𝜙 + 𝑖𝜓 𝑤ℎ𝑒𝑟𝑒 𝜙 is the velocity 

potential and 𝜓 is the stream function of a two-dimensional irrotational motion of a perfect fluid, is 

known as the complex potential of the fluid motion. 

Now since   
𝜕𝜙

𝜕𝑥
=

𝜕𝜓

𝜕𝑦
  and   

𝜕𝜙

𝜕𝑦
= −

𝜕𝜓

𝜕𝑥
 

Known as Cauchy-Riemann equations, it follows that w is an analytic function of 𝑧 = 𝑥 + 𝑖𝑦 in a 

region where 𝜙 𝑎𝑛𝑑 𝜓 are single valued functions. 

 Conversely, if w is analytic, its real and imaginary parts(𝜙 𝑎𝑛𝑑 𝜓) give the velocity 

potential and stream function for a possible two dimensional irrotational fluid motion. 

Again, differentiating the relation 

 

𝑤 = 𝜙 + 𝑖𝜓 = 𝑓(𝑧) 

With respect to x, we get  

  
𝜕𝜙

𝜕𝑥
+ 𝑖

𝜕𝜓

𝜕𝑥
= 𝑓′(𝑧) 

𝜕𝑧

𝜕𝑥
   

Or  −𝑢 + 𝑖𝑣 = 𝑓′(𝑧) 

Or  −𝑢 + 𝑖𝑣 =
𝑑𝑤

𝑑𝑧
 

Hence |
𝑑𝑤

𝑑𝑧
| = |−𝑢 + 𝑖𝑣| = √𝑢2 + 𝑣2 , 

Thus |
𝑑𝑤

𝑑𝑧
| represents the velocity at any point. 

The points where velocity is zero are called stagnation points. Thus, for stagnation points 
𝑑𝑤

𝑑𝑧
= 0. 

        

8.5 Sources, Sinks and Doublets (Three-dimensional Hydrodynamical Singularities) 

8.5.1 Source:  An outward symmetrical radial flow of fluid in all directions is termed as a three-

dimensional source or a point source or a simple source. 

Thus, a source is a point at which fluid is continuously created and distributed e.g. an expanding 

bubble of gas pushing away the surrounding fluid.  If the volume of fluid per unit time which is 

emitted from a simple source at 0 is constant and equal to 4m, then m is termed as strength of the 

source. 

8.5.2 Sink: A negative source is called a sink.  At such points, the fluid is constantly moving 

radically inwards from all directions.  Thus, a simple sink of strength m is a simple source of 

strength m. 
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8.6 Velocity Potential due to a Simple Source of Strength m.   Let there be a source of 

strength m at a point O the centre, we draw a sphere of radius r around O. The flow across the 

sphere per unit volume is given by  

  
S

dSnq.  

In case of a source there is only the radial velocity i.e. q  has only radial component qr . 

Therefore, the flow is  

  = 
S

rq dS   | .q n = qr, since nq and have same directions i.e. radial direction. 

  = qr (4 r2). 

Thus, we get 

  4m = qr (4 r2) 

  qr = 













r

m

rr

m
2

        (1) 

It is observed that curl 0q (except at r = 0), therefore for irrotational flow, 

  qr = 
r


   | q      (2) 

From (1) & (2), we find 

   = 
r

m
 

which is the required expression for the velocity potential for a source. 

 Remarks. (i) For a simple sink of strength m, the velocity potential is  = 
r

m
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(ii) A source or sink implies the creation or annihilation of liquid at a point.  Both are points at 

which the velocity potential and stream function for two dimensional case become infinite and 

therefore, they require special analysis.   

 

 

 

8.7 A simple Source in Uniform Stream.  Let us consider a simple source of strength m at 0 

in a uniform stream having undisturbed velocity U k̂,k̂ be the unit vector along z-axis which is 

taken as the axis of symmetry of the flow. 

We shall find the velocity potential at any point P (z, , ).  From P, draw perpendicular on OZ.  

Let OP = r, POZ|  =  ; OM = z 

We observe that the velocity potential of the uniform stream in the absence of source is  

       

UzU
z

z
U
















 kkq

 

  1 = Uz = Ur cos         (1) 

and the velocity potential of the simple source is  

  2 = 
r

m
         (2) 

Thus, the velocity potential of the combination is 

   =  1 + 2 = Ur cos +
r

m
 

           =  









r

m
cosUr       (3) 



 

145 

 

From here, the velocity components at P(r, , ) are  

  qr = 
2r

m
cosU

r





 

  q = 




r

1
= U sin    

0

20

0










 

  q = 




sinr

1
= 0 

The stagnation points )0( q  are given by U cos + ,0
r

m
2
  sin = 0     = 0 or  

But  = 0 gives r to be imaginary    =  and r = 
U

m
 

Thus there is only one stagnation point 













 0,,

U

m
 

8.8. Doublet (Dipole).  The combination of a source and a sink of equal strength, at a small 

distance apart, is called a doublet.  

8.8.1 Velocity Potential of Doublet.   

Suppose that there is a simple source of strength m at O1 and a simple sink of strength m at O2.  

Origin O is taken as the mid-point. of O1 O2.  It is also assumed that there is no other source or 

sink.  Let P be a fixed point within the fluid and 
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𝑶𝑷 = 𝒓,𝑶𝟏𝑷 = 𝒓𝟏, 𝑶𝟐𝑷 = 𝒓𝟐, ∠𝑃𝑂𝑂1 = 𝜃 

𝑶𝑶𝟏 = 𝒉,𝑶𝑶𝟐 = −𝒉, ℎ = |𝒉| 

 

The velocity potential at P due to the combination of source and sink at O1 and O2 is 

   = 
21 r

m

r

m
  = 

21

12

rr

mrmr 
 

     = 
)rr(rr

)rr(m

rr

)rr(m

2121

2
1

2
2

21

12







 

     = 
)(

)).((

2121

1212

rrrr

m



 rrrr
 

But   rrhrr 22 1212  rand    
rrr

rrhr





h1

2
 

Thus    = 
)(

.4

)(

)2).(2(

2121212 rrrr

m

rrrr

m






rhrh
 

     = ,
)(

.2

2121 rrrr 

r
 where 𝝁 hm2       (1) 

In equation (1), let us first keep 𝝁 a finite constant and non-zero vector, so that  = | 𝝁 | is a finite 

constant and non-zero scalar.  Let 𝒉 → 𝟎 𝑎𝑙𝑜𝑛𝑔 𝑶𝟏𝑶. 

Then m in such a way that   remains the same finite non-zero constant vector.  In that case, 

both r1, r2r and thus under this limiting process, (1) results in 

 

   =2. 𝝁.
𝒓

𝑟3 23

coscos

rr

r 
       (2) 

The limiting source sink combination obtained at 0 when we keep the direction of h fixed but let 

h0 and m with  = 2mh remaining a finite non-zero constant, is called a three-dimensional 

doublet (or dipole).  The scalar quantity  is called the moment or strength of the doublet.  The 

vector quantity 𝝁 =  ̂  is called the vector moment of the doublet & ̂  (unit vector from 02 to 01) 

determines the direction of the axis of the doublet from sink to source. 

From (2), the velocity components are given by  

  qr = 
3r

cos2

r







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  q = 
3r

sin

r

1 





 

  q = 0 

The streamlines due to the doublet are given by 

  
0

dsinr

r

sin

rd

r

cos2

dr

33










 

  d = 0      = constant and 
r

dr
= 2cot d 

  r = A sin2 

8.8.2 Doublet in a Uniform Stream. Let there be a doublet of vector moment 𝝁=𝜇 k at O in a 

uniform stream whose velocity in the absence of the doublet is U k (U = constant). 

 

 

 

Let P be a point in the fluid having spherical polar co-ordinates (r, , ), the direction OZ of the 

doublet’s axis being the line  = 0.  We shall find the resultant velocity potential due to the 

combination of the uniform stream and the doublet.  We know that the velocity potential due to the 

uniform stream is 

  1 = U z = Ur cos        (1) 

and the velocity potential due to a doublet at O, is 

  2 = 
2r

cos
         (2) 
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Thus, the resultant velocity potential at P. due to the combination, is  

   = 1 + 2 = (Ur +  r 2) cos 

From here, the velocity component are 

  qr =  






 





cos

r

2
U

r 3
 

  q =  






 





sin

r
U

r

1
3

 

  q = 0
sinr

1







 

Stagnation points are determined by solving. 

  0|0sin,0cos
2

33


















 q






r
U

r
U  

which are satisfied when sin = 0 and r =

3/1

U

2







 
 

Thus, we have the two stagnation points. 

  





















 





















 
,

U

2
and0,

U

2
3/13/1

 

which lie on the axis of symmetry. 

If we write r = a i.e., a = 

3/1

U

2







 
i.e.  = 

2

1
U a3, then for the region r  a, we obtain the same 

velocity potential as for a uniform flow past a fixed impermeable sphere of radius a and centre 0.  

Thus, for r  a, the effect of the sphere is that of a doublet of strength  = 
2

1
Ua3 situated at its 

centre, its axis pointing upstream.  So, the sphere can be represented by a suitably chosen 

singularity at its centre.  

8.9 Line Distribution of Sources.  Let us consider a uniform line source AB of strength m per 

unit length.  This means that the elemental section of AB at a distance. x from A and of length x 

is a point source of strength mx. 
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A 

                                     

 

Let P be a point in the fluid at a distance r from this element, then the velocity potential at P due to 

the point source is  
r

xm
 . 

The total velocity potential at P due to the entire line distribution AB (= 2l) is 

   = m 
l2

0 r

dx
         (1) 

Let AM = x1, BM = x2, where AM is the orthogonal projection of AP on AB. Also, let PM = d,          

AP = r1, BP = r2 .  Since r2 = (x1 x)2 + d2 = (x1x)2 + r1
2  x1

2, therefore from (1), we get 

   = m 


l2

0 2
1

2
1

2
1 )xr()xx(

dx
 

     = m
 

  





22

22

2

0

2

1

2

1

2

11

log

1

1

)()()(log

axx

dx
ax

xrxxxx





















 
l

 

     = m   0
2

2
1

2
1

2
11 )xr()xx()xx(log

l
   

     = m   2
1

2
1

2
2211 xrxxlog)rxlog(   |  x1  2l = x1 AB = x2 

     = m log .xrdxrwhere,
rx

rx 2
2

2
2

22
1

2
1

22

11 











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r1 r2 

Again, the relation 
2
2

2
2

2
1

2
1 xrxr   

  
1221

2121

11

22

22

11

xxrr

xxrr

xr

xr

xr

xr














  

          = 
l

l

2rr

2rr

21

21




 

Thus,    = m log 












l

l

2rr

2rr

21

21  

     = m log 












l

l

a

a
        (2) 

where 2a is the length of major axis of the ellipsoid of revolution through P having A and B as foci 

since for such an ellipsoid r1 + r2 = constant.  It follows from here that the equipotential surfaces                      

 = constant are precisely the family of confocal ellipsoid r1 + r2 = 2a obtained when a is allowed            

to vary. 

Expression for Velocity:  The velocity at P is given by nq 













n


   (3) 

 

                                        

Let P be any point on the ellipsoid specified by parameter a and P the neighboring point on the 

ellipsoid specified by parameter a + a, wherein nPP n'  

Thus  nn
n

q
n

a

lala
m

la

la
m




































11
log = n

n

a

la

ml





 22

2
    (4) 

The normal at P to the a-surface bisects the angle 2 between the focal radii AP, BP. 

Now,                                                                                                                      
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  O 

a 
(m) 

A(a, 0, 0) 

Y 

 

(r1 + r1)
2 = r1

2 + (n)2  2r1 n cos (180)  

                     = r1
2 + (n)2 + 2r1 n cos                                                                            

   

Ccosab2bac

ab2

cba
Ccos

222

222






 

  2r1 r1 = 2r1 n cos  + (n)2  (r1)
2 

  r1 = n cos  | (r1)
2 = (n)2 

  



cos

n

r1  

Similarly,    



cos

n

r2  

Since,            2a = r1 + r2 

                 2 .
n

r

n

r

n

a 21














= cos  + cos  = 2 cos  

                 



cos

n

a
 

and thus, from equation (4), the velocity of fluid at P is given by nq 











22

cos2

la

ml 
 

8.10 Hydrodynamical Images for Three Dimensional Flows 

Let us consider a fluid containing a distribution of sources, sinks and doublets.  If a surface S can 

be drawn in the fluid across which there is no flow, then any system of sources, sinks and doublets 

on opposite sides of this surface S may be said to be images of one another w.r.t. to the surface.  

Further, if the surface S be considered as a rigid boundary and the liquid removed from one side of 

it, the motion on the other side will remain unaltered. 

8.10.1. Images in a Rigid Impermeable Infinite Plane 

 

 (i) Image of a source in a plane: consider a simple source of strength m situated at A(a, 0, 0) at a 

distance a from an infinite plane YY. 

We shall show that the appropriate image 

system for this is an equal source of strength 

m at A(a, 0, 0), the reflection of A in the 

plane.      
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Y 

To prove this, we consider two equal sources f 

strength m at A(a, 0, 0) & A (a, 0, 0) with no 

rigid boundary.  Let P0 be any point on the 

plane YY.  Then the fluid velocity at P0 due 

to the two sources is  

  03

0
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)'()(
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m
   rrq

32 r

m

r

m
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  
3

0 )(AP

m
q  (𝑨𝑷𝟎 + 𝑨

′𝑷𝟎) 

      = 
3

0 )(AP

m
(2𝑶𝑷𝟎)= )(
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0

OP
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m
     

0

00
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2

)'()(

PA'P 
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POOP







OAAO

A

 

This shows that at any point P0 of the plane YY, the fluid flows tangentially to the plane x = 0 and 

so there is no transport of fluid across this plane O 

Let  denotes the velocity potential then, at all points P0 on the plane YY, the normal component 

of velocity is zero  

             
n


= 0.  Hence, the image of a source at A in the rigid plane YY is a source at A, as 

required.  

(ii) Image of Doublet in a Plane: Consider a pair of sources m at A and m at B, taken close 

together and on one side of the rigid plane YY’.  The image system is m at A’, m at B, where A 

& B are respectively the reflections of A and B in the plane YY.  In the limiting case, when BA 

along BA in such a way as to form a doublet at A, we find that the image of a doublet in an infinite 

impermeable rigid plane is a doublet of equal strength and symmetrically disposed to the other 

w.r.t the plane.  
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 Example:  A three-dimensional doublet of strength  whose axis is in the direction OZ is 

distant a from the rigid plane z = 0 which is the sole boundary of liquid of constant density , 

infinite in extent.  If p be the pressure at , show that the pressure on the plane is least at a 

distance 
2

5a
 from the doublet 

Solution. Let there be a doublet of strength  at the point A with OA = a and YY (i.e. z = 0) be 

the infinite plane.  Then the image system is an equal doublet of strength  at A, the reflection of 

A in the plane z = 0, and the axis along ZO.  The line OZ is taken as the initial line  = 0 and 

plane              z = 0 is  = /2. so that P(r, , ) is confined to the region 0    /2.  Let   AP = 

r1, AP = r2 and 1, 2 be the angles which these lines make with the axis of the doublets as 

shown in the figure. 

Then, the velocity potential at P is  
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 = 
2
2

2

2
1

1

r
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r

cos 



         (1) 

where  










cosra2arr

cosra2arr

222
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       (2)   

(By cosine formulae in  POA, POA) 

But   cos1 = 
111 r

acosr

r

OAOM

r

AM 



  

and  cos (180 2) = 
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cosra

r

OMO'A

r

M'A 



  

  cos 2 = 
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Using these relations in (1), we get 

   = 






 








 
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     =  






 
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1 r
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r
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Further from (2), we have 

  2 r1 
1
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r
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r

r
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r
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


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Similarly, 
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2

2

r
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r
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r
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


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




 

  
2

2

r

sinrar 





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Thus from (3), the velocity components are given by  

 qr =  



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 q = 
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  q = 0 

When the point P lies on the plane YY or  = /2, we have  2
2

2
1 rr r2 + a2 and so at (r, /2, ), 

the velocity components are  

  qr = 6 ra/(r2 + a2)5/2, q = 0, q = 0 . 

Along the streamline through this point, Bernoulli’s equation is 

  ,
2

1 2




p
const

p
q  

where 0q  at infinity.  

Thus, the pressure at any point on the plane YY is given by 

  p = p   522222 )ar(ra36
2

1
  

i.e.  p(r) = p 
522

222

)ar(

ra18




 

Now,  

p(r) = 
6222222 )ar()ar4(ra36

dr

dp
  

which gives      p(r) = 0 when r = 
2

1
a 

Also  

     p 0
2

a
'p,0

2

a


















  

i.e. p(r) changes sign from negative to positive when r passes through 
2

a
 

 p is minimum at r =
2

a
  = /2 
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i.e. at the point P0 







 ,2/,

2

a
 

The distance P0A is given by 

  a
2

5
a

2

a 2

2









 

Hence p is least at a distance 
2

5
a from the doublet and the minimum value is 

  pmin. = p 
6

5

2

a

1

5

4

2

9








   

8.11 Images in Impermeable Spherical Surfaces.  We have already studied the effect of 

placing a solid impermeable sphere in a uniform stream of incompressible fluid, taking the case of 

axial symmetry.  Here, we discuss the disturbance produced when a sphere is placed in more 

general flow. 

We shall make use of Weiss’s Sphere Theorem which states as follows: 

 Let (r, , ) be the velocity potential at a point P having spherical polar co-ordinates               

(r, , ) in an incompressible fluid having irrotational motion and no rigid boundaries.  Also 

suppose that  has no singularities within the region r  a.  Then if a solid impermeable sphere of 

radius a is introduced into the flow with its centre at the origin of co-ordinates, the new velocity 

potential at P in the fluid is  

  (r, , ) +  














r/2a

0

2

a

1
,,

r

a

r

a
(R, , ) dR, (r > a) 

where r and 
r

a 2

are the inverse points w.r.t the sphere of radius a.” 

Here, the last two terms refer to perturbation potential due to the presence of the sphere.  

(i) Image of a Source in a Sphere: Suppose a source of strength m is situated at point A at a 

distance f(> a) from the centre of the sphere of radius a. 

 

Let B be the inverse point of A w.r.t. the sphere, then OB = a2/f 
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The velocity potential at P(r, , ) in the fluid due to a simple source of strength m at A(f, 0, 0) is 

  (r, ) = 
AP

m
 

From  OAP, cos = 
rf2

)AP(fr

)OA)(OP(2

)AP()OA()OP( 222222 



 

  AP =  cosrf2fr 22  

Thus, the velocity potential is 

  (r, ) = m(r2 + f2 2rf cos)1/2      (1) 

Introducing a solid sphere in the region r  a, where a < f, we obtain on using Weiss’s sphere 

theorem, a perturbation potential  

  
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This shows that the image system of a point source of strength m placed at distance f(> a) from the 

centre of solid sphere consists of a source of strength 
f

ma
 at the inverse point 

f

a 2

in the sphere, 

together with a continuous line distribution of sinks of uniform strength 
a

m
 per unit length 

extending from the centre to the inverse point. 

(ii) Image of a doublet in a sphere when the axis of the doublet passes through the centre of 

the sphere:  Let us consider a doublet AB with its axis BA pointing towards the centre 0 of a 
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sphere of radius a.  Let OA = f, OB = f + f.  Let A, B be the inverse points of A & B in the 

sphere so that  

 

 

                                                

  OA = a2/f, OB = a2/(f+f). 

At A, B we associate simple sources of strengths m and m so that the strength of the doublet is             

 = mf, where  is to remain a finite non-zero constant as m and f0 simultaneously.  

  BA = OA  OB = 

12222

f

f
1

f

a

f

a

ff

a

f

a








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          = 
f

f

f

a

f

a

f

a 222 
 to the first order 

          = f
f

a
2

2

 to the first order 

Now, from the case of “Image of source in a sphere”, the image of m at A consists of 
f

ma
 at A 

together with a continuous line distribution from O to A of sinks of strength 
a

m
 per unit length 

and the image of m at B consists of 
)ff(

ma




at B together with a continuous line distribution 

from O to B of sources of strength 
a

m
 per unit length. 

The line distribution of sinks and sources from 0 to B cancel each other leaving behind a line 

distribution of sinks of strength 
a

m
 per unit length from B to A i.e. sink of strength                                 

a

m
 BA = 

a

m
222
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a
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
 at B.  The source at B is of strength 
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


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
  

which is equivalent to a sink 
2f

a
sourceaand'Bat

f

ma 
at B.   

As there is already a sink 
2f

a
 at B, therefore source and sink at B neutralize.  Finally, we are left 

with source 
f

ma
at A and a sink. 

f

ma
at B.  Thus, to the first order, we obtain a doublet at A of 

strength  

  
f

ma
 (BA) = 

f

ma
f

f

a
2

2

  

      = 
3

3

3

3

f

a
f

f

ma 
 . 

Hence in the limiting case as f0, m, we obtain a doublet at A of strength  with its axis 

towards O, together with a doublet at the inverse point A of strength 
3

3

f

a
 with its axis away              

from O. 

8.12 Stoke’s Stream Function (Stream Function for an Axi-Symmetric Flow): If the 

streamlines in all the planes passing through a given axis are the same, the fluid motion is said to 

be axi-symmetric.  We have already considered such flow for irrotational motion in spherical polar 

co-ordinates. (r, , ) in which the line  = 0 is the axis of symmetry. 

Suppose the z-axis be taken as axis of symmetry, then q = 0 and the fluid motion is the same in 

every plane  = constant (meridian plane) and suppose that a point P in the fluid may be specified 

by cylindrical polar co-ordinates (r, , z).  Thus, all the quantities associated with the flow are 

independent of . The equation of continuity in cylindrical co-ordinates, becomes 

  0)rq(
z

)rq(
r

zr 








 

i.e.  )rq(
z

)rq(
r

zr








        (1) 

This is the condition of exactness of the differential equation  

  rqrdz  r qz dr = 0        (2) 
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This means that (2) is an exact differential equation and let L.H.S. be an exact differential d(say) 

Therefore, 

rqr dz  rqz dr = d = dz
z

dr
r 







 

which gives 

  rz rq
z

,rq
r





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


        (3) 

The function  in (3) is called Stoke’s stream function. 

The equation of streamlines in the meridian plane  = constant at a fixed time t is  

  
zr q

dz

q

dr
  

  qz dr = qr dz 

Using (3), we get 

   dz
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1
dr

rr

1


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
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  0dz
z
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r










 

  d = 0 

   = constant = C 

which represent the streamlines. 

Property of Stoke’s Function:  

𝟐𝝅 times the difference of the values of Stoke’s stream function at two points in the same 

meridian plane is equal to the flow across the angular surface obtained by the revolution 

around the axis of curve joint the points. 

Proof: Let dS be an element of the curve and 𝜃 is its inclination to the axis, then outward flow 

across the surface of revolution is equal to  

                                               

𝑄 = 𝜌∫ 𝒒. 𝒏 𝑑𝑆 = 𝜌∫(𝑞𝑟  𝑛𝑟 + 𝑞𝑧𝑛𝑧)𝑑𝑆
 

𝑆

  

𝑆

 

 

where n is the outward normal to the surface S, i.e., directed away from the z-axis. Since 

𝑛𝑟𝑑𝑆 = 𝑟 𝑑𝜃𝑑𝑧, 𝑛𝑧𝑑𝑆 = −𝑟 𝑑𝜃 𝑑𝑟 
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Therefore, 𝑄 = 𝜌 ∫ 𝑑𝜃 ∫ (𝑞𝑟  𝑟 𝑑𝑧 − 𝑞𝑧𝑟 𝑑𝑟) = 2𝜋 𝜌 ∫ (
𝜕Ψ

𝜕𝑧
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2𝜋

0
 

= 2𝜋𝜌 ∫ 𝑑Ψ = 2𝜋𝜌(Ψ𝐵 − Ψ𝐴).
𝐵

𝐴

 

8.12.1 Stoke’s Stream Function in Spherical Polar Co-ordinates (r,  ) :  We consider the                    

axi-symmetric motion in r,  plane such that q = 0. The equation of continuity in spherical polar     

co-ordinates becomes  
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      (1) 

This is condition of exactness for the different equation  

  r sin q dr  r2 sin qr d = 0       (2) 

Thus the expression on L.H.S. of (2) is equal to an exact differential function  such that  

   r sin q dr  qr r
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


  

 Remark. In the above cases, the motion need not be irrotational i.e. velocity potential may not 

exist.  In case of irrotational motion, it can easily be shown that the velocity potential  and the 

Stoke’s stream function  do not satisfy CR equations due to the fact that  is not harmonic.  

8.12.2 Stoke’s Stream Function for a Uniform Stream: Let a uniform stream with velocity U be 

in the direction of z-axis such that kq U .  Then, from the relations  

  𝑞𝑧 = −
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  = U 
2

r 2

, where the constant of integration is found to be zero.  

In spherical polar co-ordinates we have 

   =   222 sinr
2

U
)sinr(

2

U
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8.12.3. Stoke’s Stream Function for a Simple Source at origin: In case of simple source 

  rrf ˆ)(q  

But we have already calculated that for a source of strength m at origin. 

  )0(ˆ
2

 rr
r

m
q in spherical polar co-ordinates.  

i.e.  (qr, q) = r̂
r

m
2

         (1) 

Also, we know that in spherical polar co-ordinates, 
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From (1) & (2), we get 

  0
r

,
sinr

1

r

m
22











  

  0
r

,sinm 








 

   = m cos . 

A constant may be added to this solution and this is usually done to make  = 0 along the axis of 

symmetry  = 0.  In such case,  

  = m (cos  1) 

For a sink of strength m at origin, the Stoke’s stream function is 

   = m (1cos) 

8.12.4 Stoke’s Stream Function for a Doublet at origin:  We assume that the flow is due to only 

a doublet at origin 0 of strength .  Taking the axis  = 0 of the system of spherical co-ordinates to 

coincide with the axis of the doublet, we find that the velocity potential at P(r, , ) is 

   = 
2r

cos
 (r > 0)        (1) 

  qr = 
33 r

sin

r

1
q,

r

cos2

r















  q = 0    (2) 

But the relations between the velocity components and the Stoke’s stream function  are  

  qr = 
rsinr

1
q,

sinr

1
2 











       (3) 

From (2) and (3), we get 
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2

2

r

sin

r
,

r

cossin2 










 

Integrating, we get  

   = 
r

sin 2 
 

8.12.5 Stoke’s Stream Function due to a Uniform Line Source: Let a uniform line source of 

fluid extends along the streamline segment AB of length l.  Consider an element QQ of length z 

at a distance z (= AQ) from A.  Thus, we have a simple source of strength m z, where m is the 

constant source strength per unit length of the distribution along AB. 

                                   

 

Let QP = r, PQB| = Q, PM = d 

The Stoke’s stream function  at P for the simple source of strength mz at Q is                

mz(cos1).  Then, the value of the Stoke’s stream function  at P due to entire line source AB 

is given by   

  = m   
l l l

0 0 0
dzmdzcosmdz)1(cos  

      = m  


l
l

l

l
0 22

mdz
)zb(d

zb
  

22 )zb(d

bz

r

bz

PQ

BMQB

PQ

QM
cos,PQMIn












l

ll
 

Putting l + b z = x   dz = dx 

When   z = 0, x = l + b, 

when   z = l, x = b 

Therefore, 
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  = m   


b

b 22
m

xd

)dx(x
l

l   

or   = 
b

b2

m l
(d2 + x2)1/2 (2x) dx  ml 

      = l

l

m
2/1

xd

2

m
b

b

22














 


 

      = m   ll mbd)b(d 2222   

      = m[AP  BP]  mAB 

      = m[AP  BP  AB] . 

As p is the only variable point, the simpler form m (APBP) can be taken for evaluating velocity 

components at P.  The stream surfaces are 

   = constant i.e. AP  BP = constant. 

These are confocal hyperboloids of revolution about AB, with A and B as foci. 

We have shown earlier that the equipotential were confocal ellipsoids of revolution about AB with 

the same foci.  Also, it is well known result that two families of confocal intersect orthogonally. 

8.12.6 Stoke’s Stream Function for a Doublet in a Uniform Stream: Let a doublet of vector 

moment k  is situated at origin 0 in a uniform stream whose undisturbed velocity is Uk. 

In spherical polar co-ordinates (r, , ), the Stoke’s stream functions for each separate distribution 

are  

  1 = 
2

1
Ur2 sin2 (for uniform stream, kq U ) 

  2 = 
r


sin2  (for doublet at origin) 

Hence the stream function for the combination is 

   (r, ) = 







 22 sinr/Ur

2

1
 

The equation of the stream surfaces are (r, ) = constant. 

In particular, the stream surfaces for which  = 0 are given by  

  







 22 sinr/Ur

2

1
= 0 
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  sin = 0 or 0
r

Ur
2

1 2 


  

   = 0,  i.e. the z-axis or r = 

3/1

U

2







 
, the surface of the sphere with centre 0 and 

radius 

3/1

U

2







 
 

 Example: A point source of strength Ua2 is introduced at 0 in a uniform stream whose 

undisturbed velocity is Ui. Show that over the surface of revolution r sin  = 2a cos 
2


there is no 

flow, the system of spherical polar co-ordinates being used with  = 0 taken as x-axis.  If a rigid 

surface of revolution having above equation is introduced into the flow of velocity Ui after 

removal of the point source, explain why the two models are hydrodynamically equivalent for 

corresponding points in the field of flow? 

Solution. Stoke’s stream function for uniform stream is 
2

1
Ur2 sin2 and for a point source at 0, it 

is Ua2(cos 1).  Thus, the total stream function for the combination is 

  (r, ) = 
2Ur

2

1
sin2 + Ua2 (cos 1)   

2

22

Uam

î
a

m
îUî

a

m
q




 

   = U 







 2

2
2 sin

2

r
)1(cosa   

The stream surfaces are given by 

   = constant 

i.e.  U 







 2

2
2 sin

2

r
)1(cosa constant 

i.e.  a2(1cos) + 2
2

sin
2

r
= constant 

i.e.  a2 2sin2 
 2

2

sin
2

r

2
= constant 

i.e.  2a2 






 
 2

2
2 sin

2

r

2
cos1 = constant 
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i.e.  2a cos2 
 2

2

sin
2

r

2
= constant. 

In particular, taking the constant on R.H.S. to be zero, the corresponding stream surface is 

  r2 sin2 = 4a2 cos2

2


 

i.e.  r sin = 2a cos
2


        (1) 

which is the required surface of revolution. 

We note that equation (1) is satisfied by 

(i) cos 
2


= 0 i.e.  =  

(ii) r = a cosec 
2


 

As no flow takes place over the surface of revolution r = a cosec
2


, we may introduce a rigid 

boundary over the surface, excluding the fluid and source within its interior.  Then the 

hydrodynamical image of the external flow U î in the surface is the point source Ua2 at 0. 

Hence the two models are hydrodynamically equivalent for corresponding points in the field of 

flow. 

Also, we have 

  qr =  ,
rsinr

1
q,

sinr

1
2 











  q = 0 

 qr = U 














2

2

r

a
cos  

q = U sin, q = 0 

 Fluid speed q at point P is 

  q = 
222

r qqq    

     = U

42

r

a
cos

r

a
21 

















  

On the surface of revolution r = a cosec
2


, the fluid velocity is tangential to the surface and  
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  q =  2cos3cos25
2

U
 

Stagnation point on the surface is cos = 1    = .  

 

Example: Doublets of strengths 𝝁𝟏 𝒂𝒏𝒅 𝝁𝟐 are situated at points 𝑨𝟏, 𝑨𝟐 whose Cartesian 

coordinates are (𝟎, 𝟎, 𝒄𝟏), (𝟎, 𝟎, 𝒄𝟐), their axes being directed towards and away from the origin 

respectively. Find the condition that there is no transport of fluid over the surface of the sphere 

𝒙𝟐 + 𝒚𝟐 + 𝒛𝟐 = 𝒄𝟏𝒄𝟐. 

Solution:  

                 

   

 

Let the spherical polar coordinates of P be (𝑟, 𝜃, 𝛽) with initial line 𝑂𝐴2𝐴1. Let the axis of the 

doublet at 𝐴1 𝑎𝑛𝑑 𝐴2 make angles 𝛼1 𝑎𝑛𝑑 𝛼2 with 𝐴1𝑃, 𝐴2𝑃 . Then the velocity potential 𝜙 at P is  

𝜙 =
𝜇2 cos𝛼2

𝐴2𝑃
2 +

𝜇1 cos𝛼1

𝐴1𝑃
2            (1) 

Given 𝑂𝐴1 = 𝑐1 𝑎𝑑 𝑂𝐴2 = 𝑐2.Then from figure,  

𝐴1𝑃 = (𝑟
2 − 2𝑟𝑐1 cos𝜃 + 𝑐1)

2 and 𝐴2𝑃 = (𝑟2 − 2𝑟𝑐2 cos𝜃 + 𝑐2
2)2   (2) 

cos𝛼1 =
𝑀𝐴1

𝐴1𝑃
=

𝑂𝐴1−𝑂𝑀

𝐴1𝑃
= (𝑐1 − 𝑟 cos𝜃) / 𝐴1𝑃       (3) 

Similarly,  cos𝛼2 =(
𝑟 cos 𝜃−𝑐2

𝐴2𝑃
)          (4) 

Where M is the foot of the perpendicular drawn from P on 𝑂𝐴1 

Using (3) and (4), (1) becomes 

𝜙 =
𝜇2(𝑟𝑐𝑜𝑠 𝜃−𝑐2)

𝐴2𝑃
3 +

𝜇1(𝑐1−𝑟 cos𝜃)

𝐴1𝑃
3         (5) 

From (2) and (5)  
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𝜙 = 𝜙(𝑟, 𝜃) = 𝜇2 (𝑟 cos 𝜃 − 𝑐2) (𝑟
2 − 2𝑟𝑐2 cos 𝜃 + 𝑐2

2)−
3

2 + 𝜇1 (𝑐1 − 𝑟 cos𝜃) (𝑟
2 −

2𝑟𝑐1 cos 𝜃 + 𝑐1
2)−

3

2           (6) 

When there is no transport of fluid over the sphere 𝑥2 + 𝑦2 + 𝑧2 = (√𝑐1𝑐2)
2, we have  

𝜕𝜙

𝜕𝑟
= 0  𝑤ℎ𝑒𝑛 𝑟 = √𝑐1𝑐2         (7) 

 

Using (7) and (6), we have  

𝜇2 𝑐2
−
3

2 = 𝜇1𝑐1
−
3

2  or 
𝜇2

𝜇1
= (

𝑐2

𝑐1
)

3

2
 which is the required condition. 

Example: Discuss the motion for which Stoke’s stream function is given by 𝚿 =
𝟏

𝟐
𝑽 [𝒂𝟒𝒓−𝟐𝒄𝒐𝒔 𝜽 − 𝒓𝟐]𝒔𝒊𝒏𝟐𝜽, where r is the distance from a fixed point and 𝜽 is the angle, this 

distance makes with a fixed direction. 

 

Solution: Given  Ψ =
1

2
𝑉 [𝑎4𝑟−2𝑐𝑜𝑠 𝜃 − 𝑟2]𝑠𝑖𝑛2𝜃     (1) 

Evidently, Ψ is a sum of two terms. Here liquid flows with velocity V parallel to the x-axis in 

presence of a fixed solid of revolution 

Ψ =
1

2
𝑉
𝑎4

𝑟2
cos 𝜃 sin2 𝜃 

is the stream function for a solid which is moving with velocity parallel to the negative direction of 

x-axis. In this case boundary condition is  

Ψ =
1

2
𝑉𝑟2 sin2 𝜃 + 𝑐𝑜𝑛𝑠𝑡. 

On boundary 

1

2
𝑉𝑟2 sin2 𝜃 + 𝑐𝑜𝑛𝑠𝑡. =

1
2𝑉𝑎

4

𝑟2
cos𝜃 sin2 𝜃 

This implies     𝑐𝑜𝑛𝑠𝑡. = 0, 𝑟2 sin2 𝜃 =
𝑎4

𝑟2
cos𝜃 sin2 𝜃 

Or     𝑟4 = 𝑎4 cos𝜃 

It follows that the given stream function gives the motion of a liquid flowing past a solid 𝑟4 =

𝑎4 cos𝜃, moving with velocity V along x-axis. 

8.13 Check Your Progress: 
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i) Prove that the velocity potential at a point P due to a uniform finite line source AB of 

strength m  per unit length is of the form 𝜙 = 𝑚 log𝑓, where 𝑓 =
𝑟2+𝑥2

𝑟1+𝑥1
=

𝑟1−𝑥1

𝑟2−𝑥2
=

𝑎−𝑙

𝑎+𝑙
, 

where 𝐴𝐵 = 2𝑙, 𝑃𝐴 = 𝑟1, 𝑃𝐵 = 𝑟2, 𝑁𝐴 = 𝑥1, 𝑁𝐵 = 𝑥2,  N being the foot of perpendicular 

from P on line AB, and 2a the length of major axis of the spheroid through P having A and 

B as foci. 

ii) If AB  be a uniform line source, and A, B equal sinks of such strength that there is no total gain 

or loss of fluid, show that the stream function (Stoke’s stream function) at any point is  

Ψ = 𝐶[(𝑟1 − 𝑟2)
2 − 𝑐2] (

1

𝑟1
−

1

𝑟2
), where c is the length of AB and 𝑟1, 𝑟2 are the distances of the 

points considered from A and B. 

iii) A and B are a simple source and sink of strengths m and m’ respectively in an infinite liquid. 

Show that the equation of streamlines is 𝑚cos 𝜃 −𝑚′ cos𝜃′ = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 , where 𝜃 𝑎𝑛𝑑 𝜃′ are the 

angles which AP, BP make with AB. P being any point. Prove also that if 𝑚 > 𝑚′, the cone 

defined by the equation cos 𝜃 = 1 − (
2𝑚′

𝑚
)  divides the streamlines issuing from A into two sets, 

one extending to infinity and the other terminating at B. 

iv) Find the Stoke’s stream function where fluid motion is due to  a source of strength (flux 4𝜋𝑚) 

at a fixed point A and a translation of the fluid of velocity U. Explain how this solution can be used 

to deduce the motion of fluid past a blunt nosed cylindrical body whose diameter is ultimately 4a, 

where 𝑎2 = 𝑚/𝑈. 

v) A solid of revolution is moving along its axis in an infinite liquid; show that the kinetic energy 

of the liquid is −
1

2
 𝜋𝜌 ∫

Ψ

𝜔

𝜕Ψ

𝜕𝑛
 𝑑𝑠, where Ψ is the Stoke’s function, 𝜔  the distance of a point from 

the axis and the integral is taken round a meridian curve of the solid. Hence obtain the kinetic 

energy of infinite liquid due to the motion of a sphere through it with velocity V. 

 

8.14 Summary: In this chapter, we have defined Lagrange’s stream function and its physical 

significance, obtained the velocity potential function for three-dimensional source, sink and 

doublet and discussed the image of source and doublets in plane and spherical surfaces. In this 

chapter we have also defined Stoke’s Stream function and obtained the values of stream function 

for source and doublets in uniform flow of fluid. 

8.15 Keywords: velocity potential, three-dimensional, source, doublets, Lagrange’s stream 

function, images, Stoke’s stream function, axi-symmetric flow. 

8.16 Self-Assessment Test:  

SA1: Find value of Stoke' stream function in case of a simple source on the axis of x and a uniform 

line source along the axis. 
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SA2: What is Stoke’s stream function? Prove that 2𝜋 times the difference of its values at two 

points in the same meridian plane is equal to the flow across the angular surface obtained by the 

revolution round the axis of a curve joining the two points. 

SA3: Show that the image with regard to a sphere of a doublet whose axis passes through the 

centre is a doublet at the inverse point. 

SA4: Verify that Ψ = (𝐴𝑟−2 cos𝜃 + 𝐵𝑟2) sin2 𝜃, is a possible form of Stoke’s stream function, 

find the corresponding velocity potential. 

SA5: Show that a uniform stream of velocity U can be obtained as the limit 𝑎 → ∞ of the field due 

to a source of strength 2𝜋 𝑎2𝑈  at (-a, 0, 0) and a sink of strength  −2𝜋 𝑎2𝑈 at (a,0,0).  
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CHAPTER-9 

CONFORMAL TRANSFORMATION 
 

 

 

9.0 Learning Objectives:  After reading this chapter, you should be able to understand the 

transformation from one-plane to another plane and particularly conformal transformation, 

the images using complex potential theory, know the application to fluid mechanics, derive 

Blasius theorem, circle theorem, understand Joukovski transformation and aerofoils. 

9.1 Transformation: 

 The equations 𝜉 = 𝜉(𝑥, 𝑦), 𝜂 = 𝜂(𝑥. 𝑦) defines a map or transformation from xy-plane to 

𝜉𝜂 −plane. By means of these equations a domain or curve of xy-plane is mapped on the 

corresponding curve of 𝜉𝜂 − 𝑝𝑙𝑎𝑛𝑒. 

𝐽 =
𝜕(𝜉, 𝜂)

𝜕(𝑥, 𝑦)
||

𝜕𝜉

𝜕𝑥

𝜕𝜉

𝜕𝑦
𝜕𝜂

𝜕𝑥

𝜕𝜂

𝜕𝑦

|| =
𝜕𝜉

𝜕𝑥
.
𝜕𝜂

𝜕𝑦
−
𝜕𝜂

𝜕𝑥

𝜕𝜉

𝜕𝑦
 

 The determinant J is called Jacobian of the transformation. Let 𝑡 = 𝑓(𝑧) = 𝜉 + 𝑖 𝜂 be 

analytic function of z so that Cauchy Riemann equations 

𝜕𝜉

𝜕𝑥
=
𝜕𝜂

𝜕𝑦
,

𝜕𝜉

𝜕𝑦
= −

𝜕𝜂

𝜕𝑥
 

are satisfied. 

 Then  𝐽 =
𝜕𝜉

𝜕𝑥
.
𝜕𝜉

𝜕𝑥
−

𝜕𝜂

𝜕𝑥
(−

𝜕𝜂

𝜕𝑥
) = (

𝜕𝜉

𝜕𝑥
)
2

+ (
𝜕𝜂

𝜕𝑥
)
2

= |
𝜕

𝜕𝑥
(𝜉 + 𝑖𝜂)2| = |

𝜕𝑡

𝜕𝑥
|
2

= |
𝑑𝑡

𝑑𝑥
|
2

 

          ∵
𝑑𝑡

𝑑𝑥
=

𝜕𝑡

𝜕𝑥
 

Or    𝐽 = |
𝑑𝑡

𝑑𝑥
|
2

= |𝑓′(𝑧)|2 

Or   |𝑓′(𝑧)| = |
𝑑𝑡

𝑑𝑧
| = √𝐽=h (say) 

where    ℎ2 = (
𝜕𝜉

𝜕𝑥
)
2

+ (
𝜕𝜂

𝜕𝑥
)
2

= (
𝜕𝜉

𝜕𝑥
)
2

+ (
𝜕𝜉

𝜕𝑦
)
2

= (
𝜕𝜂

𝜕𝑥
)
2

+ (
𝜕𝜂

𝜕𝑦
)
2

 

 

9.2 Conformal Transformation: 

Suppose a bi-uniform mapping of a region of the z-plane on a region of the t-plane is connected by 

the relation  

𝑡 = 𝑓(𝑧)     (1) 

where f(z) be a single-valued differentiable within a closed contour C in the xy-plane(z-plane) and 

𝑡 = 𝜉 + 𝑖𝜂 be another complex variable in 𝜉𝜂 −plane(t-plane). By relation corresponding to each 

point in the z-plane within or on C, there will be a point t in the t-plane and points on C or within C 

will lie on or within a certain contour C’ in t-plane. The necessary condition for existence of such a 
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mapping of z-plane into t-plane is that 𝑓′(𝑧) should never vanish at any point on or within C, or in 

other words, 𝑑𝑡/𝑑𝑧 must exist independent of the direction of 𝛿𝑧. 

Let 𝑧, 𝑧1 𝑎𝑛𝑑 𝑧2 be represented by the points A, B and C respectively in the z-plane and let the 

corresponding values 𝑡, 𝑡1and 𝑡2 be represented by point P, Q and R in t-plane. 

Then  

  
𝑡1−𝑡

𝑧1−𝑧
=

𝑓(𝑧1)−𝑓(𝑧)

𝑧1−𝑧
;       

𝑡2−𝑡

𝑧2−𝑧
=

𝑓(𝑧2)−𝑓(𝑧)

𝑧2−𝑧
. 

Provided that AB and AC are small enough, we have 

  
𝑡1−𝑡

𝑧1−𝑧
= 𝑓′(𝑧);   

𝑡2−𝑡

𝑧2−𝑧
= 𝑓′(𝑧) 

and consequently 
𝑡1−𝑡

𝑧1−𝑧
= 

𝑡2−𝑡

𝑧2−𝑧
= 𝑓′(𝑧) =

𝑑𝑡

𝑑𝑧
 

It follows, by taking arguments and modulus that  

   
𝐴𝐶

𝐴𝐵
=

𝑃𝑅

𝑃𝑄
 𝑎𝑛𝑑 𝜃 = 𝜓. 

Therefore, the triangles ABC and PQR are directly similar. 

Also    |
𝑡1−𝑡

𝑧1−𝑧
| = |

𝑓′(𝑧)

1
| = |

𝑑𝑡

𝑑𝑧

1
|, it follows that the linear combinations are in the ratio 

of 1: |
𝑑𝑡

𝑑𝑧
|, and the ratio of the corresponding small areas, i.e.  

∆𝑃𝑄𝑅

∆𝐴𝐵𝐶
= |𝑓′(𝑧)|2 = 𝑓′(𝑧)𝑓′(𝑧)̅̅ ̅̅ ̅̅ ̅=

𝑑𝑡

𝑑𝑧
 
𝑑𝑡

𝑑𝑧

̅
 are in the ratio 1:

𝑑𝑡

𝑑𝑧
 . 

Thus the mapping given by (1) is such that an infinitesimal triangle in one plane maps into a 

directly similar infinitesimal triangle in the other plane, preserving the angles and the similarity of 

the corresponding infinitesimal triangles. 

Since small elements of area are unaltered in shape, the transformation is said to be Conformal. 

The factor |
𝑑𝑡

𝑑𝑧
| is often referred to as the linear combination. 

By a proper choice of transformation, motion with a complicated boundary can be deduced from 

that with a simpler boundary. An extensive use is made of several sets of transformations and 

applied successfully to potential flow in two-dimensions. Thus a problem which stands unsolved in 

one physical configuration (say z-plane) may be solved into another configuration (say t-plane) by 

some suitable transformation. The problem thus may be regarded not as that of finding a direct 

solution, but of finding a proper transformation into a configuration which admits of an immediate 

solution. Though not always applicable, it is the most reliable method to derive exact solution. 

 

9.3 Applications to Fluid Mechanics: 

Conformal Invariance of hydrodynamical singularities 

 An essential feature of conformal mapping is that the vanishing of the Laplacian (∇2= 0) remains 

invariant under transformation. Thus a harmonic function remains harmonic after conformal 

transformation to a new coordinate plane. This may be ascertained for transformation  𝑡 = 𝑓(𝑧). 

Thus 𝜙(𝑥, 𝑦) which in terms of 𝜉, 𝜂  may be written as Φ(𝜉, 𝜂), then 

   
𝜕2Φ

𝜕𝜉2
+

𝜕2Φ

𝜕𝜂2
= |

𝑑𝑧

𝑑𝑡
|
2

 (
𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
) 

So that if dz/dt is not infinite then  
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𝜕2𝜙

𝜕𝑥2
+

𝜕2𝜙

𝜕𝑦2
= 0; ⇒

𝜕2Φ

𝜕𝜉2
+

𝜕2Φ

𝜕𝜂2
= 0 

Thus, if 𝜙(𝑥, 𝑦) is a general potential function in the z-plane, then Φ(𝜉, 𝜂) is necessarily a general 

potential function in the t-plane. In other words, (velocity) potential functions transform into 

(velocity) potential functions. Furthermore, any curve or boundary i.e. stream line in the z-plane 

along which 𝜙 is constant is mapped into a new curve or boundary i.e. stream line in the t-plane 

along which Φ is constant. 

We now discuss the retention of some important hydrodynamic singularities on conformal 

transformation: 

(I) Source.  Let there be a source of strength m at the point 𝑃(𝑧0) in the z-plane  and enclose it by 

a small curve C. Let 𝑃′(𝑡0) be the corresponding point in  t-plane and let C’ be the corresponding 

curve in the t-plane, then C’ must enclose P’; because the domain D in the z-plane is mapped in 

one-to-one function onto D’ in the t-plane under analytic function 𝑡 = 𝑓(𝑧) transformation. 

The flow across C by the definition of a source is 2𝜋𝑚𝜌. The flow across C is also given in terms 

of the stream function by −𝜌 ∫𝑑ψ, and since each point on C’ corresponds to one and only one 

point on C, we must have, −𝜌 ∫ 𝑑𝜓 = −𝜌∫ 𝑑𝜓
 

𝐶′

 

𝐶
  taken in the same sense. This means that the 

flow across C’ is 2𝜋𝑚𝜌 and this will be the same for any small closed curve surrounding 𝑃′(𝑡0). 

Thus there must be a source m at 𝑃′(𝑡0).Hence, we can say that in a conformal transformation a 

source is transformed into an equal source. If C’ encircles P’ only once, the source will be of 

strength m. If C’ encloses P’ n times when C encircles P once, the strength of the source at P will 

be (m/n). 

Example:  Consider the motion 𝑡 = 𝑧
1

𝑛       (1) 

Consider a source of strength +m at P. Let (𝑟. 𝜃) be the polar coordinates of the branch point P in 

z-plane and (𝑅, 𝜙) be the coordinates of the corresponding point Q in t-plane. 

From (1), we have 

𝑅𝑒𝑖𝜙 = (𝑟 𝑒𝑖𝜃)
1
𝑛 = 𝑟

1
𝑛 𝑒

(
𝜃
𝑛
)𝑖

 

⇒     𝑅 = 𝑟
1

𝑛    𝑎𝑛𝑑  𝜙 =
𝜃

𝑛
. 
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It follows that a complete circle round P in the z-plane corresponds to an arc AB(= 2𝜋/𝑛) in the t-

plane. Since the flow across the circle is equal to that across the arc AB. 

2𝜋𝑚 = (2𝜋/𝑛)𝑚′ ⇒ m𝑚′ = 𝑛𝑚 

Therefore, corresponding to a source of strength +m at P there will be a source of strength 

+m’(=nm) at Q. 

(II) Doublet: Let the doublet of strength 𝜇 at the point A(z) in the z-plane be obtained by the 

combination of source –m at A and +m at B, so that (Lim m.AB)=𝜇; as 𝛿𝑧 → 0,𝑚 → ∞. 

 
 

On transforming, we get a source m at D and a sink –m at C in the t-plane. If AB is small enough, 

magnification gives 
𝐶𝐷

𝐴𝐵
= |

𝑑𝑡

𝑑𝑧
| so that m.CD=m.AB dt/dz|. 

Proceeding to the limit, the result is 𝜇′ = 𝜇 |
𝑑𝑡

𝑑𝑧
| ; which is the strength of the doublet in t-plane. 

If the doublet in the z-plane is inclined at 𝛼 with the real axis, the doublet in t-plane will be 

inclined with the real axis at an angle 𝛽, where  

𝛽 = 𝑎𝑟𝑔𝛿𝑡 = arg{(
𝑑𝑡

𝑑𝑧
) 𝛿𝑧}            | ∵

𝑑𝑡

𝑑𝑧
 𝛿𝑧 = 𝛿𝑡                 

= arg (
𝑑𝑡

𝑑𝑧
) + arg 𝛿𝑧 = arg (

𝑑𝑡

𝑑𝑧
) + 𝛼         

Thus, a doublet of strength 𝜇 and inclined at 𝛼 with real axis in the z-plane transforms conformally 

into a doublet of strength 𝜇′ (= 𝜇 |
𝑑𝑡

𝑑𝑧
|) and inclination 𝛽(= 𝛼 + arg (𝑑𝑡/𝑑𝑧)) with real axis in the 

t-plane. 

(III) Vortex filament: Let there be a vortex at 𝑃(𝑧0) of strength K in the z-plane and let 𝑃′(𝑡0) be 

the corresponding point in the t-plane; the connecting mapping being 𝑡 = 𝑓(𝑧). Let C be any small 

closed curve surrounding 𝑃(𝑧0) and 𝐶’ the corresponding small closed curve surrounding 𝑃′(𝑡0).  

The circulation round C, by definition, is  −∫ 𝑑𝜙
 

𝐶
= −[𝜙]𝐶 = 𝐾. 

Since each point on 𝐶′ corresponds to one and only one point on C, we must have −∫ 𝑑𝜙 =
 

𝐶

−∫ 𝑑𝜙
 

𝐶′
 and thus, circulation around any small closed curve C’ surrounding 𝑃′(𝑡0) is K. 

Therefore, there must be a vortex of strength K at 𝑃′(𝑡0). Hence a vortex is transformed into an 

equal vortex at the corresponding point. 



 

175 

 

These vortices however do not necessarily continue to move so as to occupy corresponding points; 

if however we know the motion of one, the motion of the other is usually deduced by a device due 

to Routh’. 

(iv) Kinetic energy: Let 𝑃(𝑧0) be a point inside a small ∆𝐴𝐵𝐶 in the z-plane. Let 𝑃′(𝑡0) be the 

corresponding point to P inside the corresponding small ∆𝐴′𝐵′𝐶′ in the t-plane. The Kinetic energy 

of the fluid in the two triangles is respectively 

 
𝑇1 =

1

2
𝜌𝑞2 ∆𝐴𝐵𝐶 =

1

2
 𝜌 |

𝑑𝑤

𝑑𝑧
|
2

∆𝐴𝐵𝐶

𝑇2 =
1

2
𝜌𝑞′2 ∆𝐴′𝐵′𝐶′ =

1

2
 𝜌 |

𝑑𝑤

𝑑𝑡
|
2

∆𝐴′𝐵′𝐶′
}     (1) 

where 𝑤 is the complex potential for the fluid motion. Now  

  ∆′= |
𝑑𝑡

𝑑𝑧
|
2

∆  and |
𝑑𝑤

𝑑𝑧
 | = |

𝑑𝑤

𝑑𝑡
| |
𝑑𝑡

𝑑𝑧
|, 

By conformality, we have from (1) that 𝑇1 = 𝑇2. 

 

Notes:  (1) The complex potential 𝑤 = 𝜙 + 𝑖 𝜓, of a flow is invariant under a conformal mapping; 

because 𝜙  and 𝜓 are both harmonic and hence conformally invariant. 

The complex potential, 𝑤 = 𝜙 + 𝑖𝜓, performs a conformal mapping onto the w-plane, where 𝜓 −

𝑙𝑖𝑛𝑒𝑠 and 𝜙 − 𝑙𝑖𝑛𝑒𝑠 are respectively horizontal and vertical lines. 

(2)  The retention of the character of the hydrodynamic singularities during transformations is of 

considerable importance in solving certain problems. In some transformations mathematical 

singularities appear from the transformation. Physically, these correspond to stagnation points and 

are not termed hydrodynamic singularities. 

 

Example: Use the method of transformation to prove that if there be a source m at the point 𝒛𝟎 

in a fluid bounded by the lines 𝜽 = 𝟎 𝒂𝒏𝒅 𝜽 = 𝝅/𝟑, the solution is  

𝝓+ 𝒊𝝍 = −𝒎 𝒍𝒐𝒈 {(𝒛𝟑 − 𝒛𝟎
𝟑)(𝒛𝟑 − 𝒛𝟎

′𝟑)}, 

where 𝒛𝟎 = 𝒙𝟎 + 𝒊𝒚𝟎 𝒂𝒏𝒅 𝒛𝟎
′ = 𝒙𝟎 − 𝒊𝒚𝟎. 

Solution:   Changing the motion from z-plane to t-plane by the transformation 𝑡 = 𝑧3,where 𝑡 =

𝑅𝑒𝑖𝜙 and 𝑧 = 𝑟𝑒𝑖𝜃 . 

or   𝑅𝑒𝑖𝜙 = 𝑟3 𝑒𝑖𝜃   ⇒ 𝑅 = 𝑟3 𝑎𝑛𝑑 𝜙 = 3 𝜃. 

Thus, the boundaries 𝜃 = 0 and 𝜃 = 𝜋/3 in z-plane transform to 𝜙 = 0 𝑎𝑛𝑑 𝜙 = 𝜋 in t-plane. 

A source of strength +m is placed at the point 𝑧0 in z-plane bounded by the line 𝜃 = 0 𝑎𝑛𝑑 𝜃 =

𝜋/3 corresponds by transformation to the points 𝑡0 = 𝑧0
3 bounded by the real axis 𝜙 = 0 𝑎𝑛𝑑 𝜙 =

𝜋 in t-plane. The image system consists of (i) a source of strength +m at 𝑡0 = 𝑧0
3 (ii) a source of 

strength +m at 𝑡0
′ = 𝑧0

′3. 

Thus the complex potential becomes 

  𝑤 = −𝑚𝑙𝑜𝑔(𝑡 − 𝑧0
3) − 𝑚 log(𝑡 − 𝑧0

′3) 

or  𝑤 = −𝑚 log(𝑧3 − 𝑧0
3) − 𝑚𝑙𝑜𝑔 (𝑧3 − 𝑧0

′ 3) 

or  𝜙 + 𝑖𝜓 = −𝑚 log{(𝑧3 − 𝑧0
3)(𝑧3 − 𝑧0

′3) 
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Example: An area A is bounded by that port of the x-axis for which x>a and by that branch of 

 𝒙𝟐 − 𝒚𝟐 = 𝒂𝟐which is in the positive quadrant. There is a two-dimensional unit source at (a,0) 

which sends out liquid uniformly in all direction. Show by means of the transformation 𝒘 =

𝒍𝒐𝒈(𝒛𝟐 − 𝒂𝟐) that in steady motion the stream lines of the liquid within the area A are portions 

of rectangular hyperbolas. Determine the stream lines corresponding to 𝝍 = 𝟎, 𝝅/𝟒,𝒂𝒏𝒅 𝝅/𝟐.If 

𝝆_𝟏 and𝝆_𝟐 are distance of a point P within the fluid from the point (± 𝒂, 𝟎). Show that the 

velocity of the fluid at P is measured by 2OP/ 𝝆𝟏𝝆𝟐, O being the origin.  

Solution: The complex potential is given by  𝑤 = 𝜙 + 𝑖𝜓 = log (𝑧2 − 𝑎2) 

or   𝜙 + 𝑖𝜓 = log{(𝑥 + 𝑖𝑦)2 − 𝑎2} = log{(𝑥2 − 𝑦2 − 𝑎2) + 2𝑖𝑥𝑦} 

or    𝜓 = tan−1
2𝑥𝑦

𝑥2−𝑦2−𝑎2
  𝑜𝑟 tan 𝜓 =

2𝑥𝑦

𝑥2−𝑦2−𝑎2
 

The stream lines are given by 𝜓 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

i.e.,    
2𝑥𝑦

𝑥2−𝑦2−𝑎2
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 = 𝑘(𝑠𝑎𝑦) 

if k=0, the stream lines will be x=0 and y=0. 

If k is infinite, the stream lines will be 𝑥2 − 𝑦2 = 𝑎2. 

Thus the liquid flows in the area A bounded by 𝑥 = 0, 𝑦 = 0 𝑎𝑛𝑑 𝑥2 − 𝑦2 = 𝑎2, 𝑖. 𝑒., the portion 

of a rectangular hyperbola in the positive quadrant. 

Again the complex potential w can be written as  

𝑤 = log(𝑧 − 𝑎) + log(𝑧 + 𝑎), 

Which shows that the image of a unit source at the point(a,0) consists of a unit source at the point 

(−𝑎, 0) with regard to y-axis. 

The velocity of the fluid at any point is 𝑞 = |
𝑑𝑤

𝑑𝑧
| = |

1

𝑧−𝑎
+

1

𝑧+𝑎
|= 

|2𝑧|

|𝑧−𝑎||𝑧+𝑎|
= 
2𝑂𝑃

𝜌1𝜌2
 

The stream lines corresponding to 𝜓 = 0 𝑎𝑛𝑑 𝜓 =
𝜋

2
  are x=0, y=0 and 𝑥2 − 𝑦2 = 𝑎2. 

Also, the steam lines corresponding to 𝜓 = 𝜋/4 are  

2𝑥𝑦

𝑥2 − 𝑦2 − 𝑎2
= tan

𝜋

4
= 1 

     𝑥2 − 𝑦2 − 𝑎2 = 2𝑥𝑦. 

9.4 Images in Two Dimensions:  If a surface S can be drawn in a moving fluid in such a way that 

there is no transport of fluid across that surface then any system of sources, sinks and doublets on 

one side of the surface is said to be the image system of sources, sinks and doublets on the other 

side with regard to the surface S. The fluid flows tangentially to the surface. 

As there is no flow across the surface s, the surface S is necessarily a streamline. If we introduce a 

rigid boundary in place of the surface then the fluid motion will remain unaltered and the fluid 

velocity at any point, normal to the rigid boundary must vanish. 

To discuss the images in two dimensions, we use complex potential. 

9.4.1.  Image of a Line Source in a Plane. Without loss of generality we take the rigid 

impermeable plane to be x = 0 and perpendicular to the plane of flow (xy-plane).  Thus we are to 
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determine the image of a line source of strength m per unit length at A(a, 0) w.r.t. the streamline 

OY.  Let us place a line source per unit length at A(a, 0). 

 

 

The complex potential of strength at a point P due to the system of line sources, is given by  

  𝒘 =  𝒎 𝒍𝒐𝒈 𝒛𝒂) 𝒎 𝒍𝒐𝒈(𝒛 +  𝒂) = −𝒎𝒍𝒐𝒈(𝒓𝟏𝒆
𝒊𝜽𝟏) − 𝒎𝒍𝒐𝒈 (𝒓𝟐𝒆

𝒊𝜽𝟐) 

   = −𝒎𝐥𝐨𝐠{𝒓𝟏𝒓𝟐𝒆
𝒊(𝜽𝟏+𝜽𝟐)}=−𝒎𝒍𝒐𝒈 𝒓𝟏𝒓𝟐 − 𝒊 𝒎(𝜽𝟏 + 𝜽𝟐) 

       𝝓+ 𝒊𝝍 = −𝒎𝒍𝒐𝒈 𝒓𝟏𝒓𝟐 − 𝒊 𝒎(𝜽𝟏 + 𝜽𝟐) 

   𝝍 = −𝒎 (𝜽𝟏 + 𝜽𝟐) 

If P lies on y-axis, then PA = PB    PBA|PAB|   

𝒊. 𝒆. 𝝅 − 𝜽𝟏 = 𝜽𝟐  ⇒ 𝜽𝟏 + 𝜽𝟐 = 𝝅 

Thus       = m = constant 

which shows that y-axis is a streamline.  Hence the image of a line source of strength m per unit 

length at A(a, 0) is a source of strength m per unit length at A(a, 0).  In other words, image of a 

line source w.r.t. a plane (a stream line) is a line source of equal strength situated on opposite side 

of the plane (stream line) at an equal distance.  

9.4.2 Image of a Line Doublet in a Plane.  Let us consider the rigid impermeable plane to be x = 

0 and perpendicular to the plane of flow (xy-plane).  Thus, we are to determine the image of a line 

doublet w.r.t.  
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the stream line OY.  Let there be line sources at the points P and Q, taken very close together, of 

strengths m and m per unit length.  Their respective images in OY are m at P, m at Q, where 

P, Q are the reflections of P, Q in OY.  The line PQ makes angle  with OX.  Thus P’Q’ makes 

angle () with OX.  In the limiting case, as m, PQ0, we have equal line doublets at P and 

P with their axes inclined at , () to OX. Hence, either of the line doublet is the 

hydrodynamical image of the other in the infinite rigid impermeable plane (stream line) x = 0 

 

9.5 Milne-Thomson Circle Theorem: Let f(z) be the complex potential for a flow having no 

rigid boundaries and such that there are no singularities within the circle |z| = a.  Then on 

introducing the solid circular cylinder |z| = a, with impermeable boundary, into the flow, the new 

complex potential for the fluid outside the cylinder is given by   

  w = f(z) + f (a2/z), |z|  a 

 

 

                                                                                                                𝒛𝒛̅ = 𝒂𝟐 

 

Proof. Let C be he cross-section of the cylinder with equation |z| = 1. 

Therefore, on the circle C, |z| = a    z z = a2   z  = a2/z 

where z  is the image of the point z w.r.t. the circle.  If z is outside the circle, then z  = a2/z is 

inside the circle.   Further, all the singularities of  f(z) lie outside C and the singularities of f(a2/z) 

and therefore those of f (a2/z) lie inside C.  Therefore f(a2/z) introduces no singularity outside the 
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cylinder.  Thus, the functions f(z) and f(z) + f (a2/z) both have the same singularities outside C.  

Therefore the conditions satisfied by f(z) in the absence of the cylinder are satisfied by f(z) + f

(a2/z) in the presence of the cylinder.   Further, the complex potential, after insertion of the 

cylinder |z| = a, is 

  w = f(z) + f (a2/z) = f(z) + f ( z ) 

       = f(z) + )z(f  

       = a purely real quantity     

But we know that w =  + i. It follows that  = 0 

This proves that the circular cylinder |z| = a is a streamline i.e. C is a streamline.  Therefore, the 

new complex potential justifies the fluid motion and hence the circle theorem. 

Remark: The Milne-Thomson circle theorem provides a conventional method for finding the 

image system of a given two dimensional systems which lies outside a circular boundary. For, if 

w=f(z) represents the given system in the presence of the circular boundary |z|=a, then 𝒘 =

𝒇(𝒂𝟐/𝒛) represents the image system. 

(i) Image of source with respect to circle of radius a: Consider a source of strength +m at z=b so 

that the complex potential due to this source is 

 

                                                 

Let a circular cylinder |z|=a (where a<d) be inserted, then by circle theorem, the complex potential  

is given by 

   + i = w= m log (zb) m log((a2/z)b) 

                       = m log (zb) m log(−
𝒃

𝒛
) (𝒛 −

𝒂𝟐

𝒃
) 

  = m log (zb) m log (za2/b) + m log z + constant   (1) 

Ignoring the constant term, we observe from (1) that the complex potential represents a line source 

+m  at z = b, another line source +m at the inverse point z = a2/b and an equal line sink –m at the 

centre of the circle.  Thus the image of a line source of strength m per unit length at z = b in a 
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cylinder is an equal line source at the inverse point z = a2/b together with an equal line sink –m at 

the centre z = 0 of the circle. 

(ii) Image of a Line Doublet relative to the Circle.  Let there be a line doublet of strength  per 

unit length at the point z = d, its axis being inclined at an angle  with the x-axis.  The line doublet 

is assumed to be perpendicular to the plane of flow i.e. parallel to the axis of cylinder.  The 

complex potential in the absence of the cylinder, is  

  
dz

e ie




 

When the cylinder |z| = a is inserted, the complex potential, by circle theorem, becomes  

  w = 
d)z/a(

e

dz

e
2

ii








 

 

       = 







 






 

d
azd

ze

dz

e
2

ii

  

       = 







 









d
azd

ez

dz

e
2

)(ii

 

       = 

d
az

e

d

a

d

e

dz

e
2

)(i

2

2)(ii











 

      (1) 

If the constant term (second term) in (1) is neglected, then the complex potential in (1) is due to a 

line doublet of strength  per unit length at z = d, inclined at an angle  with x-axis and another 

line doublet of strength 
2

2

d

a
per unit length at the inverse point z = a2/d inclined at an angle  

with x-axis.   

Thus the image of a line doublet of strength  per unit length z = d inclined at angle  with x-axis 

is a line doublet of strength 
2

2

d

a
per unit length at the inverse point a2/d which is inclined at an 

angle  with x-axis. 

9.6 Drag Force and Lift Force of Immersed Bodies: 

A body of arbitrary shape and orientation when immersed in a fluid stream experiences forces and 

moments from the flow. Choose axis 𝒆𝟏 parallel to the free stream and positive down-stream. The 

force on the body in direction 𝒆𝟏 is called Drag and moment about 𝒆𝟏 the rolling moment. The 

drag is essentially a flow loss and must be overcome if the body is to move against the stream. 
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 pds  

A force perpendicular to 𝒆𝟏, 𝒆. 𝒈., such as the one bearing the weight of the body is called Lift 

(direction 𝒆𝟐. The moment about the lift axis 𝒆𝟐 is called yaw. The third component 𝒆𝟑(= 𝒆𝟐 ×

𝒆𝟏) along which there is neither a loss nor a gain is termed the side force and the moment about 𝒆𝟑 

is called a pitching moment.  

For bodies with symmetry about lift-drag axis, the problem reduces to a 2-D case : two forces (lift 

and drag) and the pitching moment. 

 

9.7 Blasius Theorem  

In a steady two-dimensional irrotational flow given by the complex potential w = f(z), if the 

pressure forces on the fixed cylindrical surface C are represented by a force (X, Y) and a couple of 

moment M about the origin of co-ordinates, then neglecting the external forces,  

  X  iY = dz
dz

dwi

C

2

2











 

  M = Real part of 



















 C

dz
dz

dw
z

2

2


 

where  is the density of the fluid    

Proof. Let ds be an element of arc at a point P(x, y) and the tangent at p makes an angle  with the 

x-axis.  The pressure at P(x, y) is pds, p is the pressure per unit length.  pds acts along the inward 

normal to the cylindrical surface and its components along the co-ordinate axes are 

             dX= pds cos ( +𝝅/𝟐)) =pds sin,       

 dY=  pds sin(𝜽 + 𝝅/𝟐)=pds cos  

 

 

   The pressure at the element ds is 

 

dF = dX + idY = p sin ds + ip cos ds 
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       = ip (cos + i sin) ds 
axisxpositivealongsinpds

axisxnegativealongsinpds




 

       = ip 
ds

dy
sin,

ds

dx
cosds

ds

dy
i

ds

dx









  

       = ip (dx + idy) = ip dz       (1) 

The pressure equation, in the absence of external forces, is 

  


2q
2

1p
constant 

or  p = 
2

1
q2 + k        (2) 

Further  
dz

dw
 u + iv = q cos + iq sin 

          = q (cos  i sin) = q ei      (3) 

and dz = dx + idy = 









ds

dy
i

ds

dx
ds = (cos  + i sin) ds = ei ds    (4) 

The pressure on the cylinder is obtained by integrating (1).  Therefore, 

  F = X + iY = C ipdz = C i (k1/2 q2) dz 

     = 
2

i
C q2 dz    |  C  dz = 0 

      = 
2

i
C q2 eids 

From here ; 

  X  iY = 
2

i
C q2 ei ds 

             = 
2

i
C (q2 e2i) ei ds 

             = 
2

i
C

2

dz

dW








dz   | using (3) & (4) 

The moment M is given by 

  M =  
C

Fdr = C [(pds sin) y +(pds cos) x] 
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       =  
























C

dsx
ds

dx
pdsy

ds

dy
p   







cospdssinpds

0yx

k̂ĵî

Fdr


 

       = C p(x dx + ydy] 

       =  









C

2q
2

1
k  (xdx + ydy) 

       = k 












C

22

2
)yx(

2

1
d C q2 (xdx + ydy) 

       = 
2


C q2(xdx + ydy)   |  1st integral vanishes.  

       = 


C2
q2 (x cos + y sin) ds   

dssindy

dscosdx




 

       = Real part of 










C

2 ds)sini)(cosiyx(q
2

    

      = Real part of 






 




C

i2 dszeq
2

 

        

          = real part of 









 

C

ii22 dse)eq(z
2

e
 

       = real part of 













 










C

2

dz
dz

dW
z

2

e
. 

  Hence the theorem.  

  Example: What arrangement of sources and sinks will give rise to the function W = log
















z

a
z

2

? Also prove that two of the streamlines are a circle r = a and x = 0. 

Solution.  We have w = log 











 
















z

az
log

z

a
z

222

 

i.e.    + i = log (z2a2)  log z 

     = log (za) + log (z+a)  log z       (1) 
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This represents a line source at z = 0 and two line sinks at z = + a, each of strength unity per unit 

length.  We can write  

   + i = log(xa + iy) + log(x +a + iy)  log(x +iy) 

                = tan1

x

y
tan

ax

y
tan

ax

y 11  





 

      = tan1

x

y
tan

ax

y
1

ax

y

ax

y

1

22

2



























  

      = tan1 
x

y
tan

ayx

xy2 1

222
















 

      = tan1 






























x

y

ayx

ayx
222

222

      (2) 

Since  = constant is the equation of the streamlines, therefore equations for streamlines are 

  y (x2 + y2 + a2) = (x2 + y2 a2)x tan  

where  is a constant. 

In particular, if we take  = /2, then we get the streamlines as 

  (x2 + y2 a2) x = 0 

i.e.  x2 + y2 a2 = 0,  x = 0 

i.e.  x2 + y2 = a2         x = 0  

i.e.  r = a, x = 0 . Hence the result.  

Example: Find the stream function of the two dimensional motion due to two equal sources of 

strength m at a distance 2a apart and an equal sink of strength 2m between them. Determine the 

stream lines. Also find the fluid speed at any point. 

Solution: The complex potential of the given system is 

  W = m log (za)m log (z+a) + 2m log z     (1) 

       = m log z2  m log (z2a2) 

       = m [log z2  log (z2  a2)] 

 

i.e.,  + i = m [log (x2  y2 + 2ixy)  log (x2y2a2 + 2ixy)] 
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P 

r2 

(a,0) (a,0) 

m 
(2m

) 

r1 r3 

      O 
m 

 

 

 

       

        

 

      = m














































222

1

22

1

ayx

xy2
tan

yx

xy2
tan  

      = m tan1 











222222

2

a)yx()yx(

xya2
     (2) 

Streamlines are given by  = constant. 

i.e.  = constant = m tan1











 2
, say       (3) 

Therefore, from (2) & (3), we obtain 

  
222222

2

a)yx()yx(

xya22





 

  (x2 + y2)2 = a2 (x2  y2 + xy) 

where 𝝀 is a variable parameter. 

Now, the fluid velocity is given by  

  u iv =   














az

m

az

m

z

m

dz

dw 2
 

    = 
)az)(az(z

ma2 2


 

 The fluid speed is given by  

  q = | u iv| = 
))((

2 2

azazz

ma

dz

dw


  

     = 
|az||az||z|

ma2 2


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     = 
321

2

rrr

ma2
, where |z| = r3 ,  |za| = r2, |z+a| = r1 

 

   9.8 The Joukowski Transformation: The transformation   

𝒕 = 𝒛 + (
𝒄𝟐

𝟒𝒛
), 

Is among the most important transformations of two-dimensional fluid motion and utilized to 

obtain the fluid streaming past a fixed elliptic cylinder from that of a circular cylinder. Obviously, 

when |t| is large nearly, so that the corresponding distant parts of the two planes are unaltered. Thus 

a uniform stream at infinity in the w-plane corresponds to that, of the same strength and direction 

in z-plane. By considering the inverse transformation 

𝒛 =
𝟏

𝟐
(𝒕 ± √(𝒕𝟐 − 𝒄𝟐) 

or confining our attention to the positive square root viz 

𝒛 =
𝟏

𝟐
(𝒕 + √(𝒕𝟐 − 𝒄𝟐)    

 (1) 

It can be easily shown that the region outside the ellipse 

𝒙𝟐

𝒂𝟐
+
𝒚𝟐

𝒃𝟐
= 𝟏 

will map into the region outside the circle |𝒕| =
𝟏

𝟐
(𝒂 + 𝒃). 

9.9 Analysis of Joukowski’s Transformation: 

The Joukowski transformation  

𝒕 = 𝒛 + (𝒂𝟐/𝒛)                  (1)  

is one of the most important transformations used for the purpose of investigating two-dimensional 

transformation used for the purpose of investigating two dimensional fluid motion. We shall 

explain it here in some detail: 

Let us denote corresponding points in the z-plane and t-plane by the same letter without and with 

dashes. We commence observations categorically. 

(i) For very large values of z, we have 𝒕 ≠ 𝒛 nearly so that the distant parts of the z and t-planes 

remain unaffected. Thus, a uniform stream (wind) at infinity in z-plane will appear as the same 

uniform stream(wind) at infinity in t-plane. 
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(ii) Since 
𝒅𝒕

𝒅𝒛
= 𝟏 − 𝒂𝟐/𝒛𝟐 , the points 𝒛 ± 𝒂  and therefore the corresponding points 𝒕 = ±𝟐𝒂 are 

such where the transformation ceases to be conformal. Accordingly, we avoid mapping the region 

of which these critical (singular) points are interior; though these may appear on the boundary. 

(iii) we now apply Joukowski’s transformation to |z|=b, where b>a. 

From (i) , 𝒕 ± 𝟐𝒂 = (𝒛 ± 𝒂)𝟐/𝒛, so that  

|𝒕 + 𝟐𝒂| + |𝒕 − 𝟐𝒂| = [|𝒛 + 𝒂| + |𝒛 − 𝒂|]/|𝒛| 

      = (𝑨𝑷𝟐 +𝑩𝑷𝟐)/𝒃 

                                                                                                      

 By Median-theorem(Geometry) 

 

|𝑡 + 2𝑎| + |𝑡 − 2𝑎| =
2(𝑏2 + 𝑎2)

𝑏
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Thus as P describes the circle |z|=b, in the z-plane, P’ describes an ellipse with the points 𝑡 = ±2𝑎  

as foci, in the w-plane. The lengths of the major and minor axes of the ellipse are respectively 

𝑎1 =
2(𝑏2 + 𝑎2)

𝑏
, 𝑏1 =

2(𝑏2 − 𝑎2)

𝑏
. 

Thus if b increases indefinitely, the ellipse expands indefinitely. Therefore, the transformation (1) 

maps circles in z-plane whose centre is at the origin into confocal ellipses in the t-plane.  
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This could follow from (1) directly, for 

ξ = z (1 +
a2

x2+y2
) ; η = y (1 −

a2

x2+y2
)       (2) 

 

transforms the concentric circles x2 + y2 = b2 into  

ξ2

b2 + a2
+

η2

b2 − a2
=
1

b2
 

which are confocal ellipses whose foci are (±2a, 0). 

 

 (iv) Consider the circle |z|=a. Then (2) implies  

𝜉 = 2𝑥 = 2𝑎 𝑐𝑜𝑠𝜃, 𝜂 = 0. 𝐵𝑢𝑡 − 1 ≤ 𝑐𝑜𝑠𝜃 ≤ 1 

Hence     −2𝑎 ≤ 𝜉 ≤ 2𝑎, 𝜂 = 0. 

Thus we see that the map transforms the circle |z|=a in z-plane to the line A’B’ of t-plane where 

A’(2a,0), B’(-2a,0) are the points of 𝜉 −axis is t-plane. 

(v) The transformation can be expressed as 𝑧2 − 𝑡𝑧 + 𝑎2 = 0 whence 𝑧 =
1

2
[𝑡 ± (𝑡2 − 4𝑎2)

1

2] 

It can be shown that 𝑧 =
1

2
[𝑡 + (𝑡2 − 4𝑎2)

1

2]transforms the domain |z|≥a onto the whole t-plane 

and 𝑧 =
1

2
[𝑡 − (𝑡2 − 4𝑎2)

1

2] transforms the domain |𝑧| ≤ 𝑎 onto the whole t-plane. 

(vi) The Joukowski transformation as equivalent to the successive transformations 

 

𝜁 = 𝑧 + 𝑡  𝑤ℎ𝑒𝑟𝑒 𝑡 =
𝑐2

𝑧
 

Or     𝑤 = 𝑟 𝑒𝑖𝜃 + (𝑐2/r)𝑒−𝑖𝜃 ,   𝑧 = 𝑟𝑒𝑖𝜃 
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Draw a perpendicular PQ’ to the real axis to meat OQ at Q’. i.e., OQ’=OP=𝑐2/𝑟 

Therefore,     OQ.OQ’=𝑟 (
𝑐2

𝑟
) = 𝑐2 

Thus, Q and Q’ are inverse points with regard to O. The position of the point P is obtained by 

reflecting OQ’, where Q’ is the inverse point, in the real axis. Again the position of the point R(𝜁) 

is obtained by the points Q and P by completing the parallelogram OPRQ. Thus the transformation 

is completed by the fourth vertex R which is represented by 𝜁. The point O will be made to 

describe a circle whereas the point Q’ will then describe the inverse of this circle. The point P will 

therefore describe a circle obtained by reflecting the locus of Q’ in the real axis. 

 

9.10 Aerofoil: The aerofoil has a profile of fish type. It is used in modern aero planes. Such an 

aerofoil has a blunt leading edge and a sharp trailing edge. The projection of the profile on the 

double tangent is the chord. The ratio of the span to the chord is the aspect ratio. The locus of the 

point midway between the points in which an ordinate perpendicular to the chord meets the profile 

is known as the camber line of a profile. The camber is the ratio of the maximum ordinate of the 

camber line to the chord. 

 The theory of the flow round such an aerofoil is made on the following assumptions. 

a) The air behaves as an incompressible inviscid fluid. 

b) The aerofoil is a cylinder whose cross-section is a curve of the fish type. 

c) The flow is two-dimensional irrotational cyclic motion. 

The assumptions are simply approximation to the actual state of affairs. The profiles obtained by 

conformal transformation of a circle by the simple Joukowski transformation make good wing 

shapes, and that the lift can be determined from the known flow with respect to a circular cylinder. 

Joukowski Aerofoil:  

Consider a circle in the z-plane touching at B with AB as radius. Consider a small circle with BA 

as diameter. Let another large circle touch this circle at B(-a,0). Take a point P(z) on the large 

circle. Let P’ be its inverse point with respect to the circle AB. Again let P’’ be the reflection of P’ 

with respect to x-axis then the coordinate of P’’ is 
𝑎2

𝑧
. 

If we draw a parallelogram with OP and OP’’ as adjacent sides and if OQ be the diagonal of this 

parallelogram, then coordinates of Q will be 𝑡 = 𝑧 +
𝑎2

𝑧
. 

The locus of point Q(t) is a fish-shaped contour which is called Joukowski aerofoil on account of 

its resemblance with the section of an aeroplane wing. The terminal points of the aerofoil are 

called trailing edge and leading edge respectively as shown in figure. 
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9.11 Joukowski’s Hypothesis: 

We have 𝑡 = 𝑧 +
𝑎2

𝑧
 𝑎𝑛𝑑

𝑑𝑡

𝑑𝑧
= 1 − 𝑎2/𝑧2. If q’ be the velocity at any point p’(t) corresponding to 

the velocity q and P(z) in z-plane, then  

𝑞 = |
𝑑𝑤

𝑑𝑧
|,  𝑞′ = |

𝑑𝑤

𝑑𝑡
| 

Also     𝑞′ = |
𝑑𝑤

𝑑𝑧
 
𝑑𝑧

𝑑𝑡
| = 𝑞 |

𝑑𝑧

𝑑𝑡
| = 𝑞 |(1 −

𝑎2

𝑧2
)
−1

|  

Evidently 𝑞′ = ∞ 𝑖𝑓 𝑧 = ±𝑎. But 𝑧 = ±𝑎 corresponds to 𝑡 = ±2𝑎. The point z=a is inside the 

circle and its transform t=2a is also inside the aerofoil and consequently need not concern us. Thus 

velocity is infinite at t=-2a, the trailing edge of the aerofoil. Hence in order to avoid infinite 

velocity at t=-2a, the velocity at B(z=-a) is taken to be zero, i.e., B is taken as stagnation point of 

the flow in z-plane. This is known as Joukowski hypothesis. 

 

9.12 Kutta-Joukowski Theorem:  When a cylinder (or an aerofoil) of any shape is placed in a 

uniform stream (wind) of speed U, the resultant thrust on the cylinder is a lift of magnitude 𝒌𝝆𝑼 

per unit length and is at right angles to the stream(wind), where 𝒌 is the circulation around the 

cylinder. 

 

Proof: Since at a great distance from the cylinder, the flow reduces to that of a uniform stream, the 

complex potential will approximately be of the form  

𝑤 = 𝑈𝑧 𝑒−𝑖𝛼𝑧 +
𝑖𝑘

2𝜋
𝑙𝑜𝑔𝑧 +

𝐴

𝑧
+⋯ 

Where A is a constant and 𝛼 is the angle of attack of the stream (wind). Here the first term gives 

the velocity of the wind at infinity and the second refers to the circulation k round the cylinder. 

Now,     
𝑑𝑤

𝑑𝑧
= 𝑈 𝑒−𝑖𝛼 +

𝑖𝑘

2𝜋
 
.1

𝑧
−

𝐴

𝑧2
…   

Therefore,    (
𝑑𝑤

𝑑𝑧
)
2

= (𝑈 𝑒−𝑖𝛼 +
𝑖𝑘

2𝜋
 
.1

𝑧
−

𝐴

𝑧2
…)

2

   

If (X,Y)  be the components of the force (pressure thrust) acting on the surface c of the cylinder, 

then by Blasius theorem, 

𝑋 − 𝑖𝑌 =
𝑖𝜌

2
∫ (

𝑑𝑤

𝑑𝑧
)
2

𝑑𝑧
 

𝐶

 

      

    ∫ (
𝑑𝑤

𝑑𝑧
)
2

𝑑𝑧
 

𝐶
= ∫ (𝑈 𝑒−𝑖𝛼 +

𝑖𝑘

2𝜋
 
.1

𝑧
−

𝐴

𝑧2
…)

2

𝑑𝑧
 

𝐶
 

                          = ∫ [𝑈2 𝑒−2𝑖𝛼 + 𝑖𝑘
𝑈

𝜋
𝑒−𝑖𝛼

1

𝑧
+𝑂 (

1

𝑧2
)… ]

 

𝐶
𝑑𝑧   

This integrand has a pole at z=0. Residue at z=0 is the coefficient of 
1

𝑧
 in the expansion of the 

integrand which is equal to 
𝑖𝑘

𝜋𝑈
𝑒−𝑖𝛼 . 

By Cauchy residue theorem, 
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∫ (
𝑑𝑤

𝑑𝑧
)
2

𝑑𝑧
 

𝐶

= 2𝜋𝑖
𝑖𝑘

𝜋
 𝑈 𝑒−𝑖 𝛼 = −2𝑘 𝑈 𝑒−𝑖𝛼  

Therefore,   𝑋 − 𝑖𝑌 =
𝑖𝜌

2
 (−2𝑘 𝑈 𝑒−𝑖𝛼) = −𝑖𝑘 𝜌𝑈 𝑒−𝑖𝛼 = −𝑖𝑘𝜌𝑈 (cos 𝛼 − 𝑖 sin 𝛼)  

So that    𝑋 = 𝑘𝜌𝑈 sin 𝛼  ;   𝑌 = 𝑘𝜌 𝑈 cos𝛼 

   Force(L) =(𝑋2 + 𝑌2) = 𝑘𝜌 𝑈. 

Thus the force 𝑘𝜌 𝑈(maximum lift)  acts at right angles to the stream. This force is called lift force. 

Corollary: Moment about the origin is given by the Blasius formula 

𝑀 + 𝑖𝑁 = −
1

2
𝜌∫ 𝑧 (

𝑑𝑤

𝑑𝑧
)
2

𝑑𝑧
 

𝐶

  

where M is the moment about the origin of the pressure thrusts on the cylinder(aerofoil) and N is 

the imaginary part of the integral. 

Thus    𝑀 = 𝑅𝑒𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓  2𝜋 𝑖 𝜌 𝑈 𝑒−𝑖𝛼  𝐴 

Since the result contains A(constant), it follows that the couple depends on the form of the 

cylinder.  

 

Example: Find the complex potential for liquid streaming, without circulation, past the circular 

cylinder|=(a+b)/2, the undisturbed streaming being uniform cross flow at incidence 𝜶. Show 

that the Joukowski transformation 𝜻 = (𝝃 + 𝒊𝜼) = 𝒛 + [
𝒂𝟐−𝒃𝟐

𝟒𝒛
]    

 (1) 

 determine the flow past the elliptic cylinder 
𝝃𝟐

𝒂𝟐
+

𝜼𝟐

𝒃𝟐
= 𝟏 . If |z| is large, show that  

𝒘 = 𝑼 𝒆−𝒊𝜶 𝜻 + [𝑼(𝒂 + 𝒃)(𝒃 𝒄𝒐𝒔 𝜶 + 𝒊 𝒔𝒊𝒏 𝜶)/𝟐𝜻]     (2) 

Hence find the couple exerted per unit length on the cylinder. 

 

 Solution: The complex potential of uniform cross flow is 𝑈𝑧𝑒−𝑖𝛼 .  When |z|=(a+b)/2 is inserted, 

use of Circle theorem yields 

    𝑤 =  𝑈𝑧𝑒−𝑖𝛼 +𝑈 𝑒𝑖 𝛼(𝑎 + 𝑏)2/4𝑧    (3) 

Any point on the cylinder |𝑧| =
𝑎+𝑏

2
  is 𝑧 = (𝑎 + 𝑏)𝑒𝑖 𝜃/2. Consider map (1) on this circle 

𝜁 = [
(𝑎 + 𝑏)𝑒𝑖𝜃

2
] + [

(𝑎 − 𝑏)𝑒−𝑖 𝜃

2
] =

1

2
 𝑎(𝑒𝑖𝜃 + 𝑒−𝑖𝜃) +

1

2
𝑏(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)  

i.e.,     𝜉 + 𝑖 𝜂 = 𝑎 cos 𝜃 + 𝑖 𝑏 sin 𝜃. 

Thus    𝜉 = 𝑎 cos𝜃; 𝜂 = 𝑏 sin 𝜃    ;    
𝜉2

𝑎2
+

𝜂2

𝑏2
= 1. (𝑐𝑖𝑟𝑐𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑠 𝑡𝑜 𝑒𝑙𝑙𝑖𝑝𝑠𝑒) 

Now     
𝑑𝑤

𝑑𝑧
=

𝑑𝑤

𝑑𝜁
 .
𝑑𝜁

𝑑𝑧
=

𝑑𝑤

𝑑𝜁
 [1 −

𝑎2−𝑏2

4𝑧2
] 

Thus, if |z| is large, the flow pattern is unaltered (
𝑑𝑤

𝑑𝑧
=

𝑑𝑤

𝑑𝜁
). We invert the map (1) to get 

  𝑧2 − 𝑧 𝜁 (𝑎2 − 𝑏2)/4=0 or 𝑧 = 𝜁 − [(𝑎2 − 𝑏2/4𝑧]    (i) 

So   𝑧 = 𝜁 − (
𝑎2−𝑏2

4
) (𝜁 −

𝑎2−𝑏2

4𝜁
)    |using (i) 
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  = 𝜁 −
𝑎2−𝑏2

4𝜁
= 𝜁 + (𝑏2 − 𝑎2)/4𝜁      (ii) 

From equation  (ii) and equation (3) 

  𝑤 = 𝑈𝑒−𝑖𝛼 [𝜁 +
𝑏2−𝑎2

4𝜁
] + 𝑈

(𝑎+𝑏)2𝑒𝑖𝛼

4
 .
1

𝜁
 [1 +

𝑏2−𝑎2

4𝜁2
]
−1

 

      = 𝑈𝑒−𝑖𝛼𝜁 +
𝑈(𝑎+𝑏)

2𝜁
(𝑏 cos𝛼 + 𝑖 𝑎 sin 𝛼) + 𝑂 (

1

𝜁2
)  

For large 𝜁, 𝑂 (
1

𝜁2
) is neglected and the above yields result (2). 

If C is any curve surrounding the cylinder, then couple M is given by 

𝑀 =
1

2
𝜌 𝑅𝑒 ∮ 𝜁 (

𝑑𝑤

𝑑𝜁
)
2

𝑑𝜁
 

𝐶
      (4) 

Now the coefficient of 
1

𝜁
 𝑖𝑛 𝜁 (

𝑑𝑤

𝑑𝜁
)
2

= 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓
1

𝜁2
  𝑖𝑛 (

𝑑𝑤

𝑑𝜁
)
2

. 

   Here (
𝑑𝑤

𝑑𝜁
)
2

= [ 𝑈𝑒−𝑖𝛼 −
𝑈(𝑎+𝑏)

2𝜁2
(𝑏 cos𝛼 + 𝑖 𝑎 sin 𝛼)]2 

By Cauchy Residue theorem, Equation (4) gives 

  𝑀 = −
1

2
𝜌 𝑈2(𝑎 + 𝑏)𝑅𝑒{(2𝜋𝑖)𝑒−𝑖𝛼(𝑏 cos 𝛼 + 𝑖 a sin 𝛼) 

       = 𝜋 𝜌 𝑈2(𝑎2 − 𝑏2) sin 𝛼 cos 𝛼. 

 

9.13 Check Your Progress: 

 i) A source of fluid situated in space of two dimensions, is of such strength that 2𝜋𝜌𝑚  represents 

the mass of fluid of density 𝜌 emitted per unit of time. Show that the force necessary to hold a 

circular disc at rest in the plane of the source is 2𝜋 𝜌𝑚2𝑎2/𝑟(𝑟2 − 𝑎2), where a is the radius of the 

disc and r is the distance of the source from its centre. In what direction is the disc urged by the 

pressure? 

ii) Between the fixed boundaries 𝜃 =
𝜋

6
𝑎𝑛𝑑 𝜃 = −

𝜋

6
, there is a two-dimensional liquid motion due 

to a source at the point (𝑟 = 𝑐, 𝜃 = 𝛼) and a sink at the origin, absorbing, water at the same rate as 

the source produces it. Find the stream function, and show that one of the steam lines is a part of 

the curve 𝑟3 sin 3𝛼 = 𝑐3 sin 3 𝜃. 

 

iii) Find the lines of flow in the two-dimensional fluid motion given by  

𝜙 + 𝑖 𝜓 = −(
1

2
)𝑛(𝑥 + 𝑖𝑦)2𝑒2𝑖𝑛𝑡 . 

Prove or verify that the paths of the particles of the fluid (in polar coordinates) may be obtained by 

eliminating t from the equations. 

𝑟 cos(𝑛𝑡 + 𝜃) − 𝑥0 = 𝑟 sin(𝑛𝑡 + 𝜃) − 𝑦0 = 𝑛𝑡(𝑥0 − 𝑦0) 

iv) Show that the velocity potential 𝜙 =
1

2
log

(𝑥+𝑎)2+𝑦2

(𝑥−𝑎)2+𝑦2
 gives a possible motion. Determine the 

form of streamlines and curves of equal speed. 

v)  Explain the derivation of a Joukowski aerofoil by the transformation 𝑡 = 𝑧 + ∑
𝑎𝑟

𝑧𝑟
𝑛
𝑟=1   applied 

to centre 𝑧0 and radius a. Obtain the lift formula 𝐿 = 4𝜋 𝜌 𝑎 𝑈2 sin(𝛼 + 𝛽)  and show that the 
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moment about the point 𝑡 = 𝑧0 is  𝑀 = 2𝜋 𝜌𝑏2  𝑈2 sin 2(𝛼 + 𝛾),  𝑤ℎ𝑒𝑟𝑒 𝛼 is the angle of attack 

and 𝛽, 𝑏, 𝛾 constants of transformation. 

 

9.14 Summary: In this chapter we have discussed the conformal transformation which has 

wide applications to fluid mechanics. The images in two dimensions using transformation 

have been discussed. Drag Force and Lift Force of Immersed Bodies have also been defined in 

this chapter. Milne-Circle theorem and Blasius theorem have been derived by using Euler’s 

equation. In the last Joukovski transformation, its analysis and Joukovski aerofoils have 

been discussed. Also, Kutta-Joukovski theorem has been derived. 

 

9.15 Keywords: Conformal, transformation, images, Blasius, Circle theorem, Joukovski 

transformation, aerofoils. 

 

 

 

9.16 Self-Assessment Test: 

 

SA1: An aerofoil section is obtained by the mapping 𝜁 = 𝑧 + [(𝑎 − 𝑏)2/𝑧] applied to the circle |z-

b|=a, where b is positive real and b<a. Find the value of circulation Γ = 2𝜋𝐾 needed to make the 

velocity finite at the trailing edge when the current impinges at an angle 𝛼 to the axis of the 

aerofoil. Using the value of K obtained, find the force exerted by the current on the aerofoil.  

 

SA2: A long infinite circular cylinder of radius a is placed in uniform stream –𝑈𝒊 and fluid 

surrounding the cylinder is given a circulation 2𝜋𝐾.Discuss the geography of stagnation points. 

Show also, that the cylinder experiences an uplifting force of magnitude 2𝜋𝜌𝐾 𝑈 per unit length. 

 

SA3: State and prove Blasius theorem for an open curve AB. Find the force on the quadrant 0 ≤

𝜃 ≤ 𝜋/2 of the circle |z|=a placed in uniform streaming Ui when liquid pressure at infinity is 𝑝∞. 

 

SA4: In the conformal representation of the two-dimensional motion of a fluid, prove that if a 

source exists in one fluid, there will be a source at corresponding point of the other fluid. 

SA5: Establish the theorem of Kutta and Joukowski. 

 

References: 

 Milne-Thompson, “Theoretical Hydrodynamics” (1955), Macmillan London 

 Rutherford Aris, “Vectors, Tensors and Fluid Mechanics” (1962), Prentice-Hall 

 S. Ramsay, “Hydromechanics part II” (1935), G. Bell &Sons London 

 Bansi Lal,” Theoretical Hydrodynamics” A vectorial Treatment, (1967), Atma Ram & 

Sons, New Delhi. 
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MOTION OF CYLINDERS AND VORTEX MOTION 

 

10.0 Learning Objectives: After reading this chapter, one should be able to understand the two-

dimensional irrotational motion produced by motion of circular, co-axial and elliptic cylinders, understand 

the vortex motion, permanence of vorticity and can be able to obtain the complex potential for the 

rectilinear vortices. 

10.1 Two-dimensional Irrotational Motion Produced by Motion of Cylinders: 

Here, we discuss two-dimensional irrotational motion produced by the motion of cylinders in an 

infinite mass of liquid at rest at infinity (the local fluid moves with the cylinder).  The cylinders 

move at right angles to their generators which are taken parallel to z-axis.  Thus, we get the xy-

plane as the plane of flow.  For the sake of simplicity, we take the cylinders of unit length. For 

such motion, the stream function  or velocity potential ) is determined in the light of the 

following conditions. 

(i)   satisfies Laplace equation i.e., 2 = 0 at every point of the liquid. 

(ii)  Since the liquid is at rest at infinity, so 

  0
y

and0
x










 at infinity. 

(iii)  Along any fixed boundary, the normal component of velocity must be zero so that 
s


= 0 

i.e.       

                   = constant, which means that the boundary must coincide with a streamline. 

(iv)  On the boundary of the moving cylinder, the normal component of the velocity of the 

liquid must be equal to normal component of velocity of the cylinder. 

Further, we observe that the two-dimensional solution of the Laplace equation 2 = 0, in polar 

co-ordinates (r, ), is  

   = An r
n cos n + Bn r

n sin  

where n is any integer, An and Bn being constants.  Also, all the observations made for , are valid 

for velocity potential , where  and  satisfy CR equations.  

10.2 General Motion of Cylinder: 

Let O be the cross-section of any cylinder be moving perpendicular to its generators which are 

moving with linear velocities U and V along x,y-axis with angular velocity 𝝎. 

Let P(x,y)  be on the boundary of the cylinder. Let the tangent  PT at P makes an angle 𝜽 with the 

x-axis. PN is normal at P. We have 𝒙 = 𝒓 𝐜𝐨𝐬𝜽, 𝒚 = 𝒓 𝐬𝐢𝐧 𝜽.  
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Linear velocity along x-axis= dx/dt  

or 
𝒅𝒙

𝒅𝒕
=

𝒅

𝒅𝒕
(𝒓 𝐜𝐨𝐬 𝜽) = −𝒓 𝐬𝐢𝐧 𝜽

𝒅𝜽

𝒅𝒕
= −𝒓 𝐬𝐢𝐧𝜽 𝝎                since 𝝎 =

𝒅𝜽

𝒅𝒕
 

Therefore, 
𝒅𝒙

𝒅𝒕
= −𝒚 𝝎 

Linear velocity along y-axis =
𝒅𝒚

𝒅𝒕
=

𝒅

𝒅𝒕
(𝒓 𝐬𝐢𝐧𝜽) = 𝒓 𝐜𝐨𝐬𝜽

𝒅𝜽

𝒅𝒕
= 𝒙𝝎 

Velocity components at P along x-axis and y-axis are 𝑼+
𝒅𝒙

𝒅𝒕
, 𝑽 +

𝒅𝒚

𝒅𝒕
 𝒊. 𝒆. 𝑼 − 𝒚 𝝎, 𝑽 = 𝝎𝒙  

But normal component of velocity of boundary =normal component of velocity of liquid 

−
𝝏𝝍

𝝏𝒔
= (𝑼 − 𝒚 𝝎) 𝐜𝐨𝐬(𝟗𝟎 − 𝜽) + (𝑽 + 𝒙𝝎) 𝐜𝐨𝐬(𝟏𝟖𝟎 − 𝜽) 

or   −
𝝏𝝍

𝝏𝒔
= 𝑼− 𝒚𝝎𝐬𝐢𝐧𝜽 − (𝑽 + 𝒙 𝝎) 𝐜𝐨𝐬𝜽 

    = (𝑼 − 𝒚 𝝎)
𝒅𝒚

𝒅𝒔
− (𝑽 + 𝒙 𝝎) 

𝒅𝒙

𝒅𝒔
 

or   𝒅𝝍 = (−𝑼 + 𝒚𝝎)𝒅𝒚 + (𝑽 + 𝒙 𝝎)𝒅𝒙 

Integrating   𝝍 = −𝑼𝒚 +
𝒚𝟐

𝟐
𝝎+ 𝑽𝒙 +

𝒙𝟐

𝟐
𝝎+ 𝑪 

   𝝍 = (𝑽𝒙 − 𝑼𝒚) +
𝝎

𝟐
(𝒙𝟐 + 𝒚𝟐)+C 

Where C is constant of integration. 

This is the required expression for the general motion of the cylinder. 

Note:  If the motion is pure rotation then linear velocities are equal to zero, therefore  

𝝍 =
𝝎

𝟐
(𝒙𝟐 + 𝒚𝟐)+C 

    But 𝒛 𝒛̅ = 𝒙𝟐 + 𝒚𝟐 

Therefore,    𝝍 =
𝝎

𝟐
𝒛 𝒛̅ + 𝑪 

If we consider the equation of the cross-section of cylinder as boundary of the form 
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𝒛 𝒛̅ = 𝒇(𝒛) + 𝒇(𝒛̅) 

The complex potential satisfies 𝝍 is  

W=𝑰 𝝎𝒇(𝒛) 

 

10.3. Motion of a Circular Cylinder.  Let us consider a circular cylinder of radius a moving 

with velocity U along x-axis in an infinite mass of liquid at rest at infinity.  The velocity potential 

 which is the solution of 2 = 0, must satisfy the following conditions. 

(i) 















cosU
r ar

 

(ii) 










r

1
and

r
  0 as r 

 

                                                   

A suitable form of  is  

   (r, ) = 









r

B
Ar cos                           (1) 

                 












2r

B
A

r
 cos                                                                        (2) 

Applying conditions (i) and (ii) in (2), we get 

  ,cosUcos
a

B
A

2









 (A + 0.B) = 0 for all . 

            A +
2a

B
 = U, A = 0 

                    A = 0, B = U a2 

Thus                  (r, ) = cos
r

Ua 2

       (3) 

The second condition of (ii) is evidently satisfied by  in (3) 

But                     









r

1

r
              (CR equation) 
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so,                  
2

2

r

Ua

r

1





 cos 

              i.e.        



cos

r

Ua 2

 

Neglecting constant of integration, we get 

                        = 
r

Ua 2

sin       (4)  

Thus                      W =  + i = 
r

Ua 2

 (cos  i sin) 

                          = 
z

Ua

re

Ua 2

i

2




 

which gives the complex potential for the flow.  

 Remarks. (i) For the case of ‘Uniform flow past a fixed circular cylinder’, using circle theorem, 

we have obtained the complex potential as 

                     W = f(z) + f(a2/z) 

                         = Uz + U
z

a 2

 

where the cylinder moves with velocity U along positive direction of x-axis.  If we give a velocity 

U to the complete system, along the positive direction of x-axis, then the stream comes to rest and 

the cylinder moves with velocity U in x-direction. 

Thus, we get 

                  W = Uz + U
z

Ua
Uz

z

a 22

  

(ii)  Similarly, if we impose a velocity U in the negative direction of x-axis to the complete 

system in the present problem, then the cylinder comes to rest and the liquid flows past the 

fixed cylinder with velocity U in negative x-axis direction and thus we get 

                 W = .Uz
z

Ua 2

  

(iii)  If we put Ua2 = , then we get 

                 W = 
0z

e

z

i






 

 

which shows that the complex potential due to a circular cylinder with velocity U along x-axis in 

an infinite mass of liquid is the same as the complex potential due to a line doublet of strength           

 = Ua2 pre unit length situated at the centre with its axis along x-axis. 
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 Example:   A circular cylinder of radius a is moving in the fluid with velocity U along the axis 

of x.  Show that the motion produced by the cylinder in a mass of fluid at rest at infinity is given 

by the complex potential 

               W =  + i = 
Utz

Ua 2


 

Find the magnitude and direction of the velocity in the fluid and deduce that for a marked 

particle of fluid whose polar co-ordinates are (r, ) referred to the centre of the cylinder as 

origin, 

  





























 

r

a
randee

r

a

r

U

dt

d
i

dt

dr

r

1 2
ii

2

2

sin  = constant 

Solution. The cylinder is given to be moving along x-axis.  At time t, it has moved through a 

distance Ut. Taking z = Ut as the origin, the complex potential is 

               W =  + i = 
Utz

Ua 2


 

Therefore                


 i2

2

2

2

2

e
r

Ua

)Utz(

Ua

dz

dW
 ,   z Ut = rei 

i.e.          u  iv = 
2

2

r

Ua
(cos 2  i sin 2) 

                u =  2sin
r

Ua
v,2cos

r

Ua
2

2

2

2

 

Therefore,             q = 
2

2
22

r

Ua
vu   

The direction of velocity is tan  = 
u

v
= tan 2     = 2 

When the cylinder is fixed and its centre is at 0, then 

            W = Uz + )iyx(
r

Ua
)iyx(U

z

Ua
2

22

  

i.e.      + i = Ur (cos + i sin) + )sini(cos
r

Ua 2

  

                          = Ur cos + 















sin

r

a
rU,

r

cosUa 22

 

The streamlines are given by  = constant 
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         















r

a
r

2

sin = constant 

Further, 

   



 q|cos

r

Ua
cosU

rdt

dr
2

2

 

             r
2

2

r

sinUa
sinU

r

1

dt

d 








 

               
3

2

3

2

r

sinUa
i

r

cosiU

r

cosUa

r

cosU

dt

d
i

dt

dr

r

1 












  

          = 












  ii

2

2

ee
r

a

r

U
  

Hence the result. 

10.4. Equation of Motion of a Circular Cylinder (Equation of Motion of Circular 

Cylinder without Circulation).  Let a circular cylinder of radius a move with a uniform velocity 

U along x-axis in a liquid at rest at infinity.  The complex potential for the resulting motion, is  + 

i = W =
z

Ua 2

, where origin is taken at the centre of the cylinder.  

Thus,              = 
r

Ua 2

cos,    = 
r

Ua 2

 sin 

so    
arr 













= U cos 

Let T1 be the K.E. of the liquid on the boundary of the cylinder and T2 that of the cylinder.  Let  

and  be the densities of material of the cylinder and the liquid respectively.  Then 

  T1 = 








C

ds
n2

 

       =  


















 2

0
arr2

ad,    s = a    ds = ad        | l = r 

       = 

















 2

0

2

cos
a

Ua

2
(U cos) ad 

       = 
 2

0

22

2

aU
cos2  d 

       = ,
2

U
'M

2

U
)a(

2

aU 22
2

22



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where M =  a2 = mass of the liquid displaced by the cylinder of unit length. 

K.E. of the cylinder, T2 = 
2

1
MU2, M = a2  

Thus, total K.E. of the liquid and cylinder is  

  T = T1 + T2 = 
2

1
(M + M) U2       (1) 

Let R be the external force on the cylinder in the direction of motion.  We use the fact that rate of 

change of total energy is equal to the rate at which work is being done by external forces at the 

boundary. 

  RU = 
2

1

dt

d
(M + M) U2   

velocity.force

time

cetandis.force

time

donework




 

        = 
dt

dU
U2

2

'MM 
 

        = (M + M) U
dt

dU
 

       M
dt

dU
'MR

dt

dU
         (2) 

Equation (2) is the equation of motion of the cylinder.  This shows that the presence of liquid 

offers resistance (drag force) to the motion of the cylinder, since if there is no liquid, then M = 0 

and we get 

        M R
dt

dU
          (3) 

Now, if 
M

R
= external force on the cylinder per unit mass be constant and conservative, then by the 

energy equation, we get 

  
2

1
(M + ’ ) U2 (M 𝑴′)

M

R
r = constant      (4) 

where r is the distance moved by the cylinder in the direction of R. Diff. (4) w.r.t. t, we get 

  (M + M) U
M

R
)'MM(

dt

dU
 U = 0 

or  M R
aa

aa
R

'MM

'MM

dt

dU
22

22









  

i.e.   M R
dt

dU




         (5) 

which gives another form of equation of motion 
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If U = (u, v) and R = (X, Y), then 

  M Y
dt

dv
M,X

dt

du









       (6) 

Are the equations of motion of the cylinder in Cartesian co-ordinates.  Comparing (3) and (5), it 

can be said that the effect of the presence of the liquid is to reduce external forces in the ratio 

   :  + . 

10.5. Motion of two co-axial cylinders.  Let us consider two co-axial cylinders of radii a and b 

(a < b).  The space between them is filled with liquid of density  .  Let the cylinders move parallel 

to themselves in directions at right angles with velocities U and V respectively, as shown in the 

figure 

                                                 

 

 

 

The boundary conditions for the velocity potential  which is the solution of 2 = 0, are 
)q(   

(i)    
r


 = U cos, r = a         (1) 

(ii)  
r


= V sin, r = b         (2) 

A suitable form of velocity potential is 

      = 
















 sin

r

D
Crcos

r

B
Ar       (3)   

           





















sin

r

D
Ccos

r

B
A

r 22
      (4) 

Using (1) & (2) in (4), we get 

       U cos = 
















 sin

a

D
Ccos

a

B
A

22
 

 V sin = 
















 sin

b

D
Ccos

b

B
A

22
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Comparing co-efficient of  cos  and  sin,  we get 

    A  0
a

D
C,U

a

B
22
  

  A  V
b

D
C,0

b

B
22

  

Solving these equations, we obtain 

            A = 
22

22

22

2

22

22

22

2

ba

bVa
D,

ba

Vb
C,

ba

bUa
B,

ba

Ua













 

Thus, (3) becomes 

             =  
































sin

r

a
r

ba

Vb
cos

r

b
r

ba

Ua 2

22

22

22

2

 

    = 
































sin

r

a
r

ab

Vb
cos

r

b
r

ab

Ua 2

22

22

22

2

    (5) 

The expression for  can be obtained from  

         









r

1

r
 

i.e.         
r

r








 

     = 
































sin

r

a
r

ab

Vb
cos

r

b
r

ab

Ua 2

22

22

22

2

 

Integrating and neglecting the constant of integration, we get 

   = 
































cos

r

a
r

ab

Vb
sin

r

b
r

ab

Ua 2

22

22

22

2

    (6) 

It should be noted that the values of  and  given by (5) and (6), hold only at the instant when the 

cylinders are on starting i.e. the initial motion. 

 Corollary.  If the cylinders move in the same direction, then the boundary conditions are 

(i) 
r


= U cos , r = a 

(ii) 
r


 = V cos, r = b 

Using these conditions in (4), comparing co-efficients of cos and sin and then solving the 

resulting equations, we get 
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 A = ,
ab

bUVa
B,

ab

VbUa
22

22

22

22









 C = 0, D = 0 

So,  =   










cos

r

bUVa
rVbUa

ab

1 22
22

22
 

and  =   










sin

r

bUVa
rVbUa

ab

1 22
22

22
 

 Example:   An infinite cylinder of radius a and density  is surrounded by a fixed concentric 

cylinder of radius b and the intervening space is filled with liquid of density .  Prove that the 

impulse per unit length necessary to start the inner cylinder with velocity V is 

  
22

2

ab

a




[(+) b2  () a2]V 

Suppose that V is taken along the x-axis. 

Solution. Let the velocity potential be 

          = 
















 sin

r

D
Crcos

r

B
Ar       (1) 

The boundary conditions are )q(   

(i)     
r


= V cos, r = a 

(ii)   
r


 = 0, r = b 

Applying these conditions in (1) and then comparing co-efficient of cos and sin, we get 

  A  0
a

D
C,V

a

B
22
  

         A  0
b

D
C,0

b

B
22
  

Solving for A, B, C, D, we obtain 

       A = ,
ab

bVa
B,

ab

Va
22

22

22

2





 C = D = 0 

Thus, the potential (1) is 

        = 















cos

r

bVa
rVa

ab

1 22
2

22
 

Now, the impulsive pressure at a point on r = a (along x-axis), is 
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  P = ( )r = a = ar

2

22

2

|cos
r

b
r

ab

Va



















 

           = 



cos)ba(

ab

Va 22

22
 

The impulsive pressure on the mole cylinder is  

            




2

0 22 ab

Va
 (a2 + b2) cos. a cos d 

                     =  a2 V
ab

ab
22

22


















 

Now, change in momentum = the sum of impulsive forces 

Therefore,  a2 (V0) = I  a2 V
ab

ab
22

22


















  

  I = a2 V + a2 V
ab

ab
22

22


















 

Thus, impulse due to external forces, is 

  I = 
22

2

ab

Va




[  (b2a2) + (b2 + a2)] 

    = 
22

2

ab

Va




 [( + ) b2 () a2] 

Hence the result.  

 

10.6 Elliptic Coordinates: Let 𝑧 = cosℎ 𝜁, 𝑤ℎ𝑒𝑟𝑒 𝑧 = 𝑥 + 𝑖𝑦, 𝜁 = 𝜉 + 𝑖𝜂 

Then 𝑥 + 𝑖𝑦 = 𝑐 𝑐𝑜𝑠  (𝜉 + 𝑖𝜂) = 𝑐(cosh 𝜉 cos 𝜂 + 𝑖 sinh 𝜉 sin 𝜂) 

 So that   𝑥 = 𝑐 cosh 𝜉 cos 𝜂;   𝑦 = 𝑐 sinh 𝜉 sin 𝜂       (1) 

Obviously,  

𝑥2

𝑐2 cosh2 𝜉 
+

𝑦2

𝑐2 sinh2 𝜉
= 1    (2) 

And     
𝑥2

𝑐2 cos2 𝜂
−

𝑦2

𝑐2 sin2 𝜂
= 1     (3) 

Thus 𝜉=const. and 𝜂 = 𝑐𝑜𝑛𝑠𝑡. represent confocal ellipses and hyperbolas respectively and the 

distance between the foci in each case is 2c. 

If a, b are the semi-axes of the ellipse (2), we have for 𝜉 = 𝜉0 
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   𝑎 = 𝑐 cosh 𝜉0 , 𝑏 = 𝑐 sinh 𝜉0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑎
2 − 𝑏2 = 𝑐2 

Also     𝑎 + 𝑏 = 𝑐(cosh 𝜉0 + sinh 𝜉0) = 𝑐 𝑒
𝜉0; 

𝑎 − 𝑏 = 𝑐 cosh 𝜉0 − sinh 𝜉0) = 𝑐 𝑒
−𝜉0 ; 

so that 𝑒2𝜉0 = (𝑎 + 𝑏)/(𝑎 − 𝑏) or 𝜉0 =
1

2
log [

𝑎+𝑏

𝑎−𝑏
] 

The parameters 𝜉, 𝜂 are called the elliptic co-ordinates. 

10.7 Motion of an elliptic cylinder: 

(i) To determine the 𝜙   𝑎𝑛𝑑 𝜓 when an elliptic cylinder moves in an infinite liquid with velocity U 

parallel to major axis of the section. 

We know stream function for any cylinder moving with velocities U and V parallel to axes and 

rotating with an angular velocity 𝜔; is given by  

𝜓 = 𝑉𝑥 − 𝑈𝑦 +
1

2
𝜔(𝑥2 + 𝑦2) + 𝐶    (1) 

As elliptic cylinder moves along major axis i.e., x-axis, then 𝑉 = 0, 𝜔 = 0, then (1) becomes 

                                                                  𝜓 = −𝑈𝑦 + 𝑐     (2) 

Now let the cross-section of the cylinder be the ellipse 

𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

Or    
𝑥2

𝑐2𝑐𝑜𝑠ℎ2𝛼
+

𝑦2

𝑐2 sinh2𝛼 
= 1 

where 𝑎 = 𝑐 cosh 𝛼 , 𝑏 = 𝑐 sinh 𝛼,     𝛼 = 𝜉 

The elliptic coordinates are  𝑥 = 𝑐 cosh 𝛼 cos 𝜂, 𝑦 = 𝑐 sinh 𝛼 sin 𝜂 

So (1) will contain sin 𝜂. Also since the velocity is to vanish at infinity (𝜉 = ∞), 𝜓 must be of the 

form.  

𝑒−𝜉 sin 𝜂 

We can take complex potential of the form  

𝜙 + 𝑖 𝜓 = 𝐴 𝑒−(𝜉+𝑖 𝜂) = 𝐴 𝑒−𝜉  𝑒−𝑖𝜂 = A e−ξ (cos 𝜂 − 𝑖 sin 𝜂)      (3) 

Equating imaginary part on both sides 

𝜓 = −𝐴 𝑒−𝜉 sin 𝜂          (4) 

At the boundary 𝜉 = 𝛼, we have  

𝜉 = −𝑈𝑐 sinh 𝛼 sin 𝜂 

Therefore,  −𝐴 𝑒−𝛼 sin 𝜂 = −𝑈𝑐 sinh 𝛼 sin 𝜂 + 𝑐 
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We get  

  c=0 and 𝐴 𝑒−𝛼 = 𝑈𝑐 sinh 𝛼 

⇒  𝐴 = 𝑈𝑐 𝑒𝛼 sinh 𝛼 

Putting these values in (3), we get   

𝜓 = −𝑈𝑐 𝑒𝛼−𝜉 sinh 𝛼 sin 𝜂         (5) 

is the stream function when the elliptic cylinder  𝜉 = 𝛼 is moving parallel to its major axis with 

velocity U. 

Put 𝑏 = 𝑐 sinh 𝛼  𝑖𝑛 (5) we get 

𝜓 = −𝑈𝑏 𝑒𝛼 𝑒−𝜉 sin 𝜂 

      = −𝑈𝑏 √
𝑎+𝑏

𝑎−𝑏
 𝑒−𝜉 sin 𝜂 

As      𝑒𝛼 = √
𝑎+𝑏

𝑎−𝑏
  

Similarly, from (2) equating real part 

𝜙 = 𝐴 𝑒−𝜉 cos 𝜂 = 𝑈𝑏 √
𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−𝜉 cos 𝜂 

The complex potential is given by 

𝑤 = 𝜙 + 𝑖 𝜓 = 𝑈𝑏 √
𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−𝜉(cos 𝜂 − 𝑖 sin 𝜂) 

    𝑤 = 𝑈𝑏 √
𝑎+𝑏

𝑎−𝑏
 𝑒−𝜉𝑒−𝑖𝜂 = 𝑈𝑏 √

𝑎+𝑏

𝑎−𝑏
 𝑒−(𝜉+𝑖 𝜂)    

(ii) To determine the velocity function and the steam function when an elliptic cylinder moves in 

an infinite liquid with velocity V parallel to the axial plane through the minor axis of a cross-

section. 

 We know stream function 𝜓 for any cylinder moving with velocities U and V parallel to axes and 

rotating with angular velocity 𝜔, is given by  

𝜓 = 𝑉𝑥 − 𝑈𝑦 +
1

2
𝜔(𝑥2 + 𝑦2) + 𝐶    (1) 

As elliptical cylinder moves along minor axis, i.e., y-axis, then 𝑈 = 0, 𝜔 = 0, put in (1) 

𝜓 = 𝑉𝑥 + 𝑐      (2) 

 Now let the cross-section of the cylinder be the ellipse 
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𝑥2

𝑎2
+
𝑦2

𝑏2
= 1 

or    
𝑥2

𝑐2𝑐𝑜𝑠ℎ2𝛼
+

𝑦2

𝑐2 sinh2𝛼 
= 1 

where 𝑎 = 𝑐 cosh 𝛼 , 𝑏 = 𝑐 sinh 𝛼,     𝛼 = 𝜉 

The elliptic coordinates are  𝑥 = 𝑐 cosh 𝛼 cos 𝜂, 𝑦 = 𝑐 sinh 𝛼 sin 𝜂 

So (1) will contain sin 𝜂. Also since the velocity is to vanish at infinity (𝜉 = ∞), 𝜓 must be of the 

form.  

𝑒−𝜉 cos 𝜂 

We assume     𝜓 = 𝐴 𝑒−𝜉 cos 𝜂     (3) 

From (2) and (3) equating 𝜓 at 𝜉 = 𝛼 we have  

𝑉𝑐 cosh 𝛼 cos 𝜂 + 𝑐 = 𝐴𝑒−𝛼 cos 𝜂 

We get  0 = 𝑐𝐴 = 𝑉𝑐𝑒𝛼 cos 𝛼 

Putting these values in (3) we get 

𝜓 = 𝑉𝑐 𝑒𝛼 cosh 𝛼 𝑒−𝜉 cos 𝜂 

= 𝑉𝑎 √
𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−𝜉 cos 𝜂 

As  𝑎 = 𝑐 cosh 𝛼  and 𝑒𝑎 = √
𝑎+𝑏

𝑎−𝑏
 

Also, that   𝜙 = 𝑉𝑎 √
𝑎+𝑏

𝑎−𝑏
 𝑒−𝜉 sin 𝜂 

The complex potential is given by  

𝑤 = 𝜙 + 𝑖 𝜓 = 𝑖𝑉𝑎 √
𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−(𝜉+𝑖 𝜂) 

(iii) To determine the complex potential when an elliptic cylinder moves in an infinite liquid 

with a velocity v in the direction making an angle 𝜽 with the major axis of the cross-section of 

the cylinder. 

The components of v along the axis of coordinates are  

𝑈 = 𝑣 cos 𝜃   𝑎𝑛𝑑 𝑉 = 𝑢 sin 𝜃 

Let 𝜔1 𝑎𝑛𝑑 𝜔2 be the complex potentials corresponding to the motion of the cylinder with velocity 

U and V along x and y-axis, we have 
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𝜔1 = 𝑈𝑏 √
𝑎 + 𝑏

𝑎 − 𝑏
  𝑒−(𝜉+𝑖 𝜂) = 𝑏 𝑣 cos𝜃 √

𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−(𝜉+𝑖𝜂)   

𝜔2 = 𝑖𝑉𝑎 √
𝑎 + 𝑏

𝑎 − 𝑏
  𝑒−(𝜉+𝑖 𝜂) = 𝑖𝑎 𝑣 sin 𝜃 √

𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−(𝜉+𝑖𝜂)        

Hence the complex potential due to velocity v is given by  

𝜔 = 𝜔1 +𝜔2 = 𝑣   √
𝑎 + 𝑏

𝑎 − 𝑏
 𝑒−(𝜉+𝑖𝜂)  (𝑏 cos𝜃 + 𝑖 𝑎 sin 𝜃)  

   = 𝑣√
𝑎+𝑏

𝑎−𝑏
 𝑒−(𝜉+𝑖𝜂){ 𝑐 sinh 𝛼 cos𝜃 + 𝑖𝑐 cosh 𝛼 sin 𝜃} 

 𝜔 = 𝑐 𝑣√
𝑎+𝑏

𝑎−𝑏
 𝑒−𝜁 sinh(𝛼 + 𝑖 𝜃) = 𝑣(𝑎 + 𝑏)𝑒−𝜁 sinh(𝛼 + 𝑖 𝜃)    [as 𝑐2 = 𝑎2 − 𝑏2 

  

10.8 Kinetic energy of Elliptic Cylinder: 

i) When the elliptic cylinder 𝜉 = 𝛼 moves with velocity U parallel to x-axis; we have 

𝜙 = 𝑈𝑏 √
𝑎+𝑏

𝑎−𝑏
 𝑒−𝛼 cos 𝜂 =𝑈𝑏 cos 𝜂 𝑒𝑎 𝑒−𝛼 = 𝑈𝑏 cos 𝜂                    [𝑒𝛼 = (

𝑎+𝑏

𝑎−𝑏
)

1

2
  

and 𝜓 = −𝑈𝑏 (
𝑎+𝑏

𝑎−𝑏
)

1

2
 𝑒−𝛼 sin 𝜂 = −𝑈𝑏 sin 𝜂 

We know kinetic energy of T of the liquid on the boundary of the cylinder  

𝑇 = −
1

2
 𝜌 ∫𝜙𝑑𝜓 

       =
1

2
𝜌 𝑈2𝑏2  ∫ cos2 𝜂 𝑑𝜂

2 𝜋

0
     [as 

𝜂 𝑣𝑎𝑟𝑖𝑒𝑠 𝑓𝑟𝑜𝑚 0 𝑡𝑜 2𝜋 

             =
1

2
 𝜌𝑈2𝑏2𝜋 

           

ii) When the elliptic cylinder 𝜉 = 𝛼 moves with velocity V to y-axis 

𝝓 = 𝑽𝒂 √
𝒂 + 𝒃

𝒂 − 𝒃
 𝒆−𝜶 𝐬𝐢𝐧𝜼 ;𝝍 = 𝑽𝒂 √

𝒂 + 𝒃

𝒂 − 𝒃
 𝒆−𝜶 𝐜𝐨𝐬 𝜼 
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Therefore,   𝑇 = −
1

2
 𝜌 ∫𝜙 𝑑𝜓=−

1

2
 𝜌 ∫ 𝑉𝑎 cos 𝜂 𝑉𝑎 cos 𝜂 𝑑𝜂 

       = −
1

2
 𝜌𝑉2 𝑎2  ∫ cos2 𝜂 𝑑𝜂 

       =
1

2
 𝜌𝑉2𝑎2𝜋 

iii) when the elliptic cylinder moves with velocity V on a direction making an angle 𝜃 with the 

major axis 

As above    𝑇 =
1

2
𝜋 𝑉2 (𝑏2 cos2 𝜃 + 𝑎2 sin2 𝜃) 

 

 

 

10.9 Vortex Motion 

 
Introduction:  It is known that all possible motion of an ideal fluid can be divided in two classes 

irrotational and vortex motion. So, for we have confined our attention to the cases involving 

irrotational motion only.  But the most general displacement of a fluid involves rotation such that 

the rotational vector (vortex vector or vorticity)  Ω = 𝑐𝑢𝑟𝑙 𝒒 ≠ 𝟎.  Here we consider the theory of 

rotational or vortex motion.  First of all, we revisit some elementary definitions. 

 

10.10 Definitions:  

Vorticity If q be the velocity vector of a fluid particle. Then the vector quantity, Ω(=  curl 𝐪) is 

called the vorticity vector.  

 

 

Let Ω = 𝜉𝑖 + 𝜂𝑗 + 𝜁𝑘 so that (𝜉, 𝜂, 𝜁) are the vorticity vector components or the components of the 

spin. Then we have 

𝜉 =
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
,    𝜂 =

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
, 𝜁 =

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

where 𝒒 = 𝑢𝑖 + 𝑣𝑗 + 𝑤𝑘  

If 𝜉, 𝜂, 𝜁 are all zero, the motion is irrotational and velocity function 𝜙 exists. If 𝜉, 𝜂, 𝜁 are not all 

zero, the motion is rotational. 

In case of two-dimensional motion, we know that w=0 and u & v are function x & y only and 

hence for two-dimensional case 

𝜉 = 0, 𝜂 = 0, 𝜁 =
𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
 

It follows that in two-dimensional motion there can be at the most only one component of spin and 

its axis is perpendicular to the plane of the motion. 

 

Vortex Line: A vortex line is a curve drawn in the fluid such that the, tangent to it is in the 

direction of the vorticity vector at that point at that instant. 

An element of arc length dr along the vortex line is tangent to the vorticity vector. 

So, the equation of vortex line is  

𝛀 × 𝒅𝒓 = 𝟎 
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|

𝒊 𝒋 𝒌
𝜉 𝜂 𝜁
𝑑𝑥 𝑑𝑦 𝑑𝑧

| = 𝟎 

(𝜂 𝑑𝑧 − 𝜁𝑑𝑦)𝑖 − (𝜉𝑑𝑧 − 𝜁𝑑𝑥)𝑗 + (𝜉𝑑𝑦 − 𝜂𝑑𝑥)𝑘 = 0 
 

or             𝜂 𝑑𝑧 − 𝜁𝑑𝑦 = 0;  𝜉𝑑𝑧 − 𝜁𝑑𝑥 = 0;  𝜉𝑑𝑦 − 𝜂𝑑𝑥 = 0 

 

Putting in combine form, we have  

 
𝑑𝑥

𝜉
=
𝑑𝑦

𝜂
=
𝑑𝑧

𝜁
 

Vortex Tube: The vortex line drawn through each point of a closed curve enclose a tubular space 

in the fluid which is called the vortex tube. A vortex filament or simply a vortex is a vortex tube of 

infinitesimal cross-section.  

 

 

Circulation: If C is a closed curve, then circulation about C is given by  

 

   =  
SSSC

dSdSdScurld .... nqnrq    

 

The quantity n S us called the strength of the vortex tube.  A vortex tube with a unit strength 

is called a unit vortex tube. 

Circular Vortex: The section of a cylindrical vortex tube whose cross-section is a circle of radius 

a, by the plane of motion is a circle and the liquid inside such a tube is said to form a circular 

vortex. 

If w is the angular velocity and a2 the cross-sectional area of the vortex tube, then circulation  

 

    
C SS

dScurldScurlrd qnqq  

      = w  
S

sayKawdS )(2  

This product of the cross-section and angular velocity at any point of the vortex tube is constant 

along the vortex and is known as the strength of the circular vortex. 

 

10.11 Properties of the Vortex: 

Every vortex satisfies the following fundamental properties: 

1. Every vortex is always composed of the same elements of fluid. 

Consider an element of fluid whose coordinates are (𝑥, 𝑦, 𝑧) at any instant t. Let (𝑎, 𝑏, 𝑐) are the 

initial coordinates, then 
𝑑𝑎

𝜉0
=
𝑑𝑏

𝜂0
=
𝑑𝑐

𝜁0
=
𝑑𝑧

𝜔0
= 𝜇 (𝑠𝑎𝑦) 

Since     𝑑𝑥 =
𝑑𝑥

𝑑𝑎
𝑑𝑎 +

𝑑𝑦

𝑑𝑏
𝑑𝑏 +

𝑑𝑧

𝑑𝑐
𝑑𝑐 

or     𝑑𝑥 = 𝜇 (𝜉0
𝑑𝑥

𝑑𝑎
+ 𝜂0

𝑑𝑦

𝑑𝑏
+ 𝜁0

𝑑𝑧

𝑑𝑐
) = 𝜌0 𝜉

𝑑𝑠0

𝜌𝜔0
 



 

212 

 

Hence (
𝜌0𝑑𝑠

𝜔0
 ) = (

𝜌𝑑𝑠

𝜔
) = 𝜖    [by Cauchy integral 

Let (𝑢, 𝑣, 𝑤) be the component velocities at (𝑥, 𝑦, 𝑧), and (𝑢 + 𝑑𝑢, 𝑣 + 𝑑𝑣, 𝑤 + 𝑑𝑤) be the 

velocities at a neighboring point (𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦, 𝑧 + 𝑑𝑧) on the same vortex line 

Since  
𝑑𝑥

𝜉
=

𝑑𝑦

𝜂
=

𝑑𝑧

𝜁
=

𝑑𝑠

𝜔
=

𝜖

𝜌
  

𝑑𝑢 =
𝑑𝑢

𝑑𝑥
𝑑𝑥 +

𝑑𝑢

𝑑𝑦
𝑑𝑦 +

𝑑𝑢

𝑑𝑧
 𝑑𝑧 

or           𝑑𝑢 =
𝜖

𝜌
 (𝜉

𝑑𝑢

𝑑𝑥
+ 𝜂

𝑑𝑢

𝑑𝑦
+ 𝜁

𝑑𝑢

𝑑𝑧
) = 𝜖

𝜕

𝜕𝑡
 (
𝜉

𝜌
) 

The quantity du is the rate at which the projection of the element ds on the x-axis is increasing in 

length. The projection is equal to 𝜖
𝜕

𝜕𝑡
 (
𝜉

𝜌
), the line ds still forms part of a vortex line. 

 

2. The product of the angular velocity of any vortex into its cross-section is constant with 

respect to the time, and is the same throughout its length.  
 

Let 𝑆1 𝑎𝑛𝑑 𝑆2 be cross sectional areas at the end points P and Q of a vortex filament. Let n be unit 

outward normal vector on S. Then, by Gauss Divergence theorem 

 

∫ 𝑊. 𝑛 𝑑𝑆 = ∫ ∇.𝑊 𝑑𝑉 = ∫∇. (
1

2
 ∇ × 𝒒)  𝑑𝑉

 

𝑉

 

𝑆

 

=
1

2
∫(𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 𝒒)𝑑𝑉 = 0 𝑎𝑠 𝑑𝑖𝑣 𝑐𝑢𝑟𝑙 = 0
 

𝑣

 

Therefore,    ∫  
 

𝑆
𝑊.𝑛 𝑑𝑆=0 

 

Where S is the closed surface enclosing volume of V of the fluid in the vortex tube 

𝑜𝑟 ∫  
 

𝑆1

𝑊. 𝑛 𝑑𝑆 +∫  
 

𝑆2

𝑊.𝑛 𝑑𝑆 + ∫  
 

𝑤𝑎𝑙𝑙𝑠

𝑊. 𝑛 𝑑𝑆 = 0  

 

But on the walls of the tube, W is along the tube and so ∫  
 

𝑤𝑎𝑙𝑙𝑠
𝑊.𝑛 𝑑𝑆 = 0 𝑎𝑠 𝑊. 𝑛 = 0 

on the walls. 

Hence ∫  
 

𝑆1
𝑊. 𝑛 𝑑𝑆 + ∫  

 

𝑆2
𝑊.𝑛 𝑑𝑆 = 0 

or ∫  
 

𝑆1
𝑊. 𝑛1 𝑑𝑆 = ∫  

 

𝑆2
𝑊.𝑛2 𝑑𝑆 

where 𝑛1𝑎𝑛𝑑 𝑛2 are unit outward normal on the surfaces 𝑆1 𝑎𝑛𝑑 𝑆2 drawn in the same sense. 

This implies   

∫𝑊.𝑛 𝑑𝑆
 

𝑆

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

This proves the required result. 

 

10.12 Kelvin’s proof of permanence: Permanence of irrotational motion: 

 

Under the conditions of the Kelvin’s Circulation theorem [Art 6.3 Chapter 6], if the flow is 

irrotational in a material region of the fluid at some particular time (e.g. t = 0 or t = t0), the flow is 

always irrotational in that material region thereafter. 
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i.e. If the motion of an ideal fluid is once irrotational it remains irrotational for ever afterwards 

provided the external forces are conservative and density 𝜌 is a function of pressure p only. 

  

Proof. Suppose that at some instant (t = t0), the fluid on the material surface S is irrotational  

Then, 𝑐𝑢𝑟𝑙 𝒒 = 𝝎= 0           (1) 

for all points of S. 

Let C be the boundary of surface S, then 

   = ∮ 𝑞. 𝑑𝑟 = ∫ (𝑛. 𝑐𝑢𝑟𝑙𝒒)
𝑆𝐶

dS = ∫ (𝒏. 𝜔)𝑑𝑠 = 0
𝑆

  | using (1) 

But by Kelvin’s circulation theorem,  is constant for all times.  Hence circulation  is zero for all 

subsequent times.  At any later time, 

  ∫ 𝑛. 𝜔
𝑆

dS = 0 

If we now take S to be non-zero infinitesimal element, say S, then 

   𝒏.𝜔 S = 0    𝜔 = 0 at all points of S for all times and the motion is irrotational 

permanently.  This proves the permanency of irrotational motion. 

 

 

 

Example: Prove that the necessary and sufficient condition that the vortex lines may be at right 

angles to the stream lines are (𝒖, 𝒗,𝒘) = 𝝁 (
𝝏𝝓

𝝏𝒙
,
𝝏𝝓

𝝏𝒚
,
𝝏𝝓

𝝏𝒛
) where 𝝁,𝝓 are function of x,y,z,t. 

Solution: Stream lines are  
𝑑𝑥

𝑢
=

𝑑𝑦

𝑣
=

𝑑𝑧

𝑤
     (1) 

and vortex lines are         
𝑑𝑥

𝜉
=

𝑑𝑦

𝜂
=

𝑑𝑧

𝜁
     (2) 

Stream lines (1) and vortex line (2) will be at right angles if  

𝑢𝜉 + 𝑣𝜂 + 𝑤𝜁 = 0      (3) 

 

𝜉 =
𝜕𝑤

𝜕𝑦
−

𝜕𝑣

𝜕𝑧
,    𝜂 =

𝜕𝑢

𝜕𝑧
−

𝜕𝑤

𝜕𝑥
, 𝜁 =

𝜕𝑣

𝜕𝑥
−

𝜕𝑢

𝜕𝑦
    (4) 

Using (4), (3) we obtain 

𝑢 (
𝜕𝑤

𝜕𝑦
−
𝜕𝑣

𝜕𝑧
) + 𝑣 (

𝜕𝑢

𝜕𝑧
−
𝜕𝑤

𝜕𝑥
) + 𝑤 (

𝜕𝑣

𝜕𝑥
−
𝜕𝑢

𝜕𝑦
) = 0 

Which is the necessary and sufficient condition in order that 𝑢 𝑑𝑥 + 𝑣 𝑑𝑦 + 𝑤 𝑑𝑧 may be perfect 

differential. So, we may write 

 

𝑢 𝑑𝑥 + 𝑣 𝑑𝑦 + 𝑤 𝑑𝑧 = 𝜇 𝑑𝜙 = 𝜇(
𝜕𝜙

𝜕𝑥
𝑑𝑥 +

𝜕𝜙

𝜕𝑦
 𝑑𝑦 +

𝜕𝜙

𝜕𝑧
𝑑𝑧) 

Therefore,   𝑢 = 𝜇
𝜕𝜙

𝜕𝑥
, 𝑣 = 𝜇

𝜕𝜙

𝜕𝑦
,   𝑤 = 𝜇

𝜕𝜙

𝜕𝑧
 

 

Example: Assuming that in an infinite unbounded mass of incompressible fluid, the circulation 

in any closed circuit is independent of time, show that the angular velocity of any element of the 
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fluid moving rotationally varies as the length of the element measured in the direction of the 

axis of rotation. 

 

Solution: Let 𝜔 be the angular velocity of the element ds and let 𝜎 be the its area of cross-section. 

Then circulation in any closed circuit surrounding this element is 2𝜔𝜎. Let the element ds form a 

part of the vortex filament s so that the circulation is constant all along this element. Furthermore, 

since circulation assumed to be independent of time, we get 

2𝜔𝜎 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

Again, since the liquid is incompressible 

𝜎 𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

After dividing, we have  
𝜔

𝑑𝑠
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

which proves the result. 

 

10.13 General Theory of Vortex Motion: 

  

The vorticity is defined as Ω = 𝑐𝑢𝑟𝑙 𝒒                  (1) 

In physical applications one is often concerned with the problem of expressing the vorticity field in 

terms of the velocity field. To obtain q(r, t)  in terms of Ω we need to invert the equation (1). We 

do this as follows: 

We consider flow regions in which the fluid motion is due to vortices only i.e., there are no 

sources, sinks etc. motion due to which is essentially irrotational. Assuming the fluid to be 

incompressible, the equation of continuity is 

𝑑𝑖𝑣 𝒒 = 0          (2) 

 

Since divergence of curl of a vector vanishes identically, we can write 

𝒒 = 𝑐𝑢𝑟𝑙 𝑨      (3) 

 A is called the vector potential for velocity. Also since for any scalar function 𝜙, curl(grad 𝜙) =

0, A is indeterminate to within the gradient of scalar function. To make A unique we stipulate 

     div A=0      (4) 

From (3), curl curl A=curl q 

−𝛁𝟐 𝑨 + ∇(∇. 𝐴) = Ω 

Using (4) this gives 

∇2𝐴 = −Ω 

This is Poisson’s equation for A whose solution can be expressed as 

𝑨(𝒓, 𝑡) =
1

4𝜋
 ∭

Ω′(𝑟′,𝑡)

|𝑟−𝑟′|
 𝑑𝑉′   

 

Where 𝛀′(𝒓′. 𝑡) is the vorticity at a point r’ of the vortex tube, and  dV’ is the volume element of 

the vortex tube around the point r’, the integration above extends over the whole vortex tubes.  
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The velocity field at a point P( r) as given by (3) is 

𝒒(𝒓, 𝑡) = 𝑐𝑢𝑟𝑙
1

4𝜋
∭

Ω′(𝑟′, 𝑡)

|𝑟 − 𝑟′|
 𝑑𝑉′    

 

10.14 Vorticity in Two-dimensions: For an incompressible fluid in the xy-plane, we have 

  
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
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





y

u

x

v
k  

which shows that in two-dimensional flow, the vorticity vector is perpendicular to the plane of 

flow. 

Also,   
y

u

x

v









  

Thus   k Ω  

Now, for this case, the Helmholtz’s vorticity equation  

  q)( 


dt

d
 gives 

  


0
dt

d
constant 

i.e. Ω = constant. 

which shows that in the two-dimensional motion of an incompressible fluid, the vorticity of any 

particle remains constant. 

Here, we may regard Ω as a vortex strength per unit area. 

Also, in terms of stream function, we have 

  u = 
x

v,
y 







 

  
 2

2

2

2
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













 kk

yx
 

i.e.  Ω= 2 

This gives vorticity in terms of the stream function.  

 

 

10.15 Rectilinear or columnar Vortex Filament: The strength k of circular vortex is given 

by 

k = wa2.  

 If we let a0 and 𝜔 → ∞  such that the above product remains constant, we get a rectilinear 

vortex filament and represent it by a point in the plane of motion.  Such vortex filament may be 

regarded as straight gravitating rod of fluid lying perpendicular to the plane of flow.  It is also 

termed as a uniform line vortex.  The strength of a vortex filament is positive when the circulation 

round it is anticlockwise and negative when clockwise. 
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In vortex motion the curvature of the stream lines introduces the action of centrifugal force which 

must be counter balanced by a pressure gradient in the fluid. 

 

 

Different Types of Vortices: We may divide vortices into the following four types  

1. Forced vortex in which the fluid rotates as a rigid body with constant angular velocity. 

2. Free cylindrical vortex for which the fluid moves along streamlines which are concentric 

circles in horizontal planes and there is no variation of total energy with radius.  

3. Free spiral vortex which is a combination the free cylindrical vortex and a source (radial flow) 

4. Compound vortex in which the fluid rotates as a forced vortex at the centre and as a free vortex 

outside.  

 

10.16 Complex Potential for Circulation about a Circular Cylinder (Circular vortex) : 

In case of a doubly connected region, the possibility of cyclic motion does exist and as such we 

proceed to explain it presently in the case of circle.  

If the circulation in a closed circuit is 2k, then k is called the strength of the circulation.  

Let s consider the complex potential  

  𝑤 =   =  𝑖 =  𝑖𝑘 log 𝑧 
      (1) 

On the circular cylinder |𝑧| =  𝑎, 𝑧 =  𝑎 𝑒𝑖𝜃  

Thus, w = ik log (a ei) = ik (log a + i) 

i.e.   + i k + ik log a 

   = k,  = k log a = constant. 

This shows that the circular cylinder is a streamline and thus equation (1) gives the required 

complex potential for circulation about a circular cylinder. 

When the fluid moves once round the cylinder in the positive sense,  increases by 2 and then 

  1 = k ( +2) = k 2k  

       =   2k 

   circulation = 2k =  1 

  = decrease in  moving once round the circuit. 

Hence there is a circulation of amount 2k about the cylinder.  

Also,   
z

ik

dz

dw
  

 q = 
r

k

dz

dW
  

i.e. k = rq 

 k = q when r = 1 

Thus k is the sped at unit distance from the origin. 

 

10.17 Complex Potential for Rectilinear Vortex (Line Vortex) Let us consider a cylindrical 

vortex tube whose cross-section is a circle of radius a; surrounded by infinite mass of liquid.  We 

assume that vorticity over the area of the circle is constant and is zero outside the circle. 

Let  be the stream function, then  

  k2  
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i.e.  Ω = 2 = 
2
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2

yx 
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
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Since there is a symmetry about the origin  is a function of r only and so 0
2

2





. 

  Ω= ,
dr

d
r

dr

d

r

1







 
 for r < a 

     = 0, for r > a 

i.e.   






 

dr

d
r

dr

d
 = r Ωfor r < a  

      = 0, for r > a 

Integrating, we find 

  r
2

2r

dr

d



+ A, for r < a  

        = B, for r > a 

We are interested in the fluid motion outside the cylinder |z| = a.  Therefore, integrating the second 

of the above result, we get 

   = B log r + C, for r > a. 

The constant C may be chosen to be zero.  Further, for r > a, the vorticity is zero and the fluid 

motion is irrotational, therefore velocity potential  exists and is related to  as  

  
r

B

rr

1










 

  = B + D 

  = B, neglecting D 

Let k be the circulation while moving once round the cylinder, then  

  k = decrease in value of  on describing the circuit once 

     = B [(+2)] = 2B 

 B = k/2 = K(say)  

Thus,  = k and  = k log r 

Hence 𝑊 =   +  𝑖 =  𝑘 +  𝑖𝑘 𝑙𝑜𝑔 𝑟 

         =  𝑖𝑘 (𝑙𝑜𝑔 𝑟 +  𝑖) 

         =  𝑖𝑘 𝑙𝑜𝑔 𝑧 ==  𝑖 .zlog
2

k


 

If the rectilinear vortex is situated at the point z = z0, then by shifting the origin, we get  

  𝑊 =  𝑖𝑘 𝑙𝑜𝑔 (𝑧𝑧0) 
If there are vortices of strengths k1, k2, …kn situated at z1, z2,…, zn respectively, then the complex 

potential is  

  W = ik1 log(zz1) +ik2 log(zz2) +…+ ikn log(zzn) 

 

Remarks (i) By a vortex, we mean a rectilinear vortex or line vortex.  

(ii) K = k/2, where k is the strength of a vortex and k that of circulation 

(iii) Velocity component of a single vortex 
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𝑑𝑊

𝑑𝑧
= −𝑢 + 𝑖𝑣 =

𝑖𝑘

2𝜋(𝑧 − 𝑧0)
=

𝑖𝑘

2𝜋𝑟𝑒𝑖𝜃
  

    −𝑢 + 𝑖𝑣 =
𝑖𝑘

2𝜋𝑟
 (cos 𝜃 − 𝑖 𝑠𝑖𝑛𝜃) 

    𝑢 = −
𝑘

2𝜋

𝑦−𝑦0

𝑟2
 , 𝑣 =

𝑘

2𝜋

𝑥−𝑥0

𝑟2
  

where     𝑟2 = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 

 

 

Example: An infinite liquid contains to parallel, equal and opposite rectilinear vortex filaments 

at a distance 2b. Show that the paths of the fluid particles relative to the vortices can be 

represented by the equation 

𝒍𝒐𝒈(
(𝒓𝟐 + 𝒃𝟐 − 𝟐𝒓𝒃 𝒄𝒐𝒔 𝜽)

(𝒓𝟐 + 𝒃𝟐 + 𝟐 𝒓 𝒃 𝒄𝒐𝒔 𝜽)
) +

𝒓 𝒄𝒐𝒔 𝜽

𝒃
= 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕.  

O is the middle point of the join which is taken as x-axis. 

 

Solution: Let the vortices of strengths +𝑘,−𝑘  be at 𝐴(−𝑏, 0), 𝐵(𝑏, 0) such that AB is along x-

axis. The complex potential due to this vortex pair at P(x,y) is  

𝑊 =
𝑖𝑘

2𝜋
log(𝑧 + 𝑏) −

𝑖𝑘

2𝜋
log(𝑧 − 𝑏) 

or    𝑊 = 𝜙 + 𝑖 𝜓 =
𝑖𝑘

2𝜋
 [log(𝑥 + 𝑏 + 𝑖𝑦) − log(𝑥 − 𝑏 + 𝑖𝑦 )] 

Equating imaginary parts from both sides 

𝜓 =
𝑘

4 𝜋
 [log{(𝑥 + 𝑏)2 + 𝑦2} − log{(𝑥 − 𝑏)2 + 𝑦2}]     (1) 

The vortex pair will move along a line parallel to y-axis with velocity  
𝑘

2𝜋(𝐴𝐵)
=

𝑘

2𝜋(2𝑏)
=

𝑘

4𝜋𝑏
 

To reduce the system to rest, we have to superimpose a velocity (
𝑘

4𝜋𝑏
)parallel to y-axis. if 𝜓′ be 

the stream function due to this disturbance, then  

−
𝑘

𝜋𝑏
= 𝑣 = −

𝜕𝜙′

𝜕𝑦
=
𝜕𝜓′

𝜕𝑥
 ,    𝜓′ = −

𝑘𝑥

4𝜋𝑏
 

The stream lines relative to the vortex system are given by 𝜓 = 𝑐𝑜𝑛𝑠𝑡. 𝑖. 𝑒., 
𝑘

4𝜋
[log{(𝑥 + 𝑏)2 + 𝑦2} + log{(𝑥 − 𝑏)2 + 𝑦2}] +

𝑥

𝑏
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 

 

Changing into polar coordinates,  

log {
(𝑥 − 𝑏)2 + 𝑦2

(𝑥 + 𝑏)2 + 𝑦2
} +

𝑥

𝑏
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

log {
(𝑟 cos𝜃 − 𝑏)2 + 𝑟2 sin2 𝜃

(𝑟 cos𝜃 + 𝑏)2 + 𝑟2 sin2 𝜃
} +

𝑟 cos𝜃

𝑏
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

 

10.18 Check Your Progress: 

i) Show that when a cylinder moves uniformly in a given straight line in an infinite liquid, the path 

of any point in the field is given by the equations 
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𝑑𝑧

𝑑𝑡
=

𝑉𝑎2

(𝑧′ − 𝑉𝑡)2
;
𝑑𝑧′

𝑑𝑡
=

𝑉𝑎2

(𝑧 − 𝑉𝑡)2
 

Where V is the velocity of cylinder, a its radius, and z, z’ are 𝑥 + 𝑖𝑦, 𝑥 − 𝑖𝑦 where x, y are the 

coordinates measured from the starting point of the axis, along and perpendicular to its direction of 

motion. 

 

ii) An infinite cylinder of radius a and density 𝜌 is surrounded by a fixed concentric cylinder of 

radius b, and the intervening space is filled with liquid of density 𝜌. Prove that the impulse per unit 

length necessary to store the inner cylinder with velocity V us 
𝜋𝑎2

𝑏2−𝑎2
 {(𝜎 + 𝜌)𝑏2 − (𝜎 − 𝜌)𝑎2} V. 

 

iii) Show that with proper choice of units, the motion of an infinite liquid produced by the motion 

of an elliptic cylinder parallel to one of its principal axes is given by the complex function 𝑤 =
𝑒−𝜁 , 𝑤ℎ𝑒𝑟𝑒 𝑧 = 2 cosh 𝜁. 

 

iv) When an infinite liquid contains two parallel equal and opposite rectilinear vortices at a 

distance 2b, prove that the stream lines relative to the vortices are by the equation 

log [
𝑥2 + (𝑦 − 𝑏)2

𝑥2 + (𝑦 + 𝑏)2
] +

𝑦

𝑏
= 𝐶  

The origin being the middle point of the join, which is taken for y-axis. 

 

v) Three parallel rectilinear vortices of same strength k and in the same sense meet any plane 

perpendicular to them in an equilateral triangle of side a. Show that the vortices all move round the 

same cylinder with uniform speed in time 
2𝜋 𝑎2

3𝐾
. 

 

10.19 Summary: In this chapter the motion of circular, co-axial and elliptic cylinder in an 

infinite mass of liquid has been discussed. It is discussed in this chapter about the vortex motion, 

defined vortex line, vortex tube and vortex filament.  The permanent of vorticity is also explained 

here and proved two important properties of vortex filament. At the end, the complex potential for 

the rectilinear vortices is derived in this chapter. 

 

10.20 Keywords: Irrotational motion, circular cylinder, co-axial cylinder, elliptic cylinder, 

vortex motion, vortex filament, rectilinear vortices. 

 

10.21 Self -Assessment Test: 
 

SA1: Find the velocity potential and stream function when a circular cylinder of radius a is moving 

in an infinite mass of liquid at rest at infinity with velocity U in the direction of x-axis. 

SA2: Find kinetic energy when an elliptic cylinder rotates in an infinite mass of liquid at rest at 

infinity. 

SA3: Find the velocity potential and stream function in case of an elliptic cylinder rotating in an 

infinite mass of liquid at rest at infinity. 

SA4: Find velocity potential, stream function and velocity components due to a rectilinear vortex 

filament. 
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SA5: Find the necessary and sufficient condition that vortex lines may be at right angles to the 

stream lines. 

SA6: Prove that the product of the cross-section and angular velocity at any point on a vortex 

filament is constant all along the vortex filament and for all time. 
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